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Weakly interacting one-dimensional topological insulators: a bosonization approach

Polina Matveeva,1 Dmitri Gutman,1 and Sam T. Carr2
1Department of Physics, Bar-Ilan University, Ramat Gan, 52900, Israel

2School of Physics and Astronomy, University of Kent, Canterbury CT2 7NH, United Kingdom

We investigate the topological properties of one-dimensional weakly interacting topological insu-
lators using bosonization. To do that we study the topological edge states that emerge at the edges
of a model realized by a strong impurity or at the boundary between topologically distinct phases.
In the bosonic model, the edge states are manifested as degenerate bosonic kinks at the boundaries.
We first illustrate this idea on the example of the interacting Su-Schrieffer-Heeger (SSH) chain. We
compute the localization length of the edge states as the width of an edge soliton that occurs in
the SSH model in the presence of a strong impurity. Next, we examine models of two capacitively
coupled SSH chains that can be either identical or in distinct topological phases. We find that
weak Hubbard interaction reduces the ground state degeneracy in the topological phase of identical
chains. We then prove that similarly to the non-interacting model, the degeneracy of the edge states
in the interacting case is protected by chiral symmetry. We then study topological insulators built
from two SSH chains with inter-chain hopping, that represent models of different chiral symmetric
universality classes. We demonstrate in bosonic language that the topological index of a weakly
coupled model is determined by the type of inter-chain coupling, invariant under one of two possible
chiral symmetry operators. Finally, we show that a general one-dimensional model in a phase with
topological index ν is equivalent at low energies to a theory of at least ν SSH chains. We illustrate
this idea on the example of an SSH model with longer-range hopping.

I. INTRODUCTION

Topological phases are the states of matter that do not
obey standard Landau symmetry breaking classification
[1]. They are characterized by topological properties that
are global and robust with respect to perturbations. A
prominent example is the Integer Quantum Hall Effect,
that occurs in a two dimensional metal in a perpendicular
magnetic field. The Hall conductance is quantized in such
a system and is determined by a non-trivial first Chern
number related to the number of filled Landau levels [2].
The value of the Hall conductance is thus robust with
respect to perturbations, that do not close the bulk gap.

After the discovery of the Integer Quantum Hall effect
there have been a number of the topological models that
do not rely on the presence of a magnetic field. In two di-
mensions these include the famous Haldane model of the
Anomalous Hall effect [3] and the Kane Mele model of
a Z2 topological insulator [4]. There have also been nu-
merous theoretical [5–7] and experimental [8–13] studies
of three-dimensional topological insulators.

Turning to one-dimension, one of the best-known topo-
logical models is the Su-Schrieffer-Heeger (SSH) model
[14] which was originally proposed to describe properties
of polyacetylene molecules, but was later realized to be
a prototype of a symmetry-protected topological phase
[15]. Another famous one-dimensional topological model
is the Kitaev chain [16] that describes the simplest p−
wave superconductor. It attracted much attention due to
topologically protected Majorana edge modes that serve
as a prospective qubit realization.

The non-interacting phases are well studied and under-
stood, and their topological classification based on non-
unitary symmetries is completely established [17–20]. It
turns out that the electron-electron interaction enriches

the physics in many ways, in particular:

1. In the weak interaction limit interactions may
change the non-interacting classification, although
the states remain adiabatically connected to the
non-interacting ones.

2. Interactions may lead to new topological phases
that can not be continuously connected to non-
interacting ones.

In the second class, the most known example is the frac-
tional quantum Hall effect [21]. In this system inter-
actions give rise to correlated states, with non-Abelian
statistics and quasi-particles that carry fractional charge.
The states of FQHE can be classified in accordance with
their topological order, based on their entanglement en-
tropy [22, 23], K-matrix [24–26] and group cohomology
approach [27, 28]. This remains a rich area for contem-
porary research, as the general classification of possible
phases remains to be discovered. In one dimension, how-
ever, these principles have been established for the sym-
metry protected topological phases [29, 30]. They are
based on the symmetry group of the fermionic model,
with the topological phases classified according to its pro-
jective representations. Note, however, that the symme-
try of the Hamiltonian of an interacting model is not nec-
essarily the same as the symmetry of its low energy fixed
point. It can be lower (spontaneous symmetry breaking),
or higher (dynamical symmetry enhancement) than that
of the fermionic Hamiltonian. In the later case the emer-
gent symmetry may protect the topological phase [31].

We now specialize to the case of weakly interacting
models, which have a non-trivial topology even before
interactions are added. In all dimensions the classifi-
cation of fermionic topological phases is known in this
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limit [32, 33]. In general terms, for the topological insu-
lators in an odd number of dimensions that are in the Z
classes in the non-interacting case is reduced to Zn, where
n = {2, 4, 8, 16, 32} depending on the dimensionality and
the symmetry class. In an even number of dimensions
including the Quantum Hall effect in d = 2 weak inter-
actions do not change the classification.

We now focus on the case of one dimension, which is
the topic of this paper. The most know example of reduc-
tion of topological classification are weakly interacting
stack of Majorana chains [34, 35]. In particular, it was
demonstrated that the non-interacting classification of
Majorana chain model reduces from Z to Z8 which stim-
ulated the search for the general classification described
above. There are also a handful of other interacting mod-
els such as the Haldane model [36, 37] and closely related
AKLT model [38] which are known to have a Z2 topolog-
ical classification. At first sight these seem very different
from the Majorana chains, it was later shown that there
is a mapping between them [39].

Even for weak interactions where this classification is
formally established it is useful to have concrete interact-
ing models where one can quantitatively derive proper-
ties rather than just relying on the adiabatic continuity
and general topological principles. A very standard way
to treat interactions in one dimensions is to employ the
bosonization technique [40, 41]. Our aim is to distinguish
between different topological phases based on the low en-
ergy properties of the model captured by this description.

In our work we focus on examples built from coupled
SSH chains. The non-interacting limit of such models was
previously studied in details in [42], which further allows
us to test the validity of the bosonization approach. In
particular, we are interested in the description of phases
with winding numbers larger than one. The description
of the gapped phases is not trivial within bosonization
even in the non-interacting limit, and requires an accu-
rate lattice regularization and a proper treatment of the
ultraviolet singularities. However once a description of
the non-interacting phases is accomplished within this
description, the incorporation of interaction effects be-
comes trivial.

The effect of interactions on a single SSH chain was
first investigated in [43] via numerical techniques where
they showed that the topological phase is stable up to a
critical interaction. This has been confirmed by various
other studies [44–46]. A similar type of phase transition
was found in [47] for the model of two strongly coupled
interacting SSH chains in the vicinity of a gapless critical
point. In this limit the coupled chain model becomes
equivalent to a single chain.

The edge states in a single SSH chain were recently
explored by bosonization in [48]. In this work it was
shown that bosonization can indeed accurately describe
the edge states in the topological phase of the SSH model,
by treating the open boundary conditions carefully. How-
ever this lead to a rather complicated bosonic model that
is not trivial to extend to coupled SSH chains. In our

work we will show that we reproduce the same results by
using simplified boundary conditions.

The Hubbard SSH model may be thought of as the
simplest generalization of an interacting SSH model. It
consists of two identical SSH chains coupled via Hubbard
interaction. This was first studied using perturbative
Greens function methods in [49], where it was demon-
strated that the interaction reduces the degeneracy of
the edge states from 16 to 4. Since this pioneering work
this model has been studied extensively [39, 50–53] agree-
ing with the perturbative results of [49] and exploring
the myriad of possible strong coupling phases. To the
best of our knowledge this has never been studied using
bosonization.

The models discussed above all fall into the BDI class
of the topological classification. By adding hopping be-
tween two SSH chains one can create models in the other
topological classes in one dimension [42]. In this work it
was also shown that all the Z classes are equivalent in
the sense that one can adiabatically transform one into
another without changing the number of topologically
protected edge states. One can ask the question whether
it is also true when the interactions are present.

In this work we develop a bosonization technique to
study weakly interacting SSH-like models. In contrast
to [48] we treat the open boundary conditions simply as
a strong impurity which amounts to relatively straight-
forward boundary conditions in the bosonised language.
We show for a single SSH chain (winding number ν = 1)
this reproduces the results found in [48]. We then extend
these results to two SSH chains (winding number ν = 2)
coupled first via interactions (the SSH Hubbard model)
and then also including hopping between the chains. The
bosonization reproduces the known reduction of the de-
generacy in the edge states for all of these cases. Finally
we look at an extended SSH chain which has a phase with
winding number ν = 2 . Despite this being a single chain
we show that it can be mapped onto the previously stud-
ied ladder models and thus interactions give the same
degeneracy reduction.

While the majority of the results of this paper have
been derived in the past by different methods, the demon-
stration that it can been seen with bosonization paves
the way to study the topological properties of more ex-
otic strongly interacting phases that are not easily linked
to the non-interacting models. It also allows a framework
to understand topological metallic phases previously de-
scribed in bosonization [31, 54–58].

Let us overview the structure and results of our paper
in more detail.

• In Section II we study the interacting SSH chain.
By using bosonization we show that for strong re-
pulsive interactions, the system undergoes an Ising
phase transition to the charge density wave (CDW)
phase with spontaneously broken Z2 symmetry.
This is consistent with the numerical results of [43].

• In Section III we study the edge states in the in-
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teracting SSH model. We find that the edge states
are stable with respect to weak interactions. We
compute their localization length as a function of
interactions and show that it is not monotonic.
These results are consistent with the results of [48]
where the bosonization with open boundaries is
used. Furthermore, we incorporate the umklapp
term into the analysis and demonstrate that in the
case of repulsion, it leads to an increase in the lo-
calization length. This observation aligns with the
fact that repulsive interactions tend to reduce the
energy gap in the system. We also show within a
bosonic description that the degeneracy of the edge
states is protected by chiral symmetry, similar to
the non-interacting case.

• In Section IV we consider the properties of two SSH
chains coupled by interaction in the cases when
they are in the same topological phases and when
one of the chains is in a trivial phase and the
other is in a topological one. By studying bosonic
phase diagram we demonstrate how the many-body
degeneracy of the edge states is reduced in the
case of capacitively coupled chains, which is con-
sistent with results obtained earlier. By deriving
the bosonic description of symmetry operators for
a two-chain model we demonstrate that chiral sym-
metry protects the degeneracy of the edge states.
We also show that for a given sign of interactions
topological degeneracy of the ground state may be
protected by different symmetries rather than chi-
ral.

• In Section V we add inter-chain hopping to the
model. In the absence of interactions, such a model
describes topological insulators in all chiral univer-
sality classes that we constructed before in [42]. We
show in the bosonic language that winding number
of a coupled model is determined by chiral sym-
metry only, and breaking of other symmetries does
not affect its value.

• In the last Section VI we return to a single SSH
chain but with longer range hopping that has a
phase with winding number of 2. Unlike the cou-
pled chain models with four bands this model has
only two and therefore it is not obvious how to see
additional edge states in bosonization. The resolu-
tion to this is that this model has four Fermi points
along the relevant phase transition line, and hence
maps at low energy to the coupled chain models
we studied before. We also show that this can be
easily generalized to models with arbitrary winding
numbers.

II. BOSONIC DESCRIPTION OF SSH MODEL

In this section, we first review the topological proper-
ties of the non-interacting SSH model. Next we add in-
teractions, bosonize the full model, and analyze its bulk
ground state in the absence of edges.

A. Non-interacting SSH model

We consider a non-interacting SSH model, described
by the following Hamiltonian:

ĤSSH = w
∑
n

c†n,Acn,B + v
∑
n

c†n,Bcn+1,A, (1)

where w, v are real. The SSH model describes a one-
dimensional chain of atoms A and B, connected by a
dimerized hopping amplitude. This model has chiral
(sublattice) symmetry because there is no hopping be-
tween atoms belonging to the same sublattice. This al-
lows us to define an integer topological invariant – the
winding number ν [20], that distinguishes between two
topologically inequivalent phases of the model. In order
to define it we write the Hamiltonian (1) in momentum
space as:

ĤSSH =
∑
k

c†khSSHck,

hSSH =

(
0 ∆(k)

∆∗(k) 0

)
,∆(k) = w + veik, (2)

where the Hamiltonian is written in the basis ck =
{ck,A, ck,B}T. The winding number is given by the fol-
lowing integral over the Brillouin zone [42]:

ν =
−i

2π

∫
BZ

∂kiϕ(k)dk, (3)

where ϕ(k) is defined as the complex phase of ∆(k) [59].
For the SSH model (1) there are two possible phases:

ν = 1 for |w| > |v| known as the topological phase and
ν = 0 for |w| < |v| known as a trivial phase.

In order to bosonize the model we require a metallic
phase to begin with. To do that, we rewrite the Hamil-
tonian (1) in terms of the parameters t = (w + v)/2 and
δt = (v −w)/2 to identify the gapless part of the model,
proportional to t and gap opening terms proportional to
δt:

ĤSSH = t
∑
j

c†jcj+1 + δt
∑
j

(−1)jc†jcj+1 + h.c. (4)

If δt = 0 the spectrum of the model ϵ(k) = 2t cos(k) is
gapless at half filling and can be linearized around the
Fermi points ±kF , where kF = π/2a0 and a0 is the lat-
tice constant. The effective fermionic operator can be ex-
panded in terms of right- and left-moving modes smooth
on the scales of the inverse Fermi momentum:

cj → Ψ(x) = eikF xR(x) + e−ikF xL(x). (5)
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As a detail , the interpretation of R(x) and L(x) as right-
and left-movers requires t < 0. This is unimportant as
the physics is equivalent for t > 0.

Next, we use standard bosonisation conventions for
spinless fermions, see Appendix A, and obtain the follow-
ing Hamiltonian written in terms of the canonical bosonic
fields ϕ(x) and Π(x):

ĤSSH =
vF
2

∫
dx
[
(∂xϕ(x))

2 +Π2(x)
]
+ V SSH

gap , (6)

V SSH
gap = − δt

πa0

∫
dx cos[

√
4πϕ(x)],

where the Fermi velocity vF = 2|t|a0. The non-linear
term V SSH

gap is relevant, therefore the ground state of the
model (6) can be determined quasiclassically by minimiz-
ing the potential V SSH

gap . Depending on the sign of δt one
gets the following result:{

δt > 0 :
√
4πϕ(x) = 0 mod 2π

δt < 0 :
√
4πϕ(x) = π mod 2π

(7)

Now let us turn to the interacting model and study how
the non-interacting ground state (7) changes in the pres-
ence of interactions.

B. Interacting model

The generic interaction term for spinless fermions can
be written in the continuum limit as:

Hint =

∫
dxV (x− x′)ρ(x)ρ(x′), (8)

where the density ρ(x) = Ψ†(x)Ψ(x). After bosonizing
this model by using Appendix A, we obtain the following
bosonic Hamiltonian:

H = HLL + Vint + V SSH
gap ,

HLL =
u

2

[
1

K
(∂xϕ)

2 +K(∂xθ)
2

]
,

Vint =
g

2(πa0)2
cos[2

√
4πϕ],

V SSH
gap = − δt

πa0

∫
dx cos[

√
4πϕ(x)], (9)

where K – is the Luttinger parameter K ≃ 1−2V0/(πvF ),
and u is the renormalized Fermi velocity u = vF (1 +
V0/πvF ). The coupling constant g = a0V (k = 2kF ) de-
termines the umklapp amplitude, and V0 = a0V (k = 0)
describes the forward scattering.

For weak interactions the umklapp term is irrelevant,
so the only difference from the non-interacting case is
the presence of Luttinger Liquid parameter. While this
would completely change the metallic phase this is not
important in the presence of the single particle gap V SSH

gap .

As the repulsive interaction strength increases, the umk-
lapp term becomes relevant for K < 1/2. The quasi-
classical ground state of the umklapp term Vint is given
by: {

g > 0 :
√
4πϕ(x) = π/2 mod π

g < 0 :
√
4πϕ(x) = 0 mod π

(10)

Thus in the case g < 0 the non-interacting ground state
for the single-particle gap (7) is compatible with the
ground state determined by the umklapp term Vint (10).
In this case the interactions will not lead to any phase
transitions.

In the other case g > 0 the non-interacting ground
state (7) is incompatible with the values of ϕ(x) fixed by
interactions. The strongly interacting phase g ≫ |δt| is
characterized by a broken Z2 symmetry (ϕ → −ϕ) and
physically corresponds to a charge density wave.

III. EDGE STATES IN SSH MODEL

In this section, we discuss the bosonic description of
the topological edge states in both the non-interacting
SSH chain and the interacting model. We compare differ-
ent physical realizations of the boundary. First, we show
that there are edge states at the boundary between the
two phases of the SSH model. Secondly, we consider the
case when the boundary is realized by a strong impurity,
and argue that an additional quantum mechanical phase
needs to be added to the bosonic field at the boundary to
reproduce the topological edge states. Finally, we relate
the localization length of the edge states to the width of
a soliton in the Sine-Gordon model and compare it with
the results obtained by bosonization with open bound-
aries without including umklapp. We show that the two
methods provide qualitatively similar results. We next
include the backscattering to the model and compute
the localization length in the SSH chain with nearest-
neighbor interactions and next-nearest neighbor interac-
tions.

A. Edge states at the interface between trivial and
topological phases of non-interacting SSH chain

Before we discuss the edge states in the SSH model
is important to note that there is no physical distinction
between the two phases with |w| > |v| and |v| < |w| of the
SSH model if one imposes periodic boundary conditions
[60]. This is because of the ambiguity in defining the
unit cell. We can, however, discuss a boundary between
one phase and the other. This was first discussed in the
original paper of Su, Schrieffer, and Heeger [14], where
the gap arises from spontaneously symmetry breaking
(Peierls transition), and therefore these boundaries are
the elementary excitations going from one ground state
to the other.
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We will consider the boundary as externally imposed:{
δt(x) < 0, x > 0

δt(x) > 0, x < 0
, (11)

that fixes the location of the domain walls and allows us
to interpret the physics here as the physics of edge states.

The fact that δt changes sign implies δt(x = 0) = 0
and thus at this point the gap is closed. This alone is
not sufficient however to ensure the edge states pinned
at the zero energy. This requires chiral symmetry which
is present in the SSH model.

The gapless edge states are manifested as kinks in
bosonic fields at the boundary. To see that we recall the
fact that on the quasiclassical level, the bosonic fields in
the bulk are fixed to the minima of the potential energy
(7) such that:

√
4πϕ(x) =

{
π mod 2π, x > 0

0 mod 2π, x < 0
(12)

In anticipation of our upcoming discussion of finite sys-
tems with two edges let us consider a finite region with
δt < 0 sandwiched between regions with δt > 0. The pos-
sible field configurations are illustrated in Fig. 1. The
kinks in bosonic fields are associated with the jump of
fermionic density at the boundary. There are four de-
generate kinks (two at each edge), that connect different
ground states in the regions with δt > 0 and δt < 0.
The electric charge of the edge states can be computed
as follows:

Q =
e√
π

x0+ϵ∫
x0−ϵ

∂xϕ(x)dx = ±e

2
, (13)

where x0 = 0 or L. This fractional charge was one of
the key points of the original SSH paper, however the
analogue in terms of the edge states is much more mun-
dane. The electric charges of the two states differ by e,
therefore the edge state has a charge of e.

The many-body ground state of a finite system with
the size L is fourfold degenerate, as each edge state can
be either empty or occupied. This is consistent with a
fermionic description of the edge states in the SSH model.

B. Edge states at a physical edge

Let us now we consider a physical edge where we will
demonstrate that the physics is identical to the phase
boundary discussed above.

We will model the physical edge by putting a single
(infinitely) strong impurity at the boundary while the
bulk is in the topological phase. Let us start with a
model of an impurity placed at the lattice site j = 0:

Vimp = V0

∑
j

δj0c
†
jcj + h.c. (14)

Figure 1: The quasiclassical bosonic ground state for an
interface between topologically distinct phases with δt > 0
and δt < 0 of a non-interacting SSH chain (6). The kinks in
the bosonic field ϕ(x) at the boundaries correspond to the
edge states.

The limit of a strong impurity implies we wish to consider
V0 → ∞. Now let us bosonize this term and focus on the
non-linear part that fixes the value of the bosonic field ϕ
at the impurity.

Vimp =
V0

πa
sin[

√
4πϕ(x = 0)− sgn[V0]δ], δ = π/2.

(15)

Here we added an additional phase δ to the bosonic field
at the boundary. For a weak impurity δ → 0, however
it is not surprising that an additional phase shift should
occur in the strong impurity limit. We hypothesize that
δ → π/2 as V0 → ∞. This is empirical but we will show
that it works for all models that we consider. We inter-
pret this phase as a forward scattering phase for electrons
with quadratic dispersion that scatter on the delta po-
tential in the limit of the infinite strength V0 → ∞.

As V0 → ∞, the impurity term Vimp has a quasiclas-
sical minima at

√
4πϕ = 0 mod 2π. This matches the

bulk phase when δt > 0 (7). We can thus consider δt > 0
as the trivial phase of the SSH model where nothing hap-
pens at the edges while δt < 0 is the topological phase ex-
hibiting zero-energy edge modes and a field profile iden-
tical to the one already shown in Fig. 1.

C. Edge states in an interacting SSH model

So far we have described the non-interacting SSH
model in the bosonic language and reproduced the known
results for the edge states. It is now easy to add interac-
tions.

Specifically we consider an interacting SSH chain with
corresponding bosonized Hamiltonian given by (9). We
will first focus on the case when the interactions are small
compared to the single particle gap. In that case the
umklapp can be neglected and the only effect of interac-
tion is to change K that enters the kinetic part of the
Hamiltonian. This has no effect on the topological prop-
erties of the solitons and the picture remains as in Fig. 1.
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Figure 2: Possible ground state configurations of the
interacting SSH model in the CDW phase (solid lines). The
system spontaneously breaks Z2 symmetry in the bulk by
choosing one of the minima shown in red or blue. For a
given bulk state, there is a unique kink structure at the
edges with lowest energy. Such states differ from the
topological edge states in non-interacting SSH model, that
have an edge degeneracy.

The only effect will be on the exact shape of the solitons,
this will be discussed in Sections IIID and III E.

In case when interactions are repulsive g > 0 and
strong, we showed in Section II B that there is a phase
transition to the charge density wave phase (CDW). Let
us now consider the properties of this phase in the pres-
ence of boundaries.

The bosonic field in CDW phase is fixed quasiclassi-
cally in the bulk at one of the potential minima ϕ(x) ≈
±π/2 mod 2π, as is discussed in Appendix C. At the
boundary, the bosonic field interpolates between the bulk
values and the value ϕ = 0 mod 2π that is fixed by im-
purity.

The two possible ground state field configurations in a
finite system are illustrated in Fig. 2. They are degen-
erate, however this degeneracy is related to the sponta-
neously broken Z2 symmetry in the bulk, and not to the
topological properties of the model. In particular, in a
case of non-interacting SSH chain the bulk ground state
is unique and degeneracy occurs due to two bosonic kinks
that interpolate between bulk and boundary values. Such
states differ by a unit charge, that implies that one can
add or remove an electron from the edge without energy
cost. In the CDW phase, however, adding a particle at
the edge, i.e. adding a kink of π magnitude, requires
finite energy as it corresponds to the excitation of the
model.

D. Estimation of the localization length in the
interacting SSH model without umklapp

While we have explained that the presence of the edge
states in the SSH model is unaffected by weak inter-
actions, the profile of the edge states and in particular
their localization length will depend on the interaction
strength. This was previously considered in [48] which
used a more precise treatment of open boundary condi-
tions within bosonisation [61–63].

This gave rise to complicated non-linear Euler-
Lagrange equations for the decaying bosonic mode that
the authors solved to compute the localization length as a
function of the Luttinger parameter. In particular, they
found that the localization length is non-monotonic as
a function of the interaction strength. We demonstrate
here that we get the same features by using simple bound-
ary conditions that we have previously discussed.

With this boundary conditions the edge state corre-
sponds to a half-soliton in the sine-Gordon model, see
[57]. Therefore the localization length can be estimated
as the half-width of the sine-Gordon soliton, which is
given by l = v/∆, where v is the renormalized Fermi ve-
locity v = vF /K and ∆ is the energy gap, that can be
estimated via scaling analysis. For K > 1/2 where the
umklapp term can be neglected, the RG equation for the
dimerisation δt reads:

d(δt)

dl
= (2−K)δt(l) (16)

The RG scale l∗ associated with the energy gap is de-
termined by the condition δt(l∗)/Λ0 = 1, where Λ0 is a
non-universal high-energy cutoff. Thus for the gap we
obtain ∆ = Λ0e

−l∗ = Λ0(δt/Λ0)
1/(2−K). Therefore as

we increase K the gap ∆ decreases, this is related to the
fact that the operator V SSH

gap becomes less relevant. For
the localization length of the edge state we obtain thus:

lloc =
vF
K

1

Λ0

(
Λ0

δt

) 1
2−K

(17)

As K increases 1/∆ increases as well, but the renormal-
ized Fermi velocity decreases. Therefore the function lloc
is non-monotonic, and changes slope at K ≈ 1 when
δt/Λ0 ≈ e(1−δK)/δK , where δK = K − 1, δK ≪ 1 for a
fixed cutoff Λ0, in full agreement with [48]. Note that at
K = 2 the localization length diverges due to the decreas-
ing of the gap, which was also discussed in [48]. Thus we
showed that by treating the edge states as half-solitons
in the sine-Gordon model and using the scaling analysis
one gets qualitatively the same results for the localization
length as with the open boundary bosonization approach.

The discussion so far has been for completely general
interaction. We will now illustrate this for concrete lat-
tice models in the next Section where we also include
possible effects of the umklapp term.

E. Localization length for nearest neighbor and
next nearest neighbor interactions

We consider here two possible interactions one can add
to the SSH model: nearest neighbor interactions (NN)
and next nearest neighbor interactions (NNN). The first
couples atoms of different sublattices, while the latter
couples atoms belonging to the same sublattice. It is
known for the non-interacting SSH model, see e.g. [42]
that the edge states are localized on only one of the sub-
lattices. Thus one might ask if there is any difference
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(a)

(b)

Figure 3: The localization length of the edge states in
interacting SSH model as a function of the interaction
strength g = a0V0, where V0 is the interaction strength in a
lattice model. The localization length is measured in the
units vF /Λ0. a) Localization length in case of
nearest-neighbor interactions (18) b) The localization length
for next-nearest neighbor interactions (20).

between the weak NN interactions that couple the edge
states to the bulk compared to weak NNN interactions
which directly affect the wavefunction of the edge states.

We start with the nearest-neighbor interaction:

Hint,NN = V0

∑
j

(nj − 1/2)(nj+1 − 1/2). (18)

In this model the Luttinger parameter K and backscat-
tering amplitude g are not independent and are related
by K = 1−2g/(πvF ) in the limit g ≪ EF , here g = a0V0

as follows from Section II B. To compute the localization
length one needs to evaluate the gap first. To do that
we need to solve the RG equations that include also the
umklapp term around K = 1 and find a length scale
where one of the coupling constants in (9) umklapp g/Λ0

or dimerization δt/Λ0 reaches 1. The RG equations can
be derived via Operator Product Expansion outlined in

[64, 65] and in the second order yield:

d(δ̃t)

dl
= (2−K)δ̃t− πδ̃t(l)g̃(l)

dK

dl
= −64π2g̃2

dg̃

dl
= (2− 4K)g̃(l) (19)

where δ̃t = −δt/2vFπa0, g̃ = g/4vF (πa0)
2. Note that δ̃t

is renormalized by the umklapp term such that g > 0 ef-
fectively decreases δ̃t(l) and thus decreases the gap. This
is consistent with the results of the quasiclassical analy-
sis of the interacting SSH model in the Sec. II B where
we demonstrated that the system goes through the phase
transition if g > 0 and g̃ ≃ |δ̃t|. By numerically solving
the RG equations (19) for the energy gap we compute the
localization length as a function of g via lloc = vF /(K∆).
The results for g̃ ≪ |δ̃t| are shown in the Fig. 3a. The
umklapp term does not change the non-monotonic be-
havior of the localization length. The results are also
consistent with the fact that the umklapp repulsive in-
teraction decreases the energy gap.

Now let us consider the next-nearest neighbor interac-
tions:

Hint,NNN = V0

∑
j

(nj − 1/2)(nj+2 − 1/2). (20)

The Luttinger parameter and umklapp scattering ampli-
tude of the bosonized version of this model (9) are given
by K = 1 + 2g/(πvF ) and g̃ = −g = −a0V0 correspond-
ingly. The localization length for NNN interactions is
plotted in Fig. 3b.

Therefore the only difference between the NN inter-
action and NNN interactions is the signs of the coupling
constants that enter in the bosonic models, namely repul-
sive interactions become attractive if one replaces NNN
interactions with NN and vice versa.

F. Symmetry that protects the edge modes

The non-interacting SSH model falls into the BDI class
that has time-reversal T , particle-hole P and chiral C
symmetries. The winding number does not change if one
breaks T and P but preserves C. Furthermore, if T and C
are broken but P remains then the model falls into the D
topological class characterized by a Z2 invariant (this is
more naturally discussed in the context of Kitaev chain,
but the physics is identical). As the Z and Z2 invariants
are indistinguishable for a model with topological index 0
and 1, the edge modes in the non-interacting SSH model
will remain protected so long as either C or P symmetries
are present. We now show this remains true in the weakly
interacting case.

To do that we derive in Appendix D how the bosonic
fields transform under the anti-unitary symmetry oper-
ations of a single SSH chain. The results are shown in
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Symmetry S

Fields T P C

S−1ϕS ϕ −ϕ −ϕ

S−1θS −θ θ −θ

Table I: Symmetry transformation of bosonic fields ϕ
and θ. T denotes time-reversal symmetry with
T 2 = +1, P is the particle hole symmetry with
P 2 = +1 and C = T · P is the chiral symmetry. We
note that the cases P 2 = −1 and T 2 = −1 are not
realisable for a single chain.

Table I. The important result is that models with chi-
ral symmetry C or particle-hole symmetry P should be
symmetric under a change of sign of ϕ.

In our calculations we show that the value of ϕ is fixed
by a gap opening operator (12) and in the topological
phase it is given by

√
4πϕ = ±π. For topological in-

sulators the allowed Hamiltonians conserve the number
of particles, and therefore the perturbations consistent
with the particle conservation depend on ϕ and are in-
dependent of θ. There are two kinds of possible pertur-
bation terms, those that shift the position of the min-
ima and those that do not. Indeed, a small perturbation
of the form Vn sin[n

√
4πϕ] shifts a minima away from√

4πϕ = ±π by δϕ ∝ Vna0/δt where δt/a0 corresponds
to the amplitude of the bulk operator (6). Thus such per-
turbation removes the degeneracy. However, it breaks the
chiral symmetry and particle-hole symmetry, and there-
fore is forbidden as long as the system retains at least
one of these symmetries.

Thus the allowed terms should be even functions of ϕ,
such functions also need to be 2π periodic in

√
4πϕ, so a

generic allowed perturbation has a form:

V =

∞∑
n=2

An cos
(√

4πnϕ
)
. (21)

However if the perturbation is small, An ≪ δt/a0, such
terms do not shift the minima of the potential energy
in the topological phase. Therefore as long as the chiral
symmetry is preserved the degeneracy of the edge states
in the SSH model is protected.

IV. CAPACITIVELY COUPLED INTERACTING
SSH CHAINS

Before we consider a generic coupled chain model of a
Z topological insulator, we will focus on the limit of a
two-chain model coupled only by interactions (capacitive
coupling). We consider two cases: (i) both chains are
identical (either topological or trivial), and (ii) one chain
is topological and the other is trivial.

Specifically we will consider Hamiltonians of the form:

H =
∑
i,n

(tc†n,icn+1,i + δti(−1)nc†n,icn+1,i + h.c.)+

+U
∑
n

(c†n,1cn,1 − 1/2)(c†n,2cn,2 − 1/2), (22)

where δt1 = ±δt2. Bosonization of this model yields a
sum of three parts:

H = Hc +Hs + Vgap. (23)

The first two terms Hc and Hs are the conventional
charge and spin separated Hamiltonians [40, 41], given
by:

Hc,s =
vc,s
2

[
Kc,sΠ

2
s,c +K−1

c,s (∂xϕs,c)
2
]
+

+
gs,c
πa2

cos[
√
8πϕs,c], (24)

where we defined spin and charge fields as ϕc = (ϕ1 +

ϕ2)/
√
2, ϕs = (ϕ1 − ϕ2)/

√
2. The parameters can be re-

lated to the original lattice values as: gc = −gs = −U ,
Kc,s ≃ 1 + gc,s/(πvF ).

The single particle term Vgap couples the charge and
spin sectors and originates from the dimerization δti in
the lattice model. The bosonized form of this depends
on the relative values of δt on each chain for the case
δt1 = δt2 we obtain:

Vgap,1 = − 2δt

πa0
cos
(√

2πϕc

)
cos
(√

2πϕs

)
, (25)

and in the other case when δt1 = −δt2 we get:

Vgap,2 =
2δt

πa0
sin
(√

2πϕc

)
sin
(√

2πϕs

)
. (26)

To describe the topological properties of the model we
require an edge. To do that we place a strong impurity
at the edge x = 0 as we did for a single chain (15). The
bosonized form of the impurity Hamiltonian is given by:

Himp(0) = V0 cos
(√

2πϕc(0)
)
· cos

(√
2πϕs(0)

)
. (27)

We will now analyze the edge states of such models.

A. Identical SSH chains

In the topological phase δt < 0, there are two edge
states for the non-interacting model. Each of these states
can be either empty or occupied, which leads to a four-
fold degeneracy per edge of the many-body ground state.

We now reproduce these result in bosonic language.
Without interactions the spin and charge sectors are
identical, Kc = Ks = 1, and gc = gs = 0. That means
that we only need to consider minima of the potentials
Vgap,1 (25) and Himp (27). We see for the trivial phase
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δt > 0 these operators are identical thus nothing happens
at the edge, as expected. In the topological phase the op-
erators are of opposite sign and therefore have minima in
different locations. Similar to the single chain one thus
expects kinks at the edge. We find four degenerate kinks
which are illustrated in Fig. 4.

Let us now add interactions to the model. As known
for the Hubbard model [40], if U > 0 the spin sector
is gapless and charge sector is gapped as the gc cosine
term (umklapp scattering) is relevant. It fixes the bosonic
fields at the values

√
2πKcϕc = 0 mod π which is com-

patible with the non-interacting ground state illustrated
in the Fig. 4. Note that the model is symmetric with re-
spect to U → −U and ϕc → ϕs, so the same conclusions
hold for attractive interactions.

Even though the quasiclassical ground states are com-
patible, interaction reduce the ground state degeneracy
because Kc ̸= Ks in the bulk, therefore the magnitude of
kinks is different for the spin and the charge sector. In
particular, for repulsive interactions Kc < Ks, and thus
the two kinks in the spin sector have the lower energy
than those in the charge sector. For attractive interac-
tions it is the other way around.

Thus the fourfold degeneracy of the ground state is
reduced to twofold. This has a simple physical interpre-
tation: due to electrostatic interactions the two states
with two electrons localized near the edge have different
energy than the two states with a single electron.

As the bosonic form of the Hamiltonian is independent
of the microscopic details of the interaction, such a de-
generacy reduction occurs also in the case of next-nearest
neighbor Hubbard interaction, that couples the atoms
from different sublattices on different chains. The edge
states in a non-interacting model however are localized
on the same sublattice [42], so such degeneracy breaking
is less obvious. It may be attributed to second order pro-
cesses that are generated in the interacting model and
effectively couple atoms from the same sublattice.

Note that the bulk ground state of this Hubbard SSH
model was studied earlier in [50–53]. These works focus
on the extended Hubbard model, that includes nearest-
neighbor interaction on top of Hubbard term. It was
demonstrated that when the nearest-neighbor interaction
is sufficently strong compared to the Hubbard term, the
sign of coupling constant in charge sector changes and the
system undergoes Ising transition to the phase character-
ized by CDW order parameter with broken Z2 symmetry
ϕc → −ϕc similar to the case of the Ising transition in
a single interacting SSH chain that we considered earlier
in Subsection II B. It was also shown that for stronger
interactions, the system goes through a tricritical point
where the phase transition changes universality class and
becomes first order [52, 53]. None of these strong cou-
pling phases exhibit topological properties, so we will not
discuss them further.

Many-body ground state degeneracy

Winding number
ν

Non-interacting Interacting

1 2 2
2 4 2
3 8 2
4 16 1

Table II: Many-body ground state degeneracy depending on
the winding number (or number of SSH chains in topological
phase) in the non-interacting and weakly interacting chain
models. The degeneracy for the non-interacting model is
given by 2ν

B. Chains in opposite phases

Now we will focus on the model of inequivalent SSH
chains, when one of the chains is in topological phase,
and another one is trivial. This model is described by
the Hamiltonian (23), with the dimerization term given
by (26). The ground state of the non-interacting model
is illustrated in the Fig. 5 and is two-fold degenerate.

Weak interactions do not break the degeneracy of the
edge states as the magnitudes of the kinks corresponding
to the two edge states in the Fig. 5 remain equal.

However the ground state of the non-interacting model
is incompatible with the values of fields that minimize the
interacting terms. Namely, in repulsive Hubbard model
the cosine in charge sector fixes bosonic field to

√
2πϕc =

0 mod π (for attractive Hubbard model ϕc → ϕs) while
the single particle term (26) has minima at

√
2πϕc = π/2

mod π. So for strong interactions, there is a phase transi-
tion in charge or spin sectors depending on whether one
deals with repulsion or attraction. The corresponding
order parameters in the strong coupling phases are spin
density wave (SDW) ∝ cos

(√
2πϕc

)
sin
(√

2πϕs

)
in the

repulsive case or CDW in case of attraction.

C. Inequivalent chains

Finally, let us analyze the case when both gap opening
terms (25) and (26) are present. Such model corresponds
to a model of two inequivalent chains, that can be written
as:

Vgap = − (δt1 + δt2)

πa0
cos
(√

2πϕc

)
cos
(√

2πϕs

)
−

− (δt2 − δt1)

πa0
sin
(√

2πϕc

)
sin
(√

2πϕs

)
=

= − δt1
πa0

cos
(√

4πϕ1(x)
)
− δt2

πa0
cos
(√

4πϕ2(x)
)
. (28)

As long as δt2 and δt1 have the same sign the ground
state of the model is determined by the minima of the
term ∝ (δt1 + δt2) that describes the identical chains,
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(a) (b)

Figure 4: a) Profiles of the charge and spin fields for two identical SSH chains in topologically non-trivial phase with δt < 0 b)
Field configurations for fourfould degenerate many-body states. The column "State" illustrates the fermionic occupation for
each of the states in real space. Full circle corresponds to the occupied edge state and an empty circle corresponds to an
empty state.

Figure 5: Profiles of the charge and spin fields for inequivalent SSH chains with δt < 0. Kinks of bosonic fields at the
boundaries have the same magnitude and correspond to the edge states. The ground state at half-filling is two-fold
degenerate, the two degenerate states are marked by green/red colors.

whereas when δt2 and δt1 have the opposite sign, the
ground state of the model correspond to the minima of
(δt1 − δt2) term. This is not obvious in the charge/spin
basis, but becomes so if one relates ϕc and ϕs to the
original ϕ1 and ϕ2 basis as shown in the final line of (28).

D. Symmetries that protect the degenerate edge
states

Above we found that in the presence of weak interac-
tions the many-body degeneracy of the ground state for
two capacitatively coupled SSH chains is reduced, and for
two inequivalent chains it remains unchanged. This de-
generacy reduction is absolutely general and can be com-
puted solely from the symmetry arguments. The origi-
nal argument was given in the framework of Majorana
fermions [35]. This results was reproduced by various
alternative methods [32, 66–68]. It was also shown that
other fermionic models, with no apparent relation to Ma-
jorana chains can be mapped on this model [39]. There
are two symmetries that are relevant in the classification:
chiral symmetry and the fermionic parity. If chiral sym-

metry is broken, the interacting model is trivial. If chiral
symmetry is present, but parity is not the classification
is Z2. If both are preserved, the non-interacting classi-
fication Z is reduced to Z4. In Table II we review these
results.

Here we will focus on two-chain case and we will prove
by using bosonization that chiral symmetry protects the
edge state degeneracy in Z topological classes. To do
that we need to establish the action of symmetries in
terms of bosonic fields. The fermionic representation of
symmetries of two-chain model was constructed in [42],
and the action of these symmetries on bosonic fields is
derived in Appendix D and is shown in Table III. Note,
that there are two chiral symmetry operators, C1 and C2.
We will focus here only on C1 as we will see in the next
section, C2 does not protect the degeneracy of the edge
states.

Note that the bosonic model that describes identical
SSH chains (25) is invariant under all of the symmetries
discussed above. Thus it falls into multiple universal-
ity classes. Such ambiguity is related to the presence of
additional unitary symmetries that the uncoupled model
has. In [42] we showed that inter-chain coupling breaks
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Symmetry action ϕ̃j ≡ S−1ϕjS

T+ T− P+ P− C1 C2

ϕ̃c ϕc (ϕc +
√

π
2
) −ϕc −(ϕc +

√
π
2
) −ϕc −(ϕc +

√
π
2
)

ϕ̃s −ϕs −(ϕs +
√

π
2
) ϕs (−ϕs +

√
π
2
) −ϕs −(ϕs +

√
π
2
)

Table III: Action of symmetry operators on bosonic
fields in two-chain model. T± denotes time-reversal
symmetry: T 2

± = ±1, and P± denotes particle-hole
symmetry: P 2

± = ±1. Chiral symmetry is given by their
product: C1 = P±T±, C2 = P±T∓.

some of these symmetries and puts a model into certain
symmetry class of the tenfold classification. We study
such models in the next section in more detail. Here we
will focus on the role of chiral symmetry only.

As follows from Table III the allowed by chiral sym-
metry C1 perturbations are even functions of the bosonic
fields:

V =

∞∑
n,m=0

An,m cos
(√

2πmϕc

)
cos
(√

2πnϕs

)
+ (29)

+Bn,m sin
(√

2πnϕc

)
sin
(√

2πmϕs

)
. (30)

Provided A and B are small, this perturbation does not
shift the position of the minima of the potential en-
ergy the topological phase, see the discussion of a single
SSH chain. However any perturbation that breaks chi-
ral symmetry, namely α cos

(√
2πnϕc

)
sin
(√

2πmϕs

)
or

β cos
(√

2πnϕs

)
sin
(√

2πmϕc

)
shift the position of min-

ima of potential energy in the topological phases, deter-
mined by the terms in (25) and (26). Therefore it removes
the degeneracy.

There is an interesting observation that we would like
to mention here without going into detail. Above we
found that the fourfold degeneracy of the edge states in
capacitively coupled chains is reduced in the presence of
interactions. Surprisingly, the remaining twofold degen-
eracy of the ground state may be protected by another
set of symmetries rather than just chiral. For example,
in case of attractive interactions the ground state corre-
sponds to two degenerate bosonic kinks in charge sector.
Such kinks are not splitted by chiral symmetry breaking
perturbation α cos

(√
2πnϕc

)
sin
(√

2πmϕs

)
, that affects

position of kinks only in spin sector. However, such per-
turbation preserves the particle-hole symmetry P+ as fol-
lows from the Table III, so this symmetry may potentially
serve as a protective one. Even though a set of protec-
tive symmetries depends on the sign of interactions, this
still might have interesting experimental implications, as
usually experiments deal with interactions of a certain
sign.

(a)

(b)

Figure 6: Coupled chain model of the topological classes a)
with chiral symmetry C1 that describe classes BDI/CII or
AIII and b) with chiral symmetry C2 that describes classes
CI, DIII or AIII. Chiral symmetry C1 allows coupling
between A and B atoms only, while C2 allows inter-chain
coupling only between atoms of the same type.

V. PROPERTIES OF NON-INTERACTING
COUPLED CHAIN MODEL

Above we mentioned that model of two identical ca-
pacitively coupled SSH chains has additional symmetries
and falls into multiple chiral topological classes. Such
ambiguity can be resolved by adding inter-chain coupling.
Symmetries of the coupling terms put a model into cer-
tain topological class. A coupled model can be invariant
under one of two possible chiral symmetry operators, and
as it turns out [42] the winding number of a weakly cou-
pled system depends only on a type of chiral symmetry
and does not change if other symmetries are broken. Let
us demonstrate this on bosonic language.

A. Two-chain model of topological insulators

First of all, let us introduce a fermionic model of cou-
pled chains:

ĤTI = Ĥ0 + V̂i, (31)

where Ĥ0 describes the Hamiltonian of two uncoupled
identical SSH chains. There are two possible coupling
terms V̂i that are invariant under chiral operators C1 or
C2. The two models are illustrated in Fig. 6.

Coupling term V̂1 that describes model with chiral
symmetry C1 is given by:

V̂1 =
∑
n

a
(
c†A,1,ncB,2,n + c†A,2,ncB,1,n

)
+ b

(
c†B,1,ncA,2,n+1 + c†B,2,ncA,1,n+1

)
+ h.c. (32)

For a generic complex hopping amplitudes a and b this
model (31) belongs to the topological class AIII, if the
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coupling amplitudes are real the model belongs to topo-
logical class BDI and in case when the parameters a and
b are imaginary, the model belongs to the class CII. The
winding number of the model with this type of coupling
is given by a sum of winding number of uncoupled chains.

The coupling invariant with respect to the second chi-
ral operator C2 is given by:

V̂2 =
∑
n

a′
(
c†A,1,ncA,2,n+1 + c†A,2,ncA,1,n+1

)
+

+ b′
(
c†B,1,ncB,2,n+1 + c†B,2,ncB,1,n+1

)
+ h.c. (33)

Imaginary coupling amplitudes describe class DIII, and
real correspond to the class CI. The winding number of
such model in case of weak coupling is given by a differ-
ence of winding numbers of two chains and thus is zero.

B. Model with chiral symmetry C1

Now let us discuss the bosonic description of the model
(31) with a coupling term that preserves chiral symmetry
C1. Instead of directly bosonizing the model (31) we
can write all possible gap opening terms that preserve
symmetries of a given class by using action of symmetries
on bosonic fields, that we derived in Appendix D. Model
compatible with chiral symmetry C1 is given by:

VC1
= −2(δt+ Im(a) + Im(b))

πa0
cos
(√

2πϕc

)
cos
(√

2πϕs

)
+

+
2(Re(a)− Re(b))

πa0
sin
(√

2πϕc

)
cos
(√

2πθs

)
. (34)

This corresponds to the model illustrated in Fig. 6a. and
consists of the interchain hopping terms (32), as well as
the dimerisation term (25).

If a and b are real the model belongs to the topological
class BDI, and model of CII class can be obtained by
setting Re(a) = Re(b) = 0 as such terms break time-
reversal symmetry T−.

In order to see that weak coupling does not change
the degeneracy of the edge states we need to diagonalize
inter-chain hopping terms: sin

(√
2πϕc

)
cos
(√

2πθs
)

→
sin
(√

2πϕc

)
sin
(√

2πϕs

)
, see Appendix E for more de-

tails. Such term coincides with the term that we studied
earlier in Section IVD. It describes chains in the opposite
topological phases, and if this term is small we showed
that it does not affect the ground state of the identical
chains.

Note that here we discarded the uniform part of inter-
chain hopping that may modify the gapless part of the
spectrum. In particular it may split the position of Fermi
points of different bands, or change their Fermi velocities,
as we demonstrate in Appendix E on the example of BDI
model. Such effects occur in various ladder models [69–
72]. In our model they may lead to a phase transition
to SDW phase for strong interactions, as we discuss in
Appendix F. However, as we show in Appendices E and

F renormalization of the gapless spectrum does not affect
topology of a model for weak interactions. In Appendix
E we explicitly bosonize the model (31) in case of BDI
class and demonstrate that we reproduce the gap opening
terms that we wrote using symmetry arguments (34).

C. Model with chiral symmetry C2

The model invariant under the chiral symmetry opera-
tor C2 has zero winding number in the presence of weak
inter-chain hopping terms. That means that such hop-
ping terms split degeneracy of the edge states if there
are no additional symmetries. Let us reproduce this re-
sult using bosonization. A generic model invariant under
chiral symmetry C2 has a form:

VC2
= −2(δt+ Im(a) + Im(b))

πa0
cos
(√

2πϕc

)
cos
(√

2πϕs

)
+

+
2(Re(a′)− Re(b′))

πa0
cos
(√

2πϕc

)
cos
(√

2πθs

)
. (35)

Such model is illustrated in Fig. 6b. The model of class
CI corresponds to the case when a and b are real and for
class DIII we need to set Re(a′) = Re(b′) = 0.

In order to see that the inter-chain hopping breaks
the degeneracy of the edge states we need to go to the
basis when inter-chain hopping is diagonal. In this ba-
sis cos

(√
2πϕc

)
cos
(√

2πθs
)
→ cos

(√
2πϕc

)
sin
(√

2πϕs

)
.

Such term shifts the position of minima in spin sector
in uncoupled model, and thus breaks the degeneracy of
the edge states. For a model with repulsive interactions
however, with the ground state described by kinks in
charge sector, such inter-chain terms do not change the
ground state degeneracy (if they are smaller than inter-
action strength). Thus, similar to the case of C1 chiral
symmetry, the set of effective protective symmetries for
the interacting model may be different from symmetries
that protect the degeneracy of a non-interacting model.

Note that such degeneracy breaking terms are prohib-
ited if time-reversal symmetry T− is present. This re-
flects the fact that DIII class, that has this symmetry,
has non-trivial Z2 classification. The degeneracy of the
edge states in that case is protected both by chiral and
time-reversal symmetries. In particular, Kramers’ the-
orem guarantees the twofold degeneracy of the single-
particle states and chiral symmetry pins them at zero
energy. Therefore, no weak perturbations can remove
the degeneracy of the edge states.

VI. EXTENDED SSH MODEL

Earlier we studied a bosonic theory of two SSH chains.
We found that the number of bosonic fields is related to
the number of bands in the spectrum that become gapless
at a critical point that separates two phases with different
topological indices. In this section we show that it is
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(a) (b)

Figure 7: a) Illustration of the hopping structure in the Extended SSH model (36). b) Phase diagram of the Extended SSH
model characterized by the winding number ν.

actually also holds for a single band model with higher
winding number. We consider a simple example of such a
model that represents an extension of a single SSH chain
with possible winding numbers ν = 0, 1, 2. We also prove
that a model at the transition line between two phases
that differ by winding number ∆ν = n is equivalent in
bosonic language to at least n chains.

A. Phase diagram of Extended SSH model

Consider an extended SSH model that describes the
SSH chain with next nearest neighbour hopping:

HESSH = v
∑
n

c†A,ncB,n + w
∑
n

c†B,ncA,n+1+

+ t′
∑
n

c†B,ncA,n+2 + h.c. (36)

Note that properties of such a model at the critical lines
were studied in [73]. The new hopping term t′ preserves
chiral symmetry, as it couples different sublattices. If
hopping amplitudes are complex, the model breaks time-
reversal symmetry and thus belongs to the topological
class AIII that has Z classification. The hopping struc-
ture of the model is illustrated in Fig. 7a. Let us overview
its topological properties. For illustration, we will focus
on the case when all parameters are positive w, v, t′ > 0,
which covers all possible values of the winding number.
One can write the Hamiltonian in k- space in the reduced
Brillouin zone in block off-diagonal form:

ĤESSH =
∑
k

c†khESSHck, (37)

hESSH =

(
0 ∆(k)

∆∗(k) 0

)
,

where ∆(k) = v + weik + t′e2ik. One can compute the
winding number of the model via (3) and obtain the

phase diagram illustrated in Fig. 7b. The phase bound-
aries are determined by the equations:

Between ν = 1 and ν = 2: w/v = t′/v + 1, t′/v < 1

Between ν = 1 and ν = 0: w/v = t′/v + 1, t′/v > 1

Between ν = 0 and ν = 2: t′/v = 1

Next, we will focus on the transition lines and discuss
the bosonic theories that characterize the model in the
vicinity of those lines.

B. Bosonic description of Extended SSH model

To bosonize the model we need to find gap closing
points in the momentum space and linearize the theory
around them. For each of the critical lines we get:{

Between ν = 1 and ν = 2, 0: k = π

Between ν = 0 and ν = 2: k1,2 = ± arccos[w/2t′]

The spectrum for each of the three cases is illustrated in
Fig. 8 in the extended Brillouin zone. In the case when
the winding number changes by 1 across the transition
the spectrum crosses the Fermi level ϵ = 0 at ±kF =
π/2 similar to the case of a single SSH chain. Thus the
corresponding low-energy model is described by a single
Luttinger Liquid. To demonstrate its relation to the SSH
chain, let us slightly move away from the transition line:
v ≃ w − t + δv. We linearize the Hamiltonian in the
vicinity of gap-closing points and obtain:

hESSH(k) ≈ δvσx − (2t− w)kσy, (38)

where the Pauli matrices σx,y act in the sublattice basis.
This Hamiltonian coincides with the linearized Hamilto-
nian of the SSH model in the vicinity of the gap closing
point w = v. The linearized Hamiltonian can be writ-
ten in the basis of left- and right-moving modes where
σy → σz, σx → σx and thus δv term can be interpreted
as the mass term in that basis, as it hybridizes left and
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(a) (b)

Figure 8: a) The spectrum of the Extended SSH model at the transition line t′ = v between the phases ν = 0 and ν = 2.
There are two inequivalent Fermi points given by k1,2 = ± arccos[w/2t′] b) Spectrum at the transition line w/v = t′/v + 1
between the phases with ν = 1 and ν = 0, 2. It crosses the Fermi level at ±kF , where kF = π/2.

right movers. By bosonizing this term, and by taking
into account the fact that in the original lattice model,
different sublattices are separated by an odd number of
lattice sites, that results in π/2 relative phase between
left and right moving fermions as follows from (5), we
reproduce the bosonic Hamiltonian of SSH model (6).

One can use similar arguments in the case of the tran-
sition between ν = 0 and ν = 2 where the spectrum
has two inequivalent Fermi points. One can linearize
the Hamiltonian around the two Fermi points and ob-
tain a model that describes two capacitively coupled SSH
chains, that were studied in Section IV.

C. Winding number and number of Fermi points

Let us show that at the transition line where the wind-
ing number changes by n the spectrum has at least n dis-
tinct Fermi points, and thus the corresponding bosonic
low-energy model is equivalent to the theory of n (or
more) coupled chains. This statement follows from the
geometric interpretation of the winding number. Con-
sider the N band model with chiral symmetry, so in
the sublattice basis the Hamiltonian can be written in
block off-diagonal form, where the block is given by some
N × N matrix ∆(k). One can write its determinant as
det∆(k) = r(k)eiϕ(k), where the absolute value of the de-
terminant is given by [42] r(k) =

∏
j ϵj(k), where ϵj(k) –

is the energy band labeled by j. So det∆(k0) = 0 at a gap
closing point k0, where one or few of the bands become
gapless. The winding number is given by the number
of times the complex function ln det∆(k) changes the
branch as k runs across the Brillouin zone and essen-
tially is given by the number of times the function winds
around the point det∆(k) = 0. Thus if one deforms the
Hamiltonian such that det∆(k) crosses 0 at n points in
the Brillouin zone the winding number changes by n.

VII. DISCUSSION AND CONCLUSION

In our work, we developed a bosonization framework
that allows to study the topological properties of inter-
acting one-dimensional fermionic models. Specifically, in
our paper, we focused on the topological properties of
interacting topological insulators built from SSH chains.
We studied properties of the edge states in finite models
with boundary conditions imposed by a strong impurity
or in the interface between trivial and topological phases.
The topological edge states are manifested as degenerate
kinks in bosonic fields at the boundary that appear
when the values of the bosonic fields in the bulk and at
the boundary are incompatible. We applied this idea
to a single SSH chain, capacitively coupled SSH chains,
coupled chain model of topological insulators in different
symmetry classes, and the SSH model with longer range
hopping. We found the following properties of these
models:

(a) We compared different approaches to the bound-
ary conditions in a bosonic model on the example
of a single SSH chain. In particular, we considered
boundary conditions imposed by a strong impurity and
at the boundary between trivial and topological phases.
We showed that they are equivalent if an additional
scattering phase is added to the impurity potential.
Furthermore, we computed the localization length in the
interacting SSH model with such boundary conditions
and found it qualitatively similar to results obtained via
open boundary bosonization.

(b) We studied ground state properties of two ca-
pacitively coupled SSH chains, that can be identical
or in different topological phases. We demonstrated
that the degeneracy of the topological edge states in
the topological phases is determined by a number of
degenerate bosonic kinks at the boundary in charge and
spin sectors. By constructing the action of anti-unitary
symmetry operators on bosonic language, we proved
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that degeneracy of the edge states is protected by
chiral symmetry, similar to a non-interacting model.
We showed that weak interactions can partially split
the degeneracy of the non-interacting ground state.
Interestingly, the remaining degenerate subspace of
the edge states can be protected by a different set of
symmetries rather than chiral, depending on the sign of
interactions.

(c) Next we added inter-chain hopping to the two-
chain model to break additional unitary symmetries
of uncoupled chains. Symmetries of a coupling put a
model to a certain non-interacting symmetry class. As
we showed for the non-interacting model in [42] there
are two possible chiral symmetry operators for such a
model, and the winding number for a weakly coupled
system is determined only by a type of chiral symmetry.
We reproduced these properties using bosonization
by writing down a bosonic model compatible with
symmetries of a certain class.

(d) We proved that in the vicinity of the phase tran-
sition between the phases with topological indices that
differ by n any non-interacting model is equivalent to at
least n decoupled chains. The number of chains is equal
to the number of Fermi points at a gapless boundary be-
tween gapped phases. Near each Fermi point a bosonic
model is equivalent to the bosonic model of a single SSH
chain. We illustrated this idea with the example of an
extended SSH model that includes next-nearest neighbor
hopping in addition to nearest-neighbour terms of a SSH
chain.
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APPENDIX

Appendix A: Bosonisation conventions for spinless fermions

Here we outline the bosonization conventions used for the spinless fermions. The right- and left-moving fermions
can be expressed via exponents of bosonic fields ϕR(x) and ϕL(x):

R(x) =
1√
2πa

ei
√
4πϕR , L(x) =

1√
2πa

e−i
√
4πϕL . (A1)

The bosonic fields ϕR(x) and ϕL(x) satisfy the following commutation relations:

[ϕR(x), ϕL(y)] =
i

4
, [ϕη(x), ϕη′(y)] =

i

4
ηδη,η′sign(x− y). (A2)

This allows us to introduce the following fields:

ϕ(x) = ϕR(x) + ϕL(x), θ(x) = ϕL(x)− ϕR(x). (A3)

The fields ϕ(x) and Π(x) = ∂xθ(x) are canonically conjugate, meaning [ϕ(x),Π(x′)] = iδ(x − x′). Using these
conventions, we obtain the following useful relations:

R†L =
−i

2πa
e−i

√
4πϕ,

R†R+ L†L =
1√
π
∂xϕ, (A4)

where we also used the Campbell-Baker-Hausdorff formula for two non-commuting operators A and B:

eAeB = eA+Be
1
2 [A,B]. (A5)

The density operator in terms of right- and left-movers is given by:

nj → R†(x)R(x) + L†(x)L(x) + eikF xR†(x)L(x) + e−ikF xL†(x)R(x). (A6)
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Appendix B: Bosonization conventions for fermions with spin

Bosonization rules for spinless fermions reviewed in Appendix A can be generalized to the spinful case. The equation
(A1) is generalized by introducing Klein factors, that ensure the correct anticommutation relations between fermionic
operators with different spin indexes:

Rσ(x) =
κσ√
2πa

ei
√
4πϕRσ , Lσ(x) =

κσ√
2πa

e−i
√
4πϕLσ . (B1)

The Klein factors κσ are Hermitian operators and they satisfy the algebra {κσ, κσ′} = 2δσσ′ . The specific representa-
tion satisfying this algebra can be chosen such as κ↑κ↓ = −κ↓κ↑ = i. The commutation relations between the bosonic
fields (A2) are generalized such that fields with different spin index commute:

[ϕRσ(x), ϕLσ′(y)] =
i

4
δσ,σ′

[ϕη,σ(x), ϕη′σ′(y)] =
i

4
ηδη,η′δσ,σ′sign(x− y), (B2)

here the indices σ and σ′ denote the spin degree of freedom. It is useful to introduce the charge and spin bosonic
fields:

ϕc =
ϕ↑ + ϕ↓√

2
, ϕs =

ϕ↑ − ϕ↓√
2

. (B3)

One can use those fields to express the non-oscillatory part of charge and spin densities:

ρc =
∑
σ

Ψ†
σΨσ =

√
2

π
∂xϕc,

ρs =
1

2

∑
σσ′

Ψ†
σ(σz)σσ′Ψσ′ =

1√
2π

∂xϕs. (B4)

Appendix C: Ising phase transition in interacting SSH chain

Consider the non-linear terms in the bosonized interacting SSH chain model (9):

Vgap =
g

2(πa0)2
cos[2

√
4πϕ]− δt

πa0

∫
dx cos[

√
4πϕ(x)]. (C1)

We focus on the case g > 0 when the minima of the two cosines are incompatible. If interactions are weak, i.e. g ≪ |δt|
the minima of the potential (C1) coincides with the minima in the non-interacting model, given by:{

δt > 0 :
√
4πϕ(x) = 0 mod 2π

δt < 0 :
√
4πϕ(x) = π mod 2π

(C2)

In the limit of strong interactions g ≫ |δt| the position of minima are shifted to
√
4πϕ = ±π/2 ∓ ϕ0, where ϕ0 ≈

δt(πa0)/2g. The two phases can be distinguished by a local charge density wave order parameter, which describes the
oscillating 2kF component of a density, nosc(x) = (1/πa0) sin[

√
4πϕ(x)]:{

nosc(x) = 0, g ≪ |δt|
nosc(x) ≈ ±1/πa0, g ≫ |δt|

(C3)

Therefore there is a phase transition between the phases with ⟨nosc(x)⟩ = 0 and ⟨nosc(x)⟩ ̸= 0 as one tunes the ratio
δt/g. Such a phase transition is described by an effective ϕ4 theory that can be obtained if one expands the potential
(C1) around one of the minima of the non-interacting cosine:

Veff = α0 +
α2

2!
(δϕ)2 +

α4

4!
(δϕ)4,

α0 =
g

2(πa0)2
+

|δt|
πa0

, α2 = 8

(
− g

a20π
+

|δt|
2a0

)
,

α4 = 16

(
8g

a20
− π|δt|

a0

)
. (C4)
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Here δϕ is the deviation of
√
4πϕ from 0 or from π. The transition happens at the point determined by α2 = 0, i.e.

when |δt| = 2g/a0π. Such phase transition is known in the context of quantum Ising chain model [74].

Appendix D: Symmetries in bosonic language

1. Single chain limit

Let us derive the action of chiral symmetry onto the bosonic fields in the case of a single chain. In the many-body
space chiral symmetry acts as [75]:

Ĉ−1cjĈ = (−1)jc†j . (D1)

Note, that in the single-particle description this operator corresponds to the unitary matrix −σz in the space of
sublattices A and B. This is consistent with the symmetry implemented in the single particle Fock space, where
single-particle Hamiltonian (2) anticommutes with this matrix, {hSSH , σz} = 0 . The chiral symmetry acting in the
many-particle Fock space is an antiunitary operator, i.e. Ĉ−1iĈ = −i. To figure out the action of the chiral symmetry
onto the bosonic fields we first rewrite (D1) in the continuous limit:

C−1Ψ̂(x)C = (−1)x/a0Ψ̂†(x). (D2)

By using the right- and left- decomposition of the fermionic operator (5) we obtain:

C−1Ψ̂(x)C = eiπx
(
e−ikF xR†(x) + eikF xL†(x)

)
. (D3)

On the other hand:

C−1Ψ̂(x)C =
(
e−ikF xC−1R(x)C + eikF xC−1L(x)C

)
. (D4)

Now we take into account that we focus on a half-filled model kF = π/2a0. By comparing (D3) and (D4) we obtain
the following transformation rules: {

C−1R(x)C = L†(x)

C−1L(x)C = R†(x).
(D5)

We can rewrite them in terms of bosonic fields using (A1) and obtain:{
C−1ϕR(x)C = −ϕL(x)

C−1ϕL(x)C = −ϕR(x).
(D6)

The time-reversal symmetry for a single chain does not change the fermionic operator Ψ̂(x), if we use the definition
from [75], i.e. T−1Ψ̂(x)T = Ψ̂(x), however it is an anti-unitary symmetry, so for a single chain is coincides with
complex conjugation T = K. Thus we obtain: {

T−1R(x)T = L(x)

T−1L(x)T = R(x).
(D7)

By using (A1) we rewrite this via bosonic fields as:{
T−1ϕL(x)T = ϕR(x)

T−1ϕR(x)T = ϕL(x).
(D8)

Finally we represent the action of time-reversal and chiral symmetries in terms of the conjugated bosonic fields ϕ(x)
and θ(x):

C :

{
ϕ(x) → −ϕ(x)

θ(x) → θ(x)
T :

{
ϕ(x) → ϕ(x)

θ(x) → −θ(x)
(D9)

Note, that the action of the particle-hole symmetry is given by P = C · T−1.
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2. Symmetries of two chains

In [42] we constructed the following set of symmeties for the two chain model:

Time-reversal :

{
T 2 = +1 : T+ = S0σxK,

T 2 = −1 : T− = iS0σyK.
Particle-hole :

{
P 2 = +1 : P+ = iSzσxK
P 2 = −1 : P− = −iSzσyK

(D10)

And for chiral symmetry, which is the product of time-reversal and particle-hole symmetries we get:

Chiral :

{
C1 = P+T+ = P−T− = Szσ0

C2 = P−T+ = P+T− = Szσz,
(D11)

where Pauli matrices Si act on sublattice degrees of freedom and σi describe chain degree of freedom. Let us derive
bosonic representation of these symmetries. We start with chiral symmetry that can be represented by two operators
C1 = Szσ0 and C2 = Szσz in a single-particle space. Let us start with the right-left decomposition of the fermionic
operators:

Ψ̂σ(x) = eikF xRσ(x) + e−ikF xLσ(x). (D12)

The chiral symmetry C1 acts on the operators Ψ̂σ as follows:

C−1
1 Ψ̂σ(x)C1 = (−1)x/a0Ψ̂†

±(x). (D13)

By using (D12) one obtains:

C−1
1 Ψ̂σ(x)C1 = eiπx

(
e−ikF xR†

σ(x) + eikF xL†
σ(x)

)
. (D14)

That implies the following action of the chiral symmetry onto the fermionic operators Ψ̂σ:

C−1
1 Ψ̂σ(x)C1 =

(
e−ikF xC−1

1 Lσ(x)C1 + eikF xC−1
1 Rσ(x)C1

)
. (D15)

By comparing the two expressions we obtain the following transformation rules in terms of chiral fermions:

C−1
1 Rσ(x)C1 = L†

σ(x)

C−1
1 Lσ(x)C1 = R†

σ(x). (D16)

In order to rewrite that in terms of bosonic fields, one needs to use (B1) and take into account the action of complex
conjugation onto the Klein factors. By using the identity η1η2 = i, and therefore Kη1η2K = −i, we may assume that
Kη1K = η2 and Kη1K = η2. That yields:

C−1
1 ϕR,σ(x)C1 = −ϕL,σ(x)∓ π/(2

√
4π)

C−1
1 ϕL,σ(x)C1 = −ϕR,σ(x)± π/(2

√
4π). (D17)

That corresponds to the following transformation of the bosonic fields:

C−1
1 ϕσ(x)C1 = −ϕσ(x) (D18)

C−1
1 θσ(x)C1 = θσ(x)∓

√
π/2. (D19)

In terms of charge and spin degrees of freedom, we obtain:

C1 :

{
ϕc → −ϕc

ϕs → −ϕs

For the conjugated fields:

{
θc → θc

θs → θs +
√
π/2.

(D20)

The action of the second chiral symmetry operator C2 can be obtained in a similar way, taking into account that it
acts also on a chain degree of freedom, it particular it multiplies the fermionic operator on the second chain by −1.
Thus we get:
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C2 :

{
ϕc → −(ϕc +

√
π/2)

ϕs → −(ϕs +
√
π/2)

For the conjugated fields:

{
θc → θc

θs → θs +
√

π/2
(D21)

Now let us focus on the time-reversal symmetry. The time-reversal symmetry for a two-chain model is represented
by two operators with properties T 2

+ = +1 and T 2
− = −1 (D10). Let us consider the action of T+ first, the derivation

for T− can be obtained in a similar way. We use that the operator of time reversal symmetry combines a spin flip
expressed by σx and the complex conjugation and obtain:

T−1
+ R1(x)T+ = L2(x) (D22)

T−1
+ R2(x)T+ = L1(x) (D23)

Next, we bosonize the fermionic operators by using (B1) and take into account the action of complex conjugation
onto the Klein factors, and obtain: 

ϕ̃R,1 = ϕL,2

ϕ̃R,2 = ϕL,1

ϕ̃L,1 = ϕR,2

ϕ̃L,2 = ϕR,1,

(D24)

where ϕ̃R/L,σ ≡ T−1
+ ϕR/L,σT+. In terms of charge and spin degrees of freedom, we get:

T 2
+ = 1 :

{
ϕc → ϕc

ϕs → −ϕs

{
θc → −θc

θs → θs
(D25)

Similarly, we can obtain the action of the second time-reversal symmetry operator T−:

T 2
− = −1 :

{
ϕc → ϕc +

√
π/2

ϕs → −ϕs −
√
π/2

{
θc → −θc

θs → θs
(D26)

The action of particle-hole symmetry operators is given by P+ = C1T
−1
+ and P− = C1T

−1
− :

P 2
+ = 1 :

{
ϕc → −ϕc

ϕs → ϕs

{
θc → −θc

θs → θs +
√
π/2

(D27)

P 2
− = −1 :

{
ϕc → −(ϕc +

√
π/2)

ϕs → −ϕs +
√
π/2

{
θc → −θc

θs → θs +
√
π/2

(D28)

Appendix E: Bosonisation of non-interacting topological insulator in class BDI

1. Two band limit

Here we bosonize the model of the topological insulator in the class BDI. We start with the coupled model from
the main text (31):

Ĥ1 = Ĥ0 + V̂1, (E1)

where Ĥ0 describes the Hamiltonian of two uncoupled SSH chains. Here we will focus on a more general model,
compatible with symmetries of BDI class. In such model the uncoupled SSH chains have complex hopping parameters
wi and vi, related by complex conjugation. They can be represented as w1 = w∗

2 = |w|eiϕ0 , v1 = v∗2 = |v|eiϕ0 . The
inter-chain coupling term V̂1 is given by:

V̂1 =
∑
n

a
(
c†A,1,ncB,2,n + c†A,2,ncB,1,n

)
+ b

(
c†B,1,ncA,2,n+1 + c†B,2,ncA,1,n+1

)
+ h.c. (E2)
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(a) (b)

Figure 9: a)Gapless part of the spectrum of the BDI model (E3) for generic parameters t < 0, tz > 0, tx ̸= 0, the difference
between the Fermi momenta is given by δk = k+ − k− = 2arctan

(
tz/

√
t2 − t2x

)
b)Gapless part of the spectrum of the BDI

model (E3) for the case tx = 0, t < 0, tz > 0. The difference between the Fermi momenta δk0 = k0
+ − k0

− = 2arctan(tz/t).

The parameters a and b are real. Next we separate the gapless part of the Hamiltonian and the terms that open up
a gap. The gapless part of the Hamiltonian is written as:

H0 =
∑
n

tc†nσ0cn+1 + txc
†
nσxcn+1 + itzc

†
nσzcn+1 + h.c., (E3)

here n – is the site index, and the operators cn are written in the chain basis, ĉTn = {cn,1, cn,2}, the parameters
t = (|w|+ |v|) cos[ϕ0]/2, tz = (|w|+ |v|) sin[ϕ0]/2, tx = (a+ b)/2. The gap opening part is given by:

VBDI =
∑
n

(−1)n
[
δtĉ†nσ0ĉn+1 + iδtz ĉ

†
nσz ĉn+1 + δtxĉ

†
nσxĉn+1

]
+ h.c. (E4)

here δt = (|w| − |v|) cos[ϕ0]/2, δtz = (|v| − |w|) sin[ϕ0]/2, δtx = (a − b)/2. We first bosonize the gapless part of the
model. In order to do that, we write (E3) in k- space:

H0 = 2
∑
k

c†khkck, hk = cos[ka0] (tσ0 + txσx) + tz sin[ka0]σz. (E5)

The spectrum of this Hamiltonian is given by:

ϵ± = 2t cos[ka0]±
√
2(t2x + t2z + (t2x − t2z) cos[ka0]). (E6)

It is plotted in Fig. 9a. It represents two bands separated in momentum space at half filling by δk =

2arctan
(
tz/
√
t2 − t2x

)
(in the units of 1/a0). The Fermi velocity for the both bands is the same and is given by

(in the leading order of tx,z/t) by vF = 2ta0(1 − t2z/t
2). First note that the model (E3) in the case tx = 0 has

additional time-reversal symmetry T 2
− = −1, and the spectrum in this case is illustrated in the Fig. 9b. The two

eigenstates with the opposite spin χ↑ and χ↓, marked by yellow and blue correspondingly, are shifted in k space by
δk = k0+ − k0−. For the case tx ̸= 0 the bands corresponding two eigenstates χ±, see the Fig. 9a cross the Fermi level
at the points k± correspondingly. If we start with the picture tx ̸= 0 and continuously tune tx = 0 we arrive to the
case of Fig. 9b for tx = 0. The eigenstates χ± also evolve continiously, but they do not coincide with the spin up-
and down- states χ↑, χ↓ at tx = 0. In particular, they are related as follows:{

χ↓(k) = χ0
−(k)θ(k) + χ0

+(k)θ(−k),

χ↑(k) = χ0
+(k)θ(k) + χ0

−(k)θ(−k)
(E7)

here by χ0
±(k) we denoted the eigenstates χ± at tx = 0. We can rewrite the effective low-energy operators in the real

space, projected onto the left- moving and right-moving modes.{
Ψ↓(x) = R−(x) + L+(x)

Ψ↑(x) = R+(x) + L−(x),
(E8)
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where we included the oscillating prefactors eik
0
±x into the definition of the left- and right-moving operators. We need

this expression in order to write down a bosonic model that continiously interpolates between the two cases tx = 0
and tx ̸= 0. Now consider a generic case tx ̸= 0, that generates the term that hybridizes the R± and L± operators
and opens a gap at k = 0. We substitute (E8) to (E3) and obtain the Hamiltonian that decomposes to direct sum of
the terms that describe right- and left- moving particles: H0 = HR ⊕HL. We can diagonalize the left-moving part
and right-moving part independently and obtain the following relation between R±/L± and the operators R̃±/L̃± in
the basis where H0 is diagonal:{

R+(x) = cos γ
2 R̃+ − sin γ

2 R̃−

R−(x) = cos γ
2 R̃− − sin γ

2 R̃+

,

{
L+(x) = cos γ

2 L̃+ − sin γ
2 L̃−

L−(x) = cos γ
2 L̃− − sin γ

2 L̃+,
(E9)

where the parameter γ is given by:

γ = arctan

[
tx
tz

cot
δk

2

]
≃ txt

t2z
. (E10)

For the operators R̃±/L̃± we apply the standart bosonization procedure:

R̃±(x) =
η±√
2πa

ei
√
4πϕR,±(x)+ik±x, L̃±(x) =

η±√
2πa

e−i
√
4πϕL,±(x)−ik±x, (E11)

where k± = kF ± δk/2 and η± are Klein factors, that were defined in the Appendix B. We introduce canonically
conjugated bosonic fields Π±(x) and ϕ±(x) for each spin species:

Π±(x) =
√
π(ρL,± − ρR,±), ϕ±(x) = ϕL,± + ϕR,±, (E12)

where ρR/L,± = (1/
√
π)∂xϕR/L,±. One introduces spin and charge degrees of freedom:

ϕc =
ϕ+ + ϕ−√

2
, ϕs =

ϕ+ − ϕ−√
2

. (E13)

So for the gapless part of the BDI model we obtain the following Luttinger Liquid Hamiltonian:

HLL =
∑
j=c,s

vF
2

[
Π2

j + (∂xϕj)
2
]
. (E14)

After we substitute (E8), (E9), (E11) to the gapped part (E4), we obtain:

Hgap = −α sin
(√

2πϕc

)
· sin

(√
2πθs

)
+ β cos

(√
2πϕc

)
· cos

(
δk · x+

√
2πϕs

)
, (E15)

where α, β are given by:

α =
4

πa0

(
δt cos

δk

2
− cos γ sin

δk

2
δtz + δtx sin γ cos

δk

2

)
, β =

4

πa0
δtx. (E16)

Next we can bring (E15) to the more convenient form if we introduce a new set of commuting fields as follows:{
ϕ1 = −(ϕR,− + ϕL,+),

ϕ2 = −
√
π/2− (ϕR,+ + ϕL,−)

{
θ1 = −(ϕL,+ − ϕL,−),

θ2 = −(ϕL,− − ϕR,+)
(E17)

For bosons in charge and spin sector of freedom it implies the following transformation:

ϕ̃c = ϕc −
√
π

2
√
2
, ϕ̃s =

√
π

2
√
2
− θs, θ̃s = −ϕs. (E18)

In terms of these degrees of freedom the Hamiltonian (E15) takes the following form:

VBDI = −α cos
(√

2πϕ̃c

)
· cos

(√
2πϕ̃s

)
+ β sin

(√
2πϕ̃c

)
· sin

(
δk · x−

√
2πθ̃s

)
. (E19)
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Figure 10: Spectrum of BDI model in a single band limit

We will further omit ∼ for convenience. Note, that the inter-chain hopping (E2) is not the most general one for BDI
class. It contains terms ∝ σx in chain basis. One can also add σy terms to this model. In the bosonic language such
terms correspond to ∝ sin

(√
2πϕ̃c

)
· cos

(
δk · x−

√
2πθ̃s

)
.

At the energies ϵ > vF · δk the θs term in (E19) oscillates slowly, and thus we obtain the same bosonic model that
we wrote solely out of symmetry arguments in the main text, see (34). The θs term can be analyzed in a basis where
δtx term in (E4) is diagonal, i.e. σx → σz. If we also set tx = 0 (so there is no need to use a band basis, as the
Hamiltonian becomes diagonal in chain space), we eventually get a Hamiltonian of uncoupled inequivalent chains,
that we studied in Section IV D of the main text.

Also notice that, in the limit δk = 0 or tz = 0 but tx ̸= 0 in (E3), the Fermi velocities of the two bands differ by
δv ∝ a0tx. This generates a term that mixes charge and spin sectors in the bosonic Hamiltonian [54]. Such a term
might change the interacting phase diagram, as we discuss in Appendix F, as it changes the RG flow of marginally
irrelevant backscattering. However it does not quantitatively affect the flow of single-particle gap opening terms (E19),
so for the weakly interacting model it can be neglected.

2. Single band limit

Above we focused on the case of weakly coupled chains, at the gapless point such model is equivalent to two
Luttinger liquids. However, for strong inter-chain hopping there is also a critical point where the model is equivalent
to a single chain. In particular, if we assume that w, v are real and set w−v = a−b (or equivalently w−v = −(a−b)).
In that limit the model (E1) is equivalent to decoupled chains – one is gapless and the second one is gapped with a
gap ∆ ∝ |a− b|. Spectrum of such model is illustrated schematically in Fig. 10. Thus near the half-filling this model
is equivalent to a single SSH chain.

Appendix F: Interacting BDI model

1. Interactions in single band limit

As we discussed earlier in the single band limit the BDI model (E1) described by a single bosonic mode. We will focus
on the case of weak interactions – smaller than a gap of one of the bands ∆ ∝ |a−b|. Thus, for interactions that do not
couple two bands, the model is equivalent to a single interacting SSH chain discussed in Section II. The interaction,
that couples two bands can be treated perturbatively: Hint = U(n̂1,j −1/2)(n̂2,j −1/2) → U⟨(n̂1,j −1/2)⟩(n̂2,j −1/2),
where by ⟨.⟩ we denote the average over the non-interacting ground state. In the gapped phase one can neglect
fluctuations of density on site and get ⟨n1,j⟩ = 1/2. Thus ⟨Hint⟩ = 0 in this limit, therefore in the first order of
perturbation theory one can neglect the inter-band interactions and only focus on the interactions within bands.

2. Interactions in the two band limit

Now let us discuss the interacting model in the two-band case. Note that the coupled chain model breaks SU(2)
symmetry in chain space. In the low-energy description, this generates scattering processes in the Hubbard interaction



23

term that do not conserve the chain ("spin") degree of freedom. The processes involve forward- and back-scattering
of the fermions with the opposite spin, that enter the low-energy model with the oscillating amplitude ∝ eiδkx. These
terms can be neglected at the low energies ϵ < vF · δk, as they oscillate fast on those scales, and they need to be taken
into account if ϵ > vF · δk. This results in two distinct low-energy bosonic models at the two energy scales. Let us
study their properties.

a. Model at energies ϵ < vF · δk

In this limit, the model one can neglect the oscillating single-particle term in (E19) as well as spin non-conserving
processes in the interaction. That effectively restores SU(2) symmetry and the model is reduced to the model of two
identical capacitively coupled SSH chains in the presence of Hubbard interaction studied before. The only difference
compared to the case of capacitively chains is that the coupling constants get renormalized gc = −gs = −U cos2 γ,
where the angle parameter γ is related to the inter-chain coupling parameters (E10).

b. Model at energies ϵ > vF · δk

Now consider the interacting model at the energies ϵ > vF · δk so the spin non-conserving processes need to be
taken into account. In that case, we obtain:

H = Hc +Hs +Hcs,

Hcs = gcs[∂xϕc∂xϕs +ΠcΠs], (F1)

where the charge and spin parts of the Hamiltonian Hc,s are given by (24). The parameters of the model are given
by:

Kc ≃ 1 +
gc
πvF

,Ks ≃ 1− gs
πvF

gc = −gs = −U cos2 γ, gcs = −2U

π
sin[γ]. (F2)

Here we used a different basis from that used before in Appendix E, see [76]. In this basis, Hcs takes a simple quadratic
form given in (F1). Note that the term Hcs does not open a gap, but generates the difference between Fermi velocities
for electrons with the opposite band index. Such types of terms have been studied earlier in one-dimensional systems
with spin-orbit coupling [54, 69]. It was demonstrated that due to the presence of such terms the backscattering in
the spin sector becomes relevant for sufficiently strong spin-orbit coupling. From the results of [54] it follows that for
our model (F1) it implies that tan2 γ > (aπvF /U). The gap opening single-particle terms in the new basis take the
following form:

VBDI = α cos
(√

2πϕc

)
cos
(√

2πϕs

)
−

−β sin
(√

2πϕc

)
sin
(√

2πϕs

)
. (F3)

Therefore depending on the ratio |α|/|β| the model is reduced either to capacitively coupled identical SSH chains or
SSH chains in the opposite topological phases. The only difference from the interacting models considered before in
Section IV is that one needs to take into account the relevant backscattering in the spin sector in (F1) for repulsive
interactions. The backscattering term fixes the bosonic field

√
2πϕs = π/2 mod π and therefore it is incompatible

with the single-particle term in (F3) that describes two identical chains. Thus there is an Ising phase transition to
the SDW phase if interactions are sufficiently strong.
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