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Abstract

Raman spectroscopy is an analytical method frequently used in the fields of materials science and
general chemistry, which measures the characteristic responses of molecules to light. Being a non-

destructive technique, it has many scientific and industrial applications, such as material identification,
drug production and airport security. By combining Raman spectroscopy with machine learning,
powerful tools can be developed to make accurate predictions on unknown substances or quantities,
without explicit programming.

This thesis focuses on two main areas. Firstly, through the application of machine learning and
image processing, a novel tool was developed to study single molecule interactions with metal surfaces
using surface-enhanced Raman spectroscopy (SERS). A convolutional autoencoder (CAE) architec-
ture was utilised in a processing pipeline alongside various image processing techniques to extract
and isolate complex, transient Raman features from SERS data. This was followed by a cluster-
ing process to obtain representative events pertaining to atomic-scale metal-molecule interactions on
multiple catalyst surfaces, which provided a unique insight into the formation dynamics of atomic-
scale features. The process was extended through the use of a Siamese convolutional neural network
(Siamese-CNN) to incorporate spatiotemporal information relating to interactions between individual
vibrational modes. This foundational research paves the way for tailoring metal-molecule interac-
tions and assists in rational heterogeneous catalyst design. It introduces an analytical tool capable of
studying metal-molecule interactions under the influence of strong local field gradients. This is a scen-
ario that cannot be efficiently modelled with the conventional quantum mechanical method, density
functional theory (DFT), which assumes a homogeneous field when analysing electronic structures of
molecules.

Secondly, machine learning analysis has been applied to Raman data obtained in both nuclear and
biopharmaceutical industrial applications. A key focus of this work is on the practical challenges faced
in the design of data processing tasks and machine learning architectures due to real-world limitations
in data collection. A fully connected (FC) autoencoder is employed as part of a regression task,
which generates predictions on analyte concentrations in mixed substances. The method was shown
to outperform industry standard regression tools, principal component regression (PCR) and partial
least squares (PLS) regression, each used as comparative benchmarks, by over 50% in a test of model
precision across various datasets in the investigated industrial applications. Advancements in the
precision, speed and effectiveness of such tools are of critical importance in an industrial environment.
This is driven by compelling motivations to reduce not only the costs associated with these procedures,
but also to increase the quality of resulting products, or to reduce the risks within industrial operations,
where applicable.
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Chapter 1:

Introduction to the Thesis
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Raman spectroscopy serves as a method for delineating the characteristic attributes of substances.
This feat is achieved through the use of a laser to promote the inelastic scattering of photons from

vibrational energy levels, revealing the vibrational modes of the system. In addition, rotational [2] and
low-frequency [3] modes may also be probed using this technique. The result of this Raman interaction
is the formation of a spectrum, which is comprised of one or more peaks that correspond to particular
vibrational modes in a molecular system. These interactions are stated in wavenumbers - given in
units of inverse distance, cm-1, correlating to the energy of the Raman interaction; it is also common
for a spectrum to be displayed using interactions per wavelength, given in units of nanometres, nm. It
is possible to convert between unit scales as a function of the wavelength of the laser used to produce
the Raman spectrum. Peaks in a Raman spectrum are categorised into two distinct wavenumber
regions: Stokes and anti-Stokes. The positions of peaks correspond to the energy shifts of inelastically
scattered photons. Positive wavenumbers - which are more common - signify reductions in energy that
are associated with the Stokes region, whilst negative wavenumbers indicate energy promotions in the
anti-Stokes region.

1.1 Raman Spectroscopy: Its History and Relevance in Modern Science

Raman spectroscopy, or more specifically the Raman effect, was discovered by the Indian physicist
Chandrasekhara Venkata Raman (C. V. Raman) in 1928. The discovery was part of a series of invest-
igations into the properties of light diffraction from molecules, which originates back to 1922 [4] when
C. V. Raman was scrutinising the accepted explanation at the time for the blue colour of the sea, which
was based on the Rayleigh scattering phenomenon that explains the blue colour of the sky. Through
this research, it is now known that the blue colour of water has its origins in the molecular structure of
water itself, rather than through reflections from the sky, due to the absorption of longer wavelength
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light (in the red-orange region). Based on this research, he and his team discovered that non-incident
light could be scattered from molecules, through refinement of their experimental procedure. This
led to his 1928 publication titled “A New Radiation" [5], which earned him the 1930 Noble Prize in
physics.

Being a subset of the broader field of spectroscopy, Raman spectroscopy has found widespread use
as a tool for the measurement and analysis of interactions between electromagnetic radiation used as a
probe, and the molecular material that is being studied. As the information provided by this technique
is given by changes in energy within the molecular system, it bears similarities to a related technique of
infrared (IR) spectroscopy. Where Raman spectroscopy provides information through the excitation
of ‘Raman active’ vibrational modes, which originate from polarisation changes within a molecule,
IR spectroscopy provides information through the excitation of ‘IR active’ vibrational modes, which
originate from changes in the dipole moment of a molecule.

Another key difference between the two methods is that Raman spectroscopy measures the relative
frequency of inelastically scattered radiation - based on the incident laser wavelength - whereas IR
spectroscopy measures the absolute frequency. Based on the excitation of different vibrational modes,
Raman and IR spectroscopy can be seen as complementary techniques to one another, each being able
to provide information about a molecular system that the other typically cannot access. To better
distinguish the two chemical analysis techniques, these descriptions of the differences between Raman
and IR spectroscopy are further expanded upon in the theory chapter of this thesis.

Due to the process by which information is obtained through Raman spectroscopy, it has become
a useful tool for chemical analysis to study the molecular properties of materials. Such properties
include: the chemical structures of molecules, as the same atoms can result in different Raman spectra
based on specific molecular arrangements [6]; the intramolecular bonds, whereby peaks corresponding
to individual bonds enable the distinction of bond types between the same atoms, such as carbon-
carbon single, double or triple bonds; and the phase transition of molecules based on the temperature
at which a transition would occur [7]. Importantly, with respect to these features, Raman spectroscopy
is a non-invasive technique, meaning that the procedure does not involve contact with any targeted
substance besides a physical interaction with the laser, this therefore enables repeat analyses to be
carried out in tandem with other spectroscopic methods.

Standard Raman spectroscopy is colloquially known as ‘spontaneous Raman spectroscopy’, and
it has many scientific and industrial applications. As described, the process is non-destructive and
non-contacting, with the advantage of requiring no sample preparation, which enables the analysis of
substances in-situ. Such examples include the use of spontaneous Raman spectroscopy to study the
properties of water molecules in-situ at a solid-liquid interface [8], which possess different structural
properties from bulk water that may promote advancements in electrocatalytic processes; or studying
the structural evolution of metallic electrocatalysts (electrodes) during an electrocatalytic process,
such as through Raman signals produced by metal oxides [9, 10, 11] or metal-organic frameworks [12].
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Other common applications of spontaneous Raman spectroscopy are in the area of mineral and
organic material characterisation. Typically by using reference databases of known materials, un-
known substances can be identified based on their signature Raman responses [13]. This allows for
applications in the distinction between polymorphs [6, 14], and in the detection of mineral impurities or
contaminants where other experimental procedures are shown to fail [15]. As water and glass give weak
Raman responses, the technique naturally extends to in-vivo and in-vitro applications, such as in-vivo
analyses of human skin [16, 17], extending to applications in detecting and studying dermatological
conditions [18, 19]; or in-vitro analyses in the form of biopsies [20].

1.2 Variants of the Raman Technique

There exists a multitude of variations of Raman spectroscopy, each of which has been developed for
the purpose of extending the capabilities and application areas of the technique. This is achieved
primarily by improving the spatial resolution or intensity of the Raman response, typically through
the utilisation of specialised optical configurations including: specific excitation wavelengths tuned to
the analyte, the use of multiple probe wavelengths, or the inclusion of metal geometries to significantly
amplify the local electric field and hence the Raman response. Such variations are commonly combined
to take advantage of their numerous attributes.

Listed below are a number of key variations to spontaneous Raman spectroscopy, with qualitative
explanations regarding their history, development and function, as well as typical example applications.

Spatially Offset Raman Spectroscopy (SORS). Spontaneous Raman spectroscopy is limited
to measuring the Raman response of surface or near-surface materials, whereas SORS is designed to
extend the functionality of Raman spectroscopy, allowing for deeper penetration and thereby achieving
depths of up to 5 cm [21]. This is achieved without needing a different optics configuration to that of
standard spontaneous Raman spectroscopy. Developed by Matousek et al. in 2005 [22, 23], the SORS
technique employs multiple collection points that are spatially offset from the point of incidence by
differing amounts. The nature of each spectrum measured in this way differs due to the method by
which Raman photons scatter laterally throughout deeper layers of the material; as photons diffuse
into deeper layers, their migration can be described as a ‘random walk’. This translates to collection
points at greater offsets from the point of probe incidence having equal contributions from the Raman
probe at all depths, as opposed to a collection point with zero offset that has an increased density
of probe photons, and weaker contributions from deeper layers. By utilising this physical effect,
multivariate analysis can be employed on a dataset of Raman spectra measured at various offset
distances. These offsets yield distinct relative contributions from surface and sub-surface layers in
relation to the distance from the incident probe. Consequently, this approach enables the extraction
of approximate pure Raman spectra for individual layers within a material, achieved through a scaled
subtraction of spectra at different offsets.
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Extending the functionality of Raman spectroscopy to obtain Raman spectra of sub-surface ma-
terials with SORS has created a large number of uses for the technique. Where the surface layers of
a material may take the form of a container, such as a plastic bottle or capsule, SORS is capable of
measuring and identifying unknown liquids or powders [24, 25], which is often employed in airport
security with regards to passenger luggage; in a similar vein, SORS finds use in police and military
environments in the analysis and identification of potentially illegal drugs [26, 27] or explosive com-
pounds [28, 29, 30] through non-metallic containers. This is possible whether the container is made of
glass, plastic or paper and regardless of its colour or opacity [26]. Applications of SORS also extend
to medical fields, such as in the non-invasive analysis and monitoring of bone beneath skin [21, 31],
in the quality assessment of blood [32], or in the detection of breast cancer [33]. SORS has also been
used as a tool in the art preservation of paintings by analysing sub-surface layers of paint [34], where
spontaneous Raman spectroscopy is infeasible due to obscuration by the top layers of paint.

Resonance Raman Spectroscopy (RRS). Spontaneous Raman spectroscopy is a relatively weak
effect, wherein inelastically scattered photons occur approximately once every one thousand scattered
events, which in turn occurs at the same approximate rate compared to the non-interacting, direct
transmission of photons through a molecular compound [35, 36]. Thus, to improve upon the sensitivity
of spontaneous Raman spectroscopy, the resonance effect is taken advantage of by tuning the energy
of the incident photons from the Raman probe to energies close to, or equal to that of, a particular
electronic transition in the analyte [37, 38]. The first observation of this effect is dated at least as early
as 1946 by Harrand and Lennuier [39, 40]. The result of this tuning provides an enhancement to the
Raman scattering process in the order of 106 [41].

This resonance effect differs from the standard (non-resonance) Raman process as the interacting
photons excite electrons to an excited electronic state, rather than a virtual state of lower energy.
This consequently introduces enhancements to fluorescence as an interfering factor, as a portion of
the excited electrons are able to relax to the lowest level of the excited state before their emission
back to the ground state [40]. However, peaks produced by resonance Raman scattering are able
to be distinguished from that of fluorescence due to the fact that they are narrower, owing to the
conversation of energy whereby resonance Raman photons undergo direct emission back to the ground
state without an initial relaxation in the excited state [42]. Another crucial aspect differentiating
RRS from non-resonance Raman techniques is that the enhancement specifically affects the electronic
transition states of the chromophores within a molecular compound [30], which are the parts of a
molecule responsible for its colour and may not comprise the entirety of its structure, hence there
may be notable differences between spectra of the same compound when measured with resonance and
non-resonance Raman techniques.

Despite the aforementioned intricacies, the enhancement effect enables the analysis of molecular
compounds in either low concentrations [43], or with vibrational modes that possess weak Raman
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responses [40]. Additionally, there is an improvement in the selectivity from spontaneous Raman
spectroscopy, in which an amplification occurs in the intensity of the vibrational modes that are under
resonance conditions, which enables RRS to serve as a technique for analysing specific vibrational
modes [43, 44], or to obtain structural information regarding large biomolecules such as proteins
[40, 44, 45]. Relative peak ratios as a result of this selectivity must be considered when comparisons
are made between RRS spectra and those from other non-resonance Raman techniques [30, 46]. Similar
to SORS, there are other applications for RRS in areas of art preservation [47] and forensic analyses
involving the characterisation and comparison of inks and paints [30, 40, 46].

Stimulated Raman Spectroscopy (SRS). Where SORS and RRS are examples of extensions to
spontaneous Raman spectroscopy involving standard optical configurations, with minor modifications
to the signal collection method or properties of the laser probe, SRS makes a non-linear modification
to the optical configuration by introducing a second photon source. The primary source uses ‘pump’
photons at a particular angular frequency ωp, whilst the secondary source uses ‘Stokes’ photons at an
angular frequency ωs, normally chosen to match the energy of a particular vibrational or rotational
transition [48] - named together as ‘rovibrational’. Both photon sources may be delivered by the
same probe laser. The effect of this pump-probe arrangement is the resonant amplification of the
Raman response from a rovibrational transition in the order of 104–106 [49], should the energy of
this transition equate to the energy difference between both photons. Regarding the energy of SRS,
the enhancement factor is attributed to the coherent nature of molecular vibrations, in contrast to
the inherent incoherence of spontaneous Raman spectroscopy. This coherency is explained by the
synchronised oscillation of excited rovibrational modes, resulting in a directional polarisation that
provides the enhancement [49].

Application areas for SRS entail mapping the spectral signature of an analyte substance, enabled
by the rovibrational energy states made accessible by this technique. Such applications include: fibre
optic communication over distances exceeding 800 km [50]; the development of Raman fibre lasers as a
substitute for conventional silica fibres [50]; the use of SRS as a Raman shifter, wherein a Raman-active
medium external to the laser source produces Stokes-shifted photons, ωs, dependent on the material
[49, 51]; the detection of different conformational structures (different rotational arrangements about
a single bond) in the same organic compounds [52, 53]; and in biomedical imaging, by integrating SRS
with microscopy to study the behaviour of living tissue when subjected to various stimuli [54].

Coherent Anti-stokes Raman Spectroscopy (CARS). Another coherent variation of spontan-
eous Raman spectroscopy, CARS shares numerous operational and mechanical functions with SRS.
The CARS technique was originally discovered in 1964 by Maker and Terhune [55], and later named as
such in 1974 [56]. By utilizing two photon sources in a non-linear optical process, CARS amplifies the
Raman signal from molecules compared to conventional spontaneous Raman spectroscopy. Similar to

5



SRS, there exists a laser source emitting pump photons with frequency ωp, and Stokes photons with
frequency ωs. However, a distinctive four-wave Raman mixing process occurs through a second inter-
action with the pump laser. The four-wave interaction progresses in stages: pump photons initially
excite electrons from the ground state to a virtual state. Subsequently, stimulated emission to a higher
vibrational energy level takes place due to the presence of the Stokes photons. Next, a second pump
photon interacts with this polarised electron, causing an excitation to an even greater virtual state,
with an energy of ωp −ωs above the first, culminating in the emission of an anti-Stokes signal as the
electron returns to the original ground state. Consequently, the primary aim of this third-order optical
configuration is to produce a coherent signal with the analyte, resulting in an anti-Stokes frequency
of 2ωp −ωs [56, 57]. The Raman response can be resonantly enhanced when the frequency difference
between the pump and Stokes photons approaches a Raman frequency of the analyte [55].

CARS and spontaneous Raman spectroscopy both examine the same vibrational modes, but are
distinguished by the nature of the Raman signal and the type of interference. Spontaneous Raman
spectroscopy mainly focuses on the Stokes region and thus contends with interference from fluorescence,
which occurs when electrons relax from higher energy states to the ground state, emitting lower-energy
(positive wavenumber) photons in the Stokes region. As a result, CARS avoids this fluorescence
interference by primarily occupying the anti-Stokes region [58]. However, CARS signals must contend
with non-resonant, coherent interference from other transitions within a molecule, thus the use of
CARS is limited by the signal-to-noise ratio (SNR) of the resonant response over the non-resonant
inference, rather than by fluorescence as in spontaneous Raman spectroscopy [59].

As CARS contains a strong anti-Stokes Raman response, it is used in measuring the temperature of
gases during combustion processes. The temperature of a substance may be calculated by ratio of the
Stokes and anti-Stokes response, which scale non-linearly with the temperature of the analyte. CARS
is used to monitor a combustion process by determining the temperature of the analyte, such as N2,
O2, CO2 or CH4 [60, 61, 62, 63], which aids in the development of more efficient fuels. CARS has also
been integrated with microscopy to image cells and living tissue [64], such as in lipids (fatty acids)
due to the strong anti-Stokes response of the C-H bonds [65] and the in-vivo analysis and mapping of
sciatic nerve tissue by surrounding fat cells via the same chemical response [66].

Surface-Enhanced Raman Spectroscopy (SERS). Variations described thus far extend the
functionality of spontaneous Raman spectroscopy through modifications to excitation wavelengths of
the Raman probe (RRS), or through multiple collection points (SORS) or photon frequencies (SRS
and CARS). SERS is another variation capable of extending the functionality of spontaneous Raman
spectroscopy, which is achieved through enhancements to the local electric field. As the Raman effect
is proportional to the local electric field, any such enhancements have the ability to produce enormous
increases to the measured signal - by up to 1012 [67, 68, 69]. There are multiple ways to achieve an
enhancement of the local electric field, with typical methods involving binding an analyte to either a
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roughened metal surface or nanoparticle arrangement [70], which excites local surface plasmons (ana-
logous to photons, these are oscillations of the electron density) that facilitate the field enhancement.
The metal surface is commonly composed of gold or silver, although other less expensive metals have
been investigated such as aluminium [71, 72]. This signal boost enables the analysis of substances at
very low concentrations, or even single molecules [73, 74, 75].

The effect was first discovered by Fleischmann et al. in 1973 [76] in a paper that studied the
adsorption (the ability for the surface of a solid material to accumulate chemical compounds or gases
that it is in contact with) of pyridine onto a roughened silver electrode. The observed enhancement
could not be explained by the concentration of the analyte, as the pyridine formed at a monolayer or
near-monolayer thickness on the silver surface. This lead to competing theories attempting to explain
the enhancement mechanism, both of which are currently accepted to this day [77]. These are the
electromagnetic theory [78, 79, 80] and the chemical theory [80, 81, 82], which will be expanded upon
in the theory chapter of this thesis.

As mentioned, SERS is a high sensitivity variation to spontaneous Raman spectroscopy, capable
of detecting the presence of molecules in extremely low concentrations. Hence, it is a useful technique
with many applications areas [83] including: measuring responses from low population proteins in the
detection of various cancers [84, 85, 86]; future design of molecular electronics and computer memory
[73, 87, 88, 89]; and the design of heterogeneous catalysis, in which the catalytic material exists in a
different phase to the reactant, with uses in many industries such as food processing, biopharmaceutical
drug manufacturing, and plastic production [90, 91, 92, 93, 94].

1.3 Chemometrics in Raman Spectroscopy

As mentioned in Section 1.2, the vast majority of Raman spectroscopy applications are subject to
fluorescence, which adds interference components to the resulting Raman spectra. There are numerous
modifications that can be made to the Raman setup to attempt to counteract this issue, such as:
changing the wavelength of the Raman probe laser to shift the fluorescence profile away from any peaks
of interest, switching to a pulsed laser to leverage the difference in timescale between fluorescence and
Raman scattering [95] (these examples are covered in more details in the theory chapter of this thesis),
or by utilising a variant to spontaneous Raman spectroscopy such as CARS.

However, fluorescence effects are practically unavoidable, and are not the only source of interference
for the information targeted in a Raman measurement. Such additional components include but are not
limited to: noise from the detector (shot noise, read noise, dark currents), cosmic rays forming spikes
in a spectrum, and aberrations in the optical equipment (such as dust on a lens) [96]. Therefore, it is
typical for a procedure involving one or more data preprocessing techniques to be implemented [20, 97]
in order to reduce the effects of fluorescence and other interfering components - termed ‘background
interference’. The removal of background interference is an important step in chemometrics, which
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involves a statistics-driven analysis of a dataset of Raman spectra. Otherwise, any results or conclusions
drawn from such an analysis will not be solely based on characteristic information retrieved from Raman
measurements, but rather in combination with the described background inference. It should be noted
that, although chemometrics is a broad field that can be applied to numerous types of chemical data,
both spectral and non-spectral, this introduction predominantly focuses on Raman spectra.

Another distinctive factor that contributes an interfering element to Raman spectra, apart from
the described background interference, is the nature of the sample itself. Given that the majority of
substances are composed of a mixture of various molecular compounds, whether due to contaminants
or impurities from an industrial process, or through necessity if the analyte requires storage in an
aqueous solution, the resultant Raman spectrum of an analyte can contain peaks originating from
these other molecular compounds. These additional Raman peaks have the potential to degrade a
chemometric analysis, leading to biased, inaccurate, or erroneous outcomes. Such inaccuracies could
manifest as the false identification of the analyte in an unknown sample, an incorrect prediction of its
concentration or temperature (if Stokes and anti-Stokes regions are considered), and similar issues.

To remove background interference, and thereby improve the SNR of the Raman spectrum for
subsequent analysis, an analytical chemist would conventionally perform preprocessing tasks. A sub-
traction of the baseline would typically be made through the use of a spline fit to the gross structure of
each spectrum in a database. Each signal may also be smoothed and denoised using a Savitzky-Golay
(SG) filter, which fits a series of polynomials across the spectral range, however, this process can de-
grade the Raman features present in the spectra. Once the spectral dataset has been preprocessed,
the next stage is to perform a statistical analysis to extract the desired information. This may involve
the use of a multivariate analysis technique such as principal component analysis (PCA) to distill
the information present in a dataset [98], which allows for the removal of noise and other remaining
components that do not pertain to the bulk of explainable variance. After which, further task-specific
analyses would take place such as fitting a linear model (e.g. ordinary least squares) in a regression
task [20, 98], or clustering (e.g. K-means clustering) in a classification task [20, 96, 97, 98, 99].

1.4 Example Machine Learning Techniques in Raman Spectroscopy

There are several disadvantages associated with assigning the task of data processing to a human. These
include the task becoming prohibitively slow as the dataset size grows and the potential for subjectivity
in the preprocessing stages, which could lead to variations in the preprocessing of the same arbitrary
spectrum when carried out by different people. To mitigate these drawbacks, machine learning tools
can be utilized instead of direct human involvement in data preprocessing and analysis, which may
bring about additional benefits by negating the need for the repeated training or development of an
analytical model when new data samples are introduced should statistical properties not deviate too
strongly from the original dataset. With regards to an industry setting, there may be a financial
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incentive to implementing these machine learning tools, as development and deployment costs may be
considerably less than the cost of assigning the task to a domain expert.

In recent decades machine learning techniques have been applied to a wide range of scattering
and spectroscopic applications, such as Raman spectroscopy, brought on both by advancements in
computing power and the increasing availability of large, complex spectral datasets. Listed below are a
number of historic machine learning techniques that have played an important role in the development
of modern machine learning - including details of their development and qualitative descriptions of
their operation - that are still used today either as standalone analysis techniques, or as a comparative
benchmark for more advanced algorithms.

Support Vector Machines (SVM). Originally conceptualised in 1964 by Chervonenkis and Vapnik
[100] and adapted over a 30-year period to the modern application in 1995 by Cortes and Vapnik
[101, 102]. SVM is a binary classifier where the objective is to form a deterministic hyperplane, or
decision boundary, which effectively separates samples into one of two distinct classes. This is achieved
by forming a set of ‘support vectors’, which are a subset of training data points represented as vectors
in a multi-dimensional space that lie nearby to a proposed hyperplane. These support vectors are
used to evaluate and maximise the margin of separation (i.e. minimise the generalisation error) to the
hyperplane, based on a chosen objective function constructed and solved as a quadratic optimisation
task on the parameters of the hyperplane [102].

In cases with non-linear data, a kernel function such as the polynomial kernel or radial basis function
is employed to map the data to a higher-dimensional space - this process is colloquially known as the
‘kernel trick’ - wherein the data becomes linearly separable and the aforementioned optimisation process
may proceed [102]. As only support vectors are considered when defining the decision boundary, rather
than all training data, SVM is therefore an efficient process in high-dimensional spaces. Once the SVM
model is trained on a given task and the decision boundary is determined, new data points can be
classified by identifying which side of the hyperplane they fall on.

SVM is one of the pioneering machine learning algorithms that has found chemometrics applications
with Raman spectroscopy data primarily for classification tasks [103, 104, 105], although applications
in regression on both Raman and IR spectroscopy data are also possible [106, 107]. Being a supervised
learning model, SVM makes use of both the input data (e.g. a spectrum) and an output label (e.g.
the associated chemical compound) for training the internal parameters.

Random Forests. An ensemble learning method that utilises multiple decision trees to determine
the output of a classification or regression model, developed by Ho in 1995 [108]. To understand the
goal of random forests as a machine learning tool, decision trees must first be understood. A decision
tree, with algorithm implementations dating back as early as 1959 by Belson [109], is a hierarchical
model that uses a tree-like structure, in which: each node represents a feature of the data, each branch
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represents a condition or decision to be made, and each leaf represents the outcome or prediction of the
model. The goal of a decision tree is to formulate a tree that best splits the data in a classification task,
which is typically achieved through the use of the CART (classification and regression tree) algorithm
[110]. The quality of the split may be evaluated using a simple estimator such as mean squared error
(MSE). This method of model construction makes decision trees easily interpretable, although they
are prone to overfitting to the training dataset.

Multiple decision trees are utilised in random forests by way of bootstrap aggregation, or ‘bagging’
[111], wherein random subsets of training data are chosen with replacement to train each decision
tree. Importantly, the forest of decision trees is uncorrelated, which is made possible by randomly
selecting with replacement a subset of features from the data accessible to each decision tree through
the ‘random subspace method’ [112]. This approach achieves the same result as in a single decision
tree but with a notable reduction in overfitting, thus random forests are preferable over single decision
trees when trained on noisy data. The way in which results are obtained from a random forest is
dependent on the specific task: for a classification task, the chosen class for a new sample is commonly
determined by majority vote from all decision trees; for a regression task, the prediction is made by
either the mean or median of all decision tree predictions.

Random forests have been used in Raman spectroscopy for a variety of applications, including:
predicting the SERS response of organic compounds absorbed onto a gold surface as an effective
substitute for expensive quantum mechanical predictions [113]; classifying, in combination with PCA,
milk samples from different species with varying component concentrations such as proteins and fats,
for use in nutritional research for infants [114]; immunology research involving the quantification of
target hormones within dog serum, used together with SERS [115]; and the identification and dating
of different copper polymorphs used as pigments in art at various stages of aging [116].

Bayesian Networks. Developed by Pearl in 1985 [117], Bayesian networks are probabilistic graph-
ical models based on Bayesian probability theory [118]. Such graphs are comprised of nodes represent-
ing specific random variables that are interconnected by edges that explain some form of dependence.
The specific type of graph used in Bayesian networks are directed acyclic graphs (DAG), which are
directed graphs with no cycles - meaning that the edges express conditional dependencies between
nodes, and that these edges do not form closed loops. Therefore, a DAG is said to be topologically
ordered, whereby directed edges beginning at earlier nodes in a graph always end at later nodes. Each
node in a Bayesian network has associated conditional probabilities that are dependent on all incoming
edges from the parent nodes.

The main use of a Bayesian network is for probabilistic inference, in which predictions or classifica-
tions can be made on new samples based on the probability of certain variables or events given observed
evidence - such evidence may take the form of intense Raman responses at determining wavenumbers
for a particular chemical compound, for example. Similar to decision trees, the graphical structure of
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a Bayesian network allows for direct visualisation of interactions between deciding variables that have
influenced a particular outcome [119].

Because of these characteristics, Bayesian networks have been utilised across a number of applic-
ations, such as: microbiology, for the detection of harmful bacterial spores to prevent food-borne
illnesses in food production using confocal micro-Raman spectroscopy [120]; chemometrics analysis, in
the quantification and identification of DNA sequencing using SERS [121, 122]; and in recent research
into the quality control of biopharmaceuticals by integrating Raman spectra with other data types
[123].

1.5 Neural Networks and Deep Learning in Raman Spectroscopy

The advent of the artificial neural network (ANN), and later deep learning, has revolutionised the
applications and capabilities of not only Raman spectroscopy, but a multitude of other scattering and
spectroscopic data analysis techniques [124] - although this introduction will focus on applications
in Raman spectroscopy. This development has enabled the classification and prediction of chemical
morphologies on datasets that may be considered either too large or noisy for conventional analysis
techniques. To begin, an ANN is a branch of machine learning with a history of development stretching
back over the past two centuries with the publication of the linear neural network model by Legendre
[125]. Although, a more conventional interpretation for what constitutes an ANN would be a directed
graph of nodes interconnected by weighted edges, which are crucially able to update, or learn, new
values for these parameters based on observed input patterns, in order to improve in its ability to
correctly associate those patterns with desirable outputs. Under this interpretation, the first ‘learning’
ANN was published by Amari in 1972 [125, 126] with the artificial recurrent neural network (RNN).
Perhaps the single most pivotal moment in the history of machine learning is the introduction of the
backpropagation algorithm, which has become the standard method by which neural networks learn
today. Also known as ‘reverse mode of automatic differentiation’ in the original 1970 publication by
Linnainmaa [127], backpropagation performs an efficient implementation of the Leibniz chain rule, and
was first applied to train neural networks in 1982 by Werbos [125, 128]. A more detailed explanation
on the structure of the ANN, various example architectures, and a mathematical description of the
backpropagation algorithm are provided in the theory chapter of this thesis.

Soon after the modern ANN had been established, applications in Raman spectroscopy began to
emerge [129]. In 1993, Liu et al. [130] used an ANN to classify Raman and near-IR spectra of organic
compounds commonly used in industrial applications as solvents, extractants and additives. In 1994,
Lewis et al. [131] trained an ANN as a binary classifier using the Raman spectra of two types of wood
samples. In 1997, Gniadecka et al. [132] used an ANN to distinguish between healthy and cancerous
skin samples, the results of which were in agreement with a manual spectral analysis.

An issue faced by ANNs, here referred to as ‘shallow’ architectures, is that these models, in much
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the same way as the classical machine learning tools described in Section 1.4, are incapable of learning
the complete set of complex features that may be present in much larger chemical databases that are
more commonly seen today. Spectral preprocessing can be implemented to improve the performance of
these models, outlined in Section 1.3, which is often a labour-intensive and subjective task. Selecting
the correct preprocessing methods can significantly impact the results, and manual intervention by a
domain expert may be warranted. Such subjectivity, as previously described, can introduce bias and
inconsistency in the analysis, especially when multiple people may carry out the same preprocessing
task on separate occasions, reducing the reliable of these methods.

Deep learning is a multifaceted data processing method that has been shown to address the afore-
mentioned preprocessing challenges. Deep learning architectures have a wide range of applications in
spectroscopy due to their ability to detect complex, often non-linear features, and process large quant-
ities of data with high throughput. As a result, deep learning has provided powerful tools that can
classify substances or predict quantities without the need for potentially bias-inducing preprocessing
[133] steps, which are commonly required in alternative methods such as partial least squares (PLS)
regression or shallow architectures. This attribute allows deep learning to process, for example, mix-
tures consisting of multiple chemical compounds [134], or spectra with highly variable baselines. Such
methods are also capable of providing identification despite a small number of reference samples (or
even from individual reference spectra) [135]. This is because deep neural networks (DNNs), which
possess many layers each of increasing levels of abstraction, offer a robustness to variability in spectra
that is not linked to the underlying information aimed to be qualified. Thus, they are particularly
effective at categorising spectra pertaining to unique molecular compositions, states, or transitory
physical events.

1.6 Organisation of the Thesis

Early chapters in this thesis are based on exploratory collaborative research with members of the
Baumberg research group at the University of Cambridge. These chapters develop a machine learning
pipeline to process and analyse atomic-scale features present in SERS data based on metal-molecule
interactions in nanogaps. Later chapters cover work done in collaboration with an industrial sponsor
for this PhD, IS-Instruments Ltd., to design and deploy machine learning regression models. A focus
in these chapters is on realistic real-world limitations on data volumes, in two distinct industrial
settings: nuclear, featuring high concentration samples collected with spontaneous Raman spectroscopy
data; and biopharmaceutical, featuring low concentration samples collected using ultraviolet resonance
Raman spectroscopy (UVRRS), a variant of RRS. Brief summaries of the contents of each chapter are
provided below.

Chapter 2: Theory. Since all work presented in this thesis involves Raman spectroscopy, this
chapter covers the fundamentals associated with the method. This includes descriptions distinguishing
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elastic and inelastic scattering, Raman and IR active vibrational modes, and practical considerations
regarding the experimental apparatus used to capture and process Raman signals, such as a differenti-
ation between dispersive and Fourier transform (FT) detectors. The mechanisms that drive the SERS
interaction are detailed, including two prevailing theories describing the observed enhancement factor,
and an example geometry that promotes such interactions, from which the work in Chapters 3 and 4
is based on.

Finally, as with Raman spectroscopy, DNN-based machine learning features heavily throughout this
thesis, hence the foundations are laid for the implementation and operation of such data processing
tools, such as the backpropagation and gradient descent algorithms used to train neural networks. Ex-
amples are also provided for alternative architectures that are relevant to this thesis. Visualisations for
how neural networks may learn increasingly abstract, complex features, and quantitative descriptions
for a range of hyperparameters and optimisation tools, which are used throughout this thesis to adapt
each model to the chosen tasks, are provided with example usages.

Chapter 3: Analysing Metal-Molecule Interactions on the Atomic-Scale. The contents of
this chapter detail work contained in, and surrounding, published research by the author of this thesis
[1]. This will cover the design of combined machine learning and image processing techniques to create
a robust data processing pipeline for the chemometric analysis of multiple single molecule, time-series
SERS datasets. The data used in this work was captured using an in-house spectrometer setup in a
dispersive detector arrangement. In collaboration with researchers at the University of Cambridge,
the goal of this work was to characterise the formation dynamics of atomic-scale processes, in this
case adatoms, which play a key role in metal-molecule interactions and are critically important in
heterogeneous catalysis and various other molecular electronic applications. Such characterisation was
achieved through the design and implementation of a convolutional autoencoder (CAE), combined with
image processing, for the extraction of so called ‘picocavity’ features, which are used to determine the
formation sites of metallic protrusions through a comparison of ‘picocavity peaks’ with those predicted
through conventional quantum mechanical modelling.

Chapter 4: Temporal Extension to the Metal-Molecule Analysis Pipeline. This chapter
constitutes foundational research that expands upon the data analysis pipeline described in Chapter
3. Through the use of a Siamese convolutional neural network (Siamese-CNN), a binary classification
task is formed to distinguish between positively and negatively correlated picocavity peaks. These
time-series peaks shift in wavenumber space over time as a result of perturbations caused by the
drifting of adatoms - the source of the picocavity - that produce strong local electric field gradients.
By characterising the polarity of correlated peaks, this work provides a tool capable of results similar
to the previous chapter, whilst incorporating additional temporal information present in the SERS
data. Such information can aid in the tailoring of catalyst surfaces, or near-surfaces, by analysing how
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individual bonds interact on single molecules, which can inform proposed modifications to catalysts in
order to improve selectivity and efficiency for desirable catalytic processes.

Chapter 5: Regression Modelling of High-Concentration Raman Spectroscopy in the
Nuclear Industry. The content in this chapter is connected to work done in collaboration with
an industrial sponsor for this PhD, IS-Instruments Ltd. The focus of this work is on the design
and implementation of a machine learning regression model for predicting the concentration of mixed
Raman spectra for molecular compounds commonly found in nuclear decommissioning processes. The
dataset features high concentration samples captured using a spontaneous Raman spectrometer with
an FT detector arrangement. A fully connected (FC) autoencoder combined with a linear regression
model is used to make the predictions, and the results are shown to exceed the performance of industry
standard data processing tools: principal component regression (PCR) and PLS regression. A key
theme explored within this chapter is on the limitations of low data volumes, which are common to
industrial settings, and the impact this has on both the design of machine learning models and on
data augmentation techniques implemented to introduce sufficient data variance required to train the
model.

Chapter 6: Transferring Success: Low-Concentration UVRRS in the Biopharmaceutical
Industry. In extension of Chapter 5, this chapter utilises the machine learning regression model to
predict concentrations of bioorganic macromolecules dissolved in aqueous solutions at low concentra-
tions. The results are also shown to exceed the performance of PCR and PLS regression models trained
on the same data. Two datasets were captured for this task using an UVRRS system, each of which
containing proteins crucial to the biopharmaceutical industry for the research and manufacturing of
new therapeutic drugs. These organic molecules can form protein aggregates, which are detrimental
to the manufacturing process, and can result in adverse effects in the resulting drugs. Hence, accurate
information on the quantities of these mixtures is important for improving quality and yield. This
chapter also explores modifications to the data augmentation technique, introduced in Chapter 5,
to overcome detrimental effects on model performance caused by sample measurements collected at
non-uniform concentrations intervals, as well as non-linear Raman responses inherent to both protein
macromolecules due to sample attenuation.

Chapter 7: Outlook and Future Work. This chapter provides final remarks, and concludes
the work undertaken throughout each chapter within this thesis. The potential for future work in
expanding into other application areas is also discussed.
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Chapter 2:

Theory

Contents
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Gradient Clipping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

This chapter covers the broader theories and concepts that are prevalent within each chapter of
this thesis, namely Raman spectroscopy, its extension SERS, and machine learning. The origins

of machine learning are briefly covered, and descriptions are given for the various architectures and
tools that are utilised within this thesis, which have been selected to optimise the models chosen for
each task. Additional theories that feature a singular usage within this thesis do not appear within
this chapter, and are instead covered in the respective chapters in which they appear.

2.1 Raman Spectroscopy

Raman spectroscopy is a fingerprint technique concerning the interaction of electromagnetic radiation
on matter, which can be used to determine the identity, as well as the concentration, of unknown
molecular substances. It is applicable to matter in solid, liquid or gaseous states, and even has
applications in complex biological structures such as DNA [136, 137]. The process in which molecules
are analysed is based on the interaction between the wavelength of the electromagnetic radiation
and the electronic structure of the matter, which causes an excitation of specific vibrational modes,
producing an electromagnetic spectrum that is characteristic to the substance.
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2.1.1 Elastic and Inelastic Scattering

The key function by which Raman spectroscopy operates is through the inelastic scattering of photons,
also called Raman scattering, which is used to identify the atomic composition of molecules based on
electron transitions between quantised vibrational energy levels. When a source of monochromatic light
interacts with a molecular system, the electrons within that molecule can become excited, bringing
them from their initial ground state, E0, up to a virtual state. In the majority of cases elastic scattering
occurs, also called Rayleigh scattering, in which the excited electron relaxes back to its initial ground
state, which emits a photon with an energy equal to that of the incident photon, hν0. A far less
common occurrence is inelastic scattering, in which excited electrons relax to an energy level that is
either above, E0+hνn, or below, E0−hνn, its initial state, where hνn is the energy difference between
the two states. In the former case, termed Stokes scattering, the energy of the emitted photon is less
than the energy of the incident photon. In the latter case, termed anti-Stokes scattering, the energy
of the emitted photon is greater. Hence this photon has energy hν0 ∓ hνn, depending on the type of
Raman scattering.

Figure 2.1: Energy level diagram for the three relevant scattering processes. Left, elastic scattering
(Rayleigh scattering); middle and right, inelastic scattering (Stokes and anti-Stokes).

As shown in Figure 2.1, the difference in energy between two vibrational energy levels is equal
to the difference in energy between the incident and scattered light. The resulting Raman shifts are
expressed in wavenumbers with units of inverse distance, cm−1, as this directly relates to energy. The
wavenumber, ∆k, can be calculated using the equation:

∆k =
1

λ0
− 1

λn
, (2.1)

16



where λ0 is the wavelength of incident light, and λn is the wavelength of the emitted Raman light.

2.1.2 Raman and Infrared Vibrational Modes

A molecule undergoing Raman scattering will contain multiple vibrational modes, which are independ-
ent sets of atomic vibrational motions, which can be excited simultaneously with other modes. Each
vibrational mode generates a peak in the Raman spectrum, which corresponds to the characteristic
energy level transition that produced it. The resulting spectrum can therefore be used to identify the
specific vibrational modes and chemical structure of a subject molecule. This gives rise to the term ‘fin-
gerprint technique’ that is colloquially used to describe Raman spectroscopy. Due to the requirement
of a change in polarisation for a Raman response (discussed below), the majority of materials produce
a Raman signal regardless of phase, with the exception of pure metals whose structure prevents the
vibrational Raman effect, and hence polarisation changes cannot occur.

With regards to the aforementioned vibrational modes, not all modes will necessarily be Raman-
active. This means that Raman scattering would not excite these modes, leaving those regions empty
within the Raman spectrum. Vibrational modes are either Raman- or IR-active. Raman-active modes
require a change in the polarisability of the molecule, which occurs during symmetric changes in bond
lengths during molecular vibrations, such as in Figure 2.2a. IR-active modes require a change in the
dipole moment of a molecule, which occurs during asymmetric changes in bond lengths, such as in
Figure 2.2b.

(a) Symmetric stretching, causes a
change in polarisability.

(b) Asymmetric stretching, causes a
change in the dipole moment.

Figure 2.2: Examples of Raman- and IR-active vibrational modes for a CH4 molecule.

2.1.3 The Raman Signal and Instrumentation

As mentioned in Subsection 2.1.2, the Raman scattering of a molecule will generate a number of peaks
based on its Raman-active vibrational modes. As Rayleigh scattering occurs in around 1/1000 incident

17



photons, and Raman scattering occurs roughly one thousand times less often than that, the intensity
of the inelastically-scattered peaks is swamped out by the former effect [35, 36]. A standard method
to exclude the elastic peaks, which exist around 0 cm−1 on the wavenumber axis for Raman spectra,
is filtering, shown in Figure 2.3. Notch or low-pass filters are commonly used filters for this purpose.

Figure 2.3: Notch filter, indicated by the shaded region, applied to an arbitrary Raman spectrum to
filter the elastically-scattered signal. The remaining variance seen in the filtered region is attributed
to signal contributions from the dark current (background noise).

Another effect that can worsen the SNR of a Raman spectrum is fluorescence, which can occur
when the wavelength of incident light is equal to the wavelength of an energy level transition to a
higher electronic state. This causes an emission back to the ground state after an extended time
period in comparison to spontaneous Raman scattering - in the order of nanoseconds for fluorescence
in comparison to the picosecond timescale of Raman scattering [95] - or through an initial relaxation
to a lower energy level in the excited state, before the subsequent emission to the ground state. Based
on the difference in timescale between fluorescence and Raman scattering, it is possible to improve the
SNR of a Raman spectrum through the used of a pulsed laser probe to illuminate a sample, rather
than a continuous-wave Raman laser, if the pulse is shorter than that of the fluorescence effect and if
the data is collected within each pulse window [95]. As opposed to Raman scattering, fluorescence is
wavelength dependent. It is therefore possible to tune the wavelength of the laser used in a Raman
spectrometer in order to shift the fluorescence profile in wavenumber space away from peaks of interest
in a measured analyte, thus reducing the effect on the acquired signal, shown in Figure 2.4.

18



Figure 2.4: Sample measured at two different laser wavelengths demonstrating the shifting of the
fluorescence profile of a sample, whilst the wavelength-independent Raman signal remains stationary.
Figure adapted from Edinburgh Instruments Ltd. (2022) [138].

Raman scattered light is collected by a detector in the Raman spectrometer. There are two main
types of detector: dispersive or FT. In a dispersive spectrometer, laser light scattered from a sample
enters through a slit into a chamber where the light is collimated by a mirror, then resolved into
individual wavelengths (or equivalently wavenumbers) by a single diffraction grating. A focusing
mirror then directs the spectrally-resolved light towards a charge-coupled device (CCD) to collect the
spectrum. An example dispersive system is shown in Figure 2.5.
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Figure 2.5: Schematic diagram of a dispersive spectrometer. This particular layout is a Czerny-Turner
‘W’ configuration. Image taken from Naeem et al. [139].

FT spectrometers use one diffraction grating in each arm of the spectrometer, this causes two
interfering wavefronts to produce an interferogram of the Raman signal that is detected by the CCD,
as seen in the spatial heterodyne spectrometer (SHS) configuration of Figure 2.6. The spectrum is
recovered from a FT spectrometer by taking the fast Fourier transform (FFT) of the interferogram,
alongside other potential preprocessing tools such as apodisation, phase removal and zero-padding.
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Figure 2.6: Schematic diagram of an SHS configuration. Image taken from Harlander et al. [140].

The noise in a dispersive system is non-uniform, as it scales proportionally to the square root of
the signal in each CCD bin, by the nature each wavenumber being spectrally separated by the single
diffraction grating. Conversely, the noise in an FT system is uniform, as the spectrum is recovered by
an FFT of the resulting interferogram, which distributes the same level of noise amongst each pixel in
the interferogram. This distinction influences the noise models used in the various data augmentation
processes seen throughout this thesis.
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2.2 Surface-Enhanced Raman Spectroscopy

The Raman scattering cross-section, which is the ratio of scattered Raman photons to the intensity of
incident light, is very small, with typical values ≪ 10−28 m2 being measured [141]. In order to increase
the Raman-scattered signal, the SERS technique can be used, which is able to probe light-induced
interactions on the molecular scale due to enhancement factors in the range 1010 to 1012 [67, 68, 69],
with some papers quoting enhancement factors as high as 1014 [142, 143]. The mechanism that drives
the enhancement of the Raman scattering cross-section is still a matter of debate [77], with two main
theories about its origin: the electromagnetic (EM) theory, and the chemical theory, though the former
is more commonly stated.

The electromagnetic theory suggests that the boost to the Raman signal of a molecule is due to
an electric field enhancement by a metal surface that it is contacting. Via the use of a roughened
metal surface or nanoparticle arrangement, local surface plasmons can oscillate orthogonally to the
metal surface. Such a configuration creates a plasmonic field that facilitates enhanced Raman scattering
events. This field enhances both the incident and Raman scattered light, giving rise to an enhancement
factor, ΩSERS , which is proportional to the 4th power of the incident field strength [78, 79, 80]:

ΩSERS ∝ Iinc × IRaman ∝ E2
inc × E2

Raman ≈ E4
inc, (2.2)

Where Iinc and IRaman are the incident and Raman-scattered intensities, respectively, and Einc and
ERaman are the corresponding field strengths.

The chemical theory states that the transfer of charges in resonant conditions provides an enhance-
ment factor of approximately 102 [80], depending on the analyte molecule and contacting surface [82],
and thus it is thought to contribute to the overall enhancement factor in tandem with the EM effect.

Standard light-induced SERS interactions, as described, contain homogeneous fields that interact
with an analyte molecule. One type of SERS system is the nanoparticle-on-mirror (NPoM) geometry
[144] (see Figure 2.7), which has three main components (from the bottom-up): A flat metal film,
typically gold; a self-assembled monolayer (SAM) of an analyte molecule; and metal nanoparticle
spheres deposited onto the SAM surface, which are also usually made of gold. Strong optical fields are
able to be generated by this geometry as a consequence of local surface plasmons in the nanoparticle
coupling to image charges within the gold film - the method of replacing an object (the gold film)
with an imaginary charge - which forms a plasmonic mode that tightly confines light to the analyte
molecule situated between the metal-metal gap.
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Figure 2.7: Scheme depicting a NPoM geometry containing an arbitrary spacer molecule placed between
a metal surface and metal nanoparticle. The inset figure illustrates atomic-scale protrusions in the
nanogap.

Homogeneous SERS interactions within NPoM geometries are termed ‘nanocavities’. A further
amplification to the plasmonic field is possible through the irradiation of gold with a laser, which causes
the spontaneous formation of a single, transient gold adatom on either the surface of a nanoparticle
or substrate film [75, 145] - using the NPoM geometry as an example. This atomic-scale feature
situated within the plasmonic ‘nanogap’, which are crevices between metal nanostructures [75, 146,
147], termed a ‘picocavity’, causes an additional ∼10-100x optical field enhancement effect on an
analyte molecule [73, 74, 75, 146]. This alters the selection rules that govern visible vibrational modes
in Raman spectroscopy, causing previously unseen Raman-inactive IR modes to present in Raman
spectra [75, 148]. This is due to the strong local inhomogeneous gradient field, which is produced by
the under-coordinated adatom interacting more strongly with bonds in the molecular structure that are
in a closer proximity to those that are further away, which in-turn morphs the previously unperturbed
electron density. Such a perturbation can shift Raman peaks away from stable wavenumber positions
[73, 149].
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2.3 Machine Learning

Machine learning is a field of technology that is a subset of artificial intelligence, it allows for machines
to learn from data to fulfil inference tasks and gradually self-improve. Machine learning offers myriad
opportunities to improve processes across diverse domains, spanning from scientific and financial sec-
tors, and even to applications in computer games [150]. Where once a human or standard computer
program would be used to carry out a task such as classification or regression, the development of a
replacement, in the form of machine learning algorithms, has been necessitated by the ever-increasing
amount of available data required to be processed. This is further emphasised by the increase in
computational power in recent years. Machine learning algorithms are capable of improving model
performance by assessing output predictions or decisions, in contrast to standard computer programs
which lack this crucial aspect. This strategy employed by machine learning is termed ‘learning from
examples’, and it is capable of learning previously unknown patterns in the data it is provided, without
being explicitly programmed to do so.

Machine learning can be broken down into two broad categories: supervised learning and unsuper-
vised learning, which are differentiated based on dataset knowledge that an algorithm has access to.
Supervised learning relates to tasks where both the input and output data are used when training a
model, ergo the data structure is already known. The input data is the information processed by the
algorithm, such as sets of Raman spectra, whereas the output data can be labels specifying a particular
class, or a value indicating the quantity of the associated data sample. The goal of supervised learning,
once a model is trained, is to assign previously unseen data to the correct class label in a classification
task, or to make accurate predictions in a regression task. In contrast, unsupervised learning does not
involve the use of output data, hence the goal of such a task is to learn patterns and structures that
are conducive to both accurate and precise representations of an unlabelled dataset.

All machine learning systems usually divide the input data into multiple datasets. The model
is fit to a data partition named the training dataset, and the remaining two partitions are used as
inference datasets to evaluate model performance, which are given the names validation and testing.
After each iteration of fitting the model to the training dataset, the validation dataset is used to
provide an unbiased evaluation of the model, which is used to tune any relevant hyperparameters.
Once the model is trained, the testing dataset is used to provide a final unbiased evaluation of the
model using data that has neither been used to train the model, nor used to influence any adjustments
to model hyperparameters. Although there are numerous machine learning systems, such as decision
trees, instance-based learning, support vector machines, and ANNs, this section will only be focusing
on the ANN and its variants.
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2.3.1 Artificial Neural Networks and Variants

An ANN is a machine learning system that is capable of solving complex problems without user
influence, despite the relative simplicity of the algorithm. It is loosely inspired by biological neural
networks that compose the human brain. There are three main components that constitute an ANN:
nodes, which store a real number called an ‘activation’, where larger values are said to be ‘more
activated’ than lower values; connections, which are weights linking two nodes that can be tuned
during the training process; and activation functions, which map the output of one node into the input
of another. Nodes are assembled into a multi-layered structure called a neural network, where a layer
is a structure that receives information from previous layers, processes it in some fashion, and then
outputs it to the next layer - the processing of any one node in a layer is typically independent of other
nodes within that layer. There are three broad categories for layers: an input layer, which receives
external data - one data point per node - that is visible to the user; an output layer, also visible to the
user, which receives information from the previous layer and outputs the final result of the network;
and a hidden layer, of which an arbitrary number of these can exist between the input and output
layers, and are named as such due to being naturally hidden from the end user of the neural network.
The function of the neural network determines the purpose of each hidden layer, a number of examples
are presented in this section, for example: FC layers, convolutional layers, and activation layers. It is
common to use the term ‘blocks’ to group a number of layers or entire neural networks together, which
is a useful level of abstraction to describe complex code succinctly.

Neural networks that contain three or more layers are categorised as deep learning, in part for the
ability to learn complex, non-linear features. The input of each node is calculated by the sum of all
incoming nodes in the previous layer multiplied by respective weighted connections. In addition, a bias
term is added to the equation that has a purpose of shifting the value required for a node to become
active. These nodes, weights, and biases can produce any arbitrary value, hence an activation function
is used to project the value to a point between a finite range, which serves the purpose of enabling the
network to learn complex features. The basic equation for calculating the output of a node is

An = σ(Zn) = σ(WnAn−1 + bn), (2.3)

where An−1 and An are the vectorised forms of the node outputs in the previous and current layers,
respectively, Zn is the raw node value before the activation function, Wn is the weight matrix containing
the values of all weighted connections between the two layers, bn is the bias vector for the current layer,
and σ is an arbitrary activation function. It is common for the weight parameters to be randomly
initialised using a Glorot uniform distribution [151], also called a Xavier uniform distribution, which
draws samples from a uniform distribution within a limit based on the combined number of input
and output units for the current layer. This random initialisation breaks the symmetry caused by
weight initialisation by a constant value, which would cause each node to receive the same signal. Bias
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parameters, however, are commonly initialised with a zero constant [152].
ANNs can be further divided into two categories: feedforwards networks and recurrent networks.

Feedforwards networks involve connections between nodes that do not loop back to nodes in previous
layers, thus information only flows forwards from the input layer, through to each hidden layer, and then
to the output layer. This means that no past information influences the outcome of a node processing
present data until a model output is produced for that iteration, hence feedforwards networks are
commonly used to learn relationships between independent input variables, and dependent output
variables. Recurrent networks involve connections that do form loops. Consequently, information
processed in later layers can influence the outcome of earlier layers, hence this type of network is
typically used to make predictions on sequential or time series data. As the research conducted in this
thesis relates to the former category, the latter will not be expanded upon further. Figure 2.8 shows an
example feedforwards neural network with three layers called a multi-layer perceptron (MLP), these
standard layers are called FC layers.

Figure 2.8: Example feedforwards ANN, where ank represents the value of the kth node in the nth layer,
Wn represents the weight matrix for layer n, and bn represents the bias vector for layer n. Lastly, an
activation function (not shown) is used to scale the output of each node, where different activation
functions can be used both within the same or different layers.

In order to explain the concept of increasing levels of abstraction within deeper layers of a neural
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network, it will be beneficial to first introduce a variant of an ANN: the CNN. This type of neural
network is commonly used to learn and recognise patterns in image data. Where a standard MLP uses
only FC layers, a CNN replaces some or all of these layers with convolutional layers. Each convolutional
layer contains multiple filters, also called feature maps, which are two-dimensional collections of nodes
(in the case of image data) that receive information from a set of convolutions performed on a receptive
field - a portion of the entire field of view of an image - by a kernel operating on the previous layer.
An example convolution operation is shown in Figure 2.9.

Figure 2.9: Example convolution operation in 2D with two filter kernels.

A more general case than Figure 2.9 involves multiple filters in the input layer, in which kernels in
the output layer have a number of filters equal to the number of filters in the input layer, and each
corresponding node in an output filter is the result of the element-wise sum of the three-dimensional
receptive field - i.e. (width, height, #filters). The shape of the output along each dimension - except
the output filter dimension, which is arbitrary - is given by the receptive field formula,

mout =

⌊
min − 2p + k

s

⌋
+ 1 (2.4)

where min and mout are the input and output feature sizes, respectively, p is the amount of zero
padding added to the end of the feature dimension, k is the kernel size, and s is the stride size, which
specifies the number of pixels shifted over the input array between each receptive field.

Convolutional layers learn features about the image data, which are stored within each filter, that
are typically then downsampled using a pooling layer, shown in Figure 2.10. This pooling operation has
the effect of maintaining the larger, more important structural features of a filter, whilst simultaneously
removing finer spatial details, which are undesirable as the goal of a CNN is to produce feature maps
that are shift-equivariant [153].
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Figure 2.10: Example maxpooling operation using a (2× 2) pooling kernel with stride (2× 2).

The learned feature maps in shallower layers of a CNN, those closer to the input layer, contain
lower-level features such as lines, edges, and basic shapes; feature maps in deeper layers can learn
higher-level features that are incredibly specific to a particular class within a dataset, such as cars,
buildings, and faces. This is due to the hierarchical decomposition of the input data, where the earliest
convolutional layer operates on the raw input values themselves, and later convolutional layers operate
on the output of previous convolutional layers, hence the concept of multiple convolutional layers
learning increasing levels of abstraction about the input data. Figure 2.11 showcases an example.
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Figure 2.11: Feature map visualisation of a CNN trained on the ImageNet database. Figure adapted
from Matthew D. Zeiler and Rob Fergus, 2014 [154]. The top-9 activations are shown for random
filters in layers 2-5; left, reconstructed patterns that cause the highest activations in each filter; right,
corresponding images. For layers 1-5, the learned features increase in levels of abstraction: edges,
textures, patterns, parts, and objects. For example, one filter learned to detect dog noses in an image
(layer 4, row 1, column 3), which highlights that these filters learn specific discriminative features.
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With regards to the method allowing an ANN to learn, the backpropagation algorithm is employed
alongside a gradient descent optimisation algorithm. Backpropagation is the process of calculating the
gradient of a loss function - which is used to evaluate the performance of a model, expanded upon
in Subsection 2.3.2 - with respect to all trainable parameters within a model, which are the weights
and biases within each layer. This algorithm involves recursive applications of the chain rule, which
calculates the gradients of the latest layers through to the earliest. This is given by the following
example equations used to calculate the gradient for the weights in the last layer of a supervised
neural network, which uses an arbitrary loss function, L, based on vectorised target values, Y:

∂L

∂Wn
=

∂Zn

∂Wn

∂An

∂Zn

∂L

∂An
(2.5)

∂Zn

∂Wn
= An−1 (2.6)

∂An

∂Zn
= σ′(Zn) (2.7)

∂L

∂An
= L′(An,Y), (2.8)

where Equations 2.6 - 2.8 are the components on the RHS of Equation 2.5, whose derivatives are
calculated from Equation 2.3. Similarly, the equations used to calculate the gradient of the biases in
the last layer of the same network are much the same as before, but with alterations to Equations 2.5
and 2.6, as given:

∂L

∂bn
=

∂Zn

∂bn
∂An

∂Zn

∂L

∂An
(2.9)

∂Zn

∂bn
= 1. (2.10)

Once the gradients have been calculated, a gradient descent optimisation algorithm is then used to
update the trainable parameters. A standard form of this optimisation algorithm is stochastic gradient
descent (SGD), which is used to minimise the loss function of a predictive model, such as a model used
for either a classification or regression task, based on examples from a training dataset. The gradient
descent process is referred to as stochastic as the process of updating the trainable parameters is
performed using batches, also known as mini-batches, of the training dataset. Batches of data are
used in place of ‘full-batch’ gradient descent - using the entire training dataset per batch - and fully-
stochastic gradient descent - using single samples per batch - for two reasons: the first being that
calculating the gradients using full-batch gradient descent is typically infeasible due to both memory
restrictions and long computation times; and the second being that updating model parameters based
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on fully-stochastic gradient descent both promotes overfitting of the model to those samples, thus
making it harder for the training process to produce a generalised model, and negates the advantage
of vectorisation decreasing computation times.

The difference between full-batch and mini-batch gradient descent is illustrated in Figure 2.12a.
One important point to note with regards to the calculated gradient is that it points ‘uphill’, therefore
the negative of the gradient is used to update the parameters in order to advance towards a local
minimum of the loss function. As the complete parameter space can involve millions of parameters
that require optimising for a given task, updating the parameters each iteration by the complete
calculated gradient is likely to cause drastic changes to the model, thus making it extremely difficult
to train. The solution then is to instead update the parameters by only a fraction of the calculated
gradients - this fraction is given the names of step size or learning rate. This can cause the parameters
to converge to an optimal local minima, depending on the magnitude of the learning rate, as illustrated
in Figure 2.12b.

(a) Difference between full-batch and mini-batch
gradient descent for a contour plot of an arbitrary
loss function. Full-batch is akin to a slow, steady
shift to a local minima (red dot), whereas mini-batch
is akin to a faster, albeit noisier approach.

(b) Effect of step size, also called learning rate, on the
optimisation of a single arbitrary weight parameter.
Larger step sizes may be unable to converge, or even
diverge, whilst smaller step sizes might converge to
a sub-optimal local minima.

Figure 2.12: Illustrations of two main variables used in updating parameters of a neural network, which
is trained using SGD with backpropagation: a batch size, and b step size.

The process of performing SGD with backpropagation is repeated every epoch. An epoch is defined
as the number of times a learning algorithm will update the parameters of a model based on complete
passes of the entire training dataset. As the training dataset is split into batches, each epoch can

31



be further divided into steps, where one step processes a single batch. Determining the appropriate
number of epochs to train a model for is a challenging process due to the large number of trainable
parameters, and so it is typical for a stopping criterion to be specified in a number of ways, such as: an
arbitrary number of epochs; a threshold for the loss function; or an ‘early stopping’ procedure, which
stops a network from training once overfitting occurs to the training dataset, and restores the model
parameters back to the previous best epoch based on validation data losses.

Now, considering the definitions of gradient descent and backpropagation, it is useful to introduce
the concepts of ‘forwards passes’ and ‘backwards passes’ that appear as common nomenclature in liter-
ature [155]. In a forwards pass, the nodes within each layer of a neural network have values determined
by the inputs received from earlier layers, based on the current input data, model parameters, and
activation functions, whereas a backwards pass propagates the calculated derivatives of each trainable
parameter, with respect to the loss function, from the latest layers through to the earliest.

2.3.2 Hyperparameters and Optimisation Tools

As mentioned so far in Section 2.3, model hyperparameters are adjusted based on a mixture of dataset
knowledge, and an evaluation how a model performances on a validation dataset. Where parameters
are defined as values derived from training - such as the weights and biases within each trainable
layer - hyperparameters are defined as variables that are set prior to training, which typically remain
unaltered as the model learns, and whose values dictate the quality and computational speed of the
training task. A number of hyperparameters have already been mentioned: learning rate, batch size,
pooling, activation functions, and optimisation algorithms - the last two of which will be expanded
upon further. Defined below are additional hyperparameters relevant to this thesis, which can be used
to optimise and regularise (i.e. prevent the overfitting of) model performance.

Loss Functions. Also called objective functions, these are the metrics used to evaluate the perform-
ance of a model in the ability to: correctly predict the class label for a given sample in a classification
task, accurately estimate a quantity in the case of regression, or some other relevant metric in the case
of unsupervised learning. Two examples of loss functions used in regression tasks are: MSE, which
penalises errors in model estimations by the square of the difference between true and predicted values,
using the equation

L =
1

N

N∑
i=1

(yi − ỹi)
2, (2.11)

where yi and ỹi are the true and predicted labels for a sample i, respectively, averaged over N samples;
and mean squared logarithmic error (MSLE), which penalises errors in model estimations by a per-
centual difference, hence this loss function may be preferable when small differences between smaller
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quantities are needed to be to equal in influence as large differences between larger quantities. MSLE
is given by the equation

L =
1

N

N∑
i=1

(log(yi + 1)− log(ỹi + 1))2. (2.12)

Other variants of loss functions for regression may incorporate the square root of the aforementioned
loss functions, such as root mean squared error (RMSE), which may be used as it is easier to interpret
when evaluating a model, for example if the quantity estimated is distance in metres, then a loss value
produced by RMSE will have units of metres, whereas MSE will have units of metres squared.

For binary classification tasks the binary cross-entropy (BCE) loss function is used, which compares
the predicted class labels as probabilities to the true class labels, and is given by the equation

L = − 1

N

N∑
i=1

[
yilog(q(ỹi)) + (1− yi) log(1− q(ỹi))

]
, (2.13)

where yi are the true class labels, and ỹi are the predicted class labels that are converted to estim-
ated probabilities, q(ỹi). For data containing multiple classes, a more general form of BCE is used:
categorical cross-entropy, which is given by the equation

L = − 1

N

N∑
i=1

K∑
j=1

yijlog(q(ỹij)), (2.14)

where i indexes each of the N samples, and j indexes each of the K classes.

Optimisation Algorithms. As mentioned in Subsection 2.3.1, an optimisation algorithm is used
to update the trainable parameters of a model during the training process, with a typical goal of
minimising an objective function such as MSE loss. One addition to standard SGD is ‘Momentum’,
which updates model parameters by computing the exponentially weighted averages of all previous
gradients, rather than solely the current epoch. This optimisation algorithm generally decreases the
number of epochs required for convergence to a local minimum [155]. The ‘SGD with Momentum’
algorithm uses an additional hyperparameter βν, which controls the weighting of previous gradients,
as given by the equations

νdw := βννdw + (1− βν)dw (2.15)

w := w − ανdw, (2.16)

where νdw on both sides of Equation 2.15 are the values of the current and previous weighted gradients
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respectively (initialised to zero), dw is the derivative of the weight parameter, and α is the learning rate.
Default SGD with Momentum uses βν ≥ 0.9 [156]. In contrast, standard SGD can be seen as a special
case of SGD with Momentum where βν = 0. The example given is for a single weight parameter in an
arbitrary layer, which can be easily vectorised to act on all weights within a single layer by broadcasting
the value of βν. The equations for updating the bias parameters can be trivially obtained by replacing
the weight variables with bias variables in Equations 2.15 and 2.16. As mentioned, νdw is initialised
to zero, this incurs a bias (not to be confused with a bias parameter) that reduces the magnitude of
the gradient updates for the earliest epochs, hence a bias correction term can also be introduced to
Equation 2.15 that scales each gradient update using the equation

νcorr
dw :=

[
βνν

corr
dw + (1− βν)dw

]
1

1− βt
ν

, (2.17)

where νcorr
dw on both sides of the equation are the corrected forms of νdw for the current and previous

epoch, respectively, and t is the current epoch. This removes the aforementioned bias to the gradient,
whilst having a negligible effect in later epochs as the βt

ν term tends towards zero.
Another optimisation algorithm used to increase the speed of convergence is the root mean square

propagation (RMSprop) algorithm [157, 158]. Similarly to SGD with Momentum, these gradient
updates use exponentially weighted averages of gradient values from previous epochs, as described by

Sdw := βSSdw + (1− βS)dw
2 (2.18)

w := w − α
dw√

Sdw + ϵ
, (2.19)

where Sdw and βS are equivalent to νdw and βν, respectively, dw2 is the element-wise square of the
weight derivative, and ϵ is a term used for numerical stability with a typical value of ϵ = 10−8. The
bias parameter equations can be trivially obtained as before. The benefit of squaring the derivative
of the parameter is that larger oscillations in the values over each epoch are more greatly dampened
- this culminates in a steadier path towards a local minimum during gradient descent such as what
is illustrated in Figure 2.12a - which is due to the square root term in Equation 2.19. The faster
convergence caused by the dampening effect also allows for larger learning rates to be used.

One final optimisation algorithm that is relevant to this thesis is the Adam optimisation algorithm
[159], which combines the benefits of SGD with Momentum and RMSprop, as described by

w := w − α
νcorr
dw√

Scorrdw + ϵ
, (2.20)

where νcorr
dw is the bias corrected form of the weighted gradients from SGD with Momentum, given in

Equation 2.17, and Scorrdw is the bias corrected form of the weighted gradients from RMSprop, which can
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be similarly derived by a comparison of Equations 2.17 and 2.18. The bias parameter update equation
can be trivially obtained as before. The default values for the four hyperparameters in Adam used in
the original paper [159] are α = 0.001, βν = 0.9, βS = 0.999, and ϵ = 10−8. It should be noted that
the βν and βS parameters are termed β1 and β2 within the following chapters of this thesis.

Activation Functions. During the forwards pass in the training of a neural network, activation
functions are almost invariably used within each layer. As shown in Equation 2.3, an activation
function, denoted as σ, is used to scale the raw output of a node to a point between a finite range of
values. Another purpose of an activation function is to introduce non-linearity into the neural network,
which allows a model to learn complex, non-linear features about the target dataset, as without this
aspect a neural network will degenerate to a linear function regardless of the number of layers. This
operation prevents parameters from becoming too large, which makes neural networks harder to train
or even diverge. The choice of which activation function to use will depend on the layer that it is
applied to, as well as dataset knowledge. For example, a common activation function applied to the
output layer of a neural network trained as a binary classifier is the sigmoid function,

σ(z) =
1

1 + e−z
, (2.21)

where z is the raw node value of the output layer, also called a ‘logit’, which is defined as the unnorm-
alised prediction generated by a classification model. A more generalised form of the sigmoid function
is the softmax function, which is used for multi-class classification, and is given by the equation

σ(z)i =
e−zi∑K
j=1 e

−zj
, (2.22)

where zi is the logit for an arbitrary class label, i, in a multi-class scenario, and the zj term on the
denominator is the sum of all K logits, with components that sum to one. An alternate version of the
sigmoid function is the tanh function; where the sigmoid is an appropriate activation function for the
output layer of a binary classification model - as class labels are either zero or one, therefore projecting
logits between the same range makes comparisons simpler - the tanh function is better suited for hidden
layers, due to the function scaling the raw output values of each node between the range [-1, 1]. This
causes a model to learn parameters with a zero-mean, which is a desirable trait for standardised data.
The tanh function is defined as

σ(z) =
ez − e−z

ez + e−z
. (2.23)

One issue with the sigmoid and tanh functions is that, for values with larger magnitudes, the
gradients of both functions tend towards zero, as seen in Figure 2.13, this is known as the vanishing
gradient problem, and it has the effect of slowing down or even halting training. To solve this problem
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and speed up training time - in terms of the required number of epochs to train a model - the rectified
linear unit (ReLU) activation function can be used,

σ(z) = max(0, z), (2.24)

which has a gradient of one for all values of z greater than zero. Although the derivative when z is less
than zero is undefined, it is unlikely for a node to meet that criteria - coding libraries that implement
the ReLU activation function typically have fail-safes to use a substitute derivative of zero if this
situation occurs. Training a model with rectified functions produces parameters with increased sparsity
compared to non-rectified functions, which is suggested to improve model performance [160, 161]. The
ReLU activation function can be modified to allow for small negative values in the output activation,
which prevents the case of zero-gradients from slowing down training in layers with ReLU activation
functions - a situation known as the ‘dying ReLU problem’ - this variant is called the Leaky ReLU
activation function [161, 162], and is shown in Figure 2.14. Leaky ReLU introduces the hyperparameter
α, which controls the gradient of the function when z is less than zero, as defined by the equation:

σ(z) =

αz for z < 0

z for z ≥ 0.
(2.25)

Figure 2.13: The sigmoid and tanh activation functions.
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Figure 2.14: The ReLU and Leaky ReLU activation functions.

Normalisation Layers. DNNs suffer from the problem of ‘internal covariate shift’ during training,
in which changes in the distribution of inputs in earlier layers affects the distribution of inputs in later
layers. This instability, caused by the sensitivity of a neural network to the random initialisation of
model parameters, requires the use of lower learning rates to train a model. A normalisation technique
called batch normalisation was developed [163] that is capable of mitigating this problem, which greatly
reduces the number of epochs required to train a neural network whilst simultaneously regularising
layer activations [164, 165, 166]. Batch normalisation utilises two parameters: γ and β, which are used
to scale and shift the input distribution in the layer it is applied to, respectively, as shown:

zinorm =
zi − µ√
σ2 + ϵ

(2.26)

z̃i = γzinorm + β, (2.27)

where z̃i is the scaled and shifted version of the standardised input, zinorm, for the ith unit in an arbitrary
layer; µ and σ2 are the mean and variance of the input data, zi, for the current mini-batch; and ϵ is
a constant used for numerical stability commonly initialised to 0.001. The γ and β parameters are
learnable, meaning that they are updated during the backwards pass of each training step.

In much the same way as normalising input data helps to remove biases from different data ranges,
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introducing normalisation to each hidden layer improves the efficiency of training parameters in the
succeeding layers. Batch normalisation, as mentioned, is the most common normalisation layer applied
to neural networks, which normalises each mini-batch along the batch axis of the data array for
whichever layer it is applied to (this technique is visualised in Figure 2.15). Two famous model
architectures that make use of batch normalisation to achieve state-of-the-art results are the ResNet
[167] and Inception-v3 [164] models. Although batch normalisation can be applied either before or
after the activation function, it is standard practise to apply it beforehand. In addition, similar to
normalising the input data during preprocessing, normalisation layers use the learned statistics, γ

and β, as well as an exponentially weighted average of the mean and variance of the training data to
normalise input data samples from the validation and testing datasets.

Alternative normalisation techniques have been developed that improve model performance over
batch normalisation for specific tasks. One example is group normalisation [168], which counteracts
errors in batch normalisation for small batch sizes by operating on partitions of data typically along the
channel axis, and is more suitable to computer vision tasks where small batches may be required due
to memory limitations. Another example is instance normalisation [169, 170], which normalises data
samples, or instances, independently. This prevents instance-specific statistics within a mini-batch
from affecting the contrast information of other instances, whilst maintaining the effects of batch
normalisation. Instance normalisation is suitable for style transfer tasks [171], whereby the style of
one image (such as a piece of art) is blended with the contents of another. These techniques are shown
in Figure 2.15.

Figure 2.15: Three example normalisation methods applied to a rank-4 tensor. Each method is applied
along the axis of the highlighted region, where N is the batch axis, C is the channels axis, and (H, W)
are the combined features axes. Figure adapted from Yuxin Wu and Kaiming He [168].

Dropout. Overfitting is a common issue in DNNs, which would in the past be circumvented through
an ensemble of large networks with different architectures. Considering the long training times to
make use of such a system, a computationally inexpensive technique called dropout was developed to
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regularise models [172]. During a training step, for whichever layers dropout is applied to, a fraction
- known as the dropout rate - of nodes along with their input and output connections are randomly
ignored, or ‘dropped’. Layer outputs are then scaled by dividing each activation by this hyperparameter
in order to maintain the expected output distribution. This has the effect during a backwards pass of
updating a layer using data obtained from a different ‘perspective’ of that layer during the forwards
pass - thus mimicking the effect of training a larger ensemble. During validation and testing, the
dropout layers are deactivated, allowing the whole model to be evaluated.

(a) Standard MLP. (b) MLP after applying dropout.

Figure 2.16: Dropout applied to an arbitrary ANN. a, neural network with two hidden layers; b,
network with dropped applied with a rate of 0.5, shown as crossed units. Figure taken from Srivastava
et al. [172].

Weight Decay. Another tool to prevent overfitting due to high variance parameters is weight de-
cay, which adds a penalty term applied to the weight parameter update step of backpropagation by
modifying the loss function. The common type of weight decay is L2-regularisation:

J(W,b) =
1

N

N∑
i=1

L(ỹi, yi) +
λ

2N
||W||2F, (2.28)

where J(W, b) is an arbitrary global loss function over all trainable parameters; L(ỹi, yi) is the loss
function for each of the N training samples; λ is the regularisation factor, which is a tunable hyper-
parameter; and || · ||2F is the Frobenius norm, which is the squared Euclidean norm of the weight matrix
W. Whilst an additional bias regularisation term is similarly possible, it is rarely implemented as there
are abundantly more weight parameters that are sufficient enough to impact the regularisation of the
model. Another weight decay method is L1-regularisation, although it is less commonly used, this
simply replaces the Frobenius norm of the weight matrix with the L1-norm (|| · ||1), which produces
values for the weights that are more sparse [173, 174]. The derivative of Equation 2.28 is simply the
derivative of the loss function - using SGD with Momentum as an example (see Equation 2.15) - plus
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the derivative of the L2-regularisation term, and is defined as

νdw := (arb. backprop.) +
λ

N
Wn, (2.29)

where N is the number of training samples in the current batch, and Wn is the weight matrix for
the current layer, n. The corresponding weight update equation used during gradient descent with
backpropagation - using the same SGD with Momentum example - is identical to Equation 2.16. An
example of the effect of weight decay as a regularisation tool is shown in Figure 2.17, which showcases
the training and validation loss curves of two near-identical models - differentiated only by one model
making use of L2-regularisation on all hidden layers - which is trained on the MNIST handwritten
digits dataset [175] for 50 epochs using a sparse (i.e. a binary label vector with only a single ‘1’)
categorical cross-entropy loss function.
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(a) Categorical cross-entropy loss curves. Overfitting to the training dataset (blue) causes the validation loss
to slowly diverge, in contrast L2-regularisation (orange) has produced a robust, generalised model.

(b) Accuracy curves. Overfitting to the training dataset (blue) causes the validation accuracy to stagnate,
whereas the model using L2-regularisation (orange) achieves similar dataset accuracies throughout training.

Figure 2.17: Comparisons of a loss and b accuracy metrics between two 2-hidden layer ANNs trained
to classify handwritten digits from the MNIST database [175]. One model is trained with L2-
regularisation applied to both hidden layers with a regularisation factor of 0.01 (orange), and the
other features no regularisation (blue). All other hyperparameters are identical. The model with
L2-regularisation has removed the overfitting problem, however general performance has decreased,
therefore the model parameters and hyperparameters would at this stage require tuning in order to
improve classification accuracy.
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Gradient Clipping. As previously mentioned in the activation function segment, deep learning
models are liable to suffering from the vanishing gradient problem. Another potential issue can arise
called the exploding gradient problem, which presents a similar-yet-distinct issue. Where the van-
ishing gradient problem involves a model becoming unable to converge to a local optimum due to
decreasingly smaller gradients, the exploding gradient problem describes the situation where a model
becomes unstable, in which parameters continually increase in magnitude, diverging to the point where
each training step produces a model with vastly different results to the one before it. Several of the
hyperparameter and optimisation tools previously described aid in preventing exploding gradients - as
well as vanishing gradients - from forming: the appropriate initialisation of model weights and biases
[151, 152, 176]; non-saturating activation functions such as ReLU [160] and Leaky ReLU [161, 162];
and normalisation techniques such as batch normalisation [163, 165, 166].

Another technique used to mitigate exploding gradients is gradient clipping, in which the gradients
calculated during the backwards pass are prevented from exceeding some threshold by clipping outlier
gradient vectors that lie beyond some threshold, before being passed to the optimiser algorithm. The
basic form of gradient clipping involves setting two hyperparameters as the minimum and maximum
allowed values that a gradient can take - this method is commonly called ‘clipping by value’ or ‘clipval’.
However, this method can cause the direction of a clipped gradient to change. For example, if a
two-dimensional parameter space produces gradients [0.5, 10.0] with direction 87◦, and the threshold
values are set as [-1.0, 1.0], then the clipped gradients have the values [0.5, 1.0] with direction 63◦.
The alternative, used to preserve the gradient direction, is clipping the gradient by the maximum
L2-norm value of the gradient vector, scaled by some hyperparameter coefficient - this technique is
given the name ‘clipnorm’ [177]. Using the previous example, if the clipnorm value is set to 1.0, then
the returned gradients would be [0.0499, 0.9988] with direction 87◦, hence the gradient direction is
preserved.
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Chapter 3:

Analysing Metal-Molecule Interactions on the
Atomic-Scale

Author’s note: This chapter encapsulates and expands upon previously published research [1], which
covers the design and evaluation of a novel machine learning and image processing pipeline for the
chemometric analysis of SERS data in collaboration with members of the Baumberg research group.
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The profuseness of catalytic processes, a drive for efficiency, and the minimisation of precious
resource utilisation has developed a need for resolving molecular interactions at heterogeneous

interfaces at an atomic level [92, 178]. However, few methods offer this level of resolution, and none
currently allow for operando studies. Promising techniques are arising with sub-molecular sensitivity
but heavily rely on indirect interpretation of spectroscopic data, making such processes prohibitively
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time consuming [73, 179, 180]. To this end, bespoke and robust analysis methods are required that can
digest large datasets to build up a comprehensive understanding of the atomic-scale processes involved.

Fundamentally in conjugated molecular systems, which are systems of connected p-orbitals with
delocalised electrons, resonance structures exist. These are sets of Lewis structures - diagrams of a
molecule showing the bonds between constituent atoms, alongside any valence electrons - that are
incomplete representations of a molecule that contribute to describing how the molecule is bonded.
The complete representation of a molecule is the average of all resonance structures [181]. One example
of a resonance structure is Benzene, which has two Lewis structures that represent both forms of the
molecule (see Figure 3.1). These forms differ in the arrangement of three sets of double bonds. The
energy between the double bonds for each resonance structure is nearly identical, so it resides in both
states with equal probability.

Figure 3.1: Left and middle, resonance structures of Benzene; right, the averaged structure.

If an electron donating or withdrawing group is added to the system, the charge density across the
molecule will change, as will the possible resonance structures. If one of these resonance structures
has a lower energy than the other - assuming two for simplicity - then the molecule will primarily
exist in the lower energy state, switching to the other with some smaller probability. A time-averaged
view of this resonance molecule causes some bonds to become stronger than others. With regards to
SERS, the same situation can arise when resonance molecules form molecular bonds with atomic-scale
features such as under-coordinated adatoms. These bonds alter the electron density of the system,
forming new possible resonance structures, which cause the same asymmetry in bond strength.

For the SERS experiment carried out by the Baumberg research group at the University of Cam-
bridge, a NPoM geometry was chosen for high optical field enhancements and high reproducibility,
whilst allowing for a large number of structures to be probed [145]. A SAM of an analyte spacer
molecule, biphenyl-4-thiol (BPT), is formed on a gold surface film [145]. Gold nanoparticles are then
deposited onto the SAM surface, which are the regions where both nanocavity and picocavity sites can
form (see Figure 3.2). Due to the asymmetry in bond strengths caused by bonds formed between BPT
and gold, a different set of vibrational modes can be excited from those in the standard resonance
structures of BPT under a homogeneous field. Where these modes are normally either strictly Raman-
active or IR-active [36, 182], the existence of an inhomogeneous field caused by a SERS nanocavity
can excite a different set of modes, including IR modes [72, 183, 184].
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Figure 3.2: NPoM geometry of a single nanoparticle site. From bottom-to-top: the gold film, SAM of
BPT, and gold nanoparticle form a device from which nanocavities and picocavities can occur. The
inset shows the formation of the SAM, in which the thiol bonds at an angle to the gold film.

A transient picocavity event, which forms during the irradiation of the NPoM geometry and can last
up to several seconds, corresponds to a gold adatom appearing from a facet on either the nanoparticle
or substrate surface - an illustration of which is shown in Figure 3.3. Due to these fluctuations occurring
on the atomic-scale, new sets of Raman lines tend to be observed, as the strong field gradients allow for
IR modes to be excited [75, 148, 185]. The specific modes are based on a combination of parameters
including the orientation of the molecule within the NPoM geometry, and the strength of the local
electric field. Picocavities produce peaks with a higher general intensity than that of nanocavity spectra
[186], but can also alter the relative intensities of those peaks, due to atoms on the molecule that are
in close proximity to the inhomogeneous field being affected more intensely than those that are further
away [187]. Interactions between the molecular pi-system and the low-coordinated gold adatom, which
typically drifts around the nanoparticle or substrate surface, cause changes to the molecular structure
of the BPT analyte. This has the effect of continually varying the positions of Raman lines from their
otherwise stable frequencies [73, 188].
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Figure 3.3: Left, illustration of the constant field in a nanocavity; right, illustration of the strong local
field gradient in a picocavity due to the existence of an adatom on either the nanoparticle or substrate
surface. Different vibrational modes of the spacer molecule (not shown) can be excited based on a
complex of possible geometric arrangements of the gradient field in relation to the molecule.

Knowledge of which vibrational modes belong to a particular picocavity event, as evidenced by
the transient SERS spectra that are produced from it, can be used to determine how that picocavity
interacts with the electron density of BPT, which of its bonds are affected the most by it, and the
geometric position of the picocavity field [187]. The magnitude and polarity of how transient peaks are
correlated, in terms of the degrees of Raman shift with respect to one another due to adatom drifting,
could also be used to extract the strength of the picocavity interactions between a gold adatom and BPT
(this aspect of picocavity analysis is covered in the following chapter). Obtaining and subsequently
characterising these features of the picocavity interactions is beneficial, as low-coordinated gold has
applications in heterogeneous catalysis, which can be used to experimentally demonstrate how such
picocavity interactions promote specific chemical reactions [92, 93, 94, 178, 189, 190, 191]. Other
applications that are facilitated by this furthered understanding include molecular electronics [87],
memristive switching [88], and ultra-sensitive sensing [73, 89].

In collaboration with members of the Baumberg research group, based on their knowledge of
the chemical systems within this chapter, density functional theory (DFT) is utilised, which is a
commonplace quantum mechanical modelling method used for studying the electronic structure of
molecular systems. Using a DFT model, the vibrational modes of BPT can be analysed by simulating
how an arbitrary homogeneous electric field interacts with the molecule. As the picocavity field is
produced by a single gold adatom it will have a gradient effect on the BPT molecule, therefore DFT
alone is an unsuitable method for studying the interactions of this inhomogeneous field. Thus the
vibrational modes calculated by the DFT are used with a dipole approximation to model the strongly
inhomogeneous field produced by the picocavity - based on a specified orientation of the molecule and
amplitude of the field - to calculate the Raman scattering cross-section of the molecule, and retrieve
the predicted Raman lines at the corresponding amplitudes and positions [187]. A shortcoming of
the method is that, in order to assemble a full picture of SERS interactions with a sample molecule,
it requires the individual simulation and analysis of each possible orientation of the molecule and
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the varied local electric field strengths. This becomes an impractical method when considering the
wide range of possible interactions between the metal protrusions and the analyte molecule, making
repetitions rare and signals difficult to interpret without large amounts of data to verify predictions
made by the DFT.

Through pattern recognition, machine learning is used as a part of a data analysis pipeline to extract
salient features from unlabelled SERS data - thus inherently containing inhomogeneous picocavity
fields. These features may arise from chemical changes in the analyte molecule, or from morphological
changes in the metal surface [70, 75, 180, 192, 193, 194]. Such features are particularly prevalent in the
SERS spectra of few or single molecules. These are traditionally difficult to study due to their transient
nature, but offer in return a unique opportunity to elucidate the behaviour of molecules on an atomic
length-scale [73]. Common picocavity events were extracted, hereby referred to as Configurations.
This information can be used to compare to known vibrational modes of BPT to identify those that
are excited by these picocavities [73]. Additional insight can be gained through extracting information
such as the geometric positions of picocavity fields, and which Configurations occur most often. This
would suggest an energetically favourable arrangement for the molecule when subjected to interactions
with a plasmonic field, which could aid in future catalytic design.

3.1 Data Processing and Machine Learning Model Design

The workflow model that is used to analyse the BPT SERS spectra involves multiple sequential steps
that can be broken down into machine learning and image processing stages, and a subsequent com-
parison to DFT simulations. Figure 3.4 summarises the machine learning processing stages that are
described within this section.

Figure 3.4: Flowchart showcasing part of the data analysis pipeline focused on the machine learning
processing of the SERS data. The explanations of the input (blue) and the data processing steps
(yellow), which each form a different stage of the methodology, will be expanded upon in the respective
subsections. The output (green) will be expanded upon in Section 3.2, describing the remaining stages
pertaining to image processing, clustering, and comparisons to DFT simulations.

Chapters 3 and 4 utilise a complex data analysis pipeline. During the research and development
process, several terms were defined to succinctly define and classify various concepts and data types
produced at different processing stages. These terms are summarised in table 3.1.
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Table 3.1: Descriptions of terminology used throughout Chapters 3 and 4.

Term Description
Spectrum A SERS Raman spectrum. These constitute the main input

data for the machine learning analysis pipeline.
Scan A set (or subset) of time-series SERS spectra produced from a

single NPoM site, irrespective of the presence of picocavities.
Track A group of wavenumber positions marking a single time-series

picocavity peak, which has been ‘tracked’ over its lifetime.
Event A collection of Tracks that belong to the same instance of a

physical picocavity event. An ‘Event’ could more rigorously
be described as an ‘Algorithmic Event’ to better distinguish
from the physical counterpart it is trying to encapsulate, but
the former is used for the sake of brevity.

Configuration A clustered set of Events that aims to solely contain picocavity
spectra that represent the same physical picocavity event.

3.1.1 Data Acquisition and Preprocessing

To keep the number of confounding factors to a minimum, BPT was selected as the SAM analyte for
the NPoM geometry. The molecule has a strong Raman cross-section as a result of a vertical dipole
that can be induced along the two aromatic phenyl rings [195] (see Figure 3.5). It is also inert, with
few conformational isomers, meaning that BPT is a molecule with a rigid structure that can provide a
stable SERS signal over time on the order of minutes, with occasional transient events which form on
the order of seconds. These advantageous qualities allow the behaviour of light-induced interactions
with gold and BPT to be studied in detail, due to the limited number of configurations that BPT can
take compared to other, larger tracer molecules. Once characterised, the analysis of BPT could then
be applied to more complex structures, such as catalysts [196].

Figure 3.5: Structural formula of BPT, featuring two aromatic phenyl rings, one of which is bonded
to the sulfur H-bond that forms the thiol group. It is the sulfur that forms bonds with gold adatoms
to produce the observed SERS signals.

The experiment used a custom-built Raman microscope to capture the BPT SERS spectra [144],
featuring an Olympus BX51 microscope, which was coupled to an Andor Shamrock 303i dispersive
spectrometer, with a 600 lines/mm grating and an Andor Newton 970 BVF electron-multiplying CCD.
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A schematic is provided in Figure 3.6. An in-house particle finding algorithm was used to locate each
picocavity device in the NPoM geometry, which utilised threshold detections on dark-field scattering
images to maintain alignment with each device [188]. A 632.8 nm HeNe laser was used at three different
laser powers: 447 µW, 564 µW, and 709 µW. The spectra were collected using an Olympus NA (0.8)
100x darkfield objective. The integration time for each SERS measurement was approximately 35ms;
the duration of each measured SERS spectrum is here referred to as one time step.

Figure 3.6: Schematic for the SERS setup, courtesy of Felix Benz, et al. [144]. The inset figures show
typical scattering (top) and SERS spectra (bottom) produced by a single picocavity event.

Scans were produced for the BPT dataset, which are sequential time-series spectra each consisting
of 1000 time steps. The signal is captured with a wavenumber range of -1606 to 1611 cm−1, with a
wavenumber resolution linearly increasing from 2.5 cm−1 in the anti-Stokes region, to 1.6 cm−1 in the
Stokes region, as a result of the dispersive detector producing a non-uniform resolution. There were 416
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scans measured at a laser power of 447 µW, 500 scans at 564 µW, and 499 scans at 709 µW - totaling
1415 scans measured, or 1415000 spectra. Scans that were found to contain any number of picocavity
events were termed True scans, whereas scans that were not found to contain any picocavities were
termed False scans. The inspection and labelling of each scan was carried out by a collaborator in the
Baumberg research group. In total, there were 416 scans found to contain picocavities, and 999 scans
were found to only contain stable nanocavity signals.

The dataset was preprocessed before use by a neural network. Firstly, all spectra had an average
background of 300 counts (CCD dark current) that was subtracted. They were then interpolated to
a wavenumber range of 268 cm−1 to 1611 cm−1, at a constant wavenumber resolution of 2.625 cm−1,
using a cubic spline interpolation. This interpolation produced spectra with 512 bins, which excluded
the wavenumber range that was filtered out using a notch filter, as well as the anti-Stokes region from
the dataset. The anti-Stokes region constituted redundant information, as the spatial positions of the
Stokes and anti-Stokes peaks are mirrored, and the temperature information which could be derived
from the ratio of the intensities of the mirrored peaks [197] is not under scrutiny. This interpolation
aligns the wavenumbers of all spectra within the dataset, regardless of laser power, and alleviates a
bias incurred by having a non-uniform resolution wavenumber-space [198]. The resulting interpolated
spectra were then linearly normalised between the range [0, 1]. The purpose of normalising a dataset
is to equalise the contribution of each sample in the training of a neural network, as a sample with
larger values would intrinsically influence how a neural network would train to a greater degree than
one with smaller values - which is the case for spectra taken with a higher laser power, as shown in
Table 3.2.

Table 3.2: Change in the mean and standard deviation of values (counts) between spectra as a result
of preprocessing for each laser power. The values stated both before (‘Raw’ column) and after (‘Nor-
malised’ column) normalisation were exclusively taken from the interpolated range.

Power (µW) Raw Normalised
Mean Std Mean Std

447 6.35 2.96 0.26 0.07
564 7.94 3.51 0.27 0.08
709 9.88 4.28 0.26 0.08

The training dataset had random uniform noise added independently at each epoch to increase the
variance of the samples, which has the effect of producing a more generalised network with smaller
weights, due to it being more challenging to memorise the training samples [199]. As the spectrometer
used a dispersive detector, the noise was added to each bin in a spectrum proportional to 5% of
the magnitude at each wavenumber. This is because the noise at each data point in a dispersive
system scales proportionally to the square root of the respective signal and is independent of other
wavenumbers.
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3.1.2 Stable State Removal

The BPT SERS spectra contain a noise background, alongside sets of peaks produced independently
by the nanocavity and picocavity fields, which are respectively termed stable and stochastic transient
SERS events. As noted in Subsection 3.1.1, BPT produces stable SERS signals, which result in
nanocavity peaks appearing at consistent wavenumbers with pseudo-stable peak ratios and background
intensities. These combined aspects are termed the stable state of the BPT SERS spectra. Leveraging
this consistency, by removing the stable state from each spectrum, what remains are the features of
interest: the transient peaks, produced by picocavity devices, at the isolated intensities. Isolating
transient peaks is an important step for building a representative dataset used in subsequent analysis
stages, as without doing so brings a risk of including peaks associated with nanocavity devices, or
potentially missing several transient peaks that share wavenumbers with other peaks belonging to the
stable state.

To remove the stable state from each spectrum, a neural network was trained to readily adapt to any
variances in the stable state to achieve robust isolation of the transient peaks and any corresponding
event characteristics for further analysis. A one-dimensional CAE was trained for this purpose, which
was tasked with reconstructing the stable state of each input spectrum. This was achieved by creating
training and validation datasets from scans that only contained stable states, and reserving all scans
with at least one picocavity event for model inference in the testing dataset.

The strength of an autoencoder is in the ability of the architecture to learn salient features of
an unlabelled dataset, which also have the property of shift-equivariance [153] due to the addition of
convolutional layers. Variations exist such as a denoising autoencoder, which learn useful properties
for reconstructing data with noise removed. However, in this scenario the entirety of the training data
may be considered as noise, and so a standard autoencoder architecture is trained to reconstruct the
input. Designing an autoencoder, and partitioning each dataset in this way, allows the stable state of
True scans to be subtracted leaving behind residual intensities in the form of transient peaks. With
this routine, the subtraction of a stable state from a False scan would be empty - provided the stable
state was perfectly reconstructed. These subtracted spectra are termed picocavity spectra, although
subsequent work on peak detections utilises picocavity scans due to the nature of the data, which
partitions samples into batches exclusively containing each measured SERS site in a time-series.

3.1.3 CAE Model Architecture

The CAE used in this work contains 11 layers, including the input and output layers. There are four
convolutional blocks in the encoder, followed by a 32-unit FC embedding layer, which was used as
an input for the decoder. The model depth and size for each layer was determined through a grid
search optimisation, minimising the MSE loss. The decoder mirrors the architecture of the encoder,
with one FC layer whose output is reshaped to fit the next convolutional layer, and four convolutional
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blocks that upscale the data to reconstruct the input spectra. The output of each layer was normalised
using group normalisation [168]. This was followed by a Leaky ReLU activation function with slope
coefficient, α, of 0.3. A maxpooling layer with a stride and kernel size of two was used as the final
layer in each convolutional block in the encoder, and an upscaling layer with a factor of two was used
as the first layer in each convolutional block in the decoder. Figure 3.7 shows a block diagram of the
CAE.

The model was trained for 2500 epochs, with a static learning rate of 0.001, and a batch size of 500
spectra. This splitting of each scan into equal halves was necessitated by memory limitations in the
hardware used to train the model. The training dataset consisted of 749 False scans, the validation
dataset therefore contained the remaining 250 False scans, and the testing dataset contained all 416
True scans. Note that each scan contains 1000 spectra, which are the individual samples used to
train the CAE, resulting in a total of 749000 training samples. This distribution of scans produced an
approximate 5:2:3 dataset split. The MSE loss function was used to evaluate the difference between the
input and reconstructed spectra, and the Adam optimisation algorithm (using parameters β1 = 0.9,
β2 = 0.999, and ϵ = 10−7) was implemented to adjust the model parameters during training. Each
layer was regularised using L2 weight decay with a regularisation factor, γ, of 0.1. Clipnorm [177] was
used to clip the calculated gradients to the maximum L2-norm value for each update step, to avoid
the problem of exploding gradients.

Figure 3.7: Block diagram of the CAE. The dimension labels on each convolutional layer are in the
format (#Features, #Filters), which represent the output of each block. Note, the batch size dimension
is equal on all layers and is thus omitted. The k-values represent the size of each convolutional kernel,
which use a unitary stride. The convolutional and maxpooling layers both use zero padding to capture
the entire receptive field.

3.2 Peak Detection, Track Isolation, and Picocavity Analysis

Following the use of the CAE to reconstruct the BPT stable states of picocavity spectra in Section 3.1,
subsequent image processing and clustering steps are required to isolate time-series picocavity peaks,
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and compare the results to data simulated by the DFT. These remaining processing and analysis steps
are covered within this section, as outlined by Figure 3.8.

Figure 3.8: Continuation of the data analysis pipeline seen in Figure 3.4. An explanation of the data
processing steps (yellow) and the resulting output (blue) will be expanded upon in the respective
subsections. An evaluation of the pipeline is provided in the following section, but also a breakaway
at the ‘Event Formation’ stage expands into the following chapter, which utilises temporal SERS
information to analyse correlated peaks to extend the functionality of the data analysis pipeline.

3.2.1 Peak Detection

The picocavity scans, produced by subtracting the reconstructed stable states from the input scans,
contained noise that was not captured by the model, which was disruptive to isolating each transient
peak. To remove this, a series of signal processing steps were applied. Firstly, both the input and
reconstructed scans were smoothed using an SG filter along the wavenumber axis, with a filter window
length of 7 px and a second order polynomial. For the input scan, the filter acts as a high frequency
noise filter, removing the electrical read noise from the CCD used to measure the SERS signal. The
picocavity scan is then calculated using the following equation:

Pλ,t = max(Iλ,t − Rλ,t,ϕ)− ϕ, (3.1)

where Pλ,t , Iλ,t and Rλ,t are the picocavity, input and reconstructed scans, respectively, and ϕ is a
global offset parameter, which is equal to 5% of the standard deviation of the input scan. The purpose
of this parameter is to act as a threshold for peak detection, only allowing signals associated with
transient peaks to remain as the residual intensities after the subtraction of the input spectra, whilst
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minimising the number of false detections due to noise. For example, scans with a large SNR would
have a small offset, which lowers the intensity threshold for a picocavity peak to be detected, thus
allowing for weaker picocavity signals to be analysed. The values of the SG filter and offset parameters
are selected through an empirical test on a representative subset of BPT data. Figure 3.9 shows a scan
segment before and after stable state removal.

Figure 3.9: Left, example segment of a scan containing picocavity events; Right, the picocavity scan
features stable nanocavity peaks that have been either suppressed or entirely removed (two of which
notably occur around wavenumbers 1100 cm−1 and 1300 cm−1). The remaining residual information
contains the transient peaks produced by picocavity events.

As a first step in peak detection, the most intense transient peaks are isolated by selecting the
98th percentile of pixel intensities in the picocavity scans. Secondly, lower intensity transient peaks
are identified in a similar fashion using the 96th percentile of pixel intensities, but with the addition
of a Boolean mask applied to only allow for pixels occupying the same rows or columns as previous
detections to be accepted as valid pixels. A basic empirical study was performed on a representative
subset of the complete BPT testing dataset, showing that the percentile values used provide the best
results.
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Figure 3.10: Pixels representing parts of transient peaks found by the first detection stage (98th

percentile) are in white, whilst additional pixels from the second detection stage (96th percentile with
Boolean masking) are shown in green.

The two detection stages described capture the majority of pixels containing transient peaks in
most scans. However, scans with a lower SNR were found to contain small gaps in otherwise complete
sequential transient peaks in a time-series - an example of this can be seen on the transient peaks
occurring around 250 cm−1 in Figure 3.10. To counteract this, two probability density functions were
estimated by counting the number of pixels detected along each axis from the combined previous
stages. The probability density function projected along the wavenumber axis is smoothed, using
a one-dimensional Gaussian filter at five standard deviations, to approximate the centroids of each
transient peak. The time-axis probability density function is not smoothed to reduce the likelihood
that noise, which could fill a gap between two distinct transient peaks separated in time, would be
detected as a peak.

Two percentile ranges are then fit to the respective probability density functions, which scale
between the 90th and 96th percentile of pixel intensities, where the lower percentile bound is applied
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to the highest count, and vice versa. Note that detections made along rows or columns that had
previously produced zero detections were discarded, which effectively sets a 0th percentile value for
those regions. Using these percentile ranges, additional pixels contributing to transient peaks are
detectable along each axis on picocavity scans, and an intersection of the two sets of detected pixels
forms the final coordinate set of transient peaks in pixel space, combined with the previously detected
positions. Figure 3.11 shows the two probability density functions resulting from the scan segment
shown in Figure 3.10, with the resulting detections seen in Figure 3.13 in the following subsection.

56



(a) Estimated probability density function along the wavenumber axis.

(b) Estimated probability density function along the time step axis.

Figure 3.11: Probability density functions estimated from data collected during previous detection
stages. There are two y-axis scales on both plots that show the conversion from the number of pixels
identified as a transient peak (right), and the percentile assigned to those values (left). The smoothed
probability density function is used to detect transient peaks along the wavenumber axis to account
for any misalignment to the peak centroid due to an incomplete set of detections.
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3.2.2 Morphological Operators

Mathematical morphology is an analysis technique commonly used to probe and transform the struc-
ture of a digital image. Two key concepts are employed to achieve this: morphological operators and
structuring elements. The morphological operator used in this work is morphological opening, which
involves the dilation (expansion) and erosion (reduction) of an image. This has the effect of removing
small artefacts from an image, specifically noise in this case. An illustration of this process is shown
in Figure 3.12. The effectiveness of the noise removal process is determined by the chosen structuring
element, which has two properties: shape and size, with the latter determining the resolution of probed
features. A 3× 3 rectangular structuring element was chosen for this work.

Figure 3.12: Illustration of morphological opening. Erosion is performed on the input image using
the 3 × 3 rectangular structuring element. This shrinks the size of the main feature, and removes
the ‘noisy’ single pixel in the upper-right. Dilation is then performed on the eroded image with the
same structuring element to produce the output image. This restores most of the input image, whilst
simultaneously removing noise and smoothing any small protrusions.

The three stages in the peak detection process may capture intense noise alongside the transient
peaks in some scans - particularly those with a low SNR - as seen in Figure 3.10 at 1000 cm−1 and
above, which may exist due to algorithmic error, or from physical aberrations such as cosmic rays.
To prevent the accumulation of noisy detections potentially bridging small (1 to 3 px) gaps between
otherwise distinct transient peaks, morphological opening was used after each detection stage, with a
3× 3 rectangular structuring element. The result of which, applied after the final peak detection stage
described in the previous subsection, is shown in Figure 3.13.
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Figure 3.13: Resulting pixels detected as transient peaks after morphological opening from each stage
- the first stage (98th percentile) is shown in white, the second stage (96th percentile with Boolean
masking) is shown in green, and final stage (estimated probability density functions with scaling
percentiles) is shown in red. The (row, column) coordinate pairs of each detected pixel form the
dataset of available transient peaks, produced by picocavities, used in further analysis.

The choice of the specific structuring element (both shape and size) were determined based on a
heuristic analysis, and from advice given by the Baumberg research group. The rectangular shape of
the structuring element was chosen based on the discontinuous nature of Raman peaks in a time-series -
i.e. the immediate, simultaneous appearance and disappearance. The height of the structuring element
was set to three time steps, which is defined as the minimum number of time steps that two contiguous
peaks must be separated by in order for them to be considered as distinct. The width of the structuring
element was also set to three (around 8 cm−1), which was found to reduce the largest portion of noise
whilst still retaining the transient peaks. However, it is noted that there exists extremely short-lived
transient events (named here as ephemeral events to distinguish them from the rest) that may last for
a single time step, which would therefore be filtered by this morphological processing stage. Hence,
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though ephemeral events are rare, there is room for improvement at the detection stage to incorporate
events of this nature.

3.2.3 Track Isolation

Once transient peaks have been detected on a picocavity scan, the next stage is to form sets of
sequential transient peaks that form a contiguous, or almost-contiguous, line through time. These are
termed Tracks. Tracks are initially demarcated by the final detected pixels that are neighbours in
an 8-connected sense - meaning that one pixel has a neighbour if it is within two orthogonal hops of
another pixel - within each scan (see Figure 3.14).

Figure 3.14: Left, visualisation of 4-connected pixels (edge-sharing); right, visualisation of 8-connected
pixels (edge- and vertex-sharing). Both illustrations are based on the central pixel in each grid space.

Due to an incomplete retrieval of all transient pixels, gaps may appear along either axis, which would
cause the initial ‘connectedness check’ to form two or more Tracks where there should otherwise only
be one. Alongside this algorithmic error, cosmic rays and other noise can appear on a scan, which could
bridge gaps between two Tracks that would be otherwise distinct if they were not successfully removed
by the peak detection process. Additionally, gaps in detections may also be caused by physical effects
such as: bistable picocavities, in which thermal fluctuations can temporarily breakdown a picocavity
site during a measurement, as the adatom producing the enhanced field temporarily moves away from
the BPT molecule before returning to reform the picocavity [74]; or ‘flare events’ [185], which appear
as broad features with a dominant intensity that are picocavity-independent, and instead originate
from Raman scattering within the metal. Flare events may cause low-intensity transient peaks to
appear due to oversaturation, which are subsequently removed from the output picocavity spectra
produced by the CAE reconstructions, thereby separating each Track that exists within those time
steps occupied by the Flare event. Conversely to the aforementioned negative artefacts, a separation
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of this nature may cause two Tracks to be considered genuinely, physically distinct from one another if
the picocavity field was disrupted for a sufficient time. As mentioned in Subsection 3.2.2, a minimum
of three time steps is required for Tracks to be considered distinct.

As the accurate identification of all Tracks within a single picocavity event is crucial, an iterative
algorithm was created to merge constituent parts of a Track into one whole, whilst leaving Tracks
unaltered that should remain so. This algorithm is hereby referred to as the Zipper - which was
named as such due to its function being analogous to that of a zip on an item of clothing. The Zipper
examines Tracks that are in close proximity to one another by utilising a 3 × 10 px sliding window.
Tracks are only considered for merging if the closest vertical edges are within 10 px of one another,
which translates to approximately 25 cm−1 - a value defined by the Baumberg research group as the
maximum expected wavenumber shift of a transient peak - in addition, two Tracks must exist in time
steps that lie within a tolerance defined by the Zipper window height (3 px). If both of these conditions
are not met, then the Tracks are determined to be invariably distinct.

The top of the sliding window is placed at the earliest time step to contain both Tracks and is
centred on the mean wavenumber position between both Tracks. Each sliding window calculates the
mean separation, S, of the centroids between each Track, and stores this value in a running total as
the sliding window moves along all valid positions with a stride of 1 px. Once all valid positions have
been calculated, the ‘global mean separation’ is calculated as the mean of S, and the two Tracks are
merged if this value either matches or falls below a tolerance value of 5 px. The Zipper as mentioned
is iterative, so the described process repeats until a stop condition of zero Track updates is met for an
iteration, at which point the outputs of the Zipper at that stage are the finalised forms of each Track,
which are used in the analysis steps that follow. The result of the Zipper process is shown in Figure
3.15.

Figure 3.15: Example of the Zipper algorithm. Top, the initial Tracks formed through the 8-connected
process; Bottom, the resulting merge of the three main Track sections. The Track sections in both
images are arbitrarily colour-coded for clarity, showing the successful merge of the three main Track
segments.
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3.2.4 Event Formation

The vibrational modes associated with each Configuration typically produce multiple peaks at different
wavenumbers. It is also possible for multiple Configurations to coexist [74, 75]. Because of this, the sets
of peaks associated with each Configuration must be distinguished from one another. Transient peaks
belonging to the same Configuration are termed Events. Physically, an Event should contain peaks that
appear and disappear simultaneously, however, due to detection errors (explained in Subsection 3.2.3)
there may be time steps shared between two Tracks that were not captured in respective formation
processes. To create an Event, Tracks that share time steps are compared, and if the ratio of the
number of shared time steps against the duration the longest Track exceeds a threshold, those Tracks
are assigned to the same Event, as shown in the equation:

ti ∩ tj∑
i>j ti

> T, (3.2)

where ti and tj are the time steps that Tracks i and j occupy, and T is the Event threshold, given a
value of 0.7, used to determine whether two Tracks should be assigned to the same Event. Two Tracks
are compared this way each time, and if this equality is satisfied a new Event is formed, or an existing
Event is appended to if one of the Tracks has already been assigned to an Event - see Figure 3.16.

Figure 3.16: Left, six distinct Tracks produced by the Track isolation algorithm; right, two Events,
consisting of three Tracks each, which have been created by the Event formation algorithm. The Tracks
are arbitrarily colour-coded for clarity.
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3.2.5 Configuration Clustering

As mentioned in Subsection 3.2.4, an Event represents one instance of a physical picocavity type.
As a part of the process of analysing the BPT dataset, a method was used to cluster these Events
into picocavity types, simply termed Configurations. One key point to note for a Configuration is
that it can contain Events from different scans, as any arbitrary Configuration is scan-independent.
To cluster Events into Configurations, the mean picocavity spectra of all Events are compared using
the Wasserstein distance (also known as the earth mover’s distance) to calculate the work required
to transform between two spectra - these spectra were divided by the sum of their values to form
normalised probabilities, as required by the Wasserstein metric. The equation for the Wasserstein
distance is given:

D(u, v) = inf
π∈Γ(u,v)

∫
R×R

|x− y| dπ(x, y), (3.3)

where D(u, v) is the minimum amount of work required to transform the probability u into the
probability v, |x - y| is the amount of mass needed to be moved between two points on each distribution,
and dπ(x, y) is distance moved by each amount of mass. An (N × N) distance matrix is produced using
this metric, where N is the number of Events. Spectral clustering is the clustering method used to
form Configurations; as this technique requires a similarity matrix, the distance matrix was converted
using the radial basis function,

A(u, v) = exp

(
−D(u, v)2

2δ2

)
, (3.4)

where A(u, v) is the similarity matrix and δ is a free parameter with a value of 0.275. The value of
δ was selected to produce a well-separated distribution of the (converted) Wasserstein distances, with
approximate values for the mean and standard deviation 0.5 and 0.35, respectively.

For spectral clustering the scikit-learn Python package was used [200], which requires a number
of clusters to be prespecified. However, since the number of unique Configurations is unknown, the
number of clusters with the highest mean silhouette coefficient [201] was selected from a range of 2 to
30. This score is a number ranging between between -1 to 1, which evaluates the classification success
for all samples within a clustering operation in forming clusters that are well-separated (high inter-
cluster distance), and dense (low intra-cluster distance), based off of a Euclidean sample separation.
Silhouette coefficients of zero indicates that clusters are overlapped, whereas negative values indicate
that misclassifications may have occurred. A subset of five picocavity scans were used as a test set for
the continued development of the Configuration analysis, in order to reduce the volume of data that
is required by further heuristic analysis. This subset contained scans with Configurations that were
both unique, and shared between its members, through visual inspection. Figure 3.17 visualises the
distribution of silhouette scores of the four largest clusters obtained through this method.
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Figure 3.17: Visualisation of the silhouette scores for events in the four largest clusters (I-IV) where
1 means identical and 0 means no correlation. The representative spectra for all Configurations are
shown in Figure 3.19 below.

Occasionally, rapid on-off switching of a picocavity is observed with near-identical spectra, which
have minimal drift in the wavenumbers for each associated peak (see Figure 3.18). This physical effect
causes multiple Events to be formed (as per the method described in Subsection 3.2.4) if there is a
sufficient time separation between each occurrence, which results in a bias towards these ‘flickering’
(switching-type) Events at the clustering stage. This effect is more prevalent in BPT with other
variations of NPoM geometries (discussed in Subsection 3.3.7).
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Figure 3.18: Example of on-off switching behaviour seen in some picocavities. The raw scan (top) was
produced by a NPoM geometry with the addition of a monolayer of palladium functionalised onto the
gold substrate, which tends to produce more ‘flickering’ events - Subsection 3.3.7 will expand on the
analysis of this NPoM geometry. The isolated picocavity event is also shown (bottom).

To account for flickering Events, the initial Events clustered together and originate from the same
scan are merged if they are within 100 time steps of each other. Then, the original clusters are dissolved,
followed by a repeated spectral clustering procedure using the refined, bias-corrected Events. Lastly,
because the nature of spectral clustering requires that all samples are assigned to a cluster, there are
instances where exceedingly rare Events cannot form their own clusters - owing to the amount that are
available, chosen based on the highest silhouette coefficient score. Due to this, these particular Events
may possess negative scores within the assigned clusters. In order to improve the efficacy of each
Configuration, these negative samples are discarded. From this evaluation 6 clusters (Configurations)
achieved the best mean silhouette coefficient score. The representative spectra for each Configuration
are shown in Figure 3.19. Table 3.3 shows Configuration statistics before and after flickering bias-
correction, and the removal of Events with negative silhouette sample scores.
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Figure 3.19: The most common Configurations extracted from the BPT testing subset, displayed in
descending order of Event frequency labelled I-VI. The number of Events, E, and the total number of
spectra, n, are also shown. The average spectra of each Configuration is plotted - alongside the global
nanocavity that is overlaid onto Configuration I for reference to the prominent stable peaks.
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Table 3.3: Reduction in the number of Events and spectra, and the subsequent improvement in the
associated silhouette coefficient score, due to the averaging of ‘flickering’ Events assigned to the same
original Configurations, and the removal of Events with negative silhouette sample scores. More
impactful changes due to bias-correction are seen in alternate variations of the NPoM geometry seen
in Subsection 3.3.7.

Original Corrected
Configurations 6 6
Total Events 56 54
Total Spectra 1548 1542

Silhouette 0.3154 0.3315

3.2.6 Peak Assignments and Near-Field Gradient Mapping

In collaboration with members of the Baumberg research group, the methodology employed in this
subsection was developed to provide a chemical evaluation of the information extracted by the data
analysis pipeline. Once the representative spectra from each Configuration have been obtained - by
calculating the global average spectra from those contained within each member Event - the position
of each metal protrusion (adatom) can be determined through a tentative assignment of the peaks
detected in each Configuration spectrum to the vibrational modes predicted by the DFT algorithm.
To confirm the validity of this process, the nanocavity spectrum was simulated using a commercial
DFT package [202], which found good agreement with the stable nanocavity spectrum extracted from
the global stable state reconstructed by the CAE (seen in Figure 3.19).

Within each scan it is common for any picocavity peak to drift in peak position over the duration
of the Event in which it resides due to changes in adatom position (see Figures 3.9 and 3.15). As
there are a limited number of vibrational modes available in the rigid BPT molecule, the range that
each vibrational mode occupies can be estimated based on this peak drift. However, vibrational modes
predicted by the DFT that have a low-intensity, or are positioned in close proximity to other vibrational
modes, are not assigned to picocavity peaks due to the uncertainty in such an assignment. Examples
of avoided peak-assignments are seen in part (A) of Figure 3.20 between 800 cm−1 to 1000 cm−1, in
which there are two groups of three vibrational modes that are each within wavenumber ranges that
are too small to be distinguished at the resolution of the data, and no single mode within either group
has a Raman response that is intense enough as to be sufficiently more likely to correspond to the
associated picocavity peak than its neighbours. For the sake of clarity, the predicted vibrational modes
are numbered in the order of increasing energy.
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Figure 3.20: A) Peak range assignment for the three most common Configurations based on the stable
state (nanocavity) DFT modelling of BPT. B) Gradient field maps showing the Raman response for
each of the assigned vibrational modes (using a method adapted from Aizpurua et al. [203]). C)
Near-field maps generated from compounded gradient-field Raman maps for Configurations I, II and
III, plotted against a BPT-Au molecule depicted at a 29° angle from the surface normal [204].

In order to predict the most-likely position of the metal protrusion that caused a particular Con-
figuration, the Raman response of a molecule in an inhomogeneous field must be calculated. Where
standard DFT assumes a homogeneous field, an existing method developed by Aizpurua et al. [203]
assumes an inhomogeneous field. Hence, this method was adapted to calculate the effects of a picocav-
ity field gradient [205] as it is swept over the BPT molecule. This results in a map of Raman responses
for each possible field position, and is repeated for each vibrational mode. These ‘gradient field maps’
visualise the different responses of vibrational modes to gradient fields across the molecule (see part
(B) of Figure 3.20). Using this, a ‘near-field map’ is generated by averaging together the gradient field
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maps for each vibrational mode that has been identified and matched with a corresponding picocavity
peak within a Configuration. Each gradient field map is first multiplied by the corresponding peak
area, and after the near-field map is generated it is normalised by the average of all gradient fields, in
order to remove a systematic bias inherent to vibrational modes with a higher intensity response to
the local field gradient. The equation to normalise the near-field maps is given:

Mc =

∑
AiMi∑
Mi

, (3.5)

where Mc is the compounded near-field Raman map Ai is the peak area corresponding to vibration
i, and Mi is the gradient Raman map for vibration i. The resulting near-field maps provide an
insight into the location where the field gradient originates from around the molecule, and can be
used to tentatively assign the position of the atomic-scale feature giving rise to the localised field (e.g.
adatom). Examples of the three most common Configurations are shown in part (C) of Figure 3.20.

3.3 Evaluation of Approach

This section covers an evaluation of the combined machine learning and image processing analysis
pipeline developed for processing, and subsequently analysing, the BPT database. The speed and
efficacy of the stable state removal are compared to standard methodology; the effect of different
normalisation methods on the performance of the CAE are reviewed; alternative methods for the
formation of Tracks and Configurations, which were explored in the development of this process,
are highlighted and compared to the chosen methods; the methodology and reasoning behind peak
assignments to the DFT and experimental data are explained; and the robustness of the approach
is demonstrated by fine-tuning the machine learning model on a new database containing additional
NPoM varieties of BPT.

3.3.1 Performance of the Stable State Removal Process

Figure 3.21 shows an example of a picocavity spectrum extracted by the CAE. Alongside this, a
common spectral processing algorithm, asymmetric least squares (ALS), was used as a background
fitting tool to compare the performance of both methods in terms of efficacy and speed. As the CAE
was trained on stable state scans, it was able to reconstruct the peaks associated with nanocavity
events and reconstruct them alongside the baseline spectrum, which was then subsequently removed
using the formula for calculating the picocavity spectrum given in Subsection 3.2.1, Eq. 3.1. As the
ALS background fitting method does not fit to peaks, only the baseline spectrum can be approximated,
and as such ALS lacks the functionality to distinguish between stable state (nanocavity) and picocavity
peaks. Hence, it proves an inappropriate tool for isolating transient features within SERS spectra.

With regards to throughput, the CAE allows for over 16000 spectra to be processed per second,
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including the subtraction of the stable state, on a standard desktop computer, in comparison to ALS
background fitting which is almost 200x slower. Figure 3.21a reports the exact values of this test.

(a) Background fitting (ALS) and stable state subtraction (CAE) of a stable state spectrum.

(b) Background fitting (ALS) and stable state subtraction (CAE) of a picocavity spectrum.

Figure 3.21: Comparison between ALS and the CAE. Background fit and stable state reconstructions,
respectively, are shown in red. (a) ALS only reconstructs part of the baseline spectrum and does
not remove stable peaks, whereas the CAE reconstructs the majority of the stable state. (b) The
CAE reconstructs the stable state but not the picocavity event, allowing for isolation of the spectral
properties, whereas ALS fails to separate the nanocavity and picocavity peaks.
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3.3.2 Effects of Normalisation Methods on Model Generalisation

As mentioned in Subsection 3.1.3, layers in the CAE that were normalised were done so using group
normalisation [168] rather than batch normalisation [163]. This was done so due to large variations in
validation loss in the initial iterations of the CAE that used batch normalisation. Consequently, a test
was performed in which all convolutional and FC blocks using batch normalisation were replaced with
group normalisation, which was applied along the batch axis with a group size equal to the batch size.

This process is of near-equivalence to batch normalisation, with the exception being that batch
normalisation uses batch statistics to normalise samples during training, and the population statistics
learned from training to normalise samples during inference; however, group normalisation uses the
batch statistics of each batch to normalise samples during both training and validation. This change
was motivated by the fact that the data naturally comes in batches, hence the data variance captured
by the batch statistics are strongly correlated to the scans, whether they are partially or fully contained
within a batch.

This resulted in a reduced generalisation error of the model on the validation dataset, with sup-
pressed oscillations in the loss curve. This can be seen in Figure 3.22 as the trend of the training and
validation loss curves closely match when the CAE is trained using group normalisation, whereas in
the batch normalisation model there are large variations in validation loss, and an overall increase in
the validation loss indicating that the model is overfitting to the training dataset.
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Figure 3.22: Effects of group normalisation versus batch normalisation on the CAE with all other
hyperparameters fixed. Top, batch normalisation; Bottom, group normalisation. In both plots the
training loss is shown in black, and the validation loss is shown in red. The use of group normalisation
improves upon the overfitting of batch normalisation, along with an overall reduction in the magnitude
of the validation loss. Note that the small reduction in training loss may be attributed to a difference
in parameter initialisation.

3.3.3 Alternative Method to Track Isolation

Previous iterations of the Track isolation algorithm utilised Kalman filters [206] to form each Track,
where new Tracks began at the earliest detected time step, and subsequent detected data points were
added to each Track based on a search window with dimensions 3 × 10 px. The dimensions of the
sliding window matched that of the Zipper algorithm described in Subsection 3.2.3. Peak detections
were made for this method on a per-spectrum basis for pixel intensities exceeding a threshold of two
standard deviations. Any adjacent bins (wavenumbers) in later time steps that had intensities above
this threshold were fed to the search window as a single detection using the centroid wavenumber of
that range, and were added to the associated Track. If detections in later time steps did not lie within
the search windows of any ‘active’ Tracks (i.e. those that had received additions within the past 3
time steps), then new Tracks were formed with these most recent detections as the starting points.

As each transient peak naturally travels forwards in time (vertically, with respect to the spatiotem-
poral scan), the goal of the filter was to predict the wavenumber location of peaks that went undetected
in later time steps - either due to algorithmic error, physical disruptions such as thermal fluctuations
temporarily breaking down Events, or from flare events oversaturating spectra [185]. However, the
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functionality of the Kalman filter proved superfluous, as the Tracks typically follow a predictable path
through time, with only minor deviations due to the aforementioned thermal effects, or through ad-
atom movements perturbing the local electric field (as seen in the various figures throughout Sections
3.1 and 3.2). In addition, transient peaks have been observed to temporarily bifurcate for a small
number of time steps, from which the Kalman filter process would create two separate Tracks instead
of one, as it lacks the functionality to incorporate this physical effect; in contrast the ‘connectedness
check’ that is capable of dealing with these bifurcations.

Hence, this method of forming Tracks using Kalman filters was replaced by the considerably simpler
connectedness operation, and the iterative Zipper algorithm to bridge small gaps between otherwise
contiguous Tracks (described in Subsection 3.2.3). This change was jointly motivated by efforts to re-
duce the number of arbitrary parameters that required tuning in the development of the data analysis
pipeline, and to decrease computation times. Where the Kalman filter operation required spectra to
be processed sequentially, the connectedness operation was applied scan-wide, thus decreasing compu-
tation times dependent on the number and complexity of picocavities present on each scan.

3.3.4 Event Formation Threshold Tuning

The Event threshold value of 0.7 was empirically determined using the same representative subset of
BPT data that was used to form and analyse the Configurations seen in Subsections 3.2.5 and 3.2.6,
respectively. However, it should be noted that coexisting picocavities are rare in the BPT dataset, and
as such the tuning of this parameter was not critical. However, should a database be analysed with
more regular coexisting picocavities, the Event threshold may need to be more thoroughly examined,
whereby higher values would ensure that distinct picocavities are assigned to separate Events. This
would in turn benefit from higher SNR data and a more robust data analysis pipeline that would be
capable of isolating Tracks to a greater level of completeness, to counteract the increased potential of
an incorrect Event assignment.

3.3.5 Alternative Configuration Clustering Methods

Two other clustering algorithms were considered alongside Spectral clustering, which shall be referred
to as the ‘Champion’ method. The first method, termed the ‘Integral’ method, implemented a simple
peak-matching check. This was motivated by an attempt to avoid distinct, coexisting picocavities
from being incorporated into the same Event. Before being compared, Events were first converted
into ‘Event vectors’, which were produced through the summation of each detected pixel across the
duration of the Event, and smoothed using a 3rd-order polynomial to account for inaccuracies in the
mean peak position due to spectral drift (see Figure 3.23). Mathematically, the similarity between
spectral pairs was calculated as the ratio between the integral of the absolute difference between two
Event vectors, against the summation of the individual vectors,
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r(A,B) = 1−
∑N

λ=1 |Aλ − Bλ|∑N
λ=1 Aλ +

∑N
λ=1 Bλ

, (3.6)

where Aλ and Bλ are two arbitrary Event vectors, and λ represents the wavenumber axis. The ratio
(similarity) is equal to 0 if two Events have no matching peaks and 1 if the two Events are identical.
Through a heuristic analysis on a subset of BPT data, a similarity threshold of 0.35 for the ratio was
found to produce the best clusters (Configurations). Hence, any two Events with a ratio at or above
0.35 would be clustered into the same Configuration.

The advantage to this method is that, by forming Event vectors exclusively through the summation
of detected (isolated) transient peaks, co-existing Events could be separated into different Configur-
ations. However, co-existing Events are rare within the BPT dataset, thus this was not a strong
consideration when selecting the appropriate clustering method. Contrary to this, the main drawback
to this method was that it enabled the formation of long Configuration ‘chains’, wherein dissimilar
Events would be placed into the same Configuration due to shared similarities to one or more ad-
ditional Events. In addition, as the number of peaks in an Event increased, the average number of
missed or incorrectly detected peaks within an Event would increase in turn, this consequently reduced
the similarity between two otherwise identical Events. The larger number of peaks also increased the
similarity between two Events that seem distinct through a visual inspection (see Figure 3.23). Based
on these drawbacks, the Integral method was discarded, as tuning the similarity threshold was highly
dependent on the quality of the data, and on the overall effectiveness of the data analysis pipeline at
fully isolating each picocavity Event.
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Figure 3.23: Two examples of the Integral clustering method. Event vectors are formed from the sum
of all detected peaks and smoothed using a 3rd-order polynomial. Left, two Events are compared
with similar representative spectra; there are 7 peaks that match through a visual inspection, and
the score of 0.71 shows a reasonable similarity despite the mismatched peaks. Right, the same Event
(top) compared to another, generating a similarity score also above the threshold, meaning that these
Events would be clustered despite the second Event having no Raman peaks at lower wavenumbers.

The second alternative clustering method - referred to as the ‘Pyramid’ method - was considered for
the possibility of expanding the application of the data analysis pipeline to complex molecular datasets
where coexisting Events are commonplace. This method was based off of a binary peak-matching task
using ‘spatial pyramids’ [207, 208], which partitioned the feature space into successively finer sub-
regions, attempting to match together peaks in sets of histograms produced by each sub-region. This
could then be used to form a similarity matrix - in much the same way as the Champion method - and
clustered using kernel k-means.

This technique used the knowledge of which peaks belonged to which Event by using Event vectors
- as in the Integral method - and could therefore exclude peaks belonging to other coexisting Events.
However, by clustering using kernel k-means, it was able to overcome the issue of ‘chaining’ dissimilar
Events together based on a static similarity threshold to form Configurations. The result of this
clustering method, using a number of clusters optimised using the best silhouette coefficient score,
achieved a lower silhouette score than the Champion method, and thus was not selected as the preferred
method. However, if a dataset were being analysed in which coexisting transient events, or multiple
picocavity devices, are common, then the Pyramid method may be a more suitable option.

Amongst the evaluated clustering techniques, the Champion clustering method achieved the best
silhouette coefficient score due it leveraging the inherent rarity of coexisting picocavities found in the
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BPT dataset. By utilising the mean picocavity spectrum associated with each isolated transient event,
this method ensures that any undetected peaks during the initial peak isolation step are factored into
the subsequent clustering process. It should be noted that the clustering methods were compared, and
the Champion method was selected, before the clustering process was adapted to account for ‘flickering’
due to the incorporation of addition NPoM varieties (detailed in Subsection 3.3.7 to come). Based
on this earlier version of the clustering process: the Integral clustering method achieved of silhouette
score of 0.2117 with 4 clusters; Pyramid clustering achieved a silhouette score of 0.1841 with 9 clusters;
and the Champion clustering achieved the best silhouette score of 0.2469 with 8 clusters. As shown in
Subsection 3.2.5, Table 3.3, the latest iteration of the Champion method achieves a silhouette score of
0.3315 with 6 clusters on the original BPT dataset.

3.3.6 Picocavity Analysis and Comparisons to DFT Predictions

Vibrational modes calculated by DFT are tentatively assigned to peaks present within a Configuration
spectrum. As mentioned in Subsection 3.2.6, the method for making these assignments is based on a
number of factors: firstly, due to the limited number of vibrational modes available to a rigid BPT
molecule, the drift in peak position over an Event duration is used to dictate the bounds that a
vibrational mode can be said to reside in (see Figure 3.24).

Figure 3.24: Typical peak drift observed within a scan. Shown here is a picocavity peak assigned to
vibrational mode 39, with white dashed lines demarcating the upper and lower integration bounds
that are used in the consideration of possible peak assignments.

Another consideration for peak assignments is peak prominence, in which the intensity of a vibra-
tional mode must be both uniquely intense and sufficiently greater than neighbouring modes (if any).
For example, modes 46, 47 and 48 in Figure 3.25 were each assigned to relatively weak peaks in the
background-subtracted nanocavity spectrum on account of their large, isolated intensities, whilst mode
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43 was assigned to a peak despite being in close proximity to mode 42, on account of the substantially
greater amplitude relative to the neighbouring mode. One final consideration is peak location; vibra-
tional modes in the lower wavenumber range were avoided as DFT is notoriously poor in accurately
predicting low wavenumber (weaker) vibrations. For example, modes 9 and 10 in Figure 3.25 appear
as though they are a good match for the peaks above them, however due to the weaker bond strength
these modes, when perturbed by the picocavity, are likely to move significantly from the predicted
position, making the subsequent picocavity assignment more difficult. Additionally, as there is a lesser
degree of field enhancement in that region the SNR is lower. It was determined that vibrational mode
number 14 was the earliest viable candidate, since the calculated peak was both relatively strong and
isolated.

Figure 3.25: Background-subtracted global nanocavity spectrum and calculated DFT vibrational
modes plotted on a log-scale to visualise both large and small peaks for tentative peak assignment.

Once the near-field maps for each Configuration had been calculated, the location of the metal
protrusion (adatom) that produced the local field gradient could be predicted, and a comparison could
be made between experiment and theory. For Configuration I (the largest cluster: 13 Events, 161
spectra) the near-field map suggests a picocavity that has arisen near the nanoparticle (NP type)
whereas all 5 other Configurations, with a combined 41 Events made up of 1387 spectra, indicate
picocavities that have formed near the substrate (see Figure 3.26). These findings show that the
adatoms giving rise to the picocavity events are most likely to form on the substrate (90% of spectra),
which is in line with previous observations using molecular spacers with an upper cyanide group which
forms a distinguishing Raman marker (85%) [145]. However, 24% of Events are classed as coming from
the nanoparticle showing that substrate Events contain on average more spectra - 34 per substrate
versus 12 per nanoparticle - and that therefore these Events persist for longer.
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Figure 3.26: Near-field maps for the BPT NPoM geometry using commercial gold nanoparticles (Au-
Au) showing one NP type and five substrate type picocavities.

3.3.7 CAE Fine-Tuning and Analysis of Additional NPoM Varieties

To verify the validity of the findings in Subsection 3.3.6, and to test the robustness of the approach,
a second database was prepared. This database was captured using a second bespoke Raman micro-
scope with a higher spectral resolution - resulting in narrower peaks - using longer integration times
(time steps) of 200ms compared to 35ms, and in-house synthesised gold nanoparticles instead of the
commercial-grade nanoparticles used in the previous database. For this spectrometer, an Olympus
BX51 microscope was coupled to a Horiba Triax 320 dispersive spectrometer with a 600 lines/mm

grating and an Andor Newton 970 BVF electron-multiplying CCD. The spectra were collected in the
same manner as the previous BPT database, using an Olympus NA (0.9) 100x darkfield objective.

To further validate the assignment of nanoparticle versus substrate picocavities, two additional
NPoM varieties were prepared, where one of the metal surfaces was functionalised with a monolayer
of palladium that was grown onto that surface. The palladium was found to suppress the formation
of picocavities either on the nanoparticle or the substrate [1, 209], in line with predicted adatom
formation energy costs [210]. These sample varieties are here labelled by the nanoparticle and substrate
metal (M) compositions using the format MNP-Msubstrate. Thus, the three new databases are as
follows: Au-Au, Au-AuPd and AuPd-Au - for example, Au-AuPd represents strictly gold nanoparticles,
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with a monolayer of palladium deposited onto the gold substrate surface (see Figure 3.28). Unless
stated otherwise, any reference to the Au-Au database within this subsection assumes the later version
produced from in-house nanoparticles, rather than the original with commercial-grade nanoparticles
and shorter integration times (time steps).

The new database contains 1833500 spectra over 3667 scans - hence 500 spectra per scan - of which
3479 scans contain picocavities and 188 contain only nanocavity signals. The combination of longer
integration times and in-house nanoparticles caused fewer scans to consist only of nanocavity spectra.
The nanocavity scans were partitioned into 144 scans for the training dataset and 44 for the validation
dataset. Due to the limited number of stable nanocavity spectra split between the three new NPoM
varieties, which constituted an approximate 14-fold reduction in the number of training samples, the
existing pre-trained CAE parameters were fine-tuned on the nanocavity scans within the new training
dataset. Fine-tuning on the existing CAE also demonstrates the capability for the model to learn the
stable state properties of three separate datasets simultaneously. Despite a limited number of stable
nanocavity spectra used, the algorithm readily adapted to the spectral properties of the new data, as
the MSE loss of the fine-tuned model showed a downwards trend similar to the initial BPT database
during pre-training (Figure 3.27).
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Figure 3.27: Top, pre-training on the original BPT database; Bottom, fine-tuning on the new NPoM
varieties. In both plots the training loss is shown in black, and the validation loss is shown in red. The
overall overfitting of the model improved by fine-tuning, as the average relative increase in validation
loss proportional to training loss reduced from around 10% to 5%, showing a more generalised model.
Note that the scale of the fine-tuning loss is approximately one order of magnitude lower than that of
pre-training, though this could be to some extent attributed to the database itself as well as due to
the nature of fine-tuning the CAE model.

As mentioned at the end of Subsection 3.2.5 (see Table 3.3), the flickering bias-correction applied
to the initial Events that are formed resulted in a greater reduction of the number of Events using the
new dataset. This is summarised in Table 3.4 below, which showcases an improvement to the global
silhouette scores for both the Au-Au and AuPd-Au datasets, and a minor decline for the Au-AuPd
dataset.

Table 3.4: Effect of flickering bias-correction on Configuration sizes for the three additional datasets.
There is a greater reduction in the number of Events and spectra in comparison to the original BPT
dataset.

Au-Au Au-AuPd AuPd-Au
Original Corrected Original Corrected Original Corrected

Configurations 6 6 6 6 10 10
Total Events 183 72 139 50 119 63
Total Spectra 5551 5481 4344 4043 2308 1568

Silhouette 0.2784 0.2953 0.3121 0.3009 0.1921 0.2656
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After training, each of the three NPoM varieties were assessed separately generating 6, 6 and 10
Configurations after independent clustering of the Au-Au, Au-AuPd, AuPd-Au samples respectively.
The spectrum of the most common Configuration for each NPoM variety is shown in Figure 3.28, with
Figure 3.29 showing the near-field maps of the 3 most common Configurations for each (all other near-
field maps are shown in Figures 3.31, 3.32 and 3.33). The in-house Au-Au NPoM shows Configurations
I, II, IV and V are suggestive of substrate picocavities (totalling 53 Events over 4511 spectra) with
the nanoparticle picocavities now split over Configurations III and VI (19 Events, 976 spectra). This
implies 18% of picocavity spectra come from the nanoparticle with 26% of Events classed as NP type,
which is in close agreement with the previous observations in Subsection 3.3.6, and in literature [145].
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Figure 3.28: Tentative vibrational mode assignment to picocavity peaks within the most common Con-
figurations for each of the three new sample types using in-house nanoparticles. The inset illustrations
show the palladium monolayer (or lack thereof) deposited onto the specified metal surface.

Interestingly, when a palladium monolayer is introduced onto the substrate, all but one Config-
uration (VI) shows picocavities forming from the nanoparticle (see Figures 3.29 and 3.32), with one
containing a mixture of nanoparticle and substrate contributions (IV). This results in 90% of picocavity
spectra now originating from the nanoparticle and 88% of Events (excluding the mixed configuration
IV). In addition, in contrast to the previous observations, more spectra are observed on average per
Event for those coming from the nanoparticle versus from the substrate - 92 per substrate versus 72
per nanoparticle. For the sample type where the nanoparticle is coated in a monolayer of palladium,
10 clusters (Configurations) are formed. Of these, 7 Configurations show substrate Events and 3 show
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nanoparticle Events (see Figures 3.29 and 3.33) with only 19% of Events now coming from the nano-
particle (an approximate 5% drop with respect to Au-Au samples). Interestingly, the average spectra
per Event for the NP types greatly increased, with an average of 47 spectra per Event for the NP types
vs 20 for the substrate types.
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Figure 3.29: Near-field maps showing adatom positions for the three most common Configurations of
the additional sample types. This highlights the role of a metal surface functionalised with a monolayer
of palladium (grey region), deposited onto the respective surface, in suppressing the formation of
picocavities from that surface.
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Overall, comparing the Events for each of the sample varieties clearly shows a strong effect from
coating either surface with a palladium monolayer. This suppresses the formation of adatoms on the
newly functionalised surface (Figure 3.30a). To confirm this suppression, the mean picocavity formation
times for all three variants are compared at different laser powers. This shows a similar trend, with
Pd-coated substrates having the strongest effect on the formation rate - i.e. longer mean formation
time (Figure 3.30b) - agreeing well with predictions in literature [210]. The Au-Au sample type with
commercial-grade nanoparticles is excluded from the comparison of formation times in Figure 3.30b
due to fundamental differences in the rate of picocavity formation between commercial and in-house
nanoparticles (explained earlier in 3.3.7).

(a) Occurrence and ratio of each sample type for
adatom formations on the substrate vs nanoparticle.

(b) Mean formation times of each sample type, for
each Configuration, as a function of laser power.

Figure 3.30: Effects of gold surfaces functionalised by palladium. a) Sample types for both the commer-
cial (denoted ‘c’) and in-house nanoparticles share similar proportions, with the palladium-deposited
surface variants either switching (Au-AuPd) or strengthening (AuPd-Au) the occurrence between each
type. b) Mean formation times are lengthened with the addition of palladium onto either surface -
though the effect is stronger for lower laser powers, and for the functionalised substrate.
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Figure 3.31: Near-field maps for Au-Au NPoM sample using in-house nanoparticles show two NP type
and four substrate type picocavities.
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Figure 3.32: Near-field maps for Au-AuPd NPoM sample using in-house nanoparticles show four NP
type, one substrate type and one mixed type (IV) picocavities, with the three largest Configurations
coming from the nanoparticle.

Figure 3.33: Near-field maps for AuPd-Au NPoM sample using in-house nanoparticles show three NP
type and seven substrate type picocavities, with the three largest Configurations coming from the
substrate.
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3.4 Discussion and Conclusions

In the work presented here, labelled data are used to determine whether a scan contains transient
(picocavity) events - although this could be further delineated to single spectra. This distinction is
a requirement resulting from the CAE training process, in which the dataset is partitioned in order
to facilitate the CAE reconstruction process and subsequently remove the stable state signal from
each picocavity spectrum. Discussed within this section is the possibility for a machine learning
architecture to circumvent the labelling requirement, which would provide multiple benefits: firstly, a
practical hurdle would be overcome in needing an analytical chemist to manually label scans in the
manner described, or to avoid the development of a potential automated labelling process; secondly,
this would allow for more complex molecules to be analysed, and thus extend the capability of the
data analysis pipeline developed in this study.

A promising new machine learning architecture, the transformer, has proven a powerful tool for
state-of-the-art classification in spectroscopy tasks [211, 212], due to its self-attention mechanism -
where ‘soft’ weights are used that are able to change during inference, as opposed to conventional
‘hard’ weights that are fixed after training. This mechanism may be the key to circumventing the label
requirement. Transformers employ encoder-decoder architectures, and can utilise convolutional layers,
hence drawing many similarities to the CAE model used in this research. Frequently deployed in the
fields of natural language processing and computer vision, transformer architectures are capable of
processing hyper-spectral Raman data and can incorporate the complete spatiotemporal information
of SERS spectra in parallel. This would mean that SERS scans would be processed as images rather
than individual spectra. This may enable long-term dependencies (picocavity events) to be factored
into classification outputs, thus lending credence to the applicability of this architecture.

Another analyte molecule was initially considered for use in this study, MPA (methiopropamine),
for which a database of SERS scans existed; measured using the same in-house experimental setup
as described in Subsection 3.1.1. MPA is a complex molecule with many possible vibrational modes
and no consistent stable state. As such, no labelled data existed to distinguish between stable state
and picocavity scans, which is a requirement of the CAE training process, and subsequently the data
analysis pipeline proved incapable of isolating the transient peaks from the background and nanocavity
peaks. Future work on the analysis of such a complex dataset may be possible with the adaption of
the data analysis pipeline to a transformer architecture, which could incorporate higher complexity
molecules with stable states that are difficult to determine - if they exist at all.

Through convention, a typical silhouette score of 0.5 or higher is indicative of a good clustering
result. However, a sufficient score is dependent on the characteristic features of the dataset, and the
specific application needs of the domain. In the case of the SERS data, a wide range of distinct Config-
urations have been identified that possess only one (or very few) members, whilst other Configurations
are much more numerous. This complexity gives rise to a challenging clustering task that requires the
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formation of clusters with vastly different sizes in order to incorporate this diverse set of picocavities.
As demonstrated in Subsections 3.3.6 and 3.3.7, the Champion clustering method formed clusters that
found good agreement with results predicted by DFT on each of the BPT datasets.

Two key areas for potential improvements to the clustering process warrant future investigation
beyond this study. The first being a review of alternatives to the silhouette coefficient score as the
metric for determining an appropriate number of clusters, as this metric is global and therefore lacks
the nuance to summarise the relative strengths of each cluster. Although individual clusters scores are
also accessible, the process of determining an appropriate number of clusters through such a manual
inspection would be labour-intensive and promote subjectivity. The second area for improvement is
exploring the clustering method itself; one alternative not explored in this study is agglomerative
hierarchical clustering [213], which would allow for either an automated clustering method through
cutting at an optimal region of a dendrogram representing the clustered samples, or reviewing the
clusters (Configurations) resulting from manual cuts. However, this would be time-consuming, and
involve a large degree of trial-and-error for an analytical chemist. Manual cuts, or designing a dynamic
cutting process, might allow for a diverse range of cluster sizes that correlate with the complexity
of the SERS data. Another alternative to clustering worth investigating is density-based clustering,
such as DBSCAN [214], which does not require a number of clusters to be specified, thus making it
suitable for unsupervised data processing tasks. However, DBSCAN requires two other parameters to
be specified relating to: the minimum number of samples to form a cluster, and a density parameter
determining the maximum distance between samples to be considered neighbours.

These improvements could lead to analysing greater quantities of the picocavity scans simultan-
eously. An observation of the Champion clustering process, which limited the number of picocavity
scans evaluated, was the steady decrease in the silhouette score as the number of clusters increased
beyond approximately 10 to 14, based on the results of several tests. This observation is counter-
intuitive to the idea that greater quantities of SERS data possess a greater diversity in picocavities,
which motivates future exploratory research into alternatives to the Configuration clustering strategy.

Where conventional DFT simulations aim to accurately estimate Raman spectra from homogeneous
electric fields, two problems were encountered within this research to assign peaks between representat-
ive picocavity spectra within each Configuration and simulated DFT peaks: firstly, picocavity spectra
contain additional peaks due to the excitation of typically Raman inactive modes as a result of strong
local electric fields produced by adatoms, this required modifications to the DFT using a gradient
Raman approach (described in Subsection 3.2.6); secondly, there was an intensity difference in both
absolute and relative terms with respect to sets of peaks in the picocavity spectra, which required the
same DFT adaptation. However, DFT remains incapable of accurately recreating the SERS spectra
used in this research, which limits the degree by which DFT can be justified as a comparative tool. A
comparison to DFT was still made however, as there was a reasonable confidence from the Baumberg
research group that there exists only one type of molecule (BPT) in each nanogap, meaning that the
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representative picocavity spectra must approximate DFT simulated spectra. From this, the tentative
peak assignments are made, focusing on more intense peaks that are in close proximity between DFT
and picocavity spectra.

As described in Subsections 3.2.6 and 3.3.6, the peak assignment was manual in nature. An
automated method was attempted both to remove subjectivity from this process, and to allow for
batch processing of spectra, which is a crucial factor when considering the large quantities of data
able to be captured. This automated process used a Gaussian fit to each picocavity peak to obtain
a central wavenumber position, then if this position was within some prespecified distance of a DFT
mode then a peak assignment was made. This Gaussian fit method was prone to failure, however,
as nearby peaks would interfere and produce non-Gaussian fits, which would require deconvolution to
accurately resolve peak positions. The threshold distance to make an assignment would also require
tuning, thus failing to remove an aspect of subjectivity present in the manual method, as this threshold
may vary between different spacer molecules. Ultimately, a manual peak assignment was made due
to the confidence of a single molecule type within each nanogap, thus leaving room for improvement
within this research area.

To conclude, a robust method to extract salient features from SERS spectra has been developed
and introduced, which has been used to isolate and cluster picocavity spectra. It is also shown that, by
adapting an existing inhomogeneous field Raman mapping method, a tentative position for adatoms can
be extracted. Using this method it is found that the formation rate, location and lifetime of picocavities
can be influenced by functionalising either the substrate or the nanoparticles with a monolayer of
palladium atoms. This now provides a unique insight into the formation behaviour and the coordination
geometries of adatoms in metal surfaces. This technique will translate to many other analyte molecules,
as long as stable state spectra can be acquired for training purposes. Thus it is believed the combined
machine learning and image processing analysis pipeline introduced here offers a powerful tool to assist
in the rational design of heterogeneous catalysts.
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Temporal Extension to the Metal-Molecule
Analysis Pipeline
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Previously the capability was shown for the robust data analysis pipeline to efficiently extract
information from single molecule SERS spectra, arising from interactions between adatoms and

BPT molecules. The aim of this chapter is to build a complementary tool to resolve metal-molecule
interactions, thereby extending the work done in Chapter 3, starting from the Event formation stage.
Figure 4.1 depicts a flowchart summarising these additional processes.

Figure 4.1: Flowchart depicting an extension to the data analysis pipeline focused on the analysis
of temporal information in the initial BPT SERS dataset. The data processing steps (yellow) are
described in Section 4.1, followed by an evaluation of the approach in Section 4.2, and a discussion of
potential research pathways in Section 4.3.
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Another desirable aspect of single molecule SERS data that has not yet been investigated is how
adatoms interact with specific molecular bonds. These metal-molecule interactions are often the first
step in heterogeneous catalysis, but they are often poorly understood on a fundamental level [215,
216, 217]. Developing a better understanding of metal-molecule interactions on an atomic level can
aid in the intelligent design of heterogeneous catalysts. Often, such an understanding is derived from
an in-depth modelling of chemical processes (such as through DFT), but few tools allow for the direct
investigation of these interactions.

A simplified view of heterogeneous catalysis research involves understanding interactions between
molecules and metals, and how such an understanding can promote advancements to industrial cata-
lytic processes. Two incredibly important examples of catalysis are the Haber-Bosch process and the
carbon dioxide (CO2) reduction reaction, both of which highlight the interest in such advancements.

The Haber-Bosch reaction is an industrial chemical process used to produce ammonia (NH3) from
nitrogen (N2) and hydrogen (H2) gases [218]. It is one of the most important chemical processes
in the world due to its significance to agriculture in the production of fertilisers to accelerate food
growth, and in the production of a multitude of chemical compounds including plastics production
and pharmaceuticals. The process typically uses iron as the catalyst [218, 219], and requires both high
pressures and temperatures to overcome thermodynamic limitations of the reaction and maximise
ammonia production [218, 219]. Other catalysts have been shown to reduce such requirements [220,
221], although these often contain other caveats such as expensive rare materials or complex production
processes. However, high energy requirements and detrimental environmental impacts [222] bring about
an incentive to both improve the yield and reduce undesirable by-products (such as CO2) of this critical
catalytic process.

The CO2 reduction reaction aims to utilise CO2 as a feedstock (raw material) for conversion
into valuable chemical compounds, including renewable fuels like methanol (CH3OH) and ethanol
(CH3CH2OH). This process consequently serves to reduce the volume of this greenhouse gas, thereby
mitigating its effect on global warming. Heterogeneous catalysis enables the CO2 reduction reaction to
occur by providing active sites on the catalyst surface where CO2 molecules can be absorbed, dissociate
(break chemical bonds), and yield desirable products. In a similar vein to the Haber-Bosch reaction,
this process has a high energy consumption that can undermine the environmental benefits. A range of
catalyst materials have been investigated including metal nanoparticles [223, 224], metal oxides [225],
and carbon-based complexes [226] that aim to reduce such requirements, however these techniques
may require rare materials obtained through environmentally unfriendly extraction methods, or the
resulting process may possess low selectivity and efficiency of the desired products.

Building upon the work set out in the previous chapter, this research allows changes in molecular
bonds to be tracked over time as they interact with the metal atom, and can provide a map of molecular
perturbations resulting from such interactions. An example of which is in a highly conjugated molecule,
wherein a change in the electron density of one molecular bond can have a strong knock-on effect on
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another molecular bond several atoms away. These interactions are important to understand as they
provide an insight into how molecular bonds weaken or strengthen as a result of metal-molecule binding,
which is a critical step in catalysis.

This is achieved through an analysis of the spatiotemporal information within an Event - which
encompasses a set of transient peaks associated with the same picocavity event - revealing correlated
changes in the wavenumber positions of these peaks. Such correlated changes are caused by perturba-
tions to the local gradient field due to the source (adatom) drifting about the metal surface upon which
it resides. Analysing correlated movements in the described spectral shifts provides an insight into
which bonds, when perturbed, most strongly affect other bonds within the system. This can pertain
to how the configuration of a molecule changes under torsion, as shown in de Nijs et al. [227] (see
Figure 4.2), or to bond activations, where specific bonds weaken to the point of dissociation.

By utilising a pre-training and fine-tuning procedure on a machine learning architecture known as
a Siamese neural network, which is capable of distinguishing between the aforementioned positive and
negative correlated changes, such information can assist in the analysis of these atomic-scale events.
Beyond that, it can aid in the identification of specific favourable metal-molecule interactions and
promote advancements in the targeted design of heterogeneous catalysts, which aim to tackle the
global issues faced today in industrial catalytic processes.
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(a) En-face and in-plane depictions of methyl viologen dichloride at various pyridine torsion angles.

(b) Raman activity showing the effects of each pyridine torsion angle. Note that, as the torsion angle increases,
the peaks at around 1200 cm−1 and 1600 cm−1 undergo positively correlated changes with respect to each
other, contrasted to negative correlations with the two peaks around 1300 cm−1 and 1700 cm−1.

Figure 4.2: The Raman response of methyl viologen dichloride varying with torsion angle about two
pyridines groups - organic molecules similar to benzene in which one methine group (CH bond) is
replaced with a nitrogen. The calculated spectra demonstrate positive and negative correlated changes
in peak positions resulting from changes in torsion angle. Figure reproduced with permission [227].
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4.1 Processing Framework for Analysis of Correlated Peaks

To study the behaviour over time of the BPT molecules and gold adatoms, the changes in peak positions
are analysed. These shifts in peak positions arise from the displacement of the adatom producing a
picocavity on either the surface of the gold nanoparticle or the substrate. In an Event, these spectral
shifts are correlated and can be categorised as either positive, indicating simultaneous increases or
decreases in wavenumber across two Tracks (defined in Subsection 3.2.3 of the previous chapter), or
negative, indicating that one Track increases in wavenumber whilst the other decreases. In Events with
more than two Tracks, there could be both positive and negative correlations amongst its constituents
(Figure 4.2). By assessing the polarity of correlated peak shifts in wavenumber space, as a result of
adatom movements, interactions between vibrational modes can be analysed.

As previously introduced in the opening of this chapter, this section focuses on the design of a frame-
work that enhances the capabilities of the data analysis pipeline established in the previous chapter.
Branching off from the Event formation stage of the pipeline, a self-supervised training procedure of
a Siamese-CNN was built using a dataset consisting of Tracks formed from the initial BPT dataset.
Self-supervision is a machine learning process whereby unlabelled input data is used to generate paired
training data, which is labelled, in order for a model to learn basic relationships about the data. This
self-supervision utilised a data augmentation task designed to synthesise pairs of correlated Tracks
using a sequential set of image processing techniques: Delaunay triangulations to form a tessellation
across images containing individual picocavity peaks, and piecewise affine transformations to warp
each image.

A Siamese-CNN was selected for this task as the model can predict correlations after training
without requiring feature engineering, a step often associated with basic correlation analysis methods.
Additionally, it is robust to noise and thus results in a more generalised model. After basic relationships
about the data have been learned through pre-training, a smaller dataset of manually labelled peaks
belonging to the same picocavity Events was assembled to fine-tune the Siamese-CNN to identify
positive and negative correlations in a binary classification task.

4.1.1 Dataset Assembly

To analyse how the detected peaks are correlated, two-dimensional (spatiotemporal) data associated
with each Track within the same Event was extracted from the picocavity scans they belong to. As
the type of correlation shared between any two arbitrary Tracks is unknown, a data augmentation
system was employed to create a labelled dataset with which to pre-train a neural network. The
augmented Track pairs are given a binary label classifying the sign of the correlation (1 for positive,
and 0 for negative). A two-dimensional Siamese-CNN architecture was selected for this purpose, due
to the ability of the model to minimise a distance metric for similar objects (positive correlations), and
maximise it for distinct ones (negative correlations), which the model achieves by using shared weights
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between each ‘arm’ of the network. This concept can be intuitively understood with comparison to
an example, facial recognition. The face of an employee is captured and compared to a reference,
even if the faces appear similar, significant differences in individual pixel values can exist between the
images. This makes a basic root mean square error unsuitable for an accurate comparison. Instead, a
Siamese-CNN learns to base the comparison on unique features like facial structure and skin tone, but
disregards factors such as the positioning of the face, lighting and fashion accessories. The Siamese
architecture is described in Subsection 4.1.3 to follow.

As the neural network requires specific input dimensions, a minimum duration for a Track is set from
which the dataset is extracted. Tracks that are at least 100 time steps in length are pooled, forming
‘sub-Tracks’, referred to as images, via the use of a sliding window to capture multiple sections of each
Track. This process captures the information contained over the entire length of the Track in a manner
that preserves the fixed dimensional requirements of the training images. The sliding window begins
at the earliest time step occupied by any Track in an Event and ends at the latest time step in the
same manner. The stride of the sliding window is five. For example, this results in two images forming
from each Track within an Event that has a duration of 105 time steps (see Figure 4.3). The horizontal
position of each sliding window is centred on the mean wavenumber of each image, and captures the
complete peak at each time step detected by the Track isolation algorithm - plus five additional pixels
each side of the peak to account for cases where the full peak was not captured. The width of the input
shape is set to 25 px; images whose widths did not match the width of the input shape were linearly
interpolated. This interpolation does not affect the time step axis to prevent non-physical aberrations
in the resulting images.

96



Figure 4.3: Images extracted from one Track. The Track, left, is split into two images that have been
linearly interpolated to a width of 25 px. The sliding windows, marked with orange and blue brackets,
each contain an image of shape 100× 25 px at different perspectives of the Track.

4.1.2 Synthesising Correlated Images using Piecewise Affine Transformations

A labelled dataset is produced with the aid of a data augmentation process whereby each training
image is warped twice, independently, to create a pair of correlated images. This is achieved through a
piecewise affine transformation [228] on sets of Delaunay triangulated data points [229, 230]. The data
points that are used to perform the Delaunay triangulation are sampled from a 5th-order polynomial
that is fit to the central wavenumbers of each transient peak detected within a Track. If one or more
adjacent time steps within a Track do not contain a centroid, either due to an undetected peak or
a physical gap within the scan, then centroids are linearly interpolated using known neighbouring
centroids to fill those gaps for the polynomial fit. Alternatively, if any time steps contain multiple
centroids - potentially due to a peak bifurcation - then the mean of those points are taken as the
central peak for that time step.

Once the polynomial has been fitted to the peak centroids contained within the image, data points
are sampled along that curve. The data points are located at the peaks, troughs, and rest positions
- i.e. the points of maximum gradient between two extrema - of the polynomial. Additionally, the
peak positions at the start and end of the image are used as data points, as well as pixels uniformly
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spaced along the borders of the image; eight along the vertical edges, and four along the horizontal
edges (corners shared).

The set of data points belonging to the peaks, troughs, and rest positions of the polynomial are
then randomly shifted in wavenumber position, using a normal distribution, by up-to 15% of each
value from the central line of the image along the wavenumber axis. Figure 4.4 shows an example of
the sampled data points, before and after horizontal noise-shifts. There are two sets of data points
formed from this process: one set containing the randomly shifted positions, as well as the start, end,
and border points; and the other set containing all original positions.

Figure 4.4: Example polynomial data point generation. Left, the 5th-order polynomial is fit to the
complete set of peak positions, overlaid onto the image; middle, the initial data points sampled from
the polynomial, as well as the points along the borders; right, the noise-shifted data points. These
data points form the vertices of the Delaunay tessellation in the next stage of data augmentation.

These two sets are then triangulated using the Delaunay method [228, 229, 230], and the resulting
tessellations are used to warp the image from the original (source) tessellation, to the noise-shifted
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(destination) tessellation, using a piecewise affine transformation (see Figure 4.5). This process was
performed twice on each image, which produces a positively correlated augmented pair by default,
as the points used in the tessellation, and the strength of the random horizontal shifts, were set to
prevent an unintentional transformation of the synthesised peak correlation to negative. Additionally,
to prevent the amount of noise added to e.g. a peak from falling below the position of a resting point,
a cap was placed on the maximum allowed shift to one pixel above neighbouring data points. In order
to produce a negative correlation, each synthesised pair had one member flipped horizontally at a 50%

chance. Lastly, the intensity values of the images were linearly normalised between the values [0, 1] in
preparation for being processed by the neural network.

Figure 4.5: A) The original image. B) The two Delaunay triangulated tessellations - left, original
positions; right, noise-shifted positions. C) The difference in pixel intensities between the original
image in A and the left augmented image in D after the piecewise affine transformation. D) left, the
augmented image; right, the accompanying augmented image in the pair (steps not shown) - this image
has been horizontally flipped to create a negative correlation between the image pair.

From following the described data augmentation process on all eligible Tracks, the resulting dataset
contained 3850 image pairs. The inference datasets are a fixed set of augmented pairs and labels,
whereas the training dataset is used to generate a new set of augmented pairs every epoch during
training. After the Siamese-CNN architecture, described in the following subsection, was pre-trained
on this dataset, it was fine-tuned using a dataset of real Track pairs that were isolated within the same
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Events, which were exclusively determined as having either positive or negative correlations. There
were 455 pairs of real Tracks that were manually assigned correlation labels. Examples of positive and
negative peak correlations between real Tracks is shown in Figure 4.6.

(a) Negative correlation. (b) Positive correlation.

Figure 4.6: Examples of real correlated pairs used to fine-tune the Siamese-CNN.

4.1.3 Siamese-CNN Model Architecture

The CNN arms of the Siamese-CNN contain six layers, including the input layer. There are four
convolutional layers, followed by a 128-unit FC output layer. The outputs of each CNN arm are
combined into one vector, using the absolute difference distance metric between each unit. This
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combined vector is processed by the ‘decision head’, a standard FC layer with a single unit. The
output of each convolutional layer was normalised using instance normalisation [169, 170], which was
initialised from a standardised random uniform distribution [231], followed by a Leaky ReLU activation
function with slope coefficient, α, of 0.3, and maxpooling with a (2 × 2) stride and kernel size. The
model depth and size for each layer was determined through a grid search optimisation, minimising
the BCE loss.

100x25x1
100x25x16 50x13x32 25x7x64 13x4x128 7*2*128

Input conv1 conv2 conv3 conv4 FC1 FC2 
(Output) 

7x2x12813x4x6425x7x3250x13x16 128

k=3x3

Convolution + Instancenorm + LReLU

Fully Connected

Flatten

Maxpool Binary FC

Absolute Difference

Abs

CNN 1

CNN 2

Figure 4.7: Block diagram of the Siamese-CNN. The dimension labels on each layer are in the format
(Height, Width, #Filters); the upper values represent the output of each convolutional layer, and the
lower values represent the output after maxpooling. Note that the batch size dimension is equal on
all layers and is thus omitted. The k-value represents the convolutional kernel shape, which is the
same for all layers, and has a unitary stride. The convolutional and maxpooling layers both use zero
padding to capture the entire receptive field.

The model was pre-trained for 1000 epochs, with a static learning rate of 0.01, and a batch size
of 64. The database underwent a 90:5:5 split, meaning that the validation and testing datasets each
contained 190 fixed image pairs. The training dataset produced 3470 augmented image pairs every
epoch - one pair per sample. The loss function used was the BCE loss between the predicted and true
correlations, and the Adam optimisation algorithm was used - with parameters β1 = 0.9, β2 = 0.999,
and ϵ = 10−7 - to adjust the model parameters during training. All layers in both the CNN arms
and the decision head were regularised using L2 weight decay with a regularisation factor, γ, of 0.1.
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Clipnorm [177] was used to clip the calculated gradients to the maximum L2-norm value for each
update step, to avoid the problem of exploding gradients.

The model was fine-tuned, with a reduced static learning rate of 0.001, for 13 epochs before early
stopping [165] was applied to prevent the validation loss from diverging. The early stopping procedure
involved averaging the validation loss curves from the 10 fine-tuning iterations (explained below),
observing the mean epoch at which overfitting occurred - the point at which the averaged validation
loss curve began to increase - and restoring the parameters of the best model back to the values they
had at that epoch.

All other aforementioned hyperparameter values relating to pre-training were also used at the fine-
tuning stage. The fine-tuning dataset was partitioned using k-fold cross validation, with a k-value
of 10, meaning that each partition held approximately 410 training samples and 45 testing samples.
The partitioning was performed based on each whole Track, meaning that, where multiple image pairs
would together constitute an entire Track (see Figure 4.3), that set of image pairs would remain within
the same partition. This method of partitioning the data was used to avoid creating a testing dataset
that was too similar to the training pool, thus avoiding the formation of a trivial evaluation task. For
model inference during both pre-training and fine-tuning, a threshold of 0.5 was specified to convert
the output of the Siamese-CNN into positive (1) or negative (0) correlations.

4.2 Evaluation of Approach

This section describes and evaluates the decisions made in the development of the Siamese-CNN exten-
sion to the data analysis pipeline introduced in Chapter 3. Specifics of the design and implementation
of the dataset assembly method used to train the Siamese-CNN are given, alongside a justification
for the normalisation technique used to train the model; the method by which the performance of the
Siamese-CNN is evaluated is detailed; and a visualisation tool is introduced to display the predicted
peak correlations, which can assist in the rational design of heterogeneous catalysts. A more de-
tailed description of the potential of the visualisation tool described in the final subsection is provided
in Section 4.3, involving a discussion of potential future work based on an analysis of the temporal
information present within the data.

4.2.1 Specifics of Data Processing Stages and Model Design

Regarding the design of the data preprocessing and augmentation steps for analysing correlated peaks,
as well as the specifics of the model architecture, the physical aspects of the data were considered. The
width of the input image (25 px) was selected in this manner based on the average separation, for all
Tracks contained within the assembled dataset, between the left and right extrema wavenumbers of all
detected peaks, plus the additional 5 px either side of these values to account for incomplete detections
(as mentioned in Subsection 4.1.1). The height of the input image (100 px) was selected empirically,
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motivated by an attempt to obtain stable, long-form Events whilst retaining a suitable dataset size
resulting from all Events that matched this criterion. Smaller values for the image height would
increase the number of samples within the assembled dataset, and allow for shorter duration Events
to be incorporated and subsequently analysed, thus this is an avenue worthy of further investigation.

When the images extracted from Tracks are augmented into pairs for use in pre-training the model,
the piecewise affine transformation only applies to changes in the horizontal (spatial) axis. This is due
to the exclusively-horizontal shifts in the positions of each central node in the Delaunay point set
when noise is added (see Subsection 4.1.2). The purpose of this is to minimise any transformations
occurring along the vertical (temporal) axis, which would otherwise produce non-physical aberrations
in the resulting image pairs.

Motivated by the statistical nature of each image pair being distinct from other image pairs within
a batch, the Siamese-CNN was chosen to be normalised using instance normalisation [169, 170], rather
than conventional batch normalisation [163]. Instance normalisation normalises each image (or in-
stance) separately from the others within the same batch. As the Siamese-CNN is normalised after
each convolutional layer with instance normalisation, the model learns a representation of the data
that is robust to the stochasticity inherent to batch normalisation - more generally known as batch
whitening, as shown by Huang et al. [232]. However, at the output layer of the model, it must produce
an accurate prediction from this learned representation, which is difficult to achieve if the output from
the final layer were to be normalised - hence the final FC layer in the decision head is left unnormalised.

4.2.2 Model Evaluation using Receiver Operating Characteristic (ROC) Curves

The area under curve (AUC) value of the receiver operating characteristic (ROC) curve was used to
evaluate the performance of the Siamese-CNN architecture after pre-training, and the average per-
formance of each partition after fine-tuning. An ROC curve is a graph that evaluates the performance
of a classification model at all thresholds between 0 and 1, based on two parameters: the true positive
rate (TPR) and the false positive rate (FPR). The TPR (also called sensitivity or recall) is defined as:

TPR =
TP

TP + FN
, (4.1)

where TP is the number of true positive classifications, and FN is the number of false negative classi-
fications. Similarly, the FPR (also known as ‘1 - specificity’) is defined as:

FPR =
FP

FP + TN
, (4.2)

where FP is the number of false positive classifications, and TN is the number of true negative clas-
sifications. As the classification threshold decreases, the number of correlated peaks identified by the
model as positive increases (see Figure 4.8). The effect of misclassifying a sample as positive will be
more or less severe depending on the domain application. For example, if a classifier was trained to

103



identify a particular disease and determine whether a subsequent treatment is provided to a patient,
it may be decided that increased false classifications are permissible (i.e. a higher FPR) in order to
maximise the number of treatments (i.e. a higher TPR), hence the classification threshold would be
lowered.

In the case of SERS data analysis within the bounds of this research, the proportion of positively
and negatively correlated peaks is unknown, hence a classification threshold of 0.5 was assumed to
avoid bias. However, amongst all the tested model variations, which involved modifications such as
adjusting static or adaptive learning rates and varying the number of epochs, the fine-tuned model
was chosen based on the mean AUC value computed across all iterations. The average AUC value was
calculated to be 0.8678, with a standard deviation of 0.1264. This method of selecting the most robust
model would allow the chosen fine-tuned model to remain a suitable tool should the classification
threshold require tuning. Figure 4.8a shows the ROC and associated AUC value for the synthesised
testing dataset containing 190 fixed samples after pre-training, and Figure 4.8b shows the performance
for one iteration of the fine-tuned Siamese-CNN on the partitioned testing dataset containing 45 real
samples.

(a) Testing ROC curve of the Siamese-CNN pre-
trained on synthesised correlated peaks.

(b) Testing ROC curve for one iteration of the
Siamese-CNN fine-tuned on real correlated peaks.

Figure 4.8: ROC curves and associated AUC values used to evaluate the performance of the Siamese-
CNN architecture on the peak correlation classification task.

4.2.3 Peak Correlation Matrix

The model iteration that achieved the best performance out of the 10 trials produced through fine-
tuning, based on the highest AUC value of the ROC curve for the testing dataset, was used to perform
inference on an extension of the same dataset containing real correlated pairs. There were 1405 total
image pairs taken from Tracks belonging to detected Events within the BPT dataset - this includes
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the 455 manually labelled Track pairs that were used to fine-tune the Siamese-CNN at each iteration.
The classification of these correlations by the network was used to generate a correlation matrix plot,
which serves as both a heatmap to identify the most common peak correlations for picocavities within
the BPT dataset, and as a tool used to assign transient peaks to those predicted by the DFT. The
resulting correlation predictions were plotted at x-y coordinates in the correlation matrix based on
the mean wavenumber positions of each image pair - which are the constituents of Track pairs, broken
down into 100-time step segments and then resized, as previously described.

Three separate correlation matrices were considered, each containing the same classified pairs, but
using a different ruleset for how the images are partitioned. The first plots each image pair individually;
the second plots one correlation result for each Track pair, representing the mean correlation of the
constituent images (rounded to either a negative or positive correlation); and the third plots sets of
image pairs that are grouped with adjacent pairs that share correlation signs, therefore a new set
is formed whenever correlation switching occurs. As an example of the third ruleset, if a pair of
Tracks contains five sets of image pairs that are initially positively correlated, but switch to negatively
correlated after the third image pair - i.e. [1, 1, 1, 0, 0] - then two data points will be plotted on
the correlation matrix for this set; one positive correlation representing the first three images, and
another negative correlation representing the final two images. This third ruleset was chosen (see
Figure 4.9) to account for the classified correlation shifts, which the second ruleset would ignore,
whilst simultaneously attempting to reduce a bias in the results incurred by picocavities with longer
durations, which would naturally produce more data points should the first ruleset be used.
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Figure 4.9: Correlation matrix heatmap showing the wavenumber positions of paired Tracks within
the same Events, partitioned by shared correlations. The rectangular shape of each data point is based
on the wavenumber ranges encapsulated by each member of a Track pair. The matrix can serve as
a visualisation tool to assist in identifying regions of Raman activity, such as the density of Raman
peaks occurring within the same Events above 900 cm−1, and conversely the lack of Raman activity
between approximately 650 to 850 cm−1.

4.3 Discussion and Outlook

The work done in this chapter suggests exciting avenues for future research in the area of rational
heterogeneous catalyst design. The aim of this section is to summarise what is currently possible with
this research, introduce achievable goals through an extension of the analysis technique, and highlight
desirable long-term goals that could significantly impact the field.
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Through the use of the Siamese-CNN architecture and the production of a correlation matrix, this
research is capable of achieving similar results to that of the previous chapter, through a comparison
of DFT simulated Raman spectra and representative picocavity spectra obtained through the data
analysis pipeline. Figure 4.10 demonstrates this possibility by overlaying modes predicted by the DFT
onto a correlation matrix, featuring both positive and negative correlated peaks generated by the
Siamese-CNN in the 1000 to 1600 cm−1 range (the region of highest BPT Raman activity).

By making a tentative peak assignment in the same way as described in Chapter 3, gradient field
maps could be produced to determine, for example, the position of the adatom that produced this par-
ticular picocavity event. Although this chapter focuses on analysing picocavity information produced
at the ‘Event formation’ stage, this technique could be trivially adapted to analysing specific Config-
urations obtained through clustering. This would allow for a focused analysis of common picocavity
events types, creating an avenue for understanding atomic-scale interactions, and potentially influence
modifications to catalyst surfaces to either encourage or discourage such events.

Figure 4.10: Tentative assignment of correlated BPT picocavity peaks to simulated DFT modes. The
global resting state spectrum is plotted along each axis in the left plot for reference to the nanocavity
peaks when making assignments in the magnified plot. The green box in the magnified plot shows a
potential region of interest, featuring a single vibrational mode in comparison to three others.

Beyond similarities to the Configuration analysis technique introduced in the previous chapter,
this research incorporates the temporal information extracted from time-series picocavity peaks. Fun-
damentally, this enables the targeted analysis of individual vibrational modes associated with single
molecules on a catalyst surface. Through examination of predictions made by the Siamese-CNN and
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leveraging the correlation matrix, this approach facilitates a comparison between a specific bond and
others across the molecule. Such comparisons allow for determining the impact of one vibrational mode
on others, based on the relative strengthening or weakening of the associated bonds - an example of
which is shown in Figure 4.10 within the highlighted green box.

Extending this analysis technique may aid in the design of future catalysts to target specific in-
teractions in order to improve yield (increase selectivity) and process efficiency, whilst simultaneously
reducing unwanted by-products. This may be achieved through comparisons to DFT to identify which
modes, through a relative change in bond strength with other bonds, correspond to a rate-limiting step
in a chemical reaction that can be circumvented through targeted catalyst design [218]. Hence, this
tool could be used to suggest modifications to a catalyst surface, such as doping one metallic surface
in the NPoM geometry, that could weaken the energy barrier preventing a desirable interaction, thus
increasing the rate of occurrence for the interaction in question [215, 233].

In addition to characterising the polarity of correlated peaks as explored by this technique, the
temporal features within the SERS data offer insights into both the magnitude of each correlated shift
and the displacement from the resting position of each peak. Since the strength of a bond perturbation
is proportional to its proximity to the source of a local gradient field (refer to Figure 4.11), the relative
amplitudes of these peak shifts can assist in finding the spatial location of the atomic feature responsible
for generating the observed picocavity. Hence, incorporating this information into the data analysis
pipeline is important, as it may aid in identifying the precise location of an adatom, which is crucial
knowledge for tailoring catalyst modifications to achieve specific objectives. One such modification
may be to adjust the size of the nanogap between two metallic surfaces to promote the dissociation
of a particular bond, as evidenced by the vibrational mode above 1500 cm−1 in Figure 4.11 becoming
weakest at a distance of approximately 2.25Å between the BPT molecule and the adatom [73].

Figure 4.11: DFT Raman spectra of BPT with varying adatom distance demonstrating correlated
shifts for each vibrational mode. Figure reproduced with permission [73].

After implementing any proposed modifications to a catalyst, correlation matrices and analysing
Tracks in specific picocavity events can serve as valuable comparative tools to assess the impact and,
ultimately, the success of these changes. Identifiable features may include: the rate of correlation
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switching (e.g. from positive to negative), as this may indicate the stability of a picocavity event; or
examining the conditions of Tracks before a desired chemical reaction occurs (i.e. bond dissociation),
which could provide insight into further modifications to increase catalytic efficiency. This assessment
would involve analysing SERS data taken both before and after modifications have been made. How-
ever, the processing and analysis of large datasets would likely be required to facilitate this comparison,
in order to reproduce and identify the specific mode interactions under scrutiny.

As mentioned previously, the magnitude of each correlation is important to catalyst design, however,
the extension to the data analysis pipeline developed within this chapter uses a Siamese-CNN as a
binary classification tool. This means that correlated peaks are only identified as either positive or
negative. Thus, whilst the magnitude of a correlation may factor into the prediction made by the
Siamese-CNN, it is not output by the model. These detailed features incentivise changes to improve
the technique, as two peaks might be weakly correlated, or not at all if the atomic distance between
two modes is sufficiently large, which would influence any proposed modifications to a catalyst. Such
changes may consist of modifications to the Siamese-CNN architecture to incorporate variable peak
correlations, such as a multi-label output with ‘pseudo-labels’ that identify correlations as strong,
weak, or uncorrelated; alternatively, the model could be adapted to a regression task with a single-
label output referring to a continuous range of values between -1 to 1, scaling correlations from negative
to positive based on the strength of that correlation. These suggested modifications would require a
way to quantify (label) peak correlations, or to reconfigure the training routine to an unsupervised or
self-supervised task if labelled data is infeasible.

The observed catalytic activity depends on the surface material chosen for the process as well as
the physical surface structure [215]. A combination of these two factors could create a catalyst that is
highly reactive to a chemical process, but binds too strongly to the desired product, which damages
the catalyst as reaction sites would become blocked over time. This brings about an incentive to
carefully design catalyst surfaces or sub-surfaces that are tailored to the specific catalytic reaction,
maximising reaction efficiency whilst avoiding potential damage to the catalyst as a result of potential
described blockages, or other factors including high atmospheric pressures and temperatures. Another
important consideration is scaling up the catalyst process to meet industry requirements, as complex
catalyst geometries and rare materials may introduce impractical costs. However, such considerations
are highly dependent on the particular catalytic process, hence a combination of greater yields and
reduced by-products may justify the use of more costly setups. For example, gold NPoM geometries -
such as those presented within this chapter and the previous one (Chapter 3) - possess similar metal-
molecule interactions to copper oxide in a CO2 reduction process [224], hence further research into this
field may provide results beneficial to increased catalyst efficiency.

To conclude, an extension to the machine learning and image processing data analysis pipeline has
been developed to encapsulate the spatiotemporal information present in the BPT SERS data used in
this study. A deep Siamese-CNN has been trained as a binary classification model using transfer learn-
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ing, based on pre-trained parameters obtained through artificial correlated data synthesised through
a data augmentation regime. The model identifies the polarity of correlated peaks based on a dataset
extracted from the data analysis pipeline developed in Chapter 3. The aim of this foundational re-
search is to aid in the fundamental understanding of catalysis, by creating a correlation matrix tool to
visualise the output of the model, which can be used to analyse changes on single molecules interacting
at surface interfaces on a gold catalyst. Further development of this data analysis tool, in particular
on the improved differentiation of correlated changes based on the relative strength of spectral shifts,
and through analysis of different catalysts to review the effect of proposed modifications, opens up a
promising new technique to tailor the design of heterogeneous catalysts.
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The content described in the following two chapters refers to work done in real-world industry applic-
ations of chemometrics, in collaboration with an industrial sponsor for this PhD, IS-Instruments

Ltd., who design and manufacture bespoke remote sensing equipment, with a focus on Raman spec-
troscopy. Using this equipment, the Raman spectra of mixed substances were measured and analysed
using joint machine learning feature extraction and linear regression models trained in this work. The
performance of these models were compared with industry standard methods: PCR and PLS regres-
sion in optimised scenarios, and the efficacy of these methods are considered as potential complements
to, or replacements for, existing analytical tools.

In reality, mixtures are commonplace, whether intentionally in the form of samples of interest
suspended in a liquid medium, or unintentionally in the form of interference compounds. These may
take the form of residual mineral components leftover by impurities in an arbitrary chemical reaction.
Hence, there is a continual high demand for efficient and reliable methods of decomposing mixture
spectra, which often form linear combinations of constituent chemical compounds, for the purpose of
identifying and analysing target peaks. Within the nuclear sector, obtaining precise predictions of
concentrations are essential for the safe, efficient execution of nuclear decommissioning projects, which
contributes to cost reductions in necessary safety measures for workers in this area.

The primary goal in most chemometrics applications is to measure the properties of a chemical
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system, such as concentration, which is a desirable feature to obtain accurate information for in an
industrial environment, with both scientific and financial incentives. In this work, a database of Raman
spectra was captured using spontaneous Raman spectroscopy. The dataset contains a known chemical
compound (the analyte), dissolved into a known liquid medium at varying concentrations. With the aid
of machine learning as a complex, non-linear feature extraction tool, a regression model is developed
that can accurately predict unknown concentrations of these solutions, with a performance greater
than that of industry standard methods: PCR (involving PCA and a linear regression model) and
PLS regression.

Nuclear facilities undergo a process known as post operational clean out (POCO) at the end of
an operational life cycle before decommissioning. This is done in order to reduce potential risks and
hazards, whilst simultaneously reducing the running costs associated with dismantling the redundant
facility. The goal of POCO in this study is to reduce the organic residue found on nuclear sites in vessels
and pipework - which may be inaccessible to humans due to unsafe levels of radiation in the surrounding
area - to an acceptable level so that they may be repurposed. If acceptable levels of reduction are not
achieved, there is a heightened risk of potential fire hazards during the decommissioning process, for
example in the plasma cutting of stainless-steel pipework. Therefore, having the ability to precisely
identify and quantify concentrations of organic components holds immense importance for the nuclear
sector during POCO. This knowledge can significantly enhance cost-efficiency in the safe cleanup of
nuclear sites, with potential savings estimated in the range of £10 – £100 million per facility over the
course of the lengthy POCO process, which can extend to upwards of 40 years.

Tributyl phosphate (TBP), see Figure 5.1, and odourless kerosene were chosen as a ‘worse-case
scenario’ as by-products in POCO, in which these chemical compounds would exist within a wide
range of pipes and vessels, and in a variety of forms such as bulk organics or films on aqueous surfaces,
due to the use of these organic materials as ‘reprocessing agents’ during solvent extraction. Thus the
nuclear database is composed of TBP dissolved in kerosene across a range of high concentrations. TBP
can be used as an extractant in nuclear chemistry, which serves the role of one of the liquid components
in the separation of compounds in a solution between two insoluble liquids. This separation is based
on the difference in solubility between the compounds being separated.
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Figure 5.1: Molecular structure of TBP (image taken from PubChem [234]).

Kerosene, produced through the fractional distillation of crude oil, comprises of multiple categories
of hydrocarbons, with each category comprising different products, such as: paraffins comprising
of different alkanes (single-bond hydrocarbons, e.g. methane), and naphthenes comprising of cyclic
aliphatics (compounds containing rings that may be saturated with hydrogen, e.g. cyclohexane).
Hence, it is difficult to represent kerosene diagrammatically.

This chapter focuses on the design and implementation of a machine learning regression model for
predicting the varying concentrations of a range of liquid sample solutions, which have been chosen
based on common usages in nuclear industries, as well as in the biopharmaceutical industry - details
of which are covered in the following chapter. As mentioned, industry standard methods are trained
and tested alongside the machine learning model, which were optimised per task in order to set a high
benchmark for the comparison.

A key theme explored in this chapter is the effect of a small dataset size on the design and im-
plementation of machine learning models. Small datasets will be commonplace in many industrial
settings, as companies will require a strong incentive to invest time and money into producing a large
dataset for exploratory research. Such considerations include the choice of neural network architecture,
the data preprocessing techniques, and the type and usage of data augmentation strategies.

5.1 Data Preparation and Model Design

The machine learning model chosen for this regression task was an FC autoencoder, which was trained
to fulfil the role of a non-linear data compression and feature extraction tool for the input mixture
spectra. Once the autoencoder was trained, the compressed spectra were fed through a regularised
linear regression model (ridge regression) in order to make predictions on the analyte concentration
within each mixture. As outlined at the start of this chapter, this work explores the effects of small
database sizes on the choice, design and implementation of machine learning architectures, as well
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as the data preprocessing and augmentation techniques implemented to attempt to overcome this
limitation.

5.1.1 Data Acquisition and Preprocessing

The Raman spectra for the TBP chemical database was captured using a HES2000 spectrometer, an
in-house setup from IS-Instruments. The spectrometer features an Andor iVac 316 FT detector, with
150 lines/mm blazed diffraction gratings from Richardson. The 500mW laser had a central wavelength
of 785 nm. The exposure time was set to 30 s for each spectrum. A schematic for the SHS configuration
[140, 235] is shown in Figure 5.2.

Figure 5.2: Schematic for the SHS used to capture Raman measurements within this chapter and the
next. Image courtesy of IS-Instruments [235].

There were 9 concentrations measured for the TBP dataset, with each measurement having 128
repeats, ranging inclusively from 10% to 90% TBP dissolved in kerosene at uniform intervals. The
repeat measurements were partitioned into the training, validation and testing datasets at a ratio
of 6:2:2, which amounts to 76, 26 and 26 spectra per concentration, respectively. All spectra were
interpolated to a wavenumber range as advised by IS-Instruments: 100 to 2200 cm−1, at a constant
wavenumber resolution of 4.102 cm−1 using a cubic spline interpolation, producing spectra containing
512 bins.

114



5.1.2 Data Augmentation Strategy

Linearly weighted data augmentation was applied to increase the number of samples, and therefore
the variance, in each dataset. Interstitial concentrations could be synthesised using this augmentation
method, which were created from neighbouring discrete concentrations sampled from the respective
raw datasets. To synthesise an augmented spectrum, three spectra were chosen at random from a data
pool combining two neighbouring concentrations, each of which were multiplied by a scaling coefficient,
and then linearly combined to produce the spectrum. These three coefficients were sampled from a
Dirichlet distribution [236], which satisfies the condition

N∑
i=1

ci = 1, where ci ≥ 0 ∀ i ∈ {1, ...,N}, (5.1)

where values of ci are the positive coefficients generated in the augmentation process, and N is the
number of coefficients. The probability density function, P, of the Dirichlet-distributed vector is pro-
portional to the product of each coefficient, raised to the power of a positive concentration parameter,
α. These parameters were assigned the same value of 2.0 - the effect of varying this parameter is
demonstrated in Figure 5.3. The probability density function is described by the proportionality

P(c) ∝
N∏
i=1

cαi−1
i . (5.2)
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Figure 5.3: Ternary plot demonstrating the changes in the distribution of 250 randomly sampled
Dirichlet coefficients, as a function of the positive concentration parameters (α1, α2, α3): (A), (0.1,
0.1, 0.1); (B), (1.0, 1.0, 1.0); (C), (2.0, 2.0, 2.0); (D), (10.0, 10.0, 10.0); (E), (10.0, 1.0, 5.0). Larger αi

values assign a greater weight to their respective coefficients, ci. Values for αi were set to match the
distribution in C, which produces coefficients that access a broad range, but avoid dominant values
such as in B. More extreme values are obtained when αi < 1 as in A; coefficients of similar values
are sampled with larger αi values, therefore more often equally weighting the contributions of each
constituent, as in D; and can be skewed to bias towards certain parameters as in E.

This data augmentation method allows for an arbitrary number of augmented samples to be syn-
thesised. In total there were 16000 unique training samples synthesised every epoch, with 2000 fixed
samples created before training for the validation and testing datasets.

Once the spectra were synthesised, noise was then added to further increase sample variance,
followed by normalisation to remove intensity bias from the neural network during training. All pixels
from the CCD were added together per column to form the one-dimensional interferogram used to
produce each spectrum through an FFT - this process is referred to as full vertical binning. Due to the
FT detector used by the SHS Raman system, which uses an FFT to convert the interferogram into an
intensity spectrum, normally distributed noise was added to each training sample proportional to 10%
of the mean intensity of each spectrum. This distributes the same level of noise amongst all spectral
bins, which is more representative of the FFT than scaling the noise proportional to each wavenumber
- as is appropriate for dispersive Raman instruments that do not convolve the spectral information.
Note that any negative intensities produced by the noise added to the training samples were set to
zero, as the instrumental noise that is being mimicked would not produce a negative count. After noise
was added, the spectra within each dataset were rescaled using L2-normalisation. The normalisation
term is given by the equation
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T =
1√

max(
∑N

i=1 x
2
i,s, ϵ)

, (5.3)

where xi,s is the intensity at each bin, i, for an arbitrary spectrum, s, and the value of ϵ = 10−12

is used as a lower bound in the divisor for numerical stability. Each dataset is then scaled by the
normalisation term applied to each spectrum using the equation

Xd = xdi ∗ Td, (5.4)

where Xd is the vectorised form of the normalised spectra for an arbitrary dataset d. Lastly, each
dataset is divided through by the global maximum value in the training dataset generated for the first
epoch, which linearly broadens the range of values that each dataset occupies (see Table 5.1). Training
datasets generated for future epochs the normalisation terms specific to those datasets.

Table 5.1: The extrema values of each TBP dataset partition, before and after broadening their
respective ranges by the global maximum value of the L2-normalised training dataset.

TBP Dataset Narrow Broadened
Min Max Min Max

Training 0.0000 0.0013 0.0000 1.000
Validation 1.246× 10−6 0.0012 0.0009 0.9322
Testing 3.622× 10−6 0.0012 0.0027 0.9434

Figure 5.4 shows example outputs from the data augmentation process for all concentrations
between 10% to 90%, inclusively. As the concentration of TBP increases with respect to kerosene,
the main peaks between 500 to 1500 cm−1 become more intense, with the exception of the large peak
before 1500 cm−1 that decreases with increasing TBP concentration - albeit to a non-zero count, as
the both TBP and kerosene have a characteristic Raman response around this wavenumber.

Figure 5.4: Synthesised mixture spectra of TBP through the entire inclusive range of concentrations.
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5.1.3 Regression Model Architecture

To predict the concentration of a solution, salient features from each spectrum were extracted using
an FC autoencoder trained to reconstruct input spectra. Using the embedding from this trained
model, which contains the salient features required for reconstructing the data back to each input
spectra, a separate regression model was trained for prediction. Ridge regression, a variation of linear
least squares with an additional L2-normalised penalty term (typically used when data suffers from
multicollinearity), was used as the regression model for this task. This regression model was fit to the
same training data that was used to train the autoencoder. Similarly, the testing dataset partitioned
for use by the autoencoder was used to evaluate the success of the ridge regression model, thereby
evaluating the combined ‘AE-Ridge’ regression task.

The autoencoder used in this work contains 5 layers, including the input and output layers. There
are two FC layers in the encoder, the last of which being the 128-unit embedding layer, which was
used as an input for the decoder. The decoder mirrors the architecture of the encoder. The output
of each hidden layer was normalised using batch normalisation, followed by a Leaky ReLU activation
function with slope coefficient, α, of 0.3. Dropout was used as the last layer in each hidden block with
a dropout rate of 0.25 to regularise the model during training. The model depth and size for each
layer was determined through a grid search optimisation, minimising the MSE loss. A block diagram
for the AE-Ridge model is shown in Figure 5.5.
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Figure 5.5: Autoencoder block diagram. The effective size of the hidden layers during training is
a fraction of each respective size (384) based on the dropout rate of 25%. Note that the batch
size dimension is equal on all layers and is thus omitted. The embedding hidden layer of the trained
autoencoder is used as an input vector for the ridge regression task to estimate mixture concentrations.

The model was trained for 5000 epochs, with a static learning rate of 0.01, and a batch size of 200
spectra. The loss function used to train the autoencoder was the MSE loss between the input and
reconstructed spectra, and the Adam optimisation algorithm was used - with parameters β1 = 0.9,
β2 = 0.999, and ϵ = 10−7 - to adjust the model parameters during training. All trainable layers were
regularised using L2 weight decay with a regularisation factor, γ, of 0.1, and clipnorm [177] was used
to clip the calculated gradients to the maximum L2-norm value. Once the autoencoder was trained,
concentration estimates were made by training the ridge regression model, which used the embedding
vector of the autoencoder as input data, and the synthesised concentrations as output labels, as shown
in Figure 5.5.
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5.2 Evaluation of Regression Model

Subsection 5.2.1 provides a qualitative discussion for a range of previous neural network architectures
trained to carry out this regression task, with a focus on dataset size as a limiting factor for the choice of
architecture. A theme explored in this area is model underfitting, which is an aspect of machine learning
commonly found in such low-volume data scenarios in which a neural network fails to accurately learn
a relationship, if at all, between input and output variables. In addition, the performance of the
combined AE-Ridge model is evaluated against industry standard regression tools PCR and PLS
regression in Subsection 5.2.2. This comparison is made using performance metrics commonly found
in industrial settings: the coefficient of determination (R2), the 95% prediction interval (PI), and the
limit of detection (LoD), of which explanations are provided as to the role of these evaluation metrics
alongside the equations that govern them. Similar descriptions are provided for the functionality and
operation of PCR (in particular PCA) and PLS regression. Lastly, the complete set of results are
provided for all regression tools trained both with and without data augmentation, demonstrating the
increase in performance of the combined AE-Ridge regression tool, aided by the data augmentation
technique designed for this regression task, over the industry standard used within this study.

5.2.1 Effects of Data Size on Model Selection

The objective of a regression task is to determine the relationship between a number of independent
variables and some target dependent variable. From the outset of this study, alternative machine
learning architectures were initially considered that attempted to make direct predictions on the target
concentrations. Using a combination of FC and convolutional layers, multiple variants of DNNs and
CNNs were designed and trained. These models aimed to encompass the complete processing pipeline;
the training process would learn any beneficial data preprocessing steps (baseline subtraction, cosmic
ray removal, etc.) normally executed in the earlier layers of the model, and progress into learning
a relationship between dependent and independent variables through parameter updates that are
conducive to making direct, accurate predictions on sample concentrations in the output layer.

There are a number of existing machine learning architectures trained for applications in the pro-
cessing of the Raman spectra of mixtures. However, the focus of these architectures is primarily on
the identification of mixture components [237], or through the use of large datasets used to pre-train
neural networks for regression tasks [238] - which is a process in contravention to the small datasets
typically available in an industrial setting. A machine learning regression model has also been trained
on simulated gamma spectroscopy data for nuclear isotopes [239], which uses a multi-label output to
form a probability distribution used to make concentration predictions with multiple analytes.

A collection of neural networks were trained to directly predict analyte concentrations in the TBP
dataset, alongside biopharmaceutical data discussed in the following chapter. These varied in features
including, but not limited to, the number of hidden layers (2 to 5), the depth of hidden layers (128 to
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1024), the inclusion or exclusion of regularisation techniques such as dropout and weight regularisation,
batch normalisation, and both ReLU and leaky ReLU activation layers. Neural networks featuring
exclusively FC layers were categorised as DNNs, whereas variants that replaced some earlier FC layers
with convolutional layers (ranging from 1 to 3 hidden layers) were part of the CNN set.

As previously discussed, spectroscopic datasets obtained in industrial settings are typically small
in volume, as is the case with the TBP dataset used within this study (around 1000 spectra), and to
an even greater extent in the following chapter focused on the biopharmaceutical sector. As such, the
DNNs and CNNs that were trained using either MSE, or mean squared logarithmic error (MSLE), as
the loss function failed to learn the relationship between individual Raman spectra and corresponding
concentrations. Instead, the geometric mean concentration of each dataset was predicted, suggesting
that these architectures were underfit to the training dataset. These results indicated that there was an
insufficient volume of data required to train the model architectures in order to make direct predictions,
as shown by characteristic features of the training and validation loss curves seen in Figure 5.6. The
constant separation between training and validation loss curves, and the large variations seen in the
validation losses, are suggestive of an unrepresentative training dataset too small to form a generalised
model, despite the data augmentation strategy described in Subsection 5.1.2.
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Figure 5.6: Example model performance for the DNN and CNN models trained to make direct predic-
tions on sample concentrations for the TBP dataset. Top, two CNN architectures show sharp initial
decreases in training losses (solid lines), followed by a negligible change at later epochs suggesting
underfitting due to insufficient data required to train the model. Bottom, two DNN architectures show
similar sharp decreases in loss as training begins followed by the same plateauing effect on the training
loss. The validation losses (dashed lines) have notably higher variability in comparison to the training
losses, indicating an unrepresentative validation dataset to evaluate the model.

Stemming from the underwhelming performance of the DNN and CNN architectures, and motivated
by the success of the CAE trained in Chapter 3, the regression model was divided into two components:
a feature extraction task handled by an autoencoder, chosen for the capacity of the architecture to
learn salient features conducive to accurate data reconstruction (in this case, spectra); and a linear
regression model (specifically ridge regression) to generate the desired concentration predictions once
trained on the feature embeddings produced by the autoencoder.

The complexity of the machine learning regression model using this structure was at first reduced
down to the most basic form, with a single fully connected hidden layer for the feature embedding and
a ReLU activation function, but without any additional hyperparameters such as weight regularisation
or dropout. At this stage, the combined autoencoder and ridge regression model proved capable of
learning a relationship between the dependent and independent variables in the training dataset, in
order to make accurate concentration predictions. Consequently, the complexity of the model was
then iteratively increased in the same fashion as described for the DNNs and CNNs to maximise
the predictive power of the AE-Ridge model. Thus the final autoencoder architecture, described in
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Subsection 5.1.3, provided the best results on the regression task alongside the ridge regression model.
The inclusion of convolutional layers was also investigated but was found to be detrimental to the
performance of the regression model, hence the exclusive use of FC layers in the final autoencoder.

5.2.2 Results and Comparison to Industry Standard Methods

The performance of the AE-Ridge regression model was compared against two standard regression
methods used for concentration prediction: PCR and PLS regression. The latter of which is widely
used in chemometrics and other similar areas of spectroscopic data processing [99, 106, 107]. The
metrics used to evaluate the performance of each regression model in the concentration estimation
task were the R2, 95% PI, and LoD metrics.

The Coefficient of Determination. The R2 metric measures the proportion of variance in a
dependent variable that is explained by an independent variable, which are the true concentrations of
each mixture and the concentrations predicted by the regression task, respectively. It is described by
the equations

R2 = 1− RSS

TSS
(5.5)

RSS =

n∑
i=1

(yi − ỹi)
2 (5.6)

TSS =

n∑
i=1

(yi − µ)2, (5.7)

where RSS is the sum of squares of residuals, defined using yi as the true concentrations and ỹi as
the predicted concentrations, for all n samples; and TSS is the total sum of squares, using the same
variable definitions as in Equation 5.6, in addition to the mean concentration of all samples, µ.

Prediction Interval. The PI metric estimates an interval, based on existing data, within which a
given observation will fall at a certain probability. A prediction interval of 95% was selected for this
evaluation. The formula is as follows:

PI = ŷi ± zσ, (5.8)

where ŷi is the ith predicted value (concentration), σ is the standard deviation of the predicted con-
centration distribution. The parameter z defines the standard score of the prediction interval, which
is the number of standard deviations by which a raw value succeeds or precedes the mean. A 95%
level of confidence was specified, hence z is set to a value of 1.960, which is obtained from a z-score of
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0.9750 located on a z-table. The value of 0.9750 is used rather than 0.9500 on a z-table because the
95% PI is a two-tailed test that defines a range inclusive of both lower and upper bounds, as shown in
Figure 5.7, therefore the combined percentages equate to the 95% PI value.

Figure 5.7: Illustration of the 95% Prediction interval.

Limit of Detection. The LoD metric establishes the lowest analyte concentration that can be
reliably detected by an analytical technique or instrument. This metric holds significant industrial
relevance as it represents a threshold at which target signals can be distinguished from background
noise, with a typical confidence level of 99% [240]. A low LoD value enhances quality control in impurity
detection, and strengthens safety and risk assessments by increasing confidence in the sufficient absence
of harmful substances. These attributes directly relate to POCO, in which the reliable detection of
organic residues is critical to the industrial process. LoD relates to the SNR of the instrument and, in
this context, reflects the sensitivity of the regression method. It is described by the equation

LoD = 3.3
σSD

m
, (5.9)

where the 3.3 is a constant corresponding to a 99% confidence level in a normally distributed dataset,
and m is the slope of the linear regression line obtained from a calibration curve. The variable σSD

is the standard deviation of the response of the model to the analyte signals. This value can be
obtained using the calibration curve, either by calculating the standard deviation of the y-intercepts
from multiple regression lines, the standard deviation of blank signals (those that do not contain the
analyte), or from the residual standard deviation of a single regression line. As the calibration curve
used in this study relates to the linear relationship between predicted and true sample concentrations,
the residual standard deviation of the regression line is used to calculate the LoD for each model.

Principal Component Regression. PCR can be separated into two parts: PCA and a regression
task - typically a least squares model. PCA is a data reduction technique that aims to reduce the
dimensionality of complex data by calculating the ‘principal components’ of that data, which are sets
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of line vectors fit to minimise the squared distance to that line, whilst remaining orthogonal to all
previous vectors. Using this strategy, an i-dimensional dataset undergoes a change of basis to the
same number of dimensions, but where the ith dimension describes a portion of the total variance in
the dataset that is smaller than the previous i − 1 dimensions. It is common to discard a number of
principal components, leaving only the first N which describe a dominant share of the total variance
in the dataset; this strategy can therefore remove much of the noise within a dataset, as the more
structured, salient features are typically contained within the principal components that are retained.
The regression task that follows PCA typically uses a linear regression model, such as ordinary least
squares regression, applied to a number of high-variance principal components. However, low-variance
components have also been shown to be of a similar, if not greater importance, as regressors [241].

The TBP dataset was standardised as an initial preprocessing step, followed by a dimensionality
reduction using PCA, as previously described. As the data is standardised, each principal component
represents the eigenvectors of the data correlation matrix, which describes the joint-variability, or
causal relationship, between the complete set of data variable pairs. Hence, the eigenvectors represent
directions of variance within the dataset in descending order, where each eigenvalue defines the amount
of variance of the corresponding eigenvector. Multiplying each eigenvector by the square root of
the respective eigenvalue obtains the loadings of that principal component. PCA loadings are the
coefficients of the original variables that are used to form each principal component describing the
total variance within a dataset, as shown:

Total Variance =

N∑
i=1

PCi =

N∑
i=1

M∑
j=1

wijXj, (5.10)

where PCi is the ith principal component of the N total principal components describing the complete
dataset variance; M is the number of original variables; and wij is the coefficient representing the loading
of the jth original variable, Xj, for the ith principal component. A combined vector, Wi, containing all
loadings from Equation 5.10 represents the eigenvector of the ith principal component. PCA loadings
are therefore useful because they allow for the interpretation of each principal component; a loadings
matrix can be computed that shows the correlation between each principal component and the original
variables, which provides information on which of the original variables describes the largest portions
of variance in the dataset (i.e. which of the original variables are most relevant).

Following dimensionality reduction through PCA, a ridge regression model was trained to make
predictions on the concentrations of each sample. Ridge regression was chosen for this task to match
the AE-Ridge regression model for a more comparable test. Although it is typical to determine an
appropriate number of principal components to retain based on a user-specified threshold, such as the
first N principal components to contain at least 95% of the explained variance, the AE-Ridge regression
model was compared to the best-case scenario from the PCR regression task to set a high benchmark.
A set of PCR models was trained based on the full range of retained principal components, meaning
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from 1 to the maximum number of original components (512), and the model that achieved the lowest
95% PI score was selected as the best model for the TBP dataset to be compared to the AE-Ridge
model.

For completeness of the evaluation, in order to determine whether the increase in performance in
the AE-Ridge model was due to the non-linear features extracted by the neural network, or through the
data augmentation strategy, the PCR method was tested on the TBP dataset both with and without
data augmentation applied. This was done in addition to selecting the optimal number of principal
components to retain for each regression model. The results of this test are shown in Table 5.2.

Partial Least Squares. The PLS regression method is similar to PCR in that it is a model trained
to make predictions based on dimensionally-reduced data. However, where PCA acts to maximise the
variance of orthogonal principal components based solely on the independent variables, PLS regression
calculates a linear regression model by finding a relationship in the independent variables that maxim-
ises the variance in the dependent variables. Because of this difference the components, hereby referred
to as latent components, obtained through an iterative decomposition of sample data are not the same
as principal components. PLS regression describes the sample data, X, and the target variables, Y,
using the equations

X = TPT + E (5.11)

Y = UQT + F, (5.12)

where X is an n × m matrix of n samples and m independent variables; and Y is an n × p matrix of
n samples and p dependent variables - this represents concentration, hence in this case it is equal to
1. Both T and U are n × l matrices of n samples and l latent components, with T representing the
X scores, and U representing the Y scores - these scores are the values of observations that have been
projected into the transformed coordinate system. P and Q are m × l and p × l matrices of loadings,
respectively. Lastly, E and F are residual error terms. By using these descriptions of X and Y, PLS
regression iteratively maximises the covariance, or joint-variability, between T and U in order to make
accurate predictions. The optimisation algorithm loops a number of times equal to the number of
latent components specified.

As with the PCR test performed, separate PLS regression models were trained on the TBP dataset,
both with and without data augmentation, and with a number of latent components for each model
that were dictated by the lowest 95% PI value achieved in the range of 1 to the maximum number of
components (512) - in order to produce a best-case scenario to compare with the AE-Ridge regression
model.
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Regression Results. To thoroughly evaluate the regression methods, the complete set of permuta-
tions (regression methods and data processing procedures) were tested. To achieve this, the AE-Ridge
model was retrained and re-evaluated on all discrete mixtures datasets (i.e. without data augmenta-
tions). The results of these tests are shown in Table 5.2.

Table 5.2: Results of evaluating the three regression methods trained on the TBP dataset, both
with (augmented) and without (discrete) data augmentation. The value N represents the number of
components each dataset had after dimensionality reduction. The best results are shown in bold.

Method
Discrete Augmented

N R2 95% PI LoD N R2 95% PI LoD
(%) (%) (%) (%)

PCR 321 0.9909 ±4.92 1.59 284 0.9964 ±3.11 0.80
PLS 8 0.9918 ±4.67 1.55 17 0.9963 ±3.13 0.79

AE-Ridge 128 0.9924 ±4.51 1.48 128 0.9984 ±2.04 0.75

The results of the concentration predictions on the TBP dataset using the three regression methods
showcases the increase in performance of the AE-Ridge machine learning regression model over the
industry standard alternatives when combined with data augmentation. Without the use of data
augmentation, the AE-Ridge regression model still outperformed the alternative approaches in that
category, although the results are closely comparable. It should be noted that all regression models
benefitted from the use of data augmentation, however the AE-Ridge model saw the greatest gain in
performance. In particular, the value of the 95% PI metric for the AE-Ridge model trained with data
augmentation achieved approximately 50% better performance over both PCR and PLS regression,
which achieved similar results.

5.3 Conclusions

The machine learning regression model developed in this chapter surpasses industry standard tools
PCR and PLS regression with a 50% improvement in the 95% PI metric, achieved through a data aug-
mentation strategy that increases sample variance during training. A linear relationship was assumed
between neighbouring sample concentrations, which was effective given the linear Raman response of
the TBP and odourless kerosene mixture dataset used in this research for high concentration ranges.
All regression model permutations consistently achieved R2 performance above 0.99 for discrete data
and above 0.995 for synthesised samples. Each model similarly demonstrated strong LoD performance,
with the AE-Ridge model improving upon the other methods by approximately 5%. As discussed in
Subsection 5.2.2, this improvement would translate to tangible benefits in the context of risk assess-
ments, by ultimately leading to cost reductions during POCO. Due to the high SNR of each spectrum,
uniformly distributed concentration measurements, and linear Raman response, all models could ac-
curately predict TBP concentrations. However notably, the AE-Ridge model outperforms both PCR
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and PLS regression in estimate precision when trained with data augmentation.
The regression model was trained on a dataset of organic compounds present in the nuclear decom-

missioning process, POCO. Nevertheless, there exists other significant molecules that warrant inclu-
sion, such as dibutoxydiethylether (an organic solvent) and breakdown by-products of TBP: dibutyl
and monobutyl phosphate. Furthermore, it should be noted that the dataset employed in this study
comprises liquid samples, although it is common to encounter residual organics in the form of bulk sub-
stances or vapours. Consequently, there is a need for future research aimed at adapting to a multi-class
regression task, and to test the accuracy of model predictions across different phases of matter.

Amongst the possible avenues of future research, those worthy of investigation are primarily ones
that take into consideration practical hurdles and limitations of real-world applications, particularly in
relation to data collection. As a consequence, modifications to data processing stages and the neural
network architecture would be at the forefront of future work. Such changes include: implementing
either multi-class regression to predict quantities of multiple mixed sample spectra; transfer learning
to leverage learned relationships between input variables and output concentrations to adapt to new
samples (should retraining a multi-class model be impractical); or replacing the Ridge regression model
with a neural network-based regression tool to further improve the predictive performance.

Expanding upon the last point, a neural network-based regression tool could be achieved by retain-
ing only the encoder half of the FC autoencoder, freezing its parameters (i.e. preventing them from
being updated through gradient descent), and connecting a simple multilayer perceptron (MLP), which
is a neural network exclusively containing fully connected layers, or a CNN with a single output node
representing the sample concentration. This proposed method may hold a greater chance of overcoming
the underfitting issue, mentioned in Subsection 5.2.1, due to the features learned in the embedding of
the autoencoder. In addition, model underfitting may be ameliorated through expanding the diversity
of the training dataset to contain multiple classes, each with their own varying concentrations.

The linear Raman response in the nuclear dataset used in this chapter can be further taken advant-
age of with the inclusion of additional analyte datasets, as the data augmentation technique would be
capable of synthesising samples from a mixture of multiple nuclear analytes using a linearly weighted
combination of single analyte datasets. This process could be achieved with minimal modifications to
the data processing pipeline, and would prove a desirable aspect from an industry standpoint, as the
need for measuring a full suite of concentration permutations would be circumvented.

The regression methodology established in this chapter will be extended into the following chapter
focused on the biopharmaceutical industry, demonstrating the versatility of this approach.
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Chapter 6:

Transferring Success: Low-Concentration
UVRRS in the Biopharmaceutical Industry
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The work done in this chapter extends the evaluation of the joint machine learning feature extrac-
tion and linear regression tool to real-world chemometrics applications in the biopharmaceutical

industry. Drug manufacturing represents a costly undertaking, with estimates placing the expense
of establishing manufacturing facilities in the growing market at over £150 – £400 million, creating
a strong financial incentive to improve manufacturing efficiency for drugs essential across numerous
application areas. Such enhancements result in a decrease in waste products and an increase in drug
quality due to the heightened assurance of component concentrations.

Protein biologics currently hold a position of focus in biopharmaceutical research. This field en-
compasses enzymes, monoclonal antibodies (mAbs), which are specialised drug therapies designed to
target specific proteins in cancer cells, and other small proteins. These are essential components in the
research and development of new medicines, particularly in key health domains like anti-cancer and
immunomodulation [242]. However, the manufacturing of these drugs is a difficult and costly endeavor.
Consequently, there is a need to decrease these expenses by introducing biosimilars - near-identical
products to an original medicine - which would result in reductions to costs for patients receiving these
therapeutic drugs.

The production of mAbs is achieved through a downstream processing tool, liquid chromatography,
in which raw biological materials such as cells or tissue are used to produce pure proteins for future use
in drug manufacturing. A major challenge present throughout this downstream process is a risk of pro-
tein aggregation [243, 244, 245], which affects the yield of the resulting protein products. Besides that,
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protein aggregates are connected to adverse immunogenicity [245] - the ability for a drug introduced
into the body to produce an undesirable immune response - thus further emphasising the need for
quality control during the manufacturing of mAbs. By designing monitoring tools to quantify aggreg-
ation levels, adjustments could be made to liquid chromatography processes to assist in maximising
drug yield and quality.

Raman spectroscopy has been recognised as a potential monitoring tool. Nevertheless, conventional
spontaneous Raman spectroscopy in the visible and near-IR wavelength regions proves impractical
for gathering high-quality data, primarily due to significant levels of fluorescence that convolve with
the Raman response of analyte proteins. In this work a UVRRS system [246, 247, 248], a form of
RRS utilising a deep ultraviolet Raman probe laser, is used to overcome the challenge of fluorescence
by operating at low wavelengths (below 250 nm). In this wavelength range the analyte Raman and
fluorescence responses become spectrally separated (see Figure 6.1). In addition to this, the SNR of
the resulting spectrum is enhanced by two complementary factors. Firstly, as the Raman scattering
intensity is proportional to λ−4, the shorter wavelength laser used in the UVRRS system provides an
increase to peak intensity. Secondly, as the laser wavelength lowers, the electronic transition of many
organic molecules with conjugated structures are approached [248], which produces a resonant effect
that amplifies the Raman response by several orders of magnitude [41, 246].

Figure 6.1: Generalised illustration of how fluorescence affects a sample based on the laser wavelength
employed. When utilising a low-wavelength laser, as in the UVRRS system (228.5 nm), a spectral
separation occurs between the Raman and fluorescence responses. This separation arises from the
respective dependence, or lack thereof, on the laser wavelength. The term ‘autofluorescence’ denotes
the fluorescence response inherent to an organic molecule. Cyclohexane is used in this example, which
is a type of saturated hydrocarbon used to calibrate the UVRRS spectrometer due to its well-known
characteristic Raman peaks.

This chapter investigates two datasets of biopharmaceutical data at low concentrations (mgmL−1),
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which is made possible by the described aspects of the UVRRS system that are advantageous to
protein biologics analysis. As in Chapter 5, a theme explored in this chapter is the effect of small
dataset sizes, common to industry applications, on the design of the regression model. An alternative
data augmentation strategy is considered, from which a qualitative explanation is provided for the
non-linear Raman response of protein macromolecules due to their size and the resonant Raman effect,
which are aspects crucial to the design of data processing stages. Lastly, the limits of the selected data
augmentation strategy are investigated by analysing the performance of the regression model based on
selected modifications to the augmentation process. This test is carried out on a database of amino
acid measurements with a non-linear Raman response, taken at non-uniform concentration intervals.

6.1 Data Preparation and Modifications to Processing Stages

Two databases were created from bio-molecular compounds that had been dissolved in aqueous (water)
solutions, as a result of the liquid chromatography manufacturing process. The first being a macro-
molecule, immunoglobulin G (IgG), which is a common type of antibody found in humans (see Figure
6.2a). The other molecule chosen was tryptophan, which is an amino acid used in protein synthesis
(see Figure 6.2b). As both of these molecules serve important roles in the human body, they are thus
relevant areas of study for biopharmaceutical industries in protein biologics research. It is important
to accurately predict the quantities of these substances, as the goal is to increase the purity of these
solutions due to the role of these organic compounds as common constituents in modern drug design.

(a) IgG (image adapted from Janeway et al. [249]). (b) Tryptophan (image taken from PubChem [250]).

Figure 6.2: Molecular structures of IgG and Tryptophan. A simplified schematic representation of IgG
is given showing light and heavy chains, which determine the functionality of the antibody.
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Descriptions of the data preprocessing and augmentation stages are largely the same as described
in Section 5.1 of the previous chapter. Therefore, the subsequent subsections will highlight notable
distinctions in the preparation of protein datasets for training and evaluating the performance of the
AE-Ridge regression model within the context of the biopharmaceutical sector featured in this chapter.
Wherein emphasis will be placed on the acquisition of spectra from low concentration mixtures using
deep UVRRS. The design of the FC autoencoder architecture and hyperparameter choices, used as
a non-linear feature extraction tool within the machine learning regression task, are identical to the
previous chapter, demonstrating (as per the results in Subsection 6.2.3) the ability for the combined
AE-Ridge regression tool to handle different types of Raman spectroscopy data (spontaneous and
resonance), at both high and low concentrations, across different industrial areas. The training method
employed in this chapter mirrors that of Chapter 5. In addition, two distinct versions of the AE-Ridge
model were trained, one for each biopharmaceutical dataset.

6.1.1 Data Acquisition and Preprocessing

The Raman spectra for the IgG and tryptophan mixture databases were captured using a deep UV spec-
trometer called Odin, which is an in-house setup developed by research collaborators at IS-Instruments.
The spectrometer featured an Andor iDus 420 FT detector, with 400 lines/mm blazed diffraction grat-
ings from Richardson. A low-pass filter was used to exclude some noise by attenuating high frequency
signals from the fibre core. A 9mW laser was used at a central wavelength of 228.5 nm. The exposure
time was set to 30 s for each spectra. The arrangement of this SHS spectrometer is the same as the
Odin spectrometer, as seen in Figure 5.2 in the previous chapter.

There were 11 concentrations measured for IgG ranging from 0.1021 to 2.0173mgmL−1, and 17
concentrations measured for tryptophan ranging from 0.0127 to 5.0971mgmL−1. Table 6.1 contains
the full list of all concentrations measured for both datasets. For both the IgG and tryptophan
datasets, each concentration had 10 repeat measurements that were distributed into respective training,
validation and testing datasets at ratios of 6:2:2. Consequently, each dataset contained a total of 110
spectra for IgG and 170 for tryptophan. Therefore, due to the limited size of the datasets available,
the application of data augmentation becomes crucial in order to introduce enough sample variability
required for training a deep neural network effectively in the context of this regression task.
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Table 6.1: Full range of measured concentrations for both IgG and tryptophan in aqueous solutions.

IgG Concentrations (mgmL−1)

0.1021 0.2028 0.4031 0.6064 0.8117 1.016
1.2195 1.4072 1.6156 1.792 2.0173

Tryptophan Concentrations (mgmL−1)

0.0127 0.0238 0.0409 0.0639 0.0887 0.1027
0.1962 0.3986 0.5922 0.8405 1.0150 1.2200
1.4409 1.6179 1.8190 2.0548 5.0971

The datasets were interpolated to a fixed wavenumber range as advised by IS-Instruments, which
was tuned to encapsulate the full range of characteristic Raman features whilst maximising the re-
spective resolutions by discarding redundant wavenumbers. This resulted in the IgG dataset having
a wavenumber range of 600 to 2250 cm−1 at a constant wavenumber resolution of 3.223 cm−1, and
the tryptophan dataset having a wavenumber range of 570 to 2270 cm−1 at a constant wavenumber
resolution of 2.969 cm−1. Both datasets were interpolated using a cubic spline interpolation, which
produced spectra containing 512 bins.

6.1.2 Influence of Non-Uniform Concentrations on Dataset Design

As stated at the beginning of this section, the data augmentation process applied to the IgG and
tryptophan datasets were the same as those applied to the TBP dataset described in Subsection
5.1.2 of the previous chapter. However, due to the assumption of linear scaling between neighbouring
samples with small differences in concentration, two tryptophan datasets were defined: one retaining
the 5mgmL−1 sample, termed Trypt-5; and the other discarding it, termed Trypt-2. This resulted
from the closest neighbour to the 5mgmL−1 sample being sufficiently separated in concentration as to
reduce model performance should the former sample be retained. Figures 6.3 and 6.4 show examples
of synthesised spectra produced by the data augmentation process for the IgG and Trypt-5 datasets.
The performances of these models are evaluated in Subsection 6.2.3, followed by an exploratory test
in Subsection 6.2.4 to overcome performance issues in the AE-Ridge model trained on the Trypt-5
dataset - owing to the heightened non-uniformity of measured concentrations - through modifications
to the data augmentation strategy.
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Figure 6.3: Synthesised mixture spectra of IgG through the entire range of concentrations between
approximately 0.1mgmL−1 to 2mgmL−1. The lower concentrations feature a large, broad water peak
before 750 cm−1 that is suppressed as the concentration increases. Conversely, the intensity of the
main IgG peaks increase as the concentration increases.

Figure 6.4: Synthesised mixture spectra of tryptophan through the range of concentrations in the
‘Trypt-5’ dataset, between approximately 0.01mgmL−1 to 5mgmL−1. As with Figure 6.3, the lower
concentrations feature a broad water peak before 750 cm−1, with a similar number of counts, which is
suppressed as the concentration increases.

6.2 Evaluation of Regression Model

In this section, attention is drawn to the non-linear Raman responses of both the IgG and tryptophan
datasets as the concentrations of each sample vary, due to a combination of factors including: large
Raman scattering cross-sections, the large size of the macromolecules and a resulting attenuation effect,
and the resonance Raman response of the proteins caused by the UVRRS system. An explanation is
provided for the method by which synthesised spectra are normalised to account for this non-linear
effect in Subsection 6.2.1. In Subsection 6.2.2, an alternative data augmentation strategy is investigated
in an attempt to synthesise more accurate interstitial concentrations that are sampled independently of
the measured sample distribution. However, as this alternative method yields monotonically increasing
Raman peak heights as sample concentrations increase, contrary to the expected non-linear pattern
between Raman peak heights and sample concentrations described by the LIDAR (light detection and
ranging) equation [251, 252], which governs signal intensity based on factors such as transmitted laser
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power, optical system properties, and analyte characteristics, it was concluded that this alternative
approach was not viable.

As in the previous chapter, Subsection 6.2.3 provides a comparison between the model performances
of the AE-Ridge regression model and the industry standard regression tools, PCR and PLS regression.
Lastly, Subsection 6.2.4 investigates a modification made to the data augmentation strategy to account
for the non-uniform nature of sampled concentrations in the tryptophan dataset, specifically by taking
the natural logarithm of the discrete (unaugmented) concentrations before synthesising interstitial
spectra, showing a drastic increase in the performance of regression models trained on both the Trypt-
2 and Trypt-5 datasets.

6.2.1 Considerations for Dataset Normalisation

As mentioned in Subsection 5.1.2 of the previous chapter, the datasets for each molecular compound
were normalised using L2-normalisation. This choice of normalisation was based on the non-linear
Raman response of the IgG and tryptophan datasets evaluated in this work. This section compares
the chosen L2-normalisation procedure against a linear normalisation based on a comparison of the
resulting spectra, focusing in particular on the Raman peaks of both analytes.

Beyond the discrete sample concentrations of 1.2195 cm−1 for IgG (see Figures 6.3 and 6.5), and
0.3986 cm−1 for tryptophan (see Figures 6.4 and 6.6), contributions to the Raman spectra from water
peaks become insignificant in comparison to each analyte. Thus, the only noticeable changes to spectra
at higher concentrations are the relative intensities of each analyte peak - assuming all other conditions,
such as acquisition time, remain constant. However, at high enough concentrations the peak ratios
no longer vary, at which point the distinguishing factor is the ratio between peak height and baseline.
This is due to the Raman scattering cross-sections of both IgG and tryptophan being significantly
greater than that of water. An analysis of the non-linear nature of the Raman responses of these
organic molecules, and how they affect the data augmentation procedure, is given in Subsection 6.2.2.

Because of the change in behaviour of relative peak heights and ratios at higher concentrations,
spectra were normalised using L2-normalisation after new concentrations were synthesised (with noise
added to training samples), rather than a linear normalisation between the range [0, 1], to attempt to
prevent high concentration samples from becoming degenerate. Linear normalisation was also avoided
as higher concentration signals would have an amplified level of noise; although the noise present
in each signal is not a determining feature for the concentration of an unknown sample, there is a
possibility that a neural network could learn a representation of the data that incorporates this as
a deciding feature. All spectra were then rescaled, as described in 5.1.2, to simplify the process of
hyperparameter optimisation between the multitude of neural networks trained throughout this thesis.
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(a) IgG spectra linearly normalised between the range [0, 1].

(b) IgG spectra L2-normalised, then broadened between the range [0, 1].

Figure 6.5: Five IgG spectra synthesised at concentrations contained within the discrete dataset. Both
normalisation methods mostly maintain distinctions between concentrations. However, the peak at
750 cm−1 is degenerate in a, whereas b produces an overall better separation of peak intensities with
respect to concentrations.
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(a) Tryptophan spectra linearly normalised between the range [0, 1].

(b) Tryptophan spectra L2-normalised, then broadened between the range [0, 1].

Figure 6.6: Five tryptophan spectra synthesised at concentrations contained within the discrete data-
set. Peaks heights in a closely match, making those concentrations more degenerate, whereas in b
they remain distinct, with higher concentration mixtures having taller peaks.

6.2.2 Effects of Non-Linear Raman Response on Data Augmentation

Whilst the performance of the regression model trained on the three datasets (IgG, Trypt-2 and Trypt-
5) benefitted from the use of data augmentation, there are shortcomings to the linear data augmentation
method - namely that uniformly-spaced concentrations are required in order to accurately synthesise
a uniform distribution of concentrations, and the inaccurate assumption of a linear relationship at
small differences in concentration between peak intensity and sample concentration. From this, an
alternative data augmentation method was investigated.

Ideally, an alternative method would be capable of synthesising interstitial concentrations that are
more accurate than those created under the assumption of a linear relationship. It would also be
capable of producing a uniform distribution of concentrations from a set of non-uniform distributions
sampled from discrete sample concentrations - which, through knowledge of the non-linear Raman
scattering intensity of a sample, may have necessitated an increased number of measurements within
a particular range of concentrations - thereby removing model bias towards more densely populated
concentrations. Based on these considerations, the Trypt-2 dataset was used to test the alternative
method.

An alternative data augmentation method was tested that fit a spline, per wavenumber, across
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the discrete concentrations. The 10 spectra measured at each sample concentration were partitioned
into the training, validation, and testing datasets with a ratio of 8:1:1. The training dataset was then
averaged, increasing the SNR by an approximate factor of 2.8 - calculated from the signal noise that
scales proportionally to the square root of the number of frames. Once all splines were fit to each
wavenumber, new spectra could then be synthesised through a continuous range of concentrations by
sampling at the same point along each spline for every wavenumber (see Figure 6.7). The concentration
of each synthesised spectrum can be trivially calculated based on the distance between neighbouring
discrete concentrations.
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(a) Averaged discrete concentrations.

(b) Linearly-synthesised concentrations. (c) Spline-synthesised concentrations.

Figure 6.7: Examples of the continuous distribution of concentrations synthesised from the Trypt-2
dataset via the linear (b) and spline (c) data augmentation methods. The discrete concentrations are
independently averaged and shown in (a) for reference.

Degenerate peak heights in the discrete dataset (Figure 6.7a) are mimicked in the linear method
(Figure 6.7b), as can be seen around 1.0 to 1.5mgmL−1 on the concentration axis (the orange region).
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There were a greater number of measurements taken at lower concentrations of tryptophan, as seen
in 6.7a, which causes a greater number of low concentration samples to be synthesised by the linear
method in comparison to the spline method. This is visualised by the increased density of coloured
spectra in the blue-purple range for the linear method (Figure 6.7b) in comparison to the spline method
(Figure 6.7c).

The spline data augmentation method, though capable of creating a uniform distribution of con-
centrations, was not selected to replace the linear data augmentation method. One reason for this is
the reduced variance in synthesised spectra in comparison to the linear method - described in Subsec-
tion 5.1.2 of the previous chapter - resulting from the set of single splines fit across each wavenumber
from which to generate spectra, which is an undesirable trait due to the small amount of available
data. Repeated spectra synthesised at the same concentration would be identical, before the addition
of noise, where the linear method is capable of producing different spectra due to sampling from indi-
vidual, non-averaged frames. This was considered for the spline method, however it would drastically
increase computation times due to having to fit 512 splines (the amount of wavenumber bins) for each
application of the method, along with reducing the SNR of the resulting data.

Note that the curve of the spline-synthesised data in Figure 6.7c monotonically increased, propor-
tional to increasing sample concentration, based on the smoothed cubic spline. This smoothing factor
was specified to model an increasing relationship between peak intensity and sample concentration,
and is satisfied when the following condition is met:

N∑
i=1

(yi − f(xi))
2 ≤ s, (6.1)

where yi is the intensity at each of the N concentrations for the specified wavenumber, f(xi) is value
at each concentration on the fitting spline, and s is the smoothing factor.

As mentioned previously, there is a non-linear relationship between peak height and sample con-
centration that exists for each of the three datasets (see Figure 6.7a). The source of this non-linearity
is a result of the differences in Raman cross-section between the mixture components and the size of
the analyte molecules. This behaviour is described by the LIDAR equation [251, 252], which governs
the signal intensity, S, from an analyte across all wavenumbers:

S = Nλαe−2τ, (6.2)

where N is the number of scattering centres, α is the Raman scattering cross-section of the analyte,
τ is the optical depth of the medium between instrument and analyte, and λ represents additional
constant variables, defined as

λ =
Lp V(R)AOe DQE I(R)∆R

πR2
, (6.3)
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where Lp is the laser power, V(R) is the overlap integral of the outgoing laser, A is the collecting area,
Oe is the optical efficiency, DQE is the quantum efficiency of the detector, I(R) is the overlap integral
between incoming and outgoing beams, ∆R is the sample depth, and R is the distance to the analyte.

For smaller molecules measured via spontaneous Raman spectroscopy, based on a conventional
spectrometer setup with a typical central wavelength laser, the exponential term in Equation 6.2 is
negligible. As such, doubling the sample concentration would result in a doubling of the signal intensity.
However, as the IgG and tryptophan databases used in these experiments were measured using a deep
UV spectrometer with a low central wavelength laser under resonance conditions, which amplifies the
size of the α term, the exponential term becomes important. This results in the signal intensity from
these samples increasing non-linearly with concentration, hence a monotonically increasing fit between
concentrations becomes inviable.

Additionally, where the number of scattering centres, N, in smaller molecules would mutually
increase with higher α values in increasing concentrations, the larger size of the biomolecules causes N
to decrease due to attenuation from the sample. The effect of this, in combination with the relevant
exponential term for IgG and tryptophan, results in a decrease in signal intensity as the concentration
increases to a certain point. Figures 6.7a and 6.7b demonstrate this beyond the averaged 1.8190 cm−1

sample concentration in tryptophan. It should be noted that the reduction in average peak height
around the 1.0150 cm−1 sample in the same figures is due to an error in measurement, which would
result in the same inherent, non-physical flaw in either data augmentation method.

Therefore, as a result of the non-linear behaviour of the signal intensity as described by the LIDAR
equation, the spline method for data augmentation becomes an inviable alternative to replace the
linear data augmentation method due to the monotonically increasing nature of the resultant spectra.
Beyond that, the augmented spectra seen in Figure 6.7c represent data contributions from a smoothed
fit of the peak heights, rather than directly from individual frames as in the linear method. Even
should the spline be used without smoothing, there would remain a dubious, non-physical assumption
of the behaviour of Raman spectra at interstitial concentrations. To resolve this, more measurements
must be taken at a higher concentration resolution, which is both impractical and time consuming
from an industry standpoint, and thus should ideally be avoided. Because of these drawbacks, the
linear method remained as the selected data augmentation strategy.

6.2.3 Results and Comparison to Industry Standard Methods

As in the previous chapter, the complete set of permutations (mixtures datasets, regression models,
and data processing procedures) were tested. As before, the AE-Ridge model was retrained and re-
evaluated on the unaugmented mixtures datasets to fulfil this requirement.
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Table 6.2: Results of evaluating the three regression methods trained on the three mixtures datasets
without data augmentation. The value N represents the number of components each dataset had after
dimensionality-reduction. The best results are shown in bold.

Dataset Method
Discrete

N R2 95% PI LoD
(mgmL−1) (mgmL−1)

IgG
PCR 5 0.9872 ±0.1404 0.1148
PLS 3 0.9798 ±0.1763 0.1326

AE-Ridge 128 0.9804 ±0.1738 0.0838

Trypt-2
PCR 66 0.7998 ±0.6216 0.2790
PLS 3 0.7917 ±0.6340 0.2689

AE-Ridge 128 0.8383 ±0.5585 0.1563

Trypt-5
PCR 86 0.5263 ±1.6940 0.8634
PLS 3 0.5161 ±1.7122 0.9000

AE-Ridge 128 0.4253 ±1.8658 0.7834

Table 6.3: Results of evaluating the three regression methods trained on the three mixtures datasets,
both with data augmentation. The value N represents the number of components each dataset had
after dimensionality-reduction. The best results are shown in bold.

Dataset Method
Augmented

N R2 95% PI LoD
(mgmL−1) (mgmL−1)

IgG
PCR 6 0.9890 ±0.1303 0.0340
PLS 14 0.9872 ±0.1406 0.0287

AE-Ridge 128 0.9951 ±0.0871 0.0179

Trypt-2
PCR 311 0.9162 ±0.4007 0.1119
PLS 16 0.8588 ±0.5219 0.1176

AE-Ridge 128 0.9758 ±0.2126 0.0534

Trypt-5
PCR 11 0.6503 ±1.4555 0.3945
PLS 29 0.4821 ±1.7713 0.4470

AE-Ridge 128 0.7221 ±1.2975 0.3090

Tables 6.2 and 6.3 demonstrate the advantage of machine learning in the ability to learn complex,
non-linear relationships. The necessity for a representative data augmentation procedure is also high-
lighted, as the AE-Ridge model substantially outperforms the PCR and PLS regression models on all
three datasets. Interestingly, data augmentation improved the performance of all regression models
across all datasets, with the exception of PLS regression trained on the Trypt-5 dataset that decreased
in R2 and 95% PI performance. This could be attributed to the inability of the data augmentation
procedure to accurately synthesise interstitial concentrations between measured concentrations with a
large separation, as in the case for the 2 and 5mgmL−1 samples, but retaining an improvement to the
LoD alongside the other regression models.
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For the IgG dataset, the AE-Ridge model was out-performed by PCR on the discrete data with the
exception of LoD, but succeeded PCR in all metrics when trained on augmented data - particularly on
the 95% PI metric, which shows an approximate 50% improvement. With regards to the tryptophan
datasets, the performance of all regression models were lower than the IgG counterparts owing to the
increased non-uniformity of the measured concentrations. When trained on the Trypt-2 dataset, the
AE-Ridge model outperformed both PCR and PLS regression regardless of the use of data augmenta-
tion - though the performances of all models were improved by its inclusion. Whereas, when trained
on the Trypt-5 dataset, the AE-Ridge model only surpassed the other methods with the inclusion of
the data augmentation procedure. This suggests that the AE-Ridge model is limited in the ability
to learn non-uniform separations in data. The results demonstrate that data augmentation enables
machine learning models to gain a more significant improvement in performance than both PCR and
PLS regression. Additionally, the lack of data augmentation on the Trypt-5 discrete dataset, and the
subsequent poor performance, emphasises the fact that most machine learning models - in particular
deep learning models - are data hungry.

6.2.4 Effects of Modifying Data Augmentation Process on Model Performance

The effect of data augmentation when applied to machine learning are showcased in Figure 6.8, in
combination with the results in Tables 6.2 and 6.3 in the previous section. The range of predicted
concentrations is both more accurate and precise due to data augmentation, which benefits from the
near-uniform separation of measured concentrations.
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(a) IgG discrete model test predictions. (b) IgG augmented model test predictions.

Figure 6.8: Concentration predictions using the AE-Ridge regression model on the IgG dataset both
with and without data augmentation. The dashed black lines shows the identity line, and the orange
and red lines show the trend lines for the plotted data points. Regression metrics are shown in Tables
6.2 and 6.3.

As mentioned, the data augmentation procedure benefits from samples being measured at uniformly
distributed concentrations. The trend lines plotted for both the discrete and augmented variant models
highlight the improvement to each regression model with the exclusion of the outlier sample at around
5mgmL−1 (see Figure 6.9). Additionally, regardless of the data augmentation procedure implemented,
the raw data must be faithful to the concentration that it is labelled to represent. As the data
augmentation procedure synthesises interstitial concentrations in a linear fashion, any flaws in the
raw data are represented alongside the desired distinguishing features. Figure 6.7b in Subsection
6.2.2 showcases the effect of this, in which synthesised spectra around the 1.0150mgmL−1 sample
have a downwards trend in the intensity of the three main peaks as a result of measurement errors.
This effect is seen in Figure 6.9b as the data points around that concentration feature a low frequency
oscillation. The AE-Ridge model trained on the Trypt-2 augmented dataset displays a minor plateauing
of predictions beyond approximately 1.5mgmL−1, suggesting that the regression model has learned
a data representation based partially off of a simple peak-height estimation alongside the non-linear
behaviour of the signal intensity (as explained in Subsection 6.2.2).
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(a) Trypt-2 discrete model test predictions. (b) Trypt-2 augmented model test predictions.

(c) Trypt-5 discrete model test predictions. (d) Trypt-5 augmented model test predictions.

Figure 6.9: Concentration predictions using the AE-Ridge regression model on the Trypt-2 and Trypt-
5 datasets both with and without data augmentation. The dashed black lines shows the identity line,
and the orange and red lines show the trend lines for the plotted data points. Regression metrics are
shown in Tables 6.2 and 6.3.
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As mentioned in Subsection 6.2.2, the data augmentation method employed benefits greatly from
the raw dataset being measured at uniformly-spaced concentrations. The effect of this is demonstrated
in Subsection 6.2.3, Tables 6.2 and 6.3 by the improved model performance of IgG dataset in comparison
to the two tryptophan datasets that possess notably worse data uniformity. An exploratory test was
performed to improve model performance on both the Trypt-2 and Trypt-5 augmented datasets through
a modification to the data augmentation process. The respective models were retrained on the same
data as before, but with the natural logarithm applied to all associated labels (concentrations) at the
data augmentation stage. The logarithmic form of all spectra were used throughout the training and
inference processes, and only exponentiated back to the true values in order to convert concentration
predictions into the desired units. This conversion shifted the measured concentrations closer towards
uniform intervals (see Figure 6.10), which had the effect of greatly improving model performance,
owing to the benefit of uniform data sampling to the data augmentation strategy.

Figure 6.10: One-dimensional representation of the Trypt-2 concentrations before and after taking the
natural logarithm, showing the improved uniform-spacing of discrete concentrations as a result of the
transformation. The concentration of the linear values are in units of mgmL−1, thus the log values
are in units of the natural logarithm of mgmL−1.

Table 6.4 shows an improvement to the Trypt-2 augmented dataset, and drastic improvement to
the Trypt-5 dataset, in terms of the R2 metric, by utilising the natural logarithm of the data labels
at the data augmentation stage. The LoD performance saw an approximate 20% improvement on the
Trypt-2 dataset, and a 30% improvement on the Trypt-5 dataset, due to the increased data uniformity.
However, the 95% PI metric remained in close proximity between ‘standard’ and ‘logarithmic’ versions
of each tryptophan regression model, despite the large improve to the R2 value. Due to the math-
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ematical nature of this procedure, and the increased density of low concentration samples that were
measured, the resulting models are more accurate at predicting samples with a lower concentration.

Table 6.4: Results of training the Trypt-2 and Trypt-5 datasets by taking the natural logarithm of
the labels (concentrations), in comparison to the standard values. The values for each metric were
exponentiated back to mgmL−1 for the comparison. The value N represents the number of components
each dataset had after dimensionality-reduction. The best results are shown in bold.

Dataset
Standard Labels Logarithmic Labels

N R2 95% PI LoD N R2 95% PI LoD
(mgmL−1) (mgmL−1) (mgmL−1) (mgmL−1)

Trypt-2 128 0.9758 ±0.2126 0.0534 128 0.9932 ±0.1835 0.0456
Trypt-5 128 0.7221 ±1.2975 0.3090 128 0.9764 ±1.2666 0.2346

As the concentration of a sample increases, the model begins to diverge in its predictive capability,
as can be seen in Figure 6.11, in which the line of best fit diverges from the identity line at higher
concentrations (though this effect is harder to see in 6.11b owing to the difference in scale). The
nature of this divergence would explain the retention of the high 95% PI values. Despite this, the
results demonstrate a clear improvement in the performance of the tested regression models owing to
the increased uniformity in the sample data - placing the performance of the ‘logarithmic’ Trypt-2
model, with data augmentation, closer in line with that of the IgG counterpart model (see Table 6.3).
This method may also allow for the incorporation of the outlier sample around 5mgmL−1, providing
that the reduction in model performance is acceptable in the bounds of the particular regression task,
which heavily depends on the importance of the outlier samples.
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(a) Trypt-2 logarithmic model predictions. (b) Trypt-5 logarithmic model predictions.

Figure 6.11: Concentration predictions using the AE-Ridge regression model on the Trypt-2 and Trypt-
5 augmented datasets, trained with logarithmic concentration labels. The dashed black lines shows
the identity line, and the orange lines show the trend lines for the plotted data points. Regression
metrics are shown in Table 6.4.

This result emphasises the advantage to the data augmentation strategy, and by extension, its pos-
itive impact on the performance of regression models, of measuring samples at uniform concentration
intervals. Alternatively, specialised adaptations to online processing techniques, like the one outlined
here, can alleviate the need for such rigid data collection prerequisites, which would otherwise impose
impractical constraints from an industrial standpoint.

6.3 Conclusions

The goal of this chapter was to apply the machine learning regression technique, originally developed
in Chapter 5 based on data relevant to a nuclear decommissioning process, to mixed spectra datasets
critical in biopharmaceutical drug manufacturing. The two datasets processed within this chapter
consisted of analyte proteins dissolved in aqueous solutions at low concentrations. A good SNR was
obtained from the samples by leveraging the UVRRS system to amplify the Raman response. This
amplification was a result of multiple factors, including: the shorter wavelength Raman laser enhancing
the Raman scattering intensity; the electronic transition of the organic molecules being approached,
causing a resonant effect; and a spectral separation of the Raman signal from sample fluorescence.

As in Chapter 5, the AE-Ridge regression model was evaluated against industry standard regression
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tools, PCR and PLS regression, and was found to greatly exceed the precision of predicted concentra-
tions on both datasets through the use of data augmentation. Using the next best model as the base
for comparisons in all cases, the AE-Ridge model outperformed the next best model on the 95% PI
metric by 50% for IgG, 88% for Trypt-2, and 12% for Trypt-5. All IgG regression models performed
well on the R2 metric, with the AE-Ridge model having a 0.6% increase in performance over both PCR
and PLS regression. This small difference owes to the high SNR of the IgG data, and the uniformity of
sample measurements. With regards to the tryptophan datasets, there were more substantial improve-
ments to the accuracies of both AE-Ridge models, possessing 7% and 11% increases in the R2 metric
for Trypt-2 and Trypt-5, respectively. The LoD was substantially improved by the AE-Ridge model on
all datasets: 90% for IgG, 110% for Trypt-2, and 28% for Trypt-5, demonstrating both the benefit of
machine learning and data augmentation processes in increasing the confidence level in handling low
concentration data samples, and the detrimental effect of non-uniform data in the Trypt-5 dataset.

By comparing the results of the modifications to the data augmentation technique (as proposed in
Subsection 6.2.4) to the unmodified processes on the AE-Ridge models, the benefit of the modification
becomes evident. With regards to the R2 metric, the AE-Ridge model performance improved on the
Trypt-2 model by only 2%, however the Trypt-5 model improved by 35%, aligning with the goal of
improving model performance through increased data uniformity. The LoD further improved by 17%
on Trypt-2 and 32% on Trypt-5. However, as shown in Figure 6.11, careful consideration must be
given to the nature of any modifications made to the sampling strategy used by the data augmentation
technique, as the accuracy of the trendline begins to diverge at greater concentrations, as a result of
the exponential behaviour. Such modifications, though maintaining poor outlier sample predictions on
the Trypt-5 model (having only increased by 2% on the 95% PI metric), allowed for a performance on
the AE-Ridge model that surpassed the R2 metric for both PCR and PLS regression trained on the
Trypt-2 dataset - a considerably easier regression task. This result shows potential for the inclusion of
outlier samples within an arbitrary dataset without adversely affecting the performance of standard
samples. However, modifications to either the regression model or the data augmentation technique
would be required in order to improve predictions made on outlier samples. Although, the non-linear
nature of the Raman response from the organic macromolecules used in this chapter may place a limit
on such potential.

To conclude, the results presented within this chapter - in combination with the previous chapter
- demonstrate the capacity of the AE-Ridge regression model to produce both accurate and precise
predictions on a range of data from different industries, at both low and high concentrations, and
measured using different Raman spectroscopy techniques. By considering the non-linear Raman re-
sponse of the organic macromolecules used within this chapter, substantial gains in model performance
are achieved through a simple modification to the sampling strategy at the data augmentation stage.
However, there is interest in making further modifications to the data augmentation technique with
the goal of improving outlier performance. Future work in this area, similar to that of Chapter 5,
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will look to expand the functionality of the regression model to benefit from transfer learning, which
would allow the regression model to adapt to future datasets. This is increasingly becoming a crucial
aspect for a regression model to have in a biopharmaceutical setting, as a result of the fast turnaround
required by the ever-expanding range of organic molecules used throughout protein biologics research,
and in the manufacturing of new therapeutic drugs.
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Chapter 7:

Outlook and Future Work

The content presented in Chapters 3 and 4, in collaboration with members of the Baumberg re-
search group at the University of Cambridge, demonstrate the benefits of the robust data analysis

technique to nanotechnology research. By treating the SERS data captured for this research as im-
ages, a combination of machine learning architectures and image processing techniques were used to
analyse picocavity spectra produced by single molecules interacting with metal nanostructures. From
extracting and isolating transient spectral features, to clustering Configurations representing picocav-
ity events, the technique developed in Chapter 3 offers an end-to-end pipeline for the processing of
SERS data. This has lead to a powerful tool for studying the formation dynamics of picocavity events,
through a comparison to vibrational modes calculated from DFT simulations adapted to account for
the effects of a picocavity field gradient.

By producing a near-field map to reveal the most likely adatom position responsible for creating a
local field gradient, and statistically analysing the formation rates and mean formation times of several
NPoM varieties, Chapter 3 quantitatively showed that picocavity formation was suppressed on metal
surfaces functionalised with palladium. This has provided a method to verify the desirable effects of
catalyst surface or near-surface modifications. Chapter 4 introduced an extension to the data analysis
pipeline by incorporating the full suite of spatiotemporal information present in SERS data - treated
as images - to classify the polarity of correlated picocavity peaks. Using these predicted outputs, the
resulting correlation matrix built during the course of this analysis and described in Chapter 4 has
enabled a means to analyse how specific vibrational modes act across single molecules, and evaluate
the effects of any proposed modifications to catalyst surfaces. An example of which would be surface
doping with palladium to reduce the occurrence of undesirable picocavity event types, and subsequently
reduce undesirable by-products from catalytic processes.

Thus, the foundational research in Chapter 4 extends the work done in Chapter 3, with the goal
of advancing the field of heterogeneous catalysis by enabling a method of evaluating tailored catalyst
designs, aided by the spatiotemporal analysis technique developed within the chapter. Future work
might expand the functionality of the Siamese-CNN model to provide a fine-grained evaluation of
correlated modes, and thence a better understanding of such interactions. This research has many
practical applications in improving the selectivity and efficiency of catalytic processes, such as the
Haber-Bosch and CO2 reduction processes described in Chapter 4, showing clear global benefits to
advancements in this field.

In Chapters 5 and 6, a competitive machine learning regression tool was developed in collaboration

151



with IS-Instruments Ltd. that outperformed industry standard tools PCR and PLS regression used
as comparative benchmarks within this study. By separately training the AE-Ridge regression model
on datasets from both nuclear and biopharmaceutical industries, it was proven that the model could
effectively adapt across a wide variety of data. This encompassed data with varying magnitudes
in concentration, different Raman spectroscopy measurement methods (spontaneous and RRS), and
analyte molecule sizes. The final scenario, due to sample attenuation, resulted in non-linear variations
of Raman responses with changes in sample concentration for both biopharmaceutical datasets.

An important theme within these chapters is the consideration of practical challenges in the real
world. Due to the common occurrence of low data volumes in industrial applications, both the neural
network architecture and data augmentation process were designed to overcome issues with limited
sample variance and consequent model underfitting. By utilising the data augmentation process de-
veloped in Chapter 5, and adapting the sampling strategy in Chapter 6 to account for non-uniform
data measurements, the AE-Ridge regression model was shown to predict unknown mixture concen-
trations with substantially greater precision in comparison to conventional regression tools across all
datasets.

In addition to the novel data analysis pipeline introduced in Chapter 3 and extended upon in
Chapter 4, as well as the competitive industrial regression model developed and applied in Chapters
5 and 6, there are aspects of these neural network processes that would benefit from improvements.
Namely in improvements to neural network model performance to increase the accuracy, precision,
and efficiency of each model where applicable. This would likely constitute refinements to the machine
learning algorithms, optimising model hyperparameters, or testing alternative architectures. For ex-
ample, the CAE developed in Chapter 3 extracts picocavity signals from individual spectra, however
as suggested in the conclusion of Chapter 3, transformer architectures have been shown to perform
state-of-the-art classification on hyper-spectral Raman datasets [211, 212], which may have the poten-
tial to jointly process the spatiotemporal features of SERS scans. This could provide a more reliable
extraction of weaker picocavity peaks that often appear at lower wavenumbers. Another beneficial
change would be the throughput of greater data volumes, as the current clustering process is limited
by the silhouette score evaluation metric in creating data clusters that can represent the complex and
diverse range of picocavity event types. Hierarchical [213] or density-based [214] clustering techniques
may overcome this challenge.

As mentioned in the conclusions to Chapter 4, adapting both the dataset assembly and labelling
process, and the Siamese-CNN model architecture (potentially only in the output layer), would allow
for the magnitude of correlated picocavity peaks to be incorporated, thus improve the accuracy of
predicted adatom locations, and hence increase the wealth of information gathered by this method to
inform future catalyst modifications.

Following the theme of future improvements to model capabilities, there is an industrial incentive
to extend the functionality of the AE-Ridge model utilised in Chapters 5 and 6 to include additional
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analytes in the mixture sample databases. This extension, from the perspective of nuclear decommis-
sioning, would provide a regression model encompassing the full range of expected contaminants. From
a biopharmaceutical standpoint, the use of transfer learning is desirable in order to create a robust
regression model able to quickly adapt to new datasets produced within the growing market.

An active area of machine learning worth exploring within the context of this thesis is that of
explainable artificial intelligence (XAI). As the vast majority of machine learning algorithms are ‘black
boxes’, there are numerous techniques that exist or are in development that seek to provide human-
interpretable reasoning behind model outputs. This has clear benefits to scientific applications by
providing transparency in AI model decisions, allowing for scientists to better understand the results
of a model. The large-scale adoption of these techniques in various applications, including the control
of therapeutic drug production within the biopharmaceutical sector, holds major significance. This
is due to the substantial financial repercussions arising from incorrect decisions made by a neural
network. Hence, there is a growing necessity to justify these decisions. One such example of XAI is
gradient-weighted class activation mapping (Grad-CAM) [253], which uses the final convolutional layer
of a CNN to provide a high resolution visual mapping, highlighting regions of an image that strongly
contribute to a particular model decision. Grad-CAM could therefore be applied to the data used in
Chapter 4 by the Siamese-CNN to explain model predictions, and hence increase the trustworthiness
of the approach.

At this stage, the robust data analysis pipeline developed in Chapter 3 provides a novel method
to study single molecule SERS data. Extending this research in Chapter 4 to incorporate the tem-
poral information in the SERS data, the data analysis pipeline has provided a unique insight into
the coordination geometries of adatoms in metal surfaces, as well as interactions between individual
vibrational modes on single molecules. It is believed at the present stage that this technique, enabled
through the use of machine learning and image processing tools, can translate to many other analyte
molecules as long as the required stable state exists from which the CAE can be trained. However,
with modifications suggested in Chapters 3 and 4, this requirement may be overcome, expanding the
list of molecules that can be processed. Thus this research contributes a powerful verification tool to
the field of nanotechnology, as well as for more general spectral analysis across physics and chemistry,
which can be used to assist in the rational design of heterogeneous catalysts.
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