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Abstract  

There is limited quantitative evidence of the effects of socio-economic shocks on biological 

resource use. Focusing on wild meat hunting, a substantial livelihood and food source in 

tropical regions, we evaluated the impacts of the shock from Nigeria’s COVID-19 lockdown 

on species exploitation around a global biodiversity hotspot. Using a three-year quantitative 

dataset collected during and after the lockdown (covering 1,008 hunter-months) and matching 

by time of year, we found that successful hunting trip rates were more frequent during 

lockdown, with a corresponding increase in the monthly number, mass, and value of animals 

caught. Moreover, hunters consumed a larger proportion of wild meat and sold less during 

lockdown compared to non-lockdown periods. These results suggest that local communities 

relied on wild meat to supplement reduced food and income during lockdown, buffering 

COVID-19’s socio-economic shock. Our findings also indicate that wild species may be 

especially vulnerable to increased hunting pressure during such shocks.  
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Introduction 

The hunting of wild animals for food (hereafter ‘wild meat’) is one of the biggest threats to 

biodiversity globally (Schulze et al., 2018; Abernethy et al., 2013) while also providing income 

and food to many rural communities across the tropics and subtropics (Coad et al., 2019). Wild 

meat is an accessible resource with relatively low entry costs compared to other livelihood 

activities (Schulte-Herbrüggen et al., 2013) and therefore provides an important safety net for 

rural communities during socio-economic crises, civil conflicts or other shocks that are usually 

characterised by reductions in livelihood opportunities and market access (UNDP, 2023). The 

economic importance of wild meat to rural communities is well known (Nielsen et al., 2017; 

Schulte-Herbrüggen et al., 2013), but there is limited quantitative evidence of its use during 

shocks, potentially because of their unpredictability and hence the lack of  comparable data 

before, during, and afterwards. 

The 2019 coronavirus disease (COVID-19) triggered one of the greatest global shocks in 

modern human history (World Bank, 2022), with the disease linked to ~ 6.9 million human 

deaths worldwide (as of March 2023; JHU, 2023) and a global economic shrinkage of 3.5% in 

2020 (World Bank, 2022). Many countries implemented national lockdowns that reduced 

transmission rates (Balmford et al., 2020; Hsiang et al., 2020), but with adverse economic 

effects (World Bank, 2022).  

McNamara et al. (2020) proposed that the COVID-19 lockdowns may have reduced urban 

demand for wild meat due to decreased spending power and increased costs for traders. 

Conversely, rural families, facing restricted livelihood options and increased urban-rural 

migration during the pandemic, may have increasingly relied on wild meat as a crucial source 

of food and income. Nonetheless, McNamara et al.’s hypotheses are yet to be tested 

quantitatively: previous attempts to assess the impacts of the COVID-19 shock on wild meat 

extraction and use mostly used qualitative interviews collected retrospectively and often 

focusing on single species (Enns et al., 2023; Mendiratta et al., 2022; Vliet et al., 2022; 

Kamogne Tagne et al., 2022; Briceño-Méndez et al., 2021). 

Here we investigated the impacts of the shock created by the COVID-19 pandemic on patterns 

of wild meat hunting and use in two rural communities around Nigeria’s Cross River National 

Park (CRNP). Using quantitative data from 28 hunters collected during and after Nigeria’s 

lockdown, and covering 1,008 hunter-months, we compare the frequency of successful hunting 

trips – trips in which at least one animal was captured – and their outcomes (number, mass, 
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value, and use of animals caught) during and after the lockdown. In line with McNamara et 

al.’s hypothesis, we expect that the frequency of successful trips and these outcomes will be 

higher in lockdown compared to other periods. Given reported disruptions in protected area 

management during lockdown (Eklund et al., 2022; Singh et al., 2021), we also investigate 

changes in ranger patrol efforts in CRNP and further assessed whether hunting locations (i.e., 

within and outside the park) changed during lockdown. Our results provide quantitative 

evidence of the importance of wild meat to local communities and the vulnerability of wild 

animal populations during shocks, which can help to inform policies for withstanding future 

disruptions. 
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Methods  

Data Collection  

We tracked 33 male hunters each recruited from a different household around CRNP, south-

east Nigeria, for three years (1 April 2020-31 March 2023), but here we only used data from 

28 hunters followed continuously. The communities (~ 10 km apart) border Oban Division of 

CRNP, one of the largest remaining forest blocks in the Guinean Forest biodiversity hotspot 

(Myers et al., 2000; Figure 1). We recruited hunters through community hunter associations, 

focusing on formal hunters (those who primarily hunt with guns) as casual hunters (who mainly 

use snares to trap animals) were not members. After each hunting trip, we conducted structured 

interviews administered by trained local field assistants. 

The data collected included trip duration (in days), the number and species of animals captured, 

and, for each animal, its intended use (household consumption, gift, ceremonial use, or 

commercial purpose), mass, and price (for carcasses not intended for sale, we requested the 

likely price if sold). In cases where hunters had already slaughtered an animal, we recorded its 

mass and price per piece. Additionally, we inquired about any captures consumed during the 

trip, though we had missing data for mass in such cases. We also recorded the location of 

capture as follows a) plantation, b) community forests, and c) protected forests. During 

lockdown, we recorded only those trips on which animals were caught, and hence our analyses 

here focus on the frequency and outcomes of successful trips, restricting us from assessing 

variations across all hunts irrespective of outcome. However, this limitation does not hinder us 

from testing McNamara et al. (2020) hypothesis of elevated harvesting of wild meat during 

lockdown. Note that all hunts within CRNP or that involved killing a protected species were 

illegal. An ethics statement is provided in Appendix A. 
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Figure 1: Approximate locations of the study communities around Oban Division of Nigeria’s Cross River 

National Park. The red rectangle in the top left map highlights the study location within Nigeria.  

Analysis   

We first split our data into three periods: ‘lockdown’ (30 March to 3 September 2020; 5.2 

months), ‘matched non-lockdown’ (corresponding lockdown dates in 2021 and 2022, totalling 

10.4 months; note these included minor restrictions on people’s movements), and ‘other non-

lockdown’ (other days in 2020-2023, totalling 20.6 months; see Appendix B for more details). 

Next, we used a Chi-square test to compare a) species composition of the catch across periods 

(using data on 13 species as we dropped those with expected values per period <5) and b) 

location of captures across the periods (we merged plantation with secondary forests as 

community forest and compared captures here with CRNP). We then examined how wild meat 

offtake and use varied with lockdown by fitting eight generalised linear mixed models to 

examine changes in hunting behaviour and outcomes. The first four models examined 

variations in hunter behaviour and hunting outcomes across our three periods, while the second 

set assessed the uses of the captured animals, providing insights into observed patterns in the 

earlier models. The response variables of the models were: a) number of successful trips, b) 

number of animals captured, c) mass of wild meat harvested, d) value of wild meat harvested, 

e) mass of wild meat consumed in hunter’s household (hereafter mass eaten), f) mass of wild 

meat sold, g) proportion of mass eaten, and h) proportion of mass sold.  

We summed the number of successful trips and animals captured per hunter for each period 

and calculated the mass and value of animals caught by multiplying each hunter’s total number 

of animals per species in the relevant period by their median mass and median price, 

respectively (using period-specific values). We corrected the values of these response variables 
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(models a-f) for differences in each period’s duration by dividing them by their respective 

lengths. We fitted the models as a function of period (lockdown, matched non-lockdown, and 

other non-lockdown) and four hunter-level variables: 1) hunter’s annual household income 

excluding hunting-related income (log10-transformed), 2) hunter’s experience in years (log10-

transformed; models a-d only), 3) their household’s well-being index (WBI; L’Roe et al., 

2023), and 4) their household size expressed in adult male equivalents (AME), which describes 

a household’s energy needs by accounting for the sex, age, and physiology of its members 

relative to the average adult male’s energy requirements (Weisell & Dop, 2012). The rationale 

for including each predictor and their derivation is set out in Appendix B. All hunter-level 

covariates were gathered in May 2022. Univariate plots of the response variables and predictors 

are in Figures S1-8 presented in the order in which we described the models above. We used a 

Gaussian model to explore, using one data point per hunter for each period, the log-transformed 

number of successful trips and animals captured, mass and value of wild meat harvested, mass 

eaten, and mass sold (each expressed per hunter-month). Where only a part of an animal was 

eaten or sold, we used the median mass of the relevant part, as we could not record the mass of 

every part. To include zero values for the total mass of meat eaten or sold in a period, we added 

0.0005 to all the records. We accounted for inflation in the value model – adjusting nominal 

prices in 2020-22 to reflect current prices (i.e., real prices in 2023) using inflation rates based 

on Nigeria’s consumer price index (Trading Economics, 2023; World Bank, 2023). For the 

models of proportions of mass eaten and sold, we used beta regression with a logit link function, 

transforming the response variables to meet the open interval assumption of the beta 

distribution (Smithson & Verkuilen, 2006) . In all models, we examined collinearity among the 

predictors (variance inflation factor threshold = 3; Zuur et al., 2013) before and after fitting the 

model, standardised all continuous predictors, and used simulated residuals (Dunn & Smyth, 

1996) to visually assess model fit (Figures S9-16; see Equations S1-8 presented in the order in 

which we described the models above; software and packages in the Supplementary Material). 

To check that the patterns we observed in our main analyses are not driven by any long-run 

declines in animal populations, we ran another mixed-effects model to infer temporal trends in 

animal availability, using mass harvested per trip (restricted to each hunter’s last lockdown and 

first post-lockdown trips) as the response variable. Here we hypothesise that decreased mass 

per trip following the lockdown suggests that potential lower offtake rates post-lockdown was 

driven by diminished prey availability, possibly due to overhunting in lockdown. We used the 

following as predictor variables: period (lockdown and other non-lockdown), trip duration in 
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days (accounting for effort), and the hunter-level covariates in previous models (Figures S17-

18 and Equation S9). Finally, we analysed CRNP ranger patrol data provided by Wildlife 

Conservation Society to compare patrol efforts (see units below) during lockdown and matched 

days in 2019 (matched pre-lockdown) and 2021 (matched post-lockdown). Using Kruskal-

Wallis tests and Dunn’s post hoc, we examined variations in the monthly median a) patrol 

frequency, b) rangers per patrol, c) distance covered, and d) active patrol time (duration) across 

these periods (five data points per period; see additional information in Appendix B). We did 

not include the ranger data as a predictor in models a-h because the patrols occurred within the 

park whereas most of the hunting trips took place in community forests.  
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Results  

The 28 hunters made 1,398 successful hunting trips (433 during lockdown, 340 in matched 

non-lockdown, and 625 in other non-lockdown; period length adjustments = 83, 33, and 31, 

respectively). Together they captured 2,369 animals of 39 different species (five birds, five 

reptiles, and 29 mammals) with a combined estimated mass of 13,870 kg and total value of 

₦17,941,000 (US$23,921 at $1 = ₦750). The adjusted monthly capture rate summed across 

our sampled hunters was 130, 53, and 56 animals in lockdown, matched non-lockdown, and 

other non-lockdown periods, respectively. Note that here and afterwards, ‘rate’ refers to 

monthly offtake within successful trips only. Approximately 85% of all captures occurred in 

community forests, while the remained took place in the park. Hunters consumed 8% of the 

total mass, selling 91% (with gifting and ceremonial use together accounting for 1%).  

The proportional composition of the catch across species differed significantly between periods 

(χ2 = 106.81, df = 24, p < 0.001). Of the 13 species used in the test, African brush-tailed 

porcupine (Atherurus africanus), African palm civet (Nandinia binotata), blue duiker 

(Philantomba monticola), greater cane rat (Thryonomys swinderianus), sitatunga (Tragelaphus 

scriptus), mona monkey (Cercopithecus mona), sitatunga (Tragelaphus spekii gratus) and 

white-bellied pangolin (Phataginus tricuspis) were caught disproportionately more in 

lockdown than non-lockdown periods (Figure S19; see species monthly capture rate per period 

in Figure S20). We also found that the number of animals captured in CRNP and community 

forests differed significantly across the periods (χ² = 493.4, df = 2, p < 0.001). There were more 

captures in CRNP during lockdown than expected based on the distribution of captures across 

all periods (observed count: 284, expected count: 108), with 42% occurring there during 

lockdown compared with 0% during matched non-lockdown Nonetheless, the observed count 

in community forests (388) during lockdown was higher than the expected count there (284; 

Figure S21). 

We found a higher number of successful trips per month in COVID-19 lockdown than in 

matched non-lockdown (β = -1.08, SE = 0.11, p < 0.001) or other non-lockdown periods (β = -

1.05, SE = 0.11, p < 0.001; Figure 2a; overall model r2 = 0.79; full details in Table S1). There 

was no significant difference in the average number of successful trips conducted between the 

two non-lockdown periods, and the number did not significantly vary with hunter’s experience, 

or the income, WBI or AME of their households. These patterns were similar in the model 

exploring the number of animals caught: hunter’s monthly capture rates were higher in 
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lockdown than in matched non-lockdown and other non-lockdown periods (β = -1.06, SE = 

0.12, p < 0.001 and β = -0.94, SE = 0.12, p < 0.001, respectively; Figure 2b; overall model r2 

= 0.76; Table S2), with no significant difference in capture rates between the two non-

lockdown periods or across hunter-level predictors.  

Our models of the mass and value of animals caught corroborated these findings. In the mass 

model, hunters harvested more wild meat per month during lockdown compared to the matched 

non-lockdown (β = -1.05, SE = 0.13, p < 0.001) and other non-lockdown periods (β = -0.98, 

SE = 0.13, p < 0.001; Figure 2c; overall model r2 = 0.73; Table S3). The value model showed 

that each hunter’s total value of wild meat harvested monthly was higher during lockdown than 

in matched non-lockdown (β = -0.88, SE = 014, p < 0.001) and other non-lockdown periods (β 

= -0.84, SE = 0.14, p = < 0.001, Figure 2d; overall model r2 = 0.67; Table S4). The two non-

lockdown periods did not differ in both these models, and no hunter-level covariates were 

statistically associated with the response variables.  

 

Figure 2: The monthly number of successful hunting trips and number, mass and value of animals caught 

were higher during the COVID-19 lockdown than in matched non-lockdown and other non-lockdown (a-d, 

respectively). There were no differences between matched and other (a-d). Green points show marginal 
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predictions (error bars = 95% confidence intervals) taken from models, with other covariates held constant: 

a) annual household income, b) hunting experience, c) household’s well-being index, and d) household size 

(expressed in adult male equivalents). Pale brown circles show observed data for each period for 28 hunters 

in two communities adjacent to Nigeria’s Cross River National Park (April 2020-March 2023).  

The model exploring variation in the mass of wild meat eaten per month showed that hunters 

consumed more wild meat in their homes in lockdown compared to matched non-lockdown (β 

= -2.79, SE = 0.43, p < 0.001) and non-matched non-lockdown periods (β = -1.63, SE = 0.43, 

p = < 0.001; Figure 3a; overall model r2 = 0.56; Table S5). Unlike in other models, the mass 

eaten during matched non-lockdown was lower than in other non-lockdown periods, but only 

weakly (β = 1.16, SE = 0.44, p = 0.03). The model of the mass of wild meat sold per month 

revealed similar patterns: more mass was sold during lockdown than in matched non-lockdown 

(β = -0.97, SE = 0.15, p < 0.001) and other non-lockdown (β = -0.91, SE = 0.15, p < 0.001; 

Figure 3b; overall model r2 = 0.70; Table S6), with no difference between the two non-

lockdown periods. Wild meat trade during the lockdown happened within each community but 

did not involve wider trading because markets were shut (S. Agbor, pers. comms). None of the 

hunter-level covariates in either model were significantly associated with the response 

variables. 

Our models on the proportions of wild meat mass eaten and sold revealed opposite patterns. 

The model of the proportion of wild meat eaten showed an increase in household consumption 

during the lockdown relative to matched non-lockdown (β = -0.89, SE = 0.14, p < 0.001) and 

other non-lockdown periods (β = -0.59, SE = 0.13, p < 0.001; Figure 3c; overall model r2 = 

0.62; Table S7). The model of the proportion of meat sold revealed that, on average, hunters 

sold a smaller proportion of the wild meat they caught during the lockdown compared with the 

other two periods (β = 0.95, SE = 0.15, p < 0.001 and β = 0.59, SE = 0.14, p < 0.001 

respectively; Figure 3d; overall model r2 = 0.75; Table S8). Neither proportion model showed 

differences in the non-lockdown periods, and no hunter-level covariates were significantly 

associated with the response variables. 
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Figure 3: The mass of wild meat eaten within hunter households and the mass sold were higher during the 

COVID-19 lockdown than matched non-lockdown and other non-lockdown (a and b, respectively). In 

proportional terms, hunters ate more of the mass of animals they caught in their homes and sold less during 

the lockdown compared to matched and other (c and d, respectively). Only in b was there a difference 

between matched and other non-lockdown periods. Green points show marginal predictions (error bars = 

95% confidence intervals) taken from models, with other covariates held constant: a) annual household 

income, b) household’s well-being index, and c) household size (expressed in adult male equivalents). Pale 

brown circles show observed data for each period for 28 hunters in two communities adjacent to Nigeria’s 

Cross River National Park (April 2020-March 2023).  

The model of mass per trip indicated no significant difference in the mass (kg) harvested by 

each hunter on the last trip during lockdown and first trip after lockdown, suggesting consistent 

prey stock throughout the study (Table S9). Finally, Kruskal-Wallis tests revealed that ranger 

patrol duration and the number of rangers per patrol were comparable across periods 

(lockdown, matched pre-lockdown [2019] and matched post-lockdown [2021]; χ2 = 4.69, df = 

2, p = 0.10 and χ2 = 4.91, df = 2, p = 0.09, respectively). However, we found differences in 

patrol frequency and distance covered (χ2 = 9.10, df = 2, p = 0.01 and χ2 = 9.53, df = 2, p = 

0.009, respectively), with higher rates after the lockdown compared to other periods, which 

both had comparable frequency and distance covered (Table S10).  
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Discussion  

We quantitatively investigated how wild meat hunting and use varied during the coronavirus 

pandemic in southeast Nigeria and found that the lockdown, implemented to curtail the spread 

of the virus, was associated with increased rates of successful hunting trips, higher hunting 

offtakes (number, mass and value of animals caught), and greater wild meat consumption by 

rural hunters’ households. These findings support McNamara et al.’s (2020) hypothesis of 

elevated hunting in rural areas during the pandemic. Our results suggest that increased 

household demand for meat probably intensified hunting efforts, underscoring the importance 

of wild meat as a safety net during socio-economic shocks. Turning to our analysis on protected 

area management, we found that patrol activities in CRNP remained consistent before and 

during lockdown (increased funding for patrols 2020-2021 explains the elevated efforts post-

lockdown; I. Imong, pers. obs.). This finding suggests sustained park management activities in 

CRNP during lockdown, which differs from other areas, including Madagascar, where elevated 

forest fires correlated with reduced management activities during lockdown (Eklund et al., 

2022). 

We propose that four factors may have contributed to higher hunter offtake rates in lockdown. 

First, market closures presumably reduced the supply of domesticated meat to villages, leading 

to greater reliance on wild meat. Second, food requirements in rural households probably 

increased due to elevated urban-rural migration (Kamogne Tagne et al., 2022). In line with 

both these suggestions, we found that hunters consumed a larger proportion of wild meat and 

sold less in lockdown. Third, the economic shock of the lockdown probably reduced labour 

opportunities for hunters, lowering the opportunity cost of hunting. Fourth, the apparent 

increase in hunting in the park in lockdown, where animals are conceivably more abundant 

(Novaro et al., 2000), may have facilitated the elevated offtake rates which we observed then. 

Although ranger activities in CRNP remained consistent during the lockdown, it is conceivable 

that hunters’ perception, rather than the reality, of reduced site-based law enforcement during 

lockdown contributed to an increase in hunting activities within the park.  

Our study has three main limitations. The first is the possibility of social desirability bias 

arising from self-reporting (Kormos & Gifford, 2014). However, hunters had no incentive to 

inflate reports to our observers, as this would mean admitting to violating government 

guidelines. Second, we focused exclusively on formal hunters because casual hunters were 

more diffused and, hence harder to follow. However, in the landscape, we estimated that casual 
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hunters account for 40% of the total offtake, on average (Supplementary Methods and Table 

S11). Lastly, the absence of pre-lockdown data could mean that the observed post-lockdown 

declines in hunting arose from long-term temporal changes in hunter behaviour or wild animal 

availability, potentially exacerbated by overhunting in lockdown. Nevertheless, the absence of 

a difference in mass harvested on each hunter’s last trip in lockdown and the first trip after 

lockdown contradicts the notion of changes in prey availability.  

There are several conservation implications of our work. First, given our finding that local 

communities consumed a higher proportion of the wild meat they caught during the COVID-

19 lockdown, we suggest that in future health, climatic, socio-political, or economic crises, 

policy interventions that disrupt everyday socio-economic activities should consider the likely 

impacts on food insecurity of rural communities, especially those without access to hunting 

areas. Such impacts could be mitigated by providing local communities with alternative protein 

sources. Similarly, given the dependence on wild meat, restrictive interventions, such as 

blanket bans on hunting and consuming wild meat, could be counterproductive (Tylianakis et 

al., 2021). Second, the increased offtake rates during lockdown have likely further reduced the 

sustainability of hunting, especially for already vulnerable groups such as pangolins and 

primates. Therefore, the biodiversity effects of policies during shocks should be considered 

and mitigated (McCleery et al., 2020). Third, the resilience of local communities and of wildlife 

populations are interlinked. In the medium term, both rely on reducing hunting pressure during 

normal conditions (e.g., by promoting sustainable hunting practices and investing in site-based 

law enforcement in protected areas). Thus, without progress in reducing hunting pressures 

during less disrupted times, it is probable that future shocks will result in even greater economic 

and ecological impacts. Lastly, community-centred conservation interventions should 

anticipate shock-triggered changes that could disrupt otherwise successful efforts.  
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Appendix A: Ethics Statement  

Research ethics were assessed and approved by Cambridge University’s Psychology Research 

Ethics Committee (applications: PRE.2020.095 and PRE.2021.071). Before collecting data, we 

sought permission from community leaders following a presentation of the study objectives. 

We then met with hunters through their community hunter associations, where we explained 

the study, detailing the nature of data collection, and asked for volunteers. We stressed 

voluntary participation, data anonymisation, and participants’ rights to withdraw from the 

study. Each respondent granted written free and informed consent before data collection 

commenced; we only worked with hunters above 18 years of age. Note that data collection 

during lockdown was in line with government guidelines, as the researchers lived in the study 

communities and there were no restrictions on movements within local communities.  

Appendix B: Supplementary Methods 

Derivation of Period Variable    

Although Nigeria’s first of three lockdown phases (effective on 30 March 2020) only 

concerned Lagos, Abuja, and Ogun states (Presidential Task Force, 2020a), Cross River state 

(our study location) also announced a state-wide lockdown that began on the same date 

(Vanguard News, 2020). The first and second lockdown phases in the country (which coincided 

with Cross River state’s lockdown) lasted ~ 5 months (30 March-3 September 2020) and 

featured restrictions in human movements, closure of public and private institutions, and 

curfews (Presidential Task Force, 2020a, 2020c). In the third phase of the lockdown (3 

September-20 December 2020), regular commercial and social activities, including 

international flights, resumed, but a national curfew was placed from midnight to 4 am 

(Presidential Task Force, 2020b).  

In creating our primary variable of interest (i.e., period), we treated only the first two phases 

as lockdown (i.e., COVID-19–induced lockdown days in the study location in 2020; 5.2 

months). We then matched the lockdown period in 2020 with corresponding days in 2021-22, 

calling that period matched non-lockdown (10.4 months). Finally, we created a third period to 

cover days in 2020-2023 that were neither lockdown nor matched non-lockdown (other non-

lockdown; 20.6 months). 
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Derivation of Hunter-level Variables and Rationale for Inclusion in the Models 

The hunter-level covariates were: hunter’s annual household income, excluding hunting-

related income, experience (in years), their household’s well-being index (WBI) and their 

household size (expressed in adult male equivalents; AME). We derived non-hunting income 

by asking and summing monthly estimates (in Naira) of earnings over the past year (March 

2021-April 2022) from agriculture, timber and non-timber forest product trade, business and 

employment. To assess experience, we asked each hunter how long they had been active 

hunters. We derived an index of household-level well-being with a protocol that uses access to 

services and affordability of necessary goods to develop a composite measure of a household’s 

socio-economic security (i.e., wealth; Detoeuf et al., 2020). The protocol assesses goods and 

services identified as ‘essential’ by the focal communities. We created this list through 

workshops in four local communities (surrounding CRNP) in 2017 and conducted the 

assessment with the hunters in May 2022. The BNS survey can be assessed through this link 

https://ee.kobotoolbox.org/x/L12MXi3d. Protocol for deriving the index is described in L’Roe 

et al. (2023). We used income and WBI in the same model as income is limited to financial 

earnings, while the latter provides a more holistic assessment of wealth (they both had a 

variance inflation factor of 1). AME measures household dietary requirement, standardising 

food consumption using household size (number) and composition (sex and age; Weisell & 

Dop, 2012). We included wealth and income in the model because of established associations 

between wealth and wild meat consumption (Brashares et al., 2011) and hypothesised that more 

experienced hunters would have more successful trips and consequently higher hunting returns. 

Further, an increase in household AME has been shown to positively co-vary with higher 

protein consumption (Godoy et al., 2010).  

Model Specifications 

The equation for the model predicting the variation in the number of successful trips is given 

by 

𝑙𝑜𝑔(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑟𝑖𝑝𝑠𝑖𝑗) =  𝛽0 + 𝛽1𝑃𝑒𝑟𝑖𝑜𝑑𝑗 + 𝑙𝑜𝑔(𝛽2𝐼𝑛𝑐𝑜𝑚𝑒𝑖) +

𝑙𝑜𝑔(𝛽3𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖) + 𝛽4𝑊𝐵𝐼𝑖 + 𝛽5𝐴𝑀𝐸𝑖 + ɑ𝑖𝑗                                                                            (1)  

https://ee.kobotoolbox.org/x/L12MXi3d
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where 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑟𝑖𝑝𝑠𝑖𝑗 is the total number of trips where hunter i captured at 

least one animal in period j; 𝛽
0
 is the intercept; 𝛽

1−5
 are the slopes of the respective predictors; 

ɑ𝑖𝑗 is random intercept; and we assume that the errors follow a Gaussian distribution.  

The equation for the model predicting the number of animals captured is given by 

𝑙𝑜𝑔(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑖𝑚𝑎𝑙𝑠 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑)𝑖𝑗 =  𝛽0 + 𝛽1𝑃𝑒𝑟𝑖𝑜𝑑𝑗 + 𝑙𝑜𝑔(𝛽2𝐼𝑛𝑐𝑜𝑚𝑒𝑖) +

𝑙𝑜𝑔(𝛽3𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖) + 𝛽4𝑊𝐵𝐼𝑖 + 𝛽5𝐴𝑀𝐸𝑖 + ɑ𝑖𝑗                                                                          (2)  

where 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑖𝑚𝑎𝑙𝑠 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝑖𝑗 is the total number of animals hunted by hunter i in 

period j; 𝛽
0
 is the intercept; 𝛽

1−5
 are the slopes of the respective predictors; ɑ𝑖𝑗 is random 

intercept; and we assume that the errors follow a Gaussian distribution. 

The equation for the model predicting the mass of wild meat harvested is given by 

𝑙𝑜𝑔(𝑀𝑎𝑠𝑠 𝑜𝑓 𝑤𝑖𝑙𝑑 𝑚𝑒𝑎𝑡𝑖𝑗) =  𝛽0 + 𝛽1𝑃𝑒𝑟𝑖𝑜𝑑𝑗 + 𝑙𝑜𝑔(𝛽2𝐼𝑛𝑐𝑜𝑚𝑒𝑖) +

𝑙𝑜𝑔(𝛽3𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖) + 𝛽4𝑊𝐵𝐼𝑖 + 𝛽5𝐴𝑀𝐸𝑖 + ɑ𝑖𝑗                                                                          (3)  

where 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑤𝑖𝑙𝑑 𝑚𝑒𝑎𝑡𝑖𝑗 is the total mass of animals harvested by hunter i in period j; 𝛽
0
 

is the intercept; 𝛽
1−5

 are the slopes of the respective predictors; ɑ𝑖𝑗 is random intercept; and 

we assume that the errors follow a Gaussian distribution. 

The equation for the model predicting the value of wild meat harvested is given by  

𝑙𝑜𝑔(𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑤𝑖𝑙𝑑 𝑚𝑒𝑎𝑡𝑖𝑗) =  𝛽0 + 𝛽1𝑃𝑒𝑟𝑖𝑜𝑑𝑗 + 𝑙𝑜𝑔(𝛽2𝐼𝑛𝑐𝑜𝑚𝑒𝑖) +

𝑙𝑜𝑔(𝛽3𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖) + 𝛽4𝑊𝐵𝐼𝑖 + 𝛽5𝐴𝑀𝐸𝑖 + ɑ𝑖𝑗                                                                          (4)  

where 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑤𝑖𝑙𝑑 𝑚𝑒𝑎𝑡𝑖𝑗 is the total value (in Naira) of animals harvested by hunter i in 

period j; 𝛽
0
 is the intercept; 𝛽

1−5
 are the slopes of the respective predictors; ɑ𝑖𝑗 is random 

intercept; and we assume that the errors follow a Gaussian distribution.  

The equation for the model predicting the mass of wild meat eaten in hunter household is given 

by 

𝑙𝑜𝑔(𝑀𝑎𝑠𝑠 𝑒𝑎𝑡𝑒𝑛𝑖𝑗) =  𝛽0 + 𝛽1𝑃𝑒𝑟𝑖𝑜𝑑𝑗 + 𝑙𝑜𝑔(𝛽2𝐼𝑛𝑐𝑜𝑚𝑒𝑖) + 𝛽3𝑊𝐵𝐼𝑖 + 𝛽4𝐴𝑀𝐸𝑖 + ɑ𝑖𝑗    (5)  

where 𝑀𝑎𝑠𝑠 𝑒𝑎𝑡𝑒𝑛𝑖𝑗 is the total mass of wild meat eaten by hunter i in period j; 𝛽
0
 is the 

intercept; 𝛽
1−4

 are the slopes of the respective predictors; ɑ𝑖𝑗 is random intercept; and we 

assume that the errors follow a Gaussian distribution. 
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The equation for the model predicting the mass of wild meat sold is given by 

𝑙𝑜𝑔(𝑀𝑎𝑠𝑠 𝑠𝑜𝑙𝑑𝑖𝑗) =  𝛽0 + 𝛽1𝑃𝑒𝑟𝑖𝑜𝑑𝑗 + 𝑙𝑜𝑔(𝛽2𝐼𝑛𝑐𝑜𝑚𝑒𝑖) + 𝛽3𝑊𝐵𝐼𝑖 + 𝛽4𝐴𝑀𝐸𝑖 + ɑ𝑖𝑗       (6)  

where 𝑀𝑎𝑠𝑠 𝑠𝑜𝑙𝑑𝑖𝑗 is the total mass of wild sold by hunter i in period j; 𝛽
0
 is the intercept; 

𝛽
1−4

 are the slopes of the respective predictors; ɑ𝑖𝑗 is random intercept; and we assume that 

the errors follow a Gaussian distribution. 

The equation for the model predicting the proportion of the mass of wild meat eaten in hunter 

households is given by 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑒𝑎𝑡𝑒𝑛𝑖𝑗 =  𝛽0 + 𝛽1𝑃𝑒𝑟𝑖𝑜𝑑𝑗 + 𝑙𝑜𝑔(𝛽2𝐼𝑛𝑐𝑜𝑚𝑒𝑖) + 𝛽3𝑊𝐵𝐼𝑖 +

𝛽4𝐴𝑀𝐸𝑖 + ɑ𝑖𝑗                                                                                                                                         (7)  

where 𝑀𝑎𝑠𝑠 𝑒𝑎𝑡𝑒𝑛𝑖𝑗 is the proportion of the mass eaten by hunter i in period j; 𝛽
0
 is the 

intercept; 𝛽
1−4

 are the slopes of the respective predictors; ɑ𝑖𝑗 is random intercept; and we 

assume that the errors follow a Beta distribution. 

The equation for the model predicting the proportion of the mass of wild meat sold is given 

by 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑠𝑜𝑙𝑑𝑖𝑗 =  𝛽0 + 𝛽1𝑃𝑒𝑟𝑖𝑜𝑑𝑗 + 𝑙𝑜𝑔(𝛽2𝐼𝑛𝑐𝑜𝑚𝑒𝑖) + 𝛽3𝑊𝐵𝐼𝑖 +

𝛽4𝐴𝑀𝐸𝑖 + ɑ𝑖𝑗                                                                                                                                    (8)  

where 𝑀𝑎𝑠𝑠 𝑠𝑜𝑙𝑑𝑖𝑗 is the proportion of the mass sold by hunter i in period j; 𝛽
0
 is the intercept; 

𝛽
1−4

 are the slopes of the respective predictors; ɑ𝑖𝑗 is random intercept; and we assume that 

the errors follow a Beta distribution. 

The equation for the model predicting the mass of wild meat harvested per trip (last trip during 

lockdown and first trip after lockdown only) is given by 

𝑙𝑜𝑔(𝑀𝑎𝑠𝑠 𝑜𝑓 𝑤𝑖𝑙𝑑 𝑚𝑒𝑎𝑡𝑖𝑗) =  𝛽0 + 𝛽1𝑃𝑒𝑟𝑖𝑜𝑑𝑘 + 𝑙𝑜𝑔(𝛽2𝐼𝑛𝑐𝑜𝑚𝑒𝑖) +

𝑙𝑜𝑔(𝛽3𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖) + 𝛽4𝑊𝐵𝐼𝑖 + 𝛽5𝐴𝑀𝐸𝑖 + 𝛽6𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗 + ɑ𝑖𝑗                                          (9)  

where 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑤𝑖𝑙𝑑 𝑚𝑒𝑎𝑡𝑖𝑗 is the mass of harvested by hunter i on trip j in period k; 𝛽
0
 is the 

intercept; 𝛽
1−6

 are the slopes of the respective predictors; ɑ𝑖𝑗 is random intercept; and we 

assume that the errors follow a Gaussian distribution. 
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Changes in Patrol Effort and Derivation of Variable  

We derived data on patrol effort data from the Nigeria program of Wildlife Conservation 

Society (WCS), supporting CRNP’s management. Ranger patrols are conducted monthly using 

spatial monitoring and reporting tool (https://smartconservationtools.org/; SMART), allowing 

automated data collection on the distance covered, time spent travelling, and patrol route. The 

number of rangers per patrol was also derived from SMART records inputted by the patrol 

team at the start of patrols. We matched the data by time of year to drive three corresponding 

periods: lockdown (2020), pre-lockdown (2019), and post-lockdown (2021). We obtained 78 

patrol records across the periods, which we used to derive monthly averages for a) patrol 

frequency, b) rangers per patrol, c) distance covered, and d) active patrol time (duration). 

Note that SMART aggregates all patrols conducted on the same date as one patrol, with 

corresponding information for separate patrols conducted on the same day summed. For 

example, the distance covered by four different patrols that began on a given date would be 

aggregated and presented alongside the sum of patrols conducted on the said date. 

Proximate Offtake Between Formal and Casual Hunters 

Forming part of a different strand of research in the Cross River landscape, we collected data 

from 590 hunters (392 formal and 198 casual) to understand their relative contributions to the 

total wild meat offtake in the regions. Formal hunters refer to those who primarily hunt with 

gun while casual hunters are those whose predominant hunting method is trap, mainly wire 

snares. We asked each hunter the average number of individuals for African brush-tailed 

porcupine (Atherurus africana), black-bellied (Phataginus tetradactyla), blue duiker 

(Philantomba monticola), red river hog (Potamochoerus porcus), and white-bellied pangolins 

(P. tricuspis) that they killed in the wet (April-October) and dry seasons (November-March) 

over the past three years. We conducted this survey in 20 communities in southeast Nigeria’s 

Cross River Forest landscape in October-November 2023. The landscape includes three 

protected areas occurring there: Afi Mountain Wildlife Sanctuary (100 km²), Mbe Mountains 

Community Forest (86 km²), and Cross River National Park (CRNP; 3,640 km²), comprising 

Oban and Okwangwo divisions (~ 65 km apart). We received ethics approval for this study 

from Cambridge University’s Psychology Research Ethics Committee (applications: 

PRE.2023.097). 

https://smartconservationtools.org/
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To select our study communities, we divided each of the CRNP divisions into four geographic 

quadrants (hereafter strata), capturing other protected areas in our stratification. We then 

randomly selected 12 communities from each stratum (2-4 per stratum based on their total 

number of communities), except in southeastern stratum of Okwangwo where no community 

occurs. The remaining eight communities were purposefully selected to include communities 

wherein we have ongoing projects, including the two communities where we tracked the 

hunters for this study. We recruited hunters at their homes, but first informed community 

leaders of the study’s objectives and protocols for data collection and requested their 

permission to conduct our surveys. We then counted all households (defined as groups of 

people living under the same roof and sharing the same meals in each community (n = 9,510 

across the communities). During the count, we asked about the number of people in the 

household and the number of hunters by category. We then returned to all the households with 

hunters to interview them individually – but did not capture all hunters as some declined to 

take part and others were absent during our visit. We estimate that our final survey sample 

represents 43% of hunters in the landscape, based on our household-level records.  

To obtain the contribution of casual hunters to the overall captures in the landscape, we 

calculated the percentage of annual captures by casual hunters (Supplementary Table 13) for 

each species (using the median per species) and then extracted the median percentage across 

the five species.  

Software and Packages 

All analyses were done using R v 4.2.2 (R Core Team, 2022), with lme4 (Bates et al., 2015) 

for Gaussian models, glmmTMB (Brooks et al., 2017) for Beta models, and emmeans (Lenth, 

2023) for posthoc tests. Performance package (Lüdecke et al., 2021) was used for model 

validation.  
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Appendix C: Figures 

 

Figure S1: The distribution of the predictors used to model the number of successful hunting trips (see y-

axis labels for predictor names). We used log10 transformation in b and d. In a, each boxplot corresponds to 

the average number per hunter for the relevant period, with the rectangular box representing the interquartile 

range (IQR) and the vertical line showing the distribution’s median. The lines (whiskers) extending from the 

boxplot show 1.5 times the IQR from the box. Individual dots beyond the whiskers indicate outliers. Circles 

in b-e are raw data points. 
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Figure S2: The distribution of the predictors used to model the number of each animal captured (see y-axis 

labels for predictor names). We used log10 transformation in b and d. In a, each boxplot corresponds to the 

average number per hunter for the relevant period, with the rectangular box representing the interquartile 

range (IQR) and the vertical line showing the distribution’s median. The lines (whiskers) extending from the 

boxplot show 1.5 times the IQR from the box. Individual dots beyond the whiskers indicate outliers (a). Blue 

lines (b-e) represent the corresponding relationships (using the linear model smoother function in R) and 

grey ribbon are 95% credible interval. Circles are raw data points (b-e).  
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Figure S3: The distributions of the predictors used to model the mass of wild meat harvested (see y-axis 

labels for predictor names). We used log10 transformation in b and d. In a, each boxplot corresponds to the 

average number per hunter for the relevant period, with the rectangular box representing the interquartile 

range (IQR) and the vertical line showing the distribution’s median. The lines (whiskers) extending from 

the boxplot show 1.5 times the IQR from the box. Individual dots beyond the whiskers indicate outliers (a). 

Blue lines (b-e) represent the corresponding relationships (using the linear model smoother function in R) 

and grey ribbon are 95% credible interval. Circles are raw data points (b-e). 
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Figure S4: The distributions of the predictors used to model the value of wild meat harvested (see y-axis 

labels for predictor names). We used log10 transformation in b and d. In a, each boxplot corresponds to the 

average number per hunter for the relevant period, with the rectangular box representing the interquartile 

range (IQR) and the vertical line showing the distribution’s median. The lines (whiskers) extending from 

the boxplot show 1.5 times the IQR from the box. Individual dots beyond the whiskers indicate outliers (a). 

Blue lines (b-e) represent the corresponding relationships (using the linear model smoother function in R) 

and grey ribbon are 95% credible interval. Circles are raw data points (b-e).  
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Figure S5: The distributions of the predictors used to model the mass of wild meat eaten in hunter households 

(see y-axis labels for predictor names). We used log10 transformation in b. In a, each boxplot corresponds to 

the average number per hunter for the relevant period, with the rectangular box representing the interquartile 

range (IQR) and the vertical line showing the distribution’s median. The lines (whiskers) extending from the 

boxplot show 1.5 times the IQR from the box. Individual dots beyond the whiskers indicate outliers (a). Blue 

lines (b-d) represent the corresponding relationships (using the linear model smoother function in R) and 

grey ribbon are 95% credible interval. Circles are raw data points (b-d).  



31 
 

 

Figure S6: The distributions of the predictors used to model the mass of wild meat sold (see y-axis labels 

for predictor names). We used log10 transformation in b. In a, each boxplot corresponds to the average 

number per hunter for the relevant period, with the rectangular box representing the interquartile range (IQR) 

and the vertical line showing the distribution’s median. The lines (whiskers) extending from the boxplot 

show 1.5 times the IQR from the box. Individual dots beyond the whiskers indicate outliers (a). Blue lines 

(b-d) represent the corresponding relationships (using the linear model smoother function in R) and grey 

ribbon are 95% credible interval. Circles are raw data points (b-d).  
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Figure S7: The distributions of the predictors used to model the proportions of wild meat mass eaten in 

hunter households (see y-axis labels for predictor names). We used log10 transformation in b. In a, each 

boxplot corresponds to the average number per hunter for the relevant period, with the rectangular box 

representing the interquartile range (IQR) and the vertical line showing the distribution’s median. The lines 

(whiskers) extending from the boxplot show 1.5 times the IQR from the box. Individual dots beyond the 

whiskers indicate outliers (a). Blue lines (b-e) represent the corresponding relationships (using the linear 

model smoother function in R) and grey ribbon are 95% credible interval. Blue lines (b-d) represent the 

corresponding relationships (using the linear model smoother function in R) and grey ribbon are 95% 

credible interval. Circles are raw data points (b-d).  



33 
 

  

Figure S8: The distributions of the predictors used to model the proportions of wild meat mass sold (see y-

axis labels for predictor names). We used log10 transformation in b. In a, each boxplot corresponds to the 

average number per hunter for the relevant period, with the rectangular box representing the interquartile 

range (IQR) and the vertical line showing the distribution’s median. The lines (whiskers) extending from the 

boxplot show 1.5 times the IQR from the box. Individual dots beyond the whiskers indicate outliers (a). Blue 

lines (b-d) represent the corresponding relationships (using the linear model smoother function in R) and 

grey ribbon are 95% credible interval. Circles are raw data points (b-d).
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Figure S9: Diagnostics of the model predicting the total number of each hunter’s successful trips per month. Diagnostic parameters and interpretation of the plot are 

provided on top of each panel. Model assessment conducted using Performance package.   
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Figure S10: Diagnostics of the model predicting the total number of animals each hunter captured per month. Diagnostic parameters and interpretation of the plot are 

provided on top of each panel. Model assessment conducted using Performance package.   
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Figure S11: Diagnostics of the model predicting the total mass of wild meat caught by each hunter per month. Diagnostic parameters and interpretation of the plot 

are provided on top of each panel. Model assessment conducted using Performance package.   
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Figure S12: Diagnostics of the model predicting the total value of animals captured per hunter per month. Diagnostic parameters and interpretation of the plot are 

provided on top of each panel. Model assessment conducted using Performance package.  
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Figure S13: Diagnostics of the model predicting the mass of wild meat eaten in hunter households per month. Diagnostic parameters and interpretation of the plot are 

provided on top of each panel. Model assessment conducted using Performance package.  
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Figure S14: Diagnostics of the model predicting the mass of wild meat sold per hunter per month. Diagnostic parameters and interpretation of the plot are provided 

on top of each panel. Model assessment conducted using Performance package.  
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Figure S15: Diagnostics of the model predicting the proportion of wild meat mass eaten in hunter households per month. Diagnostic parameters and interpretation of 

the plot are provided on top of each panel. Model assessment conducted using Performance package.  
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Figure S16: Diagnostics of the model predicting the proportion of wild meat mass sold per month. Diagnostic parameters and interpretation of the plot are provided 

on top of each panel. Model assessment conducted using Performance package.  
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Figure S17: The distributions of the predictors used to model the mass of wild meat caught by each hunter 

in the last trip during lockdown and first trip post-lockdown (see y-axis labels for predictor names). We used 

log10 transformation in b. In a, each boxplot corresponds to the average number per hunter for the relevant 

period, with the rectangular box representing the interquartile range (IQR) and the vertical line showing the 

distribution’s median. The lines (whiskers) extending from the boxplot show 1.5 times the IQR from the 

box. Individual dots beyond the whiskers indicate outliers (a). Blue lines (b-e) represent the corresponding 

relationships (using the linear model smoother function in R) and grey ribbon are 95% credible interval. 

Circles are raw data points (b-e)
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Figure S18: Diagnostics of the model predicting the mass caught per hunter per trip (last trip during lockdown and first trip after lockdown only). Diagnostic parameters 

and interpretation of the plot are provided on top of each panel. Model assessment conducted using Performance package.  
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Figure S19: Observed (actual data) and expected frequencies (what would be expected if the variables were 

independent) per species for each period. The expected values were derived from a Chi-square estimation 

(χ2 = 106.81, df = 24, p < 0.001). ‘Lockdown (2020)’ refers to 5.2 months of COVID–induced lockdowns 

in Nigeria in 2020, ‘Matched (2021-22)’ is 10.4 month in 2021 and 2022 that correspond with the 2020 

lockdown, while ‘Other (2020-2023)’ refers to periods that were neither lockdown nor matched with 

lockdown (20.6 months). IUCN categories are in brackets: LC = Least Concern, NT = Near Threatened, VU 

= Vulnerable, EN = Endangered, and CR = Critically Endangered. 
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Figure S20: Average monthly capture rate per hunter (individuals captured per hunter for each of the three 

periods – normalised by number of months per period). Each boxplot corresponds to the average offtake of 

a species, with the rectangular box representing the interquartile range (IQR) and the vertical line showing 

the distribution’s median. The lines (whiskers) extending from the boxplot show 1.5 times the IQR from the 

box. Individual dots beyond the whiskers indicate outliers. Symbology as in Supplementary Figure 19.   
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Figure S21: Observed and expected frequencies per capture location for each period. The expected values 

were derived from a Chi-square estimation (χ2 = 106.81, df = 24, p < 0.001). Symbology as in Supplementary 

Figure 19.  
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Appendix D: Tables  

Table S1a: Gaussian-based mixed effects model predicting the number of successful monthly trips. 

Number of observations = 84.   

Random effect:       

Groups  Term Variance  Std. dev   

Hunter ID Intercept  0.345 0.588   

Residual  0.174 0.417   

      

Fixed effects:      

Terms  Estimate 

(β) 

Std. error 

(SE) 

Degree 

of 

freedom 

(DF) 

T ratio P value 

Intercept  0.946 0.136 36.819  6.943 < 0.001 

Period: Matched non-

lockdown  

-1.081 0.111 54 -9.704 < 0.001 

Period: Other non-lockdown -1.046 0.111 54 -9.389 < 0.001 

WBI  0.027 0.125 23  0.216    0.831 

AME  0.177 0.128 23  1.383    0.180 

Experience (log10) -0.147 0.131 23 -1.116    0.276 

Income (log10)  0.089 0.121 23  0.735    0.470 

 

Table S1b: Pairwise post-hoc Tukey test of levels of the period variable used in predicting each hunter’s 

monthly successful trip rate.   

Pair   β SE t ratio P value 

Lockdown - Matched non-lockdown  1.081 0.111  9.704 < 0.001 

Lockdown - Other non-lockdown  1.046 0.111  9.389 < 0.001 

Matched non-lockdown - Other non-

lockdown 

-0.035 0.111 -0.316    0.967 

 

 

 



48 
 

Table S2a: Gaussian-based mixed effects model predicting hunter monthly capture rate. Number of 

observations = 84.   

Random effect:       

Groups  Term Variance  Std. dev   

Hunter ID Intercept  0.369 0.607   

Residual  0.204 0.452   

      

Fixed effects:      

Terms  β SE DF T ratio P value 

Intercept  1.393  0.143 37.997  9.741 < 0.001 

Period: Matched non-

lockdown  

-1.055  0.121 54 -8.741 < 0.001 

Period: Other non-lockdown -0.936  0.121 54 -7.750 < 0.001 

WBI  0.014  0.130 23  0.107    0.916 

AME  0.191  0.133 23  1.438    0.164 

Experience (log10) -0.164  0.137 23 -1.200    0.242 

Income (log10)  0.078  0.126 23  0.618    0.543 

 

Table S2b: Pairwise post-hoc Tukey test of levels of the period variable used in predicting each hunter’s 

number monthly capture rate.  

Pair  β SE  t ratio P value 

Lockdown - Matched non-lockdown  1.055 0.121  8.741 < 0.001 

Lockdown - Other non-lockdown  0.936 0.121  7.750 < 0.001 

Matched non-lockdown - Other non-

lockdown 

-0.120 0.121 -0.991    0.586 

 

 

 

 

 

 



49 
 

Table S3a: Gaussian-based mixed effects model predicting the mass of wild meat harvested per month. 

Number of observations = 84.   

Random effect:       

Groups  Term Variance  Std. dev   

Hunter ID Intercept  0.385 0.621   

Residual  0.251 0.500   

      

Fixed effects:      

Terms  β SE DF T ratio P value 

Intercept  3.227 0.151 40.149 21.412 < 0.001 

Period: Matched non-

lockdown  

-1.054 0.134 54 -7.874 < 0.001 

Period: Other non-lockdown -0.976 0.134 54 -7.294 < 0.001 

WBI  0.027 0.135 23  0.201    0.842 

AME  0.222 0.138 23  1.611    0.121 

Experience (log10) -0.161 0.142 23 -1.139    0.266 

Income (log10)  0.060 0.131 23  0.455    0.654 

 

Table S3b: Pairwise post-hoc Tukey test of levels of the period variable used in predicting each hunter’s 

total mass of wild meat per month.   

Pair  β SE t ratio P value 

Lockdown - Matched non-lockdown  1.054 0.134  7.874 < 0.001 

Lockdown - Other non-lockdown  0.976 0.134  7.294 < 0.001 

Matched non-lockdown - Other non-

lockdown 

-0.078 0.134 -0.580    0.831 

 

 

 

 

 

 



50 
 

Table S4a: Gaussian-based mixed effects model predicting value of wild meat each hunter harvested per 

month. Number of observations = 84.   

Random effect:       

Groups  Term Variance  Std. dev   

Hunter ID Intercept  0.361 0.601   

Residual  0.293 0.542   

      

Fixed effects:      

Terms  β SE DF T ratio P value 

Intercept 10.608 0.153 43.431 69.385 < 0.001 

Period: Matched non-

lockdown  

-0.883 0.145 54.000 -6.099 < 0.001 

Period: Other non-lockdown -0.842 0.145 54.000 -5.817 < 0.001 

WBI -0.008 0.133 23.000 -0.058     0.954 

AME  0.242 0.136 23.000  1.774     0.089 

Experience (log10) -0.159 0.140 23.000 -1.133     0.269 

Income (log10)  0.073 0.130 23.000  0.565     0.578 

 

Table S4b: Pairwise post-hoc Tukey test of levels of the period variable used in predicting value of wild 

meat each hunter harvested per month.  

Pair  β SE t ratio P value 

Lockdown - Matched non-lockdown  0.883 0.145  6.099 < 0.001 

Lockdown - Other non-lockdown  0.842 0.145  5.817 < 0.001 

Matched non-lockdown - Other non-

lockdown 

-0.041 0.145 

 

-0.282    0.957 
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Table S5a: Gaussian-based mixed effects model predicting mass of wild meat eaten in hunter household 

per month. Number of observations = 84.   

Random effect:       

Groups  Term Variance  Std. dev   

Hunter ID Intercept  1.889 1.374   

Residual  2.648 1.627   

      

Fixed effects:      

Terms  β SE DF T ratio P value 

Intercept  0.847 0.403 54.488  2.104    0.040 

Period: Matched non-

lockdown  

-2.787 0.435 54 -6.408 < 0.001 

Period: Other non-lockdown -1.631 0.435 54 -3.750 < 0.001 

WBI  0.243 0.318 24  0.765    0.452 

AME  0.329 0.317 24  1.036    0.310 

Income (log10)  0.075 0.318 24  0.237    0.815 

 

Table S5b: Pairwise post-hoc Tukey test of levels of the period variable used in predicting the mass of 

wild meat eaten in hunter household per month.  

Pair  β SE  t ratio P value 

Lockdown - Matched non-lockdown  2.79 0.435  6.408 < 0.001 

Lockdown - Other non-lockdown  1.63 0.435  3.750    0.001 

Matched non-lockdown - Other non-

lockdown 

-1.16 0.435 -2.659    0.027 
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Table S6a: Gaussian-based mixed effects model predicting mass of wild meat sold per month. Number of 

observations = 84.   

Random effect:       

Groups  Term Variance  Std. dev   

Hunter ID Intercept  0.372 0.612   

Residual  0.264 0.514   

      

Fixed effects:      

Terms   β SE DF T ratio P value 

Intercept  3.085 0.151 43.054 20.456 < 0.001 

Period: Matched non-

lockdown  

-0.965 0.137 54 -7.027 < 0.001 

Period: Other non-lockdown -0.907 0.137 54 -6.604 < 0.001 

WBI -0.018 0.130 24 -0.141    0.889 

AME  0.161 0.129 24  1.245    0.225 

Income (log10)  0.064 0.130 24  0.491    0.628 

 

Table S6b: Pairwise post-hoc Tukey test of levels of the period variable used in predicting the mass of 

wild meat sold per month.  

Pair  β SE T ratio P value 

Lockdown - Matched non-lockdown  0.965 0.137  7.027 < 0.001 

Lockdown - Other non-lockdown  0.907 0.137  6.604 < 0.001 

Matched non-lockdown - Other non-

lockdown 

-0.058 0.137 -0.423    0.906 
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Table S7a: Beta-based mixed effects model predicting the proportion wild meat mass eaten in hunter 

household per month. Number of observations = 84. Dispersion parameter = 48.4. 

Random effect:      

Groups  Term Variance  Std. dev  

Hunter ID Intercept  0.149 0.387  

     

Fixed effects:     

Terms   β SE Z ratio P value 

Intercept -2.058 0.111 -18.525 < 0.001 

Period: Matched non-lockdown  -0.892 0.141 -6.332 < 0.001 

Period: Other non-lockdown -0.589 0.132 -4.456 < 0.001 

WBI  0.087 0.094  0.931    0.352 

AME  0.073 0.092  0.798    0.425 

Income (log10)  0.094 0.092  1.024    0.306 

 

Table S7b: Pairwise post-hoc Tukey test of levels of the period variable used in predicting the mass of 

wild meat eaten in hunter household per month.  

Pair  β SE  Z ratio P value 

Lockdown - Matched non-lockdown  0.892 0.141  6.332 < 0.001 

Lockdown - Other non-lockdown  0.589 0.141  4.456 < 0.001 

Matched non-lockdown - Other non-

lockdown 

-0.303 0.141 -2.005    0.110 
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Table 8a: Beta-based mixed effects model predicting the proportion wild meat mass sold per month. 

Number of observations = 84. Dispersion parameter = 37.4. 

Random effect:      

Groups  Term Variance  Std. dev  

Hunter ID Intercept  0.087 0.295  

     

Fixed effects:     

Terms  β SE Z ratio P value 

Intercept  1.934  0.106 18.215 < 0.001 

Period: Matched non-lockdown   0.947  0.153   6.204 < 0.001 

Period: Other non-lockdown  0.589  0.143   4.111 < 0.001 

WBI -0.093  0.083  -1.123     0.261 

AME -0.124  0.082  -1.525     0.127 

Income (log10) -0.063  0.084  -0.748     0.455 

 

Table S8b: Pairwise post-hoc Tukey test of levels of the period variable used in predicting the mass of 

wild meat sold per month.  

Pair  β SE Z ratio P value 

Lockdown - Matched non-lockdown  -0.947  0.153  -6.204 < 0.001 

Lockdown - Other non-lockdown  -0.589  0.143  -4.111 < 0.001 

Matched non-lockdown - Other non-

lockdown 

  0.358  0.161  -2.005    0.073 
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Table S9: Linear mixed effects model of mass captured per trip. 

Random effect:       

Groups  Term Variance  Std. dev   

Hunter ID Intercept  0.087 0.295   

Residual  0.330 0.574   

      

Fixed effects:      

Terms  β SE DF T ratio P value 

Intercept   2.062  0.122 45.188  16.89 < 0.001 

Period: Other non-

lockdown  

 0.173   0.154 25.489  1.122    0.272 

Duration   0.199  0.092 42.333  2.164   0.036 

WBI   0.032  0.105 23.071  0.310   0.759 

AME -0.002  0.104 23.820 -0.021   0.983 

Experience (log10) -0.032  0.109 21.904 -0.293   0.772 

Income (log10) -0.012  0.101 24.037 -0.116   0.909 

 

Table S10: Pair-wise post-hoc comparisons of the number of patrols, distance covered, and number of 

rangers per team in lockdown, matched pre-lockdown in 2019, and matched post-lockdown in 2021.  

Number of patrols 

Comparison Z p (unadjusted)  p (adjusted) 

Lockdown - Matched post-lockdown -2.450 0.014 0.029 

Lockdown - Matched pre-lockdown 0.301 0.763 0.763 

Matched post-lockdown - Matched pre-

lockdown 

2.751 0.060 0.018 

 

Distance covered 

Comparison Z p (unadjusted)  p (adjusted) 

Lockdown - Matched post-lockdown -2.479 0.013 0.026 

Lockdown - Matched pre-lockdown  0.354 0.723 0.723 

Matched post-lockdown - Matched pre-

lockdown 

 2.833 0.004 0.013 
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Table S11: The median number of individuals caught per year by formal and casual hunters. 

Species Average number 

(formal hunter) 

Average number 

(casual hunter) 

African brush-tailed porcupine  25 17 

Black-bellied pangolin 3 3 

Blue duiker  30 16 

Red river hog 4 2 

White-bellied pangolin  6 5 
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