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Abstract

The light field (LF) imaging technique can capture 3D scene information in 4D by record-
ing both 2D intensity and 2D direction of incoming light rays. Due to this capability,
LF has shown a great interest in virtual reality (VR) and augmented reality (AR) for
enhanced immersion, improved depth perception and reconstruction of realistic 3D envi-
ronments. This paper presents a comprehensive review of LF imaging technology and
other approaches used for VR content creation. The applications of LF technology beyond
VR and AR are also discussed. The challenges and limitations of other approaches for VR
content creation are examined. State-of-the-art research has focused on how VR experi-
ences benefit from LF technology and identified the challenges to creating comfortable,
immersive and realistic VR content such as (1) image size and resolution, (2) processing
speed, (3) precise calibration and (4) depth reconstruction. Recommendations that can be
considered for creating immersive VR content are provided to enhance user experience.
These recommendations aim to contribute to developing more comfortable and realis-
tic VR content, extending the potential applications of LF imaging technology in diverse
fields.

1 INTRODUCTION

Virtual reality (VR) is the simulation of reality that immerses
the user in a virtual environment. The virtual environment can
be created either based on computer-generated (CG) 3D scenes
or photographically acquired content. The user experiences the
sensation of being fully immersed in a 3D environment by using
a VR headset even though it is not physically real. Nowadays
the use of VR has become common in many applications such
as healthcare, architecture, engineering and construction [1],
entertainment, gaming, learning and training [2–4] due to its
interactive, immersive nature and affordable consumer headsets.
In addition, VR uses various visualisation techniques, including

List of Abbreviations: 3D, 3 dimensional; 3DOF, 3 degrees of freedom; 6DOF, 6
degrees of freedom; CG, Computer-generated; CNN, Convolutional neural networks;
DCT, Discrete cosine transform; DPCA, Dual panoramic camera array; DWT, Discrete
wavelet transform; EPI, Epipolar plane image; FOV, Field of view; GMM, Gaussian
mixture model; GPU, Graphics processing unit; HMD, Head-mounted display; JEM, Joint
exploration model; LF, Light field; LFC, Light field camera; LM, Layered meshes; MLA,
Microlens array; MPI, Multi-plane image; MSI, Multi-sphere images; VR, Virtual reality.
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head-mounted displays (HMD), desktop screens, smartphones
and VR caves [5] to deliver lifelike images, sounds and other
experiences that create a fictitious or replicate a real-world
scene. It also facilitates the user to mimic physical presence in
the environment by allowing the user to interact with the space
and any items depicted inside via specialised display screens.

Consumer headsets such as HTC VIVE and Oculus Quest
have opened the market to tens of millions of customers. These
headsets support a positional tracking system and enable users
to experience VR more interactively where users can change
the viewpoint displayed by the headset by moving their head
accordingly and encounter a more immersive, natural and cosy
experience. However, only CG content can be experienced in
complete immersion in 3D video games and other applications
such as in healthcare for educating doctors, training surgeons
[6, 7] and controlling pain and anxiety [8], training industrial
workers through VR content before they enter the actual
workplace [9], and in education for teaching and learning [10].
Positional tracking data can be fed into CG scenes to pro-
duce motion parallax and view-dependent reflections. Besides,
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2 KHAN ET AL.

photographic content generated by panoramic or 360◦ and
omnidirectional stereo videos [11] can only be viewed from
a single vantage point and lacks a sense of depth. Experi-
encing VR from one single point (with no motion parallax)
can result in unpleasant side effects like headache, motion
sickness and fatigue. Moreover, it is challenging for users to
alter their viewpoints while experiencing VR content acquired
photographically.

Recently, LF technology has demonstrated its utility across
diverse industrial and entertainment applications such as indus-
trial process monitoring [12, 13], photography and cinematogra-
phy [14]. LF technology has also made significant contributions
to immersive VR experiences [15, 16] and LF displays. In addi-
tion, this technology has gained attention in computer vision
applications, owing to its capacity for acquiring abundant and
precise visual information. This technology improves the accu-
racy of computer vision applications [17] including but not
limited to 3D reconstruction [18], image segmentation [19], dig-
ital refocusing [20] and saliency detection [21]. Beyond these
applications, LF technology is employed in medical imaging
[22], as well as in the fields of autonomous vehicles and robotics
[23].

However, studies show that this technology faces various
challenges, depending on its applications. The common chal-
lenges encompass LF acquisition, compression, processing
and 3D reconstruction. Various efforts have been devoted to
tackling these challenges [14, 15, 24] such as introducing an
advanced LF acquisition system and processing, and subse-
quently rendering the VR content [16, 25]. Various aspects of
LF including shedding light related to LF representation, acqui-
sition, depth estimation, image quality and reconstruction are
discussed in [26–28]. Various review studies are also conducted
focusing on the challenges associated with LF visualization and
displays [29–34].

In VR, the LF technology shows a potential solution to dis-
play real-world scenes that enable users to not only rotate their
heads around the scene but also able to move their heads within
the VR environment due to its post-capturing refocusing capa-
bility. As a result, the user will have an immersive, comfortable
and realistic VR experience and a better sense of the real-world
3D scene. Various review articles have been published address-
ing various aspects of LF in the VR application such as the
development of LF displays [30, 33, 34], exploration of the LF
evaluation, potential impact of LF technology and enhancement
and transformation in VR experiences [16]. A review is also
conducted on the commercial efforts that highlight the distinc-
tive accessibility challenges and solutions for delivering more
inclusive user engagement with VR [35].

This study mainly focuses on a comprehensive review of the
recent developments of the LF technique, especially for VR
content creation. At first, the traditional VR content generation
techniques along with their methodologies, advantages and limi-
tations are briefly discussed as shown in Figure 1. After that, the
LF principle, its representation and acquisition are described.
How the VR can greatly benefit from LF technology is also
explored. Various challenges such as size, speed, processing time
and resolution posed by LF techniques and their impact on the

FIGURE 1 An overview of the techniques involved in VR content
generation.

creation of realistic VR content are discussed. Recommenda-
tions for potential future research directions are also given at
the end.

2 TRADITIONAL TECHNIQUES FOR
VR CONTENT CREATION

CG and photography are the common approaches to creating
VR content. In CG, the entire virtual scene can be generated
by gaming engines such as Unity3D [36, 37] and Unreal for
different applications and 3D VR games. In the photographic-
based approaches, the VR content is generated through a series
of images of a scene captured by traditional cameras and the
3D reconstruction is then performed using reconstruction tech-
niques [11, 38, 39]. This section gives an overview of the
traditional techniques used for the VR content creation.

2.1 Computer-generated approach

CG VR content refers to immersive digital experiences gen-
erated through a combination of computer graphics, 3D
modelling and image rendering by utilizing computer software
tools where real-world images or videos are not incorporated.
The developer mainly uses 3D modelling software, animation
tools and gaming engines. For example, as shown in Figure 2,
the 3D scene is initially created by 3D modelling software and
animation tools. Subsequently, a gaming engine is employed to
simulate the constructed 3D scene along with objects and char-
acters. The created VR content can be experienced on different
platforms such as HMD, desktop platforms or mobile phones
depending on the applications. Due to the interactivity of CG
VR content and real-time rendering, this approach is applied
in many applications. The interaction facility enables users to
engage actively with the virtual environment. That also makes
the user more interested in educational or training purposes and
enables the delivery of training or education materials without
the need for real-world exposure.

Various techniques are used to create CG VR content [36, 37,
40]. These techniques may vary depending on the applications.
An example of VR content created for training and educational
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KHAN ET AL. 3

FIGURE 2 The development process of computer-generated VR content [9].

FIGURE 3 Examples of computer-generated VR content include (a) a VR training tutorial for the mechanical arm structure [9], and (b) an instructional
tutorial for educational purposes on DNA molecules [10].

purposes is illustrated in Figure 3. The CG VR content enables
the users to engage with simulated objects within a virtual envi-
ronment, resulting in an immersive VR experience. However,
most of the CG VR content is based on real-time rendering (a
process that has the advantage of generating and displaying visu-
als in immediate response to the user’s actions and movements).
As the CG VR content is entirely based on a virtual environ-
ment and created based on graphics and 3D modelling software
without the involvement of real-world images or videos, this
approach can induce motion sickness.

2.2 Photographic-based approach

In the photographic-based approach, traditional cameras are
usually employed to capture images from the real world and
then use the captured images to create VR content. This
approach involves various techniques such as utilizing a single
camera for capturing real-world images sequentially and then
stitching them together to form 360◦ VR content. Also, more
advanced implementation such as involving multiple cameras
to facilitate the reconstruction of 3D VR content. Studies have
also integrated range sensors alongside traditional cameras to
capture depth information, contributing to the 3D reconstruc-
tion process. This section gives a detailed description of the
photographic-based approaches involved in VR technology.

2.2.1 Panoramic photography

The panoramic photographic-based approach employs tradi-
tional cameras to capture images or videos of a real-world scene

and then reconstruct a view from that captured video. In VR,
panorama or 360◦ video is one of the common approaches
to depict real-world scenes. In this approach, the images or
video is produced by rotating a single camera to capture a
360◦ view from a fixed point or multiple cameras to cap-
ture 360◦ images or videos of a scene [41]. The acquired
data are aligned and stitched [42–44] together under various
viewing angles to create panoramic VR content. The created
panoramic content can then be translated into VR using gam-
ing engines like Unity [45]. Figure 4 represents an example
of the final output of the panoramic photography-based VR
content. Rahim et al. [46] created VR content for teaching pur-
poses to instruct students about milk powder production plants.
The content is made based on 360◦ panoramic images of the
industrial plant, including piping, instrumentation and supple-
mented text, accompanied by videos and animations. Tsai et al.
[47] developed 360◦ VR content for soil and water conserva-
tion educational purposes, where the learners can view the VR
content using Android phones and VR helmets.

As panoramic photography can only be viewed from one
fixed position and rotate the head around the scene, it lacks
motion parallax. Also, the panoramic content is captured from
a single location, thus, no depth information can be achieved.
Due to the absence of refocusing and motion parallax, users
may experience motion sickness such as dizziness and nausea.

2.2.2 Stereoscopic imaging

In VR, stereoscopic imaging is employed to visualize real-world
scenes. This technique relies on the principle of binocular vision
where a distinct view can be rendered for each eye and offers
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4 KHAN ET AL.

FIGURE 4 An example of a user experiencing spherical panoramic VR content using a mobile device-based head-mounted display [48].

FIGURE 5 Stereoscopic panorama acquisition and rendering for VR, (a) camera rig to capture a stereo panorama, and (b) displaying the stereo panorama for
VR using an anaglyphic stereo format [50].

a more immersive representation of a 360◦ scene and partial
motion parallax compared to the single panorama. Various stud-
ies have been conducted such as Richardt et al. [49] presented
a method for high-quality stereo panoramas by stabilizing and
correcting input images of a static scene. An optical flow-based
ray-up sampling method is used to seamlessly stitch images
together. Anderson et al. [50] developed a bespoke camera sys-
tem (as shown in Figure 5a) to capture videos of real-world
scenes. These videos are then converted into an omnidirectional
anaglyphic stereoscopic video as shown in Figure 5b. The scene
can be only viewed from a single viewpoint, irrespective of any
shifts in the user position (i.e. 3 degrees of freedom (DOF)).
The 3DOF is not enough to provide an immersive experience.
To provide 6DOF, it is important for the VR content to support
head translation. Luo et al. [51] introduced Parallax360 to cap-
ture real-world scenes by spanning 360◦ and transforming the
captured images into 3D stereoscopic perspectives. Notably, the

Parallax360 incorporates support for head-motion parallax but
due to the lack of refocusing ability, it is not possible to achieve
an immersive VR experience.

The stereo imaging only captures partial 3D geometry of a
scene [52] as depicted in Figure 6. The head motion parallax
can be considered as partial motion parallax due to incomplete
information on 3D geometry. In addition to motion parallax,
refocusing in different depths is not possible with incomplete
3D geometrical information.

2.3 Photorealistic-based 3D modelling

A virtual 3D scene can be created by photorealistic 3D mod-
elling mainly extracting the textured geometry of a scene. This
approach involves combining range sensors with traditional dig-
ital photography. The 2D images acquired by traditional digital
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KHAN ET AL. 5

FIGURE 6 Representation of 3D geometry of a scene along with its 2D images, (a) and (b) are 2D images, (c) and (d) are their corresponding 3D geometry [52].

FIGURE 7 An example of reconstructed scenes, both (a) outdoor and (b) indoor. The captured images from various directions are mapped onto range data
obtained using a range sensor [53].

photography are subsequently mapped onto the 3D range data
through the Multiview geometry and automated 3D registration
techniques. For instance, Liu et al. [53] proposed a method for
modelling large-scale scenes in the photorealistic view where 3D
range sensor data is combined with the 2D images obtained
through conventional photography. A laser scanner such as
Cyrax 2500 [54] is used to collect range data by scanning the
area with an eye-safe laser beam. Figure 7a,b shows examples
of outdoor and indoor 3D scenes reconstructed by photore-
alistic 3D modelling. Zhao et al. [55] proposed a method for
modelling 3D scenes where point cloud data achieved by 3D
sensors is combined with the 3D point cloud video through

an Iterative Closest Point [56]. However, the photorealistic-
based 3D modelling requires a very dense point cloud from the
images/video sequence, also constructing such a point cloud
is challenging, especially for outdoor scenes where capturing
multi-view images of all objects is difficult.

2.4 Summary of the traditional approaches

The VR content generated through the traditional approaches
exhibits certain limitations [15, 24] along with the advantages.
Traditional approaches to VR typically employ either a single
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6 KHAN ET AL.

TABLE 1 Overview of the traditional VR content creation techniques and their advantage and limitations.

VR content generation techniques Methodology Advantages Limitations

Computer-generated [36, 37, 40, 57] 3Ds Max [40], AutoCAD [57], Maya,
Blender and Unity3D [36].

Users can change their
viewpoint;
More interactive;

Motion sicknesses such as
dizziness and nausea;

Panoramic [41–47] Images or videos are captured from a
fixed point by rotating a single camera or
using multiple cameras [41];
Images or videos are stitched and blended
to form VR content [42, 44].

Based on real-world scenes;
Creates a sense of presence in
the photorealistic virtual
environment;

Lack of motion parallax and
refocusing;
Unable to perceive the depth
information of a 3D scene;
Limited interactivity;

Stereo imaging [49–52, 58] It uses binocular vision to render a view
for each eye.
Two cameras are used to capture two
separate sets of images, each
corresponding to the view of one eye [58].

Captures partial geometry of a
3D scene;
Enhance VR experiences;
It enables users to change their
viewpoint and perceive depth;

3D geometry information is not
enough to provide proper
motion parallax;
Unable to refocus thus lack
immersive VR experiences;

Sensors and photorealistic modelling
[53, 55, 59–62]

Combines 2D images with 3D range
sensor data to model a virtual 3D scene
[53, 55].

Better 3D point cloud to
perceive the depth of objects in
a 3D scene.
Provide motion parallax;

Unable to handle huge outdoor
scenes;

camera to capture images of a realistic environment, allowing
VR view only from a fixed position or use a stereo camera to
capture the same scene from two distinct perspectives. The sin-
gle or stereo camera-based approach provides limited capability
to achieve dynamic motion parallax and also lacks refocusing
ability. However, the stereo camera-based approach offers bet-
ter depth perception, restricted to achieving full 3D geometry
information of the scene, resulting in limited motion parallax
and the absence of refocusing ability. Moreover, the 3D mod-
elling techniques used for the VR content generation exhibit
constraints in terms of geometry, impeding the achievement of
proper motion parallax and refocusing in the VR experience.
An overview of the traditional VR content creation techniques,
outlining their respective advantages and limitations is pre-
sented in Table 1. Based on the state-of-the-art of the traditional
VR content creation, there is a demand to develop advanced
technologies that are capable of capturing and generating com-
prehensive 3D information from a real-world environment for
VR content creation. The 3D information enhances the quality
of VR content significantly during the reconstruction process
thus improving the overall user experience.

3 LIGHT FIELD IMAGING
TECHNOLOGY

Recently, LF technology has gained popularity in VR due to its
ability to capture not only spatial information but also 2D direc-
tional information. Researchers are leveraging LF technology
to reconstruct real-world 3D scenes for VR content to achieve
proper immersiveness. With the inclusion of 2D directional
information, LF images can be refocused at multiple depth lev-
els and generate various angular views of the same scene, as
illustrated in Figure 8. These properties of LF imaging systems
contribute to the creation of VR content that closely mirrors
reality. This section provides a detailed discussion of the prin-

ciples, acquisition methods and applications of LF imaging in
VR.

3.1 Principle of LF

LF imaging technology captures light rays coming from the
scene, which allows to recording of 2D spatial and 2D direc-
tional information of incoming light rays [26]. On the other
side, conventional cameras are only limited to recording spatial
data. The LF imaging used in computer vision includes image
post-capture refocusing [64–66], VR [15, 24], image rendering
and 3D reconstruction [67, 68] and synthesizing [69] due to its
capability to provide angular information. The concept of LF
was first introduced by Gershun [70] in 1936. In 1991 Adelson
et al. [71] presented a 5D LF Plenoptic function, L(x, y, z, 𝜃, ∅)
where the (x, y, z ) represent the coordinates of the light ray and
the (θ, ∅) represent the radiance and direction of each incoming
ray. Levoy et al. [72] reduced the 5D Plenoptic function to 4D
L(u, v, s, t ) where the radiance of a light ray remains the same
along its propagation direction in free space. A plane param-
eterization method is used to represent the LF [27, 73], the
incoming light ray first intersects the (u, v) and then the (s, t )
planes as shown in Figure 9. By recording the angular and direc-
tional information of incoming light rays, the LF converts 3D
real-world scene information into 4D LF images.

3.2 LF acquisition

The process of capturing LF images can be executed in vari-
ous ways such as a camera array-based LF imaging system and
single sensor-based LF cameras (LFC). Using a camera array-
based LF imaging system, multiple cameras take images from a
slightly different viewpoint of the same scene in a single shot.
Where, the spatial information (s, t ) can be determined by the
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KHAN ET AL. 7

FIGURE 8 LF post-capture capabilities (a) refocusing: in the foreground, (b) refocusing: in the background [18], and (c) views of the same scene from slightly
different angles [25, 63].

FIGURE 9 Light field representation, each light ray intersecting 2 planes at 2 positions (u,v) and (s,t) respectively, capturing angular and spatial resolution to
form 4D LF L = (u, v, s, t ).

sensor and the directional information (u, v) can be determined
by multiple cameras. The final 4D LF image can be obtained by
summing all the images achieved from the multiple cameras. For
instance, Wilburn et al. [74] used an 8 × 12 camera rig to cap-
ture high-quality LF video, as shown in Figure 10b. In this setup,
each camera was equipped with a local processing board to pro-

cess image data before sending it to the computer in raw form or
MPEG2 video stream. To reconstruct perspectives, Zhang et al.
[75] designed a 6 × 8 camera array-based system as shown in
Figure 10c. In this system, the cameras are adjustable through a
servo motor, allowing for optimal positioning for the best pos-
sible rendering results. The PiCam ultrathin camera array was
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8 KHAN ET AL.

FIGURE 10 Camera array-based LF acquisition setups. (a) Lytro Immerge [14], (b) 8 × 12 camera array rig [74], (c) 6 × 8 camera array system [75], and (d)
PiCam which is made up of 4 × 4 cameras [76].

FIGURE 11 Lytro LF cameras. (a) Lytro camera (Plenoptic 1.0), and (b)
Lytro Illum (Plenoptic 2.0).

introduced by Venkataraman et al. [76]. PiCam is made up of
4 × 4 cameras as shown in Figure 10d and its size is very small
and can be attached to a smartphone. The complete device is no
bigger than a coin.

Currently, several single sensor-based LFCs are manufac-
tured such as Lytro and Raytrix [77]. Lytro commercialised their
Plenoptic cameras for the consumer market. Ng et al. [78] cre-
ated the first hand-held plenoptic 1.0 as shown in Figure 11a.
The Lytro camera consists of a main lens, sensor and microlens
array (MLA). The main lens and the sensor are separated by
an MLA. The purpose of the MLA is to split the incoming
light rays and map them onto the sensor behind the corre-

sponding microlens. The MLA functions as a tiny camera array,
taking multiple pictures of the same scene from slightly differ-
ent angles. Later, Lytro released its second version focused on
Plenoptic 2.0 and was called as Lytro Illum camera, as shown in
Figure 11b. The primary difference is that the MLA in Plenoptic
1.0 is positioned at the focal length of the main lens. In con-
trast, Plenoptic 2.0 is focused on the image plane of the main
lens [79, 80]. The raw image size of the Lytro Illum camera is
9375 (H) × 6495 (V) pixels and the raw data is in 4D LF format,
allowing for the creation of 225 sub-aperture images or different
perspectives of the same scene. The size of each sub-aperture
image is 625 (H) × 434 (V) pixels.

Raytrix offers various models of Plenoptic cameras for indus-
trial and scientific applications due to their impressive effective
resolution ranging from 1 to 7.25 megapixels [81]. The Raytrix
cameras possess additional characteristics aimed at enhancing
the depth of field (DoF) [82]. Three distinct focal lengths of
MLA were introduced to enhance the DoF of the captured LF.
However, the MLA with three different focal lengths creates
challenges in the post-processing and manipulation of images.
Each micro-image provides a different defocus blur based on
the depth of the scene, adding complexity to the image process-
ing tasks. In addition to camera array-based and MLA-based LF
acquisition systems, traditional cameras are also employed for
LF acquisition [83]. This approach known as time-sequential
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KHAN ET AL. 9

TABLE 2 Overview of LF acquisition techniques, including their advantages and limitations.

LF acquisition techniques Methodology Advantages Limitations

Camera array-based LF systems
[26, 76, 84]

Multiple image sensors or
cameras are used to acquire
images of a scene from slightly
different angles.

High spatial resolution;
Wider baseline and field of view;

Complex system setup and
calibration;
Computational expensive;

Microlens array-based LF
systems [26, 77, 78]

MLA is placed between the
image sensor and the main lens
to sample the light rays and
acquire angular information
about the scene.

Provide more angular
information;
Cost-effective;
Easy to set up and portable;

Lower spatial resolution;
Narrow baseline;

Traditional camera-based
systems [26, 85, 86]

Traditional cameras are used to
acquire the LF of a scene by
rotating vertically or
horizontally.

Higher spatial resolution;
Cost-effective;

Complex acquisition process;
Limited angular information;

capture, utilizes a multiple-exposure technique to capture the
LF of a 3D scene. In this approach, the camera is either
rotated vertically or horizontally to capture multiple images of a
360-degree 3D scene. This technique yields higher spatial reso-
lution images by utilizing a traditional camera with a sufficiently
high-resolution image sensor, although with lower angular reso-
lution. Table 2 illustrates the overall summary of LF acquisition
techniques and methodologies including their advantages and
limitations.

As the LF technology can capture both the incoming light
ray’s spatial and the direction resolution, by adopting this tech-
nology, VR users can experience the depth of real-world scenes.
The user will be able to explore in any direction and modify their
viewpoint in the scene by moving their head appropriately. This
technology offers enhanced depth perception and motion paral-
lax, contributing to a more detailed understanding of real-world
scenes in VR. Thus, the end effect could be a more immersive
and comfortable experience for consumers.

3.3 Light field for VR content creation

Over the past few years, various studies have been conducted to
create VR content through LF imaging techniques. This section
presents the different approaches used to reconstruct LF for VR
content creation. These approaches are categorized into three
groups based on the LF acquisition techniques such as camera
array-based, microlens array-based and traditional camera-based
LF acquisition systems.

3.3.1 Camera array-based system

The camera array-based LF acquisition systems use multiple
cameras to capture the LF of a 3D scene. Each camera sen-
sor captures light rays from the same scene but from different
directions, contributing to the angular information of the LF
image. All images from the multiple cameras are then merged to
form a 4D LF image. The multiple cameras can be arranged
either vertically or on a circular/planer dome, depending on

the application and the required area coverage. The vertically
arranged camera rig can be rotated through a motorized mech-
anism to capture LF over a 360-degree area. The circular dome,
on the other hand, can capture LF over 120 to 180 degrees
of area. Milliron et al. [14] presented a Lytro Immerge system
wherein a live song is recorded using LF and upon playback
provides 6DOF. This 6DOF enables the user to freely navi-
gate the viewing volume while maintaining flawless stereo vision
and motion parallax in all directions. Lytro Immerge uses a mas-
sive camera array to capture an LF in full immersion. Yu et al.
[25] presented an LF system for VR content production (called
PlexVR). For LF acquisition, a dual panoramic camera array
(DPCA) is employed in a circle in the form of stereoscopic
camera pairs as shown in Figure 12a. Real-time stitching and
data streaming are performed through a graphics processing
unit (GPU). For outward scene acquisition, they have utilized
the DPCA. For inward LF acquisition, they developed a dome
that is composed of 140 cameras (80 static and 60 dynamic) as
shown in Figure 13a. Through the DPCA, live shows like news
can be captured and broadcast live in the form of 360◦ 3D VR.
The dome can show the 360◦ 3D performance of humans in
action as shown in Figure 13b. A small version of the dome is
used to capture static objects.

Overbeck et al. [16] proposed an LF reconstruction tech-
nique and addressed the challenges of LF data size, quality and
speed, also recommended that the reconstructed LF images
should be of good quality to achieve a realistic view and immer-
sive experience. A disk-based reconstruction technique is used
and illustrated in Figure 14b. Where each window represents
one of the camera views and is captured by the LF. For each
window, the mesh is rendered. Each mesh is a tessellated version
of a depth map. This disk-based technique can achieve high-
quality rendering with fewer images. Tile streaming and caching
techniques are proposed to reduce decoding time and fit the LF
data into limited GPU memory. For data compression, a com-
pression technique is proposed based on a modified VP9 video
codec. The proposed system is limited to static images and any
movement causes ghosting artefacts.

Broxton et al. [15] presented a technique for LF recon-
struction by replacing a multi-plane image (MPI) scene with a
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10 KHAN ET AL.

FIGURE 12 A setup for acquiring and broadcasting live VR, (a) dual panoramic camera array (DPCA), and (b) live broadcasting of 360◦ 3D VR [25].

FIGURE 13 Acquiring inward-looking light fields, (a) inward light field capturing dome, comprises 140 cameras, and (b) three performances were captured
with this dome and then reconstructed using light field techniques [25].

FIGURE 14 Still LF acquisition setup for VR, (a) horizontal rotating LF camera array rig, and (b) per-view depth, disk-based reconstruction, rendered image
[16].

collection of sphere shells called multi-sphere images (MSI) to
enable an immersive field of view (FOV) as shown in Figure 15a.
The MSI encodes the scenes around the viewer as a set of
concentric spheres with RGBA textures. The MSI layer is fur-
ther reduced to 16 layered meshes (LM) because the MSI has
more than 100 images per video frame, which is challenging
to compress for efficient streaming and rendering. The LMs

have the same RGBA textures and can be rendered as the same
MSI. For LF acquisition, 47 action sports cameras are used and
mounted on a 92 cm diameter hemisphere [84] as shown in
Figure 15b. Each camera is 18 cm apart, with 120◦/90◦ FOV.
Pertuza et al. [85] utilized a single LF Lytro Illum camera to
capture the LF and calculate the metric depth by utilizing focus
calibration.
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KHAN ET AL. 11

FIGURE 15 A system of acquiring and rendering LF video, (a) multi-sphere images, and (b) capture rig [15].

FIGURE 16 Background reconstruction using LF technology for production, (a) 360◦ motorised camera rig for LF acquisition, and (b) reconstructed
background using Unity game engine [86, 87].

Schweiger et al. [86] proposed a technique for acquiring and
rendering LF for creating realistic VR backgrounds, potentially
for virtual TV production. They have utilized a 360◦ camera
rotated in a circle with an adjustable radius between 50 and
90 cm solely in a horizontal position as illustrated in Figure 16a.
The system can generate novel views for virtual camera posi-
tions within the capture circle using a dense set of source views.
The Unity game engine is employed for rendering and display-
ing. The reconstructed background is depicted in Figure 16b.
However, the limitation of their system is that the scene must
remain perfectly still to avoid ghosting artefacts in synthe-
sized views caused by moving objects and the system provides
5DoF (three for head rotation and two for movement within
the plane of the capture circle). This limitation arises from
capturing the LF only horizontally and neglecting the vertical
viewpoints.

Although the camera array-based system provides better
image resolution and larger FOV, it offers less angular resolution
due to the limited number of cameras used to capture angular
information. It also requires significant calibrations, especially
for each camera and complex system setup. Additionally, it is
expensive in terms of cost and computational requirements.

3.3.2 Microlens array-based system

The MLA-based LF acquisition system uses a single LFC
equipped with an MLA. The MLA is arranged between the

main lens and the image sensor. Each microlens samples the
light rays before striking the image sensor and acts as a single
camera, capturing the same scene from different angles to cap-
ture directional information of the LF image. For example, a 3D
point cloud-based volumetric reconstruction technique is pro-
posed in [88] which can be used to create VR content [89–91].
In this technique, the LF images have been used. Initially, the
depth map is estimated by matching sub-aperture images. The
depth map is then enhanced by histogram equalization and
stretching to increase the distance between adjacent depth lay-
ers. For the detection of edges in the central sub-aperture image,
the Canny edge detection algorithm is utilized. The enhanced
depth image and images with edge-detected images are then
combined. In the end, the 3D structure of the point cloud is
obtained by transforming the correspondence point plane as
shown in Figure 17.

Murgia et al. [92] presented a 3D point cloud reconstruction
of an object from a single Plenoptic LF image. The primary
input of this technique is a depth map and a single LF image.
First, the depth map is enhanced by histogram stretching to sep-
arate the depth planes better. The Sobel operator is then used
to detect the edges of the LF image. The enhanced depth map
and edge-detected images are combined, and masking is per-
formed manually on the resulting image to isolate the object
from the background better. In the end, the depth is computed
for the points in the object. Open-source software called Mesh-
Lab has been used to process the model and produce the mesh
and texture. The required steps are shown in Figure 18.
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12 KHAN ET AL.

FIGURE 17 3D reconstruction from a single LF image, (a) original image, (b) depth map, (c) enhanced depth map, (d) edge detected image, (e) fussed images
(c) and (d), and (f) 3D point cloud [88].

FIGURE 18 (a) Original image, (b) depth map, (c) edges detected image, (d) combined image of (b) and (c), (e) manual masking, and (f) object extracted [92].
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KHAN ET AL. 13

FIGURE 19 The approach used to enhance the depth map for accurate 3D point cloud estimation [93].

Farhood et al. [93] presented an enhanced 3D point cloud
from a single LF image. In their proposed technique, multi-
modal edge detection is considered by using feature matching
and fuzzy logic. The input was the central sub-aperture LF
image and the depth map. (Figure 19)

The MLA-based system provides better angular resolution
and is less complex compared to the camera array-based sys-
tem. Moreover, it is cost-effective and computationally less
demanding. However, due to the use of a single sensor, it pro-
vides a lower spatial resolution image, which may degrade the
reconstruction quality.

3.3.3 Traditional camera-based system

The traditional camera-based LF acquisition system also known
as the time-sequential capture approach utilises a single camera
to capture the LF of a 3D scene using a multiple exposures tech-
nique. For instance, Debevec et al. [83] proposed an LF system
to provide a motion parallax experience to users in VR. For LF
acquisition a single Canon 5D Mark III DSLR camera with an
8 mm fisheye lens and a Rodeon motorised pan/tilt head has
been used, as shown in Figure 20a. With the aid of a mount-
ing rail, the camera was set 35 mm ahead from the centre of
rotation. This technique offers motion parallax by taking advan-
tage of DK2’s head tracking mechanism in the HMD, which

allows the user to change viewing position along with direc-
tion. The acquired images are aligned with the resolution and
field of view of HMD. The dataset is compressed using the
OTOY’s “ORBX” codec at a ratio of 1000:1. Even though con-
temporary VR platforms necessitate 90 Hz for user comfort,
this system reached a framerate of 75 Hz, which is sufficient for
conventional real-time applications.

The traditional camera-based LF acquisition system is cost-
effective as it requires only a single sensor and also provides
better image resolution. However, the capturing process is time-
consuming and complex which limits its application to static
scenes.

3.4 Summary of the light field for VR
content creation

As the LF technology provides an accurate representation of
a 3D scene by capturing both angular and spatial informa-
tion, it enhances the quality of VR content significantly and
improves the overall user experience. Integrating angular data
into LF images facilitates immersive VR experiences, enabling
users to freely explore virtual environments by moving their
heads. However, current research in this domain is constrained,
with most studies relying on camera array-based LF acquisi-
tion systems, as outlined in Section 3.3.1, to achieve higher
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14 KHAN ET AL.

FIGURE 20 Creating VR content enables shifting the user’s viewpoint within the virtual environment, (a) light field capturing system, and (b) light field
displayed in HMD equipped with a head tracking system [83].

TABLE 3 A comprehensive comparative analysis of different LF techniques used in VR content.

VR content generation

techniques Acquisition Methodology Advantages Limitations

LF photography-based
techniques [16, 86]

Multiple cameras are
arranged vertically on a rig
and rotated horizontally for
LF acquisition.

Disk-based scene
reconstruction;
VP9 video codec for
compression;
Unity game engine is
used for background
reconstruction [86].

High spatial resolution;
Wide field of view;
Motion parallax capability;

Suitable for static
environment;
Lack of refocusing capability;
Complex setup and
calibration;
High computational cost and
low angular resolution;

LF video based techniques
[15, 14, 25]

Multiple cameras (47–95) are
used and mounted for
acquisition [15, 14].
Camera array-based
acquisition setups (6∼140
cameras) are used to capture
inward and outward scenes
[25].

MSI is used for depth
representation [15];
Monte Carlo ray tracing is
used for 4D integral
over the 2D surface [15];
GPU is utilized for
real-time processing [25].

Able to capture moving objects;
High spatial resolution;
Wider FOV;
Motion parallax capability;

Ghosting artefacts;
Unable to reconstruct thin
objects;
Lack of refocusing capability;
Complex setup and
calibrations;
High computational cost and
low angular resolution

3D point cloud based
techniques [91, 95, 96]

A single camera is used to
acquire LF.

Point cloud and 3D mesh
software are used for
reconstruction;
Edge detection is used to
achieve a depth map;

Cost-effective;
Low computational cost;
High angular information

Low spatial resolution;
Unable to reconstruct longer
distance due to narrow
baseline;
Limited field of view;

Traditional camera-based
technique [83]

DSLR camera is used and
rotated for LF acquisition.

The dataset is
compressed using the
OTOY’s “ORBX” codec.

High spatial resolution;
Motion parallax capability;
Cost-effective;

Complex capturing process
and calibration;
Low angular resolution;

spatial resolution. Nevertheless, there exists a trade-off between
spatial and angular resolutions. Enhancing spatial resolution
often sacrifices angular resolution, resulting in degraded scene
reconstruction quality. Table 3 illustrates a comprehensive
comparative analysis of different LF techniques concerning VR
content creation.

To achieve a truly immersive and cyber-sickness-free VR
experience, it is crucial to replicate human vision. Human
vision excels in two key aspects: motion parallax and refo-
cusing. Presently, there is a notable gap in LF research
for VR content generation regarding the lack of refocus-
ing capability during VR experiences. To address this, future

research efforts should prioritize developing LF technology
that replicates the dynamic refocusing capabilities inherent
in human vision for a more authentic and comfortable VR
experience.

4 CHALLENGES OF LIGHT FIELD
IMAGING TECHNOLOGY

Though LF technology has the potential demand for VR con-
tent creation and offers several advantages over traditional
imaging technology, it has significant challenges that must be
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KHAN ET AL. 15

overcome to produce realistic and immersive reconstruction of
real-world VR content. In this section, several key challenges are
discussed.

4.1 Image size and storage

Applications of the LF are constrained by the volume of data.
Because the large amount of data generated by a 4D LF
poses problems for its storage and transmission. For exam-
ple, in Lytro Illum 4D LF, each raw LF image is roughly
150 MB in size. Therefore, it is crucial to create LF compres-
sion techniques to expand its uses. LF possesses redundancy
in all of its dimensions [72]. By taking advantage of that
redundant information, LF data can be compressed. Several
compression strategies have been proposed to use the raw LF
data for correlations within and between the nearby macro
pixel images (i.e. created on the image sensor behind each
microlens) [94, 95]. For the LF compression, the redundan-
cies of adjacent sub-aperture images can be reduced [96, 97].
A learning-based reconstruction approaches are proposed to
encode sparsely sampled sub-aperture images at the encoder
side and build all sub-aperture images at the decoder side
[98, 99]. However, LF compression has made significant
advancements, and certain challenges remain to be addressed
appropriately. For instance, Learning-based techniques may
introduce artefacts in occluded regions, thereby diminishing the
overall quality of the reconstruction. Additionally, the redun-
dancies present in adjacent sub-aperture images, intended for
compression purposes, may adversely affect the quality of
VR content. It is also crucial for the VR content recon-
struction that the captured data keep the maximum angular
resolution.

4.2 Image resolution

There is an inherent trade-off between angular resolution
and spatial resolution of the LF imaging systems [100].
Camera arrays capture high spatial resolution images but
not enough angular information. The angular information
is crucial for providing the 6DOF and refocusing ability.
Single-sensor microlens-based cameras like Lytro Illum capture
low-resolution images with high angular resolution. For exam-
ple, the sensor resolution of Illum is 9375 (H) × 6495 (V)
pixels. But the resolution of each sub-aperture image is 625 ×
434 pixels in horizontal and vertical respectively [81, 101]. The
low spatial resolution of an image can significantly affect the
quality of the VR experience across various aspects, such as real-
ism, immersion, depth perception, aliasing and blurriness. High
spatial resolution images offer a more detailed and accurate
representation of the virtual environment, thereby enhancing
the overall realism of the VR experience. Additionally, high
spatial resolution images contribute to a smoother and clearer
visual experience and help to reduce issues like aliasing and
blurriness.

4.3 Speed

Another challenge of LF technology is the rendering speed for
VR content creation. Specifically, it is crucial to have higher
frame rates for VR content. Because a true immersion with
comfort can be achieved with exceedingly high frame rates. For
typical applications, a frame rate of 30–60 Hz is considered
sufficient. To ensure the best comfort when viewing VR con-
tent, current VR headsets aim for a frame rate of 120–180 fps
[102]. However, achieving a high frame rate can be challenging
due to factors such as simulation and rendering speed. The low
frame rate can have various adverse effects on the user, includ-
ing simulator sickness [102], decreased presence and reduced
task performance [103].

4.4 Precise calibration and depth
reconstruction

Accurate depth reconstruction in LF poses significant chal-
lenges for achieving a comfortable, immersive and realistic VR
experience. Perceiving accurate depth provides users with refo-
cusing abilities in VR environments. However, accurate depth
estimation can be affected by various factors such as high-
dimensional data, computational complexity and appropriate
and precise calibrations. The high-dimensional LF data con-
tains spatial-angular information on all incoming rays from
different directions. Thus, processing such high-dimensional
data can be computationally intensive. Additionally, depth cal-
ibration [85, 104] is crucial for accurate depth reconstruction
because inconsistent calibrations can increase depth reconstruc-
tion errors. Other calibrations such as geometric [105–108]
and camera lens distortion calibrations are also challenging
for accurate reconstruction. For instance, geometric calibra-
tion involves estimating the intrinsic and extrinsic parameters
of LFC. The geometric calibration is crucial for reconstructing
novel views using the spatial-angular information of LF images.
These novel views can be used to provide motion parallax or
refocused perspectives for a realistic VR experience. In LFC,
imperfect alignment of the MLA with the camera sensor is com-
mon [109] due to manufacturing errors, which can affect the
reconstruction quality and consequently the user experience in
VR.

4.5 LF acquisition

The LF acquisition is a fundamental aspect of the LF imaging
process. As discussed in Section 3.3 three types of LF acquisi-
tion systems, these acquisition systems offer certain advantages
with limitations. As LF captures both spatial and directional
information of a 3D scene in the form of a 4D dataset, acquir-
ing such high-dimensional data poses significant challenges.
The acquisition of high-dimensional data typically introduces
a resolution trade-off between spatial and angular dimensions.
Furthermore, handling such high-dimensional data increases
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16 KHAN ET AL.

computational complexity, thus, developing suitable algorithms
is more challenging.

4.6 Translation to VR platform

Another challenge is the translation tool for VR platforms
especially when developing immersive VR content through LF
imaging technology. VR content developers and researchers
commonly employ game engines to simulate the reconstructed
LF in VR. However, during the simulation, they encounter
issues in integrating virtual depth planes or different viewing
perspectives, ensuring a high frame rate and achieving a real-
istic experience. The absence of generalized guidelines and a
tool for developers creates significant challenges when translat-
ing the real-world 3D scene after LF reconstruction. Developers
could benefit from a universal tool with supporting guidance
that facilitates the translation of LF imaging-based recon-
structed VR content. Apart from this, achieving immersiveness
and interactivity in VR poses unique challenges compared
to traditional media, such as 2D games or videos. Develop-
ers must take into account user interaction, allowing users to
interact with the virtual environment or objects within the
reconstructed scene. In Section 5, recommendations have been
made on how to address these challenges along with potential
solutions.

5 FUTURE RECOMMENDATION

In the future, to enhance the realism of VR experiences, the
challenges discussed in Section 4 can be considered to improve
the LF imaging technology for VR content creation. There-
fore, the following recommendations have been made to the
scientific community and researchers who are working on the
LF imaging-based VR technology based on the challenges
addressed in Section 4.

∙ As the LF data comprises high-dimensional data, resulting
in a large image size that limits its practical applications,
redundant information of the LF data can be leveraged to
compress its size, making it easily transmissible and storable.
Also, advanced data compression techniques [96, 97, 110]
can reduce the computational complexity of the LF data. A
hybrid video encoder such as the joint exploration model
(JEM) can be employed to encode a sparse set of views
[110]. A linear approximation can be utilized to estimate a
second sparse set of views. On the decoder side, a deep
learning approach can be implemented to obtain the entire
LF. Image streaming of LF sub-aperture can be improved to
compress the lenslet images and reduce the redundancy in
lenslet images [96]. Multi-focus images from LF angular can
be compressed as a sequence using discrete cosine transform
(DCT) or discrete wavelet transform (DWT) [111].

∙ Image resolution is another crucial factor for creating immer-
sive VR experiences. Single-sensor-based LFCs may not
provide sufficient resolution for realistic VR experiences. So,

the resolution issue can be addressed either on the hardware
side such as by increasing the sensor size, or on the soft-
ware side such as by applying super-resolution techniques
[112–114] for rendering LF images. For light-field patches,
the Gaussian mixture model (GMM) based super-resolution
method can be considered [115]. For continuous dispar-
ity maps, epipolar plane image (EPI) based super-resolution
method can be employed [116].

∙ Frame rate plays a vital role in ensuring a comfortable and
motion-sickness-free VR experience. The higher framerate
provides a better user experience with reduced simulator sick-
ness problems. The VR content developer should consider
at least a frame rate of 120 fps or higher to provide better
user performance [102]. Achieving the maximum frame rate
can be possible by reducing computational complexity on the
translation side and also selecting the right HMDs, which can
support higher frame rate VR content.

∙ Depth reconstruction is essential for VR content and can
be achieved through accurate depth estimation. LF imaging
captures spatial-angular information of light rays, providing
various depth cues such as correspondence cues, defocus
cues, binocular disparity, aerial perspective, and motion par-
allax. These cues can be leveraged for depth estimation [85,
104] and reconstruction thus facilitating virtual refocusing
and allowing users to change their refocus plane within the
virtual environment. Advanced focus cues technique can be
utilised to estimate metric depth, which can subsequently be
utilized for depth reconstruction [117]. Convolutional neural
networks (CNNs) can also be considered to estimate all-in-
focus images from focal stack images and then a 4D ray depth
can be estimated from all the in-focus images for rendering
the views.

∙ A universal translation tool is needed for seamlessly trans-
lating the reconstructed LF to VR. VR content developers
should be provided with appropriate guidelines or software
tools that can assist them in translating the reconstructed
content through LF technology. The tool should be univer-
sal, enabling the development of content for available VR
headsets. Additionally, developers need to create advanced
techniques to enhance user comfort during VR experiences.
This involves providing interaction capabilities to users,
ensuring that the content is context-aware, and incorporating
user-centric localization features.

∙ To achieve an immersive and comfortable user experience
without motion sickness, VR content developers should also
take the following considerations [25] such as,

Motion parallax: This feature plays a crucial role in providing
6DOF contributing to a sense of movement in VR. It enables
the users to change their viewpoint and explore the 3D scene
from different perspectives, enhancing the overall experience.
Proper implementation of motion parallax is essential for a
comfortable VR experience, aligning with users’ expectations
based on real-world encounters. This alignment helps to reduce
visual discomfort. Motion parallax can be integrated into VR
content by utilizing the angular information of LF images or
the sub-aperture images. The sub-aperture images are formed
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KHAN ET AL. 17

by integrating the light rays coming from the same angle striking
the image sensor.

Refocusing: The refocusing ability is another important
aspect enabling users to refocus on different objects within the
virtual scene, mimicking the natural behaviour of human vision.
This capability allows users to perceive the relative depth of
objects in the virtual environment. Refocusing in VR can be
achieved by integrating depth planes in VR content.

Motion sickness: VR content tends to induce motion sick-
ness in users when viewed through a VR headset. This prevents
users from experiencing VR content for extended periods and
limits the VR applications. Efforts can be made to investigate
and identify the main factors contributing to motion sickness,
allowing for the development of solutions to address this issue.

∙ In addition, researchers and the scientific community can
explore cloud-based rendering solutions to reduce the com-
putational demands of LF content creation and also explore
developing a more affordable and accessible LF for capture
devices.

By adopting the above recommendations, the LF imaging-
based future VR content creation can be more efficient
and capable of delivering compelling and realistic virtual
experiences.

6 CONCLUSION

This paper presents a comprehensive review of technologies uti-
lized in the generation of VR content, with a specific focus on
two primary methods: traditional approaches and LF methods.
The advantages and limitations of each approach are thoroughly
reviewed in this paper. The key points achieved through this
review are summarized below:

∙ Traditional techniques for content generation encompass
a range of methods such as computer-generated imagery,
panoramic photography, stereo imaging, and 3D modelling.
Each method is examined along with its respective limita-
tions. For instance, panoramic content allows viewing from
a fixed position with limited ability to explore the scene.
Stereo imaging offers stereoscopic pairs but lacks sufficient
3D geometry for motion parallax. Current 3D reconstruction
approaches are unable to handle large outdoor scenes when
it comes to 3D modelling to achieve multi-view coverage of
all objects in a scene.

∙ LF technology has shown an advantage over traditional pho-
tography when it comes to viewing real-world content in VR.
It accurately captures the 3D scene by recording all light rays
travelling through it, providing spatial and directional infor-
mation. LF-based VR content meets most VR requirements
with features like refocusing and motion parallax for a more
immersive and realistic user experience.

∙ The LF has the potential to significantly enhance VR con-
tent and user experience by capturing angular and spatial
information from real-world environments. However, exist-

ing literature highlights the deficiency in refocusing capability
within current VR content research.

∙ The camera array-based LF acquisition systems show a
trade-off between spatial and angular resolution. While
these systems offer improved spatial resolution, they often
lack sufficient angular resolution, resulting in suboptimal
reconstruction quality.

∙ LF technology faces various challenges in the creation of
realistic VR content, including issues related to image size
and storage, image resolution, processing speed, calibra-
tion, depth reconstruction, LF acquisition, and the LF-to-VR
translation platform. Overcoming these challenges is essen-
tial for achieving an immersive, realistic and comfortable VR
experience.

Future efforts in LF technology should prioritize address-
ing these challenges to enhance the overall quality of VR
content. Recommendations for future research focus on over-
coming the challenges to enhance the realism of VR experiences
and advancing LF imaging technology for future VR content
creation.
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