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Optimal Fish Passage Barrier Removal - Revisited

Steven King∗ Jesse R. O'Hanley

Kent Business School, University of Kent, Canterbury CT2 7PE, United Kingdom

Abstract

Infrastructure, such as dams, weirs and culverts, disrupt the longitudinal connectivity of rivers, causing

adverse impacts on �sh and other aquatic species. Improving �sh passage at arti�cial barriers, accordingly,

can be an especially e�ective and economical river restoration option. In this article, we propose a

novel, mixed integer programing model for optimizing barrier mitigation decisions given a limited budget.

Rather than simply treating barriers as being impassable or not, we consider the more general case in

which barriers may be partially passable. Although this assumption normally introduces nonlinearity into

the problem, we manage to formulate a linear model via the use of probability chains, a newly proposed

technique from the operations research literature. Our model is noteworthy in that it can be readily

implemented and solved using o�-the-shelf optimization modeling software. Using a case-study from the

US State of Maine, we demonstrate that the model is highly e�cient in comparison to existing solution

methods and, moreover, highly scalable in that large problems approaching 7,000 barriers can still be

solved optimally. Our analysis con�rms that barrier mitigation can provide substantial ecological gains

for migratory �sh species at low levels of investment.

Keywords: �sh passage barriers, river connectivity, probability chains, optimization, MILP.

1 Introduction

River systems comprise some of the most complex, dynamic and bio-diverse ecosystems on earth, as well

as playing an essential role in the transport of organisms and matter through the landscape (Dynesius and

Nilsson, 1994). At the same time, river systems across the globe have been modi�ed extensively in order

to provide socioeconomic bene�ts like water supply, �ood suppression, power generation and transportation

infrastructure. A global review of large river systems identi�ed more than 50% as being a�ected by river

barriers such as dams, culverts and weirs (Nilsson et al., 2005). In the United States, only 2% of streams are

believed to be free �owing and relatively undeveloped (Pringle, 2003). River barriers fragment the continuity

of rivers and substantially alter their natural �ow, thereby transforming the biological, morphological and

physio-chemical characteristics of rivers and associated ecosystems (Bednarek, 2001). The presence of physical

obstructions to migratory �sh (e.g., salmon and eel) can reduce or eliminate their ability to reach high quality

spawning and rearing grounds (Stanford et al., 1996).

While large head dams do impose major obstacles, the cumulative e�ect of low head dams, road crossings

and other smaller barriers can be even greater due to their large number (Januchowski-Hartley et al., 2013).
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Numerous studies have demonstrated the negative e�ects small arti�cial barriers have on migratory and

resident �sh populations (Sheer and Steel, 2006; Catalano et al., 2007; Fullerton et al., 2010; Nislow et al.,

2011). Culverts, for example, can hinder �sh passage due to high water velocities, inadequate depths,

debris jams or large out�ow drops (Kemp and Williams, 2008). This can result in �sh expending signi�cant

additional energy when migrating upriver as well as increased predation, angling mortality and disease in

pooling areas below barriers. Individuals that are unsuccessful in passing barriers may be forced to spawn or

rear in less suitable habitat downstream (e.g., in areas of increased risk of siltation or predation of eggs and

larvae), thus further depressing population numbers (de Leaniz, 2008).

Removing migratory �sh passage barriers has been demonstrated to result in increased spawning (Burdick and

Hightower, 2006), �sh density (Gardner et al., 2013), diversity (Catalano et al., 2007) and rapid colonization

of formerly impounded upstream reaches (Roni et al., 2008). Moreover, there is good evidence that river

barrier mitigation is one of the most cost-e�ective means of improving �sh populations at the watershed scale

(Roni et al., 2002, 2008). Putting economics aside, there are often important legislative drivers for improving

river connectivity, such as the Endangered Species Act in the US and the Water Framework Directive in the

EU.

Traditionally, studies on river barrier mitigation have concentrated on the assessment of localized connectivity

improvements. Scoring and ranking procedures are a typical example and are commonly employed to prioritize

barriers for mitigation action (e.g., Kocovsky et al., 2009 and Nunn and Cowx, 2012). However, scoring

and ranking approaches consider each barrier independently and fail to account for the cumulative e�ects

on longitudinal connectivity from improving passage at downstream barriers. Their use in prioritization

typically results in sub-optimal subsets of barriers being targeted for action (Kemp and O'Hanley, 2010).

Understanding how passage improvement at multiple river barriers interact to a�ect �uvial connectivity is

key to the sustainable management of rivers and the conservation of migratory �sh species (Fullerton et al.,

2010).

In broad terms, two general approaches can be identi�ed in the literature that consider interactive e�ects of

barrier mitigation, namely graph theoretic (e.g., Er®s et al., 2011; Segurado et al., 2013) and optimization

modeling frameworks (e.g., O'Hanley and Tomberlin, 2005; Kuby et al., 2005). Both of these methodologies

model watersheds as Dendritic Ecological Networks (DENs), where the river network is characterized by a

branching architecture with branches forming as one moves in the upstream direction (Grant et al., 2007).

1.1 Graph Theoretic Modeling

Graph theoretic approaches typically model river DENs as a set of river segments or habitat patches (nodes)

and river con�uences (arcs) (Padgham and Webb, 2010; Er®s et al., 2011; Segurado et al., 2013). Barriers

within the network can either be total (i.e., passability 0), thus splitting the graph into separate sub net-

works (Er®s et al., 2011; Segurado et al., 2013) or partial (i.e., passability between 0 and 1), in which case

transition between nodes is modeled via a transition probability matrix (Padgham and Webb, 2010). The

positional importance of any habitat node can be evaluated using metrics like the Betweeness Centrality

Index (BCI), which measures the number of shortest paths going through it (Pascual-Hortal and Saura,

2006). Overall habitat availability within a watershed can be captured by di�erent metrics like the Integral

Index of Connectivity (IIC), which takes into account both connectivity between habitat patches and habitat

amount (Pascual-Hortal and Saura, 2006). The importance of any given barrier, in turn, can be identi�ed
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by calculating the e�ect that restoring connectivity between nodes has on IIC (Er®s et al., 2011; Segurado

et al., 2013).

Whilst less common in the literature, an alternative approach in which DENs are constructed using barriers

(nodes) and adjacencies between barriers (arcs) has proven insightful for assessing river connectivity (Cote

et al., 2009; McKay et al., 2013; Diebel et al., 2014). Figure 1, presents an example of this approach with

natural and arti�cial barriers represented as lettered nodes (A-F). Assuming individual barrier passabilities

are independent, connectivity from any given point in the network to habitat immediately above a barrier is

simply taken as the product of the passabilities for all intervening barriers. This is more generally referred

to as cumulative passability for barriers in series (Kemp and O'Hanley, 2010). To quantify habitat avail-

ability at the watershed level, various metrics have been proposed. Cote et al. (2009) describe the Dendritic

Connectivity Index (DCI), which is calculated as sum of the relative amount of net habitat above a barrier

adjusted by the cumulative passability of the barrier. McKay et al. (2013) examine a conceptually similar

index (the HCIU index) speci�cally for the case of upstream migrating �sh. Diebel et al. (2014) present a

more general connectivity metric (the C metric) speci�c to resident �sh, which further accounts for multiple

habitat types and the travel distance between habitat areas.

Examining the e�ect of barrier mitigation on river connectivity using indicies such as IIC, DCI, HCIU and C

can allow decision makers to choose the best course of action among an identi�ed set of alternatives. Graph

based approaches for prioritizing barrier mitigation action are certainly more insightful than traditional

scoring and ranking approaches in that they consider basin-wide barrier impacts on river connectivity and

the e�ect of coordinated mitigation action. However, they are �descriptive�, rather than �prescriptive,� in that

they do not produce a recommended solution. The chosen subset of barriers targeted for mitigation has no

guarantee of being optimal unless all possible permutations of barrier mitigation action have been evaluated.

While this is possible when dealing with a small number of barriers (i.e., a few dozen at most), for problems

involving large numbers of barriers (i.e., in the 100s to 1000s), considering every possible combination becomes

computationally intractable.

1.2 Optimization Modeling and Connectivity

Optimization models also normally employ graph structures to model DENs in the format presented in

Figure 1 (i.e., barriers represented as nodes with arcs between adjacent barriers). Unlike simple graph theory

models, optimization approaches provide a scalable means of exploring all possible combinations of barrier

mitigation action so that an optimal solution can be identi�ed which maximizes restoration gains given

available resources. In addition, models can be formulated to address a variety of di�erent objectives and

or include various planning constraints. For example, O'Hanley (2011) present a model particularly suited

to resident �sh species that maximizes the size of the largest barrier free sub-network within a river system

subject to a budget. Kuby et al. (2005) present a bi-objective model for removing hydropower dams that

maximizes accessible habitat gains, while simultaneously minimizing economic losses associated with reduced

power generation and water storage capacity. Zheng et al. (2009) optimize no less than 9 ecological and socio-

economic objectives through the use of multicriteria value analysis, including �sh biomass changes, ecosystem

structure, function and productivity responses, and both dam removal and invasive species control costs. The

approach is noteworthy for the combined use of optimization, multicriteria analysis, simulation and habitat

suitability modeling. Zheng and Hobbs (2013) consider a similar type of multi-objective framework, focusing

in particular on dam safety issues.
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(a) (b)

Figure 1: Example of a river barrier network represented as a simple map (a) and as an equivalent DEN (b).
In (a), basic information pertaining to each barrier is listed next to each node, including current passability
(p0), the cost (c) in thousands of dollars to fully repair/remove the barrier (i.e., increase passability to 1),
and the amount of river habitat (h) immediate above the barrier. Barrier D is a natural barrier with no
mitigation option available (i.e., c = NA).

Structurally O'Hanley (2011), Kuby et al. (2005), Zheng et al. (2009) and Zheng and Hobbs (2013) formulate

their optimization models as mixed integer linear programs (MILPs), in which the primary decision variables

are binary to indicate whether any particular barrier should be repaired/removed or not. In order to maintain

linearity of the models, these studies all assume that passability is also binary (i.e., barriers are either

completely impassable or passable). In contrast, O'Hanley and Tomberlin (2005) adopt the more general

view, as done in Cote et al. (2009), Diebel et al. (2014) and McKay et al. (2013), that barriers may be

partially passable (i.e., anywhere in the range 0 to 1). In the context of diadromous �sh, access to river

habitat above a barrier is taken (assuming barriers are independent) as the product of all downstream barrier

passability values. Unfortunately, multiplying barrier passabilities together introduces nonlinear interactions

among the decision variables. This normally makes such optimization models hard to solve. O'Hanley and

Tomberlin (2005) resort to the use of specialized dynamic programming (DP) and heuristic methods.

In this paper, we propose an e�cient linear model for optimizing river barrier repair and removal decisions

in order to maximize upstream habitat gains for migratory �sh. We reformulate the Fish Passage Barrier

Removal Problem (FPBRP) model proposed by O'Hanley and Tomberlin (2005) as a MILP based on a newly

proposed technique of using probability chains (O'Hanley et al., 2013) to evaluate cumulative passability

terms. The bene�ts of a linear model are twofold. First, it allows FPBRP to be coded using high-level

algebraic modeling languages such as OPL, AMPL or GAMS and subsequently be solved using o�-the-shelf

optimization software solvers like CPLEX and GUROBI. Second, the increased e�ciency and scalability of

the model, in comparison to DP, allows far larger problems to be solved optimally.

The remainder of the paper is organized as follows. In Section 2, we present the original nonlinear version

of FPBRP as well as our new linear reformulation. In Section 3, we provide some simple examples to

demonstrate how the linear model works. In Section 4, we compare the linear model to existing solution
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methods and demonstrate the insight the FPBRP can provide using a case study from the US. In Section

5, we provide concluding remarks. In a set of online appendices, we provide an OPL implementation of the

model and an example dataset that can be readily translated into other modeling languages.

2 The Fish Passage Barrier Removal Problem (FPBRP)

FPBRP selects barriers for repair or removal in order to maximize the amount of accessible habitat for

diadromous �sh. It is assumed that barrier passabilities can take on fractional values in the range 0 to 1.

Passability represents the probability that �sh are able to pass through, over or around a particular barrier.

Given that �shes naturally vary in their ability to negotiate barriers, the model allows for multiple barrier

passability values to be speci�ed for each �restoration target� of interest (e.g., a species, guild or ecologically

signi�cant unit). Cumulative passability to habitat above any given barrier (a.k.a. accessibility) is taken as

the product of the passability at that barrier and all barriers downstream to the river mouth. Cumulative

passability is equivalent to longitudinal connectivity with the river mouth. The model assumes that multiple

mitigation options (e.g., removal, replacement, �tting ba�es, installing �sh passes) may be available at any

given barrier with varying cost and passability improvement but that only one project can be carried out at

a barrier. Lastly, there is assumed to be a budget, which limits total expenditure on river barrier mitigation

actions.

2.1 Nonlinear Formulation

In order to formulate the nonlinear version of FPBRP, we use the notation provided in Table 1 and following

decision variables.

xji =

1 if mitigation project i is carried out at arti�cal barrier j

0 otherwise

zjt = cumulative passability to habitat immediately above barrier j for restoration target t

A nonlinear formulation for FPBRP is then given as follows:

FPBRP max
∑
t∈T

wt

∑
j∈J

vjtzjt (1)

s.t.

zjt =
∏

k∈Dj

(
p̄kt +

∑
i∈Ak

pktixki

)
∀j ∈ J, t ∈ T (2)

∑
i∈Aj

xji ≤ 1 ∀j ∈ J∗ (3)

∑
j∈J∗

∑
i∈Aj

cjixji ≤ b (4)

xji ∈ {0, 1} ∀j ∈ J∗, i ∈ Aj (5)
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Table 1: Notation used in FPBRP.

Symbol De�nition
T Set of restoration targets, indexed by t
J Set of all arti�cial and natural barriers, indexed by j and k
J∗ Set of barriers for which at least one mitigation project exists (i.e., |Aj | ≥ 0) indexed by j
Dj Set of all barriers downstream from and including barrier j
Aj Set of mitigation projects available at barrier j, indexed by i
wt Objective weight for restoration target t
vjt Net amount of habitat above barrier j for restoration target t
cij Cost of implementing mitigation project i at barrier j
b Available budget for carrying out mitigation actions
p̄jt Initial passability of barrier j for restoration target t
pjti Increase in passability at barrier j for restoration target t given

implementation of mitigation project i

The objective (1) calculates the sum of cumulative passability weighted habitat vjtzjt for each barrier j and

restoration target t. Target-speci�c weights wt allow certain targets to be prioritized over others. Cumulative

passability 0 ≤ zjt ≤ 1 above barrier j for target t is calculated via the �rst set of constraints (2). They

specify for a given barrier j and target t that zjt is equal to the product of the passabilities in set Dj , namely

barrier j and all barriers downstream from j to the river mouth. If no project is selected at a given barrier

k ∈ Dj , then passability at k for restoration target t is p̄kt. If project i is selected, then passability at k for

restoration target t becomes p̄kt + pkti. Note that equations (2) are nonlinear. Constraints (3) ensure only

one mitigation project i can be carried out at any given barrier. If at most one project is available at barrier

j (i.e.,|Aj | ≤ 1), then (3) can be dropped for that particular barrier. Inequality (4) stipulates that the total

cost of barrier mitigation actions cannot exceed the total available budget b. Constraints (5) impose binary

restrictions on the xji decision variables.

It is worth pointing out that net habitat amounts vjt can be given in any relevant unit such as length (e.g.,

river miles or kilometers) or area (e.g., wetted area). Habitat can also be quality-adjusted, if so desired, by

taking the raw amount of habitat hjt for target t and barrier j and then multiplying it by a habitat suitability

score qjt ≥ 0 (i.e., vjt = qjthjt). Habitat quality can be based on any number of environmental correlates

such as �ow, temperature, water quality, bank/substrate condition, local land use, etc.

We also note that the above model can be easily adapted to account for downstream passage by rede�ning

parameter p̄jt (likewise for pjti) as the product of upstream passability p̄upjt and downstream passability p̄dwn
jt

for each barrier j and target t (i.e., p̄jt = p̄upjt × p̄dwn
jt and pjti = pupjti × pdwn

jti ). In this way, p̄jt and pjti can be

used to represent bi-directional passability terms, thus allowing one to handle (using salmon as an illustrative

example) both upstream passage of spawning adults and downstream passage of juvenile smolts.

2.2 Linear Reformulation

To reformulate FPBRP as a MILP, we introduce the additional following variable:

yjti = change in cumulative passability at barrier j for target t given implementation of project i
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Figure 2: Probability chain for a hypothetical barrier j whose initial passability p̄jt for restoration target
t can be improved via implementation of mitigation projects i = 1, 2, . . . n ∈ Aj , thereby resulting in an
increase in cumulative passability zjt to the area upstream of j.

Further, let dj refer to the barrier immediately downstream of j. A linear version of FPBRP can be derived

by replacing (2) with the following.

zjt = p̄jt +
∑
i∈Aj

yjti ∀j ∈ J |dj = ∅, t ∈ T (6)

zjt = p̄jtzdjt +
∑
i∈Aj

yjti ∀j ∈ J |dj 6= ∅, t ∈ T (7)

yjti ≤ pjtixji ∀j ∈ J∗, t ∈ T, i ∈ Aj (8)

yjti ≤ pjtizdjt ∀j ∈ J∗|dj 6= ∅, t ∈ T, i ∈ Aj (9)

Nonlinearity is removed from the model through the use of �ow-balance constraints (6) and (7) for the

determination of zjt combined with bounding constraints (8) and (9) on yjti. Collectively, variables zjt

and yjti and constraints (6)-(9) form a probability chain that iteratively propagates cumulative passability

values from each barrier j to its next upstream barrier (O'Hanley et al., 2013). Speci�cally, equations (6)

specify for restoration target t that cumulative passability zjt at a barrier j for which there is no downstream

barrier (dj = ∅) is equal to initial passability p̄jt plus the potential increase in passability yjti for target

t resulting from the implementation of any project i at j. Equations (7), meanwhile, specify for target t

that the cumulative passability zjt at any barrier j located above another barrier (dj 6= ∅) is the product of
p̄jt and the cumulative passability at downstream barrier dj (zdjt) plus the potential increase in cumulative

passability yjti of any project i at j. Inequalities (8) specify that if project i is not selected (xji = 0), then

yjti must equal 0. If project i is selected, then yjti is bounded above by pjti, the maximum potential increase

in cumulative passability at barrier j. For barriers without a downstream barrier, the value pjti provides the

exact increase in cumulative passability. Finally, inequalities (9) limit the increase in cumulative passability

yjti to be pjti times cumulative passability at downstream barrier dj (zdjt). Inequalities (9) become binding at

upstream barriers j (dj 6= ∅) when xji = 1. Figure 2 provides an illustrative example of a generic probability

chain represented in graph form.

2.3 Negative Weight Targets

An implicit assumption of FPBRP is that increased river connectivity invariably provides a positive ecological

bene�t. In some planning situations, however, there may be certain targets (e.g., invasive species) for which
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habitat gain is undesirable and therefore should be limited. For each such target, a negative weight wt can

be assigned in the objective function (1). In order to accommodate �anti-restoration� targets into a MILP

structure, additional constraints need to be derived. Speci�cally, constraints (8)-(9) would not be su�cient

to produce correct values for the yjti variables (and by extension the zjt variables) when a negative weight wt

is given to target t. A negative weight favors the smallest possible values for yjit. However, (8)-(9) only place

upper bounds on these variables and so do not constrain them to increase as they should when mitigation

occurs. To overcome this, one simply needs to substitute the following constraints in place of (8)-(9) for each

negatively weighted target.

yjti ≥ pjtixji ∀j ∈ J∗|dj = ∅, t ∈ T, i ∈ Aj (10)

yjti ≥ pjtizdjt + xji − 1 ∀j ∈ J∗|dj 6= ∅, t ∈ T, i ∈ Aj (11)

yjti ≥ 0 ∀j ∈ J∗|dj 6= ∅, t ∈ T, i ∈ Aj (12)

Inequalities (10) ensure that if project i is implemented at a barrier with no downstream barrier (dj = ∅)
then the change in cumulative passability yjti is forced up to pjti. Inequalities (11) similarly force yjti up

at any barrier j with at least one downstream barrier (dj 6= ∅) when mitigation is carried out (i.e., xji = 1

for some project i). Finally, inequalities (12) ensure that yjit remains non-negative at upstream barriers

whenever mitigation is not carried out (i.e., the right hand side of each constraint (11) would potentially be

negative if xji = 0, ∀i ∈ Aj).

3 Simple Example Problem

In order to illustrate how cumulative passability terms zjt are evaluated along a probability chain, consider a

simple example of three arti�cial river barriers 1-3 located in series above the river mouth, as shown in Figure

3. For simplicity, we assume that there is a single restoration target, which allows us to drop index t from

the notation. Initial passabilities for barriers 1-3 are given as p̄1 = 0.5 , p̄2 = 0.7 and p̄3 = 0.2, respectively.

We also assume that only a single mitigation project is available at any given barrier, allowing us to drop i

from the notation, and that this restores a barrier to full passability (i.e., p1 = 0.5, p2 = 0.3 and p3 = 0.8).

3.1 Case 1: No Mitigation

If no mitigation projects are carried out at any of the barriers (i.e., x1 = x2 = x3 = 0), then cumulative

passability of barrier 3, according to equation (2), is simply the product of the initial passabilities of the

Figure 3: Single stream channel with three arti�cial barriers located in series above the river mouth.
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three barriers (i.e., z3 = 0.5× 0.7× 0.2 = 0.07). Alternatively, using the linear model, z3 can be determined

iteratively using probability chain (6)-(9). Since no mitigation is carried out, we have based on (8) that

y1 = y2 = y3 = 0. According to (6), we have for barrier 1:

z1 = p̄1 + y1 = 0.5 + 0 = 0.5

while based on (7), we have for barriers 2 and 3:

z2 = p̄2z1 + y2 = 0.7× 0.5 + 0 = 0.35

z3 = p̄3z2 + y3 = 0.2× 0.35 + 0 = 0.07

As demonstrated above, the linear model produces a cumulative passability value for barrier 3 that is equiv-

alent to the nonlinear model. Simple inspection shows that the same also holds for barriers 1 and 2.

3.2 Case 2: Mitigation of Barriers 1 and 3

Suppose that mitigation is undertaken at barriers 1 and 3 (i.e., x1 = x3 = 1 and x2 = 0). According to the

nonlinear model, z3 = 1× 0.7× 1 = 0.7. In Box 1, we demonstrate how the linear model produces the same

value for z3.

Barrier 1

Based on (8): y1 ≤ p1x1 = 0.5× 1 = 0.5 ∴ y1 = 0.5

Based on (6): z1 = p̄1 + y1 = 0.5 + 0.5 = 1

Barrier 2

Based on (8): y2 ≤ p2x2 = 0.3× 0 = 0 ∴ y2 = 0

Based on (7): z2 = p̄2z1 + y2 = 0.7× 1 + 0 = 0.7

Barrier 3

Based on (8): y3 ≤ p3x3 = 0.8× 1 = 0.8

Based on (9): y3 ≤ p3z2 = 0.8× 0.7 = 0.56 ∴ y3 = 0.56

Based on (7): z3 = p̄3z2 + y3 = 0.2× 0.7 + 0.56 = 0.7

Box 1: Evaluation of variable z3 based (6)-(9) given mitigation at barriers 1 and 3.

4 Case Study

In order to examine the performance of the linear FPBRP model, barrier data were obtained from the US

State of Maine. To provide a benchmark for comparison, the nonlinear version of FPBRP was solved at

various budget amounts using the dynamic programming (DP) and greedy add with branch pruning (GABP)

algorithms presented in O'Hanley and Tomberlin (2005). The DP formulation is guaranteed to provide an

optimal solution to FPBRP, whereas GABP is a heuristic that provides optimal to near optimal solutions. A
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full discussion of these methods is provided in O'Hanley and Tomberlin (2005). The linear version of FPBRP

presented in Section 2.2 was coded in OPL using CPLEX studio version 12.5. The CPLEX model (.mod �le)

along with a data �le (.dat �le) for the example network shown in Figure 1 are provided in a set of online

appendices. All experiments were run on the same dual-core Toshiba Satellite Pro R850-15F laptop (Intel i3

processor, 2.10 GHz per chip) with 4 GB of RAM.

4.1 Background

Watersheds in the State of Maine are impacted by numerous arti�cial barriers, including culverts and both

small and large-head dams. In order to assess the problem in a systematic way, the US Fish and Wildlife

Service Gulf of Maine Coastal Program has compiled an inventory of barriers across the state, including their

location and a qualitative estimate of migratory �sh passability. This dataset consists of a total of 6,989

natural and arti�cial barriers, as shown in Figure 4. Qualitative passability values (full or partial barrier)

were converted into quantitative values (0 and 0.5, respectively). A single mitigation project was considered

for each arti�cial barrier. At small to medium sized dams (≤ 25ft) and culverts, costs were estimated to

restore full passability by either dam removal or replacement with a new bottomless arch culvert, respectively.

At large dams (>25 ft), the cost of installing a �sh pass with a passability of 0.75 was estimated. The amount

of habitat above any given barrier is characterized as the river length between the barrier and its immediate

upstream barriers or the limits of diadromy. The current amount of accessible habitat above barriers (i.e.,

given a zero budget) for the Maine dataset is 1,816.4 km. The cost of �xing all 6,761 arti�cial barriers is

estimated to be $721.9M and would result in 23,731.1 km of accessible habitat. Consequently, only 8% of

the potential amount of river habitat above barriers is currently accessible within Maine.

Figure 4: Location of arti�cial and natural barriers (represented by small dots) across the State of Maine.
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Table 2: Performance of CPLEX, DP and GABP on the Maine dataset for selected budget values. Under
�Objective,� the amount of maximum connectivity weighted habitat is given both in terms of river length
(km) and as a percentage relative the maximum gain given mitigation of all barriers (% Max). The column �%
Gap� denotes the percentage di�erence and the column �Di�� the absolute di�erence between the objective
value found with GABP and the optimal objective.

Objective CPLEX DP* GABP
Budget ($M) (km) (% Max) Time (s) Time (s) Time (s) % Gap Di� (km)

5 8,133.5 34.3 9.70 0.50 1.47 1.10 89.1
10 9,804.5 41.3 11.27 0.70 2.84 0.26 25.4
15 10,781.1 45.4 8.75 0.89 5.84 1.50 161.6
20 11,547.8 48.7 10.35 1.31 12.29 0.16 18.9
25 12,172.0 51.3 10.67 - 6.86 0.32 39.1
50 14,337.0 60.4 12.63 - 28.10 0.14 20.4
100 17,074.6 72.0 12.52 - 79.65 0.21 35.2
150 18,882.8 79.6 15.56 - 108.45 0.31 57.9
300 21,690.3 91.4 39.71 - 179.65 0.33 71.8
450 23,077.2 97.2 36.11 - 138.28 0.09 20.9
600 23,711.3 99.9 16.92 - 123.27 0.04 9.9
Avg 16.74 - 62.43 0.41 50.0

*A �-� indicates that the DP algorithm was unable to �nd a solution at the speci�ed budget level.

4.2 Results

The performance of the CPLEX implementation of FPBRP and the DP and GABP algorithms on the Maine

dataset is provided in Table 2. For large datasets such as this, solving the DP algorithm becomes more and

more computationally intensive as the total budget rises. Above a certain budget threshold, in fact, the

problem becomes intractable and the DP algorithm fails. This threshold was reached at a budget level of

between $20M and $25M on the computer used to run our experiments.

Table 2 identi�es the DP algorithm as being highly e�cient at low budget levels (≤$20M), in which case it is

able to �nd optimal solutions within 2 seconds. Above the $20M threshold, however, DP could not generate a

solution. GABP, by contrast, was able to return near optimal solutions often within 30 seconds (180 seconds

in the worst case). The optimality gap for the GABP heuristic is generally small at higher budget levels

(>$25M), with a maximum gap of only 0.33% (71.8 km) at $300M. For lower budget levels (≤$20M), the

optimality gap reached a maximum of 1.50% (161.1 km) at $15M. Whilst less e�cient than the DP algorithm

at lower budget levels, the CPLEX implementation was nonetheless able to return optimal solutions within

40 seconds for all budget levels. It also consistently out performed GABP in terms of solution quality and

time at budget levels of $50M and higher. This is a important �nding as it means that not only is the linear

model capable of providing optimal solutions for large datasets comprising many thousands of barriers, but

it also provides them quicker than the GABP heuristic.

A pattern of diminishing marginal improvements in accessible habitat with increasing budget was observed

for the Maine dataset. This is illustrated in Figure 5, which shows substantial gains in accessible habitat

for modest investments ($5-10M) and small increases in accessible habitat when moving up to larger levels

of investment (e.g., at $300M to $600M). More importantly, what the results show is that the majority of

potential ecological gain can be achieved at relatively low budget levels. Accessible habitat above barriers

could be improved from its current level of 1,816.4 km to 8,133.5 km (more than a fourfold increase) with an

investment of just $5M and to 12,172.0 (more than a sixfold increase) given $25M. These budgets represent,
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Figure 5: Maximum accessible habitat versus budget for the Maine dataset.

respectively, only 0.7% and 3.5% of the total amount required to mitigate all known arti�cial barriers within

Maine.

Table 3 provides a detailed breakdown of solution characteristics at di�erent budget levels. The �rst obser-

vation that can be made is that at low to moderate budgets (≤$50M), full barriers tend to be selected more

than twice as often compared to partial barriers. At a budget of $25M, for example, 215 full barriers (73%

of total) are selected versus 79 partial barriers (27% of total). At higher budgets (>$50M), partial barriers

begin to dominate within the solution, due primarily to the fact that there are considerably more partial

barriers (3,956) than full barriers (2,805).

Another �nding, albeit unsurprising, is that barriers selected for mitigation, particularly at lower budgets

(≤$50M), are generally located close to the mouths of the river networks. Selected barriers have a relatively

few number of downstream barriers, a considerably higher number of upstream barriers, and a large amount

of river upstream (Total USL). At a budget of $5M, for example, mitigated barriers have an average of 2.8

downstream barriers and 322.9 upstream barriers. This contrasts sharply with the average 5.4 downstream

barriers and 5.3 upstream barriers for arti�cial barriers as a whole. It is also clear that barriers with higher

amounts of net upstream habitat (Net USL) are top priorities for mitigation at low budgets levels. At a

budget of $5M, barriers selected for mitigation have a mean of 184.7 km of net upstream habitat, a value

substantially higher than 6.2 km for the average arti�cial barrier.

In terms of cost, barriers selected for mitigation are considerably more expensive than average when the

budget is fairly tight (≤$15M). At a budget of $5M, the average cost of mitigation for selected barriers

is roughly $45,000 more than the $107,000 needed to mitigate an average barrier. This represents a 42%

premium. At budgets of $10-15M, the increased cost is much less pronounced but still 9-12% higher than

average. Beyond $15M, selected barriers are cheaper than average, going from -13% at $20M to -45% at

$150M. Beyond this budget value, the cost of mitigation relative to the average begins to rise again. This,

in combination with the lower than average amount of net upstream habitat for selected barriers at budgets

≥$300M implies that there is a large number of relatively expensive barrier mitigation actions that are not
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substantially restricting habitat access for migratory �sh.

Indeed, looking at the results more closely, we observe that nearly 70% of arti�cial barriers in Maine can

be mitigated with $300M. This would deliver over 90% of the maximum possible accessible habitat for only

40% of the maximum budget. A very large sum, both in relative and absolute terms, would therefore need to

be spent beyond this point for little added bene�t, which, in turn, is re�ected in the rising average cost per

mitigated barrier at $300M and above. One of the central messages from all this is that barrier mitigation

needs to be carefully planned out if substantial connectivity gains are to be achieved. Simply removing

barriers opportunistically (as is often the case in practice) will almost invariably result in large amounts of

money being spent for minimal bene�t (i.e., the vast majority of barriers within this study region have large

repair/removal cost combined low amounts of blocked upstream habitat). In this regard, optimization models

are an ideal tool for cost-e�ectively targeting mitigation action.

Perhaps the most signi�cant insight from Table 3 is that small dams play an essential role in optimal mitigation

strategies, especially at low to moderate budgets, but large dams do not. At $25M or below, only a single

large dam (>25 ft) is selected for mitigation. None are selected at $5M or $10M. Only when the budget

reaches $50M are more than a handful of large dams selected for mitigation but still never exceed 1% of

selected barriers. Small dams, on the other hand, are the dominate type of selected barrier for budgets

$15M or less and are considerably over represented in the optimal solution for budgets ≤$100M. Whereas

small dams represent just 9% of all arti�cial barriers, they nonetheless comprise 91% of selected barriers at

$5M, 40% at $25M and 15% at $100M. While culverts are under represented for budgets ≤$100M, they still

represent a majority of selected barriers at budgets ≥$20M and so constitute a core element in connectivity

restoration.

These �ndings are rather surprising given the popular perception among scientists, policy makers, and the

general public that removing large dams holds the key to the recovery of diadromous �sh populations. What

our analysis shows is that large dams are not the main drivers of connectivity impairment within Maine.

On the contrary, mitigating large dams is a costly exercise, which in many cases, may deliver only moderate

bene�t to migratory �sh. Given their cumulatively greater impact on connectivity (due to their vastly larger

number) and comparatively low cost of mitigation, targeting small dams and culverts has the real potential

to provide a far more e�ective and economical means of improving river connectivity within this system.

5 Conclusions

The negative ecological e�ects caused by the presence of arti�cial barriers within rivers are well documented.

Barrier mitigation actions aimed at restoring �sh passage is widely seen as a highly e�ective way of improving

the integrity of river ecosystems. In this paper, we present a linear version of the Fish Passage Barrier Removal

Problem (FPBRP) for optimizing barrier mitigation decisions. The paper contributes to the existing literature

by providing a framework for identifying cost-e�ective solutions to tackle the impacts of river infrastructure

on diadromous �sh. The model is highly e�cient, scalable, and can be readily implemented using o�-the-shelf

optimization software. We demonstrate the usefulness of our linear model using barrier data from the US

State of Maine. The model consistently provides optimal barrier mitigation strategies for any given budget

within seconds.

It is anticipated that our model will be of direct bene�t to practitioners involved in river barrier mitigation. As

Kemp and O'Hanley (2010) discuss, techniques that deliver optimized solutions o�er substantial bene�ts over
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more traditional planning methods like scoring and ranking. Furthermore, the ability to produce prescriptive

solutions that are guaranteed to maximize accessible river habitat highlights the advantage of an optimization

based framework over alternative graph theoretic approaches, particularly when analyzing realistically sized

datasets.

The model presented here should also prove insightful to watershed managers by clarifying how potential

habitat gain varies with di�erent levels of investment. Pareto-optimal trade-o� curves, such as Figure 5,

can be constructed to identify levels of investment that deliver high environmental returns at suitable cost

(O'Hanley, 2011). Indeed, our analysis reveals that substantial habitat gains for migratory �sh species can

be achieved at markedly low levels of investment. Speci�cally, within Maine, a budget of $5M would result

in more than a fourfold increase in accessible river habitat above barriers. This �nding should lend strong

support to the notion that barrier mitigation is, in fact, a highly cost-e�ective form of river restoration.

A natural extension of our present work is to formulate a linear model that accounts for the dispersal needs of

resident �sh. Research is ongoing in this regard. Looking more broadly, decisions to invest in environmental

improvement programs are increasingly being informed by cost-bene�ts analysis. Incorporating FPBRP or

models like it into a bio-economic framework to estimate the dollar value of river connectivity improvements

would be informative for both river managers and policy makers and provide an interesting line of future

research.
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