
Gu, Xiaowei, Howells, Gareth and Yuan, Haiyue (2024) A soft prototype-based
autonomous fuzzy inference system for network intrusion detection. Information
Sciences, 677 . ISSN 0020-0255.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/106292/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/doi:10.1016/j.ins.2024.120964

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/106292/
https://doi.org/doi:10.1016/j.ins.2024.120964
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Information Sciences 677 (2024) 120964

Available online 10 June 2024
0020-0255/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

A soft prototype-based autonomous fuzzy inference system for
network intrusion detection

Xiaowei Gu a,*, Gareth Howells b, Haiyue Yuan c

a School of Computer Science and Electronic Engineering, University of Surrey, Guildford GU2 7XH, UK
b School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
c School of Computing, University of Kent, Canterbury CT2 7NZ, UK

A R T I C L E I N F O

Keywords:
Data stream
Fuzzy rule
Fuzzy inference
Intrusion detection
Soft prototype

A B S T R A C T

Nowadays, cyber-attacks have become a common and persistent issue affecting various human
activities in modern societies. Due to the continuously evolving landscape of cyber-attacks and
the growing concerns around “black box” models, there has been a strong demand for novel
explainable and interpretable intrusion detection systems with online learning abilities. In this
paper, a novel soft prototype-based autonomous fuzzy inference system (SPAFIS) is proposed for
network intrusion detection. SPAFIS learns from network traffic data streams online on a chunk-
by-chunk basis and autonomously identifies a set of meaningful, human-interpretable soft pro-
totypes to build an IF-THEN fuzzy rule base for classification. Thanks to the utilization of soft
prototypes, SPAFIS can precisely capture the underlying data structure and local patterns, and
perform internal reasoning and decision-making in a human-interpretable manner based on the
ensemble properties and mutual distances of data. To maintain a healthy and compact knowledge
base, a pruning scheme is further introduced to SPAFIS, allowing itself to periodically examine
the learned solution and remove redundant soft prototypes from its knowledge base. Numerical
examples on public network intrusion detection datasets demonstrated the efficacy of the pro-
posed SPAFIS in both offline and online application scenarios, outperforming the state-of-the-art
alternatives.

1. Introduction

Thanks to the rapid development in electronic manufacturing and information technology, the Internet has become an essential
part of everyday life for billions of individuals in modern societies. The Internet has greatly transformed the way people communicate,
network and access information. However, the on-going digitalization in the world has also led to a significant rise in cyber-attacks.
According to the Cyber Security Breaches Survey published by the UK government in April 2023 [1], 59 % of medium businesses, 69 %
of large businesses and 56 % of high-income charities have encountered cybersecurity breaches and/or cyber-attacks in the last 12
months. Nowadays, the escalating cyber-attacks have posed a major and persistent threat to individuals, businesses and organizations
on the Internet. The need for effective techniques to protect information security is highly pronounced.

Intrusion detection systems (IDSs) are one of the most effective security techniques to prevent cyber-attacks [2]. The function of an
IDS is to monitor the network and identify malicious activities. Traditional IDSs are primarily based on signatures. Such IDSs utilize

* Corresponding author.
E-mail addresses: xiaowei.gu@surrey.ac.uk (X. Gu), gareth.howells@essex.ac.uk (G. Howells), h.yuan957@googlemail.com (H. Yuan).

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

https://doi.org/10.1016/j.ins.2024.120964
Received 29 October 2023; Received in revised form 12 January 2024; Accepted 5 June 2024

mailto:xiaowei.gu@surrey.ac.uk
mailto:gareth.howells@essex.ac.uk
mailto:h.yuan957@googlemail.com
www.sciencedirect.com/science/journal/00200255
https://www.elsevier.com/locate/ins
https://doi.org/10.1016/j.ins.2024.120964
https://doi.org/10.1016/j.ins.2024.120964
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2024.120964&domain=pdf
https://doi.org/10.1016/j.ins.2024.120964
http://creativecommons.org/licenses/by/4.0/

Information Sciences 677 (2024) 120964

2

pattern matching methods to compare current activities against signatures of previous intrusions stored in the database [3]. Signature-
based IDSs are highly effective in detecting known attacks, but they are unable to detect novel attacks because of the lack of matching
signature in the database. As the technological evolution of cybercrime has made cyber-attacks more sophisticated and difficult to
detect, traditional signature-based IDSs have become insufficient in real-world scenarios [4].

Machine learning techniques are capable of learning normal and malicious patterns from empirically observed network activities to
constructing accurate predictive models with less human involvement [4]. Conventional machine learning methods, such as decision
tree (DT) [5], random forest (RF) [6], support vector machine (SVM) [7], k-nearest neighbour (KNN) [8], etc., have been extensively
used for identifying cyber-attacks. IDSs based on conventional machine learning have achieved many successes, but they generally
struggle with large-scale, complex intrusion detection problems [9]. Due to the evolving landscape of cyber-attacks, characterized by
the increasing sophistication and complexity, there has been a rapidly growing demand for IDSs that leverage more advanced machine
learning techniques.

On the other hand, deep neural networks (DNNs, or artificial network networks, ANNs) have demonstrated eye-catching perfor-
mances on a variety of practical problems involving visual and audio information. Due to their appealing multi-level representation
learning capabilities, there have been a significant increase in the number of works in the literature that utilize DNNs for network
intrusion detection in the last decade [4,9]. DNN-based IDSs have demonstrated promising results in detecting sophisticated and
complex cyber-attacks that the conventional machine learning based IDSs may struggle with [10,11]. However, it is also widely
recognized that DNNs are the typical type of highly complex “black box” models [12,13]. DNNs usually have huge amounts of hyper-
parameters that cannot be associated to the practical problems, and decisions made by such models cannot be explained to/by humans
easily. Although there have been a number of post-hoc approaches proposed in the literature attempting to provide some insights to the
internal reasoning of DNNs, e.g., layer-wise relevance propagation [14], saliency [15], explanations provided by these approaches are
aligned to the model behaviours rather than human understanding and, hence, they often are misleading and meaningless [12]. The
high complexity and low interpretability also make it extremely challenging for human experts to pinpoint the causes of prediction
errors made by DNNs for a straightforward fixing. Concerns on the lack of interpretability and explainability of DNNs have largely
limited their wider adaption in high-stake real-world applications, such as network intrusion detection, despite of their superior
performances over traditional machine learning approaches.

Another issue associated with most of the conventional machine learning and DNN models is the lack of capability to self-adapt to
new data patterns. Although these models typically can perform decision-making in real time, a full retraining is usually required when
dealing with new data of unseen patterns. The ability to self-learn and self-update from streaming data is of great importance for an
IDS, especially in the context of constantly evolving cyber-attack behaviours [2]. Without such feature, the performance of the IDS will
inevitably decrease over time due to the shifts and/or drifts of data patterns [16].

In this paper, a soft prototype-based autonomous fuzzy inference system (SPAFIS) is proposed for network intrusion detection. The
proposed SPAFIS is a novel zero-order evolving fuzzy system (EFS) to autonomously learn from data streams on a chunk-by-chunk
basis. It is well known that zero-order EFSs are designed to simultaneously self-organize and self-update the system structure and
meta-parameters online from data streams in a single pass manner utilizing prototype-based IF-THEN fuzzy rules for classification
[13,17]. Prototypes play a key role in the decision-making and internal reasoning of zero-order EFSs [18,19]. They are highly
informative data samples representing the local peaks of multimodal data distributions and form the knowledge base of the systems.
Thanks to the transparent prototype-based system structure and explainable internal reasoning performed based on the mutual dis-
tances of data, zero-order EFSs provide an effective solution towards explainable AI (XAI) for application scenarios concerning data
streams with the attractive ability to agilely self-adapt to the dynamically changing data patterns in nonstationary environments [20].

A zero-order EFS identifies prototypes from data streams by online data partitioning in a crisp manner, where each empirically
observed data sample can only belong to a single prototype. Crisp prototypes identified by zero-order EFSs are mutually exclusive and
they might struggle to accurately represent the local patterns of data with complex and uncertain distributions [21]. Different from
existing zero-order EFSs, SPAFIS utilizes soft prototypes extracted from data, where each data sample forms a fraction of every soft
prototype in the knowledge base of the system with a certain membership coefficient. This is similar to the concept of fuzzy clustering
[21], but these soft prototypes are learned from data streams online in a single pass manner without iterative optimization as required
by the vast majority of fuzzy clustering approaches. Compared with crisp prototypes, soft prototypes can better summarize the un-
derlying structure and local patterns of data, thereby, enabling SPAFIS to achieve greater intrusion detection performance from
network data streams. Furthermore, to enhance the computational efficiency of SPAFIS and reduce system obesity during online
learning, a soft prototype pruning mechanism is introduced to SPAFIS, which periodically examines the knowledge base and removes
soft prototypes with higher similarity to maintain a more compact knowledge base. With this pruning scheme, older soft prototypes
that are spatially closer to newer ones will be pruned from the knowledge base, and the information carried by them will be dissolved
and fused into the remaining soft prototypes to better preserve the learned knowledge.

To summarize, unique features of the proposed SPAFIS-based IDS that distinguish it from the state-of-the-art (SOTA) IDSs based on
conventional machine learning and deep learning techniques include:

1) a transparent rule-based structure composed of human-interpretable soft prototypes with internal reasoning and decision-making
performed based on mutual distances of data, and;

2) the capability to continuously self-expand its knowledge base from data streams and self-adapt to changing data patterns in
nonstationary environments.

Key contributions of this study to the field of EFSs are outlined as follows:

X. Gu et al.

Information Sciences 677 (2024) 120964

3

3) the utilization of soft prototypes to better summarize the underlying structure and local patterns of data with complex distributions;
4) an online, non-iterative approach to learn soft prototypes from data streams on a chunk-by-chunk basis;
5) the capability to periodically prune soft prototypes with high spatial similarity for a healthier knowledge base and greater

computational efficiency.

Numerical experiments on popular public benchmark datasets for network intrusion detection demonstrated the superior per-
formance of the proposed SPAFIS-based IDS in both offline and online setting, outperforming the SOTA IDSs based on conventional
machine learning models and cutting-edge DNNs.

The remainder of this paper is organized as follows. A review of related works is given by Section 2. Section 3 describes the
technical details of the proposed SPAFIS. Numerical examples are presented in Section 4 to demonstrate the performance of SPAFIS on
network intrusion detection. This paper is concluded by Section 5, and directions for future work is also discussed in this section.

2. Related works

In this section, a review of related works on network intrusion detection is presented, providing the background and context of this
research. Due to the limited length of this paper, it is practically impossible to cover all the works in this area. Hence, the literature
review is primarily focused on representative works in the following three aspects, namely, conventional machine learning-based
methods, DNN-based methods and EFS-based methods. Interested readers are referred to the recently published review papers
[3,4] for more details about the latest developments in using machine learning and deep learning methods for intrusion detection.

In the past decades, a number of IDSs utilizing conventional machine learning techniques have been proposed in the literature and
have achieved lots of success. For example, the KNN classifier is employed in [22] for learning program behaviours defined as col-
lections of system calls over each program execution and classifying each new program behaviour into either normal or intrusive class.
In [23], a IDS utilizing DT learned by J48 algorithm is proposed to classify different network packets in the Kyoto 2006 + dataset into
three major categories, namely, benign, known attack and unknown attacks. A SVM-based IDS is proposed in [7], where a hierarchical
clustering algorithm and a feature selection algorithm exploiting the so-called “leave-one-out” strategy are employed to reduce both
the number of samples and the number of features of the network data. A RF classifier combined with synthetic minority oversampling
technique (SMOTE) and feature selection is proposed in [24] for intrusion detection with improved performance on minority class,
where SMOTE is employed to restore class balance in the training set of NSL-KDD dataset [25] and feature selection based on in-
formation gain is used to obtain a reduced feature subset to facilitate the classifier training. In [26], an ensemble system composed of
multiple SVM and KNN classifier with particle swarm optimization generated base classifier weights is proposed for detecting network
intrusions in the KDD99 dataset. A duel ensemble classifier combining multiple gradient boosting decision tree ensembles via boot-
strap aggregation (bagging) is introduced in [24], offering greater intrusion detection performance.

Thanks to the superior performances of DNNs over conventional machine learning techniques on many highly challenging prob-
lems, there has been an increasing number of works proposed in the recent years exploiting DNNs for network intrusion detection.
Popular DNN models for constructing IDSs include, but are not limited to, feedforward neural networks (FNNs) [11], recurrent neural
networks (RNNs) [9,27], convolutional neural networks (CNNs) [10]. DNN-based IDSs have demonstrated superior performances in
binary and multiclass intrusion classification on various benchmark problems, e.g., KDD99, NLS-KDD [25], CICIDS2017 [28], out-
performing a variety of conventional machine learning techniques. However, as aforementioned, one of the key drawbacks of DNNs is
the lack of explainability, which is a critical issue for high-stake applications. To partially alleviate this issue whilst maintaining the
same-level performance, IDSs based on hybridizations of DNNs and conventional machine learning models are constructed, where
DNNs are used for extracting high-level abstract features from network data and the conventional machine learning models are used
for classifying the data instances into different categories based on the extracted features [29,30]. Nevertheless, it is also widely known
that conventional machine learning models suffer from a number of weaknesses when applied to large-scale, complex problems, such
as lower transparency, lower explainability and lower computational efficiency.

As cyber-attacks are consistently evolving, it is necessary for IDSs to be capable of continuously self-evolving the system structure
and meta-parameters to self-adapt to new data patterns. It is also important for IDSs to be able to perform decision-making in a human
understandable manner and provide high-level explainability. As a result, researchers are exploring alternative approaches to
construct explainable IDSs that address the evolving threat landscape effectively. EFSs, as a powerful tool widely used for real-time
non-stationary problem approximation and a promising approach towards XAI [17], have been increasingly used for network intru-
sion detection in nonstationary environments. In [31,32], an EFS-based approach named evolving agent behaviour classification based
on distributions of relevant events (EvABCD) is proposed to create and recognize automatically the behaviour profiles of different
computer users by representing the observed behaviours of computer users as adaptive distributions of their relevant atomic be-
haviours. EvABCD can effectively monitor the time varying behaviours of different computer users, thereby detecting abnormalities
and identifying masquerades. An evolving possibilistic Cauchy clustering algorithm is introduced in [33] to learn a self-evolving
predictive model online from network data streams for cyber-attack detection. In [34], an evolving Gaussian fuzzy classifier is
implemented to autonomously analyse the time-varying data from the Tier-1 Bologna computer centre and detect anomalies in the log
records in real time for predictive maintenance.

3. Proposed SPAFIS

In this section, technical details of the proposed SPAFIS are presented. As aforementioned, one key feature that differentiates

X. Gu et al.

Information Sciences 677 (2024) 120964

4

SPAFIS from alternative zero-order EFSs is the utilization of soft prototypes in its internal reasoning and decision making. Compared
with crisp prototypes utilized by conventional prototype-based models [19,20,35], soft prototypes have a greater capability to
summarize the underlying patterns of empirically observed data and preserve the data structure, enabling the resulting SPAFIS to
achieve better prediction performance.

First of all, let X = {x1,x2,x3,⋯,xk,⋯} (xk =
[
xk,1, xk,2, .., xk,M

]T
∈ X) be a particular data stream/static dataset in the

M-dimensional data space R M, where the subscript k denotes the time instance at which xk is observed. It is assumed that samples of
the data stream X continuously arrive in chunks, namely, Xn =

{
xn,1,xn,2,⋯,xn,Ln

}
(n = 1, 2,3,⋯; Ln is the cardinality of Xn). X is

composed of data samples of C different classes with Y =
{
y1, y2, y3,⋯, yk,⋯

}
being the corresponding class labels of X, where yk

denotes the class label of xk and there is yk ∈ {1,2,⋯,C}. According to the class labels Yn, data samples of Xn can be further divided

into C non-overlapping subsets, namely, Xc
n =

{
xc

n,1,xc
n,2,⋯,xc

n,Lc
n

}
(c = 1,2,⋯,C); Lc

n is the cardinality of Xc
n), and there are Xi

n ∩ Xj
n =

∅∀i ∕= j, and X1
n ∪ X2

n ∪ ⋯ ∪ XC
n = Xn. By default, this study employs city block distance as the default distance measure, namely,

‖x − y‖1 =
∑M

m=1
⃒
⃒xm − ym

⃒
⃒, same as [20]. However, one may consider using other commonly used distance metrics, such as Euclidean

distance, Mahalanobis distance, etc.

3.1. Architecture

The general architecture of SPAFIS is visualized in Fig. 1, which is composed of the following components:

1) A self-adaptive threshold learner;

The self-adaptive threshold learner derives the data-driven distance threshold from the received data chunks based on the mutual
distances of data and the level of granularity set by the users [19].

2) C knowledge summarizers;

The knowledge summarizers learn from received data chunks to build a knowledge base composed of highly distinctive and
informative soft prototypes preserving the underlying structure and local patterns of the data streams. The knowledge summarizers
also periodically remove these soft prototypes with high spatial similarity from the knowledge base to maintain its compactness and
healthiness.

3) C soft prototype-based IF-THEN rules, and;

The soft prototype-based IF-THEN rules are the core of SPAFIS, created from the learned knowledge base. They serve as the
inference engine and are formulated in the following form [19]:

Rc :
IF
(
x ∼ sc

1
)

OR
(
x ∼ sc

2
)

OR⋯OR
(
x ∼ sc

Sc

)

THEN (y = c)
(1)

where c = 1,2,⋯,C; “~” denotes similarity; sc
j is the j th soft prototype of the c th IF-THEN rule, Rc; Sc is the total number of soft

prototypes identified from the empirically observed data samples of the c th class; Sc is the collection of soft prototypes associated with
Rc. As one can see from Eq. (1), each IF-THEN rule is, in fact, a combination of Sc simpler IF-THEN rules with the same singleton
consequent part integrated by logical “OR” connectives as follows (j = 1,2,⋯,Sc):

Rc
j :

IF
(

x ∼ sc
j

)

THEN (y = c)
(2)

Fig. 1. General architecture of SPAFIS.

X. Gu et al.

Information Sciences 677 (2024) 120964

5

4) A decision maker

The decision maker predicts class labels of unlabelled samples based on the confidence scores produced by the IF-THEN rules
during the testing stage [36]. The confidence scores are calculated based on the spatial similarity between unlabelled samples and soft
prototypes, and the class labels are determined by the decision maker based on the highest confidence scores accordingly.

The algorithmic procedures of the system identification and decision-making schemes are detailed in the following two subsections.
It is worth noting that to maintain its computation- and memory- efficiency, SPAFIS discards all the processed historical data chunks
and only keeps the extracted prototypes in its knowledge base. In addition, SPAFIS will periodically examine the spatial similarity
between identified prototypes and disassemble these ones that share high similarity with their neighbours to improve the compactness
of the learned knowledge base and further reduce the computational complexity.

3.2. System identification

The system identification process of SPAFIS is composed of the following five recurring steps, namely, 1) self-adaptive threshold
learning; 2) soft prototype identification; 3) knowledge base updating; 4) soft prototype pruning, and 5) rule base updating. The
detailed system identification process is presented as follows.

Step 1. Self-adaptive threshold learning. Once the n th data chunk, Xn arrives, the self-adaptive threshold learner firstly calculates
the pairwise distances between any two data samples of Xn and obtain the following Ln × Ln dimensional pairwise distance matrix dn:

dn =
[
‖xn,k − xn,j‖

2
1

]k=1:Ln

j=1:Ln
=

⎡

⎣

(
∑M

m=1

⃒
⃒xn,k,m − xn,j,m

⃒
⃒

)2
⎤

⎦

k=1:Ln

j=1:Ln

(3)

Then, the average distance dn,G between any two data samples that can be viewed as neighbours under the G th level of granularity can
be calculated by Eq. (4) in an iterative manner (g = 1,2,⋯,G):

dn,g =
1

∑Ln − 1
k=1

∑Ln
j=k+1wg,k,j

∑Ln − 1

k=1

∑Ln

j=k+1
wg,k,j‖xn,k − xn,j‖

2
1 (4)

where wg,k,j =

{
1, if ‖xn,k − xn,j‖

2
1 ≤ dn,g− 1

0, else
; dn,0 = 2

Ln(Ln − 1)
∑Ln − 1

k=1
∑Ln

j=k+1‖xn,k − xn,j‖
2
1.

If Xn is the very first data chunk (namely, n = 1), the self-adaptive distance threshold γG is set as: γG←dn,G. Otherwise, γG is updated
via Eq. (5):

γG←
γG •

∑n− 1
k=1Lk + Ln • dn,G
∑n

k=1Lk
(5)

Note that γG serves as an estimation of the maximum distance between any two data samples that are viewed as neighbours under the G
th level of granularity set by users (G is a nonnegative integer). G = 6 is considered in this study. The greater the level of granularity is,
the smaller γG is, and SPAFIS will focus more on the local patterns of data and identify more soft prototypes. Compared with prefixed
hard thresholds, which are commonly used by existing works [35], the self-adaptive distance threshold γG is always guaranteed to be
meaningful thanks to its data-driven nature [37]. Very important, γG can be determined based on users’ preferences and requires no
prior knowledge about the given problem.

Once γG is initialized/updated, the system identification process enters Step 2.
Step 2. Soft prototype identification. In this step, Xn is divided into C nonoverlapping subsets (denoted as X1

n , X2
n , …, XC

n) according
to the corresponding class labels, Yn. The C subsets are then passed to the corresponding knowledge summarizers. Each knowledge
summarizer follows the exact same procedure to learn soft prototypes from the received data of the corresponding class. After the c th
knowledge summarizer has collected the corresponding subset of data Xc

n, the Lc
n × Lc

n dimensional pairwise distance matrix dc
n is firstly

sliced from dn based on samples’ indices:

dc
n =

[
‖xc

n,k − xc
n,j‖

2
1

]k=1:Lc
n

j=1:Lc
n

(6)

Next, the symmetric adjacency matrix Ac
n is derived from dc

n:

Ac
n =

[
Ac

n,k,j

]k=1:Lc
n

j=1:Lc
n

(7)

where Ac
n,k,j =

{
1, if ‖xc

n,k − xc
n,j‖

2
1 ≤ γG

0, else
and there is Ac

n,k,j = Ac
n,j,k ∀j,k.

The data density of every data sample of Xc
n is calculated using Eq. (8) based on dc

n and Ac
n (k = 1,2,⋯,Lc

n):

X. Gu et al.

Information Sciences 677 (2024) 120964

6

D
(

xc
n,k

)
=
∑L

c
n

j=1
Ac

n,k,jα
(

xc
n,k,x

c
n,j

)
(8)

where α(x, z) = exp
(

−
‖x− z‖2

1
γG

)

.Then, the local peaks of the data density are identified by Condition (1) [20].

Cond. (1) :
if
(

max
j=1,2,⋯,Lc

n

(
Ac

n,k,jD
(

xc
n,j

))
= D

(
xc

n,k

))

then
(

xc
n,k is a local peak

) (9)

Condition (1) finds out the data samples with the locally maximum data density in their neighbours. Such samples are aligned tightly
with the peaks of multimodal density distribution of data and can be used for constructing soft prototypes. Assuming that a total of Pc

n

local peaks are identified by Condition (1) (denoted as x̂c
n,1, x̂c

n,2, …, x̂c
n,Pc

n
), the c th knowledge summarizer will extract Pc

n soft pro-
totypes from Xc

n to represent these identified local peaks using Eq. (10):

pc
n,k =

∑Lc
n

j=1
α∗
(

x̂c
n,k,x

c
n,j

)
xc

n,j (10)

and the support of pc
n,k, namely, the number of data samples associated with pc

n,k, denoted as ρc
n,k is obtained as:

ρc
n,k =

∑L
c
n

j=1

α∗

(
x̂c

n,k,xc
n,j

)

∑Pc
n

l=1α∗

(
x̂c

n,l,xc
n,j

) (11)

where α∗
(

x̂c
n,k,xc

n,j

)
=

α
(

x̂
c
n,k ,xc

n,j

)

∑Lc
n

l=1
α
(

x̂
c
n,k ,xc

n,l

); k = 1,2,⋯,Pc
n. The collection of soft prototypes extracted from Xc

n is denoted as Pc
n. It can be seen

from Eq. (10) that each soft prototype is a weighted combination of all data samples of XC
n with the respective weights calculated based

on their distances to the local peak it represents. Similar to soft clustering, e.g., fuzzy c-means [38,39], in SPAFIS, each data sample is
associated with every soft prototype with a certain membership coefficient. Such additional flexibility gives the soft prototype stronger
capability to preserve the data structure and the underlying patterns compared with crisp prototypes used by conventional approaches
[19,20,35].

Step 3. Knowledge base updating. Once the knowledge summarizers have extracted soft prototypes from the current data chunk,
Xn, the knowledge base of SPAFIS will be initialized/updated.

If Xn is the first data chunk (namely, n = 1), the knowledge base in the form of soft prototypes (S1,S2,⋯,SC) will be initialized as
follows (c = 1,2,⋯,C):

Sc←Pc
n (12)

Here νc
j is the support of sc

j (j = 1,2,⋯,Sc).
Otherwise, namely, n > 1, the knowledge base will be updated with the newly identified prototypes, P1

n , P2
n ,⋯,PC

n by integrating Pc
n

into Sc according to their mutual distances (c = 1,2,⋯,C). To do so, Condition (2) is checked for each soft prototype pc
n,k within Pc

n (k =

1,2,⋯,Pc
n):

Cond. (2) :
if
(

min
s∈Sc

(⃦
⃦
⃦pc

n,k− s‖
2

1

)
> γG

)

then
(

Sc←Sc ∪
{

pc
n,k

}
;Pc

n←Pc
n\
{

pc
n,k

}) (13)

If pc
n,k satisfies Condition (2), pc

n,k is spatially distant to any of the existing soft prototypes learned from historical data chunks, and it is
highly likely that pc

n,k represents a novel data pattern that has not been seen in the historical data. Hence, pc
n,k is added to Sc to

incorporate the new knowledge in the knowledge base (Sc←Sc + 1) and, meanwhile, remove from Pc
n (Pc

n←Pc
n − 1).

After all the soft prototypes of Pc
n that satisfy Condition (2) have been selected to join Sc, the remaining members of Pc

n will be used
for updating the members of Sc using Eq. (14) (j = 1,2,⋯,Sc; k = 1,2,⋯,Pc

n):

sc
j ←

νc
j sc

j +
∑Pc

n
k=1α*

k,jρc
n,kpc

n,k

νc
j +
∑Pc

n
k=1α*

k,jρc
n,k

; νc
j ←νc

j +
∑Pc

n

k=1
α*

k,jρc
n,k (14)

where α*
k,j =

α
(

pc
n,k ,s

c
j

)

∑Sc

i=1
α
(

pc
n,k ,s

c
i

). It can be seen from Eq. (14) that if pc
n,k fails to satisfy Condition (2), it will be disassembled for updating the

knowledge base . Every soft prototype sc
j within Sc will receive a portion of pc

n,k for parameter updating. The closer sc
j is to pc

n,k, the

X. Gu et al.

Information Sciences 677 (2024) 120964

7

bigger portion sc
j receives from pc

n,k.
After P1

n , P2
n ,⋯,PC

n have been integrated into S1,S2,⋯,SC, the knowledge summarizers proceed to the next step for maintaining the
knowledge base.

Step 4. Soft prototype pruning. Due to the nonstationary nature of data streams, the areas of influence of some soft prototypes may
gradually overlap with others because of parameter updating from new data. This is typically caused by the drifts and/or shifts in the
data streams and is a common issue in online model identification [16]. Keeping these soft prototypes with high spatial similarity in the
knowledge base increases the computational and memory costs but does not improve the inference. To maintain a more compact and
healthier knowledge base, the knowledge summarizers will perform soft prototype pruning periodically.

To do so, Condition (3) is used to examine the soft prototypes of Sc (c = 1,2,⋯,C) one by one from the oldest (identified from Xc
1) to

the newest (identified from Xc
n):

Cond. (3) :
if
(

min
k=j+1,2,⋯,Sc

(⃦
⃦
⃦sc

j − sc
k

⃦
⃦
⃦

2

1

)
< ωo•γG

)

then
(

Rc←Rc ∪
{

sc
j

}
; Sc←Sc

/{
sc

j

}) (15)

where j = 1, 2, ⋯, Sc − 1; ωo (0 ≤ ωo < 1) is a small non-negative value controlling the tolerance of SPAFIS towards the similarity
between soft prototypes; Rc =

{
rc

1, rc
2,⋯, rc

Rc

}
denotes the collection of soft prototypes to be removed from Sc; Rc is the cardinality of

Rc; βc
j is the support of rc

j . If a soft prototype, i.e., sc
j satisfies Condition (3), it suggests that sc

j shares very high similarity with some of
soft prototypes identified from later data chunks. Hence, sc

j will be removed from Sc to keep the knowledge base compact.
A smaller ωo gives the knowledge summarizers greater tolerance towards these soft prototypes that are spatially close to each other

and enables the system to preserve more soft prototypes in its knowledge base. On the other hand, a greater ωo means that the
knowledge summarizers will maintain a smaller-scale knowledge base consisted of more distinctive soft prototypes. However, the
knowledge summarizers may remove too many soft prototypes from its knowledge base if ωo is over large, causing the loss of
knowledge learned from data and deteriorating the prediction performance of SPAFIS. In this study, ωo = 0.01 is used by default such
that SPAFIS will only prune these highly overlapping soft prototypes with minimal impact on the predictive performance. One may
also notice that the knowledge summarizers tend to keep these soft prototypes that are more recently identified in the knowledge base
and prefer to remove these older soft prototypes when possible overlaps are spotted. The main reason for this is that these more
recently identified soft prototypes tend to better represent the latest patterns of data streams, enabling SPAFIS to self-adaptive from
data streams more effectively.

After the set of soft prototypes satisfying Condition (3), namely, Rc have been identified, the c th knowledge summarizer will
disassemble them to update the remaining soft prototypes within Sc rather than directly discarding them (c = 1,2,⋯,C). In this way,
the knowledge preserved by Rc will be used for enhancing the soft prototypes remaining in Sc. For each soft prototype sc

j ∈ Sc, it will be
updated by Rc using Eq. (16):

sc
j ←

νc
j sc

j +
∑Rc

k=1α**
k,jβ

c
n,krc

n,k

νc
j +
∑Rc

k=1α**
k,jβ

c
n,k

; νc
j ←νc

j +
∑Rc

k=1
α**

k,jβ
c
n,k (16)

where j = 1,2,⋯,Sc; α**
k,j =

α
(

rc
k ,s

c
j

)

∑Sc

i=1
α(rc

k ,s
c
i)

.

Note that, for greater computational efficiency, SPAFIS may only perform Step 4 after every T data chunks have been processed. In
this study, T = 10 is considered.

Step 5. Rule base updating. If Xn is the first data chunk SPAFIS receives, the IF-THEN rule base (R1, R2, …, RC) will be initialized
with S1,S2,⋯,SC. Otherwise, namely, the IF-THEN rule base will be updated to reflect the latest changes in S1,S2,⋯,SC. Then, the
current learning cycle is completed and SPAFIS starts a new learning cycle going back to Step 1 to continue process the next available
data chunk (n←n + 1) or it starts to make predictions on the unlabelled testing data.

The algorithmic procedure of the system identification process of SPAFIS is summarized in the following pseudo code for visual
clarity. Note that except for Step 1, which is performed by the self-adaptive threshold learner, the other four steps are performed by the
C knowledge summarizers in parallel. Therefore, one can greatly improve the computational efficiency of SPAFIS by implementing
each of the knowledge summarizers on a separate computing node via distributed computation.

Algorithm 1. System identification of SPAFIS

while (Xn is available) do
Step 1. Self-adaptive threshold learning ####

derive dn from Xn using (3);
calculate dn,G from dn using (4);
if (n = 1) then

γG←dn,G;
else

update γG with dn,G using (5);

(continued on next page)

X. Gu et al.

Information Sciences 677 (2024) 120964

8

(continued)

Algorithm 1. System identification of SPAFIS

end if
for c = 1 to C do

Step 2. Soft prototype identification ####
obtain Xc

n from Xn;
derive dc

n from dn;
derive Ac

n from dc
n using (7);

calculate D
(

xc
n,k

)
for each xc

n,k ∈ Xc
n using (8);

identify x̂c
n,1, x̂c

n,2, …, x̂c
n,Pc

n
using Condition (1);

extract Pc
n from Xc

n using (10);
Step 3. Knowledge base updating ####

if (n = 1) then
Sc←Pc

n;
else

integrate Pc
n into Sc using Condition (2);

update Sc with the remaining Pc
n using (14);

end if
Step 4. Soft prototype pruning ####

if (n%T = 0) then
remove Rc from Sc using Condition (3);
update Sc with Rc using (16);

end if
Step 5. Rule base updating ####

initialize/update Rc with Sc;
end for
n←n + 1;

end while

3.3. Decision making

The decision making process of SPAFIS is detailed in this subsection. For each unlabelled testing sample, denoted as xk, each soft
prototype-based IF-THEN rule Rc (c = 1,2,⋯,C) will produce a confidence score based on the spatial similarity between xk and soft
prototypes associated with it. The confidence score produced by Rc is calculated by Eq. (17):

λc(xk) =
1
Sc

∑Sc

i=1
α
(
xk, sc

i

)
=

1
Sc

∑Sc

i=1
exp
(

−
‖xk − sc

i ‖
2
1

γG

)

(17)

The class label of xk is determined by the IF-THEN rule that produces the greatest confidence score by Eq. (18) following the “winner
takes all” principle:

ŷk = argmax
c=1,2,⋯,C

(λc(xk)) (18)

3.4. Computational complexity analysis

As the system identification process of SPAFIS is conducted on a chunk-wise manner, it is assumed that the computational
complexity analysis is performed at the time instance when the n th data chunk Xn is received. The Step 1 of the current learning cycle
is to initialize/update the self-adaptive threshold from Xn. The computational complexity of calculating dn is O

(
M2L2

n
)

and that of
deriving dn,G from dn is O

(
GL2

n
)
. Compared with calculating dn and dn,G, the complexity of initializing/updating γG is negligible. Hence,

the overall complexity of Step 1 is O
((

G + M2)L2
n
)
. In Step 2, soft prototypes P1

n , P2
n ,⋯,PC

n are identified from Xn. The computational

complexity of converting dc
n to Ac

n and calculating the data density is O
(∑C

c=1
(
Lc

n
)2
)

. The complexity of identifying local peaks using

Condition (1) is O
(∑C

c=1Lc
n

)
and that of extracting soft prototypes is O

(
M
∑C

c=1Lc
nPc

n

)
. Hence, the overall complexity of Step 2 is

O
(

M
∑C

c=1Lc
nPc

n +
∑C

c=1
(
Lc

n
)2
)

. The computational complexity of selecting members of Pc
n to join Sc using Condition (2) (c = 1,2,⋯,C)

and updating Sc using the remaining members of Pc
n in Step 3 is O

(
M
∑C

c=1ScPc
n

)
. Different from other steps, Step 4 is only activated

once every T learning cycles. At the learning cycle that Step 4 is activated, the complexity of removing Rc from Sc using Condition (3) is

O
(

M
∑C

c=1(Sc)
2
)

, and the complexity of updating Sc with Rc is O
(

M
∑C

c=1RcSc
)

. Hence, the complexity of Step 4 is

O
(

M
∑C

c=1(Rc + Sc)Sc
)

. Compared with the previous four steps, the computational complexity of Step 5 is negligible. Therefore, the

computational complexity to process a data chunk for SPAFIS is O
((

G + M2)L2
n +M

∑C
c=1
(
Sc + Lc

n
)
Pc

n +
∑C

c=1
(
Lc

n
)2
)

if Step 4 is not

activated and O
((

G + M2)L2
n +M

∑C
c=1
((

Sc + Lc
n
)
Pc

n + (Rc + Sc)Sc)+
∑C

c=1
(
Lc

n
)2
)

otherwise.

X. Gu et al.

Information Sciences 677 (2024) 120964

9

During the decision making stage, for each unlabelled testing sample, xk, the computational complexity of calculating the confi-

dence scores by the C IF-THEN rules is O
(

M2∑C
c=1Sc

)
, and that of determining the class label is O(C). Hence, given L testing samples,

the overall computational complexity to determine their class labels is O
(

LM2∑C
c=1Sc

)
.

4. Experimental investigation

4.1. Configuration

A. Data Description: To demonstrate the performance of SPAFIS, numerical examples based on publicly available benchmark
datasets for network intrusion detection are presented. In particular, the following four widely recognized benchmark datasets are
employed for experiments [4]:

1) KDDCUP99 dataset1 [25]. KDDCUP99 is derived from the Defense Advanced Research Projects Agency (DARPA) 1998 datasets
[40]. It is a standardized and widely recognized benchmark for evaluating the performance of network intrusion detection systems.
This dataset has approximately five million records, covering attacks of four major categories, namely, denial of service (DoS), user
to root (U2R), remote to local (R2L), and probe. The main issue of KDDCUP99 is the redundancy of the records.

2) NSL-KDD dataset.2 [25] NSL-KDD is a distilled version of KDDCUP99 dataset by redundance removal and size reduction. NSL-KDD
contains three subsets, which include 1) a full training set (KDDTrain+), 2) a full testing set (KDDTest+), and; 3) a more challenging
subset of the testing set (KDDTest− 21).

3) UNSW-NB15 dataset.3 [41] UNSW-NB15 is a modern benchmark dataset constructed by researchers at the Australian Centre for
Cyber Security at the University of New South Wales. The dataset was created using the IXIA PerfectStorm platform to create a
combination of real modern regular activities and synthetic recent attack behaviours, hence, providing a better representation of
contemporary traffic patterns. UNSW-NB15 has one training set and one testing set.

4) HIKARI-2021 dataset.4 [42] HIKARI-2021 is one of the latest benchmark datasets for evaluating the performances of IDSs built by
researchers at Keio University, Japan. This dataset contains a mix of encrypted synthetic attacks and benign real traffic, reflecting
the up-to-date landscape of cyber-attacks.

Key information of the datasets is summarized in Table 1.
Following the common practice [9,10], KDDCUP99, NSL-KDD and UNSW-NB15 have been pre-processed by converting the cat-

egorical attributes to numerical ones via one-hot encoding. For HIKARI-2021 dataset, the four dataset specific columns including
source IP address (originh), source port (originp), destination IP address (responh), and destination port (responp) are removed in
advance following [43]. The value ranges of all attributes in the four datasets are further standardized to eliminate the influence of the
measurement unit on the model training [41]. Due to the very large size of KDDCUP99 dataset, it will be only used for experimental
demonstration in online scenarios. To facilitate experimental simulation, 50 % of HIKARI-2021 dataset is randomly selected for each
experiment and the training–testing split ratio is set as 4:1 [42].

In this study, intrusion detection from large-scale network activities is considered as a binary classification task [9], where the main
aim is to classify each observed network activity into either the normal class or malicious class. To evaluate the performance of the
proposed SPAFIS on multi-class classification tasks, data samples of KDD99 and NSL-KDD datasets are dividing the data into five major
categories, which include normal, DoS, U2R, R2L and probe, according to the specific attack types following the common practice
[10,44] (see Table 2).

B. Parameter Setting for SPAFIS: As mentioned in Section 3, SPAFIS has three externally controlled parameters to be predefined by
users, namely, G, ωo and T. In particular, G controls the level of granularity in soft prototype identification. A greater G enables SPAFIS
to identify more soft prototypes, thereby, focusing on the local patterns of data, and a smaller G helps SPAFIS to focus on the global
patterns of data and identify less soft prototypes. Both ωo and T are related to soft prototype pruning. SPAFIS will keep more distinctive
soft prototypes in the knowledge base with a greater ωo, and will be more tolerant towards soft prototypes with higher similarities if ωo
is set to be a small value. T controls the frequency of SPAFIS to perform pruning. A greater T means SPAFIS will perform soft prototype
pruning less often. On the other hand, a smaller T helps SPAFIS to remove redundant soft prototypes timely and maintain a more
compact knowledge base. However, performing soft prototype pruning too frequently can inevitably decrease the computational
efficiency of SPAFIS. The recommended values for the three parameters are given as G = 6, ωo = 0.001 and T = 10. Unless specifically
declared otherwise, the experimental results reported in this paper are obtained using the recommended setting by default.

Although the size of each data chunk, Ln (n = 1,2,3,⋯) is related to the nature of the data streams to some extent, the sizes of
different data chunks are assumed to be uniformly the same, namely, Ln = Lo∀n for simplification. In this study, Lo = 2000 is used. If
the amount of remaining data samples is less than Lo, all the remaining samples will be included in the final data chunk for algorithm
training/testing.

1 Available at: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_kddcup99.html.
2 Available at: https://www.unb.ca/cic/datasets/nsl.html.
3 Available at: https://research.unsw.edu.au/projects/unsw-nb15-dataset.
4 Available at: https://www.kaggle.com/datasets/kk0105/allflowmeter-hikari2021.

X. Gu et al.

https://www.unb.ca/cic/datasets/nsl.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://www.kaggle.com/datasets/kk0105/allflowmeter-hikari2021

Information Sciences 677 (2024) 120964

10

C. Parameter Settings for SOTA Comparative Algorithms: The following nine SOTA offline classification algorithms are employed
for performance comparison:

1) Decision tree (DT) [5];
2) Random forest (RF) [6];
3) K-nearest neighbour classifier (KNN) [8];
4) Support vector machine (SVM) [45];
5) Extreme gradient boosting (XGBoost) [46];
6) Recurrent neural network (RNN) [27];
7) Long short-term memory network (LSTM) [27];
8) Convolutional neural network (CNN) [10], and;
9) Bidirectional long short-term memory with attention mechanism (BAT) [9].

In running the numerical experiments, the maximum depth is set to be L − 1 for DT to allow the tree structure to fully grow (L is the
total amount of labelled data samples presented to DT). RF is composed of 40 DTs with the maximum depth set as L − 1. The number of
nearest neighbours, k is set to be 3 for KNN. SVM uses the linear kernel, and the box constraint is 1. The number of DTs in XGBoost is set
as 40, η = 0.3, and the maximum depth of DTs is set as 40. For RNN, the same architecture and parameter setting as given by [27] is
adopted. As [27] does not give the exact setting of batch size, the batch size for RNN is set as 50 in this study. The LSTM follows the
same parameter setting and architecture as the RNN except that the recurrent neurons are replaced by LSTM neurons. Similarly, the
same architecture and parameter setting of CNN given by [10] are used, and the batch size is set as 50 due to the same reason. The
setting of BAT follows [9] with the kernel size for 1D convolutional layers set as 4 due to the lack of precise parameter setting given by
the original literature.

In addition to the nine offline algorithms, the following six EFSs that are designed to learn from data streams in nonstationary
environments are also involved in performance comparison:

10) Self-adaptive fuzzy learning system (SAFL) [17];
11) Statistically evolving fuzzy inference system (SEFIS) [47];
12) Zero-order evolving fuzzy rule-based classifier (eClass0) [18];
13) Self-organizing fuzzy belief inference system (SOFBIS) [20];
14) eClass0 ensemble classifier (eEnsemble) [48], and;
15) Self-organizing fuzzy inference ensemble system (SOFEnsemble) [36].

Among the six EFSs for experimental comparison, SOFBIS, eEnsemble and SOFEnsemble are zero-order EFSs for data stream
classification. SAFL, SEFIS and ESAFIS are first-order EFSs widely used for regression tasks. Generally, zero-order EFSs have higher
computational efficiency than first-order ones because they are prototype-based and do not have trainable parameters in their
consequent parts. In this study, SAFL and SEFIS use the commonly used “one-versus-rest” strategy for classification. SAFL, eClass0,
SOFBIS and SOFEnsemble follow the same settings given by [17,18,20,36], respectively. The externally controlled parameters of SEFIS
are set as: K = 0.5; δ1 = 0.5; δ2 = 0.5, and p0 = 2. eEnsemble is composed of 10 base components and other parameters follow the

Table 1
Key details of benchmark datasets for network intrusion detection.

Dataset #(Samples) #(Attributes)

Total Normal Attack

KDDCUP99 4,894,831 3,925,650 972,781 38 numerical ones + 3 categorical ones + 1 class label
NSL-KDD KDDTrain+ 125,973 67,343 58,640

KDDTest+ 22,544 9711 12,833
KDDTest− 21 11,850 2152 9698

UNSW-NB15 Training 175,341 56,000 119,341 39 numerical ones + 3 categorical ones + 1 class label
Testing 82,332 37,000 45,332

HIKARI-2021 555,278 517,582 37,696 83 numerical ones + 1 class label

Table 2
Five major categories of KDD99 and NSL-KDD [10,44].

Category Attack Types

Normal normal
DoS apache2, back, land, mailbomb, neptune, pod, smurf, teardrop, worm, processtable, udpstorm
U2R bufferoverflow, ps, perl, loadmodule, rootkit, sqlattack, xterm
R2L spy, warezclient, ftpwrite, guesspasswd, imap, httptunnel, multihop, named, phf, warezmaster, sendmail, snmpgetattack, snmpguess, wxlock, xsnoop
Probe ipsweep, nma, nmap, portsweep, satan, saint

X. Gu et al.

Information Sciences 677 (2024) 120964

11

setting of [48].
The externally controlled parameter settings for the proposed SPAFIS and 15 comparative algorithms involved in numerical ex-

periments are summarized in Table 3 for clarity.
D. Performance Measures: For performance evaluation, four standard criteria for classification are employed, which include 1)

accuracy (acc); 2) balanced accuracy (bacc) [49]; 3) F1 score (F1), and; 4) Matthew’s correlation coefficient (mcc) [50]. Note that the
weighted F1 score is used for multi-class problems because the F1 score was originally designed for binary problems. By default, all the
reported results in this study are obtained as the average of 10 Monte Carlo experiments by randomly shuffling the order of training
data samples to allow a certain degree of randomness.

The proposed SPAFIS was implemented using Python 3.9. The performance evaluation was conducted on a laptop with i7-12700H
processor, 64 GB RAM and RTX 3050 Ti GPU.

4.2. Sensitivity analysis

To understand the influence of the four parameters (namely, G, ωo, T and Lo) on the performance of SPAFIS, a sensitivity analysis is
carried out in this subsection. To facilitate computation, the first 20 % data samples of KDDTrain+ and KDDTest+ of the NSL-KDD
datasets are selected as the respective training and testing sets for conducting the experiments in this subsection.

Firstly, the influence of the level of granularity, G on the performance of SPAFIS is investigated. In this experiment, the value of G is
varied from 2 to 9, and the other three parameters follow the default setting, namely, ωo = 0.001, T = 10 and Lo = 2000. The
classification performance of SPAFIS with different values of G achieved on the first 20 % data of KDDTest+ is reported in Table 4 in
terms of the four criteria. The total number of prototypes identified from training data by SPAFIS, denoted as S (S =

∑C
c=1Sc) is

reported in the same table.
It can be seen from Table 4 that with a higher level of granularity, SPAFIS is able to identify more soft prototypes from data, and

achieves greater classification performance on the testing data. On the other hand, SPAFIS tends to be overfitted if the value of G is too
large. With an overlarge G, SPAFIS may identify too many soft prototypes from data, and focus too much on unnecessarily details of the
local patterns of data, leading to poorer performance. As suggested by Table 4, a suitable value range of G is between 4 and 7.

Next, the influence of ωo on the performance of SPAFIS is investigated. In this experiment, the value of ωo is reduced from 0.1 to
0.0005 with a nonlinear step size. G, T and Lo use the default setting. The performance of SPAFIS with different ωo values are reported
in Table 5 in terms of S, acc, bacc, F1 and mcc. Since both ωo and T are used for soft prototype pruning, the influence of T on the system
performance is also investigated in this example. Similar to the previous experiments, the other three parameters G, ωo and Lo follow
the default setting, and the value of T is increased from 2 to 12 with a step size of 2. The obtained experimental results by SPAFIS are
also reported in Table 5 for visual clarity.

As aforementioned, ωo controls the tolerance of SPAFIS on the similarity between soft prototypes, and T determines how frequently
the soft prototype pruning is performed. One can see from Table 5 that a small ωo enables more soft prototypes being preserved in the
knowledge base after pruning, whilst a small T enables SPAFIS to perform pruning more frequently, resulting in a smaller knowledge
base. Nevertheless, one can see that both ωo and T have marginal influence on the classification performance of SPAFIS.

Finally, the influence of chunk size, Lo on the performance of SPAFIS is analysed. In this example, the value of Lo is changed from
500 to 4000 with the interval of 500 and the other three parameters are set as G = 6, ωo = 0.0001 and T = 10. The results obtained by
SPAFIS with different Lo values are presented in Table 6 based on the same five measures used in Tables 4 and 5. Table 6 shows that the
value of Lo can influence the size of the knowledge base of SPAFIS. Generally, a smaller chunk size will make SPAFIS identify more soft
prototypes because it makes small drifts and/or shifts in the underlying patterns of data carried by successive chunks more noticeable.

Although the best parameter setting is always different from problem to problem depending on the nature of data, it will be
demonstrated by the numerical examples presented in the following section that SPAFIS is able to achieve high-level classification
performance surpassing, or at least on par with the SOTA algorithms involved in experimental comparison with the recommended

Table 3
Externally controlled parameter settings of the algorithms for numerical experiments.

Algorithm Parameter Setting Algorithm Parameter Setting

SPAFIS G = 6; ωo = 0.001;
T = 10; Lo = 2000;

CNN batch size = 50;other parameters same as [10];

DT max depth = L − 1; BAT 1D conv kernel size = 1;
other parameters same as [9];

RF number of estimator = 40;
max depth = L − 1;

SAFL same as [17];

KNN k = 3 SEFIS K = 0.5; δ1 = 0.5;
δ2 = 0.5; p0 = 2;

SVM box constraint = 1;
linear;

eClass0 same as [18];

XGBoost number of estimator = 40;
η = 0.3; max depth = 40;

SOFBIS same as [20];

RNN batch size = 50; others same as [27]; eEnsemble number of estimator = 10;
other parameters same as [9]

LSTM batch size = 50;other parameters same as [27]; SOFEnsemble same as y[36];

X. Gu et al.

Information Sciences 677 (2024) 120964

12

Table 4
Influence of G on the performance of SPAFIS.

Meas. G

2 3 4 5 6 7 8 9

S 283.6 517.8 996.2 1653.6 2589.4 3829.7 5474.5 7698.1
acc 0.7583 0.7954 0.8030 0.8124 0.8083 0.7982 0.7833 0.7694
bacc 0.7858 0.8170 0.8231 0.8317 0.8281 0.8192 0.8062 0.7941
F1 0.7364 0.7874 0.7978 0.8090 0.8038 0.7913 0.7723 0.7541
mcc 0.5945 0.6427 0.6521 0.6672 0.6613 0.6460 0.6242 0.6039

Table 5
Influence of ωo and T on the performance of SPAFIS.

Meas. ωo

0.1 0.05 0.01 0.005 0.001 0.0005

S 2449.2 2491.5 2546.2 2568.8 2581.8 2596.9
acc 0.8084 0.8060 0.8063 0.8077 0.8086 0.8076
bacc 0.8282 0.8256 0.8263 0.8276 0.8283 0.8275
F1 0.8040 0.8017 0.8014 0.8030 0.8042 0.8029
mcc 0.6614 0.6560 0.6581 0.6604 0.6617 0.6603

Meas. T

2 4 6 8 10 12

S 2574.8 2582.3 2592.1 2592.3 2585.5 2588.8
acc 0.8078 0.8092 0.8042 0.8088 0.8096 0.8050
bacc 0.8276 0.8289 0.8235 0.8286 0.8292 0.8243
F1 0.8032 0.8050 0.8002 0.8045 0.8054 0.8012
mcc 0.6605 0.6625 0.6515 0.6620 0.6632 0.6528

Table 6
Influence of Lo on the performance of SPAFIS.

Meas. Lo

500 1000 1500 2000 2500 3000 3500 4000

S 2769.2 2700.1 2627.6 2575.9 2538.2 2567.7 2549.8 2534.4
acc 0.8099 0.8050 0.8067 0.8071 0.8063 0.8069 0.8078 0.8075
bacc 0.8295 0.8242 0.8262 0.8266 0.8259 0.8268 0.8277 0.8274
F1 0.8058 0.8011 0.8025 0.8031 0.8021 0.8021 0.8032 0.8030
mcc 0.6638 0.6528 0.6570 0.6578 0.6566 0.6591 0.6605 0.6599

Table 7
Binary classification performance comparison on NSL-KDD.

Algorithm KDDTest+ KDDTest− 21

acc bacc F1 mcc acc bacc F1 mcc

SPAFIS 0.8064 0.8252 0.8020 0.6551 0.6334 0.7103 0.7246 0.3244
DT 0.7988 0.8188 0.7922 0.6448 0.6210 0.7127 0.7104 0.3281
RF 0.7736 0.7979 0.7579 0.6124 0.5693 0.6896 0.6554 0.2952
KNN 0.7695 0.7888 0.7625 0.5835 0.5618 0.6059 0.6672 0.1633
SVM 0.7507 0.7718 0.7389 0.5530 0.5271 0.5802 0.6323 0.1239
XGBoost 0.7918 0.8136 0.7821 0.6380 0.6041 0.7075 0.6926 0.3205
RNN 0.7956 0.8130 0.7925 0.6294 0.6123 0.6582 0.7113 0.2454
LSTM 0.8020 0.8191 0.7997 0.6405 0.6250 0.6744 0.7222 0.2700
CNN 0.7909 0.8077 0.7889 0.6172 0.6027 0.6335 0.7068 0.2064
BAT 0.7758 0.7942 0.7705 0.5928 0.5740 0.6122 0.6794 0.1732
SAFL 0.7770 0.7950 0.7814 0.5940 0.5772 0.6131 0.3652 0.1745
SEFIS 0.7426 0.7614 0.7483 0.5334 0.5604 0.6477 0.3945 0.2316
eClass0 0.6843 0.7203 0.7304 0.4914 0.4289 0.6191 0.3728 0.2061
SOFBIS 0.7549 0.7802 0.7720 0.5797 0.5357 0.6522 0.3952 0.2383
eEnsemble 0.6337 0.6744 0.6961 0.4112 0.3683 0.5628 0.3325 0.1193
SOFEnsemble 0.7675 0.7870 0.7746 0.5802 0.5580 0.6026 0.3560 0.1582

X. Gu et al.

Information Sciences 677 (2024) 120964

13

parameter setting given in Section 4.1. However, to achieve the best performance, one may need to utilize prior knowledge of the
problem to adjust the externally controlled parameters accordingly.

4.3. Performance demonstration in offline scenarios

In this subsection, numerical examples on the aforementioned large-scale benchmark datasets for network intrusion detection are
presented to demonstrate the performance of SPAFIS under the standard experimental protocols [10]. A number of SOTA algorithms
are employed for performance comparison. All the experiments are conducted in offline manner, namely, the algorithms are firstly
trained with all the training samples and then evaluated on the testing samples based on the four performance criteria.

Firstly, the binary classification performance of SPAFIS is evaluated on NSL-KDD dataset. In running the experiments, all the data
samples of KDDTrain+ are used for training SPAFIS to distinguish the anomalous activities from normal ones. Then, the performance of
the trained model is evaluated on the data samples of KDDTest+ and KDDTest− 21. The results obtained by SPAFIS on the two testing
sets in terms of the four classification performance criteria are tabulated in Table 7. The classification results obtained by the 15 SOTA
classifiers on KDDTest+ and KDDTest− 21 under the same experimental protocol are reported in Table 7 for comparison. The best result
per dataset per criterion is in bold for visual clarity. The average time consumption (texe, in seconds) for each algorithm to learn from
the labelled training data are presented in Fig. 2 in the form of a bar chart.

One can see from Table 7 that SPAFIS trained on KDDTrain+ outperforms all other 15 comparative algorithms by offering the best
classification performance on KDDTest+ in terms of all four criteria, and its classification performance on KDDTest− 21 is also better
than alternative algorithms in terms of acc and F1, despite that DT achieves slightly better results than SPAFIS measured using bacc and
mcc. Fig. 2 shows that the computational efficiency of SPAFIS is significantly higher than SVM and neural network-based approaches
such as RNN, LSTM, CNN and BAT. The average time cost for SPAFIS to learn from KDDTrain+ is only slightly higher than the zero-
order EFS-based competitors due to the use of soft prototypes.

Next, the binary classification performance of SPAFIS is evaluated on UNSW-NB15 and HIKARI-2021 datasets. In running the
experiments, SPAFIS is firstly trained using the training sets of the two benchmark problems, and then the performance is evaluated on
the respective testing sets with the aim of identifying anomalous activities within the testing sets. The classification results obtained by
SPAFIS and the 15 SOTA comparative algorithms are reported in Table 8 (the best results are in bold), and the average training time
costs of the 16 algorithms on the two datasets are presented in Figs. 3 and 4.

It is shown by Table 8, Figs. 3 and 4 that SPAFIS is the best-performing model on the testing set of the UNSW-NB15 problem by
offering the greatest anomaly detection results in all four criteria, and it also achieves the best performance on HIKARI-2021 with the
best bacc and mcc. It is also worth noting that the computational efficacy of SPAFIS is also on the same level as alternative zero-order
EFS-based approaches.

The fuzzy rule base learned by SPAFIS from the HIKARI-2021 problem during one particular experiment is presented in Table 9 for
better illustration. It can be seen from Table 9 that two IF-THEN fuzzy rules are identified by SPAFIS from data (one rule per class). One
rule is composed of 21,555 soft prototypes learned from data samples of normal class (benign) and the other rule is composed of 1756
soft prototypes learned from data samples of malicious class (attack). As aforementioned, these soft prototypes represent the unique
local patterns of data and can be directly associated to the practical problems and, hence, are always meaningful and interpretable to/
by humans. Predictions made by SPAFIS are based on the spatial similarity between soft prototypes and unlabelled data samples.
Therefore, the reasoning process of SPAFIS can be traced and explained.

On the other hand, one may find that the number of soft prototypes learned from data might be still large despite being much less
than the number of original training data, which could be challenging to fully comprehend. This is due to the high complexity and high
dimensionality of the HIKARI-2021 problem. To enhance the interpretability of the proposed model, users can lower the level of
granularity to encourage the learning system to focus more on the global patterns of data, thereby reducing the size of the knowledge
base (also see Table 4). However, a trade-off between the interpretability and prediction performance will need to be made. Another
potential solution is to arrange these soft prototypes in multi-level hierarchies based on their respective descriptive abilities, but this is
out of the scope of this study.

Finally, to evaluate the multi-class classification performance of SPAFIS, NSL-KDD dataset is converted into a multi-class classi-
fication problem based on Table 2 [10,44]. The multi-class classification performances of SPAFIS and the 15 SOTA comparative al-
gorithms on NSL-KDD are reported in Table 10, following the same experimental protocol used by the numerical example presented in

Fig. 2. Average training time consumption of 16 machine learning algorithms on NSL-KDD (binary).

X. Gu et al.

Information Sciences 677 (2024) 120964

14

Table 7, where the best results are also highlighted. Similarly, the average training time costs of the 16 algorithms are presented in
Fig. 5. It can be seen from Table 10 that the acc rate and F1 score of the classification result obtained by SPAFIS on KDDTest+ and
KDDTest− 21 surpass all other comparative algorithm, despite that SVM and XGBoost offer slightly better results than SPAFIS based on
bacc and mcc, respectively.

The numerical examples presented in this section collectively demonstrate the supervisor performance of SPAFIS on network
intrusion detection. In particular, Tables 7 and 8 suggest that SPAFIS is able to offer superior anomaly detection performance on NSL-
KDD, UNSW-NB15 and HIKARI-2021 datasets with considerably high computational efficiency (see Figs. 2–5), outperforming a variety
of SOTA algorithms. Table 9 also shows that the knowledge base learned by SPAFIS can be visualized in the form of human-
understandable IF-THEN fuzzy rules, offering great model transparency and interpretability. In addition, numerical example pre-
sented in Table 10 also suggests that SPAFIS can further accurately group the detected cyber-attacks into different major categories
according to their statistic characteristics.

Table 8
Binary classification performance comparison on UNSW-NB15 and HIKARI-2021.

Algorithm UNSW-NB15 HIKARI-2021

acc bacc F1 mcc acc bacc F1 mcc

SPAFIS 0.8887 0.8897 0.8969 0.7769 0.8623 0.9172 0.4923 0.5223
DT 0.8640 0.8536 0.8856 0.7322 0.8964 0.5761 0.2123 0.1571
RF 0.8727 0.8603 0.8948 0.7563 0.9073 0.5800 0.2278 0.1812
KNN 0.8487 0.8362 0.8748 0.7050 0.9126 0.6073 0.2833 0.2392
SVM 0.8108 0.7897 0.8532 0.6554 0.9326 0.5000 0.0000 0.0000
XGBoost 0.8683 0.8560 0.8910 0.7464 0.9054 0.5764 0.2198 0.1719
RNN 0.8213 0.8035 0.8580 0.6667 0.9125 0.6291 0.2577 0.2637
LSTM 0.8295 0.8153 0.8611 0.6774 0.9197 0.5557 0.1454 0.1406
CNN 0.8656 0.8537 0.8884 0.7395 0.9333 0.6079 0.3123 0.3114
BAT 0.8400 0.8240 0.8722 0.6996 0.9321 0.5079 0.0293 0.0395
SAFL 0.7792 0.7611 0.7034 0.5702 0.9275 0.5250 0.9622 0.1051
SEFIS 0.6064 0.6114 0.5722 0.2420 0.8431 0.5952 0.9081 0.1510
eClass0 0.6937 0.6867 0.6290 0.3945 0.7453 0.7554 0.8403 0.2918
SOFBIS 0.8433 0.8285 0.7964 0.7002 0.9236 0.5678 0.9598 0.1980
eEnsemble 0.6994 0.6835 0.6034 0.4051 0.7445 0.7702 0.8423 0.3024
SOFEnsemble 0.8505 0.8384 0.8120 0.7079 0.9243 0.5638 0.9603 0.1975

Fig. 3. Average training time consumption of 16 machine learning algorithms on UNSW-NB15 (binary).

Fig. 4. Average training time consumption of 16 machine learning algorithms on HIKARI-2021 (binary).

X. Gu et al.

Information Sciences 677 (2024) 120964

15

4.4. Performance demonstration in online scenarios

In this subsection, numerical experiments are carried out in online scenarios to demonstrate the performance of SPAFIS on network
intrusion detection from data streams.

Firstly, the online classification performance of SPAFIS is evaluated on NSL-KDD, UNSW-NB15 and IKARI-2021 datasets. In this
example, SPAFIS is firstly trained with the training set and then evaluated on the testing set following the standard prequential test-
then-train experimental protocol. The test-then-train performance of SPAFIS on the testing sets of the three benchmark problems are

Table 9
IF-THEN fuzzy rules learned from HIKARI-2021 data by SPAFIS.

Class IF-THEN Fuzzy Rule

Benign

IF

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

flow duration

fwd pkts tot

bwd pkts tot

fwd data pkts tot

bwd data pkts tot

⋮

fwd last window size

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3.1381

44.8081
39.0001

8.9719
32.8355

⋮

0.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

OR

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

flow duration

fwd pkts tot

bwd pkts tot

fwd data pkts tot

bwd data pkts tot

⋮

fwd last window size

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.6328

30.9921
28.9921

3.0000
24.9921

⋮

0.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋮

OR

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

flow duration

fwd pkts tot

bwd pkts tot

fwd data pkts tot

bwd data pkts tot

⋮

fwd last window size

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

275.8640

32.0000
39.0000

16.0000
24.0000

⋮

112.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

THEN(y = 0)
Attack

IF

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

flow duration

fwd pkts tot

bwd pkts tot

fwd data pkts tot

bwd data pkts tot

⋮

fwd last window size

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3.2849

151.0010
145.0010

6.0000
142.0010

⋮

0.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

OR

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

flow duration

fwd pkts tot

bwd pkts tot

fwd data pkts tot

bwd data pkts tot

⋮

fwd last window size

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.5286

3.0000
0.0000

3.0000
0.0000

⋮

0.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋮

OR

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

flow duration

fwd pkts tot

bwd pkts tot

fwd data pkts tot

bwd data pkts tot

⋮

fwd last window size

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.2378

157.9990
3152.9990

6.0000
149.9990

⋮

0.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

THEN(y = 1)

X. Gu et al.

Information Sciences 677 (2024) 120964

16

tabulated in Table 11 in terms of the four performance criteria used before. Similarly, NSL-KDD is further converted to a multi-class
classification problem based on Table 2. Then, the experiments are repeated under the same protocol and the obtained results are also
reported in Table 2. For performance comparison, the six EFSs used in the previous examples are involved in this numerical example,
and their test-then-train performances obtained under the same experimental protocol are reported in Table 11. The best result per
problem per criteria is highlighted in bold.

One can see from Table 11 that SPAFIS outperforms its EFS competitors on the three binary classification problems in online
environments by offering the best test-then-train classification results in terms of mcc with at least one of the other three criteria higher
than the alternative EFS-based approaches. Although its performance on the multi-class NSL-KDD is slightly worse than SOFBIS in
terms of acc, F1 and mcc, SPAFIS still offers the highest bacc on this problem. The performance comparison presented in Table 11 shows
the great potential of SPAFIS to accurately detect anomalous activities from real-time network data streams with imbalanced class
distributions whilst self-adapting its system and meta-parameters to changing data patterns.

Next, KDD99 dataset is further used to test the online learning capability of SPAFIS from data streams. To facilitate simulation, 10 %
of the data is randomly selected for training SPAFIS from scratch in each experiment and the level of granularity, G is set to be 3. The
test-then-train performance of SPAFIS on KDD99 over the learning process is reported in Table 12. Similar to NSL-KDD in the previous
example, KDD99 is also converted to a multi-class classification problem using Table 2, and the experiments are repeated with the
obtained results reported in Table 12 as well. The experimental results obtained by the six EFSs on KDD99 under the same experimental
protocol are tabulated in Table 12 for comparison.

One can see from Table 12 that SPAFIS outperforms all other comparative EFS-based approaches on the task of identifying
anomalous activities from normal ones in KDD99. At the same time, it can be observed that the performance of SPAFIS on dis-
tinguishing the identified attacks in KDD99 into different major categories is slightly lower than SOFBIS, but still among the best
performing models.

The numerical examples presented in this section collectively shows that SPAFIS has strong capability of learning autonomously
from data streams and self-updating its structure and parameters to adapt to new data patterns for greater classification performance.

4.5. Additional analysis

Finally, in this section, ablation analysis is conducted to justify the utilization of soft prototypes by SPAFIS. As aforementioned,

Table 10
Multi-class classification performance comparison on NSL-KDD.

Algorithm KDDTest+ KDDTest− 21

acc bacc F1 mcc acc bacc F1 mcc

SPAFIS 0.7764 0.5610 0.7542 0.6713 0.5780 0.5032 0.5767 0.4812
DT 0.7609 0.5453 0.7236 0.6526 0.5505 0.4984 0.5407 0.4757
RF 0.7479 0.4927 0.7057 0.6367 0.5234 0.4430 0.5123 0.4565
KNN 0.7490 0.5403 0.7068 0.6302 0.5232 0.4627 0.5057 0.4197
SVM 0.7656 0.5752 0.7310 0.6553 0.5544 0.5033 0.5519 0.4610
XGBoost 0.7748 0.5415 0.7414 0.6743 0.5722 0.4941 0.5665 0.5006
RNN 0.7600 0.5287 0.7236 0.6459 0.5446 0.4574 0.5355 0.4444
LSTM 0.7731 0.5686 0.7420 0.6661 0.5710 0.5011 0.5642 0.4746
CNN 0.7722 0.5525 0.7362 0.6653 0.5669 0.4947 0.5552 0.4759
BAT 0.7415 0.4963 0.6982 0.6193 0.5091 0.4181 0.4899 0.4059
SAFL 0.7573 0.5342 0.7133 0.6412 0.5404 0.4617 0.5156 0.4343
SEFIS 0.6215 0.3721 0.5618 0.4266 0.4015 0.3270 0.3495 0.2393
eClass0 0.5577 0.5283 0.5571 0.3984 0.2897 0.3938 0.2920 0.1459
SOFBIS 0.7436 0.4845 0.7030 0.6271 0.5142 0.4306 0.5074 0.4346
eEnsemble 0.6039 0.5338 0.6031 0.4449 0.3403 0.4119 0.3553 0.2073
SOFEnsemble 0.7410 0.5109 0.6973 0.6163 0.5077 0.4339 0.4896 0.3965

Fig. 5. Average training time consumption of 16 machine learning algorithms on NSL-KDD (multi-class).

X. Gu et al.

Information Sciences 677 (2024) 120964

17

Table 11
Test-then-train classification performance comparison on NSL-KDD, UNSW-NB15 and HIKARI-2021.

Dataset Algorithm acc bacc F1 mcc

NSL-KDD
(Binary)

SPAFIS 0.9511 0.9538 0.9560 0.9023
SAFL 0.9019 0.9091 0.8940 0.8103
SEFIS 0.8038 0.8049 0.7812 0.6055
eClass0 0.7205 0.7525 0.7520 0.5438
SOFBIS 0.9502 0.9544 0.9446 0.9020
eEnsemble 0.7310 0.7630 0.7609 0.5654
SOFEnsemble 0.9239 0.9281 0.9156 0.8494

UNSW-NB15 (Binary) SPAFIS 0.8981 0.8969 0.9076 0.7941
SAFL 0.7847 0.7673 0.7132 0.5797
SEFIS 0.5661 0.5502 0.4254 0.1084
eClass0 0.6885 0.6797 0.6311 0.3658
SOFBIS 0.8880 0.8784 0.8628 0.7810
eEnsemble 0.6768 0.6608 0.5826 0.3415
SOFEnsemble 0.8504 0.8571 0.8473 0.7119

HIKARI-2021
(Binary)

SPAFIS 0.8617 0.9177 0.8909 0.5208
SAFL 0.9286 0.5336 0.9628 0.1357
SEFIS 0.8462 0.6118 0.9146 0.1653
eClass0 0.7047 0.7752 0.8127 0.2932
SOFBIS 0.9230 0.5674 0.9595 0.1963
eEnsemble 0.7308 0.7656 0.8328 0.2911
SOFEnsemble 0.9261 0.6079 0.9610 0.2798

NSL-KDD
(Multi-Class)

SPAFIS 0.9414 0.8507 0.9454 0.9144
SAFL 0.8971 0.7042 0.8915 0.8492
SEFIS 0.6231 0.4328 0.6227 0.4437
eClass0 0.5364 0.5068 0.5175 0.3862
SOFBIS 0.9491 0.8018 0.9471 0.9254
eEnsemble 0.6939 0.6067 0.7049 0.5606
SOFEnsemble 0.9127 0.7102 0.9113 0.8706

Table 12
Test-then-train classification performance comparison on KDD99.

Dataset Algorithm acc bacc F1 mcc

KDD99
(Binary)

SPAFIS 0.9992 0.9990 0.9995 0.9974
SAFL 0.9943 0.9951 0.9859 0.9825
SEFIS 0.5807 0.5764 0.3470 0.1245
eClass0 0.9450 0.9106 0.8605 0.8303
SOFBIS 0.9991 0.9993 0.9977 0.9972
eEnsemble 0.9651 0.9215 0.9045 0.8875
SOFEnsemble 0.9858 0.9897 0.9654 0.9572

KDD99
(Multi-Class)

SPAFIS 0.9989 0.7812 0.9990 0.9968
SAFL 0.9904 0.5995 0.9910 0.9714
SEFIS 0.5399 0.2299 0.5889 0.1075
eClass0 0.8934 0.7561 0.9246 0.7363
SOFBIS 0.9991 0.7529 0.9991 0.9973
eEnsemble 0.6768 0.6608 0.5826 0.3415
SOFEnsemble 0.8504 0.8571 0.8473 0.7119

Table 13
Ablation analysis results.

Dataset Algorithm acc bacc F1 mcc

Binary NSL-KDD KDDTest+ SPAFIS 0.8064 0.8252 0.8020 0.6551
CPAFIS 0.7535 0.7645 0.7601 0.5265

KDDTest− 21 SPAFIS 0.6334 0.7103 0.7246 0.3244
CPAFIS 0.6173 0.6769 0.7139 0.2730

UNSW-NB15 SPAFIS 0.8887 0.8897 0.8969 0.7769
CPAFIS 0.8857 0.8935 0.8872 0.7852

Multi-Class NSL-KDD KDDTest+ SPAFIS 0.7764 0.5610 0.7542 0.6713
CPAFIS 0.6984 0.5250 0.6784 0.5486

KDDTest− 21 SPAFIS 0.5780 0.5032 0.5767 0.4812
CPAFIS 0.5726 0.4966 0.5716 0.4706

X. Gu et al.

Information Sciences 677 (2024) 120964

18

compared with crisp prototypes used by conventional prototypes, soft prototypes can better preserve the underlying structure and local
patterns of data, thereby helping SPAFIS achieve better classification performance. In this example, an alternative version of SPAFIS
that uses crisp prototypes is implemented for performance demonstration, denoted as crisp prototype-based autonomous fuzzy
inference system (CPAFIS). The classification performances of SPAFIS and CPAFIS are compared on NSL-KDD and UNSW-NB15 under
the same experimental protocols used before and the obtained results are reported in Table 13 with the best result per criterion per
dataset in bold.

Ablation analysis results presented in Table 13 show that the utilization of soft prototypes effectively help SPAFIS achieve greater
classification performance. In particular, SPAFIS outperforms CPAFIS on NSL-KDD dataset in both binary and multi-class cases in terms
of all four performance criteria. Both SPAFIS and CPAFIS achieve comparable performances on UNSW-NB15 dataset, but SPAFIS
achieves slightly higher acc and F1 on this problem. This comparison demonstrates the advantages of soft prototypes over crisp
prototypes.

5. Conclusion

In this paper, a novel zero-order EFS named SPAFIS has been proposed for network intrusion detection. SPAFIS is able to learn a set
of human-interpretable IF-THEN fuzzy rules from network activities in real-time, and its system structure and meta-parameters are
consistently self-evolving to adapt to new data patterns. Thanks to the utilization of soft-prototypes, SPAFIS can better approximate the
multimodal distributions of data compared with conventional zero-order EFSs utilizing crisp prototypes. Numerical examples on four
public benchmark datasets for network intrusion detection demonstrated the superior intrusion detection performance of the proposed
SPAFIS-based IDS in both offline and online settings.

There are several considerations for future work. First, the optimality of the soft prototypes learned by SPAFIS needs to be
investigated. As mentioned in Section 3, each soft prototype represents a local peak of the multimodal distribution of data. However,
considering the nonstationary nature of data streams, soft prototypes learned by SPAFIS may not be (locally) optimal because of the
chunk-wise online learning mechanism. Therefore, it would be very helpful to perform soft prototype optimization periodically to
maintain the local optimality of the learned solution, for example, by using genetic algorithms. Second, as one can see from the
sensitivity analysis in Section 4.2, the level of granularity is the most important parameter externally controlled by users as its setting
can greatly influence the performance of SPAFIS. Although this study has given a recommended setting, the best setting is always
different from problem to problem. Therefore, it will be extremely helpful to develop a novel scheme to allow SPAFIS self-determine
the best value setting for the level of granularity based on the nature of data. Third SPAFIS has been equipped with a soft prototype
pruning scheme to remove redundant soft prototypes from the knowledge base, but its computational efficiency will decrease inev-
itably with more distinctive soft prototypes learned from data. One possible solution to address this is to utilize ensemble learning
framework such that a number of ensemble components can share the computation burden. How to design an effective ensemble
scheme for online learning that helps SPAFIS to achieve greater prediction accuracy with higher computational efficiency remains a
question to be answered. Last, but not the least, currently SPAFIS needs to be trained with labelled training data to build a predictive
model. However, in real applications, the amount of labelled data may be very limited whilst unlabelled data is abundant. This is
especially the case for network intrusion detection. Therefore, it would be extremely useful to extend the SPAFIS with a semi-
supervised learning scheme such that SPAFIS can utilize the large amount of unlabelled data to self-improve its knowledge base
with minimal human supervision after being primed with a small amount of labelled training data.

CRediT authorship contribution statement

Xiaowei Gu: Conceptualization, Formal analysis, Funding acquisition, Methodology, Writing – original draft, Writing – review &
editing. Gareth Howells: Conceptualization, Funding acquisition, Methodology, Writing – original draft, Writing – review & editing.
Haiyue Yuan: Conceptualization, Methodology, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing in-
terests: Xiaowei Gu, Gareth Howells, Haiyue Yuan reports financial support was provided by Defence Science and Technology Lab-
oratory. If there are other authors, they declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

Research funded by Frazer-Nash Consultancy Ltd. on behalf of the Defence Science and Technology Laboratory (Dstl) which is an
executive agency of the UK Ministry of Defence providing world class expertise and delivering cutting-edge science and technology for
the benefit of the nation and allies. The research supports the Autonomous Resilient Cyber Defence (ARCD) project within the Dstl

X. Gu et al.

Information Sciences 677 (2024) 120964

19

Cyber Defence Enhancement programme.

References

[1] “Cyber security breaches survey,” UK Government, 2023. https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2023.
[2] F. Noorbehbahani, A. Fanian, R. Mousavi, H. Hasannejad, An incremental intrusion detection system using a new semi-supervised stream classification method,

Int. J. Commun. Syst. 30 (4) (2017) 1–26.
[3] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, Survey of intrusion detection systems: techniques, datasets and challenges, Cybersecurity 2 (1) (2019)

1–22.
[4] K. Shaukat, S. Luo, V. Varadharajan, I. Hameed, M. Xu, A Survey on machine learning techniques for cyber security in the last decade, IEEE Access 8 (2020)

222310–222354.
[5] S. Safavian, D. Landgrebe, A survey of decsion tree classifier methodology, IEEE Trans. Syst. Man Cybern. 21 (3) (1990) 660–674.
[6] L. Breiman, Random forests, Mach. Learn. Proc. 45 (1) (2001) 5–32.
[7] S. Horng, et al., A novel intrusion detection system based on hierarchical clustering and support vector machines, Expert Syst. Appl. 38 (1) (2011) 306–313.
[8] S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, ACM SIGMOD Rec. (2000) 427–438.
[9] T. Su, H. Sun, J. Zhu, S. Wang, Y. Li, BAT: deep learning methods on network intrusion detection Using NSL-KDD dataset, IEEE Access 8 (2020) 29575–29585.

[10] Y. Ding, Y. Zhai, Intrusion detection system for NSL-KDD dataset using convolutional neural networks, in: International Conference on Computer Science and
Artificial Intelligence, 2018, pp. 81–85.

[11] M. Data, M. Aritsugi, T-DFNN: an incremental learning algorithm for intrusion detection systems, IEEE Access 9 (2021) 154156–154171.
[12] C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nat. Mach. Intell. 1 (5) (2019)

206–215.
[13] X. Gu, J. Han, Q. Shen, P. Angelov, Autonomous learning for fuzzy systems: a review, Artif. Intell. Rev. (2022) 1–47.
[14] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, K. Müller, Layer-wise relevance propagation: an overview, in: Explainable AI: Interpreting, Explaining and

Visualizing Deep Learning, 2019, pp. 193–209.
[15] T. Szandala, Enhancing deep neural network saliency visualizations with gradual extrapolation, IEEE Access 9 (2021) 95155–95161.
[16] E. Lughofer, P. Angelov, Handling drifts and shifts in on-line data streams with evolving fuzzy systems, Appl. Soft Comput. 11 (2) (2011) 2057–2068.
[17] X. Gu, Q. Shen, A self-adaptive fuzzy learning system for streaming data prediction, Inf. Sci. (NY) 579 (2021) 623–647.
[18] P. Angelov, X. Zhou, Evolving fuzzy-rule based classifiers from data streams, IEEE Trans. Fuzzy Syst. 16 (6) (2008) 1462–1474.
[19] X. Gu, P. Angelov, Self-organising fuzzy logic classifier, Inf. Sci. (NY) 447 (2018) 36–51.
[20] X. Gu, P. Angelov, Q. Shen, Self-organizing fuzzy belief inference system for classification, IEEE Trans. Fuzzy Syst. 30 (12) (2022) 5473–5483.
[21] E. Mansoori, FRBC: a fuzzy rule-based clustering algorithm, IEEE Trans. Fuzzy Syst. 19 (5) (2011) 960–971.
[22] Y. Liao, V. Vemuri, Use of k-nearest neighbor classifier for intrusion detection, Comput. Secur. 21 (5) (2002) 439–448.
[23] S. Sahu, B. Mehtre, Network intrusion detection system using J48 decision tree, in: International Conference on Advances in Computing, Communications and

Informatics, 2015, pp. 2023–2026.
[24] A. Tesfahun, D. Bhaskari, Intrusion detection using random forests classifier with SMOTE and feature reduction, in: International Conference on Cloud and

Ubiquitous Computing and Emerging Technologies, 2013, pp. 127–132.
[25] M. Tavallaee, E. Bagheri, W. Lu, A. Ghorbani, A detailed analysis of the KDD CUP 99 data set, in: IEEE Symposium on Computational Intelligence for Security

and Defense Applications, 2009, pp. 1–6.
[26] A. Aburomman, M. Bin Ibne Reaz, A novel SVM-kNN-PSO ensemble method for intrusion detection system, Appl. Soft Comput. J. 38 (2016) 360–372.
[27] C. Yin, Y. Zhu, J. Fei, X. He, A deep learning approach for intrusion detection using recurrent neural betworks, IEEE Access 5 (2017) 21954–21961.
[28] I. Sharafaldin, A. Lashkari, A. Ghorbani, Toward generating a new intrusion detection dataset and intrusion traffic characterization, in: International Conference

on Information Systems Security and Privacy, 2018, pp. 108–116.
[29] M. Yousefi-azar, V. Varadharajan, L. Hamey, U. Tupakula, Autoencoder-based feature learning for cyber security applications, in: International Joint Conference

on Neural Networks, 2017, pp. 3854–3861.
[30] S. Sivatha Sindhu, S. Geetha, A. Kannan, Decision tree based light weight intrusion detection using a wrapper approach, Expert Syst. Appl. 39 (2012) 129–141.
[31] J. Iglesias, P. Angelov, A. Ledezma, A. Sanchis, Creating evolving user behavior profiles automatically, IEEE Trans. Knowl. Data Eng. 24 (5) (2012) 854–867.
[32] J. Iglesias, A. Ledezma, A. Sanchis, Evolving systems for computer user behavior classification, in: IEEE Conference on Evolving and Adaptive Intelligent

Systems, 2013, pp. 78–83.
[33] I. Škrjanc, S. Ozawa, T. Ban, D. Dovžan, Large-scale cyber attacks monitoring using evolving Cauchy possibilistic clustering, Appl. Soft Comput. 62 (2018)

592–601.
[34] L. Decker, D. Leite, L. Giommi, D. Bonacorsi, Real-time anomaly detection in data centers for log-based predictive maintenance using an evolving fuzzy-rule-

based approach, in: IEEE International Conference on Fuzzy Systems, 2020, pp. 1–8.
[35] J. Shao, F. Huang, Q. Yang, G. Luo, Robust prototype-based learning on data streams, IEEE Trans. Knowl. Data Eng. 30 (5) (2018) 978–991.
[36] X. Gu, P. Angelov, Z. Zhao, Self-organizing fuzzy inference ensemble system for big streaming data classification, Knowledge-Based Syst. 218 (2021) 106870.
[37] D. Ge, X. Zeng, A self-evolving fuzzy system which learns dynamic threshold parameter by itself, IEEE Trans. Fuzzy Syst. 27 (8) (2018) 1625–1637.
[38] J. Bezdek, R. Ehrlich, W. Full, FCM: the fuzzy c-means clustering algorithm, Comput. Geosci. 10 (2–3) (1984) 191–203.
[39] E. Ruspini, J. Bezdek, J. Keller, Fuzzy clustering: a historical perspective, IEEE Comput. Intell. Mag. 14 (1) (2019) 45–55.
[40] W. Lee, S. Stolfo, K. Mok, Adaptive intrusion detection: a data mining approach, Artif. Intell. Rev. 14 (6) (2000) 533–567.
[41] N. Moustafa, J. Slay, The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99

data set, Inf. Secur. J. 25 (1–3) (2016) 18–31.
[42] A. Ferriyan, A. Thamrin, K. Takeda, J. Murai, Generating network intrusion detection dataset based on real and encrypted synthetic attack traffic, Appl. Sci. 11

(17) (2021) 7868.
[43] M. Verkerken, L. Dhooge, T. Wauters, B. Volckaert, F. De Turck, Towards model generalization for intrusion detection: unsupervised machine learning

techniques, J. Netw. Syst. Manag. 30 (1) (2022) 1–25.
[44] R. Elhefnawy, H. Abounaser, A. Badr, A hybrid nested genetic-fuzzy algorithm framework for intrusion detection and attacks, IEEE Access 8 (2020)

98218–98233.
[45] N. Cristianini, J. Shawe-Taylor, An introduction to support vector machines and other kernel-based learning methods, Cambridge University Press, Cambridge,

2000.
[46] T. Chen, C. Guestrin, Xgboost: a scalable tree boosting system, in: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016,

pp. 785–794.
[47] Z. Yang, H. Rong, P. Angelov, Z. Yang, Statistically evolving fuzzy inference system for non-Gaussian noises, IEEE Trans. Fuzzy Syst. 30 (4) (2022) 2649–2664.
[48] J. Iglesias, A. Ledezma, A. Sanchis, Ensemble method based on individual evolving classifiers, in: IEEE Conference on Evolving and Adaptive Intelligent Systems,

2013, pp. 56–61.
[49] K. Brodersen, C. Ong, K. Stephan, J. Buhmann, The balanced accuracy and its posterior distribution, in: International Conference on Pattern Recognition, 2010,

pp. 3121–3124.
[50] D. Chicco, G. Jurman, The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation, BMC

Genomics 21 (1) (2020) 1–13.

X. Gu et al.

http://refhub.elsevier.com/S0020-0255(24)00878-8/h0010
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0010
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0015
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0015
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0020
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0020
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0025
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0030
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0035
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0040
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0045
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0050
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0050
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0055
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0060
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0060
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0065
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0070
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0070
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0075
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0080
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0085
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0090
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0095
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0100
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0105
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0110
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0115
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0115
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0120
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0120
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0125
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0125
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0130
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0135
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0140
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0140
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0145
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0145
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0150
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0155
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0160
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0160
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0165
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0165
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0170
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0170
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0175
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0180
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0185
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0190
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0195
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0200
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0205
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0205
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0210
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0210
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0215
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0215
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0220
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0220
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0225
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0225
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0230
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0230
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0235
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0240
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0240
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0245
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0245
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0250
http://refhub.elsevier.com/S0020-0255(24)00878-8/h0250

