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A B S T R A C T   

Nowadays, cyber-attacks have become a common and persistent issue affecting various human 
activities in modern societies. Due to the continuously evolving landscape of cyber-attacks and 
the growing concerns around “black box” models, there has been a strong demand for novel 
explainable and interpretable intrusion detection systems with online learning abilities. In this 
paper, a novel soft prototype-based autonomous fuzzy inference system (SPAFIS) is proposed for 
network intrusion detection. SPAFIS learns from network traffic data streams online on a chunk- 
by-chunk basis and autonomously identifies a set of meaningful, human-interpretable soft pro-
totypes to build an IF-THEN fuzzy rule base for classification. Thanks to the utilization of soft 
prototypes, SPAFIS can precisely capture the underlying data structure and local patterns, and 
perform internal reasoning and decision-making in a human-interpretable manner based on the 
ensemble properties and mutual distances of data. To maintain a healthy and compact knowledge 
base, a pruning scheme is further introduced to SPAFIS, allowing itself to periodically examine 
the learned solution and remove redundant soft prototypes from its knowledge base. Numerical 
examples on public network intrusion detection datasets demonstrated the efficacy of the pro-
posed SPAFIS in both offline and online application scenarios, outperforming the state-of-the-art 
alternatives.   

1. Introduction 

Thanks to the rapid development in electronic manufacturing and information technology, the Internet has become an essential 
part of everyday life for billions of individuals in modern societies. The Internet has greatly transformed the way people communicate, 
network and access information. However, the on-going digitalization in the world has also led to a significant rise in cyber-attacks. 
According to the Cyber Security Breaches Survey published by the UK government in April 2023 [1], 59 % of medium businesses, 69 % 
of large businesses and 56 % of high-income charities have encountered cybersecurity breaches and/or cyber-attacks in the last 12 
months. Nowadays, the escalating cyber-attacks have posed a major and persistent threat to individuals, businesses and organizations 
on the Internet. The need for effective techniques to protect information security is highly pronounced. 

Intrusion detection systems (IDSs) are one of the most effective security techniques to prevent cyber-attacks [2]. The function of an 
IDS is to monitor the network and identify malicious activities. Traditional IDSs are primarily based on signatures. Such IDSs utilize 
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pattern matching methods to compare current activities against signatures of previous intrusions stored in the database [3]. Signature- 
based IDSs are highly effective in detecting known attacks, but they are unable to detect novel attacks because of the lack of matching 
signature in the database. As the technological evolution of cybercrime has made cyber-attacks more sophisticated and difficult to 
detect, traditional signature-based IDSs have become insufficient in real-world scenarios [4]. 

Machine learning techniques are capable of learning normal and malicious patterns from empirically observed network activities to 
constructing accurate predictive models with less human involvement [4]. Conventional machine learning methods, such as decision 
tree (DT) [5], random forest (RF) [6], support vector machine (SVM) [7], k-nearest neighbour (KNN) [8], etc., have been extensively 
used for identifying cyber-attacks. IDSs based on conventional machine learning have achieved many successes, but they generally 
struggle with large-scale, complex intrusion detection problems [9]. Due to the evolving landscape of cyber-attacks, characterized by 
the increasing sophistication and complexity, there has been a rapidly growing demand for IDSs that leverage more advanced machine 
learning techniques. 

On the other hand, deep neural networks (DNNs, or artificial network networks, ANNs) have demonstrated eye-catching perfor-
mances on a variety of practical problems involving visual and audio information. Due to their appealing multi-level representation 
learning capabilities, there have been a significant increase in the number of works in the literature that utilize DNNs for network 
intrusion detection in the last decade [4,9]. DNN-based IDSs have demonstrated promising results in detecting sophisticated and 
complex cyber-attacks that the conventional machine learning based IDSs may struggle with [10,11]. However, it is also widely 
recognized that DNNs are the typical type of highly complex “black box” models [12,13]. DNNs usually have huge amounts of hyper- 
parameters that cannot be associated to the practical problems, and decisions made by such models cannot be explained to/by humans 
easily. Although there have been a number of post-hoc approaches proposed in the literature attempting to provide some insights to the 
internal reasoning of DNNs, e.g., layer-wise relevance propagation [14], saliency [15], explanations provided by these approaches are 
aligned to the model behaviours rather than human understanding and, hence, they often are misleading and meaningless [12]. The 
high complexity and low interpretability also make it extremely challenging for human experts to pinpoint the causes of prediction 
errors made by DNNs for a straightforward fixing. Concerns on the lack of interpretability and explainability of DNNs have largely 
limited their wider adaption in high-stake real-world applications, such as network intrusion detection, despite of their superior 
performances over traditional machine learning approaches. 

Another issue associated with most of the conventional machine learning and DNN models is the lack of capability to self-adapt to 
new data patterns. Although these models typically can perform decision-making in real time, a full retraining is usually required when 
dealing with new data of unseen patterns. The ability to self-learn and self-update from streaming data is of great importance for an 
IDS, especially in the context of constantly evolving cyber-attack behaviours [2]. Without such feature, the performance of the IDS will 
inevitably decrease over time due to the shifts and/or drifts of data patterns [16]. 

In this paper, a soft prototype-based autonomous fuzzy inference system (SPAFIS) is proposed for network intrusion detection. The 
proposed SPAFIS is a novel zero-order evolving fuzzy system (EFS) to autonomously learn from data streams on a chunk-by-chunk 
basis. It is well known that zero-order EFSs are designed to simultaneously self-organize and self-update the system structure and 
meta-parameters online from data streams in a single pass manner utilizing prototype-based IF-THEN fuzzy rules for classification 
[13,17]. Prototypes play a key role in the decision-making and internal reasoning of zero-order EFSs [18,19]. They are highly 
informative data samples representing the local peaks of multimodal data distributions and form the knowledge base of the systems. 
Thanks to the transparent prototype-based system structure and explainable internal reasoning performed based on the mutual dis-
tances of data, zero-order EFSs provide an effective solution towards explainable AI (XAI) for application scenarios concerning data 
streams with the attractive ability to agilely self-adapt to the dynamically changing data patterns in nonstationary environments [20]. 

A zero-order EFS identifies prototypes from data streams by online data partitioning in a crisp manner, where each empirically 
observed data sample can only belong to a single prototype. Crisp prototypes identified by zero-order EFSs are mutually exclusive and 
they might struggle to accurately represent the local patterns of data with complex and uncertain distributions [21]. Different from 
existing zero-order EFSs, SPAFIS utilizes soft prototypes extracted from data, where each data sample forms a fraction of every soft 
prototype in the knowledge base of the system with a certain membership coefficient. This is similar to the concept of fuzzy clustering 
[21], but these soft prototypes are learned from data streams online in a single pass manner without iterative optimization as required 
by the vast majority of fuzzy clustering approaches. Compared with crisp prototypes, soft prototypes can better summarize the un-
derlying structure and local patterns of data, thereby, enabling SPAFIS to achieve greater intrusion detection performance from 
network data streams. Furthermore, to enhance the computational efficiency of SPAFIS and reduce system obesity during online 
learning, a soft prototype pruning mechanism is introduced to SPAFIS, which periodically examines the knowledge base and removes 
soft prototypes with higher similarity to maintain a more compact knowledge base. With this pruning scheme, older soft prototypes 
that are spatially closer to newer ones will be pruned from the knowledge base, and the information carried by them will be dissolved 
and fused into the remaining soft prototypes to better preserve the learned knowledge. 

To summarize, unique features of the proposed SPAFIS-based IDS that distinguish it from the state-of-the-art (SOTA) IDSs based on 
conventional machine learning and deep learning techniques include:  

1) a transparent rule-based structure composed of human-interpretable soft prototypes with internal reasoning and decision-making 
performed based on mutual distances of data, and;  

2) the capability to continuously self-expand its knowledge base from data streams and self-adapt to changing data patterns in 
nonstationary environments. 

Key contributions of this study to the field of EFSs are outlined as follows: 
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3) the utilization of soft prototypes to better summarize the underlying structure and local patterns of data with complex distributions;  
4) an online, non-iterative approach to learn soft prototypes from data streams on a chunk-by-chunk basis;  
5) the capability to periodically prune soft prototypes with high spatial similarity for a healthier knowledge base and greater 

computational efficiency. 

Numerical experiments on popular public benchmark datasets for network intrusion detection demonstrated the superior per-
formance of the proposed SPAFIS-based IDS in both offline and online setting, outperforming the SOTA IDSs based on conventional 
machine learning models and cutting-edge DNNs. 

The remainder of this paper is organized as follows. A review of related works is given by Section 2. Section 3 describes the 
technical details of the proposed SPAFIS. Numerical examples are presented in Section 4 to demonstrate the performance of SPAFIS on 
network intrusion detection. This paper is concluded by Section 5, and directions for future work is also discussed in this section. 

2. Related works 

In this section, a review of related works on network intrusion detection is presented, providing the background and context of this 
research. Due to the limited length of this paper, it is practically impossible to cover all the works in this area. Hence, the literature 
review is primarily focused on representative works in the following three aspects, namely, conventional machine learning-based 
methods, DNN-based methods and EFS-based methods. Interested readers are referred to the recently published review papers 
[3,4] for more details about the latest developments in using machine learning and deep learning methods for intrusion detection. 

In the past decades, a number of IDSs utilizing conventional machine learning techniques have been proposed in the literature and 
have achieved lots of success. For example, the KNN classifier is employed in [22] for learning program behaviours defined as col-
lections of system calls over each program execution and classifying each new program behaviour into either normal or intrusive class. 
In [23], a IDS utilizing DT learned by J48 algorithm is proposed to classify different network packets in the Kyoto 2006 + dataset into 
three major categories, namely, benign, known attack and unknown attacks. A SVM-based IDS is proposed in [7], where a hierarchical 
clustering algorithm and a feature selection algorithm exploiting the so-called “leave-one-out” strategy are employed to reduce both 
the number of samples and the number of features of the network data. A RF classifier combined with synthetic minority oversampling 
technique (SMOTE) and feature selection is proposed in [24] for intrusion detection with improved performance on minority class, 
where SMOTE is employed to restore class balance in the training set of NSL-KDD dataset [25] and feature selection based on in-
formation gain is used to obtain a reduced feature subset to facilitate the classifier training. In [26], an ensemble system composed of 
multiple SVM and KNN classifier with particle swarm optimization generated base classifier weights is proposed for detecting network 
intrusions in the KDD99 dataset. A duel ensemble classifier combining multiple gradient boosting decision tree ensembles via boot-
strap aggregation (bagging) is introduced in [24], offering greater intrusion detection performance. 

Thanks to the superior performances of DNNs over conventional machine learning techniques on many highly challenging prob-
lems, there has been an increasing number of works proposed in the recent years exploiting DNNs for network intrusion detection. 
Popular DNN models for constructing IDSs include, but are not limited to, feedforward neural networks (FNNs) [11], recurrent neural 
networks (RNNs) [9,27], convolutional neural networks (CNNs) [10]. DNN-based IDSs have demonstrated superior performances in 
binary and multiclass intrusion classification on various benchmark problems, e.g., KDD99, NLS-KDD [25], CICIDS2017 [28], out-
performing a variety of conventional machine learning techniques. However, as aforementioned, one of the key drawbacks of DNNs is 
the lack of explainability, which is a critical issue for high-stake applications. To partially alleviate this issue whilst maintaining the 
same-level performance, IDSs based on hybridizations of DNNs and conventional machine learning models are constructed, where 
DNNs are used for extracting high-level abstract features from network data and the conventional machine learning models are used 
for classifying the data instances into different categories based on the extracted features [29,30]. Nevertheless, it is also widely known 
that conventional machine learning models suffer from a number of weaknesses when applied to large-scale, complex problems, such 
as lower transparency, lower explainability and lower computational efficiency. 

As cyber-attacks are consistently evolving, it is necessary for IDSs to be capable of continuously self-evolving the system structure 
and meta-parameters to self-adapt to new data patterns. It is also important for IDSs to be able to perform decision-making in a human 
understandable manner and provide high-level explainability. As a result, researchers are exploring alternative approaches to 
construct explainable IDSs that address the evolving threat landscape effectively. EFSs, as a powerful tool widely used for real-time 
non-stationary problem approximation and a promising approach towards XAI [17], have been increasingly used for network intru-
sion detection in nonstationary environments. In [31,32], an EFS-based approach named evolving agent behaviour classification based 
on distributions of relevant events (EvABCD) is proposed to create and recognize automatically the behaviour profiles of different 
computer users by representing the observed behaviours of computer users as adaptive distributions of their relevant atomic be-
haviours. EvABCD can effectively monitor the time varying behaviours of different computer users, thereby detecting abnormalities 
and identifying masquerades. An evolving possibilistic Cauchy clustering algorithm is introduced in [33] to learn a self-evolving 
predictive model online from network data streams for cyber-attack detection. In [34], an evolving Gaussian fuzzy classifier is 
implemented to autonomously analyse the time-varying data from the Tier-1 Bologna computer centre and detect anomalies in the log 
records in real time for predictive maintenance. 

3. Proposed SPAFIS 

In this section, technical details of the proposed SPAFIS are presented. As aforementioned, one key feature that differentiates 
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SPAFIS from alternative zero-order EFSs is the utilization of soft prototypes in its internal reasoning and decision making. Compared 
with crisp prototypes utilized by conventional prototype-based models [19,20,35], soft prototypes have a greater capability to 
summarize the underlying patterns of empirically observed data and preserve the data structure, enabling the resulting SPAFIS to 
achieve better prediction performance. 

First of all, let X = {x1,x2,x3,⋯,xk,⋯} (xk =
[
xk,1, xk,2, .., xk,M

]T
∈ X) be a particular data stream/static dataset in the 

M-dimensional data space R M, where the subscript k denotes the time instance at which xk is observed. It is assumed that samples of 
the data stream X continuously arrive in chunks, namely, Xn =

{
xn,1,xn,2,⋯,xn,Ln

}
(n = 1, 2,3,⋯; Ln is the cardinality of Xn). X is 

composed of data samples of C different classes with Y =
{
y1, y2, y3,⋯, yk,⋯

}
being the corresponding class labels of X, where yk 

denotes the class label of xk and there is yk ∈ {1,2,⋯,C}. According to the class labels Yn, data samples of Xn can be further divided 

into C non-overlapping subsets, namely, Xc
n =

{
xc

n,1,xc
n,2,⋯,xc

n,Lc
n

}
(c = 1,2,⋯,C); Lc

n is the cardinality of Xc
n), and there are Xi

n ∩ Xj
n =

∅∀i ∕= j, and X1
n ∪ X2

n ∪ ⋯ ∪ XC
n = Xn. By default, this study employs city block distance as the default distance measure, namely, 

‖x − y‖1 =
∑M

m=1
⃒
⃒xm − ym

⃒
⃒, same as [20]. However, one may consider using other commonly used distance metrics, such as Euclidean 

distance, Mahalanobis distance, etc. 

3.1. Architecture 

The general architecture of SPAFIS is visualized in Fig. 1, which is composed of the following components:  

1) A self-adaptive threshold learner; 

The self-adaptive threshold learner derives the data-driven distance threshold from the received data chunks based on the mutual 
distances of data and the level of granularity set by the users [19].  

2) C knowledge summarizers; 

The knowledge summarizers learn from received data chunks to build a knowledge base composed of highly distinctive and 
informative soft prototypes preserving the underlying structure and local patterns of the data streams. The knowledge summarizers 
also periodically remove these soft prototypes with high spatial similarity from the knowledge base to maintain its compactness and 
healthiness.  

3) C soft prototype-based IF-THEN rules, and; 

The soft prototype-based IF-THEN rules are the core of SPAFIS, created from the learned knowledge base. They serve as the 
inference engine and are formulated in the following form [19]: 

Rc :
IF
(
x ∼ sc

1
)

OR
(
x ∼ sc

2
)

OR⋯OR
(
x ∼ sc

Sc

)

THEN (y = c)
(1)  

where c = 1,2,⋯,C; “~” denotes similarity; sc
j is the j th soft prototype of the c th IF-THEN rule, Rc; Sc is the total number of soft 

prototypes identified from the empirically observed data samples of the c th class; Sc is the collection of soft prototypes associated with 
Rc. As one can see from Eq. (1), each IF-THEN rule is, in fact, a combination of Sc simpler IF-THEN rules with the same singleton 
consequent part integrated by logical “OR” connectives as follows (j = 1,2,⋯,Sc): 

Rc
j :

IF
(

x ∼ sc
j

)

THEN (y = c)
(2)   

Fig. 1. General architecture of SPAFIS.  
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4) A decision maker 

The decision maker predicts class labels of unlabelled samples based on the confidence scores produced by the IF-THEN rules 
during the testing stage [36]. The confidence scores are calculated based on the spatial similarity between unlabelled samples and soft 
prototypes, and the class labels are determined by the decision maker based on the highest confidence scores accordingly. 

The algorithmic procedures of the system identification and decision-making schemes are detailed in the following two subsections. 
It is worth noting that to maintain its computation- and memory- efficiency, SPAFIS discards all the processed historical data chunks 
and only keeps the extracted prototypes in its knowledge base. In addition, SPAFIS will periodically examine the spatial similarity 
between identified prototypes and disassemble these ones that share high similarity with their neighbours to improve the compactness 
of the learned knowledge base and further reduce the computational complexity. 

3.2. System identification 

The system identification process of SPAFIS is composed of the following five recurring steps, namely, 1) self-adaptive threshold 
learning; 2) soft prototype identification; 3) knowledge base updating; 4) soft prototype pruning, and 5) rule base updating. The 
detailed system identification process is presented as follows. 

Step 1. Self-adaptive threshold learning. Once the n th data chunk, Xn arrives, the self-adaptive threshold learner firstly calculates 
the pairwise distances between any two data samples of Xn and obtain the following Ln × Ln dimensional pairwise distance matrix dn: 

dn =
[
‖xn,k − xn,j‖

2
1

]k=1:Ln

j=1:Ln
=

⎡

⎣

(
∑M

m=1

⃒
⃒xn,k,m − xn,j,m

⃒
⃒

)2
⎤

⎦

k=1:Ln

j=1:Ln

(3)  

Then, the average distance dn,G between any two data samples that can be viewed as neighbours under the G th level of granularity can 
be calculated by Eq. (4) in an iterative manner (g = 1,2,⋯,G): 

dn,g =
1

∑Ln − 1
k=1

∑Ln
j=k+1wg,k,j

∑Ln − 1

k=1

∑Ln

j=k+1
wg,k,j‖xn,k − xn,j‖

2
1 (4)  

where wg,k,j =

{
1, if ‖xn,k − xn,j‖

2
1 ≤ dn,g− 1

0, else
; dn,0 = 2

Ln(Ln − 1)
∑Ln − 1

k=1
∑Ln

j=k+1‖xn,k − xn,j‖
2
1. 

If Xn is the very first data chunk (namely, n = 1), the self-adaptive distance threshold γG is set as: γG←dn,G. Otherwise, γG is updated 
via Eq. (5): 

γG←
γG •

∑n− 1
k=1Lk + Ln • dn,G
∑n

k=1Lk
(5)  

Note that γG serves as an estimation of the maximum distance between any two data samples that are viewed as neighbours under the G 
th level of granularity set by users (G is a nonnegative integer). G = 6 is considered in this study. The greater the level of granularity is, 
the smaller γG is, and SPAFIS will focus more on the local patterns of data and identify more soft prototypes. Compared with prefixed 
hard thresholds, which are commonly used by existing works [35], the self-adaptive distance threshold γG is always guaranteed to be 
meaningful thanks to its data-driven nature [37]. Very important, γG can be determined based on users’ preferences and requires no 
prior knowledge about the given problem. 

Once γG is initialized/updated, the system identification process enters Step 2. 
Step 2. Soft prototype identification. In this step, Xn is divided into C nonoverlapping subsets (denoted as X1

n , X2
n , …, XC

n ) according 
to the corresponding class labels, Yn. The C subsets are then passed to the corresponding knowledge summarizers. Each knowledge 
summarizer follows the exact same procedure to learn soft prototypes from the received data of the corresponding class. After the c th 
knowledge summarizer has collected the corresponding subset of data Xc

n, the Lc
n × Lc

n dimensional pairwise distance matrix dc
n is firstly 

sliced from dn based on samples’ indices: 

dc
n =

[
‖xc

n,k − xc
n,j‖

2
1

]k=1:Lc
n

j=1:Lc
n

(6)  

Next, the symmetric adjacency matrix Ac
n is derived from dc

n: 

Ac
n =

[
Ac

n,k,j

]k=1:Lc
n

j=1:Lc
n

(7)  

where Ac
n,k,j =

{
1, if ‖xc

n,k − xc
n,j‖

2
1 ≤ γG

0, else 
and there is Ac

n,k,j = Ac
n,j,k ∀j,k. 

The data density of every data sample of Xc
n is calculated using Eq. (8) based on dc

n and Ac
n (k = 1,2,⋯,Lc

n): 
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D
(

xc
n,k

)
=
∑L

c
n

j=1
Ac

n,k,jα
(

xc
n,k,x

c
n,j

)
(8)  

where α(x, z) = exp
(

−
‖x− z‖2

1
γG

)

.Then, the local peaks of the data density are identified by Condition (1) [20]. 

Cond. (1) :
if
(

max
j=1,2,⋯,Lc

n

(
Ac

n,k,jD
(

xc
n,j

))
= D

(
xc

n,k

))

then
(

xc
n,k is a local peak

) (9)  

Condition (1) finds out the data samples with the locally maximum data density in their neighbours. Such samples are aligned tightly 
with the peaks of multimodal density distribution of data and can be used for constructing soft prototypes. Assuming that a total of Pc

n 

local peaks are identified by Condition (1) (denoted as x̂c
n,1, x̂c

n,2, …, x̂c
n,Pc

n
), the c th knowledge summarizer will extract Pc

n soft pro-
totypes from Xc

n to represent these identified local peaks using Eq. (10): 

pc
n,k =

∑Lc
n

j=1
α∗
(

x̂c
n,k,x

c
n,j

)
xc

n,j (10)  

and the support of pc
n,k, namely, the number of data samples associated with pc

n,k, denoted as ρc
n,k is obtained as: 

ρc
n,k =

∑L
c
n

j=1

α∗

(
x̂c

n,k,xc
n,j

)

∑Pc
n

l=1α∗

(
x̂c

n,l,xc
n,j

) (11)  

where α∗
(

x̂c
n,k,xc

n,j

)
=

α
(

x̂
c
n,k ,xc

n,j

)

∑Lc
n

l=1
α
(

x̂
c
n,k ,xc

n,l

); k = 1,2,⋯,Pc
n. The collection of soft prototypes extracted from Xc

n is denoted as Pc
n. It can be seen 

from Eq. (10) that each soft prototype is a weighted combination of all data samples of XC
n with the respective weights calculated based 

on their distances to the local peak it represents. Similar to soft clustering, e.g., fuzzy c-means [38,39], in SPAFIS, each data sample is 
associated with every soft prototype with a certain membership coefficient. Such additional flexibility gives the soft prototype stronger 
capability to preserve the data structure and the underlying patterns compared with crisp prototypes used by conventional approaches 
[19,20,35]. 

Step 3. Knowledge base updating. Once the knowledge summarizers have extracted soft prototypes from the current data chunk, 
Xn, the knowledge base of SPAFIS will be initialized/updated. 

If Xn is the first data chunk (namely, n = 1), the knowledge base in the form of soft prototypes (S1,S2,⋯,SC) will be initialized as 
follows (c = 1,2,⋯,C): 

Sc←Pc
n (12)  

Here νc
j is the support of sc

j (j = 1,2,⋯,Sc). 
Otherwise, namely, n > 1, the knowledge base will be updated with the newly identified prototypes, P1

n , P2
n ,⋯,PC

n by integrating Pc
n 

into Sc according to their mutual distances (c = 1,2,⋯,C). To do so, Condition (2) is checked for each soft prototype pc
n,k within Pc

n (k =

1,2,⋯,Pc
n): 

Cond. (2) :
if
(

min
s∈Sc

(⃦
⃦
⃦pc

n,k− s‖
2

1

)
> γG

)

then
(

Sc←Sc ∪
{

pc
n,k

}
;Pc

n←Pc
n\
{

pc
n,k

}) (13)  

If pc
n,k satisfies Condition (2), pc

n,k is spatially distant to any of the existing soft prototypes learned from historical data chunks, and it is 
highly likely that pc

n,k represents a novel data pattern that has not been seen in the historical data. Hence, pc
n,k is added to Sc to 

incorporate the new knowledge in the knowledge base (Sc←Sc + 1) and, meanwhile, remove from Pc
n (Pc

n←Pc
n − 1). 

After all the soft prototypes of Pc
n that satisfy Condition (2) have been selected to join Sc, the remaining members of Pc

n will be used 
for updating the members of Sc using Eq. (14) (j = 1,2,⋯,Sc; k = 1,2,⋯,Pc

n): 

sc
j ←

νc
j sc

j +
∑Pc

n
k=1α*

k,jρc
n,kpc

n,k

νc
j +
∑Pc

n
k=1α*

k,jρc
n,k

; νc
j ←νc

j +
∑Pc

n

k=1
α*

k,jρc
n,k (14)  

where α*
k,j =

α
(

pc
n,k ,s

c
j

)

∑Sc

i=1
α
(

pc
n,k ,s

c
i

). It can be seen from Eq. (14) that if pc
n,k fails to satisfy Condition (2), it will be disassembled for updating the 

knowledge base . Every soft prototype sc
j within Sc will receive a portion of pc

n,k for parameter updating. The closer sc
j is to pc

n,k, the 
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bigger portion sc
j receives from pc

n,k. 
After P1

n , P2
n ,⋯,PC

n have been integrated into S1,S2,⋯,SC, the knowledge summarizers proceed to the next step for maintaining the 
knowledge base. 

Step 4. Soft prototype pruning. Due to the nonstationary nature of data streams, the areas of influence of some soft prototypes may 
gradually overlap with others because of parameter updating from new data. This is typically caused by the drifts and/or shifts in the 
data streams and is a common issue in online model identification [16]. Keeping these soft prototypes with high spatial similarity in the 
knowledge base increases the computational and memory costs but does not improve the inference. To maintain a more compact and 
healthier knowledge base, the knowledge summarizers will perform soft prototype pruning periodically. 

To do so, Condition (3) is used to examine the soft prototypes of Sc (c = 1,2,⋯,C) one by one from the oldest (identified from Xc
1) to 

the newest (identified from Xc
n): 

Cond. (3) :
if
(

min
k=j+1,2,⋯,Sc

(⃦
⃦
⃦sc

j − sc
k

⃦
⃦
⃦

2

1

)
< ωo•γG

)

then
(

Rc←Rc ∪
{

sc
j

}
; Sc←Sc

/{
sc

j

}) (15)  

where j = 1, 2, ⋯, Sc − 1; ωo (0 ≤ ωo < 1) is a small non-negative value controlling the tolerance of SPAFIS towards the similarity 
between soft prototypes; Rc =

{
rc

1, rc
2,⋯, rc

Rc

}
denotes the collection of soft prototypes to be removed from Sc; Rc is the cardinality of 

Rc; βc
j is the support of rc

j . If a soft prototype, i.e., sc
j satisfies Condition (3), it suggests that sc

j shares very high similarity with some of 
soft prototypes identified from later data chunks. Hence, sc

j will be removed from Sc to keep the knowledge base compact. 
A smaller ωo gives the knowledge summarizers greater tolerance towards these soft prototypes that are spatially close to each other 

and enables the system to preserve more soft prototypes in its knowledge base. On the other hand, a greater ωo means that the 
knowledge summarizers will maintain a smaller-scale knowledge base consisted of more distinctive soft prototypes. However, the 
knowledge summarizers may remove too many soft prototypes from its knowledge base if ωo is over large, causing the loss of 
knowledge learned from data and deteriorating the prediction performance of SPAFIS. In this study, ωo = 0.01 is used by default such 
that SPAFIS will only prune these highly overlapping soft prototypes with minimal impact on the predictive performance. One may 
also notice that the knowledge summarizers tend to keep these soft prototypes that are more recently identified in the knowledge base 
and prefer to remove these older soft prototypes when possible overlaps are spotted. The main reason for this is that these more 
recently identified soft prototypes tend to better represent the latest patterns of data streams, enabling SPAFIS to self-adaptive from 
data streams more effectively. 

After the set of soft prototypes satisfying Condition (3), namely, Rc have been identified, the c th knowledge summarizer will 
disassemble them to update the remaining soft prototypes within Sc rather than directly discarding them (c = 1,2,⋯,C). In this way, 
the knowledge preserved by Rc will be used for enhancing the soft prototypes remaining in Sc. For each soft prototype sc

j ∈ Sc, it will be 
updated by Rc using Eq. (16): 

sc
j ←

νc
j sc

j +
∑Rc

k=1α**
k,jβ

c
n,krc

n,k

νc
j +
∑Rc

k=1α**
k,jβ

c
n,k

; νc
j ←νc

j +
∑Rc

k=1
α**

k,jβ
c
n,k (16)  

where j = 1,2,⋯,Sc; α**
k,j =

α
(

rc
k ,s

c
j

)

∑Sc

i=1
α(rc

k ,s
c
i )

. 

Note that, for greater computational efficiency, SPAFIS may only perform Step 4 after every T data chunks have been processed. In 
this study, T = 10 is considered. 

Step 5. Rule base updating. If Xn is the first data chunk SPAFIS receives, the IF-THEN rule base (R1, R2, …, RC) will be initialized 
with S1,S2,⋯,SC. Otherwise, namely, the IF-THEN rule base will be updated to reflect the latest changes in S1,S2,⋯,SC. Then, the 
current learning cycle is completed and SPAFIS starts a new learning cycle going back to Step 1 to continue process the next available 
data chunk (n←n + 1) or it starts to make predictions on the unlabelled testing data. 

The algorithmic procedure of the system identification process of SPAFIS is summarized in the following pseudo code for visual 
clarity. Note that except for Step 1, which is performed by the self-adaptive threshold learner, the other four steps are performed by the 
C knowledge summarizers in parallel. Therefore, one can greatly improve the computational efficiency of SPAFIS by implementing 
each of the knowledge summarizers on a separate computing node via distributed computation.  

Algorithm 1. System identification of SPAFIS 

while (Xn is available) do 
#### Step 1. Self-adaptive threshold learning #### 

derive dn from Xn using (3); 
calculate dn,G from dn using (4); 
if (n = 1) then 

γG←dn,G; 
else 

update γG with dn,G using (5); 

(continued on next page) 
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(continued ) 

Algorithm 1. System identification of SPAFIS 

end if 
for c = 1 to C do 

#### Step 2. Soft prototype identification #### 
obtain Xc

n from Xn; 
derive dc

n from dn; 
derive Ac

n from dc
n using (7); 

calculate D
(

xc
n,k

)
for each xc

n,k ∈ Xc
n using (8); 

identify x̂c
n,1, x̂c

n,2, …, x̂c
n,Pc

n 
using Condition (1); 

extract Pc
n from Xc

n using (10); 
#### Step 3. Knowledge base updating #### 

if (n = 1) then 
Sc←Pc

n; 
else 

integrate Pc
n into Sc using Condition (2); 

update Sc with the remaining Pc
n using (14); 

end if 
#### Step 4. Soft prototype pruning #### 

if (n%T = 0) then 
remove Rc from Sc using Condition (3); 
update Sc with Rc using (16); 

end if 
#### Step 5. Rule base updating #### 

initialize/update Rc with Sc; 
end for 
n←n + 1; 

end while  

3.3. Decision making 

The decision making process of SPAFIS is detailed in this subsection. For each unlabelled testing sample, denoted as xk, each soft 
prototype-based IF-THEN rule Rc (c = 1,2,⋯,C) will produce a confidence score based on the spatial similarity between xk and soft 
prototypes associated with it. The confidence score produced by Rc is calculated by Eq. (17): 

λc(xk) =
1
Sc

∑Sc

i=1
α
(
xk, sc

i

)
=

1
Sc

∑Sc

i=1
exp
(

−
‖xk − sc

i ‖
2
1

γG

)

(17)  

The class label of xk is determined by the IF-THEN rule that produces the greatest confidence score by Eq. (18) following the “winner 
takes all” principle: 

ŷk = argmax
c=1,2,⋯,C

(λc(xk) ) (18)  

3.4. Computational complexity analysis 

As the system identification process of SPAFIS is conducted on a chunk-wise manner, it is assumed that the computational 
complexity analysis is performed at the time instance when the n th data chunk Xn is received. The Step 1 of the current learning cycle 
is to initialize/update the self-adaptive threshold from Xn. The computational complexity of calculating dn is O

(
M2L2

n
)

and that of 
deriving dn,G from dn is O

(
GL2

n
)
. Compared with calculating dn and dn,G, the complexity of initializing/updating γG is negligible. Hence, 

the overall complexity of Step 1 is O
( (

G + M2)L2
n
)
. In Step 2, soft prototypes P1

n , P2
n ,⋯,PC

n are identified from Xn. The computational 

complexity of converting dc
n to Ac

n and calculating the data density is O
(∑C

c=1
(
Lc

n
)2
)

. The complexity of identifying local peaks using 

Condition (1) is O
(∑C

c=1Lc
n

)
and that of extracting soft prototypes is O

(
M
∑C

c=1Lc
nPc

n

)
. Hence, the overall complexity of Step 2 is 

O
(

M
∑C

c=1Lc
nPc

n +
∑C

c=1
(
Lc

n
)2
)

. The computational complexity of selecting members of Pc
n to join Sc using Condition (2) (c = 1,2,⋯,C) 

and updating Sc using the remaining members of Pc
n in Step 3 is O

(
M
∑C

c=1ScPc
n

)
. Different from other steps, Step 4 is only activated 

once every T learning cycles. At the learning cycle that Step 4 is activated, the complexity of removing Rc from Sc using Condition (3) is 

O
(

M
∑C

c=1(Sc)
2
)

, and the complexity of updating Sc with Rc is O
(

M
∑C

c=1RcSc
)

. Hence, the complexity of Step 4 is 

O
(

M
∑C

c=1(Rc + Sc)Sc
)

. Compared with the previous four steps, the computational complexity of Step 5 is negligible. Therefore, the 

computational complexity to process a data chunk for SPAFIS is O
((

G + M2)L2
n +M

∑C
c=1
(
Sc + Lc

n
)
Pc

n +
∑C

c=1
(
Lc

n
)2
)

if Step 4 is not 

activated and O
((

G + M2)L2
n +M

∑C
c=1
( (

Sc + Lc
n
)
Pc

n + (Rc + Sc)Sc )+
∑C

c=1
(
Lc

n
)2
)

otherwise. 
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During the decision making stage, for each unlabelled testing sample, xk, the computational complexity of calculating the confi-

dence scores by the C IF-THEN rules is O
(

M2∑C
c=1Sc

)
, and that of determining the class label is O(C). Hence, given L testing samples, 

the overall computational complexity to determine their class labels is O
(

LM2∑C
c=1Sc

)
. 

4. Experimental investigation 

4.1. Configuration 

A. Data Description: To demonstrate the performance of SPAFIS, numerical examples based on publicly available benchmark 
datasets for network intrusion detection are presented. In particular, the following four widely recognized benchmark datasets are 
employed for experiments [4]:  

1) KDDCUP99 dataset1 [25]. KDDCUP99 is derived from the Defense Advanced Research Projects Agency (DARPA) 1998 datasets 
[40]. It is a standardized and widely recognized benchmark for evaluating the performance of network intrusion detection systems. 
This dataset has approximately five million records, covering attacks of four major categories, namely, denial of service (DoS), user 
to root (U2R), remote to local (R2L), and probe. The main issue of KDDCUP99 is the redundancy of the records.  

2) NSL-KDD dataset.2 [25] NSL-KDD is a distilled version of KDDCUP99 dataset by redundance removal and size reduction. NSL-KDD 
contains three subsets, which include 1) a full training set (KDDTrain+), 2) a full testing set (KDDTest+), and; 3) a more challenging 
subset of the testing set (KDDTest− 21).  

3) UNSW-NB15 dataset.3 [41] UNSW-NB15 is a modern benchmark dataset constructed by researchers at the Australian Centre for 
Cyber Security at the University of New South Wales. The dataset was created using the IXIA PerfectStorm platform to create a 
combination of real modern regular activities and synthetic recent attack behaviours, hence, providing a better representation of 
contemporary traffic patterns. UNSW-NB15 has one training set and one testing set.  

4) HIKARI-2021 dataset.4 [42] HIKARI-2021 is one of the latest benchmark datasets for evaluating the performances of IDSs built by 
researchers at Keio University, Japan. This dataset contains a mix of encrypted synthetic attacks and benign real traffic, reflecting 
the up-to-date landscape of cyber-attacks. 

Key information of the datasets is summarized in Table 1. 
Following the common practice [9,10], KDDCUP99, NSL-KDD and UNSW-NB15 have been pre-processed by converting the cat-

egorical attributes to numerical ones via one-hot encoding. For HIKARI-2021 dataset, the four dataset specific columns including 
source IP address (originh), source port (originp), destination IP address (responh), and destination port (responp) are removed in 
advance following [43]. The value ranges of all attributes in the four datasets are further standardized to eliminate the influence of the 
measurement unit on the model training [41]. Due to the very large size of KDDCUP99 dataset, it will be only used for experimental 
demonstration in online scenarios. To facilitate experimental simulation, 50 % of HIKARI-2021 dataset is randomly selected for each 
experiment and the training–testing split ratio is set as 4:1 [42]. 

In this study, intrusion detection from large-scale network activities is considered as a binary classification task [9], where the main 
aim is to classify each observed network activity into either the normal class or malicious class. To evaluate the performance of the 
proposed SPAFIS on multi-class classification tasks, data samples of KDD99 and NSL-KDD datasets are dividing the data into five major 
categories, which include normal, DoS, U2R, R2L and probe, according to the specific attack types following the common practice 
[10,44] (see Table 2). 

B. Parameter Setting for SPAFIS: As mentioned in Section 3, SPAFIS has three externally controlled parameters to be predefined by 
users, namely, G, ωo and T. In particular, G controls the level of granularity in soft prototype identification. A greater G enables SPAFIS 
to identify more soft prototypes, thereby, focusing on the local patterns of data, and a smaller G helps SPAFIS to focus on the global 
patterns of data and identify less soft prototypes. Both ωo and T are related to soft prototype pruning. SPAFIS will keep more distinctive 
soft prototypes in the knowledge base with a greater ωo, and will be more tolerant towards soft prototypes with higher similarities if ωo 
is set to be a small value. T controls the frequency of SPAFIS to perform pruning. A greater T means SPAFIS will perform soft prototype 
pruning less often. On the other hand, a smaller T helps SPAFIS to remove redundant soft prototypes timely and maintain a more 
compact knowledge base. However, performing soft prototype pruning too frequently can inevitably decrease the computational 
efficiency of SPAFIS. The recommended values for the three parameters are given as G = 6, ωo = 0.001 and T = 10. Unless specifically 
declared otherwise, the experimental results reported in this paper are obtained using the recommended setting by default. 

Although the size of each data chunk, Ln (n = 1,2,3,⋯) is related to the nature of the data streams to some extent, the sizes of 
different data chunks are assumed to be uniformly the same, namely, Ln = Lo∀n for simplification. In this study, Lo = 2000 is used. If 
the amount of remaining data samples is less than Lo, all the remaining samples will be included in the final data chunk for algorithm 
training/testing. 

1 Available at: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_kddcup99.html.  
2 Available at: https://www.unb.ca/cic/datasets/nsl.html.  
3 Available at: https://research.unsw.edu.au/projects/unsw-nb15-dataset.  
4 Available at: https://www.kaggle.com/datasets/kk0105/allflowmeter-hikari2021. 
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C. Parameter Settings for SOTA Comparative Algorithms: The following nine SOTA offline classification algorithms are employed 
for performance comparison:  

1) Decision tree (DT) [5];  
2) Random forest (RF) [6];  
3) K-nearest neighbour classifier (KNN) [8];  
4) Support vector machine (SVM) [45];  
5) Extreme gradient boosting (XGBoost) [46];  
6) Recurrent neural network (RNN) [27];  
7) Long short-term memory network (LSTM) [27];  
8) Convolutional neural network (CNN) [10], and;  
9) Bidirectional long short-term memory with attention mechanism (BAT) [9]. 

In running the numerical experiments, the maximum depth is set to be L − 1 for DT to allow the tree structure to fully grow (L is the 
total amount of labelled data samples presented to DT). RF is composed of 40 DTs with the maximum depth set as L − 1. The number of 
nearest neighbours, k is set to be 3 for KNN. SVM uses the linear kernel, and the box constraint is 1. The number of DTs in XGBoost is set 
as 40, η = 0.3, and the maximum depth of DTs is set as 40. For RNN, the same architecture and parameter setting as given by [27] is 
adopted. As [27] does not give the exact setting of batch size, the batch size for RNN is set as 50 in this study. The LSTM follows the 
same parameter setting and architecture as the RNN except that the recurrent neurons are replaced by LSTM neurons. Similarly, the 
same architecture and parameter setting of CNN given by [10] are used, and the batch size is set as 50 due to the same reason. The 
setting of BAT follows [9] with the kernel size for 1D convolutional layers set as 4 due to the lack of precise parameter setting given by 
the original literature. 

In addition to the nine offline algorithms, the following six EFSs that are designed to learn from data streams in nonstationary 
environments are also involved in performance comparison:  

10) Self-adaptive fuzzy learning system (SAFL) [17];  
11) Statistically evolving fuzzy inference system (SEFIS) [47];  
12) Zero-order evolving fuzzy rule-based classifier (eClass0) [18];  
13) Self-organizing fuzzy belief inference system (SOFBIS) [20];  
14) eClass0 ensemble classifier (eEnsemble) [48], and;  
15) Self-organizing fuzzy inference ensemble system (SOFEnsemble) [36]. 

Among the six EFSs for experimental comparison, SOFBIS, eEnsemble and SOFEnsemble are zero-order EFSs for data stream 
classification. SAFL, SEFIS and ESAFIS are first-order EFSs widely used for regression tasks. Generally, zero-order EFSs have higher 
computational efficiency than first-order ones because they are prototype-based and do not have trainable parameters in their 
consequent parts. In this study, SAFL and SEFIS use the commonly used “one-versus-rest” strategy for classification. SAFL, eClass0, 
SOFBIS and SOFEnsemble follow the same settings given by [17,18,20,36], respectively. The externally controlled parameters of SEFIS 
are set as: K = 0.5; δ1 = 0.5; δ2 = 0.5, and p0 = 2. eEnsemble is composed of 10 base components and other parameters follow the 

Table 1 
Key details of benchmark datasets for network intrusion detection.  

Dataset #(Samples) #(Attributes) 

Total Normal Attack 

KDDCUP99 4,894,831 3,925,650 972,781 38 numerical ones + 3 categorical ones + 1 class label 
NSL-KDD KDDTrain+ 125,973 67,343 58,640 

KDDTest+ 22,544 9711 12,833 
KDDTest− 21 11,850 2152 9698 

UNSW-NB15 Training 175,341 56,000 119,341 39 numerical ones + 3 categorical ones + 1 class label 
Testing 82,332 37,000 45,332 

HIKARI-2021 555,278 517,582 37,696 83 numerical ones + 1 class label  

Table 2 
Five major categories of KDD99 and NSL-KDD [10,44].  

Category Attack Types 

Normal normal 
DoS apache2, back, land, mailbomb, neptune, pod, smurf, teardrop, worm, processtable, udpstorm 
U2R bufferoverflow, ps, perl, loadmodule, rootkit, sqlattack, xterm 
R2L spy, warezclient, ftpwrite, guesspasswd, imap, httptunnel, multihop, named, phf, warezmaster, sendmail, snmpgetattack, snmpguess, wxlock, xsnoop 
Probe ipsweep, nma, nmap, portsweep, satan, saint  
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setting of [48]. 
The externally controlled parameter settings for the proposed SPAFIS and 15 comparative algorithms involved in numerical ex-

periments are summarized in Table 3 for clarity. 
D. Performance Measures: For performance evaluation, four standard criteria for classification are employed, which include 1) 

accuracy (acc); 2) balanced accuracy (bacc) [49]; 3) F1 score (F1), and; 4) Matthew’s correlation coefficient (mcc) [50]. Note that the 
weighted F1 score is used for multi-class problems because the F1 score was originally designed for binary problems. By default, all the 
reported results in this study are obtained as the average of 10 Monte Carlo experiments by randomly shuffling the order of training 
data samples to allow a certain degree of randomness. 

The proposed SPAFIS was implemented using Python 3.9. The performance evaluation was conducted on a laptop with i7-12700H 
processor, 64 GB RAM and RTX 3050 Ti GPU. 

4.2. Sensitivity analysis 

To understand the influence of the four parameters (namely, G, ωo, T and Lo) on the performance of SPAFIS, a sensitivity analysis is 
carried out in this subsection. To facilitate computation, the first 20 % data samples of KDDTrain+ and KDDTest+ of the NSL-KDD 
datasets are selected as the respective training and testing sets for conducting the experiments in this subsection. 

Firstly, the influence of the level of granularity, G on the performance of SPAFIS is investigated. In this experiment, the value of G is 
varied from 2 to 9, and the other three parameters follow the default setting, namely, ωo = 0.001, T = 10 and Lo = 2000. The 
classification performance of SPAFIS with different values of G achieved on the first 20 % data of KDDTest+ is reported in Table 4 in 
terms of the four criteria. The total number of prototypes identified from training data by SPAFIS, denoted as S (S =

∑C
c=1Sc) is 

reported in the same table. 
It can be seen from Table 4 that with a higher level of granularity, SPAFIS is able to identify more soft prototypes from data, and 

achieves greater classification performance on the testing data. On the other hand, SPAFIS tends to be overfitted if the value of G is too 
large. With an overlarge G, SPAFIS may identify too many soft prototypes from data, and focus too much on unnecessarily details of the 
local patterns of data, leading to poorer performance. As suggested by Table 4, a suitable value range of G is between 4 and 7. 

Next, the influence of ωo on the performance of SPAFIS is investigated. In this experiment, the value of ωo is reduced from 0.1 to 
0.0005 with a nonlinear step size. G, T and Lo use the default setting. The performance of SPAFIS with different ωo values are reported 
in Table 5 in terms of S, acc, bacc, F1 and mcc. Since both ωo and T are used for soft prototype pruning, the influence of T on the system 
performance is also investigated in this example. Similar to the previous experiments, the other three parameters G, ωo and Lo follow 
the default setting, and the value of T is increased from 2 to 12 with a step size of 2. The obtained experimental results by SPAFIS are 
also reported in Table 5 for visual clarity. 

As aforementioned, ωo controls the tolerance of SPAFIS on the similarity between soft prototypes, and T determines how frequently 
the soft prototype pruning is performed. One can see from Table 5 that a small ωo enables more soft prototypes being preserved in the 
knowledge base after pruning, whilst a small T enables SPAFIS to perform pruning more frequently, resulting in a smaller knowledge 
base. Nevertheless, one can see that both ωo and T have marginal influence on the classification performance of SPAFIS. 

Finally, the influence of chunk size, Lo on the performance of SPAFIS is analysed. In this example, the value of Lo is changed from 
500 to 4000 with the interval of 500 and the other three parameters are set as G = 6, ωo = 0.0001 and T = 10. The results obtained by 
SPAFIS with different Lo values are presented in Table 6 based on the same five measures used in Tables 4 and 5. Table 6 shows that the 
value of Lo can influence the size of the knowledge base of SPAFIS. Generally, a smaller chunk size will make SPAFIS identify more soft 
prototypes because it makes small drifts and/or shifts in the underlying patterns of data carried by successive chunks more noticeable. 

Although the best parameter setting is always different from problem to problem depending on the nature of data, it will be 
demonstrated by the numerical examples presented in the following section that SPAFIS is able to achieve high-level classification 
performance surpassing, or at least on par with the SOTA algorithms involved in experimental comparison with the recommended 

Table 3 
Externally controlled parameter settings of the algorithms for numerical experiments.  

Algorithm Parameter Setting Algorithm Parameter Setting 

SPAFIS G = 6; ωo = 0.001;  
T = 10; Lo = 2000; 

CNN batch size = 50;other parameters same as [10]; 

DT max depth = L − 1; BAT 1D conv kernel size = 1;  
other parameters same as [9]; 

RF number of estimator = 40;  
max depth = L − 1; 

SAFL same as [17]; 

KNN k = 3 SEFIS K = 0.5; δ1 = 0.5;  
δ2 = 0.5; p0 = 2; 

SVM box constraint = 1;
linear;

eClass0 same as [18]; 

XGBoost number of estimator = 40;  
η = 0.3; max depth = 40; 

SOFBIS same as [20]; 

RNN batch size = 50; others same as [27]; eEnsemble number of estimator = 10;  
other parameters same as [9] 

LSTM batch size = 50;other parameters same as [27]; SOFEnsemble same as y[36];  
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Table 4 
Influence of G on the performance of SPAFIS.  

Meas. G 

2 3 4 5 6 7 8 9 

S  283.6  517.8  996.2  1653.6  2589.4  3829.7  5474.5  7698.1 
acc  0.7583  0.7954  0.8030  0.8124  0.8083  0.7982  0.7833  0.7694 
bacc  0.7858  0.8170  0.8231  0.8317  0.8281  0.8192  0.8062  0.7941 
F1  0.7364  0.7874  0.7978  0.8090  0.8038  0.7913  0.7723  0.7541 
mcc  0.5945  0.6427  0.6521  0.6672  0.6613  0.6460  0.6242  0.6039  

Table 5 
Influence of ωo and T on the performance of SPAFIS.  

Meas. ωo 

0.1 0.05 0.01 0.005 0.001 0.0005 

S 2449.2 2491.5 2546.2 2568.8 2581.8 2596.9 
acc 0.8084 0.8060 0.8063 0.8077 0.8086 0.8076 
bacc 0.8282 0.8256 0.8263 0.8276 0.8283 0.8275 
F1 0.8040 0.8017 0.8014 0.8030 0.8042 0.8029 
mcc 0.6614 0.6560 0.6581 0.6604 0.6617 0.6603  

Meas. T 

2 4 6 8 10 12 

S 2574.8 2582.3 2592.1 2592.3 2585.5 2588.8 
acc 0.8078 0.8092 0.8042 0.8088 0.8096 0.8050 
bacc 0.8276 0.8289 0.8235 0.8286 0.8292 0.8243 
F1 0.8032 0.8050 0.8002 0.8045 0.8054 0.8012 
mcc 0.6605 0.6625 0.6515 0.6620 0.6632 0.6528  

Table 6 
Influence of Lo on the performance of SPAFIS.  

Meas. Lo 

500 1000 1500 2000 2500 3000 3500 4000 

S  2769.2  2700.1  2627.6  2575.9  2538.2  2567.7  2549.8  2534.4 
acc  0.8099  0.8050  0.8067  0.8071  0.8063  0.8069  0.8078  0.8075 
bacc  0.8295  0.8242  0.8262  0.8266  0.8259  0.8268  0.8277  0.8274 
F1  0.8058  0.8011  0.8025  0.8031  0.8021  0.8021  0.8032  0.8030 
mcc  0.6638  0.6528  0.6570  0.6578  0.6566  0.6591  0.6605  0.6599  

Table 7 
Binary classification performance comparison on NSL-KDD.  

Algorithm KDDTest+ KDDTest− 21 

acc bacc F1 mcc acc bacc F1 mcc 

SPAFIS  0.8064  0.8252  0.8020  0.6551  0.6334  0.7103  0.7246  0.3244 
DT  0.7988  0.8188  0.7922  0.6448  0.6210  0.7127  0.7104  0.3281 
RF  0.7736  0.7979  0.7579  0.6124  0.5693  0.6896  0.6554  0.2952 
KNN  0.7695  0.7888  0.7625  0.5835  0.5618  0.6059  0.6672  0.1633 
SVM  0.7507  0.7718  0.7389  0.5530  0.5271  0.5802  0.6323  0.1239 
XGBoost  0.7918  0.8136  0.7821  0.6380  0.6041  0.7075  0.6926  0.3205 
RNN  0.7956  0.8130  0.7925  0.6294  0.6123  0.6582  0.7113  0.2454 
LSTM  0.8020  0.8191  0.7997  0.6405  0.6250  0.6744  0.7222  0.2700 
CNN  0.7909  0.8077  0.7889  0.6172  0.6027  0.6335  0.7068  0.2064 
BAT  0.7758  0.7942  0.7705  0.5928  0.5740  0.6122  0.6794  0.1732 
SAFL  0.7770  0.7950  0.7814  0.5940  0.5772  0.6131  0.3652  0.1745 
SEFIS  0.7426  0.7614  0.7483  0.5334  0.5604  0.6477  0.3945  0.2316 
eClass0  0.6843  0.7203  0.7304  0.4914  0.4289  0.6191  0.3728  0.2061 
SOFBIS  0.7549  0.7802  0.7720  0.5797  0.5357  0.6522  0.3952  0.2383 
eEnsemble  0.6337  0.6744  0.6961  0.4112  0.3683  0.5628  0.3325  0.1193 
SOFEnsemble  0.7675  0.7870  0.7746  0.5802  0.5580  0.6026  0.3560  0.1582  
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parameter setting given in Section 4.1. However, to achieve the best performance, one may need to utilize prior knowledge of the 
problem to adjust the externally controlled parameters accordingly. 

4.3. Performance demonstration in offline scenarios 

In this subsection, numerical examples on the aforementioned large-scale benchmark datasets for network intrusion detection are 
presented to demonstrate the performance of SPAFIS under the standard experimental protocols [10]. A number of SOTA algorithms 
are employed for performance comparison. All the experiments are conducted in offline manner, namely, the algorithms are firstly 
trained with all the training samples and then evaluated on the testing samples based on the four performance criteria. 

Firstly, the binary classification performance of SPAFIS is evaluated on NSL-KDD dataset. In running the experiments, all the data 
samples of KDDTrain+ are used for training SPAFIS to distinguish the anomalous activities from normal ones. Then, the performance of 
the trained model is evaluated on the data samples of KDDTest+ and KDDTest− 21. The results obtained by SPAFIS on the two testing 
sets in terms of the four classification performance criteria are tabulated in Table 7. The classification results obtained by the 15 SOTA 
classifiers on KDDTest+ and KDDTest− 21 under the same experimental protocol are reported in Table 7 for comparison. The best result 
per dataset per criterion is in bold for visual clarity. The average time consumption (texe, in seconds) for each algorithm to learn from 
the labelled training data are presented in Fig. 2 in the form of a bar chart. 

One can see from Table 7 that SPAFIS trained on KDDTrain+ outperforms all other 15 comparative algorithms by offering the best 
classification performance on KDDTest+ in terms of all four criteria, and its classification performance on KDDTest− 21 is also better 
than alternative algorithms in terms of acc and F1, despite that DT achieves slightly better results than SPAFIS measured using bacc and 
mcc. Fig. 2 shows that the computational efficiency of SPAFIS is significantly higher than SVM and neural network-based approaches 
such as RNN, LSTM, CNN and BAT. The average time cost for SPAFIS to learn from KDDTrain+ is only slightly higher than the zero- 
order EFS-based competitors due to the use of soft prototypes. 

Next, the binary classification performance of SPAFIS is evaluated on UNSW-NB15 and HIKARI-2021 datasets. In running the 
experiments, SPAFIS is firstly trained using the training sets of the two benchmark problems, and then the performance is evaluated on 
the respective testing sets with the aim of identifying anomalous activities within the testing sets. The classification results obtained by 
SPAFIS and the 15 SOTA comparative algorithms are reported in Table 8 (the best results are in bold), and the average training time 
costs of the 16 algorithms on the two datasets are presented in Figs. 3 and 4. 

It is shown by Table 8, Figs. 3 and 4 that SPAFIS is the best-performing model on the testing set of the UNSW-NB15 problem by 
offering the greatest anomaly detection results in all four criteria, and it also achieves the best performance on HIKARI-2021 with the 
best bacc and mcc. It is also worth noting that the computational efficacy of SPAFIS is also on the same level as alternative zero-order 
EFS-based approaches. 

The fuzzy rule base learned by SPAFIS from the HIKARI-2021 problem during one particular experiment is presented in Table 9 for 
better illustration. It can be seen from Table 9 that two IF-THEN fuzzy rules are identified by SPAFIS from data (one rule per class). One 
rule is composed of 21,555 soft prototypes learned from data samples of normal class (benign) and the other rule is composed of 1756 
soft prototypes learned from data samples of malicious class (attack). As aforementioned, these soft prototypes represent the unique 
local patterns of data and can be directly associated to the practical problems and, hence, are always meaningful and interpretable to/ 
by humans. Predictions made by SPAFIS are based on the spatial similarity between soft prototypes and unlabelled data samples. 
Therefore, the reasoning process of SPAFIS can be traced and explained. 

On the other hand, one may find that the number of soft prototypes learned from data might be still large despite being much less 
than the number of original training data, which could be challenging to fully comprehend. This is due to the high complexity and high 
dimensionality of the HIKARI-2021 problem. To enhance the interpretability of the proposed model, users can lower the level of 
granularity to encourage the learning system to focus more on the global patterns of data, thereby reducing the size of the knowledge 
base (also see Table 4). However, a trade-off between the interpretability and prediction performance will need to be made. Another 
potential solution is to arrange these soft prototypes in multi-level hierarchies based on their respective descriptive abilities, but this is 
out of the scope of this study. 

Finally, to evaluate the multi-class classification performance of SPAFIS, NSL-KDD dataset is converted into a multi-class classi-
fication problem based on Table 2 [10,44]. The multi-class classification performances of SPAFIS and the 15 SOTA comparative al-
gorithms on NSL-KDD are reported in Table 10, following the same experimental protocol used by the numerical example presented in 

Fig. 2. Average training time consumption of 16 machine learning algorithms on NSL-KDD (binary).  
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Table 7, where the best results are also highlighted. Similarly, the average training time costs of the 16 algorithms are presented in 
Fig. 5. It can be seen from Table 10 that the acc rate and F1 score of the classification result obtained by SPAFIS on KDDTest+ and 
KDDTest− 21 surpass all other comparative algorithm, despite that SVM and XGBoost offer slightly better results than SPAFIS based on 
bacc and mcc, respectively. 

The numerical examples presented in this section collectively demonstrate the supervisor performance of SPAFIS on network 
intrusion detection. In particular, Tables 7 and 8 suggest that SPAFIS is able to offer superior anomaly detection performance on NSL- 
KDD, UNSW-NB15 and HIKARI-2021 datasets with considerably high computational efficiency (see Figs. 2–5), outperforming a variety 
of SOTA algorithms. Table 9 also shows that the knowledge base learned by SPAFIS can be visualized in the form of human- 
understandable IF-THEN fuzzy rules, offering great model transparency and interpretability. In addition, numerical example pre-
sented in Table 10 also suggests that SPAFIS can further accurately group the detected cyber-attacks into different major categories 
according to their statistic characteristics. 

Table 8 
Binary classification performance comparison on UNSW-NB15 and HIKARI-2021.  

Algorithm UNSW-NB15 HIKARI-2021 

acc bacc F1 mcc acc bacc F1 mcc 

SPAFIS  0.8887  0.8897  0.8969  0.7769  0.8623  0.9172  0.4923  0.5223 
DT  0.8640  0.8536  0.8856  0.7322  0.8964  0.5761  0.2123  0.1571 
RF  0.8727  0.8603  0.8948  0.7563  0.9073  0.5800  0.2278  0.1812 
KNN  0.8487  0.8362  0.8748  0.7050  0.9126  0.6073  0.2833  0.2392 
SVM  0.8108  0.7897  0.8532  0.6554  0.9326  0.5000  0.0000  0.0000 
XGBoost  0.8683  0.8560  0.8910  0.7464  0.9054  0.5764  0.2198  0.1719 
RNN  0.8213  0.8035  0.8580  0.6667  0.9125  0.6291  0.2577  0.2637 
LSTM  0.8295  0.8153  0.8611  0.6774  0.9197  0.5557  0.1454  0.1406 
CNN  0.8656  0.8537  0.8884  0.7395  0.9333  0.6079  0.3123  0.3114 
BAT  0.8400  0.8240  0.8722  0.6996  0.9321  0.5079  0.0293  0.0395 
SAFL  0.7792  0.7611  0.7034  0.5702  0.9275  0.5250  0.9622  0.1051 
SEFIS  0.6064  0.6114  0.5722  0.2420  0.8431  0.5952  0.9081  0.1510 
eClass0  0.6937  0.6867  0.6290  0.3945  0.7453  0.7554  0.8403  0.2918 
SOFBIS  0.8433  0.8285  0.7964  0.7002  0.9236  0.5678  0.9598  0.1980 
eEnsemble  0.6994  0.6835  0.6034  0.4051  0.7445  0.7702  0.8423  0.3024 
SOFEnsemble  0.8505  0.8384  0.8120  0.7079  0.9243  0.5638  0.9603  0.1975  

Fig. 3. Average training time consumption of 16 machine learning algorithms on UNSW-NB15 (binary).  

Fig. 4. Average training time consumption of 16 machine learning algorithms on HIKARI-2021 (binary).  
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4.4. Performance demonstration in online scenarios 

In this subsection, numerical experiments are carried out in online scenarios to demonstrate the performance of SPAFIS on network 
intrusion detection from data streams. 

Firstly, the online classification performance of SPAFIS is evaluated on NSL-KDD, UNSW-NB15 and IKARI-2021 datasets. In this 
example, SPAFIS is firstly trained with the training set and then evaluated on the testing set following the standard prequential test- 
then-train experimental protocol. The test-then-train performance of SPAFIS on the testing sets of the three benchmark problems are 

Table 9 
IF-THEN fuzzy rules learned from HIKARI-2021 data by SPAFIS.  

Class IF-THEN Fuzzy Rule 

Benign 
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⎜
⎜
⎜
⎜
⎜
⎜
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tabulated in Table 11 in terms of the four performance criteria used before. Similarly, NSL-KDD is further converted to a multi-class 
classification problem based on Table 2. Then, the experiments are repeated under the same protocol and the obtained results are also 
reported in Table 2. For performance comparison, the six EFSs used in the previous examples are involved in this numerical example, 
and their test-then-train performances obtained under the same experimental protocol are reported in Table 11. The best result per 
problem per criteria is highlighted in bold. 

One can see from Table 11 that SPAFIS outperforms its EFS competitors on the three binary classification problems in online 
environments by offering the best test-then-train classification results in terms of mcc with at least one of the other three criteria higher 
than the alternative EFS-based approaches. Although its performance on the multi-class NSL-KDD is slightly worse than SOFBIS in 
terms of acc, F1 and mcc, SPAFIS still offers the highest bacc on this problem. The performance comparison presented in Table 11 shows 
the great potential of SPAFIS to accurately detect anomalous activities from real-time network data streams with imbalanced class 
distributions whilst self-adapting its system and meta-parameters to changing data patterns. 

Next, KDD99 dataset is further used to test the online learning capability of SPAFIS from data streams. To facilitate simulation, 10 % 
of the data is randomly selected for training SPAFIS from scratch in each experiment and the level of granularity, G is set to be 3. The 
test-then-train performance of SPAFIS on KDD99 over the learning process is reported in Table 12. Similar to NSL-KDD in the previous 
example, KDD99 is also converted to a multi-class classification problem using Table 2, and the experiments are repeated with the 
obtained results reported in Table 12 as well. The experimental results obtained by the six EFSs on KDD99 under the same experimental 
protocol are tabulated in Table 12 for comparison. 

One can see from Table 12 that SPAFIS outperforms all other comparative EFS-based approaches on the task of identifying 
anomalous activities from normal ones in KDD99. At the same time, it can be observed that the performance of SPAFIS on dis-
tinguishing the identified attacks in KDD99 into different major categories is slightly lower than SOFBIS, but still among the best 
performing models. 

The numerical examples presented in this section collectively shows that SPAFIS has strong capability of learning autonomously 
from data streams and self-updating its structure and parameters to adapt to new data patterns for greater classification performance. 

4.5. Additional analysis 

Finally, in this section, ablation analysis is conducted to justify the utilization of soft prototypes by SPAFIS. As aforementioned, 

Table 10 
Multi-class classification performance comparison on NSL-KDD.  

Algorithm KDDTest+ KDDTest− 21 

acc bacc F1 mcc acc bacc F1 mcc 

SPAFIS  0.7764  0.5610  0.7542  0.6713  0.5780  0.5032  0.5767  0.4812 
DT  0.7609  0.5453  0.7236  0.6526  0.5505  0.4984  0.5407  0.4757 
RF  0.7479  0.4927  0.7057  0.6367  0.5234  0.4430  0.5123  0.4565 
KNN  0.7490  0.5403  0.7068  0.6302  0.5232  0.4627  0.5057  0.4197 
SVM  0.7656  0.5752  0.7310  0.6553  0.5544  0.5033  0.5519  0.4610 
XGBoost  0.7748  0.5415  0.7414  0.6743  0.5722  0.4941  0.5665  0.5006 
RNN  0.7600  0.5287  0.7236  0.6459  0.5446  0.4574  0.5355  0.4444 
LSTM  0.7731  0.5686  0.7420  0.6661  0.5710  0.5011  0.5642  0.4746 
CNN  0.7722  0.5525  0.7362  0.6653  0.5669  0.4947  0.5552  0.4759 
BAT  0.7415  0.4963  0.6982  0.6193  0.5091  0.4181  0.4899  0.4059 
SAFL  0.7573  0.5342  0.7133  0.6412  0.5404  0.4617  0.5156  0.4343 
SEFIS  0.6215  0.3721  0.5618  0.4266  0.4015  0.3270  0.3495  0.2393 
eClass0  0.5577  0.5283  0.5571  0.3984  0.2897  0.3938  0.2920  0.1459 
SOFBIS  0.7436  0.4845  0.7030  0.6271  0.5142  0.4306  0.5074  0.4346 
eEnsemble  0.6039  0.5338  0.6031  0.4449  0.3403  0.4119  0.3553  0.2073 
SOFEnsemble  0.7410  0.5109  0.6973  0.6163  0.5077  0.4339  0.4896  0.3965  

Fig. 5. Average training time consumption of 16 machine learning algorithms on NSL-KDD (multi-class).  
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Table 11 
Test-then-train classification performance comparison on NSL-KDD, UNSW-NB15 and HIKARI-2021.  

Dataset Algorithm acc bacc F1 mcc 

NSL-KDD 
(Binary) 

SPAFIS  0.9511  0.9538  0.9560  0.9023 
SAFL  0.9019  0.9091  0.8940  0.8103 
SEFIS  0.8038  0.8049  0.7812  0.6055 
eClass0  0.7205  0.7525  0.7520  0.5438 
SOFBIS  0.9502  0.9544  0.9446  0.9020 
eEnsemble  0.7310  0.7630  0.7609  0.5654 
SOFEnsemble  0.9239  0.9281  0.9156  0.8494 

UNSW-NB15 (Binary) SPAFIS  0.8981  0.8969  0.9076  0.7941 
SAFL  0.7847  0.7673  0.7132  0.5797 
SEFIS  0.5661  0.5502  0.4254  0.1084 
eClass0  0.6885  0.6797  0.6311  0.3658 
SOFBIS  0.8880  0.8784  0.8628  0.7810 
eEnsemble  0.6768  0.6608  0.5826  0.3415 
SOFEnsemble  0.8504  0.8571  0.8473  0.7119 

HIKARI-2021 
(Binary) 

SPAFIS  0.8617  0.9177  0.8909  0.5208 
SAFL  0.9286  0.5336  0.9628  0.1357 
SEFIS  0.8462  0.6118  0.9146  0.1653 
eClass0  0.7047  0.7752  0.8127  0.2932 
SOFBIS  0.9230  0.5674  0.9595  0.1963 
eEnsemble  0.7308  0.7656  0.8328  0.2911 
SOFEnsemble  0.9261  0.6079  0.9610  0.2798 

NSL-KDD 
(Multi-Class) 

SPAFIS  0.9414  0.8507  0.9454  0.9144 
SAFL  0.8971  0.7042  0.8915  0.8492 
SEFIS  0.6231  0.4328  0.6227  0.4437 
eClass0  0.5364  0.5068  0.5175  0.3862 
SOFBIS  0.9491  0.8018  0.9471  0.9254 
eEnsemble  0.6939  0.6067  0.7049  0.5606 
SOFEnsemble  0.9127  0.7102  0.9113  0.8706  

Table 12 
Test-then-train classification performance comparison on KDD99.  

Dataset Algorithm acc bacc F1 mcc 

KDD99 
(Binary) 

SPAFIS  0.9992  0.9990  0.9995  0.9974 
SAFL  0.9943  0.9951  0.9859  0.9825 
SEFIS  0.5807  0.5764  0.3470  0.1245 
eClass0  0.9450  0.9106  0.8605  0.8303 
SOFBIS  0.9991  0.9993  0.9977  0.9972 
eEnsemble  0.9651  0.9215  0.9045  0.8875 
SOFEnsemble  0.9858  0.9897  0.9654  0.9572 

KDD99 
(Multi-Class) 

SPAFIS  0.9989  0.7812  0.9990  0.9968 
SAFL  0.9904  0.5995  0.9910  0.9714 
SEFIS  0.5399  0.2299  0.5889  0.1075 
eClass0  0.8934  0.7561  0.9246  0.7363 
SOFBIS  0.9991  0.7529  0.9991  0.9973 
eEnsemble  0.6768  0.6608  0.5826  0.3415 
SOFEnsemble  0.8504  0.8571  0.8473  0.7119  

Table 13 
Ablation analysis results.  

Dataset Algorithm acc bacc F1 mcc 

Binary NSL-KDD KDDTest+ SPAFIS 0.8064 0.8252 0.8020 0.6551 
CPAFIS 0.7535 0.7645 0.7601 0.5265 

KDDTest− 21 SPAFIS 0.6334 0.7103 0.7246 0.3244 
CPAFIS 0.6173 0.6769 0.7139 0.2730 

UNSW-NB15 SPAFIS 0.8887 0.8897 0.8969 0.7769 
CPAFIS 0.8857 0.8935 0.8872 0.7852 

Multi-Class NSL-KDD KDDTest+ SPAFIS 0.7764 0.5610 0.7542 0.6713 
CPAFIS 0.6984 0.5250 0.6784 0.5486 

KDDTest− 21 SPAFIS 0.5780 0.5032 0.5767 0.4812 
CPAFIS 0.5726 0.4966 0.5716 0.4706  
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compared with crisp prototypes used by conventional prototypes, soft prototypes can better preserve the underlying structure and local 
patterns of data, thereby helping SPAFIS achieve better classification performance. In this example, an alternative version of SPAFIS 
that uses crisp prototypes is implemented for performance demonstration, denoted as crisp prototype-based autonomous fuzzy 
inference system (CPAFIS). The classification performances of SPAFIS and CPAFIS are compared on NSL-KDD and UNSW-NB15 under 
the same experimental protocols used before and the obtained results are reported in Table 13 with the best result per criterion per 
dataset in bold. 

Ablation analysis results presented in Table 13 show that the utilization of soft prototypes effectively help SPAFIS achieve greater 
classification performance. In particular, SPAFIS outperforms CPAFIS on NSL-KDD dataset in both binary and multi-class cases in terms 
of all four performance criteria. Both SPAFIS and CPAFIS achieve comparable performances on UNSW-NB15 dataset, but SPAFIS 
achieves slightly higher acc and F1 on this problem. This comparison demonstrates the advantages of soft prototypes over crisp 
prototypes. 

5. Conclusion 

In this paper, a novel zero-order EFS named SPAFIS has been proposed for network intrusion detection. SPAFIS is able to learn a set 
of human-interpretable IF-THEN fuzzy rules from network activities in real-time, and its system structure and meta-parameters are 
consistently self-evolving to adapt to new data patterns. Thanks to the utilization of soft-prototypes, SPAFIS can better approximate the 
multimodal distributions of data compared with conventional zero-order EFSs utilizing crisp prototypes. Numerical examples on four 
public benchmark datasets for network intrusion detection demonstrated the superior intrusion detection performance of the proposed 
SPAFIS-based IDS in both offline and online settings. 

There are several considerations for future work. First, the optimality of the soft prototypes learned by SPAFIS needs to be 
investigated. As mentioned in Section 3, each soft prototype represents a local peak of the multimodal distribution of data. However, 
considering the nonstationary nature of data streams, soft prototypes learned by SPAFIS may not be (locally) optimal because of the 
chunk-wise online learning mechanism. Therefore, it would be very helpful to perform soft prototype optimization periodically to 
maintain the local optimality of the learned solution, for example, by using genetic algorithms. Second, as one can see from the 
sensitivity analysis in Section 4.2, the level of granularity is the most important parameter externally controlled by users as its setting 
can greatly influence the performance of SPAFIS. Although this study has given a recommended setting, the best setting is always 
different from problem to problem. Therefore, it will be extremely helpful to develop a novel scheme to allow SPAFIS self-determine 
the best value setting for the level of granularity based on the nature of data. Third SPAFIS has been equipped with a soft prototype 
pruning scheme to remove redundant soft prototypes from the knowledge base, but its computational efficiency will decrease inev-
itably with more distinctive soft prototypes learned from data. One possible solution to address this is to utilize ensemble learning 
framework such that a number of ensemble components can share the computation burden. How to design an effective ensemble 
scheme for online learning that helps SPAFIS to achieve greater prediction accuracy with higher computational efficiency remains a 
question to be answered. Last, but not the least, currently SPAFIS needs to be trained with labelled training data to build a predictive 
model. However, in real applications, the amount of labelled data may be very limited whilst unlabelled data is abundant. This is 
especially the case for network intrusion detection. Therefore, it would be extremely useful to extend the SPAFIS with a semi- 
supervised learning scheme such that SPAFIS can utilize the large amount of unlabelled data to self-improve its knowledge base 
with minimal human supervision after being primed with a small amount of labelled training data. 
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