
Lauwaerts, Tom, Marr, Stefan and Scholliers, Christophe (2024) Latch: Enabling
large-scale automated testing on constrained systems. Science of Computer
Programming . ISSN 0167-6423.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/106218/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.scico.2024.103157

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information
For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version

arising from this submission.

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/106218/
https://doi.org/10.1016/j.scico.2024.103157
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Latch: Enabling Large-scale Automated Testing on Constrained Systems

Tom Lauwaertsa,∗, Stefan Marrb, Christophe Scholliersa

aDepartment of Applied Mathematics, Computer Science and Statistics, Universiteit Gent, Krijgslaan 281, S9, 9000 Ghent,
Belgium

bSchool of Computing, University of Kent, CT2 7FS Kent, United Kingdom

Abstract

Testing is an essential part of the software development cycle. Unfortunately, testing on constrained
devices is currently very challenging. First, the limited memory of constrained devices severely restricts the
size of test suites. Second, the limited processing power causes test suites to execute slowly, preventing a
fast feedback loop. Third, when the constrained device becomes unresponsive, it is impossible to distinguish
between the test failing or taking very long, forcing the developer to work with timeouts. Unfortunately,
timeouts can cause tests to be flaky, i.e., have unpredictable outcomes independent of code changes. Given
these problems, most IoT developers rely on laborious manual testing.

In this paper, we propose the novel testing framework Latch (Large-scale Automated Testing on Con-
strained Hardware) to overcome the three main challenges of running large test suites on constrained hard-
ware, as well as automate manual testing scenarios through a novel testing methodology based on debugger-
like operations—we call this new testing approach managed testing.

The core idea of Latch is to enable testing on constrained devices without those devices maintaining
the whole test suite in memory. Therefore, programmers script and run tests on a workstation which then
step-wise instructs the constrained device to execute each test, thereby overcoming the memory constraints.
Our testing framework further allows developers to mark tests as depending on other tests. This way, Latch
can skip tests that depend on previously failing tests resulting in a faster feedback loop. Finally, Latch
addresses the issue of timeouts and flaky tests by including an analysis mode that provides feedback on
timeouts and the flakiness of tests.

To illustrate the expressiveness of Latch, we present testing scenarios representing unit testing, integration
testing, and end-to-end testing. We evaluate the performance of Latch by testing a virtual machine against
the WebAssembly specification, with a large test suite consisting of 10,213 tests running on an ESP32
microcontroller. Our experience shows that the testing framework is expressive, reliable and reasonably
fast, making it suitable to run large test suites on constrained devices. Furthermore, the debugger-like
operations enable to closely mimic manual testing.

Keywords: Automated Testing, Embedded Devices, Flaky Tests

1. Introduction

Software testing for constrained devices, still lags behind standard best practices in testing. Widespread
techniques such as automated regression testing and continuous integration are much less commonly adopted
in projects that involve constrained hardware. This is mainly due to the heavy reliance on physical testing
by Internet of Things (IoT) developers. A 2021 survey on IoT development found that 95% of the developers
rely on manual (physical) testing [41]. Testing on the physical hardware poses three major challenges, which
hinder automation and the adoption of modern testing techniques. First, the memory constraints imposed
by the small memory capacity of these devices makes it difficult to run large test suites. Second, the

∗Corresponding author

Preprint submitted to Elsevier June 10, 2024

processing constraints of the hardware causes tests to execute slowly, preventing developers from receiving
timely feedback. Third, timeouts and flaky tests pose a final challenge. When executing tests on constrained
hardware it is not possible to know when a test has failed or is simply taking too long.

To circumvent the limitations of constrained hardware, simulators are sometimes used for testing IoT
systems [8]. Their usage makes adopting automated testing and other common testing practices much easier.
Unfortunately, simulators can never fully capture all aspects of real hardware [61, 32, 13]. Therefore, to
fully test their applications, IoT developers have no other option than to test on the real devices. This is the
primary reason why developers still prefer physical testing. Another reason is the lack of expressiveness when
specifying tests in automated testing frameworks. Testing frameworks with simulators almost exclusively
focus on unit testing, and hence provide no good alternative to end-to-end physical testing performed by
developers manually [67].

In this paper, we argue that programmers should not be limited by either the constraints of the hardware,
or a simulator imposed by the testing framework. Therefore, our goal is to design and implement a testing
framework for automatically running large-scale versatile tests on constrained systems. This has lead to the
development of the Latch testing framework (Large-scale Automated Testing on Constrained Hardware).
Latch enables programmers to script and run tests on a workstation, which are executed on the constrained
device. This is made possible by a novel testing approach, we call managed testing. In this unique testing
approach, the test suite is split into small sequential steps, which are executed by a testee device under the
directions of a controlling tester device. The workstation functions as the tester which maintains full control
over the test suite. Only the program under test—not the entire test suite—will be sent to the constrained
device, the testee. The tester will use instrumentation to manage the testee and instruct it to perform the
tests step-by-step. This means the constrained testee is not required to have any knowledge of the test suite
being executed. This is quite different from traditional remote testing, where the entire test suite is sent
to the remote device. The instrumentation of the testee is powered by debugging-like operations, which
allow for traditional whitebox unit testing, but also enables the developer to write debugging-like scripts to
construct more elaborate testing scenarios that closely mimic manual testing on hardware.

The research question we seek to answer in this paper, is whether the managed testing approach, i.e.
splitting tests into sequential steps, is sufficient for executing large-scale tests on microcontrollers. To
answer this question, we will show how managed testing allows Latch to overcome all three major challenges
of testing on constrained devices. The approach can be summarized as follows. In Latch test suites are
split up into smaller test instructions that are sent incrementally to the managed testee, thereby freeing
the test suites from the memory constraints of the hardware. This is crucial in enabling large-scale test
suites on microcontrollers, such as the large unit testing suite containing 10,213 tests we use to evaluate our
approach. To overcome the processing constraints, Latch can skip tests that depend on previously failing
tests resulting in a faster feedback loop. Finally, Latch handles timeouts automatically, and includes an
analysis mode which reports on the flakiness of tests.

Contributions:

• We define a test specification language for writing large tests suite for constrained devices.

• We develop the Latch framework, that implements the test specification language as an embedded
domain-specific language (EDSL).

• We present a novel testing methodology based on debugging methods, that allows common manual
testing of code on hardware to be automated.

• We illustrate how Latch can be used to address testing scenarios from all three layers of the
testing pyramid [10].

• We evaluate Latch by using it to run 10,213 unit tests on an ESP32 microcontroller.

The rest of the paper starts with a discussion of the challenges of testing on constrained device in
Section 2. In Section 3, we give a first introduction to the Latch test specification language through a basic
example, and use the example to give an overview of the Latch framework. We discuss the details of the

2

language in Section 4, and focus on how tests are written and executed by the framework. For each aspect
of the test specification language we discuss how it helps Latch to address the challenges outlined previously.
We conclude the section by briefly touching on the prototype implementation. Section 5 further illustrates
how Latch can be used to handle different testing scenarios, and can help testers implement a range of
testing methodologies. We discuss three scenarios, classic large-scale unit testing, integration testing, and
automating physical end-to-end testing using the debug-like operations provided by Latch. In Section 6, we
evaluate the runtime performance of Latch based on a variety of test suites, and present empirical evidence
that managed testing enables large-scale automatic testing on constrained hardware. In Section 7, we discuss
the related works, before concluding in Section 8.

2. Challenges of Testing on Constrained Devices

This section outlines the challenges preventing large-scale testing on constrained hardware.

2.1. Memory Constraints

In this article we focus on the ESP32 microcontroller family1 having about 400 KiB SRAM and 384 KiB
ROM, typically operating at a clock frequency around 160-240 MHz. Due to these hardware limitations,
programs cannot be arbitrarily large as the program memory is quite small and they execute slower than
workstations. For companies producing IoT devices it is often desirable to make use of the cheapest and
most minimal hardware possible that can handle the task at hand. This means that when executing on the
hardware, there are often very few resources to spare, which limits the ability to test the applications on
the device.

When test suites become large, executing these test suites on the hardware is often not possible because
the compiled binary is too big to fit in the program memory of the microcontroller. The only option then is
to split the test suite into smaller parts which can fit on the device. Current testing frameworks, however,
do not provide automated support for splitting large test suites and executing them incrementally on the
hardware. Programmers who want to execute large test suites thus have to manually partition the test suite,
execute the test on the hardware, read out the results and process the dump of the individual parts.

Finally, even when the testing framework supports partitioning of the test suite reflashing the hardware
for every partition is quite time-consuming. To change the program executing on the hardware the program-
mer needs to flash the microcontroller, i.e. write the program in the ROM partition of the microcontroller.
Depending on the microcontroller, synchronization and flashing of a new program can take several seconds
making it undesirable to flash the microcontroller often.

2.2. Processing Constraints

When relying on regression testing, the programmer wants a tight feedback loop. Ideally, the entire test
suite is run after each change, but this requires feedback to be reported quickly. However, by testing on
constrained devices, executing the test suite can take a lot of time, slowing down the software development
cycle significantly. To provide feedback as early as possible, the framework should catch failures early. This
can take many forms, but in essence a failure of any kind during a test should be visible to the developer as
soon as possible. Additionally, to avoid spending time on tests that cannot succeed, the framework should
run as few of these tests as possible.

Finally, when multiple hardware testbeds are available it should be easy for the developer to run tests
in parallel to speed up testing. The same facilities for scheduling and parallelization options available for
unconstrained devices, should be integrated into testing frameworks for constrained devices.

1ESP32 devices can have different amounts of memory, but the order of magnitude is the same.

3

2.3. Timeouts and Flaky Tests

Due to the limited memory and processing power of constrained devices, large test suites need to be
split up in smaller chunks. Moreover, the results of the test need to be communicated with a test machine
and combined. Unfortunately, this approach implies that test engineers suddenly need to take into account
many of the problems associated with distributed computing.

First, when the test machine is waiting for a response, it cannot reliably distinguish between a failure or
a delayed response. Many other testing frameworks need to deal with this problem, especially JavaScript
frameworks [17] where asynchronous code is prevalent [14]. These frameworks time out tests that take
too long, unfortunately, the fact that a test timed out does not provide much information for developers,
especially when a test includes multiple asynchronous steps.

Second, the non-determinism of the asynchronous communication also contributes to an inherent problem
of testing, flaky tests [36]. These are tests that can pass or fail for the same version of the code. Unfortunately,
on constrained hardware, many tests have the potential to become flaky due to the inherent non-determinism
of these systems. For example, when testing communication with a remote server small changes in the
communication timing with the server could lead to different behavior.

3. Managed Testing with Latch by Example

To overcome the outlined challenges, Latch uses a unique testing approach that consists of a declarative
test specification language to describe tests, and a novel test framework architecture to run tests. We refer
to our new approach as managed testing. In managed testing, the testing framework runs on a local machine
and delegates tests step-by-step to one or more external platforms, which are running the software under
test. To facilitate this approach, tests must be easily divisible into sequential steps. That is why managed
testing specifies tests in a declarative test specification language, where tests are described as scenarios of
incremental steps. In this section we give a first overview of how managed testing in Latch works through
an example, before going into further detail in Section 4. The example is chosen as a small primer on how
programmers can write traditional unit tests with Latch’s test specification language.

3.1. The Example

We define a unit test that verifies the correctness of a function for 32-bit floating point multiplication,
shown in Listing 1. All example programs are written in AssemblyScript [65], one of the languages supported
by Latch’s current microcontroller platform.

1 export function mul(x: f32, y: f32): f32 {

2 return x * y;

3 }

Listing 1: A mul function that multiplies its two arguments, written in AssemblyScript.

Listing 2 shows a simple test in Latch containing one unit test for the target program in Listing 1. Latch’s
declarative test specification language is implemented as an embedded domain specific language (EDSL) in
TypeScript [44]. Test scenarios are presented in Latch as TypeScript objects that have a title, the path to
the program under test, and a list of steps. These steps make up the test scenario, and will be performed
sequentially. Each step performs a single instruction, and can perform several checks over the result of that
instruction.

The example performs only a single instruction, it requests that the mul function is invoked with the
arguments 6 and 7 (see Line 6). These arguments are first passed to the WASM.f32 function, to indicate the
expected type in AssemblyScript. On Line 7, the example specifies that the function returns the number 42.
Usually, the instruction and expectations for a step are described as objects, but Latch provides a handful
of functions to construct these objects for common patterns—such as invoke and returns. This makes test
scenarios less verbose, and quicker to write. We go into further detail on the structure of the instruction
and expectation objects in Section 4.

4

1 const multiplicationTest: Test = {

2 title: "example test",

3 program: "multiplication.ts",

4 steps: [{

5 title: "mul(6,7) = 42",

6 instruction: invoke("mul", [WASM.f32(6), WASM.f32(7)]),

7 expect: returns(WASM.f32(42))

8 }]

9 };

Listing 2: A Latch scenario defining a unit test for the mul function.

Similar to other testing frameworks, Latch allows test scenarios to be grouped into test suites. Crucially,
the test suites in Latch have their own set of testee devices, on which they will be executed. When writing
a new test suite in Latch, programmers need to add at least one testee to the suite. Such testees can range
over a wide variety of microcontrollers, as well as local simulator processes. Each platform may differ in
how software is flashed, or communication initialized and performed. These platform specific concerns are
captured by a single TypeScript class, Testee. Each connection with a constrained device is represented by
an object of such a class. In Listing 3 for instance, we use the Arduino platform to connect to an ESP32
over a USB port, as shown on Line 2. This line also sets the default timeout for the testee to 5 seconds.
Users can add their own platforms by defining new subclasses of the Testee class, which can handle the
specific communication requirements of the new platform.

Aside from testees, a test suite also requires test scenarios to execute. The example multiplication test
is added to the test suite on Line 4, before the suite is given to Latch to be run on Line 5.

1 const suite = latch.suite("Example test suite");

2 suite.testee("wrover A", new ArduinoSpec("/dev/ttyUSB0", "esp32:esp32:esp32wrover"), 5000)

3 .testee("wrover B", new ArduinoSpec("/dev/ttyUSB1", "esp32:esp32:esp32wrover"))

4 .test(multiplicationTest);

5 latch.run([suite]);

Listing 3: Latch setup code to run the multiplicationTest on two ESP32 devices.

Listing 3 shows how a test suite is built in Latch through a fluent interface [69], meaning the methods
for constructing a test suite can be chained together. Each test suite in latch is entirely separate from the
rest, and therefore contains only its own tests, and platforms to run those tests on. In the example, two
ESP32 devices are configured for the test suite. This means that when the test suite is started with the
run function on Line 5, the framework will execute all scenarios in the suite on all configured platforms.
Alternatively, the user can configure Latch to not execute duplicate runs, but instead to split the tests into
chunks that are performed in parallel on different devices. In that case, each test is only run once and the
execution time of the whole test suite should improve due to the parallelization.

3.2. Running the Example on the Latch Architecture

To run the above testing scenario on a remote constrained device, the test is loaded into Latch on the local
unconstrained device, the tester. During testing, the tester manages one ore more testees (constrained
devices) to execute tests step-by-step. Figure 1 gives an overview of all steps and components involved during
testing in the Latch framework. The left-hand side shows the tester, which runs the Latch interpreter and
test execution platform. The interpreter component is responsible for interpreting the test suites, which
are written in the test specification language, while the test execution platform sends each instruction
in a test step-by-step to the testee device over the available communication medium. The test execution
platform also parses the result, and handles all other aspects of communication with the testee device.

We will go over the steps shown in Fig. 1 in the order they are executed by Latch. Running a test suite
is initiated by the interpreter, which takes the test suite specification 1 , and schedules the scenarios 2 .
Since the example test suite in Listing 3 only contains a single test scenario, the multiplication test, with a
single step—the scheduling is not relevant in this case. In real test suites, the order in which tests are run
is important, it can help detect failing tests early, or minimize expensive setup steps. When the interpreter

5

Test Execution Platform

Tester
(unconstrained device)

Testee
(constrained device)

User Interface Interpreter

Tests

Steps:

Source code: path

Source
code

.ts

Test suites

Environment
(e.g. hardware peripherals, user interactions, ...)

Test Instrumentation
Platform

Software under
Test

5

2

3

61

10

9

8
7

4

perform local action

send instruction

interact

Run 1:

Run 2:

failed

on going

send result

.*

passed timed outfailed

Figure 1: Schematic overview of the interaction between components in Latch during a test.

selects a test to be executed, it will instruct the test execution platform 3 to first upload the software
under test, and subsequently sends the instructions of the scenario to the test instrumentation platform
4 . In the case of our example, Latch compiles the multiplication.ts file and uploads it to the ESP32 device
that is connected to the USB port. Once this step is completed, Latch sends the invoke instruction to the
testee, which will execute the mul function with the supplied arguments.

Aside from forwarding instructions to the test instrumentation platform, the tester can also perform
custom actions to control the environment 5 . For instance, these actions can control hardware peripherals,
such as sensors and buttons, that interact with the constrained testee 6 during the test.

Listing 4 shows how a step might send an MQTT message to a server as an example of an action that
acts on the environment. Such a step, could be useful when testing an IoT application that relies on MQTT
messages. The microcontroller can connect to an actual testing server, and via custom actions Latch can
test if the device responds correctly.

1 const sendMQTT: Step = {

2 title: "Send MQTT message",

3 instruction: simpleAction((): void => {

4 let client: mqtt.MqttClient = mqtt.connect("mqtt://test.mosquitto.org");

5 client.publish("parrot", "This is an ex-parrot!");

6 })

7 };

Listing 4: An example Latch step, which performs a custom action that sends an MQTT message to a server.

In contrast with Listing 2, this example constructs the instruction object explicitly, rather than calling
a function such as invoke. There are two types of instructions, they can be either a request to the test
instrumentation platform, such as the invoking of a function, or a custom action. In this example we
construct a simple action that takes no arguments and returns nothing. Actions allow tests to execute
TypeScript functions as steps in the test scenario, in this case the function simply publishes a test message
to the MQTT server (Line 5). We go into further detail on the types of actions and requests in Section 4.

As tests are performed, the software under test is controlled by the test instrumentation platform in
accordance with the request instructions send by the test execution platform 7 . In other words, the test
instrumentation platform will receive the command from the tester to execute the mul function, and make
the software under test invoke it. The instrumentation of the software under tests, allows the test instru-
mentation platform to return any generated output to the test execution platform 8 . Whenever the tester

6

sends an instruction to the testee, Latch will wait until the testee returns a result for the instruction. When
working with constrained devices, communication channels may be slow or fragment messages. Latch takes
care of these aspects automatically.

As part of a step, the scenario description can specify a number of assertions over the returned results.
In the example, we require that the mul function returns 42, as specified on Line 7 of Listing 2. Once the
expected output is received by the tester, Latch checks all assertions against it. These assertions are verified
by the interpreter 9 , before the result of the step is shown in the user interface as either passed, failed, or
timed out 10 . For example, after the test instrumentation platform returns the result of the mul function,
Latch will check if it indeed equals 42 and report the result.

A step can have three kinds of results; either it timed out, or all its assertions passed, or one or more
assertions failed. In other words, step is marked as failing when at least one assertion fails. If no assertions
were included in the step, Latch will not wait for output, and immediately report the action as passing.
When the testee fails to return a result after a preconfigured period, it is marked as timed out. Similarly, a
scenario is marked as failing when at least one step fails. When a step fails, the test execution platform will—
by default—continue the scenario without retrying the step. This is useful when the steps in the scenario
are independent of each other to gather more complete feedback. Otherwise, developers can configure Latch
to abort a scenario after the first failure.

The results of each step are reported while the test suite is executing. When the entire suite has run,
Latch will give an overview of all the results for both the steps and the test scenarios. This overview includes,
the number of passing/failing tests, the number of passing/failing steps, the number of steps that timed out,
and the overall time it took to run the suite. In addition, the developer can configure Latch to report on
the flakiness of the test by executing the tests multiple times. This way, Latch can compare the results of
different runs to give developers more insight into the flakiness of their test suites. As Fig. 1 shows under
the user interface component, the results in this case will be reported for each run separately. Whenever
the runs give different results, the scenario is marked as flaky and the failure rate is reported.

3.3. From Small Examples Towards Large-scale Test

The running example in this section illustrates Latch’s basic testing features. In particular, how Latch
divides tests into small steps that are executed sequentially. This means that the size of the test suite is
no longer constrained by the memory size of the embedded device. While the example here only includes a
single step, one can easily imagine test cases that require many more steps. Let us suppose we stay within
the realm of unit testing a mathematical framework. We can imagine a more complicated mathematical
operation than multiplication that requires thorough testing, for instance a function eig for calculating the
eigenvalues of a matrix. In this case the test scenario would include many steps, that each invokes the
eig function with a different matrix. This is similar to the large-scale unit testing suite we will discuss in
Section 5, and those run as part of the evaluation in Section 6.

Section 5 discusses realistic examples for each layer of the testing pyramid; unit testing, integration
testing, and end-to-end testing. The examples will illustrate how using small steps powered by debugging-
like operations, uniquely enables Latch to test remote debuggers and automate IoT scenarios and manual
hardware tests. For example, it becomes much easier to test whether a microcontroller successfully receives
asynchronous messages from a remote server, and handles these message correctly. The test can set break-
points in the code that is expected to be executed when a message arrives. Before sending the message, the
test can pause the execution at the exact place in the program, it wants the message to be received. The
Latch instructions allows users to write these kinds of testing scenarios in a convenient way. Moreover, the
increased control over the program, makes the test scenarios much easier to repeat reliably under the same
conditions.

4. The Latch Test Specification Language

Latch tests are written in a declarative test specification language embedded in TypeScript. This EDSL
allows developers to specify what tests should be performed, while hiding the complexity of communicating

7

with the constrained testing device. Equally important are the debug-like commands provided by the
language, which make it easier to automate hardware testing scenarios. Latch tests can be viewed as
scripted scenarios of sequential operations. The programmer can specify what the result of executing an
operation should look like, instead of manually testing whether the returned value is consistent with the
expected result. For more complex tests the programmer can write test-specific evaluation functions to
check whether the program behaves as expected.

The test specification language consists of four major abstractions: a test, a testing step, test instructions,
and assertions. Each test includes a name, some start-up configuration and the testing steps which need
to be executed during the actual test. Each testing step specifies an instruction that needs to be executed.
There are two types of instructions, commands and actions. The commands are debug-like operations that
are send directly to the test instrumentation platform of the testee, such as invoking a method, pausing the
program, etc. Alternatively, there is support for user-specified instructions called actions. These actions
allow programmers to implement their own logical and physical interactions with the hardware or the
environment.

The interface of a test, shown in Listing 5, consists of a title, the path to the program to load on the
testee device, a set of initial breakpoints to halt execution, a list of dependent test, and a set of steps to be
executed during the test. Both the initial breakpoints and dependent tests are optional, as indicated by the
question mark after their identifier.

1 interface Test {

2 title: string;

3 program: string;

4 steps: Step[];

5 dependencies?: Test[];

6 initialBreakpoints?: Breakpoint[];

7 }

Listing 5: Interface for Latch tests. Each test has a title, indicates a program to be tested, and lists the steps to executed.

Testing steps all adhere to the Step interface shown in Listing 6. Each step should minimally have a title
and specify which instruction to perform when executed. A step only contains a single instruction, and all
steps are executed synchronously. As part of a step, the result of executing an instruction can be verified
by means of assertions.

1 interface Step {

2 readonly title: string;

3 readonly instruction: Command<any> | Action<any>;

4 readonly expect?: Assertion[];

5 }

Listing 6: A step has a name, a specific command or action it should perform, and a possibly list of assertions to check.

An instruction in Latch is either a command, or an action. Both instruction types are annotated with
their return type, this is the type of the object passed to each assertion of the step. The list of assertions is
optional, a step without any assertions will always succeed and immediately go to the next step.

4.1. Default Commands in Latch

The set of commands Latch supports is shown in Table 1. We divide the set of commands in intercession,
meta, and introspection commands. The intercession commands, allow Latch tests to intervene directly with
the software under test. With invoke the programmer can call a function and wait for the result, as illustrated
by the step in our multiplication example (Listing 2). This enables unit testing of specific functions, as is the
popular approach adopted in most testing frameworks [58, 66]. With set local the programmer can change
a local variable, this is especially useful to test a program with local boundary conditions without having to
rerun the program completely.

The reset and upload module instructions are primarily for internal use in Latch, but are available in
the test specification language. The upload module instruction loads a binary onto the testee, replacing any
current program. The reset instruction restarts the current program.

8

Category Commands

Intercession invoke, set local, upload module
Meta pause, set breakpoint, continue, delete breakpoint, step, step over, reset
Introspection core dump, dump callback mapping, dump locals

Table 1: The Latch commands. Internal commands are in italic.

The meta instructions allow the programmer to install a debugging scenario by setting breakpoints and
running the program to a particular point in the execution. These are especially useful for automating
manual hardware tests, where different steps and events often need to happen in very specific orders. By
controlling the execution of the program, these kinds of scenarios can be replicated accurately each time.

Finally, the introspection commands allow the programmer to inspect the current state of the program.
Without these commands, Latch test would be limited to testing black boxes, since the software under test
is executed on a different device. Thanks to the introspection commands, Latch supports black box as well
as white box tests.

The proposed set of commands are inspired by standard debugging instructions, and focus on enabling
standard unit testing, as well as automation of manual hardware tests. Since the test specification language
is embedded in TypeScript, the set of commands is easily extended by the user. Other debugging instructions
could similarly inspire new Latch commands, such as run until, setting of conditional breakpoints, exception
breakpoints, or inspecting memory addresses. Instructions tailored to asynchronous tests, such as awaiting
an event, or waiting for a given time, would likewise be good additions. A new command has to implement
the interface shown in Listing 7. A command is identified by the test instrumentation platform by its type,
examples include pause, set breakpoint, and step. These commands can optionally take a payload, such as
a breakpoint address for example, and each command has its own parser to interpret the response of the
test instrumentation platform.

1 export interface Command<R> {

2 type: Interrupt, // type of the debug message (pause, run, step, ...)

3 payload?: (map: SourceMap.Mapping) => string, // optional payload of the debug message

4 parser: (input: string) => R // the parser for the response

5 }

Listing 7: Commands are distinguished by type and may have callback to access payload. Results are extracted by a parser.

By taking inspiration from debugging instructions, managed testing permits for a wide range of auto-
mated tests to be implemented, which would otherwise require additional engineering efforts in existing unit
testing frameworks. Additionally, we have found that it provides a very natural way of writing tests for
constrained devices. We illustrate both these points by discussing in-depth examples for each layer of the
testing pyramid in Section 5.

4.2. Custom Actions in Latch

Aside from these commands, Latch allows steps to perform custom actions. These custom actions enable
developers to execute arbitrary code as part of a step in the testing scenario. This is useful for interacting
with the environment when testing the firmware of hardware components. Listing 8 shows the interface for
a custom action. An action is an object with a single act field, containing a function that takes a Testee
argument and returns a promise. The testee argument is provided at runtime by the Latch framework, to
provide custom actions with access to the test instrumentation platform. This is useful to define actions
that need to respond to changes on the testee device, for instance waiting for a breakpoint to be hit. Actions
may be asynchronous and therefore return promises. A promise is the standard mechanism for managing
asynchronicity in JavaScript and TypeScript [52, 40]. If the action is expected to return a response, the
promise should contain the output. For Latch to run checks over this output, it needs to be of the Assertable
type. As shown on Line 1 in Listing 8, an Assertable is an object that contains any number of properties
that are indexed by strings. Latch provides a function that can turn any object into an Assertable object.

9

1 type Assertable<T extends Object | void> = {[index: string]: any};

2

3 interface Action<T extends Object | void> {

4 act: (testee: Testee) => Promise<Assertable<T>>;

5 }

6

7 declare function assertable<T extends Object>(obj: T): Assertable<T>;

Listing 8: Latch actions allow developers to execute arbitrary code in a test step. Output of such actions can be checked for
correctness with the Assertable<T> interface.

In Section 3, we briefly showed a simple action in Listing 4. However, this action returned no result,
over which the test step could define assertions. Listing 9 gives an second example of an action that does
return a result. The action will listen for the next MQTT message for a specific topic. On Line 5, the act

function returns a promise that resolves when the first message for the correct topic arrives. The promise
contains the MQTT message of the application-specific Message type, including a topic and payload field.
This object can be used to define checks over the payload of the message with Latch assertions. However,
for Latch to run checks against the message, the returned object must conform to the Assertable interface.
That is why on Line 8, the message object is wrapped in a Assertable by the assertable function, shown in
Listing 8.

1 function listen(topic: string): Action<Message> {

2 let client: mqtt.MqttClient = mqtt.connect("mqtt://test.mosquitto.org");

3

4 return {

5 act: () => new Promise<Assertable<Message>>((resolve) =>

6 client.on("message", (_topic: string, payload: Buffer) => {

7 if (topic === _topic)

8 resolve(assertable({topic: topic, payload: payload.toString()}));

9 })) }; }

Listing 9: An example of a pure action that listens for the next MQTT message to a specific topic.

4.3. Assertions over instruction results

Aside from the instruction, each step contains a list of zero or more assertions. These assertions are
used to perform checks on the result of the step’s instruction. The result of an instruction is always of the
Assertable type shown in Listing 8.

For each string-indexed property of an Assertable result, a test step can contain one or more assertions.
The interface of the assertions is shown in Listing 10. The Assertions represent a check over a single property
of the assertable object, specified by their string index. The assertions over the object’s properties follow
the Expect interface, also shown in Listing 10. An Expect object represents an assertion over an object
property of the result, and takes a type parameter T that should correspond with the type of that property.
The Expect interface can be used to check for a value of type T, or a behavior encoded by the Behavior

enum also shown in Listing 10. Behaviors can check for an unchanging, changing, increasing, or decreasing
value. If these options do not suffice, developers can write their own custom checks. These are written as
comparison functions that take the actual resulting value from the test, and return a boolean indicating
whether the check passes.

1 interface Assertion { [index: string]: Expect<any>; }

2

3 type Expect<T> = T | Behaviour | (value: T) => boolean;

4

5 enum Behavior { unchanged, changed, increased, decreased }

Listing 10: Instructions return their results as Assertable objects. In Latch tests specify assertions over the arbitrary properties
of these Assertable result.

10

The interface for assertions is implemented in TypeScript using a discrimination union, which is a design
pattern used to differentiate between union members based on a property that the members hold. For
brevity, we have omitted this detail in Listing 10 and all examples that follow.

The introspection commands are particularly interesting for assertions, since they enable assertions over
the internal state of the testee. Consider the core dump command which returns a state object, shown in
Listing 11 shows the dump command, which returns a state object.

1 const dump: Command<State>;

2

3 interface State {

4 line: number; // current line position

5 column: number; // current column position

6 mode: Mode; // execution mode

7 func: string; // current function

8 }

Listing 11: The core dump command returns a state object, which contains the source location, execution mode, and name of
the currently executing function.

For example, the dump command allows a step to check whether the testee is paused in a particular
function. Listing 12 shows how you might write this test step. Line 4 adds two assertions to the step. The
first checks whether the mode field in the state is set to pause, and the second checks if the current function
has the correct name.

1 const step: Step = {

2 title: "CHECK: entered *echo* function",

3 instruction: Command.dump,

4 expect: [{mode: Mode.PAUSE}, {func: "echo"}]

5 }

Listing 12: Example step that uses the core dump command to check that execution paused in the echo function.

With the test specification language, developers can declaratively describe tests independently of the
platform they should be executed on. By embedding the domain-specific language in TypeScript, we can
use the type system of TypeScript to type all the constructs in the EDSL and catch mistakes in tests early.

4.4. Managed Testing

Given a test written in the Latch test specification language, the framework will execute it through a
single tester which manages one or more constrained testees. That is, the software under test runs on a
constrained device and the test suite is kept on the unconstrained tester device. The tester will instruct the
constrained device to perform tests by sending instructions step-by-step. This design allows test to be run
on constrained devices, while overcoming the memory constraints.

In the example of Section 3 we configured a test suite in Latch to run on two devices. The test specification
language has two main components to specify this configuration. First, the language has an overarching
concept of a test suite that groups a number of tests. Each test suite runs independently of the others, and
maintains its own devices, and their communication. Listing 13 shows the public methods of the TestSuite
class in Latch that can add new devices and tests to a test suite. Finally, when a test suite is created and
fully configured, it can be executed on all devices with the run method.

1 class TestSuite {

2 public testee(name: string, testee: Testee): TestSuite;

3 public scheduler(scheduler: Scheduler): TestSuite;

4 public test(test: Test): TestSuite;

5 }

Listing 13: The TestSuite allows developers to specify the testees, i.e., target devices, configure the scheduler, and the set of
tests to be executed.

11

The devices passed to a test suite, represent a single connection to a device. Latch supports different
devices each with their own abstraction, which needs to be able to connect and disconnect, upload a program,
and send instructions. The interface of these abstractions is captured by the abstract class in Listing 14.

1 abstract class Testee {

2 abstract connect(): Promise<void>;

3 abstract upload(program: string): Promise<void>;

4 abstract sendCommand<R>(command: Command<R>): Promise<R>;

5 abstract disconnect(): Promise<void>;

6 }

Listing 14: The Testee implements support for different devices to enable upload of programs, and command execution.

4.5. Using Test Scheduling and Expressing Dependent Tests

Performing tests on remote hardware testbeds is often slow, which delays feedback. To make testing on
constrained devices part of continuous integration in practice, we reduce the time it takes to get feedback
on failing tests by not running unnecessary ones. Latch allows dependencies between tests to be defined
explicitly, as part of the test syntax as shown in Listing 5. Each test in Latch can specify a list of tests
it depends on. The framework treats these dependencies between tests as transitive. This enables the
framework to skip tests that cannot succeed, thereby mitigating the effects of the processing constraints.

4.5.1. Example

To illustrate test dependencies, we expand on our earlier multiplication test example. Suppose our
constrained device is connected to a temperature sensor that uses Fahrenheit, but our software uses Celsius.
For the conversion, we use the AssemblyScript function in Listing 15.

1 function celsius(fahrenheit: f32): f32 {

2 return (fahrenheit - 32) * 0.556;

3 }

Listing 15: AssemblyScript function to convert Fahrenheit to Celsius.

The conversion to Celsius depends on the multiplication of 32-bit floating point numbers, which we
tested in our previous example. If the test for multiplication fails, we know that the celsius function will
fail, too, and we can avoid running the temperature conversion test to safe time. Consequently, we list the
multiplicationTest as a dependency on Line 4 in Listing 16. Dependencies are entirely defined by the
user, the only restriction is the disallowing of cyclical dependencies. Currently, the framework throws a
runtime error whenever it encounters a cyclical dependency between a group of tests.

For complex scenarios, we can list an arbitrary number of dependencies. If any of the dependencies
should fail, Latch skips the test. For continuous integration these tests are considered failing, but they are
marked with a distinct skipped label and counted separately from true failures by Latch.

1 const dependentTest: Test = {

2 title: "Example Test with a dependency.",

3 program: "celsius.ts",

4 dependencies: [multiplicationTest],

5 steps: [{

6 title: "Fahrenheit to Celsius test",

7 instruction: invoke("celsius", [WASM.f32(46.4)]),

8 assert: returns(WASM.f32(-8.0))

9 }]

10 };

Listing 16: Latch test suite for the celsius function, with a dependent scenario.

12

Algorithm 1 The default scheduling algorithm in
Latch.
Require: list of tests suite
1: accumulator ← [][]
2: trees← findDependencyGraphs(suite)
3: for all tree ∈ trees do
4: levels← groupSiblings(tree)
5: for all index, level ∈ levels do
6: append acc[index] with level
7: end for
8: end for
9: return flatten(accumulator)

Algorithm 2 The optimistic scheduling algorithm
to minimizing program uploads.

Require: list of tests suite
1: schedule← []
2: trees← findDependencyGraphs(suite)
3: for all tree ∈ trees do
4: append schedule with breadth-first(tree)
5: end for
6: return schedule

4.5.2. User-defined Schedulers

The order in which tests are executed can also influence the execution time of the test suite, especially
since failing dependent tests can prevent unnecessary computations. To further speed up the execution,
the test specification language allows developers to configure the scheduling algorithm the framework uses
when running a test suite. The best scheduling algorithm depends on the exact test suites. Therefore,
scheduling is configured at the level of a test suite as shown earlier in Listing 13. Scheduling algorithms are
implemented as subclasses of the Scheduler class from the test specification language shown in Listing 17.
The class only has one public method that takes a list of tests, and returns a new list with the tests sorted
according to the scheduler’s prioritization. This class allows developers to embed their own schedules in the
test specification language.

1 class Scheduler {

2 public schedule(tests: Test[]): Test[];

3 }

Listing 17: Schedulers enable custom ordering of tests. The ordering can avoid unnecessary test execution, or allow for test
prioritization.

The current implementation of the Latch framework, provides two predefined schedulers, the default
and the optimistic scheduler. We give the pseudocode for both scheduling algorithms in Algorithm 1 and
Algorithm 2 respectively. Since dependencies amongst tests are transitive and cyclical dependencies are
disallowed, we can extract trees from a test suite, where linked nodes depend on each other. Both algorithms
will use this fact.

The default scheduler prioritizes the dependencies between tests and works best with test suites where a
large number of tests dependent on a much smaller set of scenarios. The algorithm of the default scheduler,
starts by initializing an accumulator as a list of lists. Then, it finds all the dependency trees, as shown
on Line 2. The findDependencyGraphs function constructs a forest of directed dependence trees. In these
graphs the nodes are tests that directly depend on their parents. The function will throw a runtime error if
any cyclical dependencies are encountered. After the trees are found, for each tree the tests are aggregated
into lists of tests with the same depth in the tree, the siblings in other words. Subsequently, the algorithm
appends each group of siblings to the list in the accumulator that corresponds to its level. After all trees
have been traversed, the accumulator is flattened to a one-dimensional list, and returned as the schedule.

The optimistic scheduler is built on the assumption that dependent tests are more likely to use the same
program. If this is the case for the test suite, it can result in far fewer code uploads during a run compared
to the default scheduler. It constructs the dependence trees in the same way as the default scheduler. Next,
the algorithm will append their tests breadth-first to the schedule. Within the same depth the tests are
sorted alphabetically based on the program’s name, to minimize the number of times the tester needs to
upload code. The resulting list of tests, is ordered in such a way that trees are executed one after the other,
and no test is ever run before any test it depends on.

13

The default scheduler can be seen as traversing the entire dependence forest breadth-first. In contrast, the
optimistic scheduler iterates breadth-first over each dependence tree in succession. Again, at each depth the
tests are sorted alphabetically according to their program. These two schedulers are provided as examples
of scheduling algorithms, each test suite most likely has its own optimal algorithm.

Thanks to the scheduling based on the test dependencies, Latch can detect failures early and prevent
unnecessary tests from running. However, the time needed for executing tests can be further minimized
by executing test suites in parallel. Since microcontrollers are typically cheap and abundantly available, it
makes sense to run different tests on separate devices at the same time. Currently, the schedulers still return
a single ordering over the tests, but the dependency trees constructed as part of their algorithms offer an
opportunity to parallelize. Different dependency trees can be safely run in parallel, since tests in different
trees have no dependencies in common.

4.6. Handling and Reporting on Timeouts

Since all actions of a test are executed remotely, the tester cannot distinguish between an unresponsive
test and a test that can still succeed after a long time. This is an unavoidable problem when testing in the
presence of asynchronous actions. Many modern testing frameworks deal with this by adding timeouts to all
asynchronous tests. In Latch we use timeouts for testing on constrained devices, too, but provide as much
information as possible about where timeouts occur. Thus, Latch provides timeouts at the level of single
instructions, following the example of frameworks dedicated to testing of asynchronous system [23], rather
than merely at the level of a test, as is common practice in more general test frameworks [50, 58, 66]. We
found that debugging timeouts, is significantly easier with fine-grained information.

Listing 18 shows an example of a test that specifies a custom timeout limit for a single step. This setting
will override the default timeout limit for the testee, the test is run on.

1 {

2 title: "Test with custom timeout",

3 program: module,

4 steps: [{

5 title: "Step with custom timeout",

6 instruction: invoke("sleep", [WASM.u32(1000)]),

7 timeout: 1100

8 }]

9 }

Listing 18: Latch step with custom timeout

The actions of the tests are not the only source of asynchronicity in Latch. There are other asynchronous
actions behind the scenes, from compiling test programs to connecting with hardware testbeds. In Latch
every asynchronous action can time out, and each timeout has their own helpful message indented to make
them easily identifiable by developers.

4.7. Detecting and Reporting Flaky Tests

The asynchronicity and non-determinism introduced by Latch and the hardware testbeds, can cause any
test to become flaky. These tests can both succeed and fail for the same version of the software under test.
In Latch, we follow the recommendation of Harman and O’Hearn [24] to considers all tests as flaky. Indeed,
flaky tests can hint at bugs. Therefore, we use an approach that improves the debuggability of flaky tests.

The framework can run in two modes. A normal mode which executes each action and each test at
most once, and an analysis mode where tests are executed multiple times to analyze flakiness. In this
mode we assume all tests are flaky. Therefore, tests are rerun even if they succeed. This can slow the test
suite significantly, which is why it is provided as an optional mode. Indeed, the default mode still allows
continuous integration to report initial results quickly, while the flakiness of the test suite can be reported
at a later moment after the second mode has finished. The analysis mode trades performance for more
information and certainty.

14

Figure 2: IDE integration in WebStorm [28].

The analysis mode can be configured with a minimum and maximum number of runs. Since we consider
all tests as flaky, we will execute each test at least the minimum number of times. If the test reports the
same result for each of these runs, Latch assumes it is not flaky and stops for this scenario. In the other
case, we already have proof that the test is flaky, and Latch will continue executing up to the maximum
number of times to get a more representative measure of the flakiness. The maximum number of runs is
important to have statistically significant results, and can therefore be configured by the user for each run.
The minimum and maximum number of runs can be configured by the user. When a test suite is executed
on multiple platforms, flakiness is measured for each platform separately. At the end of the analysis run,
Latch reports the global flakiness of the test suite for each platform as the number of flaky scenarios, and at
the end of the analysis run, Latch reports the flakiness on each platform for each test and gives an overview
with the overall flakiness of the test suite for each platform separately and all platforms together.

4.8. Prototype Implementation

The prototype implementation of Latch is a TypeScript library built on the WARDuino [21, 38] virtual
machine for constrained devices and the Mocha testing framework for JavaScript and TypeScript.

WARDuino is a WebAssembly [22] virtual machine targeting ESP32 microcontrollers. The virtual ma-
chine also has basic debugging support, which we used as the basis for implementation our test instrumen-
tation platform in Latch. By using a WebAssembly virtual machine, Latch can test programs written in any
language that can compile to WebAssembly. This includes most of the mainstream programming languages
used today, such as C, C++, Java, Python, Ruby, Rust [16]. In order to fully test a language, Latch needs
to have support for compilation and sourcemapping. The current implementation has support for compiling
and constructing sourcemaps for AssemblyScript.

We believe the general principles we use for implementing the Latch prototype on WARDuino, can be
applied to any language or virtual machine which provides basic debugging support. This includes the C
programming language that is supported by many microcontrollers, and which offers basic debugging by
means of a JTAG interface.

The Latch prototype uses the Mocha testing framework for JavaScript and TypeScript to report the
results of the tests in the Latch framework. Handling the output through an existing framework, immediately
gives Latch integration into most of the existing IDEs used for programming in TypeScript and JavaScript.

5. Testing with Latch

Latch offers a framework for writing unconstrained automated test scripts, that can address many dif-
ferent testing scenarios. To demonstrate the versatility of Latch, we will present a common testing scenario
for microcontrollers for each stage of the testing pyramid [10]. Several versions of the pyramid exist, often

15

tailored to specific software domains [46]. Generally, testing pyramids split testing into three or more stages,
which are often performed in order from bottom to top. Each successive layer in the pyramid tests larger
parts of the software in one test. Therefore, each layer will typically have fewer tests than those before it.
The testing pyramid is a common way of representing the full scope of testing for a software project, it is
therefore suitable to showcase Latch’s ability to support the full range of testing scenarios.

In this section, we adhere to the classic testing pyramid, with unit testing at the bottom, followed by
integration (or service) testing, and finally topped by end-to-end (user) testing. We first highlight how Latch
can perform realistic, large-scale unit testing on constrained hardware. Then we show how Latch can test
the instrumentation it uses as an illustration of integration testing. Finally, we show how manual testing on
hardware can be automated to perform end-to-end testing. The example test suite illustrates how this can
be used to test both the hardware itself, and the software libraries used for controlling that hardware.

5.1. Unit Testing: Large-scale Testing of a Virtual Machine

In the testing pyramid, the largest number of tests are the unit tests. The underlying virtual machine
used by Latch, WARDuino, uses a subset of the official WebAssembly specification test suite, to test whether
it conforms with the WebAssembly standard. WARDuino does not use the entire official test suite, since
it does not yet support all the latest accepted proposals to the standard. The WARDuino project uses an
extended version of the virtual machine to parse and run the unit tests from the test suite. Unfortunately,
this means it cannot be executed on microcontrollers, since the entire suite needs to be included as well as
the large parsing library needed to extract the unit tests. By using Latch, we are able to take the same
test suite, and execute it on an ESP32 microcontroller. We discuss the results further in Section 6. In this
section, we focus on how the official specification test suite is written in Latch.

Test files in the WARDuino test suite contain a number of WebAssembly modules, each of which has
a number of assertions. These assertions are so called assert-return tests, which invoke a WebAssembly
function and specify the expected result. The assertions are written as S-expressions.2 Listing 19 shows two
such assertions.

1 (module (func (export "mul") (param $x f32) (param $y f32) (result f32) (f32.mul (local.get $x) (

local.get $y))))
2 (assert_return (invoke "mul" (f32.const -0x0p+0) (f32.const 0x0p+0)) (f32.const -0x0p+0))

3 (assert_return (invoke "mul" (f32.const -0x1p-149) (f32.const -0x0p+0)) (f32.const 0x0p+0))

Listing 19: An assert-return test from the official WebAssembly Specification test suite, testing the f32.mul operation.

With Latch, we can run the same tests on actual embedded hardware. The structure of the WebAssembly
specification test suite is well suited for Latch’s test specification language. The asserts coincide perfectly
with the steps in the test. Each assert contains a single action to perform and a single assertion to check.
Therefore, all specification tests for WebAssembly can be encoded as a single test suite with a test for each
distinct module. Listing 20 shows the example in Listing 19 translated into a Latch test.

To test the WARDuino virtual machine, we converted the official WebAssembly test specification into
a large Latch test suite. Since Latch is a DSL embedded in TypeScript, this conversion can easily be done
programmatically in TypeScript code. Converting the assert-return S-expressions to Latch syntax in this
way is fairly, easy. The conversion enables us to test the WARDuino virtual machine incrementally. The
test instrumentation framework will only load one WebAssembly module from the test suite at a time and
each test is converted into steps, which are sent to the testee incrementally, i.e. the testing steps do not need
to be stored in the memory of the testee. In Section 6, we give an overview of the performance of executing
this test suite on an ESP32 device.

5.2. Integration Testing: Testing a Debugger API

Due to its design, Latch is well suited to test the debugging operations of the WARDuino virtual machine.
Testing the debugger API exemplifies the second layer of the testing pyramid: integration testing.

2This conforms with the official WebAssembly specification tests, which can be found on: https://github.com/WebAssembly/
spec/tree/main/test/core

16

https://github.com/WebAssembly/spec/tree/main/test/core
https://github.com/WebAssembly/spec/tree/main/test/core

1 const test: Test = { // Spec test

2 title: "Test f32.mul operation",

3 program: "module.wast",

4 steps: [

5 { title: "assert: -0 * +0 = -0",

6 instruction: Command.invoke("mul", args: [-0, 0]),

7 expect: returns(WASM.f32(-0)) },

8 { title: "assert: -1e-149 * -0 = 0",

9 instruction: Command.invoke("mul", [-1e-149, -0]),

10 expect: returns(WASM.f32(0)) }

11]

12 };

Listing 20: The f32.mul test has two steps, each checking the result of mul on different inputs.

As an example, consider the step over debug instruction, which steps over a single function call or a
single instruction when the instruction does not call a function. A simple test starts at a function call and
sends the debugging instruction, before checking if the program did step over it correctly.

1 export function main(): void {

2 blink();

3 print("started blinking");

4 }

Listing 21: The blink program used by the integration test for the WARDuino debugger API.

The blink program in Listing 21 calls on Line 2 the blink() function and on Line 3 the print() function.
With this program, we check that the program executes up to Line 3, rather than stopping at the start of
the main function. Listing 22 shows the corresponding definition of a test in Latch. It loads the program,
calls the main function, and sends a step over instruction. At the end of the test, it checks whether the
current line has indeed moved to Line 3.

1 const stepOverTest: Test = {

2 title: "Test STEP OVER",

3 program: "blink.wast",

4 dependencies: [dumpTest, invokeTest]

5 steps: [

6 { title: "Start program",

7 instruction: Command.invoke("main", []) },

8 { title: "Send STEP OVER command",

9 instruction: Command.stepOver },

10 { title: "CHECK: execution stepped over direct call",

11 instruction: Command.dump,

12 expect: [{line: 3}] }

13]

14 };

Listing 22: The description for Latch of the step over test.

The debugging tests illustrate how integration tests can frequently dependent on each other. For instance,
our small step over test uses the invoke and dump instructions, which can also be tested with Latch. When
tests for either these two instructions fail, we can no longer rely on the results of the step over test. Since the
invoke or dump commands may be broken, they might cause false positives, or false negatives, in tests that
use them. There is no reason to run tests that cannot be trusted. In Latch, we can encode the dependency
of the step over test on the invoke and dump command, by adding their tests to the list of dependent tests.
With this information, Latch can prevent unnecessary or unreliable tests from slowing down the test suite,
and delaying actionable feedback.

17

5.3. End-to-End Testing: Automating Manual Testing on Hardware

Developers of embedded software rely heavily on manual testing of their programs on the targeted
hardware. The goal of manual testing is to verify that both the hardware and software of the system work
correctly. It is equally important to check that the effects on the environment and the interaction between
the hardware and the environment, work as intended. This kind of comprehensive end-to-end testing of
embedded systems requires extensive control over the environment and conditions the hardware operates
under, such as simulating user interactions, or controlling the input for sensors. These requirements account
in large part for the ubiquity of manual testing, since they make automation of testing much more difficult.

Latch allows tests to control the behavior of the environment with local actions, and the behavior of the
software under test through debugging instructions. This enables developers to script automated tests that
correspond with manual testing scenarios.

When performing end-to-end testing on the hardware, whether manual or automated, things outside the
control of the system can go wrong and cause the test to fail even though no part of the software under test is
at fault. Such failures are often rare and non-deterministic, leading to flaky tests. The built-in detection and
reporting of flaky tests in Latch is therefore important for end-to-end testing scenarios with the hardware.

Example: Testing MQTT Primitives. The WARDuino virtual machine has a callback handling system
that is used to implement different asynchronous IoT protocols [37], such as primitives for the MQTT
protocol. Since the correct implementation of such protocols is crucial for applications, we need to test
it extensively. Unfortunately, the public WARDuino project currently has no automated tests for these
components, especially since they require interaction with the device to be tested. The following example
illustrates how Latch can be used to write end-to-end tests for both the callback system and the MQTT
primitives. The example wants to verify the following two requirements:

1. After the subscribe primitive is called, the callback function should be registered for the correct topic
in the virtual machine’s callback system.

2. When an MQTT message is received the correct callback function should be called.

To test this functionality, we use a minimal program that subscribes on a single MQTT topic, and
through a callback writes all messages it receives to the serial bus. An AssemblyScript implementation is
shown in Listing 23.

1 function echo(topic: string, payload: string): void {

2 print(payload);

3 }

4

5 export function main(): void {

6 // ...

7 mqtt_init("broker.hivemq.com", 1883);

8 mqtt_subscribe("echo", echo);

9 // ...

10 }

Listing 23: Tiny MQTT program used to regression test the callback handling system in WARDuino.

The code in Listing 23, leaves out the code that connects to the Wi-Fi network, and checks the connection
with the server whenever the program is idle. The example instead focuses on the three main things the
program needs to do for the end-to-end test. It configures the MQTT server on Line 7, and subscribes
to the echo topic on Line 8 with the callback function defined on Line 1. The scenario in Listing 24 uses
the program to test the callback system and MQTT primitives of the WARDuino virtual machine on real
hardware.

1 const test: Test = { // MQTT test

2 title: "Test MQTT primitives",

3 program: "mqtt.ts",

18

4 dependencies: [testWiFi],

5 steps: [

6 { title: "Start program",

7 instruction: Command.invoke("main", []) },

8 { title: "CHECK: callback function registered",

9 instruction: Command.dumpCallbackMapping,

10 expect: [{

11 callbacks: (state, mapping) => mapping.some((map) => map["echo"].length > 0)}] },

12 { title: "Set breakpoint at *echo* callback",

13 instruction: Command.setBreakpoint(breakpointAtFunction("echo")) },

14 { title: "Send MQTT message and await breakpoint hit",

15 instruction: Actions.messageAndWait() },

16 { title: "CHECK: entered callback function",

17 instruction: Command.dump,

18 expect: [{mode: Mode.PAUSE}, {func: "echo"}] }

19]

20 };

Listing 24: Test for the callback handling system in WARDuino, showing multiple steps and a custom assertion.

Many hardware-specific tests require the environment to behave in a controlled way. Latch makes no
assumptions about the hardware and environment used for testing. Instead, the test specification language
offers the ability to define local actions, through which the tester in the framework can manipulate and
control the environment, both real and simulated.

The first step of the scenario invokes the main function, and the second step checks whether the echo
callback was correctly registered in WARDuino’s internal callback mapping. In the third step, the scenario
sets a breakpoint at the callback function, so in the next step it can check if the callback is indeed called
whenever an MQTT message is sent. To this end, the fourth step tells the tester to perform a local action.
In the example, the messageAndWait function will send a message to the MQTT broker and wait until the
testee reports that a breakpoint is hit. Once its promise resolves, we know a breakpoint is hit, and the final
step double-checks whether we are indeed in the right function. When the promise is rejected, however, the
action is marked as failing before continuing the scenario. This fifth step retrieves a dump of the current
virtual machine state, and checks that WARDuino is paused and the current function corresponds to the
echo callback function.

6. Performance Evaluation

The goal of Latch is to allow large-scale testing of IoT software on microcontrollers, and to enable users
to write a versatile range of tests. The framework is open-source and available on GitHub.3 The testing
scenarios in the previous section illustrate the versatility of Latch to implement many testing strategies.
Sections 3 and 4 show how managed testing works, and what the Latch framework does to overcome the
three challenges outlined in Section 2. In this section we provide empirical evidence to support our research
question:

Question Is the managed testing approach, where tests are split into steps, sufficient for executing large-
scale tests with Latch?

6.1. Test suites

To answer the question of performance, we execute a number of tests suites with Latch on an ESP32-
WROVER IE and measure the runtime overhead compared to executing the same suites on a laptop. The
test suites include the unit and debugging test suites presented in Section 5, and an additional test suite

3The framework and all test suite used in this section can be found on our GitHub repository, along with the artifacts
generated for this evaluation, which are published as releases: https://github.com/TOPLLab/latch

19

https://github.com/TOPLLab/latch
https://github.com/TOPLLab/latch

which is more computationally intensive.3 We chose these three types of test suites in order to have a
wide range of tests that are unique in different aspects. The specification test suites from Section 5.1
are structurally identical, but test very different aspects of computer programs, ranging from memory
manipulation, to control flow. The suites also represent a very common test pattern, unit testing through
single function invocation, which is ubiquitous in many modern testing practices. The debugging test suite
on the other hand, does not limit itself to just the invoke command, but uses the entire range of Latch
commands in its tests, which also contain multiple steps. The computing test suite is structurally similar to
the specification test suites, but is computationally more intensive, with steps that generally take at least
an order of magnitude longer to perform.

Large Unit Test Suites. We use the WARDuino specification test suites as found in the public repository
of the virtual machine, which we presented in Section 5.1. The collection contains 10,213 total tests across
25 test suites. The tests cover the operations on the numerical values, both integer and floating point,
which are the only types of values in WebAssembly. The copy, load, align, and address categories test the
WebAssembly memory, while the local tee, local set, local get, nop, return, call indirect, and call categories
test stack manipulation. The remaining tests verify the structured control flow of WebAssembly. During
the evaluation we used the default scheduling algorithm in Latch, and ran the test suites on a single remote
testee.

The developers of the WARDuino virtual machine use simulation to test against the WebAssembly
specification. However, the simulation ignores important hardware limitations. For instance, the memory of
the simulated hardware is only limited by the amount of memory available to the host machine. Furthermore,
to execute the specification tests, the WARDuino developers extended the simulator with a dedicated parsing
library to parse the test suite written in S-expressions. This parsing library is too big to be run on the ESP32
and the S-expressions from the test suite alone, take up 713 KB of memory. This is already more than twice
the size of the microcontroller’s memory, without including the WARDuino virtual machine, the parsing
library, and the infrastructure to run the test suite. This means, that the WARDuino developers cannot
currently test on the microcontrollers they target. However, when comparing the outcome of this approach
with the output of the Latch version, we found no differences, giving us confidence in the soundness of our
framework. To assess the performance of Latch, we measure the overhead of executing the Latch test suites
on a microcontroller compared with current practices, i.e. using a simulator.

WARDuino Debugger Test Suite. While the different specification test suites, test very different aspects,
their structure are similar. We therefore include the debugger test suite outlined in Section 5, as an example
that is not a traditional unit test suite. Rather than exclusively using the invoke command, this suite uses
all commands available to Latch.

Computing Test Suite. As a final example, we include a test suite that unit tests a few simple mathematical
operations, calculate the factorial, get the nth number in the fibonacci sequence, find the greatest common
divider, and check if a number is prime. Similar to the specification test suites, the computing tests each
include a single invoke step. However, while the steps in the other test suites are very fast, taking just a few
milliseconds—the steps in this test suite can take several centiseconds.

6.2. Single Device Performance

All test suites are run separately on a Dell XPS 13 laptop using an 11th Gen Intel Core i7-1185G7 and
32 GB RAM memory, and the ESP32-WROVER IE microcontroller operating at a clock frequency of 240
MHz, and with 520 KiB SRAM, 4 MB SPI flash and 8 MB PSRAM. Each run starts by initializing the
WARDuino instance, in the case of the microcontroller this entails flashing the entire virtual machine to
the device. Whenever the test suites use different programs, they are uploaded with the upload module
command, which allows Latch to update the program under test during a test suite, without needing to
flash.

A detailed comparison of the overhead of executing the test suite is shown in Fig. 3. The overhead on
microcontroller is shown as relative to the simulator, and is the sample mean taken over 10 runs. Latch

20

0 5 10 15 20 25 30 35 40 45

f32 bitwise (14)
local get (15)
func ptrs (16)

labels (25)
switch (26)

int literals (29)
load (29)

unwind (38)
align (38)

local tee (41)
debugger (42)

endianness (46)
return (48)

left-to-right (51)
nop (70)
f32 (87)

float exprs (95)
f64 bitwise (192)

address (200)
i64 (255)
i32 (349)

names (384)
f64 (864)

f32 cmp (1292)
f64 cmp (1952)

computing (3470)
memory copy (4057)

41.23

38.57

33.59

24.38

22.92

21.35

21.13

16.31

15.59

15.68

7.03

13.56

13.09

12.35

9.14

7.38

6.27

3.67

3.27

2.7

2.04

1.9

1.07

0.71

0.59

2

0.35

2

7.03

Relative overhead

Figure 3: The relative runtime overhead of Latch’s WebAssembly specification test suite on hardware compared to a simulator
for each test suite. Runtimes are calculated as sample means of 10 runs, and the exact relative overhead is shown next to each
bar. The error bars show the confidence interval for the difference between the two means (normalized to the relative overhead)
based on the Welch’s t-test. The number of steps for each test suite is listed next to its name.

is run in its default mode without the flakiness analysis, where tests are run at most once. Each bar in
this graph shows the overhead for executing one test suite on the hardware with Latch. The test suites are
ordered from most steps, to least. The number of steps are shown next to each name, and the specification
tests suites are highlighted in a different color.

All test suites shown in Fig. 3 can be executed with Latch on the simulated version of WARDuino in
approximately 10 minutes. Executing the same test suites directly on the ESP32, takes around 20 minutes.
While the test suites take on average twice as long on the embedded device, the largest of the specification
test suites run faster on the microcontroller. This is counterintuitive, but can be explained by the nature of
the test suites. The steps in the specification test suites, are very simple tasks that are performed too quickly
for any difference to be observed between the two devices, The overhead therefore becomes dominated by
the communication, not the actual instructions themselves. The way the TypeScript framework handles the
interprocess communication is evidently slower than the serial communication with the microcontroller over
USB-C. However, the flashing at the start remains much slower than starting a new process on the laptop,
therefore the overhead of the specification test suites with the fewest steps, is dominated by the startup
phase instead. This results in the highest overhead overall.

The specification test suites taken separately in Fig. 3, shows that fewer test steps results in higher
overhead, because the execution time becomes dominated by the flashing process. This shows how important
it is to prevent unnecessary flashing by using the upload module command. Conversely, more steps result
in lower overhead, because the communication dominates the execution time of the steps. However, the
debugger and computing test suites are major outliers, suggesting this is not the full story. For instance, the
computing test suite contains 3,470 steps, but has a much higher overhead than the memory copy suite of a
similar size. This is due to the steps in the computing test suite being much more computationally intensive,
and so much slower. Because the steps take longer to execute, the relative impact of the communication
overhead is much lower. The debugger test suite on the other hand, has a much lower overhead than similarly
sized specification test suites. This is because, invoke instructions used in the specification test suites, are

21

unit testing debugger computing all
devices mean std ovh mean std ovh mean std ovh mean std ovh

1 908 2.88 200% 34 0.49 665% 299 0.20 235% 1,241 2.30 211%
2 763 2.66 168% 27 0.49 533% 174 0.22 137% 965 1.98 164%
3 751 3.85 165% 28 1.02 547% 133 0.75 105% 912 5.11 155%
4 787 8.05 173% 29 0.81 565% 120 0.73 95% 936 8.28 159%
5 826 4.53 182% 31 0.86 603% 108 1.60 86% 966 4.13 165%

Table 2: The impact of parallelization on the execution time of the test suites in total, and the computing suite taken
separately, run on identical ESP32 WROVER E devices, sharing two USB buses, and using the default scheduler. Rows show
the arithmetic mean and standard deviation taken over 10 runs, as well as the performance overhead as a percentage of the
execution time on a single simulator.

default optimistic
mean (s) 35.49 34.92

std (s) 0.41 0.62
uploads 12 (44%) 9 (33%)

Table 3: The impact of the default and optimistic scheduler on the debugging suite with dependencies, run on an ESP32
WROVER IE. Rows show the arithmetic mean and standard deviation taken over 10 runs; and the number of uploads used as
an absolute number, and as a percentage of tests in the suite.

quite slow compared to most of the other Latch commands, used in the debugger test suite. An entire
user-defined function is run, in contrast to the step and dump command, which run a single instruction, or
only send data. While the differences in structure among the test suites, reveals how many factors impact
the performance of Latch, the results for the suites are roughly inline with each other. The results show
that Latch performs well for our use-case of very large test suites of many small unit tests, which are very
common in regression testing and continuous integration.

6.3. Multi-device performance

Executing all the test suites on a single microcontroller takes twice as long as the simulator, or 211% of
the simulator’s execution time to be precise. Since microcontrollers are cheap and widely available, running
tests on multiple devices may mitigate this performance overhead. Therefore, the Latch framework supports
running test scenarios in parallel for a given test suite. We investigated the impact of parallel execution on
the previous test suites, by running them on multiple identical ESP32 WROVER E devices. The results
showed that the impact of parallelization depends greatly on the structure of the test suite. We therefore,
show the results or our experiments in Table 2, grouped by the type of test suites. For each group, we show
the arithmetic mean (mean) and standard deviation (std) of the execution times in seconds. We also give
the performance overhead (ovh) as a percentage of the execution time on a single simulator.

Generally, the parallelization has a positive impact on the execution time, and is most effective when
the execution time is not dominated by the slow flashing procedure. This is clearly illustrated by the small
debugger test suite, which only take on average 34 seconds to execute on a single device. However, flashing
takes on average around 20 to 22 seconds. This means that there is not much room for improvement,
since the flashing procedure is not parallelized. In fact, due to the shared USB bus between devices, the
flashing procedure becomes slower when using more devices. This can be observed in the results for the unit
testing suites. While less dominating, the flashing procedure still impacts the execution time of these suites
significantly. The results in Table 2 show that the average execution time for the unit testing suites initially
improves with more devices, but at four or more devices the performance starts to degrade. This is due to
an increasingly slow flashing procedure, which at four or five devices can take up to 30 seconds.

By contrast, the execution time of the computing test suite is impacted far less by the flashing procedure.
Here adding more than three devices still has a positive impact on the execution time. In fact, starting at
four devices, the suite executes faster than on a single simulator. Using five devices, the suite takes 86%
percent of the time it takes a single simulator, lowering the overhead from the initial 235% with 149%.

22

Because the computing test suite takes much less time than the unit testing suites, this performance gain
is not as visible in the overall results. However, with the optimal three devices, the overhead for the entire
collection of test suites can be reduced from 211% to 155%, a decrease of 56%.

6.4. Impact of Scheduling Algorithms

In the previous experiments, the test scenarios contained no user-defined dependencies. This means that
the execution order of test scenarios are the same for both scheduling algorithms. To examine the impact of
the scheduling algorithms, we ran an adjusted version of the debugging test suite with dependencies, which
contains 27 test scenarios, each using one of five distinct programs. Dependent tests in this adjusted test
suite always use the same program.

Table 3 shows the impact of the default and optimistic scheduler on the debugging suite with dependen-
cies. The average execution times for both scheduling algorithms are similar, but for the default scheduler
the arithmetic mean over 10 runs is 573 ms lower. This can be explained by the need for the optimistic
scheduler to reupload the program under test more often, as shown in the table. The default scheduler
uploads the program 12 times, while the optimistic scheduler gets closer to the minimum of 5, by uploading
9 times.

6.5. Threats to Validity

The performance evaluation tries to answer the question at the start of this section, by showing that the
managed testing approach, where tests are split into steps, is sufficient for executing large-scale tests with
Latch. The evaluation includes three different experiments, which use a large collection of test suites.

Internal validity The performance results are affected by many factors, since the benchmarks are run on
two devices, the framework on the laptop and the tests on the microcontroller. The communication
between the two is an important factor in the runtime performance, and may be influenced by, e.g.,
the operating system of either device, the configuration of the microcontroller, or the hardware (serial
connection) itself. This is especially true for the parallel test runs, where the communication between
the devices can start competing with each other on the serial bus. However, we believe given the
size and number of repetitions, the performance figures are illustrative for the overall performance of
managed testing with Latch.

Additionally, the latency of serial communication, and the flashing speed of the devices, are the most
important factors for the performance results. Since the performance measurements are taken in a
controlled environment, we were able to keep these factors constant. Therefore, we have high confidence
in the internal validity of the results.

External validity The biggest threat to external validity, is that the test suites used here, may not be
representative for the typical workloads of microcontrollers. This would mean, that the runtime
results do not generalize to other microcontroller software test suites. We believe we have mitigated
this threat sufficiently, since the specification, computing and debugger test suites are very different
structurally, yet present very similar runtime performance. Moreover, the invoke instruction, used
in the specification test suite, is one of the more expensive operations in Latch, since user defined
functions may take very long to execute. This is a strong indication that the runtime performance
results do generalize, for typical microcontroller workloads.

Construct validity In this evaluation, we use the runtime performance as an indirect measure for the
usability of Latch. Likewise, the variety of the test suites is used as a measure and illustration of
usability. Therefore, the construct validity is similarly threated by the representativeness of the test
suites.

We believe this is largely mitigated by the extensive specification test suites. These suites use standard
unit tests that invoke a function and check its results. It is no coincidence that these kinds of unit
tests are so widely spread in test-driven development. They are an excellent way of testing that can be
applied to almost any piece of software, regardless of its structure or programming paradigm. This also

23

holds for microcontroller software. Furthermore, the specification test suites are quite heterogeneous,
since the categories test wildly different aspects of the virtual machine—from among others, control
flow, arithmetic, stack manipulation, and memory access. For these reasons, we believe that this
test suite is able to give a representative evaluation of Latch’s performance, while also showing the
versatility of the framework.

6.6. Summary

In conclusion, we believe that our evaluation shows that the Latch framework and its managed testing
approach present a realistic answer to our research question. The framework is able to automatically execute
large-scale test suites on constrained devices with good performance, considering the limited processing power
of the constrained devices. Latch performs the best for our most important use-case, test suites with high
numbers of small unit tests for the same software under test. On the other hand, the performance overhead
is highest when Latch needs to upload new software frequently. The Latch prototype has initial support for
parallel execution on multiple constrained devices which can help mitigate this overhead, especially when
many long-running tests can be uploaded simultaneously to different devices. For our computation test suite,
we are able to match and slightly exceed the performance of a simulator, with only five devices working in
parallel.

7. Related Work

Common software development practices such as regression testing, continuous integration, and test
driven development, are much harder to adopt when working with microcontrollers. This is in large part
due to the need to test on the physical hardware, specifically microcontrollers. There are very few solutions
for single-target testing of software on microcontrollers. Ztest [54], Unity [56, 67], and ArduinoTest [47] are
traditional unit testing frameworks for specific microcontroller architectures. Unfortunately, these frame-
works do little to overcome the resource-constraints of microcontrollers themselves, and provide only the
most standard unit testing functionality without any tailored solutions for testing on hardware. However,
when testing on microcontrollers in this way, the test scenarios often rely on very specific hardware in-
teractions as illustrated by our examples in Section 5. Latch addresses this lacuna with its novel testing
methodology based on debugging methods. We are not aware of any testing framework that provides an
alternative solution.

In this section, we will discuss the differences between Latch and the few exiting unit testing frameworks
for microcontrollers further. In this paper we have proposed a new way of testing on microcontrollers
individually, but IoT systems are often tested as a whole in industry. While this kind of testing answers
an entirely different set of demands than Latch, we do give a brief overview of these approaches here, for
completeness. Similarly, testing plays a large role in general software development. As a result, a wide range
of research topics are related to the Latch framework, of which not all have been previously applied to IoT. In
the remainder of this section, we discuss holistic IoT testing, other unit testing frameworks broadly, remote
testing, scriptable debugging, test environments for IoT programs, device farms for mobile applications,
conditional testing, test prioritization and selection, and flaky tests. Wherever possible, we include examples
from IoT or microcontroller settings.

Unit Testing Frameworks. Constrained devices are still programmed primarily in low-level language
such as C and C++. Many traditional unit testing frameworks are available for these languages, such as
Google Test [19], Boost.Test [7], CUTE [26], and bandit [6]. There are a handful of frameworks targeting
microcontrollers explicitly, such as Unity [56, 67] and ArduinoTest [47]. These work analogous to other unit
testing frameworks, but are small enough to run on some constrained devices. While preferable over manual
testing, these frameworks require the tests suites to be very small, since they are compiled and run along
with the framework in their entirety on the device. In contrast, Latch allows arbitrarily large test suites.

Remote Testing. Latch’s managed testing is adjacent to remote testing, but with some important
differences. Remote testing is not a novel idea, for instance Jard et al. [27] argued in 1999 that local
synchronous tests can be translated to remote asynchronous tests without losing any testing power. Remote
testing has mostly been used to test distributed systems [70].

24

The RobotFramework [60] for instance, is a large testing framework that supports remote testing via
an RPC interface offering a transparent distribution model. As argued in many papers “distribution trans-
parency is a myth that is both misleading and dangerous” [68, 39, 20]. The Latch framework takes into
account these lessons and offers the test engineer a testing framework with inherit timeouts and support for
flaky tests, going well beyond the RobotFramework.

Some examples of remote testing frameworks can also be found for constrained devices. The popular
PlatformIO project [55], uses the Unity framework [67] for remote testing. However, it works significantly
different from how Latch executes large test suites. While Latch allows arbitrarily large test suites by
executing tests step-by-step, Unity does not address the memory constraints of the target devices as it
compiles and uploads test suites as one monolithic executable. The framework also does not provide the
debugger-like scripts (with custom actions) supported by Latch that enable the automation of standard
hardware tests.

Holistic IoT Testing. Existing tools for IoT testing focus largely on testing networked systems of
many devices holistically [57, 30], rather than the more common approach where components are tested
selectively. Holistic testing of networked systems are by and large incompatible with many of the common
development practices; such as test driven development for instance, which relies on selective testing of single
components. Moreover, wholesale testing of heterogeneous system is very difficult, so many testing tools
instead focus on monitoring to try and detect errors [11, 63]. The few real testing frameworks available,
tend to provide testing as a service [33]. While holistic testing makes sense for IoT applications in industry,
the approach makes far less sense for more consumer-oriented applications, such as smart home devices.
Besides, developers cannot trust that end-to-end testing on such a high level, is enough to test IoT systems
thoroughly. Neither does it lend itself well to test-driven development, as testing can only take place with
a fully operational system. Therefore, there is a real need for selective—rather than holistic—testing of IoT
software on microcontrollers. This is much easier with the single target testing in the style provided by
Latch.

Scriptable Debugging. Latch’s scriptable debugger-like hardware tests are inspired by scriptable
debugging, which has been used in many other domains [42]. Scriptable debugging refers to all debugging
techniques that can be controlled by developers through a programming language or similar tools such
as regular expressions. Programmable debugging goes back to the early eighties, with many of the early
proposals, such as Dispel [29] and Dalek [49], exploring variations on the concept of breakpoints. Recent
work on a scriptable debugger API for Pharo [12], exposes a wide variety of advanced debugging operations,
and allows developers to solve many challenging debugging scenarios through automated scripts. We are
not aware of any framework which also applies the idea of scriptable debugging to testing in the context of
constrained hardware.

Test Environments. A popular research topic in the domain of IoT testing, are heterogeneous test
environments [8], where software can be distributed to nodes which are connected via a controlled network.
This solution focuses on the challenging heterogeneity of IoT systems, and does not take into account the
constraints the limited memory puts on the test suite size. Most test environments are virtual, and emulate
the entire IoT environment [59, 48, 64].

While, simulators are widely used for testing Internet of Things systems [8], they can never capture all
the aspects of real hardware [61, 32]. For example, bugs caused by mistakes in interrupt handling, incomplete
or wrong configuration, and concurrency faults [41] are typically not simulated. Because accurate hardware
emulation is difficult, modern simulators often incorporate parts of the hardware under test, as is the case for
hardware-in-the-loop simulations [45]. Similarly, some test environments do allow hardware to be integrated
into their test environments, but still fundamentally rely on virtualization [3, 31]. There are far fewer works
that look into full hardware test environments [1, 9, 18]. Using these large test environments can give more
control to the developer to change various aspects of the nodes and network, such as packet loss, latency,
and so on. However, setting up such large and often complex systems is complicated and time-consuming,
for that reason they are often provided as a service [33, 4]. Subsequently, the test environments confine users
to the specific choices in hardware, virtualization, and network technologies made by the service. While
these test environments reduce the overhead of setting up a testing lab, they do not fundamentally help
developers overcome the hardware limitations faced when executing large test suites.

25

Device Farms. These test environments are sometimes called testing farms or device farms in case they
use real hardware, and are a popular approach for testing mobile applications [25, 15]. Curiously, testing on
devices seems much more prevalent in the field of testing mobile applications [34]. We believe this might be
because mobile devices have far more memory than the embedded devices targeted by Latch, and therefore
have no problem running large test suites. This strengthens our view that testing on constrained hardware
presents a worthwhile research direction. However, the existing device farms heavily target mobile devices,
and again limit users to the chosen technologies and hardware.

Conditional testing. Dependencies in Latch can be viewed as conditional skips for tests, where a test
is skipped if any of the scenarios it depends on fail. Conditional skips have been around for some time in unit
testing frameworks, such as the pytest framework for the Python language [35], and the JUnit framework
for Java [2]. Pytest includes a skipif annotation which takes a boolean expression as its argument. In JUnit
developers can use the Assume class, which provides a set of methods for conditional execution of tests.
Modern frameworks targeting constrained devices [56, 47] do not support conditional tests.

Test prioritization and selection. Another purpose of the dependencies in the test description
language, are to determine the order tests are run in. Research on software testing has recently increased its
attention to test prioritization and test selection [51]. These techniques can also be applied to testing IoT
systems [43], where they are particularly useful since they can reduce large test suites to the most important
tests, and help prioritize tests in such a way that regression tests fail as early as possible. An interesting
line of future research could focus on integrating these techniques in Latch.

Flaky Tests. Flaky tests represent an active domain of research [53], which focuses on three problems:
detecting flaky tests, finding root causes, and fixing flaky tests [71]. The first step is to detect which tests
are flaky. A popular approach is to look at the code coverage of tests [71, 5]. Once a flaky test is found, the
next step is to find the root cause of the flaky test. This is a considerably harder problem, which is still being
actively worked on [36]. Alternatively, some research looks into automatically fixing, or preventing, flaky
tests [62]. All these techniques, from detection to fixing, are developed with the ultimate goal of mitigating
and preventing flaky tests. In contrast, Latch focuses on providing a simple way of detecting and measuring
the number of flaky tests in a test suite run. When evaluating Latch, we encountered flaky tests only rarely,
but we believe that further research is warranted to assess the degree in which testing on constrained devices
can cause flaky tests, and how existing techniques can mitigate them.

8. Conclusion

Testing is an essential part of the software development cycle which is currently very challenging on
constrained devices. The limited memory and processing power of these constrained devices restrict the
size of the test suite and makes testing slow, impeding a fast feedback loop. Moreover, due to the non-
deterministic and unpredictable environment, tests can become flaky.

In this paper, we answered the question of how to design and implement a testing framework for automat-
ically running large-scale versatile tests on constrained systems. We introduce our novel testing framework
Latch (Large-scale Automated Testing on Constrained Hardware), which needed to overcome three chal-
lenges; the memory constraints, processing constraints, and the timeouts and flaky tests. In essence, Latch
splits test suites into small test instructions which are sent by a managing tester to a managed testee (con-
strained device). Because the constrained device receives the test instructions incrementally from the tester,
it does not need to maintain the whole test suite in memory. By using an unconstrained tester to manage
the constrained devices and the test suites, Latch is able to overcome the memory constraints.

Our testing framework further allows programmers to indicate the dependencies between related tests.
This dependency information is used by Latch to skip tests that depend on previously failing tests, thus
resulting in a faster feedback loop and helping the framework overcome the processing constraints of micro-
controllers. On top of that Latch addresses the issue of timeouts and flaky tests, by including an analysis
mode that provides feedback on timeouts and the flakiness of tests. Finally, the framework uses a novel
approach of debugging-like instructions to allows developers to automate manual testing on hardware.

To demonstrate the efficacy and versatility of Latch, we showcased three use-cases, each pertaining
to one stratum of the testing pyramid. The first use-case exemplifies unit testing, and showcases how we

26

implemented a large suite of unit tests in Latch for a WebAssembly virtual machine intended for constrained
devices. This test suite consists of 10,213 unit tests for a virtual machine running on a small ESP32
microcontroller. The second use-case illustrates integration testing of the instrumentation API in Latch. The
third use-case highlights how the Latch test specification language allows programmers to write debugging-
like testing scripts to test more elaborate testing scenarios, that mimic common manual testing tasks.
Benchmarks show that the overhead of the testing framework is within expectation, roughly matching the
performance difference between the constrained hardware and using a simulator on a workstation. Our
test-cases shows that the testing framework is expressive, reliable, and reasonably fast, making it suitable
to run large test suites on constrained devices.

Acknowledgements

Tom Lauwaerts was supported by a project from the Research Foundation Flanders (FWO) with file
number G030320N, and Stefan Marr was supported by a grant from the Engineering and Physical Sciences
Research Council (EP/V007165/1) and a Royal Society Industry Fellowship (INF\R1\211001).

References

[1] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton, Thomas Noel, Roger Pissard-Gibollet,
Frederic Saint-Marcel, Guillaume Schreiner, Julien Vandaele, and Thomas Watteyne. 2015. FIT IoT-LAB: A large scale
open experimental IoT testbed. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, New York, NY,
USA, 459–464. https://doi.org/10.1109/WF-IoT.2015.7389098

[2] Stefan Bechtold, Sam Brannen, Johannes Link, Matthias Merdes, Marc Philipp, Juliette de Rancourt, and Christian Stein.
2023. JUnit 5 User Guide. Retrieved January 10, 2023 from https://junit.org/junit5/docs/current/user-guide/

[3] Ilja Behnke, Lauritz Thamsen, and Odej Kao. 2019. HéCtor: A Framework for Testing IoT Applications Across Hetero-
geneous Edge and Cloud Testbeds. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing Companion (Auckland, New Zealand) (UCC ’19 Companion). Association for Computing Machinery, New
York, NY, USA, 15–20. https://doi.org/10.1145/3368235.3368832

[4] Jossekin Beilharz, Philipp Wiesner, Arne Boockmeyer, Lukas Pirl, Dirk Friedenberger, Florian Brokhausen, Ilja Behnke,
Andreas Polze, and Lauritz Thamsen. 2021. Continuously Testing Distributed IoT Systems: An Overview Of The State
Of The Art. In Service-Oriented Computing – ICSOC 2021 Workshops: AIOps, STRAPS, AI-PA and Satellite Events,
Dubai, United Arab Emirates, November 22–25, 2021, Proceedings. Springer-Verlag, Berlin, Heidelberg, 336–350. https:

//doi.org/10.1007/978-3-031-14135-5_30

[5] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and Darko Marinov. 2018. DeFlaker: Au-
tomatically Detecting Flaky Tests. In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, New York, NY, USA, 433–444. https://doi.org/10.1145/3180155.3180164

[6] Stephan Beyer and Joakim Karlsson. 2023. bandit. Retrieved February 15, 2023 from http://banditcpp.github.io/

bandit/

[7] Boost.Test team. 2023. What is Boost.Test? Retrieved February 15, 2023 from https://github.com/boostorg/test

[8] Miroslav Bures, Matej Klima, Vaclav Rechtberger, Xavier Bellekens, Christos Tachtatzis, Robert Atkinson, and Bestoun S.
Ahmed. 2020. Interoperability and Integration Testing Methods for IoT Systems: A Systematic Mapping Study. In Software
Engineering and Formal Methods, Frank de Boer and Antonio Cerone (Eds.). Springer International Publishing, Cham,
93–112.

[9] Clément Burin des Rosiers, Guillaume Chelius, Eric Fleury, Antoine Fraboulet, Antoine Gallais, Nathalie Mitton, and
Thomas Noël. 2012. SensLAB. In Testbeds and Research Infrastructure. Development of Networks and Communities,
Thanasis Korakis, Hongbin Li, Phuoc Tran-Gia, and Hong-Shik Park (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 239–254.

[10] Mike Cohn. 2009. Succeeding with Agile: Software Development Using Scrum (1th. ed.). Addison-Wesley Professional,
Boston, MA, USA.

[11] Datadog. 2024. End to End Testing Automation. https://www.datadoghq.com/synthetics/end-to-end-testing-
automation/.

[12] Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent Aranega, and Stéphane Ducasse. 2019. Sindarin: A Versatile
Scripting API for the Pharo Debugger. In Proceedings of the 15th ACM SIGPLAN International Symposium on Dynamic
Languages (Athens, Greece) (DLS 2019). Association for Computing Machinery, New York, NY, USA, 67–79. https:

//doi.org/10.1145/3359619.3359745

[13] Espressif Systems. 2023. Unit Testing in ESP32. https://docs.espressif.com/projects/esp-idf/en/latest/esp32/

api-guides/unit-tests.html

[14] Amin Milani Fard and Ali Mesbah. 2017. JavaScript: The (Un)Covered Parts. In 2017 IEEE International Conference
on Software Testing, Verification and Validation (Tokyo, Japan) (ICST). IEEE, New York, NY, USA, 230–240. https:

//doi.org/10.1109/ICST.2017.28

27

https://doi.org/10.1109/WF-IoT.2015.7389098
https://junit.org/junit5/docs/current/user-guide/
https://doi.org/10.1145/3368235.3368832
https://doi.org/10.1007/978-3-031-14135-5_30
https://doi.org/10.1007/978-3-031-14135-5_30
https://doi.org/10.1145/3180155.3180164
http://banditcpp.github.io/bandit/
http://banditcpp.github.io/bandit/
https://github.com/boostorg/test
https://doi.org/10.1145/3359619.3359745
https://doi.org/10.1145/3359619.3359745
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/unit-tests.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/unit-tests.html
https://doi.org/10.1109/ICST.2017.28
https://doi.org/10.1109/ICST.2017.28

[15] Mattia Fazzini and Alessandro Orso. 2020. Managing App Testing Device Clouds: Issues and Opportunities. In 2020
35th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, New York, NY, USA,
1257–1259.

[16] Fermyon Technologies, Inc. 2023. WebAssembly Language Support Matrix. Retrieved January 10, 2023 from https:

//www.fermyon.com/wasm-languages/webassembly-language-support

[17] David Flanagan. 2020. JavaScript: The Definitive Guide (7th. ed.). O’Reilly Media, Inc., Sebastopol, CA, USA.
[18] Alexander Gluhak, Srdjan Krco, Michele Nati, Dennis Pfisterer, Nathalie Mitton, and Tahiry Razafindralambo. 2011. A

survey on facilities for experimental internet of things research. IEEE Communications Magazine 49, 11 (2011), 58–67.
https://doi.org/10.1109/MCOM.2011.6069710

[19] GoogleTest. 2023. GoogleTest User’s Guide. Retrieved February 15, 2023 from https://google.github.io/googletest/

[20] R. Guerraoui. 1999. What object-oriented distributed programming does not have to be, and what it may be. Informatik
(1999). http://infoscience.epfl.ch/record/83554

[21] Robbert Gurdeep Singh and Christophe Scholliers. 2019. WARDuino: A Dynamic WebAssembly Virtual Machine for
Programming Microcontrollers. In Proceedings of the 16th ACM SIGPLAN International Conference on Managed Pro-
gramming Languages and Runtimes (Athens, Greece) (MPLR 2019). Association for Computing Machinery, New York,
NY, USA, 27–36. https://doi.org/10.1145/3357390.3361029

[22] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, and JF Bastien. 2017. Bringing the Web up to Speed with WebAssembly. SIGPLAN Not. 52, 6 (jun 2017), 185–200.
https://doi.org/10.1145/3140587.3062363

[23] Johan Haleby. [n. d.]. Awaitility. http://www.awaitility.org/.
[24] Mark Harman and Peter O’Hearn. 2018. From Start-ups to Scale-ups: Opportunities and Open Problems for Static

and Dynamic Program Analysis. In 2018 IEEE 18th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, New York, NY, USA, 1–23. https://doi.org/10.1109/SCAM.2018.00009

[25] Jun-fei Huang. 2014. AppACTS: Mobile App Automated Compatibility Testing Service. In 2014 2nd IEEE International
Conference on Mobile Cloud Computing, Services, and Engineering. IEEE, New York, NY, USA, 85–90. https://doi.

org/10.1109/MobileCloud.2014.13

[26] IFS Institut für Software. 2023. CUTE. Retrieved February 15, 2023 from https://cute-test.com/

[27] Claude Jard, Thierry Jéron, Lénäıck Tanguy, and César Viho. 1999. Remote testing can be as powerful as local testing.
Springer US, Boston, MA, 25–40. https://doi.org/10.1007/978-0-387-35578-8_2

[28] JetBrains s.r.o. 2023. WebStorm. Retrieved August 28, 2023 from https://www.jetbrains.com/webstorm/

[29] Mark Scott Johnson. 1981. Dispel: A run-time debugging language. Computer Languages 6, 2 (1981), 79–94. https:

//doi.org/10.1016/0096-0551(81)90068-0

[30] Teemu Kanstrén, Jukka Mäkelä, and Pekka Karhula. 2018. Architectures and Experiences in Testing IoT Communications.
In 2018 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). 98–103.
https://doi.org/10.1109/ICSTW.2018.00034

[31] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione, Mert Cevik, Jacob Colleran,
Haryadi S. Gunawi, Cody Hammock, Joe Mambretti, Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs.
2020. Lessons Learned from the Chameleon Testbed. In Proceedings of the 2020 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC’20). USENIX Association, USA, Article 15, 15 pages.

[32] Muhammad Zahid Khan, Bob Askwith, Faycal Bouhafs, and Muhammad Asim. 2011. Limitations of Simulation Tools for
Large-Scale Wireless Sensor Networks. In 2011 IEEE Workshops of International Conference on Advanced Information
Networking and Applications (Biopolis, Singapore). IEEE, New York, NY, USA, 820–825. https://doi.org/10.1109/

WAINA.2011.59

[33] Hiun Kim, Abbas Ahmad, Jaeyoung Hwang, Hamza Baqa, Franck Le Gall, Miguel Angel Reina Ortega, and JaeSeung
Song. 2018. IoT-TaaS: Towards a Prospective IoT Testing Framework. IEEE Access 6 (2018), 15480–15493. https:

//doi.org/10.1109/ACCESS.2018.2802489

[34] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F. Bissyandé, and Jacques Klein. 2019. Automated Testing of Android
Apps: A Systematic Literature Review. IEEE Transactions on Reliability 68, 1 (2019), 45–66. https://doi.org/10.

1109/TR.2018.2865733

[35] Holger Krekel and pytest-dev team. 2023. pytest: helps you write better programs. Retrieved January 10, 2023 from
https://docs.pytest.org/en/7.2.x/

[36] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thummalapenta. 2019. Root Causing Flaky
Tests in a Large-Scale Industrial Setting. In Proceedings of the 28th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (Beijing, China) (ISSTA 2019). Association for Computing Machinery, New York, NY, USA,
101–111. https://doi.org/10.1145/3293882.3330570

[37] Tom Lauwaerts, Carlos Rojas Castillo, Robbert Gurdeep Singh, Matteo Marra, Christophe Scholliers, and Elisa Gonza-
lez Boix. 2022. Event-Based Out-of-Place Debugging. In Proceedings of the 19th International Conference on Managed
Programming Languages and Runtimes (Brussels, Belgium) (MPLR ’22). Association for Computing Machinery, New
York, NY, USA, 85–97. https://doi.org/10.1145/3546918.3546920

[38] Tom Lauwaerts, Robbert Gurdeep Singh, and Christophe Scholliers. 2024. WARDuino: An Embedded WebAssembly
Virtual Machine. Journal of Computer Languages (Feb. 2024), 101268. https://doi.org/10.1016/j.cola.2024.101268

[39] Doug Lea. 1997. Design for open systems in Java. In Coordination Languages and Models, David Garlan and Daniel
Le Métayer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 32–45.

[40] Magnus Madsen, Ondřej Lhoták, and Frank Tip. 2017. A Model for Reasoning about JavaScript Promises. Proc. ACM
Program. Lang. 1, OOPSLA, Article 86 (oct 2017), 24 pages. https://doi.org/10.1145/3133910

28

https://www.fermyon.com/wasm-languages/webassembly-language-support
https://www.fermyon.com/wasm-languages/webassembly-language-support
https://doi.org/10.1109/MCOM.2011.6069710
https://google.github.io/googletest/
http://infoscience.epfl.ch/record/83554
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1109/SCAM.2018.00009
https://doi.org/10.1109/MobileCloud.2014.13
https://doi.org/10.1109/MobileCloud.2014.13
https://cute-test.com/
https://doi.org/10.1007/978-0-387-35578-8_2
https://www.jetbrains.com/webstorm/
https://doi.org/10.1016/0096-0551(81)90068-0
https://doi.org/10.1016/0096-0551(81)90068-0
https://doi.org/10.1109/ICSTW.2018.00034
https://doi.org/10.1109/WAINA.2011.59
https://doi.org/10.1109/WAINA.2011.59
https://doi.org/10.1109/ACCESS.2018.2802489
https://doi.org/10.1109/ACCESS.2018.2802489
https://doi.org/10.1109/TR.2018.2865733
https://doi.org/10.1109/TR.2018.2865733
https://docs.pytest.org/en/7.2.x/
https://doi.org/10.1145/3293882.3330570
https://doi.org/10.1145/3546918.3546920
https://doi.org/10.1016/j.cola.2024.101268
https://doi.org/10.1145/3133910

[41] Amir Makhshari and Ali Mesbah. 2021. IoT Bugs and Development Challenges. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (Madrid, ES) (ICSE). IEEE, New York, NY, USA, 460–472. https://doi.org/10.

1109/ICSE43902.2021.00051

[42] Guillaume Marceau, Gregory H. Cooper, Jonathan P. Spiro, Shriram Krishnamurthi, and Steven P. Reiss. 2007. The
design and implementation of a dataflow language for scriptable debugging. Automated Software Engineering 14, 1 (01
Mar 2007), 59–86. https://doi.org/10.1007/s10515-006-0003-z

[43] Noha Medhat, Sherin M. Moussa, Nagwa Lotfy Badr, and Mohamed F. Tolba. 2020. A Framework for Continuous
Regression and Integration Testing in IoT Systems Based on Deep Learning and Search-Based Techniques. IEEE Access
8 (2020), 215716–215726. https://doi.org/10.1109/ACCESS.2020.3039931

[44] Microsoft. 2023. The TypeScript Handbook. Retrieved February 7, 2023 from https://www.typescriptlang.org/docs/

handbook/intro.html

[45] Franc Mihalič, Mitja Truntič, and Alenka Hren. 2022. Hardware-in-the-Loop Simulations: A Historical Overview of
Engineering Challenges. Electronics 11, 15 (2022). https://doi.org/10.3390/electronics11152462

[46] Vadym Mukhin, Yaroslav Kornaga, Yurii Bazaka, Ievgen Krylov, Andrii Barabash, Alla Yakovleva, and Oleg Mukhin.
2021. The Testing Mechanism for Software and Services Based on Mike Cohn’s Testing Pyramid Modification. In 2021
11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), Vol. 1. 589–595. https://doi.org/10.1109/IDAACS53288.2021.9660999

[47] Matthew Murdoch. 2023. ArduinoUnit. Retrieved February 15, 2023 from https://github.com/mmurdoch/arduinounit

[48] Fotis Nikolaidis, Manolis Marazakis, and Angelos Bilas. 2021. IOTier: A Virtual Testbed to evaluate systems for IoT
environments. In 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid).
IEEE, New York, NY, USA, 676–683. https://doi.org/10.1109/CCGrid51090.2021.00081

[49] Ronald A Olsson, Richard H Crawford, and W Wilson Ho. 1990. Dalek: A GNU, Improved Programmable Debugger.. In
USENIX Technical Conference, Vol. 90. The USENIX Association, Berkeley, CA, USA, 221–231.

[50] OpenJS Foundation. [n. d.]. Mocha - the Fun, Simple, Flexible JavaScript Test Framework. https://mochajs.org/.
[51] Rongqi Pan, Mojtaba Bagherzadeh, Taher A. Ghaleb, and Lionel Briand. 2021. Test case selection and prioritization

using machine learning: a systematic literature review. Empirical Software Engineering 27, 2 (14 dec 2021), 29. https:

//doi.org/10.1007/s10664-021-10066-6

[52] Daniel Parker. 2015. JavaScript with Promises (1st ed.). O’Reilly Media, Inc.
[53] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2021. A Survey of Flaky Tests. ACM Trans.

Softw. Eng. Methodol. 31, 1, Article 17 (oct 2021), 74 pages. https://doi.org/10.1145/3476105

[54] Yuval Peress, Anas Nashif, Manoel Brunnen, Henrik Brix Andersen, Andrei Emeltchenko, Aaron E. Massey,
Marti Bolivar, and Ivan Herrera Olivares. 2024. Test Framework — Zephyr Project Documentation.
https://docs.zephyrproject.org/latest/develop/test/ztest.html.

[55] PlatformIO. 2023. Unit Testing. Retrieved February 8, 2023 from https://docs.platformio.org/en/stable/advanced/

unit-testing/index.html

[56] PlatformIO. 2023. Unity. Retrieved February 15, 2023 from https://docs.platformio.org/en/latest/advanced/

unit-testing/frameworks/unity.html#unity

[57] Svitlana Popereshnyak, Olha Suprun, Oleh Suprun, and Tadeusz Wieckowski. 2018. IoT application testing features based
on the modelling network. In 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS
Design (MEMSTECH). 127–131. https://doi.org/10.1109/MEMSTECH.2018.8365717

[58] Python Software Foundation. [n. d.]. Doctest — Test Interactive Python Examples.
https://docs.python.org/3/library/doctest.html.

[59] Brian Ramprasad, Marios Fokaefs, Joydeep Mukherjee, and Marin Litoiu. 2019. EMU-IoT - A Virtual Internet of Things
Lab. In 2019 IEEE International Conference on Autonomic Computing (ICAC). IEEE, New York, NY, USA, 73–83.
https://doi.org/10.1109/ICAC.2019.00019

[60] Robot Framework Foundation. 2023. Robot Framework. Retrieved August, 2023 from https://robotframework.org/

[61] Tamás Roska. 1990. Limitations and complexity of digital hardware simulators used for large-scale analogue circuit and
system dynamics. International Journal of Circuit Theory and Applications 18, 1 (1990), 11–21. https://doi.org/10.

1002/cta.4490180104 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cta.4490180104
[62] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. IFixFlakies: A Framework for Automatically

Fixing Order-Dependent Flaky Tests. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019).
Association for Computing Machinery, New York, NY, USA, 545–555. https://doi.org/10.1145/3338906.3338925

[63] SolarWinds Worldwide, LLC. 2024. AppOptics – APM and Infrastructure Tool | SolarWinds AppOptics.
https://www.solarwinds.com/appoptics.

[64] Moysis Symeonides, Zacharias Georgiou, Demetris Trihinas, George Pallis, and Marios D. Dikaiakos. 2020. Fogify: A Fog
Computing Emulation Framework. In 2020 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, New York, NY,
USA, 42–54. https://doi.org/10.1109/SEC50012.2020.00011

[65] The AssemblyScript Project. 2023. AssemblyScript. Retrieved January 10, 2023 from https://www.assemblyscript.org/

[66] The JUnit Team. [n. d.]. JUnit 5. https://junit.org/junit5/.
[67] Mark VanderVoord, Mike Karlesky, and Greg Williams. 2015. UNITY. https://www.throwtheswitch.org/unity

[68] Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C. Kendall. 1996. A Note on Distributed Computing. In Mobile
Object Systems. https://api.semanticscholar.org/CorpusID:2390403

[69] Haochen Xie. 2017. Principles, Patterns, and Techniques for Designing and Implementing Practical Fluent Interfaces
in Java. In Proceedings Companion of the 2017 ACM SIGPLAN International Conference on Systems, Programming,

29

https://doi.org/10.1109/ICSE43902.2021.00051
https://doi.org/10.1109/ICSE43902.2021.00051
https://doi.org/10.1007/s10515-006-0003-z
https://doi.org/10.1109/ACCESS.2020.3039931
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.typescriptlang.org/docs/handbook/intro.html
https://doi.org/10.3390/electronics11152462
https://doi.org/10.1109/IDAACS53288.2021.9660999
https://github.com/mmurdoch/arduinounit
https://doi.org/10.1109/CCGrid51090.2021.00081
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1145/3476105
https://docs.platformio.org/en/stable/advanced/unit-testing/index.html
https://docs.platformio.org/en/stable/advanced/unit-testing/index.html
https://docs.platformio.org/en/latest/advanced/unit-testing/frameworks/unity.html#unity
https://docs.platformio.org/en/latest/advanced/unit-testing/frameworks/unity.html#unity
https://doi.org/10.1109/MEMSTECH.2018.8365717
https://doi.org/10.1109/ICAC.2019.00019
https://robotframework.org/
https://doi.org/10.1002/cta.4490180104
https://doi.org/10.1002/cta.4490180104
https://doi.org/10.1145/3338906.3338925
https://doi.org/10.1109/SEC50012.2020.00011
https://www.assemblyscript.org/
https://www.throwtheswitch.org/unity
https://api.semanticscholar.org/CorpusID:2390403

Languages, and Applications: Software for Humanity (Vancouver, BC, Canada) (SPLASH Companion 2017). Association
for Computing Machinery, New York, NY, USA, 45–47. https://doi.org/10.1145/3135932.3135948

[70] Yizheng Yao and Yingxu Wang. 2005. A framework for testing distributed software components. In Canadian Conference
on Electrical and Computer Engineering, 2005. IEEE, New York, NY, USA, 1566–1569. https://doi.org/10.1109/

CCECE.2005.1557280

[71] Behrouz Zolfaghari, Reza M. Parizi, Gautam Srivastava, and Yoseph Hailemariam. 2021. Root causing, detecting, and
fixing flaky tests: State of the art and future roadmap. Software: Practice and Experience 51, 5 (2021), 851–867.
https://doi.org/10.1002/spe.2929 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2929

30

https://doi.org/10.1145/3135932.3135948
https://doi.org/10.1109/CCECE.2005.1557280
https://doi.org/10.1109/CCECE.2005.1557280
https://doi.org/10.1002/spe.2929

