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Cooperative Edge Caching Based on Elastic
Federated and Multi-Agent Deep Reinforcement

Learning in Next-Generation Networks
Qiong Wu, Senior Member, IEEE, Wenhua Wang, Pingyi Fan, Senior Member, IEEE, Qiang Fan,

Huiling Zhu, Senior Member, IEEE and Khaled B. Letaief, Fellow, IEEE

Abstract—Edge caching is a promising solution for next-
generation networks by empowering caching units in small-cell
base stations (SBSs), which allows user equipments (UEs) to fetch
users’ requested contents that have been pre-cached in SBSs. It
is crucial for SBSs to predict accurate popular contents through
learning while protecting users’ personal information. Traditional
federated learning (FL) can protect users’ privacy but the data
discrepancies among UEs can lead to a degradation in model
quality. Therefore, it is necessary to train personalized local
models for each UE to predict popular contents accurately. In
addition, the cached contents can be shared among adjacent SBSs
in next-generation networks, thus caching predicted popular
contents in different SBSs may affect the cost to fetch contents.
Hence, it is critical to determine where the popular contents
are cached cooperatively. To address these issues, we propose a
cooperative edge caching scheme based on elastic federated and
multi-agent deep reinforcement learning (CEFMR) to optimize
the cost in the network. We first propose an elastic FL algorithm
to train the personalized model for each UE, where adversarial
autoencoder (AAE) model is adopted for training to improve the
prediction accuracy, then a popular content prediction algorithm
is proposed to predict the popular contents for each SBS
based on the trained AAE model. Finally, we propose a multi-
agent deep reinforcement learning (MADRL) based algorithm to
decide where the predicted popular contents are collaboratively
cached among SBSs. Our experimental results demonstrate the
superiority of our proposed scheme to existing baseline caching
schemes.

Index Terms—cooperative edge caching, elastic federated
learning, multi-agent deep reinforcement learning, next-
generation networks
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IN recent years, with the increasing popularity of smart
devices, we have witnessed an unprecedented growth in

mobile data traffic, which has imposed a heavy burden on
wireless networks [1]–[3]. As users increasingly rely on user
equipment (UEs) like mobile devices and home routers to
access content from wireless networks, it becomes challenging
for ensuring a satisfactory quality of service to meet their
demands [4]–[6]. To address this challenge, edge caching has
emerged as a promising solution for next-generation networks
[7]–[9]. Through the implementation of caching units in wire-
less edge nodes, such as small-cell base stations (SBSs), UEs
can fetch users’ desired contents from nearby SBSs instead
of remote servers or cloud. This process significantly reduces
traffic load, alleviates network congestion, reduces latency and
improves system performance [10].

To efficiently enable UEs to fetch users’ desired contents
from SBSs, SBSs need to predict popular contents based on
the interests of users within their coverage area and proactively
cache these popular contents in advance. Due to the unique
preference of each user, the popular contents cached in dif-
ferent SBSs may exhibit surprising variations [11]. Machine
learning (ML) can overcome this issue by training based
on users’ data to extract hidden features, thereby effectively
predicting popular contents [12]. However, most traditional
ML algorithms need to train and analyze the data generated
by users, which may involve personal sensitive information.
Federated Learning (FL) has emerged as a potential solution
that can protect the privacy and security of users’ data [13],
[14]. For the traditional FL, each UE trains its local model
based on its users’ data, and then only uploads the trained
local model to the local SBS instead of its training data.
Then the local SBS aggregates the uploaded models from UEs
to update the global model. However, traditional FL tends
to generalize user preferences, neglecting the personalized
patterns of individual UEs. This general approach may not
cater to the specific needs and behaviors of individual UEs,
leading to potential inefficiencies in someway. To address
this limitation, we introduce the elastic FL algorithm which
adjusts the learning process dynamically based on the unique
characteristics of each UE. By assigning specific weights to
each local model based on differences between the global and
local models, one can capture users’ individual characteristics
[15]. This elastic adjustment ensures that the final model is
both globally informed and locally sensitive. This dual feature
significantly enhances both prediction accuracy and caching
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hit ratios in edge caching scenarios.
After each local SBS has predicted the popular contents,

deploying edge caches poses an additional challenge. In next-
generation networks, the importance of collaborative caching
is further strengthened. Here, cached contents can be shared
among adjacent SBSs via the Xn interface [16]. This allows
UEs to indirectly obtain the requested contents from the
adjacent SBSs even if they cannot directly fetch the requested
contents from the local SBS. The majority of research in
collaborative caching has focused on joint optimization with
metrics like resource allocation and latency reduction, rather
than concentrating on popular contents. Additionally, while
studies employing artificial intelligence technology generally
use popular contents in their caching strategies, they often
overlook the crucial aspect of predicting content popularity for
future proactive caching. Therefore, predicting future popular
contents and utilizing them for collaborative caching can sig-
nificantly enhance caching efficiency. However, the number of
predicted popular contents for each SBS is usually larger than
the limited cache capacity of the SBS. Therefore, this requires
cooperation between SBSs to cache popular contents. Addi-
tionally, the placement of these popular contents in the right
SBSs is also critical, as it directly impacts the cost of fetching
contents across the network. In addition, the dimensions of
caching decision will increase with the number of SBSs and
cached contents, inevitably adding complexity to the caching
problem in the entire network. This makes it challenging
to coordinate caching among SBSs to reduce the cost for
fetching contents in the next-generation network. Multi-agent
reinforcement learning (MADRL) is a suitable method that
can overcome the above problem, and has begun to be used
in cooperative edge caching. Instead of the traditional way
of making separate decisions, MADRL promotes cooperation
among SBSs. Each SBS, which is considered an agent, does
not just decide where to cache popular contents based on its
own prediction. Instead, it should work together with other
SBSs, taking into account their decisions to create a network-
wide caching strategy driven by content popularity. If some
UEs’ demands change, MADRL can adjust the caching deci-
sions. This adaptability is crucial for handling the increased
complexity that comes with the growing caching needs in the
next-generation network.

In this paper, we propose a cooperative edge caching
scheme based on elastic federated learning and multi-agent
deep reinforcement learning (CEFMR) scheme to optimize the
cost of fetching contents in the next-generation network. The
contributions of this paper are summarized as follows1

1) Each SBS employs an adversarial autoencoder (AAE)
model to predict the content popularity within its own
coverage. It helps to learn deep latent representations
from users’ historical requests and contextual informa-
tion, enabling the discovery of implicit relationships
between users and contents, thus improving prediction
accuracy.

1This paper has been submitted to IEEE TNSM. The source code
has been released at: https://github.com/qiongwu86/Edge-Caching-Based-on-
Multi-Agent-Deep-Reinforcement-Learning-and-Federated-Learning

2) We propose an elastic FL algorithm to train the AAE
model for each SBS, which assigns specific weight for
each UE’s model based on the differences between the
global model and local model, thereby it can protect
users’ privacy and obtain the personalized local model
for each UE.

3) We formulate the collaborative edge caching problem
as a caching decision problem based on the MADRL
framework, where states, actions, and reward have been
defined. This formulation aims to optimize the cost for
fetching contents in the network. Afterwards, we pro-
pose the multi-agent deep deterministic policy gradient
(MADDPG) based algorithm to learn the optimal caching
decision.

The remainder of this paper is structured as follows. Section
II reviews the related works on the research on popularity
prediction and collaborative caching. Section III provides a
concise overview of the system model. Section IV introduces
the proposed cooperative edge caching scheme. We present
some simulation results in Section V, and then conclude them
in Section VI.

II. RELATED WORK

We first reviewed the research on popularity prediction and
collaborative caching, and then we reviewed the studies on
collaborative caching based on MADRL and FL.

Currently, there are studies on content popularity prediction.
In [17], Pervej et al. proposed a novel approach to edge
caching in next-generation wireless networks using a long
short-term memory based sequential model to dynamically
predict user preferences for content caching. Additionally, they
formulated a non-convex optimization problem to minimize
content sharing costs and employed a greedy algorithm to find
a sub-optimal solution. In [18], Yao et al. introduced vehicular
content centric network to address mobility challenges in
vehicular ad hoc networks by implementing content centric
networking. They proposed popularity-based content caching,
a cache replacement scheme that predicts content popularity
using hidden Markov Model based on received interests,
request ratio, frequency and content priority. In [19], Tao
et al. proposed a Gaussian process based Poisson regressor
to accurately and efficiently model content request patterns.
Bayesian learning is employed to robustly learn model param-
eters, and to handle the lack of closed-form expression for the
posterior distribution, a Stochastic Variance Reduced Gradient
Hamiltonian Monte Carlo method is applied. In [20], Liu et
al. presented a content popularity prediction algorithm based
on auto-regressive models for Information-Centric Networking
in the Internet of Things, improving cache hit rates, reducing
network traffic, and minimizing service access delays, par-
ticularly beneficial for real-time streaming media services. In
[21], Feng et al. introduced a content popularity prediction
algorithm, GRU-Attention, tailored for Vehicle Named Data
Networking, which relied on in-network caching to swiftly
serve subsequent content requests. By leveraging the attention
mechanism and GRU model, it accurately forecasted future
popular contents based on multiple historical request patterns,
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enhancing prediction accuracy and optimizing cache utilization
within the network.

There are already studies on collaborative caching. In
[22], Pervej et al. tackled the optimization of collaborative
caching in heterogeneous edge networks by developing an im-
proved Particle Swarm Optimization algorithm, demonstrating
through numerical analysis and simulations that this approach
significantly enhances cache hit ratios compared to traditional
caching strategies. In [23], Saputra et al. employed a coop-
erative mobile edge caching network by jointly optimizing
collaborative caching and routing decisions to reduce content
access delays and backhaul traffic. To address the optimization
challenge, they transformed the problem into a mixed-integer
nonlinear programming problem and utilized a branch-and-
bound algorithm with the interior-point method to find a near-
optimal solution. In [24], Xie et al. proposed a cooperative
caching scheme where user terminals cache popular services
to an intelligent routing relay by using an online reverse
auction combined with a first-come-first-served strategy. In
[25], Li et al. employed a crowdsourced approach for coop-
erative caching in Content-Centric Mobile Networking. They
introduced a robust caching control scheme using Kullback-
Leibler divergence to manage uncertainties in user mobility,
finally formulated as a chance-constrained robust optimization
problem. In [26], Liao et al. employed cooperative caching
strategies using maximum distance separable codes for content
restructuring and optimizes both content placement and coop-
eration policies among base stations. A compound caching
strategy, namely multicast-aware cooperative caching assum-
ing fixed and dynamic cooperative policies, respectively, was
developed to combine the merits of multicast-aware content
delivery and cooperative content sharing. In [27], Fang et
al. investigated the economic interactions between Internet
service providers and content providers in wireless networks,
focusing on optimizing content delivery through edge caches
and content popularity. They proposed a centralized model
to solve the profit split problem and employed a Stackelberg
game for a distributed solution.

Furthermore, there are already studies on collaborative
caching based on MADRL. In [28], Araf et al. employed
a multi-agent actor-critic reinforcement learning approach,
combined with UAV (Unmanned Aerial Vehicle) assistance, to
tackle the problem of optimizing cooperative caching strate-
gies on the network edge. In [29], Chen et al. proposed a multi-
agent actor-critic framework with variational recurrent neural
networks (VRNN) to estimate content popularity. Through
multi-agent deep reinforcement learning, the cooperative edge
caching algorithm substantially improved the benefits of edge
caches in ultra-dense next-generation networks. In [30], Jiang
et al. employed multi-agent reinforcement learning to design
content caching strategies in mobile device-to-device (D2D)
networks, addressing the challenge of content caching with-
out prior knowledge of popularity distribution. The proposed
approach, using Q-learning, maximized caching rewards by
treating users as agents and caching decisions as actions.
In [31], Wu et al. proposed the integration of cooperative
coded caching using maximum distance separable (MDS)
codes in small cell networks to alleviate traffic loads. To

adapt to dynamic and unknown content popularity, a multi-
agent deep reinforcement learning framework was introduced
to intelligently update cached content, with a focus on mini-
mizing long-term expected front-haul traffic loads, resulting in
improved caching efficiency. In [32], Zhong et al. investigated
cache placement by using the collaborative MADRL algorithm
in ultra-dense small cell networks (SCNs) to maximize cache
hit rates in centralized and decentralized scenario settings. In
[33], Jiang et al. explored edge caching for the internet of
vehicles (IoVs) using distributed MARL. They introduced a
hierarchical caching architecture to minimize content delivery
overhead, extended single-agent reinforcement learning to a
multi-agent system, and achieved superior performance in
comparison to other caching strategies through simulation
results. In [37], Song et al. addressed the content caching and
sharing problem in cooperative base stations while considering
unknown content popularity distribution and content retrieval
costs. This paper formulated the problem as a multi-armed
bandit (MAB) learning problem, jointly optimizing caching
and sharing strategies. Two algorithms, a centralized approach
using semidefinite relaxation and a decentralized approach
based on the alternating direction method of multipliers
(ADMM), were proposed to solve the problem efficiently.
In [38], Cai et al. proposed a cross-tier cooperative caching
architecture for all content that allows distributed cache nodes
to cooperate, using a MADRL approach to model the decision
process between heterogeneous cache nodes. In [39], Wang et
al. introduced an intelligent edge caching framework named
MacoCache, which incorporated MADRL to enhance edge
caching performance in distributed environments. By employ-
ing the advanced actor-critic method and integrating long
short-term memory (LSTM) for time series dynamics, Ma-
coCache successfully reduced latency by an average of 21%
and costs by 26% compared to existing learning-based caching
solutions. In [40], Chen et al. utilized a refined MADRL
tailored for the 5G network structure to improve scalable video
coding (SVC)-based caching and video quality service strate-
gies. The introduced value-decomposed dimensional network
(VDDN) algorithm and a dimension decomposition method in
the dueling deep Q-network addressed the challenges of large
action spaces and computational efficiency. In [41], Zhang et
al. introduced an edge caching model for IoV content distri-
bution, allowing vehicles to collaboratively cache content and
account for varying content popularity and channel conditions.
An autonomous decision-making approach, an edge caching
approach for the IoV based on multi-agent deep reinforce-
ment learning, was proposed where vehicles act as agents to
optimize caching decisions. However, most previous studies
have primarily used MADRL to tackle issues in collaborative
content caching. It is important to point out that these studies
often did not address the more complex challenges associated
with predicting what contents will be popular in the future.
Specifically, they did not focus on the intricacies of using
machine learning to accurately forecast content popularity,
which is crucial for effective content management.

Recently, there have been several works on designing con-
tent caching schemes based on MADRL and FL. In [42],
Chang et al. introduced a federated multi-agent reinforcement
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Learning (FMRL) method for optimizing edge caching. Using
a Markov decision process (MDP) and a specialized regres-
sion model, it predicted content popularity, improved server
rewards, and optimized cache decision-making. An enhanced
FL technique aggregated local models, improving training and
preserving user privacy. In [43], Prathiba et al. introduced
the federated Learning and edge cache-assisted Cybertwin
framework in response to rising autonomous vehicle (AV)
technology and mobile traffic. This framework integrated the
cybertwin concept to merge physical and digital systems.
It employed the federated MADRL algorithm for optimized
learning, considering various factors. Additionally, the fed-
erated reinforcement learning-based edge caching algorithm
was used for efficient caching in 6G vehicle-to-everything
networks. In [44], Sun et al. employed FL to perceive user
preferences across various districts without exposing user
requests. A content blocks-based RL is utilized for intelligent
caching, taking into account the receiving scenarios of AVs.
By integrating FL with MARL, this paper achieved distributed
training of local models, which not only reduced the state-
action space dimension but also circumvented local optimal
solutions. However, the previous studies did not take into
account the personalization needs of individual UE in FL train-
ing. Additionally, they overlooked the fact that different SBSs
may have various popular contents, which can significantly
impact caching strategies.

In conclusion, previous research has not adequately ad-
dressed two key aspects in designing content caching schemes.
Firstly, FL approaches have not considered the personalized
and elastic requirements of each UE, which is essential for op-
timizing user-specific performance. Secondly, MADRL meth-
ods have largely ignored the importance of predicting popular
contents before making collaborative caching decisions. These
gaps in the literature have motivated our research, as we aim to
develop personalized models for UEs while also focusing on
proactive collaborative caching strategies based on predicted
content popularity.

III. SYSTEM MODEL

As illustrated in Fig. 1, we consider a cooperative edge
caching system in the next-generation network consisting
of a content server (CS), a set of SBSs denoted as B =
{1, . . . , b, . . . , B}, where B is the number of SBSs, and
a certain number of UEs. Each UE fetches the requested
contents from SBSs or CS for multiple users, and stores
a large amount of users’ data, i.e., local data. Each data
is a representation in vector form that encompasses various
aspects of users’ information such as the users’ identification
number (ID), gender, age, the contents that users may request,
and users’ ratings for the contents that they have previously
requested. The rating is between 0 and 1 which can measure a
user’s interest in previously requested content, and this rating
method is common in many research and application scenarios
[47], [50]. 0 represents that the user is not interested in this
requested content or the user has not requested this content
before, while 1 represents that the user is most interested in
this requested content. Each UE randomly selects a portion
of local data to establish a training set, and the remaining
data is utilized as a test set. The CS is linked to the core
network by a backhaul link, and it stores all contents that
users can request. Each SBS is connected to the CS through a
backhaul link connected by the next-generation (NG) interface.
SBSs are deployed at the network edge close to the UEs.
The time duration is divided into time slots. In each time
slot, each UE collects contents that users want to request and
generates a requested information. This requested information
may be a small-sized list containing the contents labels which
users desire. Therefore, the requested information will not
occupy too much resources. Then UEs send these requested
information to their local SBSs to fetch the requested contents.
The cache capacity of a single SBS is actually very limited,
the adjacent SBSs can share cached contents with each other
through a wired-link connected by the Xn interface. Hence, a
UE can fetch a requested content from the local SBS, adjacent
SBSs or CS. Specifically,

1) Local SBS: If the requested content is cached in the local
SBS, the UE can fetch the requested content directly from the
local SBS.
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TABLE I: Main notations.

Notation Description Notation Description
at the global action at time slot t. atb the action of SBS b at time slot t.
B the number of SBSs. bd the bias vector of the decoder network.
be the bias vector of the encoder network. C the cache capacity of each SBS.

ctb the current contents cached by SBS b at time slot t. d
the size of entire data of all UEs within the coverage
of SBS.

d(·) the non-linear and logically-activated function of the
discriminator network. di the size of the training data of each UE.

D the replay buffer. D(z) the confidence of z.

e
the number of iteration of the local AAE training for
UE. E′ the number of episodes in the testing phase of

MADRL algorithm.

Fp the number of predicted popular contents. J(πt)
the expected long-term discounted reward at time slot
t.

|L| the number of layers of the AAE model. M the number of transition tuples in a mini-batch.

nr
i,k

local training data set of UE i in the iteration k of
round k. p(·) the non-linear and logically-activated function of the

decoder network.
P (z) the predefined distribution. pb the predicted popular contents of SBS b coverage.

q(·) the non-linear and logically-activated function of the
encoder network. Rt the global reward at the time slot t.

Rt
b the local reward of SBS b at time slot t. Rmax

the number of rounds to train the AAE model in the
elastic FL.

rrb (t)
the number of contents that SBS b fetches from the
local cache at time slot t. rrb,c(t)

the number of contents that SBS b fetches from CS
at time slot t.

rrb,e(t) the contents replaced in SBS b during time slot t. rrb,n(t)
the number of contents that SBS b fetches from
adjacent SBSs at time slot t.

stb the local state of SBS b at time slot t. st the global state at time slot t.
T the number of time slots of the MADRL algorithm. Xr

i the rating matrix of UE i in round r.
X̃r

i the reconstructed rating matrix of UE i in round r. α the cost of fetching the contents from local SBS b.

αi the elastic parameter of UE i. β
the cost that the UE within the coverage of local SBS
b fetch the contents from adjacent SBSs.

χ the cost of fetching the contents from CS. δ the cost of replacing a content.
γ the discount factor. η the fixed learning rate.

θb the parameters of the actor network of agent b. θ′b
the parameters of the target critic network of agent
b.

ϕ the parameters of the global critic network. ϕ′ the parameters of the target global critic network.
τ the constant is used to update the target networks. ωr the global AAE model in round r.
ωr
e the global encoder network in round r. ωr

d the global decoder network in round r.
ωr
d′ the global discriminator network in round r. ωr

i the local model of UE i in round r.

2) Adjacent SBS: If the requested content is not cached in
the local SBS but an adjacent SBS caches the request content,
the local SBS can fetch the requested content from the adjacent
SBS and then deliver it to the UE. If multiple adjacent SBSs
have all cached the requested content, the local SBS randomly
selects one of the adjacent SBSs to fetch the requested content.

3) CS: If both the local SBS and adjacent SBSs do not
cache the requested content, the local SBS fetches the re-
quested content from the CS and then delivers it to the UE.

In order to enable UEs within the coverage of each SBS to
fetch requested contents more effectively, each SBS needs to
accurately predict the popular contents. These popular contents
are predicted based on users’ ratings for the contents. However,
it is difficult to distinguish whether the user is interested
in this content or has requested it before if a rating for
one content is 0. Therefore, it is necessary to predict and
reconstruct the ratings of each content. The AAE model can
effectively extract hidden features of ratings and reconstruct
the ratings for each content. Hence the reconstructed ratings
will contain fewer 0. This helps to predict the popular contents
more accurately. Thus the AAE model is adopted as the local
model and global model in the FL algorithm and the popular
contents for each SBS are predicted based on the trained
AAE model. The proposed CEFMR scheme is described as
follows. We first propose an elastic FL algorithm which can

assign specific weight for each local model based on the
differences between the global model and local model to train
the personalized local model for each UE. Then we propose a
popular content prediction algorithm to predict the popular
contents for each SBS based on the trained AAE model.
Finally, due to the limited cache capacity of each SBS, we
construct a MADRL framework and then adopt the MADDPG
algorithm to decide where the predicted popular contents are
collaboratively cached among SBSs to reduce the cost for
fetching contents. We will elaborate the CEFMR scheme in
the next section. The main notations are listed in Table I.

IV. COOPERATIVE EDGE CACHING SCHEME

In this section, we will introduce the CEFMR cooperative
edge caching scheme. We first propose an elastic FL algorithm
to train the personalized AAE model for each UE, then a
popular content prediction algorithm is proposed to predict
the popular contents for each SBS based on the trained AAE
model. Finally, we construct a MADRL framework and then
adopt the MADDPG algorithm to decide where the predicted
popular contents are collaboratively cached among SBSs.

A. Elastic FL Algorithm
As illustrated in Fig. 2, elastic FL algorithm is executed

through Rmax rounds iteratively [48], [49]. Within each round,
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the elastic FL algorithm consists of the following four steps.
1) Download Model: Each local SBS first generates the

global AAE model in this step. Let ωr be the parameters
of the global AAE model in round r. The global AAE
model consists of the AEN and GAN. Fig. 3 illustrates the
framework of the AAE model. The upper layer of the AAE is
an AEN which includes an encoder network and a decoder
network. The bottom layer is a GAN which consists of a
generator network and a discriminator network, where the
encoder network of the AEN acts as the generator network.
Let ωre , ωrd and ωrd′ be the parameters of the encoder network,
decoder network and discriminator network in the round r,
respectively, thus ωr = {ωre , ωrd, ωrd′}. For the first round, the
local SBS initializes its own global AAE model ω0 and for
the subsequent round r the local SBS updates the global AAE
model ωr at the end of round r − 1.

2) Local Training: Next each UE i in the coverage of local
SBS downloads the global AAE model ωr and updates the
model based on its local data. If the UE directly uses the
global model ωr as the initial model for updating its own
local model, it would result in the waste of the local model
trained in the last round and the loss of individual UE features.
Hence, we propose the elastic FL algorithm which takes into
account both the local model and global model. Specifically,
similar to [15], we first define the following weight distance
formula to focus on the correlation between the local model
of UE i trained in round r − 1, i.e., ωr−1i , and ωr, i.e.,

dis
(
ωr−1i , ωr

)
=

∥∥ωr−1i − ωr
∥∥

‖ωr‖
. (1)

As the AAE model consists of multiple layers of neural
network, we introduce αri as an elastic parameter, which
denotes the gap between ωr−1i and ωr of all layers in round
r. Thus αri is calculated as follows

αri =
1

|L|nb

∑
l∈L

dis
(
ωr−1i,l , ωrl

)
, (2)

where ωr−1i,l is the l-th layer of ωr−1i and ωrl is the l-th layer
of ωr. L represents all the layers of the AAE model and |L|
denotes the number of layers. nb is the number of the UE in
the SBS b. Then the initial local model of UE i in round r is
calculated as

ωri ← αriω
r + (1− αri )ωr−1i , (3)

where αri dynamically adjusts the influence of the global
model on the local model, allowing the local model to have
personalized features.

Then each UE updates ωri iteratively through local training
based on its local training data. During each iteration k, UE
i conducts a random sampling process to select training data
nri,k from the overall training set. Subsequently, the training
data nri,k is utilized to train the local AAE model of UE i.
The training process consists of the reconstruction stage and
the adversarial regularization stage. The AAE model is trained
alternatively between these two stages.

The reconstruction stage which mainly focuses on training
the AEN is first executed. Specifically, the encoder network

first takes each original training data x from nri,k and trans-
forms x by mapping x to the network. This process yields
the hidden feature representation of x, denoted as z(x). The
transformation is expressed as z(x) = q

(
W r
i,e,kx+ bri,e,k

)
,

here W r
i,e,k and bri,e,k are the weight matrix and bias vector

of the encoder network of UE i in iteration k of round r,
respectively. To make the paper clearer, we simplify W r

i,e,k

and bri,e,k to We,k and be,k, respectively. We also apply similar
simplifications to symbols that will appear later.

Then the decoder network calculates the reconstructed input
x̃, i.e., x̃ = p (Wd,kz + bd,k), where Wd,k and bd,k are the
weight matrix and bias vector of the decoder network in itera-
tion k, respectively. p(·) and q(·) are non-linear and logically-
activated functions. Afterwards, the local loss function of each
data x for the encoder network and the decoder network is
calculated as

l(ωe,k, ωd,k;x) = (x− x̃)2, (4)

where ωe,k represents the parameters of the encoder network
in iteration k, which includes We,k and be,k, i.e., ωe,k =
{We,k, be,k}. ωd,k represents the parameters of the decoder
network in iteration k, which includes Wd,k and bd,k, i.e.,
ωd,k = {Wd,k, bd,k}. Then the loss function of all the data in
nri,k for the encoder network and decoder network is calculated
as

f(ωe,k, ωd,k) =
1

di

∑
x∈nr

i,k

l(ωe,k, ωd,k;x), (5)

where di is the size of nri,k. Let∇f (ωe,k, ωd,k) be the gradient
of f(ωe,k, ωd,k). Then the parameters of the encoder network
and decoder network in the reconstruction stage are updated
respectively as

ωe,k ← ωe,k − η∇f (ωe,k, ωd,k) , (6)

ωd,k+1 ← ωd,k − η∇fk (ωe,k, ωd,k) , (7)

where η is the local learning rate. The reconstruction stage
is finished for iteration k. It’s important to note that the
encoder network will be updated again in the subsequent
adversarial regularization stage. Therefore, in Eq. (6) we still
adopt the notation ωe,k to represent the updated parameters of
the encoder network after the reconstruction stage.

Afterwards, the adversarial regularization stage is executed,
where the generator network and discriminator network will
be alternately optimized. Specifically, the training of the dis-
criminator network is first performed. The encoder network
first maps x to obtain a vector, i.e., z′(x) = q (We,kx+ be,k).
It is important to note that We,k and be,k have been updated
in the previous reconstruction stage. Then z′(x) will be input
into the discriminator network to get its confidence D(z′(x)),
i.e., D(z′(x)) = d (Wd′,kx+ bd′,k), where Wd′,k and bd′,k
are the weight matrix and bias vector of the discriminator
network in iteration k, respectively. d(·) is also the non-linear
and logically-activated function. At the same time, a vector z̃ is
sampled from a simple predefined distribution P (z). Similarly,
z̃ is also input to the discriminator network to obtain its
confidence D(z̃). The objective of the discriminator network
is to maximize its ability to correctly distinguish z′(x) and
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z̃. Therefore, the loss function of data x for the discriminator
network can be calculated as,

L(ωd′,k;x) = −E[logD(z̃)]− E[log(1−D(z′(x)))], (8)

where ωd′,k represents the parameters of the discriminator
network in iteration k, which includes Wd′,k and bd′,k, i.e.,
ωd′,k = {Wd′,k, bd′,k}. Thus the loss function of all the data
in nri,k for discriminator network is calculated as

F (ωd′,k) =
1

di

∑
x∈nr

i,k

L(ωd′,k;x). (9)

Let ∇F (ωd′,k) be the gradient of F (ωd′,k). Then the param-
eters of the discriminator network are updated as

ωd′,k+1 ← ωd′,k − η∇Fd′,k (ωd′,k) . (10)

Then the parameters of encoder network is updated. The

loss function of data x for the encoder network is defined as

L(ωe,k;x) = −E[log(D(z′(x)))], (11)

The loss function of all the data for the encoder network is
calculated as

F (ωe,k) =
1

di

∑
x∈nr

i,k

L(ωe,k;x). (12)

Let∇F (ωe,k) be the gradient of F (ωe,k). Then the parameters
of the encoder network are updated as

ωe,k+1 ← ωe,k − η∇F (ωe,k) . (13)

Iteration k is finished and UE i randomly samples some
training data again to start the next iteration. When the number
of iterations reaches the threshold e, UE i completes the local
training.
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Algorithm 1: The Elastic FL Algorithm

1 Initialize ωr;
2 for round r from 1 to Rmax do
3 for UE i = 1, 2, ... in parallel do
4 Download global AAE model ωr;
5 ωri ← Local Updates(ωr, i);
6 Upload the local AAE model ωri to SBS;

7 Calculate ωr+1 according to Eq. (15);
8 return ωr+1.

9 Local Update(ω, i):
10 Input: ωr
11 Calculate the αi according to Eq. (2);
12 Update the local AAE model ωri according to Eq. (3);
13 for each iteration k from 1 to e do
14 Randomly samples data nri,k from the training set;
15 for data x ∈ nri,k do
16 Calculate the loss function of data x for the

encoder network and the decoder network
according to Eq. (4);

17 Calculated the local loss function of all the data
for the encoder network and the decoder network
in iteration k according to Eq. (5);

18 Update the encoder network and the decoder
network according to Eq. (6) and Eq. (7);

19 for data x ∈ nri,k do
20 Calculate the loss function of data x for the

discriminator network according to Eq. (8);
21 Calculated the local loss function of all the data

for the discriminator network in iteration k
according to Eq. (9);

22 Update the discriminator network according to Eq.
(10);

23 for data x ∈ nri,k do
24 Calculate the loss function of data x for the

encoder network according to Eq. (11);
25 Calculated the local loss function of all the data

for the encoder network in iteration k according
to Eq. (12);

26 Update the encoder network according to Eq. (13);

27 return ωri .

3) Upload model: Once each UE i completes the local
training, then it uploads the updated local model ωri to the
local SBS, where ωri consists of ωri,e, ω

r
i,d and ωri,d′ , i.e.,

ωri =
{
ωri,e, ω

r
i,d, ω

r
i,d′

}
, here ωri,e, ω

r
i,d and ωri,d′ be the

parameters of the encoder network, decoder network and
discriminator network of UE i in the round r, respectively.

4) Weight aggregation: After all UEs within the coverage
of the SBS upload their AAE models, the SBS generates a
new global AAE model ωr+1 by calculating a weighted sum
of all received local AAE models,

ωr+1 = ωr − η
∑
i=1

di
d
ωri , (14)

where d is the size of the total data for all UEs within the
SBS coverage. So far, the elastic FL training for round r has
been completed and the SBS has obtained an updated global
AAE model ωr+1, which is used for the training in the next
round. When the number of rounds reaches Rmax, the elastic
FL training is finished and each SBS obtains the trained AAE
model. For ease of understanding, Algorithm 1 illustrates the
process of the elastic FL algorithm. Then each SBS sends
the trained AAE model to all UEs in its coverage for content
popularity prediction.

B. Popular Content Prediction

Next we propose a popular content prediction algorithm to
predict the popular contents for each SBS based on the trained
AAE model.

1) Data Preprocessing: UE i abstracts a rating matrix Xr
i

from the data in the test set. The matrix’s first dimension
represents users’ IDs, while the second dimension is users’
ratings for all contents. Subsequently, each rating matrix Xr

i

is fed into the updated AAE model, resulting in a reconstructed
rating matrix X̃r

i . This reconstructed matrix is capable of
extracting the hidden characteristics of the data and can be
employed to approximate Xr

i . Then, each UE also abstracts a
matrix of personal information from the test set. This matrix
has the first dimension representing user IDs, and the second
dimension corresponding to the personal information of the
users.

2) Cosine Similarity: Each UE i calculates the count of
non-zero ratings for each user i in the matrix Xr

i and
designates the users with the top 1/m numbers as active
users. Following this, each UE merges the matrix X̃r

i and the
personal information matrix (the resultant matrix is denoted
as Hr

i ) to determine the similarity between each active user
and the rest of the users. The similarity between an active user
u and another user v of UE i is calculated according to the
cosine similarity [51]

simr,i
u,v = cos (Hr

i (u, :),Hr
i (v, :))

=
Hr
i (u, :) ·Hr

i (v, :)T

‖Hr
i (u, :)‖2 × ‖Hr

i (v, :)‖2

, (15)

where Hr
i (u, :) and Hr

i (v, :) represent the vectors corre-
sponding to active user u and user v in the merged matrix,
respectively. The terms ‖Hr

i (u, :)‖2 and ‖Hr
i (v, :)‖2 stand

for the 2-norm (Euclidean length) of the vectors Hr
i (u, :) and

Hr
i (b, :), respectively. For each active user u, UE i selects

the users with the K highest similarities as the K nearest
neighbors of user u. The ratings of these K nearest users can
be interpreted as indicative of the preferences of user u.

3) Interested Contents: After determining the nearest users
of active users in the matrix Xr

i , the vectors of nearest users
for each active user are extracted to create a matrix HK . In
this matrix, the first dimension corresponds to the IDs of the
nearest users for active users, while the second dimension
signifies the ratings for content from these nearest users. In
the matrix HK , any content with a non-zero rating from a
user is considered as the interested content of that user. The
number of such interested contents is then counted for each
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user, and this count for a specific content is referred to as
the popularity of the content. Each UE i selects the contents
with the top Fp content popularities as the predicted interested
contents and uploads these to the local SBS.

4) Popular Contents: After all UEs within the coverage
range of the local SBS b upload their predicted interesting
contents, SBS b collects and compares them, and selects Fp
most interesting contents as the predicted popular contents pb
and then adopts MADDPG to cache C contents from pb.

C. Cooperative Edge Caching Scheme Based on MADRL

Since each SBS has limited caching capacity, it is crucial for
SBSs to collaborate in caching the predicted popular contents
in order to reduce the cost for fetching contents. Therefore,
we proposed the MADDPG algorithm for cooperative edge
caching among SBSs, deciding SBS to cache suitable predicted
popular contents, thus the cost can be optimized. Next, the
MADRL framework is first formulated, which is the basis of
the MADDPG algorithm. Then, the MADDPG algorithm will
be introduced.

1) MADRL Framework: The MADRL framework includes
agents, states, actions, rewards and policies [34]–[36]. In our
cooperative edge caching, each SBS b can be viewed as an
agent and makes its action based on the its local state. Then
we will define states, actions, rewards and policies at time slot
t as follows.

a) States: At time slot t, the local state of SBS b is
defined as

stb =
{
ctb, p

t
b

}
, (16)

where ptb represents the predicted popular contents within the
coverage area of SBS b, ctb represents the current contents
cached by SBS b. It should be noted that the size of ptb is Fp
while the size of ctb is C, and C < Fp. The global state is
defined as

st =
{
st1, . . . , s

t
b, . . . , s

t
B

}
. (17)

b) Actions: Once SBS b predicts new popular contents
ptb at time slot t, it needs to select an appropriate contents from
ptb to replace part of the contents in ctb. Therefore, at time slot
t, the action of SBS b is defined as

at
b =

{
atb,1, . . . , a

t
b,f , . . . , a

t
b,Fp

}
, (18)

where each atb,f is a binary variable indicating if the f -th
content in pb is stored or not. 0 stands for that the f -th popular
content is not stored in SBS b, while 1 indicates that it will be
cached. Let rtb,e be the number of 1 in at

b, thus the number
of 0 is Fp − rtb,e. The global action is defined as

at =
{
at1, . . . , a

t
b, . . . , a

t
B

}
. (19)

c) Reward function: Compared to UEs fetching contents
from CS, it can significantly reduce costs by using the coop-
erative edge caching system. Thus we define the reward as the
saved cost. Next, we will first introduce the cost which UEs
fetch contents from the cooperative edge caching system, then
introduce the cost which UEs fetch all contents only from CS,
and the difference between these two costs is the saved cost,
which is our defined reward.

In the cooperative edge caching system, a UE can fetch
requested contents directly from the local SBS, CS or adjacent
SBSs. The three optional methods of obtaining the requested
contents usually correspond to different costs.

The UE can fetch the requested contents from the local SBS
b. Let α denote the cost of fetching the contents from local
SBS b. Assume that UEs fetch rtb contents from local SBS b
at the time slot t, thus the cost is αrtb.

The UE can indirectly fetch the requested contents from
adjacent SBSs. Let β denote the cost that the UEs within the
coverage of local SBS b fetch the contents from adjacent SBSs.
Since the delivery of contents between SBSs will consume
backhaul resources, the cost of fetching contents from adjacent
SBSs is higher than that of fetching the contents from local
SBS b, i.e., β > α. Assume that the UEs in the coverage of
local SBS b fetch rtb,n contents from adjacent SBSs. In this
case, the cost is βrtb,n.

The UE can fetch the requested content from CS. Let χ
denote the cost of fetching the contents from CS. The cost of
fetching contents from CS is much higher than that of fetching
contents from SBSs owing to the resource consumption of
backhaul and core network, i.e., χ > β and χ > α. Assuming
that the UEs in the coverage of local SBS b fetch rtb,c contents
from CS at time slot t. In this case, the cost is χrtb,c.

In addition, the contents replaced by SBS b are all from
CS, it will result in the additional costs as it requires the
consumption of backhaul resources between SBS b and CS.
Denote δ as the cost of replacing a content. The cost of
replacing caching contents is δrtb,e. Thus, the total cost of
SBS b is αrtb + βrtb,n + χrtb,c + δrtb,e.

Noted that the constants α, β, χ and δ can be represented
with actual physical significance, that is, these values can be
explained as a general expression of the benefits from content
caching, such as energy saving, expense reduction and so on
[29], [37], [46].

Edge caching in the cooperative edge caching system can
significantly reduce costs. Without edge caching, all UEs
would have to fetch contents from CS, which leads to a great
cost, i.e., χ

(
rtb + rtb,n + rtb,c

)
, thus the reward of SBS b at

time slot t can be defined as the saved cost, i.e.,

Rtb = χ
(
rtb + rtb,n + rtb,c

)
−
(
αrtb + βrtb,n + χrtb,c + δrtb,e

)
= (χ− α)rtb + (χ− β)rtb,n − δrtb,e

. (20)

Note that the higher the cost savings, i.e., the larger Rtb,
will cause more effective edge caching. We use Rt

L =
[Rt1, . . . , R

t
b, . . . , R

t
B ] to denote all SBSs’ reward. The global

reward at time slot t is calculated as

Rt =
1

B

B∑
b=1

Rtb. (21)

Let πt = {πt1, . . . , πtb, . . . , πtB} denotes the caching policies
at time slot t. πt will map state st to action at, i.e., at =
π(st). The expected long-term discounted reward of MADRL
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is calculated as

J(πt) = E

[ ∞∑
t=0

γtRt

]
. (22)

where γ ∈ (0, 1) is the discount factor. Our cooperative edge
caching problem can be formulated as a multi-agent decision
problem to maximize the expected long-term discounted re-
ward to get the optimal policies π∗, which is calculated as

π∗ = arg min J(π). (23)

2) MADDPG algorithm: The MADDPG algorithm is pro-
posed for the cooperative edge caching. Next we first introduce
the training stage of MADDPG algorithm to obtain the optimal
policies, then describe the testing stage to test performance
based on the optimal policies.

The MADDPG algorithm is based on the multi-agent actor-
critic framework [52]. Each agent b has a local actor network,
a local critic network, a local target actor network and a
local target critic network. The local actor network of agent b
outputs the policy based on the local state, then the action can
be obtained according to the policy. The local critic network
of agent b is used to evaluate the action according to the local
reward. Two local target networks can ensure the stability of
the algorithm, whose network structure is same as that of local
actor network and local critic network, respectively. All agents
share two centralized global critic networks and two global
target critic networks, all of them are located at CS. Two
global critic networks provide a global perspective based on
the global states and actions of all agents, enabling each agent
to understand and adapt to the global environment. Two global
target critic networks which have the same network structure
as the global critic networks, respectively, are also used to
ensure the stability.

Let θb and φb are the parameters of the local actor network
and local critic network of agent b, respectively, while θ′b and
φ′b are the parameters of the local target actor network and
local target critic network of agent b, respectively. Let ϕ1, ϕ2,
ϕ′1 and ϕ′2 be the parameters of two global critic networks and
two global target critic networks, respectively. The detailed
training stage for MADDPG algorithm is further introduced,
and Algorithm 2 describes the specific process of MADDPG
training stage.

a) Training Stage: Firstly, each agent b randomly ini-
tializes its local actor network parameters θb and local critic
network parameters φb. CS also initializes the two global critic
network parameters ϕ1 and ϕ2. The local target actor network
parameters θ′b and local target critic network parameters φ′b of
each agent b are initialized as θb and φb, while two target
global critic network parameters ϕ′1 and ϕ′2 are initialized
as ϕ1 and ϕ2. The replay buffer D which is located at
CS is equipped with substantial storage capacity to store
transition tuples in each time slot t, i.e., st, at, Rt, Rt

L and
st+1. Replay buffer D can facilitate the efficient sharing of
experience across the agents.

Next, the algorithm executes for Rmax episodes. In the
first episode, each SBS b obtains Fp popular contents p1b
from predicted interested contents uploaded by UEs within its

Algorithm 2: Training Stage for the MADDPG Frame-
work
Input: γ, τ , θb, φb, ϕ1, ϕ2

1 Randomly initialize the θb, φb, ϕ1, ϕ2;
2 Initialize target networks by θ′b ← θb, φ′b ← φb,

ϕ′1 ← ϕ1, ϕ′2 ← ϕ2;
3 Initialize replay buffer D;
4 for episode from 1 to Rmax do
5 for agent b from 1 to B do
6 Predict the popular contents pb;
7 Receive initial observation state s1b ;

8 s1 =
[
s11, . . . , s

1
b , . . . , s

1
B

]
;

9 for time slot t from 1 to T do
10 for agent b from 1 to B do
11 Observe stb and select action

atb = π (stb | θb);

12 st = [st1, . . . , s
t
b, . . . , s

t
B ],

at = [at1, . . . , a
t
b, . . . , a

t
B ];

13 Receive global and local rewards, Rt and RtL;
14 Store transition (st, at, Rt, RtL, s

t+1) in ()();
15 if number of transition tuples in D is larger

than M then
16 Randomly sample a mini-batch of M ,

(si, ai, Ri, RiL, s
′), from D;

17 Set yig = Ri + γminx=1,2Q
(
s′i, a′i | ϕ′x

)
;

18 Update global critics by minimizing the
loss based on Eq. (25);

19 Update target parameters based on Eq. (29);
20 for agent b from 1 to B do
21 Set yib = Rib + γQ

(
s′ib , a

′i
b | φ′b

)
;

22 Update local critic network by
minimizing the loss based on Eq. (27);

23 Update the local actor network based
on Eq. (28);

24 Update target local networks according
to Eqs. (30) and (31).

own coverage, and randomly selects C contents for caching.
Thus each SBS b can obtain the initial caching contents
c1b . Based on c1b and p1b , each SBS b can obtain its initial
local state s1b according to Eq. (16), and the initial global
state can also be further obtained according to Eq. (17), i.e.,
s1 =

[
s11, . . . , s

1
b , . . . , s

1
B

]
.

Then algorithm is iteratively executed from slot 1 to slot T .
In the first slot, each SBS b inputs its local state s1b to its local
actor network and gets its policy π1

b , then the local action a1b
can be obtained based on π1

b . Thus the global action can be ob-
tained according to Eq. (19), i.e., a1 =

[
a11, . . . , a

1
b , . . . , a

1
B

]
.

After each SBS b takes the local action a1b , it can get its local
reward R1

b according to Eq. (20). Thus all agents’ rewards can
be obtained, i,e., R1

L =
[
R1

1, . . . , R
1
b , . . . , R

1
B

]
. The global

reward R1 can also be obtained according to Eq. (21). In
addition, each SBS b enters the next local state s2b after taking
the local action, and the next global state s2 can be further
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Fig. 4: MADDPG algorithm flow chart of the training stage

obtained, i.e., s2 =
[
s21, . . . , s

2
b , . . . , s

2
B

]
.

Then the transition tuple
(
s1,a1, R1,R1

L, s
2
)

is stored in
the replay buffer D. When the number of transition tuples
stored in the replay buffer D is less than M , the algorithm
starts the next slot.

When the number of stored transition tuples is greater than
M in time slot t, CS first randomly samples M transition
tuples from the replay buffer D to form a mini-batch. For the
sake of simplicity, let (si,ai, Ri,RL,i, s

′
i) (i = 1, 2, . . . ,M)

represents the i-th transition tuple in the mini-batch. For the
transition tuple i, SBS b first inputs its local state s′b,i into the
local target local actor network and gets its policy π′b,i, then
the local action a′b,i can be obtained based on π′b,i. All agents’

actions a′i =
[
a′1,i, . . . , a

′
b,i, . . . , a

′
B,i

]
can be obtained. Then

CS inputs a′i and s′i into two target global critic networks,
and outputs two target action-state values Q (s′i,a

′
i | ϕ′1) and

Q (s′i,a
′
i | ϕ′2), respectively. This process is shown as step 1

in Fig. 4. The target global value can be calculated as

yg,i = Ri + γ min
x=1,2

Q (s′i,a
′
i | ϕ′x) . (24)

Next CS inputs ai and si into two global critic net-
works, and outputs two action-state values Q (si,ai | ϕ1) and
Q (si,ai | ϕ2), respectively. This process is shown as step 2
in Fig. 4. The loss function of each global critic network is
calculated as

L (ϕx) =
1

M

M∑
i=1

[yg,i −Q (si,ai | ϕx)]
2
, x = 1, 2, (25)

The above equation is shown as step 3 in Fig. 4. The
gradient of the each global critic network can be calculated
as ∇L (ϕx) , x = 1, 2.

Then each SBS b trains its own local critic and local actor
networks. Each SBS b first inputs its local state s′b,i into its
local target actor network and obtains the local action a′b,i.
This process is shown as step 4 in Fig. 4. Next each SBS
b inputs s′b,i and a′b,i into its local target critic network, and

gets the local target action-state value Q
(
s′b,i, a

′
b,i | φ′b

)
. This

process is shown as step 5 in Fig. 4. Thus the target value of
the local critic network can be calculated as

yb,i = Rb,i + γQ
(
s′b,i, a

′
b,i | φ′b

)
. (26)

Then each SBS b inputs sb,i and ab,i into its local critic net-
work, and gets the local action-state value Q (sb,i, ab,i | φb).
This process is shown as step 6 in Fig. 4. The local critic loss
function of SBS b can be calculated as

L (φb) =
1

M

M∑
i=1

[yb,i −Q (sb,i, ab,i | φb)]2 . (27)

The above equation is shown as step 7 in Fig. 4. Then the
gradient of the local critic network is calculated as ∇L (φb).
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Then each SBS b inputs sb,i into its local actor network and
gets its policy π̄b,i, then the local action āb,i can be obtained
based on π̄b,i. Next each SBS b inputs sb,i and āb,i into its
local target critic network, and gets the local target action-state
value Q (sb,i, āb,i | φb). These processes is shown as steps 8
and 9 in Fig. 4. The gradient of the local actor network of
SBS b is calculated as

∇Jθb =
1

M

M∑
i=1

[
∇θbπb,i∇ab,iQ (si,ai | ϕ1)

+∇θbπb,i∇ab,iQ (sb,i, āb,i | φb)
]
.

(28)

The above equation is shown as step 10 in Fig. 4. The first
term in Eq. (28) is associated with the global critic network,
similar with [52], we only use one action-state value from one
of the global critic networks, i.e., Q (si,ai | ϕ1). The second
term corresponds to each agent’s local critic network.

After that ϕ1, ϕ2, φb and θb are updated through gradient
ascending based on ∇L (ϕ1), ∇L (ϕ2), ∇L (φb) and ∇Jθb .

Then the parameters of the two target global critic networks,
local actor network and the critic network are updated as

ϕ′x = τϕx + (1− τ)ϕ′x, x = 1, 2, (29)

θ′b = τθb + (1− τ)θ′b, (30)

φ′b = τφb + (1− τ)φ′b. (31)

where τ ≤ 1 is a constant value. The update in this time slot
is finished, and the above procedure is repeated for the next
time slot. When the number of time slot reaches T , the current
episode ends up. Then each SBS initialize its cached contents
to start the next episode. When the number of episodes reaches
N , the algorithm will terminate and we will get the optimal
parameters θ∗b of the local actor network of each SBS b. The
flow chart of the MADDPG training stage is shown in Fig. 4.

b) Testing Stage: The testing stage omits the critic
network, target actor network, target critic network of each
SBS b, two global critic networks and two target global critic
networks, as compared to the training stage. During the testing
stage, the local state stb of each SBS b in each time slot t is
input into its local actor network with optimized parameters
θ∗b , and the optimal action which denotes the best caching
placement can be obtained. The pseudo-code of the testing
stage is shown in Algorithm 3.

D. Computational Complexity Analysis

In this section, we will analyze the computational complex-
ity of our approach. The analysis focuses on the training stage
due to the significant computation resource and time consump-
tion in the training stage. Our methodology for analyzing the
computational complexity is inspired by [53]. During a round,
the training process includes two processes: the elastic FL
training of AAE and the training of MADDPG. Because the
training process requires significant computational resources to
calculate gradients and update parameters, the computational
complexity mainly consists of the complexity of computing
gradients and the complexity of updating parameters.

Let GE , GD, GD′ , GA, and GC be the computational
complexity of computing gradients for the encoder network,
the decoder network, the discriminator network, the actor
network, and the critic network, respectively. Let UE , UD,
UD′ , UA, and GC be the computational complexity of
updating parameters for the aforementioned networks. First,
we analyze the complexity of the elastic FL training of
AAE, which is influenced by the number of SBSs and the
number of UEs covered by each SBS. Let nb represent
the number of UEs under SBS b, and each UE needs
to undergo e iterations of local training. Therefore, the
complexity of the elastic FL training of AAE is Oaarfl =

O
(
Rmax

∑B
b=1 nbe (2GE +GD +GD′ + 2UE + UD + UD′)

)
.

Next, we analyze the computational complexity of MAD-
DPG training, which is mainly influenced by the number of
SBSs. Since the local target actor and local actor have the same
network structure, they have the same GA and UA. Moreover,
each SBS’s two local target critic networks, two local critic
networks, two global critic networks, and two global target
critic networks have the same network structure, so they are
both GC and UC . It should be noted that the target networks do
not need to caculate gradients, and the training and updating
parameters process will not be activated until the tuples
stored in the replay buffer are larger than M . Therefore, the
computational complexity of MADDPG training is Omadrl =
O((RmaxT −M) (B(GA + UE) + (2 +B)(GC + UE))).

Thus, the total computational complexity is O = Oaarfl +
Omadrl.

Algorithm 3: Testing Stage for the MADDPG Frame-
work

1 for episode from 1 to E′ do
2 Predict the popular contents p1b ;
3 Receive initial local state s1b ;
4 for time slot t from 1 to T do
5 for agent b from 1 to B do
6 Generate caching placement based on the

optimal policy atb = π (stb | θ∗b ) ;
7 Execute action atb, observe local reward Rtb

and obtain new local state st+1
b ;

8 Observe global Rt and obtain next global state
st+1.

V. SIMULATION RESULTS

In this section, simulation experiments are conducted to
evaluate the performance of the proposed CEFMR scheme in
the collaborative caching system.

TABLE II: Values of the parameters in the experiments.

Parameter Value Parameter Value
Rmax 1000 E′ 100
M 256 T 100
α 1 β 30
χ 100 δ 100
γ 0.99 η 0.01
τ 0.001
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Fig. 5: Global and local losses during the training stage of
MADDPG

A. Settings and Dataset

The simulation experiments in this paper are conducted
based on Python 3.8 while leveraging the extensively acknowl-
edged MovieLens 1M dataset, which encompasses nearly 100
million movie ratings given by 6040 anonymous users for 3883
movies [55]. A part of the movies that have been rated by users
will be the requested contents for the UEs. Table II lists the
values of all parameters in the simulation.

B. Training Stage

First, we present the training results of the MADDPG
algorithm, where the number of SBSs is set to 2. Fig. 5 shows
the average loss of the two global critic networks for the two
SBSs, and two local losses of the local critic networks for each
SBS. As can be seen from Fig. 5, the global loss decreases
slowly until the 400th episode and then gradually stabilizes,
while the local losses of two SBSs decrease slowly until the
750th episode and then gradually stabilize. The loss represents
the error between the action-state value and the actual reward,
thus the action-state value gradually approaches the actual
reward with the progress of training the loss decreases. This
means that MADDPG algorithm converges after training, and
we can obtain an optimal local actor network for each SBS. It
should be noted that the number of UEs will only affect the
speed of elastic FL training and does not impact MADDPG.
Additionally, the primary objective of this paper is to address
the cooperative caching challenges among multiple MBSs. As
a result, to maintain focus and ensure a controlled environment
for our analysis, we set a fixed number of UEs during the
training of elastic FL. Research on dynamic UE numbers has
been explored in our previous work [51], [55].

C. Performance Evaluation

The experiments use the cost and cache hit ratio of the
network as performance metrics. The cache hit ratio quantifies
the utilization of the edge caching. If the content requested by
a UE within the coverage of a local SBS b is cached in the
SBS or adjacent SBSs, it is called a cache hit. Otherwise, it
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Fig. 6: Weight distance vs round. (a) Encoder network; (b)
Decoder network; (c) Discriminator network.

is called a cache miss. Thus the cache ratio of SBS b can be
calculated as

CHb =
cache hits

cache misses + cache hits
. (32)

The average cache hit ratio of all SBSs is calculated as

CH =
1

B

B∑
b=1

CHb. (33)

In order to evaluate the performance of the proposed
CEFMR scheme, three baseline caching schemes are intro-
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Fig. 7: Performance vs cache capacity under different schemes.
(a) Cost; (b) Cache hit ratio.

duced as below for comparison.

• Random: Each SBS randomly selects C contents from all
contents for caching.

• C-ε-greedy: Each SBS caches the C contents with the
highest number of requests based on the probability of
1− ε, it randomly selects C contents for caching with a
probability of ε. In the simulation, ε = 0.1.

• Thompson sampling: Each SBS updates the contents
cached in that SBS based on the number of cache hits
and cache misses in the previous time slot, and caches
the C contents with the highest values.

• Bayes-Based Popularity Learning and Sequential Greedy
Algorithm (BSG) [54]: The algorithm first initializes each
content’s popularity with a Beta distribution and updates
their distribution based on the observed frequency of
requests and non-requests for each content. Then the
algorithm sorts SBS based on the sum of the popularity
of UE requested contents within the SBS coverage,
meanwhile it sorts all contents based on popularity. It then
allocates most popular contents to the top-sorted SBS.

• Traditional Federated MADRL (TFMADRL): This
scheme employs traditional federated learning to train the
AAE model, and then utilizes MADDPG for collaborative
caching.

• Elastic Federated learning with Non-RL (EFNRL): This
scheme utilizes elastic federated learning to train the AAE
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Fig. 8: Testing performance vs episode for different cache
capacities. (a) Cost; (b) Reward; (c) Cache hit ratio.

model. During caching, each SBS sorts the predicted
popularity of content and then caches the top C contents.

For the Random scheme, the complexity is O(C), where C
is the cache capacity of the SBS. The C-ε-greedy scheme’s
complexity is O(B × m logm), with B representing the
number of UEs covered by each SBS, and m being the
number of content requests by UEs. Thompson sampling has
an approximate complexity of O(et × B × m logm). The
BSG scheme’s complexity is approximately O(mall logmall),
where mall indicates all cached content in the CS. The
complexity of both Traditional Federated MADRL and our
CEFMR is approximated as Oaarfl+Omadrl. The complexity
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Fig. 9: Performance vs cache capacity for different number of
SBSs. (a) Cost; (b) Reward; (c) Cache hit ratio.

of EFNRL is approximately Oaarfl.
Figs. 6-(a), (b) and (c) show the average weight distance

of each layer between UEs’ local AAE models and global
AAE model, and the average weight distance of all layers
between UEs’ local AAE models and global AAE model under
different rounds in elastic FL training. It can be seen that all
the weight distances tend to decrease as round increases. After
a certain number of rounds, all the weight distances converge.
This is because as the training of elastic FL, both UEs’ local
models and global model gradually converge, and the local
models are trained based on the downloaded global model,
the divergence between local models and global model will

gradually decrease. It also can be seen that all weight distances
do not reduce to zero after convergence. This is because the
data among UEs are diverse, thus the models trained locally
by UEs maintain their own characteristics.

Figs. 7-(a) and (b) show the total cost of all SBSs, where the
cost of each SBS b is αrtb + βrtb,n + χrtb,c + δrtb,e, and cache
hit ratio with different cache capacities of each SBS under
different schemes, respectively. It can be seen that the costs
of all schemes decrease as the cache capacity increases, and
the cache hit ratios increase as the cache capacity increases.
This is because all SBSs which have larger caching capacities
can cache more contents. As a result, UEs can more easily
fetch their requested contents from SBSs. This can alleviate
the pressure on the CS and improve the caching performance
of the system. The Random and Thompson Sampling schemes
have poor performance. This is because these schemes do
not cache contents based on predicting content popularity,
while other five schemes determine the cached contents based
on the predicted interested contents uploaded by the UEs
within the coverage of SBS. Both CEFMR and TFMADRL
schemes outperform EFNRL, BSG, and C-ε-greedy schemes.
This is because CEFMR and TFMADRL schemes employ
cooperative caching using the MADDPG method. CEFMR
and TFMADRL schemes also outperform BSG scheme be-
cause they utilize a more efficient AAE model for popularity
prediction. Furthermore, from the figure, it can be observed
that as cache capacity increases, CEFMR scheme gradually
outperforms TFMADRL scheme. This is because CEFMR
scheme employs elastic federated learning to train the AAE,
which allows individual UE’s personalized models to better
reflect their own data. This means that for each UE, the
personalized AAE model is more likely to provide more
accurate predictions of content popularity. When the SBS’s
cache capacity increases, more accurate predictions can help
cache more suitable content, thereby increasing cache hit rates
and reducing costs.

Figs. 8-(a), (b) and (c) show the fluctuation figures of
the total cost of all SBSs, reward and cache hit ratio with
respect to episodes in the testing stage of MADDPG under
different cache capacities for each SBS. It can be seen that
the performance of the MADDPG tends to be smooth in
different testing episodes, which demonstrates the stability of
the algorithm. From these figures, it can also be seen that cost
decreases as cache capacity increases, while reward and cache
hit ratio increase as cache capacity increases. This is because
as the cache capacity increases, SBS can cache more contents
requested by UEs, and UEs can fetch more contents from the
local SBS, thereby improving the cache hit rate. Moreover, as
cache capacity increases, UEs can fetch more contents from
the local SBSs or from adjacent SBSs, instead of fetching them
from CS. Therefore, increasing cache capacity can reduce cost
and increase the saved cost, i.e., the reward.

Figs 9-(a), (b), and (c) show the variations in cost, reward,
and cache hit ratio with respect to the cache capacity of each
SBS under different numbers of SBSs. When the number of
SBSs is 1, this case provides the worst performance. This
is because the CEFMR scheme has become a single-agent
scheme. The local SBS cannot obtain requested contents from
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the adjacent SBSs, thus the UEs can only fetch the requested
contents from the local SBS or CS with a higher cost. As
the number of SBSs increases, the CEFMR scheme generally
performs better in terms of cost, reward, and cache hit ratio.
This is because more SBSs can cooperate to cache popular
contents. It also indicates the effectiveness of the CEFMR
scheme in coordinating edge caching.

VI. CONCLUSIONS

In this paper, we proposed a cooperative edge caching
scheme named CEFMR to optimize the cost to fetch contents
in next-generation networks. We first proposed an elastic FL
algorithm to train the personalized model for each UE, where
the AAE model was adopted for training to improve the predic-
tion accuracy, then a popular content prediction algorithm was
proposed to predict the popular contents for each SBS based
on the trained AAE model. Finally, we proposed a MADRL
based algorithm to decide where the predicted popular contents
are collaboratively cached among SBSs to reduce the cost
for fetching contents. Our experimental results demonstrated
the superiority of our proposed scheme to existing baseline
caching schemes. The conclusions are summarized as follows:
• CEFMR’s ability to extract hidden features from the local

data of UEs significantly outperforms baseline schemes
in predicting popular content for caching. Unlike other
schemes, CEFMR’s personalized approach personalizes
predictions to the specific usage patterns and preferences
of each UE. This leads to a more accurate and efficient
caching process, as evidenced by a comparison without
AAE model, which shows the improvements in the cache
hit ratio.

• The elastic FL algorithm within CEFMR uniquely assigns
specific weights to the model of each UE based on the
distance between previously trained local models and the
global model. This personalization ensures that each UE’s
model accurately reflects its data characteristics, a feature
not commonly seen in other schemes like traditional FL.
This approach has demonstrated CEFMR can enhance the
efficiency of the cached content and save cost.

• The MADDPG algorithm in CEFMR facilitates coopera-
tive decision-making on whether to cache content in local
SBS, adjacent SBSs or CS. This not only optimizes cache
storage distribution but also significantly reduces opera-
tional costs compared to the schemes without MADRL.
Our comparative analysis reveals that this method leads
to improvements in cache efficiency and cost savings.

REFERENCES

[1] X. Wang, Y . Han, C. Wang, Q. Zhao, X. Chen and M. Chen,
"In-edge AI: Intelligentizing mobile edge computing, caching and
communication by federated learning," IEEE Netw, vol. 33, no. 5, pp.
156–165, Sept.-Oct. 2019, doi: 10.1109/MNET.2019.1800286.

[2] Q. Wu, Y. Zhao and Q. Fan, "Time-Dependent Performance Mod-
eling for Platooning Communications at Intersection," IEEE Inter-
net Things, vol. 9, no. 19, pp. 18500-18513, 1 Oct.1, 2022, doi:
10.1109/JIOT.2022.3161028.

[3] T. Li, P. Fan, Z. Chen and K. B. Letaief, "Optimum Trans-
mission Policies for Energy Harvesting Sensor Networks Powered
by a Mobile Control Center," in IEEE Transactions on Wireless
Communications, vol. 15, no. 9, pp. 6132-6145, Sept. 2016, doi:
10.1109/TWC.2016.2578925.

[4] Z. Yao, J. Jiang, P. Fan, Z. Cao and V. O. K. Li, "A neighbor-
table-based multipath routing in ad hoc networks," The 57th IEEE
Semiannual Vehicular Technology Conference, 2003. VTC 2003-
Spring., Jeju, Korea (South), 2003, pp. 1739-1743 vol.3, doi:
10.1109/VETECS.2003.1207121.

[5] Q. Wu, S. Xia, Q. Fan and Z. Li, "Performance Analysis of IEEE
802.11p for Continuous Backoff Freezing in IoV, " Electronics, Vol. 8,
No. 1404, Dec. 2019.

[6] J. Zhang, P. Fan and K. B. Letaief, "Network Coding for Efficient
Multicast Routing in Wireless Ad-hoc Networks," in IEEE Transac-
tions on Communications, vol. 56, no. 4, pp. 598-607, April 2008, doi:
10.1109/TCOMM.2008.060238.

[7] E. Bastug, M. Bennis and M. Debbah, "Living on the edge: The role of
proactive caching in 5G wireless networks," IEEE Commun. Mag, vol.
52, no. 8, pp. 82-89, Aug. 2014, doi: 10.1109/MCOM.2014.6871674.

[8] A. Tian, B. Feng, H. Zhou, Y. Huang, K. Sood, S. Yu and H.
Zhang, "Efficient Federated DRL-Based Cooperative Caching for
Mobile Edge Networks," IEEE Transactions on Network and Ser-
vice Management, vol. 20, no. 1, pp. 246-260, March 2023, doi:
10.1109/TNSM.2022.3198074.

[9] Y. Zhang, Y. Zhou, S. Zhang, G. Gui, B. Adebisi, H. Gacanin and H.
Sari. An Efficient Caching and Offloading Resource Allocation Strategy
in Vehicular Social Networks[J]. IEEE Transactions on Vehicular
Technology, 2024, 73(4): 5690-5703.

[10] J. Li, H. Chen, Y. Chen, Z. Lin, B. Vucetic and L. Hanzo, "Pricing and
Resource Allocation via Game Theory for a Small-Cell Video Caching
System," IEEE J. Sel. Areas Commun, vol. 34, no. 8, pp. 2115-2129,
Aug. 2016, doi: 10.1109/JSAC.2016.2577278.

[11] G. Paschos, E. Bastug, I. Land, G. Caire and M. Debbah, "Wire-
less caching: technical misconceptions and business barriers," IEEE
Commun. Mag, vol. 54, no. 8, pp. 16-22, August 2016, doi:
10.1109/MCOM.2016.7537172.

[12] M. Yan, C. A. Chan, W. Li, L. Lei, A. F. Gygax and C. -L. I,
"Assessing the Energy Consumption of Proactive Mobile Edge Caching
in Wireless Networks," IEEE Access, vol. 7, pp. 104394-104404, 2019,
doi: 10.1109/ACCESS.2019.2931449.

[13] Y. Chen, Y. Ning, M. Slawski and H. Rangwala, "Asynchronous Online
Federated Learning for Edge Devices with Non-IID Data," 2020 IEEE
International Conference on Big Data (Big Data), Atlanta, GA, USA,
2020, pp. 15-24, doi: 10.1109/BigData50022.2020.9378161.

[14] A. Hammoud, H. Otrok, A. Mourad and Z. Dziong, "On Demand
Fog Federations for Horizontal Federated Learning in IoV," IEEE
Transactions on Network and Service Management, vol. 19, no. 3, pp.
3062-3075, Sept. 2022, doi: 10.1109/TNSM.2022.3172370.

[15] Y. Gao, L. Liu, X. Zheng, C. Zhang and H. Ma, "Federated Sens-
ing: Edge-Cloud Elastic Collaborative Learning for Intelligent Sens-
ing," IEEE IoT-J, vol. 8, no. 14, pp. 11100-11111, July. 2021, doi:
10.1109/JIOT.2021.3053055.

[16] NR and NG-RAN Overall Description, document 3GPP Technical
Specification TS 38.300, Release 15, 2019.

[17] M. F. Pervej, L. T. Tan and R. Q. Hu, "User Preference Learning-Aided
Collaborative Edge Caching for Small Cell Networks," GLOBECOM
2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan,
2020, pp. 1-6, doi: 10.1109/GLOBECOM42002.2020.9322208.

[18] L. Yao, Y. Wang, Q. Xia and R. Xu, "Popularity Prediction Caching
Using Hidden Markov Model for Vehicular Content Centric Net-
works," 2019 20th IEEE International Conference on Mobile Data
Management (MDM), Hong Kong, China, 2019, pp. 533-538, doi:
10.1109/MDM.2019.00115.

[19] Y. Tao, Y. Jiang, F. -C. Zheng, M. Bennis and X. You, "Content Popu-
larity Prediction in Fog-RANs: A Bayesian Learning Approach," 2021
IEEE Global Communications Conference (GLOBECOM), Madrid,
Spain, 2021, pp. 1-6, doi: 10.1109/GLOBECOM46510.2021.9685947.

[20] Y. Liu, T. Zhi, H. Xi, X. Duan and H. Zhang, "A Novel Content
Popularity Prediction Algorithm Based on Auto Regressive Model in
Information-Centric IoT," in IEEE Access, vol. 7, pp. 27555-27564,
2019, doi: 10.1109/ACCESS.2019.2901525.

[21] M. Feng, M. Yu and R. Li, "Multi-feature content popularity pre-
diction algorithm based on GRU-Attention in V-NDN," 2023 26th
International Conference on Computer Supported Cooperative Work
in Design (CSCWD), Rio de Janeiro, Brazil, 2023, pp. 1136-1141, doi:
10.1109/CSCWD57460.2023.10152582.

[22] M. F. Pervej, L. T. Tan and R. Q. Hu, "Artificial Intelligence Assisted
Collaborative Edge Caching in Small Cell Networks," GLOBECOM
2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan,
2020, pp. 1-7, doi: 10.1109/GLOBECOM42002.2020.9322101.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3403842

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF KENT. Downloaded on June 10,2024 at 08:59:32 UTC from IEEE Xplore.  Restrictions apply. 



17

[23] M. Saputra, D. T. Hoang, D. N. Nguyen and E. Dutkiewicz, "JOCAR:
A Jointly Optimal Caching and Routing Framework for Coopera-
tive Edge Caching Networks," 2019 IEEE Global Communications
Conference (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-6, doi:
10.1109/GLOBECOM38437.2019.9013745.

[24] H. Xie, J. Xiong, L. Gui, B. Li and J. Li, "On User Cooperative
Caching by Reverse Auction," 2019 IEEE 90th Vehicular Technology
Conference (VTC2019-Fall), Honolulu, HI, USA, 2019, pp. 1-5, doi:
10.1109/VTCFall.2019.8891441.

[25] C. Li, S. Gong, Z. Ning, L. Zhao, Q. Jiang and P. Zhou, "Robust
Caching Control in Crowdsourced Content-Centric Mobile Network-
ing," in IEEE Access, vol. 6, pp. 59811-59821, 2018, doi: 10.1109/AC-
CESS.2018.2875060.

[26] I. Liao, K. -K. Wong, Y. Zhang, Z. Zheng and K. Yang, "MDS
Coded Cooperative Caching for Heterogeneous Small Cell Networks,"
GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
Singapore, 2017, pp. 1-7, doi: 10.1109/GLOCOM.2017.8254854.

[27] C. Fang, C. Liu, Z. Wang, Y. Sun, W. Ni, P. Li and S. Guo,
"Cache-Assisted Content Delivery in Wireless Networks: A New Game
Theoretic Model," in IEEE Systems Journal, vol. 15, no. 2, pp. 2653-
2664, June 2021, doi: 10.1109/JSYST.2020.3001229.

[28] S. Araf, A. S. Saha, S. H. Kazi, N. H. Tran and M. G. R. Alam, "UAV
Assisted Cooperative Caching on Network Edge Using Multi-Agent
Actor-Critic Reinforcement Learning," IEEE Trans. Veh. Technol, vol.
72, no. 2, pp. 2322-2337, Feb. 2023, doi: 10.1109/TVT.2022.3209079.

[29] S. Chen, Z. Yao, X. Jiang, J. Yang and L. Hanzo, "Multi-Agent Deep
Reinforcement Learning-Based Cooperative Edge Caching for Ultra-
Dense Next-Generation Networks," IEEE Trans. Commun, vol. 69, no.
4, pp. 2441-2456, April 2021, doi: 10.1109/TCOMM.2020.3044298.

[30] W. Jiang, G. Feng, S. Qin, T. S. P. Yum and G. Cao, "Multi-Agent
Reinforcement Learning for Efficient Content Caching in Mobile D2D
Networks," IEEE Trans. Wireless Commun, vol. 18, no. 3, pp. 1610-
1622, March 2019, doi: 10.1109/TWC.2019.2894403.

[31] X. Wu, J. Li, M. Xiao, P. C. Ching and H. V. Poor, "Multi-Agent
Reinforcement Learning for Cooperative Coded Caching via Homotopy
Optimization," IEEE Trans. Wireless Commun, vol. 20, no. 8, pp. 5258-
5272, Aug. 2021, doi: 10.1109/TWC.2021.3066458.

[32] C. Zhong, M. C. Gursoy and S. Velipasalar, "Deep Reinforcement
Learning-Based Edge Caching in Wireless Networks," IEEE Trans.
Cogn. Commun. Netw, vol. 6, no. 1, pp. 48-61, March 2020, doi:
10.1109/TCCN.2020.2968326.

[33] K. Jiang, H. Zhou, D. Zeng and J. Wu, "Multi-Agent Reinforce-
ment Learning for Cooperative Edge Caching in Internet of Vehi-
cles," 2020 IEEE 17th International Conference on Mobile Ad Hoc
and Sensor Systems (MASS), Delhi, India, 2020, pp. 455-463, doi:
10.1109/MASS50613.2020.00062.

[34] Q. Wu, S. Wang, H. Ge, P. Fan, Q. Fan and K. B. Letaief,
"Delay-Sensitive Task Offloading in Vehicular Fog Computing-
Assisted Platoons," in IEEE Transactions on Network and Ser-
vice Management, vol. 21, no. 2, pp. 2012-2026, April 2024, doi:
10.1109/TNSM.2023.3322881.

[35] Q. Wu, W. Wang, P. Fan, Q. Fan, J. Wang and K. B. Letaief,
"URLLC-Awared Resource Allocation for Heterogeneous Vehic-
ular Edge Computing,"IEEE Trans. Veh. Technol., 2024, doi:
10.1109/TVT.2024.3370196.

[36] Q. Wu, S. Shi, Z. Wan, Q. Fan, P. Fan and C. Zhang, “Towards V2I
Age-aware Fairness Access: A DQN Based Intelligent Vehicular Node
Training and Test Method”, Chinese Journal of Electronics, vol. 32,
no. 6, 2023, pp. 1230-1244.

[37] J. Song, M. Sheng, T. Q. S. Quek, C. Xu and X. Wang, "Learning-
Based Content Caching and Sharing for Wireless Networks," IEEE
Trans. Commun, vol. 65, no. 10, pp. 4309-4324, Oct. 2017, doi:
10.1109/TCOMM.2017.2713384.

[38] X. Cai, J. Zheng, Y. Fu, Y. Zhang and W. Wu, "Cooperative content
caching and delivery in vehicular networks: A deep neural network
approach," China Commun, vol. 20, no. 3, pp. 43-54, March 2023,
doi: 10.23919/JCC.2023.03.004.

[39] F. Wang, F. Wang, J. Liu, R. Shea and L. Sun, "Intelligent Video
Caching at Network Edge: A Multi-Agent Deep Reinforcement Learn-
ing Approach," IEEE INFOCOM 2020 - IEEE Conference on Com-
puter Communications, Toronto, ON, Canada, 2020, pp. 2499-2508,
doi: 10.1109/INFOCOM41043.2020.9155373.

[40] Y. Chen, Y. Cai, H. Zheng, J. Hu and J. Li, "Cooperative caching
for scalable video coding using value-decomposed dimensional net-
works," China Commun, vol. 19, no. 9, pp. 146-161, Sept. 2022, doi:
10.23919/JCC.2022.00.006.

[41] D. Zhang, W. Wang, J. Zhang, T. Zhang, J. Du and C. Yang, "Novel
Edge Caching Approach Based on Multi-Agent Deep Reinforcement
Learning for Internet of Vehicles," IEEE Trans. Intell. Transp. Syst,
doi: 10.1109/TITS.2023.3264553.

[42] J. Chang, N. Zhang, M. Tao and H. Tuo, "Federated Multi-Agent
Reinforcement Learning for Collaborative Edge Caching in Content
Delivery Networks," 2022 14th International Conference on Wireless
Communications and Signal Processing (WCSP), Nanjing, China,
2022, pp. 166-170, doi: 10.1109/WCSP55476.2022.10039249.

[43] S. B. Prathiba, G. Raja, S. Anbalagan, S. Gurumoorthy, N. Kumar and
M. Guizani, "Cybertwin-Driven Federated Learning Based Personal-
ized Service Provision for 6G-V2X," IEEE Trans. Veh. Technol, vol.
71, no. 5, pp. 4632-4641, May 2022, doi: 10.1109/TVT.2021.3133291.

[44] D. Sun, X. Li, J. Wen, X. Wang, Z. Han and V. C. M. Leung, "Federated
Deep Reinforcement Learning for Recommendation-Enabled Edge
Caching in Mobile Edge-Cloud Computing Networks," in IEEE Journal
on Selected Areas in Communications, vol. 41, no. 3, pp. 690-705,
March 2023, doi: 10.1109/JSAC.2023.3235443.

[45] Y. Liu and B. Mao, "On a Novel Content Edge Caching Ap-
proach based on Multi-Agent Federated Reinforcement Learning in
Internet of Vehicles," 2023 32nd Wireless and Optical Communica-
tions Conference (WOCC), Newark, NJ, USA, 2023, pp. 1-5, doi:
10.1109/WOCC58016.2023.10139417.

[46] W. Liu, H. Zhang, H. Ding, D. Li and D. Yuan, "Mobility-Aware
Coded Edge Caching in Vehicular Networks with Dynamic Con-
tent Popularity," 2021 IEEE Wireless Communications and Net-
working Conference (WCNC), Nanjing, China, 2021, pp. 1-6, doi:
10.1109/WCNC49053.2021.9417383.

[47] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao and M. S. Hossain, "Mobility-
Aware Proactive Edge Caching for Connected Vehicles Using Federated
Learning," IEEE Trans. Intell. Transp. Syst, vol. 22, no. 8, pp. 5341-
5351, Aug. 2021, doi: 10.1109/TITS.2020.3017474.

[48] Q. Wu, X. Wang, Q. Fan, P. Fan, C. Zhang and Z. Li, “High Stable and
Accurate Vehicle Selection Scheme based on Federated Edge Learning
in Vehicular Networks”, China Communications, Vol. 20, No. 3, Mar.
2023, pp. 1-17.

[49] D. Long, Q. Wu, Q. Fan, P. Fan, Z. Li and J. Fan, “A Power Allocation
Scheme for MIMO-NOMA and D2D Vehicular Edge Computing Based
on Decentralized DRL”, Sensors, Vol. 23, No. 7, 2023, Art. no. 3449.

[50] S. Manzoor, A. Mian, A. Zoha and M. Imran, et al. "Federated learning
empowered mobility-aware proactive content offloading framework for
fog radio access networks." Future Generation Computer Systems 133
(2022): 307-319.

[51] Q. Wu, Y. Zhao, Q. Fan, P. Fan, J. Wang and C. Zhang, "Mobility-
Aware Cooperative Caching in Vehicular Edge Computing Based on
Asynchronous Federated and Deep Reinforcement Learning," IEEE J.
Sel. Topics Signal Process, vol. 17, no. 1, pp. 66-81, Jan. 2023, doi:
10.1109/JSTSP.2022.3221271.

[52] M. Parvini, M. R. Javan, N. Mokari, B. Abbasi and E. A. Jorswieck,
"AoI-Aware Resource Allocation for Platoon-Based C-V2X Networks
via Multi-Agent Multi-Task Reinforcement Learning," IEEE Trans.
Veh. Technol, doi: 10.1109/TVT.2023.3259688.

[53] H. Zhu, Q. Wu, X.-J. Wu, Q. Fan, P. Fan, and J. Wang, "Decentralized
power allocation for MIMO-NOMA vehicular edge computing based
on deep reinforcement learning," IEEE Internet of Things Journal, vol.
9, no. 14, pp. 12 770–12 782, 2022, doi: 10.1109/JIOT.2021.3138434.

[54] T. Nie, J. Luo, L. Gao, F. -C. Zheng and L. Yu, "Cooperative Edge
Caching in Small Cell Networks with Heterogeneous Channel Qual-
ities," 2020 IEEE 91st Vehicular Technology Conference (VTC2020-
Spring), Antwerp, Belgium, 2020, pp. 1-6, doi: 10.1109/VTC2020-
Spring48590.2020.9128365.

[55] W. Wang, Y. Zhao, Q. Wu, Q. Fan, C. Zhang and Z. Li, "Asynchronous
Federated Learning Based Mobility-aware Caching in Vehicular Edge
Computing," 2022 14th International Conference on Wireless Commu-
nications and Signal Processing (WCSP), Nanjing, China, 2022, pp.
1-5, doi: 10.1109/WCSP55476.2022.10039430.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3403842

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF KENT. Downloaded on June 10,2024 at 08:59:32 UTC from IEEE Xplore.  Restrictions apply. 



18

Qiong Wu (Senior Member, IEEE) received the
Ph.D. degree in information and communication
engineering from National Mobile Communications
Research Laboratory, Southeast University, Nanjing,
China, in 2016. From 2018 to 2020, he was a
postdoctoral researcher with the Department of Elec-
tronic Engineering, Tsinghua University, Beijing,
China. He is currently an associate professor with the
School of Internet of Things Engineering, Jiangnan
University, Wuxi, China.

Dr. Wu is a Senior Member of IEEE. He has
published over 60 papers in high impact journals and conferences and
authorized over 20 patents. He has received the young scientist award for
ICCCS’24. He has severed as the section board member of Sensors, the early
career editorial board member of CMC-Computers Materials & Continua,
Radio Engineering, and Chinese Journal on Internet of Things, the lead guest
editor of Sensors, CMC-Computers Materials & Continua and Frontiers in
Space Technologies, the guest editor of Electronics, the TPC co-chair of
WCSP’22, the workshop chair of NCIC’23 and ICFEICT’24, as well as the
TPC member and session chair for over 10 international Conferences. His
current research interest focuses on vehicular networks, autonomous driving
communication technology, and machine learning.

Wenhua Wang received the B.S. degree from the
Jiangnan University, Wuxi, China, in 2021. He is
currently working toward the M.S. degree with
Jiangnan University. His research interests include
federated learning, reinforcement learning, and mo-
bile edge computing.

Pingyi Fan (Senior Member, IEEE) received the
B.S. degree from the Department of Mathematics,
Hebei University, in 1985, the M.S. degree from the
Department of Mathematics, Nankai University, in
1990, and the Ph.D. degree from the Department
of Electronic Engineering, Tsinghua University, Bei-
jing, China, in 1994. From August 1997 to March
1998, he visited The Hong Kong University of Sci-
ence and Technology as a Research Associate. From
May 1998 to October 1999, he visited the University
of Delaware, Newark, DE, USA, as a Research

Fellow. In March. 2005, he visited NICT, Japan, as a Visiting Professor. From
June 2005 to May 2014, he visited The Hong Kong University of Science
and Technology for many times. From July 2011 to September 2011, he
was a Visiting Professor at the Institute of Network Coding, The Chinese
University of Hong Kong. He is currently a Professor and the director of
open source data recognition innovation center at the Department of Electrical
Engineering (EE), Tsinghua University. His main research interests include
B5G technology in wireless communications, such as MIMO, OFDMA,
network coding, network information theory, machine learning, and big data
analysis.

Dr. Fan is a Fellow of IET and an Overseas Member of IEICE. He is
also a reviewer of more than 40 international journals, including 30 IEEE
journals and eight EURASIP journals. He has received some academic awards,
including the IEEE WCNC’08 Best Paper Award, the IEEE ComSoc Excellent
Editor Award for IEEE TRANSACTIONS ON WIRELESS COMMUNI-
CATIONS in 2009, the ACM IWCMC’10 Best Paper Award, the IEEE
Globecom’14 Best Paper Award, the IEEE ICC’20 Best Paper Award, the
IEEE TAOS Technical Committee’20 Best Paper Award, IEEE ICCCS Best
Paper Awards in 2023 and 2024, the CIEIT Best Paper Awards in 2018
and 2019. He has served as an editor of IEEE Transactions on Wireless
Communications, Inderscience International Journal of Ad Hoc and Ubiq-
uitous Computing and Wiley Journal of Wireless Communication and Mobile
Computing, MDPI Electronics and Open Journal of Mathematical Sciences
etc. He has attended to organize many international conferences, as the
general chairs/TPC chair/ Plenary/Keynote speaker for over 30 international
Conferences, including as the General Co-Chair of EAI Chinacom2020, 2023
and IEEE VTS HMWC 2014, the TPC Co-Chair of IEEE ICCCS2024 and a
TPC Member of IEEE ICC, Globecom, WCNC, VTC, and Inforcom. He has
served as an Editor for IEEE TRANSACTIONS ON WIRELESS COMMU-
NICATIONS, International Journal of Ad Hoc and Ubiquitous Computing
(Inderscience), Journal of Wireless Communication and Mobile Computing
(Wiley), Electronics (MDPI), and Open Journal of Mathematical Sciences,
IAES international journal of artificial intelligence. He is also an associate
editor of IEEE Transactions on cognitive communications and networking.

Qiang Fan received his Ph.D. degree in Electri-
cal and Computer Engineering from New Jersey
Institute of Technology (NJIT) in 2019, and his
M.S. degree in Electrical Engineering from Yun-
nan University of Nationalities, China, in 2013.
He was a postdoctor researcher in the Department
of Electrical and Computer Engineering, Virginia
Tech. Currently, he is a staff engineer in Qualcomm,
USA. He has served as a reviewer for over 120
journal submissions such as IEEE Transactions on
Cloud Computing, IEEE Journal on Selected Areas

in Communications, IEEE Transactions on Communications. His current
research interests include wireless communications and networking, mobile
edge computing, machine learning and drone assisted networking.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3403842

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF KENT. Downloaded on June 10,2024 at 08:59:32 UTC from IEEE Xplore.  Restrictions apply. 



19

JHuling Zhu (SM’17) received the B.S degree
from Xidian University, China, and the Ph.D. degree
from Tsinghua University, China. She is currently
a Reader (Associate Professor) in the School of
Engineering, University of Kent, United Kingdom.
Her research interests are in the area of wireless
communications. She was holding European Com-
mission Marie Curie Fellowship from 2014 to 2016.
She received the best paper award from IEEE Globe-
com 2011. She was Symposium Co-Chair for IEEE
Globecom 2015 and IEEE ICC 2018, and Track Co-

Chair of IEEE VTC2016-Spring and VTC2018-Spring. Currently, she serves
as an Editor for IEEE Transactions on Vehicular Technology.

Khaled Ben Letaief (Fellow, IEEE) received the
B.S. (Hons.), M.S., and Ph.D. degrees in electrical
engineering from Purdue University, West Lafayette,
IN, USA, in December 1984, August 1986, and May
1990, respectively.

From 1990 to 1993, he was a Faculty Mem-
ber with The University of Melbourne, Melbourne,
VIC, Australia. Since 1993, he has been with The
Hong Kong University of Science and Technology
(HKUST). While at HKUST, he has held many
administrative positions, including the Head of the

Electronic and Computer Engineering Department, the Director of the Wire-
less IC Design Center, the Founding Director of Huawei Innovation Lab-
oratory, and the Director of Hong Kong Telecom Institute of Information
Technology. While at HKUST, he has also served as a Chair Professor and
the Dean of Engineering. Under his leadership, the School of Engineering
has not only transformed its education and scope and produced very high
caliber scholarship, but it has also actively pursued knowledge transfer and
societal engagement in broad contexts. It has also dazzled in international
rankings (rising from #26 in 2009 to #14 in the world in 2015 according to
QS World University Rankings). From September 2015 to March 2018, he
joined HBKU as a Provost to help establish a research-intensive university
in Qatar in partnership with strategic partners that include Northwestern
University, Carnegie Mellon University, Cornell, and Texas A&M. He served
as Consultants for different organizations, including Huawei, ASTRI, ZTE,
Nortel, PricewaterhouseCoopers, and Motorola. He is currently with the Peng
Cheng Laboratory, Shenzhen, China. He is also an Internationally Recognized
Leader in wireless communications and networks with research interests in
artificial intelligence, big data analytics systems, mobile cloud, and edge
computing, tactile internet, and 5G systems. In these areas, he has over 630
articles with over 38,350 citations and an H-index of 87 along with 15 patents,
including 11 U.S. inventions.

Dr. Letaief is a member of the United States National Academy of
Engineering, a fellow of Hong Kong Institution of Engineers, and a member
of Hong Kong Academy of Engineering Sciences. He was a recipient of many
distinguished awards and honors, including the 2019 Distinguished Research
Excellence Award by HKUST School of Engineering (Highest Research
Award and only one recipient/three years is honored for his/her contributions),
the 2019 IEEE Communications Society and Information Theory Society
Joint Paper Award, the 2018 IEEE Signal Processing Society Young Author
Best Paper Award, the 2017 IEEE Cognitive Networks Technical Committee
Publication Award, the 2016 IEEE Signal Processing Society Young Author
Best Paper Award, the 2016 IEEE Marconi Prize Paper Award in Wire-
less Communications, the 2011 IEEE Wireless Communications Technical
Committee Recognition Award, the 2011 IEEE Communications Society
Harold Sobol Award, the 2010 Purdue University Outstanding Electrical and
Computer Engineer Award, the 2009 IEEE Marconi Prize Award in Wireless
Communications, the 2007 IEEE Communications Society Joseph LoCicero
Publications Exemplary Award, and more than 16 IEEE best paper awards.
He is well recognized for his dedicated service to professional societies
and IEEE, where he has served in many leadership positions, including the
Treasurer of the IEEE Communications Society, the IEEE Communications
Society VicePresident for Conferences, the Chair of the IEEE Committee
on Wireless Communications, an Elected Member of the IEEE Product
Services and Publications Board, and the IEEE Communications Society Vice-
President for Technical Activities. He is the Founding Editor-in-Chief of the
prestigious IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
and has served on the Editorial Board of other premier journals, including
the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS:
Wireless Communications Series (as the Editor-in-Chief). He has also been
involved in organizing many flagship international conferences. He also
served as the President of the IEEE Communications Society from 2018
to 2019, the world’s leading organization for communications professionals
with headquarter in New York City and members in 162 countries. He is
also recognized by Thomson Reuters as an ISI Highly Cited Researcher
and was listed among the 2020 top 30 of AI 2000 Internet of Things
Most Influential Scholars. IEEE Committee on Wireless Communications, an
Elected Member of the IEEE Product Services and Publications Board, and the
IEEE Communications Society Vice-President for Technical Activities. He is
the Founding Editor-in-Chief of the prestigious IEEE TRANSACTIONS ON
WIRELESS COMMUNICATIONS and has served on the Editorial Board
of other premier journals, including the IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS: Wireless Communications Series (as the
Editor-in-Chief). He has also been involved in organizing many flagship
international conferences. He also served as the President of the IEEE
Communications Society from 2018 to 2019, the world’s leading organization
for communications professionals with headquarter in New York City and

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3403842

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF KENT. Downloaded on June 10,2024 at 08:59:32 UTC from IEEE Xplore.  Restrictions apply. 



20

members in 162 countries. He is also recognized by Thomson Reuters as an
ISI Highly Cited Researcher and was listed among the 2020 top 30 of AI
2000 Internet of Things Most Influential Scholars.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3403842

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF KENT. Downloaded on June 10,2024 at 08:59:32 UTC from IEEE Xplore.  Restrictions apply. 


