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ABSTRACT
This paper takes inspiration from recent model-free techniques for estimating the risk-free rate and 
dividend yield from European-style option prices. It proposes a methodology for computing implied 
volatility (IV) that integrates this option-derived information. Instead of relying on traditional inputs 
like treasury yields and historical dividend yields, our approach incorporates forward-looking esti-
mates of the dividend-adjusted underlying asset price and the implied discount factor into the IV 
computation. This results in a simpler yet more informative adjustment that may prove useful in 
updating the computation of IV.

1. Introduction

The Black-Scholes-Merton (BSM73, henceforth) formula 
is one of the most recognized result in modern finance. 
Within a simple set of assumptions, the formula offers a 
framework for pricing European options based on just six 
inputs: the underlying asset’s spot price, the option’s strike 
price, the risk-free rate of interest, the dividend yield, the 
time to maturity of the option, and a constant volatility 
parameter. Among these parameters, volatility is the only 
variable that cannot be observed directly, hence has to be 
estimated.

One approach in the estimation of this volatility pa-
rameter, 𝜎, entails the use of historical price data of the 
underlying asset over a period of the same length as 
the option’s time to maturity, see in detail (Björk, 2020) 
and(Hull, 2018). This follows from the underlying as-
sumption in the BSM73 model where the dynamics of 
the underlying asset (under the physical measure ℙ) are 
given by the stochastic differential equation dSt = 𝜇Stdt +
𝜎StdWt  where, 𝜇 denotes the constant drift parameter, 𝜎
represents the standard deviation of the returns of the log-
asset price and W t  is a standard Wiener process. Under 
this approach, volatility is constant, and the estimate for 
the volatility obtained is backward-looking in nature as it 
is over a time period in the past, not for a future period 
(over the life of the option).

Another approach, which is more robust and often 
preferred due to its application to hedging and risk man-
agement in general, is to invert the BSM73 formula and 
extract the volatility variable, given that all other variables 
can be observed from the market (or estimated). Since 
option prices are already quoted in the market, this im-
plies that the market has some level of information with 
regard to this unobserved volatility. Using the BSM73 for-
mula, we can solve for 𝜎 by considering the option price 
quoted in the market and substituting the observable 
variables. This volatility derived from the quoted price 
for a single option is called the (BSM) implied volatility 
(BSMIV, henceforth).

BSMIV, however, cannot be calculated explicitly and 
studies resort to either closed-form approximations such 
as (Brenner & Subrahmanyam, 1988) and others (see 
(Fengler, 2012) for a review and comparison) or itera-
tive procedures such as Newton-Raphson, see (Manaster 
& Koehler, 1982), or its variants.

Of the five parameters needed in the BSMIV extrac-
tion, the strike price and the time to maturity are specified 
by the terms of the option contract, whereas the remain-
ing three: the underlying asset’s spot price, the dividend 
yield, and the risk-free rate of interest are obtained from 
other markets either directly, indirectly through proxies 
or estimated.
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Figure 1. Comparison of the implied volatility obtained from the three approaches for SPX call and put options that mature on 21 
November 2003. 

Figure 2. Comparison of the IV smirk for out-of-the-money options obtained from the three approaches that mature on 21 November 
2003. 

In the extraction of the BSMIV, the treasury rate1 
whose term is close to the option maturity is usually 
used as a proxy for the risk-free rate, and if none is close 
enough one interpolates or extrapolates between available 
treasury rates such as in (Zhang & Xiang, 2008). An alter-
native proxy for the risk-free rate as suggested in recent 
literature, which would not require interpolation or ex-
trapolation as it matches the option’s maturity precisely, 
is the option-implied risk-free interest rate, which is ex-
tracted from the market prices of options. Indeed, given 
the option’s time to maturity, the implied discount factor, 
e–rT , is determined.

The underlying asset price is observed from the stock 
market while the dividend yield has to be estimated. 

Due to technicalities in obtaining an accurate estima-
tion of the future dividend yield, market practitioners 
prefer to use Black’s formula rather than the BSM73 for-
mula because the dividend component does not have 
to be estimated explicitly as all information regard-
ing dividends is captured by the implied forward price,
see, (Hull, 2018).

The derivation of the implied forward price varies 
across the literature. In (Zhang & Xiang, 2008), the 
implied forward price is calculated from an at-the-
money (ATM, henceforth) strike, the corresponding 
call and put option prices at that strike with trea-
sury rates used for discounting. In contrast, the Cboe 
European-Style Options Implied Volatility Calculation 
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Table 1. Parameter estimation results on the market data of SPX options (standard) maturing on 17 February 2023, 17 March 2023, 21 
April 2023, 19 May 2023, 21 July 2023, and 19 January 2024. �%�'�[�Y represents the discount factor obtained via the approach in (Zhang & 
Xiang, 2008) and is calculated using the one-month, two-months, three-months, four-months, six-months and one-year treasury yield 
curve rates given respectively by 4.69%, 4.64%, 4.72%, 4.75%, 4.8% and 4.68%. �%�'�[�Y and �%�'�L�N are the implied discount factors obtained 
using the approach in the Cboe paper and our proposed approach, respectively

Time to maturity �'�[�Y0 �%�'�[�Y �'�D�Q
0 �%�'�D�Q �'�L�N

0 �%�'�L�N

28 3977.31 0.9964087 3977.20 0.9961106 3977.16 0.9964120
56 3985.96 0.9929064 3986.09 0.9923645 3986.02 0.9925000
91 4000.15 0.9883013 4000.33 0.9879649 3999.92 0.9880973

119 4009.70 0.9846330 4010.01 0.9845612 4009.79 0.9844826
182 4034.47 0.9763499 4035.35 0.9755800 4035.35 0.9763463
364 4106.03 0.9544006 4105.81 0.9520073 4105.95 0.9529330

Figure 3. Comparison of the IV smirk for out-of-the-money options obtained from the three approaches for SPX call and put options that 
mature on 17 February 2023.

Methodology paper2 (Cboe paper, henceforth) consid-
ers options with strikes centered around an ATM strike, 
then apply ordinary least squares estimation to find 
the implied dividend and the implied discount factor. 
These estimates are in turn used, together with the un-
derlying asset price, to calculate the implied forward
price.

With all variables available, IV is extracted using nu-
merical procedures.

In this present paper, we propose a computation of 
the BSMIV that incorporates the model-free estimates 
of the implied discount factor and the dividend-adjusted 
underlying asset price presented in (Kamau & Mwaniki, 
2023). Thus, in lieu of treasury yields, we use option-
implied interest rates and incorporate a forward-looking 
estimate of the dividend-adjusted underlying asset price. 
Therefore, in this approach, the implied forward price 
does not need to be computed explicitly. Further, in 
our estimation we take into consideration all available 
quoted options data not just those near an ATM strike. 
Hence, we rely on the repeated median approach which 

is more robust to outliers than the ordinary least squares 
estimation used in the Cboe paper. This paper therefore 
contributes to the literature on IV computation as it 
presents an approach that makes exclusive use of market 
option data to extract BSMIV.

The rest of the paper is organized as follows: Section 2 
outlines the methodology used in the paper with Section 
2.1 describing what is in the literature (our benchmark) 
and Section 2.2 presenting the approach proposed in this 
paper, Section 3 provides a description of the data used, 
the empirical results obtained, and a discussion of the 
results, and Section 4 concludes.

2. Methodology

2.1. Using Black’s formula

2.1.1. Definition
Let F0 denote the forward price of an index for a contract 
with time to maturity T, r the risk-free rate of interest, 𝜎
the volatility, and K the strike price.
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Figure 4. Comparison of the IV smirk for out-of-the-money options obtained from the three approaches for SPX call and put options that 
mature on 17 March 2023. 

Black’s formula for calls and puts is given, respectively, 
by 

CB = F0e–rTΦ(d1)–Ke–rTΦ(d2) and
PB = Ke–rTΦ(–d2)–F0e–rTΦ(–d1), (1)

where d1 =
log F0

K
+ 1

2
2T

T
and d2 = d1 – 𝜎

√
T .

As noted before, the strike price and the time to ma-
turity are specified by the terms of the option contract 
whereas the risk-free rate of interest is either estimated 
or determined via a proxy. Therefore, the task is to deter-
mine the only remaining variable, F0.

2.1.2. Computation of the implied forward price
There are different approaches that have been proposed 
in the literature on the calculation of the implied forward 
price, F0. We highlight two.

Let Ci and Pi denote the mid-prices of each option’s 
bid/ask quotation, for calls and puts, respectively, with 
strike K i (for i = 1, 2, … , n).

(a) Zhang & Xiang (2008)
In their approach, for a given set of call and put 
options data with the same time to maturity, T, 
but with n different strike prices, (Zhang & Xiang, 
2008) first identify an ATM strike. This is defined 
to be the strike at which the absolute difference 
between the call and put prices is the smallest.

The implied forward price under this approach, 
Fzx

0 , is then determined by 

Fzx
0 = KATM + erT × (CATM – PATM), (2)

where CATM  and PATM  are the call and put prices, 
respectively, at an ATM strike KATM , and r is the 
risk-free rate.

(b) Cboe paper
In this approach, as before, first identify an ATM 
strike. Then select the strikes and the correspond-
ing option prices that are ATM – 8% to ATM + 8%. 
By put-call parity, for call and put options with 
the same strike and time to maturity, we have the 
relation 

C – P = (S – D)–Ke–rT , (3)

where S is the underlying index value, D is the dis-
crete dividend amount, and e–rT  is the discount 
factor.
Next, fit the linear model3

Y = a + bX, (4)

where Yi = Pi – Ci + S, and Xi = Ki.
Using ordinary least squares estimation, the esti-
mators are 

̂b =
∑n

i=1(Xi – X)(Yi – Y)

∑n
i=1(Xi – X)2

and ̂a = Y – ̂bX,

(5)
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Figure 5. Comparison of the IV smirk for out-of-the-money options obtained from the three approaches for SPX call and put options that 
mature on 21 April 2023. 

where 

Y =
∑n

i=1 Yi

n and X =
∑n

i=1 Xi

n .

The implied forward price under this approach, 
Fcp

0 , is obtained by 

Fcp
0 = S – ̂a

̂b
, (6)

where S is the underlying index value, â is an esti-
mate of the discrete dividend amount, D and ̂b is 
an estimate of the implied discount factor.

2.1.3. Computation of the implied volatility
Given market prices of European options with their cor-
responding strike prices and respective time to maturity, 
and with the implied forward price determined and an 
estimate or a proxy for the implied discount factor ob-
tained, 𝜎 is then obtained under the two approaches by 
inverting Black’s formula given by Equation (1) and ex-
tracting IV using numerical methods. Here, we consider 
the Newton-Raphson procedure.

With 𝔾B denoting the model option price and 𝔾mkt  de-
noting the observed market option price, the root-finding 
problem to be solved is 

f (𝜎)= 𝔾B – 𝔾mkt = 0. (7)

We start with an initial value for 𝜎 (𝜎0) defined as 

𝜎0 = √ 2
T ∣log (F0

K )∣. (8)

Let 𝜎k denote the value obtained after k iteration steps, 
then the next value 𝜎k+1 is 

𝜎k+1 = 𝜎k –
f (𝜎k)
f (𝜎k)

, for k = 0, 1, 2, … , (9)

where f (𝜎k) is the option vega computed at 𝜎k and f (𝜎k)
is as defined in (7), where 

𝔾B = { F0e–rTΦ(d1)–Ke–rTΦ(d2), for call options
–F0e–rTΦ(–d1)+Ke–rTΦ(–d2), for put options.

The iteration repeats until a tolerance such as |𝔾mkt –
𝔾k+1| ≤ 𝜖 is attained.

2.2. Using Black-Scholes-Merton formula

2.2.1. Definition
Let CBSM  denote the BSM73 price of a call option, 𝛿 the 
dividend yield, S0 the current underlying price, r the risk-
free rate of interest, and 𝜎 the volatility of the underlying, 
then for a European call option with time to maturity T
and with strike price K, CBSM  is defined as 

CBSM = S0e– TΦ(d1)–Ke–rTΦ(d2), (10)

where Φ(x)= ∫x
–

1
√

2𝜋
exp(– u2

2
)du; d1 = 𝜅 + 0.5𝜎2T

𝜎
√

T
and d2 = d1 – 𝜎

√
T , where 𝜅 = log ( S0e–𝛿T

Ke–rT
).

By put-call parity, CBSM + Ke–rT = PBSM + S0e– T , the 
corresponding put option pricing formula is given by 

PBSM = –S0e– TΦ(–d1)+Ke–rTΦ(–d2). (11)



6  M. KAMAU ET AL.

Figure 6. Comparison of the IV smirk for out-of-the-money options obtained from the three approaches for SPX call and put options that 
mature on 19 May 2023. 

Figure 7. Comparison of the IV smirk for out-of-the-money options obtained from the three approaches for SPX call and put options that 
mature on 21 July 2023. 

2.2.2. Model-free estimation of the implied discount 
factor and the dividend-adjusted underlying price
For each maturity T, Kamau and Mwaniki (Kamau & 
Mwaniki, 2023) fit the line 

Pi – Ci = 𝛼 + 𝛽Ki + 𝜖i, (12)

where by put-call parity, 𝛽 = e–rT  and 𝛼 = –S0e– T . 
Therefore, the slope estimate yields the implied discount 
factor and the intercept estimate (in absolute terms), the 
dividend-adjusted underlying asset price.

The slope and intercept estimators are estimated using 
the repeated median approach as follows.

For each time to maturity T, all n n–1

2
 slopes of the lines 

and intercepts connecting each pair of points (Ki, (Pi,T –
Ci,T)) and (Kj, (Pj,T –Cj,T)), where, Ki ≠ Kj are computed. 
Respectively, 

𝛽(i, j) =
(Pi,T – Ci,T)–(Pj,T – Cj,T)

Ki – Kj
and

𝛼(i, j) =
Ki(Pj,T – Cj,T)–Kj(Pi,T – Ci,T)

Ki – Kj
.

These 𝛽(i, j) and 𝛼(i, j) values can be visualized as the 
elements in the n × n symmetric matrices B and A, re-
spectively, both having no entries in the main diagonal.
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Figure 8. Comparison of the IV smirk for out-of-the-money options obtained from the three approaches for SPX call and put options that 
mature on 19 January 2024. 

The repeated median estimators for the slope and in-
tercept are obtained by taking the median of the row 
medians (or column medians, by symmetry) of matrices
B and A, respectively, leading to 

̂𝛽 = median
j

{median
i j

𝛽(i, j)} and

̂𝛼 = median
j

{median
i j

𝛼(i, j)}. (13)

We thus estimate e–rT  with ̂𝛽 in the BSM73 formula and 
S0e– T  with | ̂𝛼|, then extract BSMIV.

2.2.3. BSMIV extraction
Given market prices of European-style options, the 
volatility parameter, 𝜎, given in Equations (10) and (11) 
can be extracted, given that all other variables are avail-
able. An exact closed-form formula to extract 𝜎 from the 
market price of an option does not exist, thus one has to 
resort to either approximation or numerical methods. In 
this paper, we consider the numerical approach via the 
Newton-Raphson procedure.4

With 𝔾model denoting the model option price and 𝔾mkt
denoting the observed market option price, the root-
finding problem to be solved is 

f (𝜎)= 𝔾model – 𝔾mkt = 0. (14)

In this procedure, we start with an initial value for 𝜎
(𝜎0) as suggested in Manaster and Koehler (Manaster & 
Koehler, 1982), but modified as 

𝜎0 = √ 2
T |𝜅|, where 𝜅 = log (S0e– T

Ke–rT ) . (15)

And, denoting 𝜎k as the value obtained after k iteration 
steps, the next value 𝜎k+1 is 

𝜎k+1 = 𝜎k –
f (𝜎k)
f (𝜎k)

, for k = 0, 1, 2, … , (16)

where f (𝜎k) is the option vega computed at 𝜎k and f (𝜎k)
is as defined in (14), where 

𝔾model = { S0e–𝛿TΦ(d1)–Ke–rTΦ(d2), for call options
–S0e–𝛿TΦ(–d1)+Ke–rTΦ(–d2), for put options.

The iteration repeats until a tolerance such as |𝔾mkt –
𝔾k+1| ≤ 𝜖 is attained. The iteration procedure (16) may 
fail if vega is close to zero, which often occurs for very 
deep in-the-money and very deep out-of-the-money op-
tions.

Remark 1. The dividend component is not estimated ex-
plicitly but rather by relying on information obtained, 
exclusively, from the options market, an estimate of the 
dividend-adjusted underlying asset price is obtained. This 
estimate can be seen to capture all information regarding 
dividends, similar to the implied forward price used in 
Black’s formula. Therefore, under this approach, using ei-
ther the BSM73 formula or Black’s formula results in the 
same IV. It follows that the implied forward price under 

this approach, Fkm
0 , is given by Fkm

0 =
| ̂𝛼|

̂𝛽
.
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3. Data and empirical results

3.1. Data set 1: Data in Zhang and Xiang (2008)

3.1.1. Data description and processing
The first data set that we use is the market data of SPX 
options on 4 November 2003 on pg. 268 of Zhang and Xi-
ang (2008). The data has columns consisting of the strike 
price, last sale, volume, bid, ask, and the mid-values for 
both calls and puts. The maturity date is 21 November 
2003. The time to maturity is 17 days and the S&P 500 
index level is S0 = 1053.25. The risk-free rate, obtained 
by extrapolation using the one-month and three-months 
US treasury yield curve rates, is 0.9743%.

From this data set, the ATM strike is KATM = 1055 with 
CATM = 11.9 (the mid-price of the call’s bid/ask quota-
tion) and PATM = 14.2 (the mid-price of the put’s bid/ask 
quotation). The implied forward price is therefore, by 
formula (2), given by 

Fzx
0 = 1055 + e0.9743% 17 365 × (11.9 – 14.2)= 1052.70

With this implied forward price and all other variables 
available, IV is extracted using Equation (9).

Similarly, using the Cboe approach and performing 
the ordinary least squares estimation, we find ̂a = 1.94
and ̂b = 0.9985941 which implies that Fcp

0 = 1052.79. 
Again, with this implied forward price and all other vari-
ables available, IV is extracted using Equation (9).

In our proposed approach, we estimate the implied 
discount factor and the dividend-adjusted underlying 
asset price using the repeated median approach and ob-
tain | ̂𝛼| = 1051.212 and ̂𝛽 = 0.998524 which implies 
that Fkm

0 = 1052.77. Finally, we extract BSMIV using
Equation (16).

A comparison of the implied volatility obtained from 
the three approaches is displayed in Figure 1 for both calls 
and puts.

3.1.2. Results and discussion
From Figure 1, there is a notable difference in the im-
plied volatility obtained for in-the-money calls and in-
the-money puts among the three approaches, but no 
significant difference in the implied volatility obtained 
for out-of-the-money calls and puts. This corresponds 
to the assertion in the literature that in-the-money op-
tions are more sensitive to model changes than their 
out-of-the-money counterparts. Therefore, as in (Zhang 
& Xiang, 2008), we construct our IV smirk using out-of-
the-money options only. We therefore select put options 
with strike prices that are below the implied forward 
price, and select call options with strike prices that are 

above the implied forward price. The subsequent im-
plied volatility smirk obtained exclusively from out-of-
the-money options is displayed in Figure 2 under the 
three approaches.

3.2. Data set 2: CBOE delayed option quotes data

3.2.1. Data description and processing
Secondary index option data containing standard call 
and put option quotes on the S&P 500 (SPX) Index 
was obtained from the Chicago Board Options Ex-
change (CBOE) delayed option quotes page.5 The data 
has columns consisting of the expiration date, strike price, 
last sale, open interest, volume, bid, ask, IV, delta and 
gamma for both calls and puts maturing on 17 February 
2023, 17 March 2023, 21 April 2023, 19 May 2023, 21 July 
2023, and 19 January 2024.

We clean the raw data as follows. First, for each ma-
turity, the lowest strike price is selected from the first 
out-of-the-money put with a non-zero bid price and the 
highest strike from the first out-of-the-money call with 
a non-zero bid price. Second, we find the mid-prices of 
each option’s bid/ask quotation and take this to be the 
price of the call (put).

For each maturity, we then find the implied forward 
price and the (implied) discount factor using the three 
approaches. These estimates are compiled and presented 
in Table 1. As earlier noted, the computation of the 
implied forward price under our proposed approach is 
not required in the extraction of IV, however, we in-
clude it in Table 1 for completeness and for comparison
purposes.

3.2.2. Results and discussion
With these estimates, we then extract IV using Equa-
tions (9) and (16). As before, we construct our IV smirk 
using out-of-the-money options only. The IV smirk for 
each maturity under the three approaches is displayed in 
Figures 3–8.

In comparing the IV smirk for out-of-the-money op-
tions obtained from the three approaches for SPX call 
and put options, it can be seen that the absolute differ-
ences among the approaches across all maturities are rel-
atively low with the highest being in the neighborhood of
0.05%.

4. Conclusion

This paper has proposed the incorporation of the 
forward-looking model-free option-implied discount 
factor and the dividend-adjusted underlying asset price 
estimates in the computation of BSMIV. The proposed 
approach makes exclusive use of market options data 
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to extract BSMIV. In this approach, different from past 
approaches, the implied forward price does not need 
to be computed explicitly nor does the proxy for the 
risk-free rate require interpolation or extrapolation in 
instances where the terms are not very close to or do 
not match the option’s maturity. Further, in the com-
parison of the resulting IV obtained from the proposed 
approach with IV from previous approaches, it was 
found that the differences were more pronounced for 
both in-the-money call and put options and far less 
pronounced for out-of-the-money call and put options. 
Therefore, if interest is on constructing the IV curve 
using out-of-the-money options only, as is standard prac-
tice, the computed IV via the proposed approach could 
be used as an alternative to previous approaches. In 
conclusion, the approach of this paper may therefore 
prove useful in updating or adjusting the computation of
BSMIV.

Notes
1. Among other rates, such as OIS rates.
2. For further details, see, Cboe European-Style 

Options Implied Volatility Calculation Methodol-
ogy paper, available at: https://cdn.cboe.com/api/
global/us_indices/governance/Cboe_European-
Style_Option_%20Implied_Volatility_Calculation_
%20Methodology.pdf.

3. We have adjusted what appears to have been a typo in the 
definition of the term Yi = Pi – Ci + S given in the Cboe 
paper.

4. Other methods such as the secant method can also be 
used.

5. See: https://www.cboe.com/delayed_quotes/spx/quote_
table.
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