
Pediaditakis, Michael (2006) Presenting multi-language XML documents:
An adaptive transformation and validation approach. Doctor of Philosophy
(PhD) thesis, UKC.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/24021/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/24021/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

PRESENTING MULTI-LANGUAGE XML DOCUMENTS:
AN ADAPTIVE TRANSFORMATION AND VALIDATION

APPROACH.

a thesis submitted to

The University of Kent at Canterbury

in the subject of computer science

for the degree

of doctor of philosophy.

By
Michael Pediaditakis

September 2006

Abstract

XML addresses several HTML shortcomings, but its underdefined processing impedes
the development of adequate generic presentation models for the Web. Such models
must define the parsing, validation, transformation and rendering of multi-language
XML documents, according to a variety of adaptation requirements. However, most
existing approaches only define subsets of this functionality and do not follow the Web
design principles.

We hypothesise that generic document presentation can be achieved by utilising
the presentation domain constraints and addressing the document processing problem
as a whole.

This thesis focuses on the document preprocessing domain and supports our hypoth-
esis by proposing a preprocessing framework and the XMLPipe preprocessing model.
Document preprocessing is the document presentation subset that only addresses pars-
ing, validation and transformation. The preprocessing framework establishes the nec-
essary preprocessing functionality and enables the evaluation of XMLPipe. XMLPipe
utilises the presentation domain constraints to provide generic XML preprocessing.

XMLPipe consists of an integration model, an adaptation model, a transformation
model, a validation model and a binding model. The integration model utilises the
presentation domain constraints to infer a multi-language document’s interpretation
from the interpretation of its constructs. The adaptation model proposes an extensible
representation of the adaptation requirements and a method to choose the optimal
processing alternative among a set of independently developed specifications. The vali-
dation and transformation models use the integration model to validate and transform
multi-language documents, according to a set of adaptation requirements and a dis-
tributed set of processing specifications. The binding model establishes a distribution
of the processing specifications, which is adequate for processing an open set of inde-
pendently developed XML languages.

The XMLPipe document processing is demonstrated to be significantly more pow-
erful than existing approaches and its evaluation illustrates its adequacy for the Web
and the soundness of our hypothesis within the preprocessing domain. The prepro-
cessing observations are extrapolated to confirm our hypothesis within the complete
document processing domain.

ii

������ ���� ���	
 ��� ���� ���	
���� ������ ���� �����
��� ����� ��	�
��� ���� ������� �� ��� ����

...to my family

iii

Acknowledgements

I would like to thank:
My supervisor, David Shrimpton, for his support and guidance, his insight into all

Web related areas and the whole process of undertaking a PhD, and his tolerance to
my constant delays and miserably failing plans.

Professors Peter Linington and Simon Thompson for their brilliant ideas, their
support in many aspects of this work and their continuous encouragement.

My family and friends for their invaluable support and infinite patience to my
impressively antisocial behaviour during the last years.

Katerina, Damian, Christian, Matt and all people in Darwin H4 for their amazing
research methodology insight.

iv

Contents

Abstract ii

Acknowledgements iv

1 Introduction 1
1.1 XML document presentation . 2
1.2 Addressing the XML presentation issues 3
1.3 World Wide Web fundamentals . 5
1.4 Extensible Markup Language (XML) fundamentals 7

1.4.1 XML core . 7
1.4.2 XML languages . 8
1.4.3 XML and the Web . 9
1.4.4 The Document Object Model . 11

1.5 Concluding remarks . 11

2 XML presentation processing 13
2.1 A top level presentation processing model 13

2.1.1 Presentation processing requirements 13
2.1.2 Presentation processing components 14

2.2 Validation . 15
2.2.1 Validation approaches . 17
2.2.2 Mixed namespace validation . 18
2.2.3 Schema binding . 20
2.2.4 Validation summary . 21

2.3 Transformation . 21
2.3.1 Transformation approaches . 22
2.3.2 Transformation pipelines . 23
2.3.3 Transformations for content adaptation 25
2.3.4 Binding and mixed namespace transformations 26
2.3.5 Interoperation with validation . 26
2.3.6 Transformation summary . 27

2.4 Presentation . 27
2.4.1 Native presentation languages set Lp 28
2.4.2 Extensibility of the native presentation languages set 29
2.4.3 Presentation of mixed namespace documents 31
2.4.4 Presentation adaptation . 33
2.4.5 Scripting . 36
2.4.6 Constraints . 39
2.4.7 Presentation summary . 42

v

2.5 XML Browsers . 43
2.6 Discussion . 46

2.6.1 Current issues and resolution directions 47
2.6.2 Concluding remarks . 48

3 Definitions and the hypothesis 50
3.1 XML presentation processing definitions 51

3.1.1 XML documents and languages 51
3.1.2 XML semantics . 54
3.1.3 Presentation languages and documents 54
3.1.4 Document processing . 55

3.2 The scope of this thesis . 56
3.3 The hypothesis . 57
3.4 Concluding remarks . 58

4 A preprocessing framework 59
4.1 Towards a generic preprocessing framework 60
4.2 Top level entities . 61

4.2.1 Document author . 61
4.2.2 Document user . 62
4.2.3 Target device and browser . 63

4.3 Additional entities . 63
4.4 Framework architecture and requirements 65

4.4.1 Validation . 66
4.4.2 Transformation . 67
4.4.3 Binding . 68
4.4.4 Integration model and overall processing 70
4.4.5 The complete preprocessing framework 71

4.5 Discussion . 71
4.5.1 Evaluation . 73
4.5.2 Evaluation of existing approaches 74

4.6 Summary . 75

5 XMLPipe integration model 77
5.1 Integration model considerations . 77
5.2 Handled construct observations . 79

5.2.1 Handled constructs . 79
5.2.2 Handled construct rooted subtrees 80
5.2.3 Handled constructs classification 81
5.2.4 Valid nesting of subtrees . 83

5.3 Handled constructs based integration . 84
5.3.1 Valid mixed namespace documents 84
5.3.2 Mixed namespace document authoring 85
5.3.3 Mixed namespace document processing 86

5.4 Discussion . 89
5.5 Summary . 90

6 XMLPipe adaptation model 92
6.1 Adaptation considerations . 92

vi

6.2 Adaptation profiles and expressions . 93
6.3 Profile composition . 97

6.3.1 Profile composition observations 97
6.3.2 XMLPipe composite profiles . 99
6.3.3 XMLPipe profile composition . 100
6.3.4 Profile composition example . 101

6.4 Binding adaptation specification . 103
6.4.1 The adequacy measure . 103
6.4.2 The applicability measure . 104
6.4.3 The adaptation measure . 106

6.5 The complete adaptation model . 108
6.6 Discussion . 109
6.7 Summary . 111

7 XMLPipe transformation model 113
7.1 Transformation model considerations . 114
7.2 A driving example . 115
7.3 Transformation fundamentals . 118

7.3.1 Mixed namespace transformation notation 118
7.3.2 Assumptions . 119

7.4 Transforming valid documents . 123
7.4.1 Valid documents processing . 123
7.4.2 Transformation of valid documents 124
7.4.3 The transformation algorithm . 126

7.5 Transformation semantics . 129
7.6 Addressing the assumption constraints 131

7.6.1 Subtree copying . 131
7.6.2 Transformation of semantically correct invalid documents 132
7.6.3 Circular transformation dependencies 133
7.6.4 Processing natively supported constructs 134
7.6.5 Integration models equivalence 135
7.6.6 Alternative assumptions and transformation algorithm 135

7.7 Built-in transformation pipelines . 138
7.7.1 Atomic transformations . 139
7.7.2 Transformation wrappers . 140
7.7.3 Transformation pipelines composition 141

7.8 The complete transformation model . 145
7.9 Discussion . 146
7.10 Summary . 150

8 XMLPipe validation model 152
8.1 Validation driver . 152

8.1.1 Adequacy of subtree validation 153
8.1.2 COC placeholders identification 155
8.1.3 Subtree separation and processing order 156
8.1.4 Atomic validations . 157
8.1.5 Validation semantics . 158
8.1.6 The validation algorithm . 159

8.2 Validation model interface . 161

vii

8.2.1 Processing validation interface 162
8.2.2 Authoring validation . 162

8.3 The complete validation model . 166
8.4 Discussion . 166
8.5 Summary . 169

9 XMLPipe binding model 171
9.1 Binding considerations . 171
9.2 Semantics organisation . 172
9.3 Semantics distribution . 173

9.3.1 Principal location mechanism . 173
9.3.2 Secondary location mechanisms 174
9.3.3 The semantics cache . 175
9.3.4 Orchestrating the location mechanisms 176

9.4 Evaluation . 177
9.5 Summary . 180

10 The complete XMLPipe model 182
10.1 Composing the XMLPipe model . 182

10.1.1 Interface to the semantics and language author 183
10.1.2 Interface to the document user and author 183
10.1.3 The complete XMLPipe model 185

10.2 XMLPipe implementation issues . 187
10.2.1 Presentation integration model 187
10.2.2 Semantics representation . 190
10.2.3 Node context information issues 191
10.2.4 Summary . 192

10.3 The pilot implementation . 192
10.3.1 Sufficient functionality subset . 193
10.3.2 Implementation outline . 193
10.3.3 The invocation . 195

10.4 A case study . 196
10.4.1 The input document . 196
10.4.2 The adaptation profiles . 198
10.4.3 Validation semantics . 199
10.4.4 Transformation semantics: Lalt language 201
10.4.5 Transformation semantics: Limp language 202
10.4.6 Transformation semantics: Lxl language 203
10.4.7 Transformation semantics: Ldoc language 205
10.4.8 Semantics binding . 209
10.4.9 Document processing . 210
10.4.10 The transformed document . 214
10.4.11 Reusing the semantics of existing languages 217

10.5 Case study discussion . 219
10.5.1 Processing scenario discussion . 219
10.5.2 Processing semantics discussion 221
10.5.3 Processing discussion . 222

10.6 XMLPipe model discussion . 223
10.6.1 Framework based evaluation . 224

viii

10.6.2 Hypothesis support . 227
10.7 Summary . 229

11 Future research and concluding remarks 231
11.1 Expressing and supporting the hypothesis 231
11.2 Contributions . 233

11.2.1 XMLPipe and the hypothesis . 233
11.2.2 The preprocessing framework and the individual sub-models . . . 234

11.3 Future research . 235
11.3.1 XMLPipe extensions and optimisations 235
11.3.2 Transformation model extensions 237
11.3.3 Adaptation model extensions . 238
11.3.4 Validation model extensions . 238
11.3.5 Integration model extensions . 239
11.3.6 Binding model extensions . 240
11.3.7 Towards a complete processing model 241
11.3.8 Beyond presentation documents 242

11.4 Concluding remarks . 243

Bibliography 245

A Abbreviations 256

B Terminology 258

C Formalisms 278
C.1 Core notation . 278

C.1.1 Symbol conventions . 278
C.1.2 Sets notation . 279
C.1.3 Functions notation . 279

C.2 Core XML notation . 279
C.2.1 Documents . 279
C.2.2 XML languages . 280
C.2.3 Language sets . 281

C.3 Processing models . 281
C.4 Semantics . 281

C.4.1 Core definitions . 281
C.4.2 XMLPipe processing semantics 282
C.4.3 XMLPipe semantics location functions 283
C.4.4 XMLPipe semantics binding . 284

C.5 Integration model . 285
C.5.1 XMLPipe valid documents . 286
C.5.2 Further valid document definitions 286

C.6 Validation . 287
C.6.1 Validation of XMLPipe documents 287
C.6.2 Processing validation . 288
C.6.3 Authoring validation . 288

C.7 Transformations . 289
C.7.1 XMLPipe document transformation 289
C.7.2 Authoring validation specific transformation 292

ix

C.7.3 Transformation specification selection 293
C.7.4 Transformation pipelines . 293

C.8 XMLPipe adaptation model . 294
C.8.1 Core concepts . 294
C.8.2 Adaptation profiles . 295
C.8.3 Adaptation expressions . 296
C.8.4 Profile composition . 296
C.8.5 Transformation selection . 297

C.9 Document parsing . 298

D RDF integration example 299
D.1 The mixed namespace XML document 300
D.2 The RDF document . 300

E XMLPipe processing semantics representation 302
E.1 The top level structure . 302
E.2 Data types and expressions . 303

E.2.1 The predefined XMLPipe data types 303
E.2.2 Adaptation expressions . 304
E.2.3 Applicability expressions . 305
E.2.4 Adequacy expression sets . 306
E.2.5 Conflict resolution expressions 306

E.3 Adaptation processing semantics . 308
E.3.1 Adaptation term semantics . 308
E.3.2 Composite profiles . 309
E.3.3 Predefined adaptation terms . 310

E.4 Handled construct declarations . 311
E.5 Validation processing semantics . 311
E.6 Transformation processing semantics . 312

E.6.1 Transformer declarations . 312
E.6.2 Pipeline declarations . 313
E.6.3 Top level handlers declaration . 315

F Case study sources 317
F.1 Input document . 317
F.2 XMLPipe specific semantics . 318

F.2.1 Top level binding . 319
F.2.2 Adaptation terms . 319
F.2.3 Atomic transformations . 320

F.3 The composite adaptation profiles . 320
F.4 Limp language . 322

F.4.1 Top level binding . 322
F.4.2 Handled constructs . 322
F.4.3 Validation semantics . 323
F.4.4 Transformation semantics . 323

F.5 Lalt language language . 325
F.5.1 Top level binding . 325
F.5.2 Handled constructs . 325
F.5.3 Validation semantics . 326

x

F.5.4 Transformation semantics . 327
F.6 Ldoc language . 330

F.6.1 Top level binding . 331
F.6.2 Handled constructs . 331
F.6.3 Validation semantics . 331
F.6.4 Langage specific term . 333
F.6.5 Transformation semantics . 334

F.7 Lxl language . 347
F.7.1 Top level binding . 347
F.7.2 Handled constructs . 347
F.7.3 Validation semantics . 348
F.7.4 Transformation semantics . 348

F.8 Lcd language . 352
F.8.1 Top level binding . 352
F.8.2 Handled constructs . 352
F.8.3 Validation semantics . 353
F.8.4 Transformation semantics . 354

xi

List of Tables

1.1 World Wide Web design principles[BL02b] 6
1.2 XML languages examples . 10
2.1 Generic XML presentation processing requirements 14
2.2 Example of implicit device capabilities information within URIs 25
2.3 Proposed Web content presentation building blocks 29
2.4 Imperative approaches requirements for XML presentation 36
2.5 Properties of current browser implementations 45
2.6 Summary of the identified XML processing issues and their correspond-

ing resolution directions . 47
3.1 Context dependent interpretations of the term semantics 52
4.1 Document author requirements and assumptions 61
4.2 Document user requirements and assumptions 62
4.3 Device and browser adaptation requirements 63
4.4 Language and semantics authors requirements 65
4.5 Requirements of an adaptation requirements representation 65
4.6 Assumptions and external entities requirements 66
4.7 Preprocessing framework requirements 72
7.1 Driving example handled constructs 115
7.2 Transformation assumptions . 120
7.3 Alternative transformation assumptions and design principles 136
7.4 XSL-T transformation design guidelines 141
8.1 Validation assumptions . 154
8.2 Subtree separation design principles 155
8.3 Design guidelines and their XML Schema mapping 158
10.1 XMLPipe implementation issues . 192
C.1 Symbol conventions . 278
E.1 Adaptation terms data types . 304
E.2 Unary operators . 304
E.3 Binary operators . 304
E.4 Predefined adaptation terms . 310

xii

List of Figures

1.1 The proposed models and XMLPipe 4
1.2 DOM example . 11
2.1 Presentation processing components and external entities 15
2.2 Validation during document authoring 16
2.3 Validation during document presentation 16
2.4 A generic schema integrator . 18
2.5 Transformation symbol . 22
2.6 Multiple transformation applications during document presentation . . 23
2.7 Transformation pipeline example . 24
2.8 The presentation component . 28
2.9 Lp extension using plug-ins and applets 30
2.10 Extension with presentation model integration 31
2.11 X-Smiles mixed namespace document presentation 33
2.12 Adaptation responsibility/capability according to Lp granularity . . . 34
2.13 XVM relationship between DOM nodes and Java objects 38
2.14 Alternate presentation attributes representations 40
2.15 Local propagation problem and its solution 41
2.16 Browser usage statistics . 44
4.1 A preprocessing approach . 59
4.2 Preprocessing framework: top level entities 61
4.3 Preprocessing framework: all external entities 64
4.4 Preprocessing framework: Validation module 67
4.5 Preprocessing framework: Transformation module 67
4.6 Preprocessing framework: Binding module 69
5.1 Processing associations between language constructs 78
5.2 XMLPipe integration model subtree separation example 88
6.1 Adaptation term semantics . 95
6.2 Adaptation requirements processing 109
7.1 Tree separation illustration . 126
7.2 Post order tree traversal . 127
7.3 The XMLPipe transformation algorithm 128
7.4 Handled construct transformation semantics 130
7.5 Revised transformation algorithm . 137
7.6 Integration model transformation driver 138
7.7 XMLPipe transformation pipelines: sequence pipeline 142
7.8 XMLPipe transformation pipelines: transformation selection 143
7.9 XMLPipe transformation pipelines: dynamic transformation 144
7.10 XMLPipe transformation model . 146
8.1 Language validation semantics . 159
8.2 XMLPipe validation algorithm . 160

xiii

8.3 Integration model specific validation: top level 161
8.4 XMLPipe processing validation interface 162
8.5 Authoring validation transformation algorithm 165
8.6 XMLPipe authoring validation . 166
8.7 The XMLPipe validation model . 167
9.1 XMLPipe semantics organisation . 173
9.2 Location mechanisms information organisation 173
9.3 Semantics cache physical representation 175
9.4 XMLPipe binding model . 176
9.5 Cache import algorithm . 178
10.1 Semantics definition process . 183
10.2 Document transformation and authoring validation 184
10.3 The XMLPipe preprocessing model . 186
10.4 XMLPipe processing semantics . 188
10.5 Pilot implementation class hierarchy 194
10.6 Proposed processing semantics distribution 209
10.7 Transformation processing: document traversal and subtree transfor-

mation . 212
10.8 Validation processing: document traversal and subtree separation . . . 214
10.9 Document transformation result: Desktop profile 215
10.10 Document transformation result: XSL-FO printer profile 216
10.11 Document transformation result: Mobile profile 217
10.12 Semantics reuse example: document rendering for all case study profiles220
10.13 Transformation duration in relation to the document nodes 226
10.14 Transformation duration ratio between XMLPipe and XSL-T 227

xiv

Listings

1.1 An XML document . 8
1.2 Mixed namespace XML documents with and without namespaces 9
2.1 Erroneous NRL and NVDL validation example 19
3.1 XML document with namespaces . 51
4.1 Documents that can benefit from recursive transformations 69
5.1 Handled constructs example . 79
5.2 Handled constructs classification example 82
6.1 Adaptation profile for a desktop device 97
6.2 Adaptation profile for a mobile device 97
6.6 Profile composition example . 102
6.7 Adaptation binding information example 108
7.1 The driving presentation document example 116
10.1 The case study input document . 197
10.2 Handled constructs information . 198
10.3 Printer adaptation profile . 199
10.4 Lxl schema specification . 200
10.5 Ldoc validation semantics declaration . 201
10.6 Lalt transformation semantics declarations 202
10.7 Limp dynamic transformation pipeline 203
10.8 Dynamically generated stylesheet . 203
10.9 Dynamic transformation result . 203
10.10XSL templates for the interactive interpretation of Lxl 204
10.11XSL templates for the non-interactive interpretation of Lxl 204
10.12Lxl XHTML handler adequacy expressions 204
10.13Lxl non-interactive handler adequacy expressions 204
10.14Ldoc interpretation for a desktop browser 206
10.15Ldoc XHTML desktop binding adaptation specification 206
10.16Ldoc interpretation for a WML mobile 207
10.17Ldoc WML mobile partial binding adaptation specification 207
10.18Semantics reuse example: driving document 218
10.19Semantics reuse example: imported document 218
D.1 Integration Example: XML . 300
D.2 Integration Example: RDF-XML . 300
E.1 RDDL processing semantics links . 303
E.2 Adaptation expression example . 305
E.3 Applicability expression example . 306
E.4 Adequacy expressions example . 307
E.5 Conflict resolution expressions example 307
E.6 Term semantics example . 308
E.7 Composite adaptation profile example 309

xv

E.8 Handled construct information example 311
E.9 Validation semantics example . 312
E.10 Transformer declarations example . 312
E.11 Sequence transformation pipeline example 314
E.12 Dynamic transformation pipeline example 314
E.13 Selection pipeline example . 314
E.14 Handler declaration example . 315
F.1 document.xml . 317
F.2 imp.xml . 318
F.3 authors.xml . 318
F.4 RDDL link to XML specific semantics 319
F.5 XMLPipe specific adaptation terms . 319
F.6 XMLPipe specific atomic transformations 320
F.7 All case study composite profiles . 320
F.8 mobileDefault.xml . 321
F.9 mobileUpdate.xml . 321
F.10 RDDL links to the Limp processing semantics 322
F.11 Limp handled construct information: ImpHCInfo.xml 322
F.12 Limp validation semantics: ImpValSem.xml 323
F.13 Limp validation semantics: schema specification 323
F.14 Limp transformation semantics: ImpTransSem.xml 324
F.15 Limp transformation semantics: XSL-T stylesheet specification import.xsl324
F.16 RDDL links to the Limp processing semantics 325
F.17 Lalt handled construct information: AltHCInfo.xml 325
F.18 Lalt validation semantics: AltValSem.xml 326
F.19 Lalt validation semantics: schema specification 326
F.20 Lalt transformation semantics: AltTransSem.xml 327
F.21 Lalt transformation semantics: Java atomic transformation implementa-

tion . 327
F.22 RDDL links to the Ldoc processing semantics 331
F.23 Ldoc handled construct information: DocHCInfo.xml 331
F.24 Ldoc validation semantics: DocValSem.xml 332
F.25 Ldoc validation semantics: schema specification 332
F.26 doNotRecurse adaptation term semantics: DocTermSem.xml 333
F.27 Ldoc transformation semantics: DocTransSem.xml 334
F.28 Ldoc transformation semantics: Desktop XSL-T stylesheet specification

doc.xsl . 338
F.29 Ldoc transformation semantics: Mobile XSL-T stylesheet specification

mobile.xsl . 339
F.30 Ldoc transformation semantics: WBMP image converter 341
F.31 Ldoc transformation semantics: XSL-FO printer XSL-T stylesheet spec-

ification XSLFOPrinter.xsd . 345
F.32 Ldoc transformation semantics: Namespace declaration removal stylesheet

removeNamespaces.xsl . 346
F.33 Lxl handled construct information: XLHCInfo.xml 347
F.34 Lxl validation semantics: XLValSem.xml 348
F.35 Lxl validation semantics: schema specification 348
F.36 Lxl transformation semantics: XLTransSem.xml 349

xvi

F.37 Lxl transformation semantics: XHTML XSL-T stylesheet specification
xlinkXHTML.xsl . 350

F.38 Lxl transformation semantics: Mobile XSL-T stylesheet specification
xlinkWML.xsl . 351

F.39 Lxl transformation semantics: Non interactive XSL-T stylesheet specifi-
cation xhtmlNonInteractive.xsl . 351

F.40 RDDL links to the Lcd processing semantics 352
F.41 Lcd handled construct information: CDHCInfo.xml 353
F.42 Lcd validation semantics: CDValSem.xml 353
F.43 Lcd validation semantics: schema specification 353
F.44 Lcd transformation semantics: CDTransSem.xml 354
F.45 Lcd transformation semantics: XSL-T stylesheet specification cd.xsl . . 354

xvii

Chapter 1

Introduction

The World Wide Web (WWW / the Web) has been widely used as a major information
medium for an unrestricted variety of information. The Web is based on the Hyper-
Text Transfer Protocol (HTTP)[FIG+99], the initially minimalistic HyperText Markup
Language[RHJ99] and a set of core design principles, which have been fundamental to
its development and wide deployment: simplicity, modularity, tolerance, decentralisa-
tion and no fixed set of specifications. Since the inception of the Web, a multitude
of HTML extensions and new languages have been introduced, which reflect its wide
deployment and increased information representation requirements. Web browser de-
velopers are constantly trying to cope with the increasing set of representations, and
current Web browsers resemble more generic middleware applications than purpose
specific applications that follow the Web design principles.

The eXtensible Markup Language (XML)[BPSMM00] simplifies the earlier Stan-
dard Generalised Markup Language (SGML)[ISO86], in order to establish a common
markup language framework. XML documents can represent any information as a hier-
archical nesting of XML constructs, which are defined by one or more XML languages.
There are several ways to process XML documents, because they can cover any infor-
mation domain, but four cross-domain processing steps are widely applicable: parsing,
validation, transformation and presentation.

XML parsing is a necessary XML processing step, because it maps the human
oriented textual XML representation to a more machine processible representation.
XML validation ensures that the syntax of a document is correct, according to its
corresponding XML languages. The core XML recommendation provides a document
validation method, but there are more powerful alternative schema languages. An
XML transformation maps a document to an alternative representation. The core
XML recommendation does not define how to transform XML documents, but W3C
and other organisations have developed several powerful transformation languages. The
presentation of an XML document allows its browsing by a user. An application can
present XML documents by either natively supporting their constructs or transforming
them to a natively supported representation.

Most user initiated Web information processing results in information presentation.
Therefore, a well defined XML presentation process is essential to the wide adoption
of XML within the Web.

This thesis focuses on the generic presentation of XML documents for the Web. This
chapter summarises the existing XML processing issues (Section 1.1) and proceeds to
an overview of our hypothesis and its support (Section 1.2). Finally, sections 1.3 and

1

CHAPTER 1. INTRODUCTION 2

1.4 provide the core Web and XML background.

1.1 XML document presentation

Despite the significance of a well defined XML presentation process, only document
parsing is currently well defined. There is no well defined generic method to present,
transform and validate XML documents, notwithstanding the multitude of relevant
XML technologies.

An adequate presentation processing model for XML must enable the processing of
multiple XML languages for a variety of adaptation requirements. XML is a common
foundation for defining new languages that can cover a wide variety of information do-
mains. XML documents that span multiple information domains can use the constructs
of multiple languages. Therefore, an XML processing model must include an adequate
binding mechanism that allows the location and retrieval of all necessary processing
information for each language. Additionally, a processing model that enables extensive
information availability must cater for a wide spectrum of Web devices, applications
and users. Consequently, a generic adaptation mechanism that adapts a document
according to a set of adaptation requirements is necessary.

Moreover, document validation, transformation and presentation are necessary for
a generic presentation processing model. Validation does not directly relate to the
presentation, but it assists the authoring and processing of a document by ensuring its
validity. Well defined validation also forms the foundation of XML processing models,
because it identifies the documents that a processing model must be capable of pro-
cessing. Document transformation is essential, because it can map a document to an
alternative natively supported interpretation. A transformation process can also adapt
a document to its optimal representation, according to a set of adaptation require-
ments. Finally, document presentation is essential for producing the final rendering of
the document.

A generic presentation processing model must address all the aforementioned issues,
but existing approaches only address them individually and they are not adequate for
a generic XML processing model. Specifically, there is no well defined method to
derive the processing of a document from the processing of its individual constructs.
Because of this limitation, document authors cannot freely mix language constructs
within XML documents. Therefore, they rely on language integration profiles, which
become exponentially complex to enumerate for an increasing number of languages.
Alternatively, they use languages that assimilate the constructs of other languages,
which result in redundant, inconsistent and complex language specifications.

There are several existing document adaptation approaches, but the most prominent
ones are restricted to predefined languages and application domains, and they are
not adequate for generic adaptation of XML documents. More generic approaches,
which allow an open set of languages, are not sufficiently versatile and powerful to
cover the variety of Web adaptation requirements. In a similar manner, there are
several prominent binding approaches, but most XML processing approaches use inline
document bindings. Such document specific associations are problematic, because the
processing of a document can depend on document author independent factors, such as
the capabilities of the target application. Moreover, the document author is typically
more interested in the document information and not in its processing.

CHAPTER 1. INTRODUCTION 3

There are several powerful transformation and validation technologies, and exist-
ing Web browsers support a versatile set of presentation functionality. However, the
aforementioned processing issues impede the application of the versatile existing func-
tionality within a generic XML presentation processing model. Specifically, the lack of
generic multi-language processing has led to a multitude of languages that span over-
lapping domains and to predefined language integration profiles. Both languages and
profiles attempt to include all necessary presentation functionality, and they result in
overly complex specifications, which are not adequate for all the devices that access
the Web. The development of restricted language and integration profile versions has
addressed a subset of the complexity issues, but it resulted in introducing even more
language specifications.

Web browsers can natively support a finite set of languages and existing browsers
only support a small subset of the existing XML languages and integration profiles.
Therefore, document authors avoid using new XML languages, because their native
support is not guaranteed and they must use inline document processing instructions
to address several binding and adaptation issues.

XML has addressed several HTML issues but failed to facilitate the wider availabil-
ity of Web information, as it led to underdefined processing models and a multitude of
overlapping standards.

1.2 Addressing the XML presentation issues

Addressing multidimensional problems requires the identification of their common un-
derlying cause. In the case of XML document presentation, the aforementioned XML
presentation issues result from the lack of well defined domain constraints. XML docu-
ments can combine any set of languages to represent any information, and a document’s
presentation can be influenced by an unrestricted variety of adaptation requirements.
The lack of well defined constraints impedes establishing the necessary assumptions for
creating a generic processing model.

Our hypothesis is that the presentation processing domain is sufficiently constrained
to enable the development of a generic XML presentation processing model. The aim
of this thesis is to support the aforementioned hypothesis by investigating the existing
approaches, identifying the relevant problems, proposing an XML processing model
and illustrating its adequacy for presenting XML documents within the Web.

It should be noted that this thesis focuses on document presentation preprocessing,
which includes the validation and transformation processing steps, but not document
rendering. Even though this thesis does not address information rendering, it extrap-
olates the preprocessing observations to the whole spectrum of our hypothesis.

The literature review in Chapter 2 covers the validation, transformation and pre-
sentation aspects of existing technologies, focusing both on the individual processes
and on the corresponding binding, adaptation and language combination mechanisms.
Chapter 2 reviews all XML presentation processing literature, including XML docu-
ment rendering and existing Web browser implementations, in order to cover the whole
spectrum of XML presentation processing that is addressed by our hypothesis.

Chapter 3, the first step towards supporting our hypothesis, defines all the neces-
sary terms for expressing the XML processing concepts unambiguously and defining
the presentation domain constraints. This is necessary because many Web and XML
concepts are either underdefined or ambiguous.

CHAPTER 1. INTRODUCTION 4

Integration Model

Validation

Model

Transformation

Model

Adaptation

Model

Binding Model

XMLPipe model

Legend

Integration Model

Integration

model specific

components

Models

interoperation

Figure 1.1: The proposed models and XMLPipe

The expressed presentation domain constraints do not provide a sufficient mea-
sure of the adequacy of an XML presentation processing model. The preprocessing
framework introduced in Chapter 4 provides such an adequacy measure by using the
presentation domain constraints and the Web design principles to define the necessary
preprocessing functionality. The proposed framework specifies the necessary prepro-
cessing components, their interoperation and the corresponding functionality require-
ments. As all framework specifications result from iteratively refining the Web and the
XML design principles, the proposed framework provides a measure of how adequate
is a preprocessing approach for the Web.

The preprocessing framework requires the five processing models illustrated in Fig-
ure 1.1: an integration model, an adaptation model, a transformation model, a vali-
dation model and a binding model. This thesis includes a separate proposal for each
processing model and combines them into the XMLPipe processing model.

An integration model establishes a multi-language document’s interpretation, ac-
cording to the interpretation of its individual constructs. Chapter 5 proposes an in-
tegration model that utilises the constraints of the presentation domain and defines a
classification of the XML constructs. This model enables the definition and interpre-
tation of the valid inter-language nesting of XML constructs.

Chapter 6 proposes an adaptation model that defines an extensible and composite
adaptation requirements representation and a mechanism for choosing the optimal
processing specification, among a set of independently developed alternatives.

Chapters 8 and 7 introduce the transformation and validation models, responsible
for transforming and validating an input document, respectively. Both models reside
within the integration model, as illustrated in Figure 1.1, because they are integration
model specific. They process multi-language documents by separately processing their
individual single language subtrees. The transformation model interoperates with the
adaptation model, in order to select the optimal transformation specification for each
document portion, according to a set of adaptation requirements.

Chapter 9 introduces a binding model that combines a well defined principal mecha-
nism and an open set of secondary mechanisms to locate the necessary XML processing
information. Such a distributed binding model is essential for processing documents
that combine an open set of languages.

Chapter 10 combines the above models into the XMLPipe preprocessing model,

CHAPTER 1. INTRODUCTION 5

which enables the validation and transformation of multi-language documents accord-
ing to a variety of adaptation requirements. XMLPipe validation focuses on testing
the semantic correctness of a document, a device-independent property of documents
that have well defined interpretation. XMLPipe transformation maps a document to
its optimal representation according to a set of adaptation requirements. Because the
XMLPipe binding model locates and retrieves all the necessary processing information,
neither the validation nor the transformation models require explicit processing infor-
mation by the document author, the document user or a central processing information
repository.

Chapter 10 provides support for our hypothesis by demonstrating the adequacy of
XMLPipe for the Web, using the preprocessing framework. Subsequently, the feasibility
of the proposed model is illustrated by a case study, which uses XMLPipe to validate
and transform a document that combines multiple independently developed XML lan-
guages, according to separate sets of adaptation requirements. Since XMLPipe utilises
the presentation domain constraints, its adequacy illustrates that the presentation do-
main is sufficiently constrained to support generic XML processing models.

Finally, Chapter 11 discusses this thesis as a whole. It discusses the support of
our hypothesis, summarises the contributions of this thesis and suggests a set of future
research proposals.

Throughout this thesis, we attempt to avoid ambiguous descriptions by defining all
terms before their usage and by summarising all used abbreviations, terms and formal
notations in appendices A, B and C, respectively.

Appendices D to F introduce reference material that is not required in the main
body of this thesis: a comparison between the XML and RDF representations, a rep-
resentation of all the necessary XMLPipe processing information and the case study
source documents and processing information.

A subset of the work presented within this thesis has been described in three
preliminary publications, which provide an overview of the XMLPipe preprocessing
model[PS03a, PS03b] and our views towards a generic processing model for the pre-
sentation of XML documents[PS04]. Future publications will provide more detailed
descriptions of this thesis proposals.

1.3 World Wide Web fundamentals

The World Wide Web (WWW / the Web) started as a means of interconnecting in-
formation to enhance group collaboration[BL98a]. The original requirement and vision
for the Web was the wide availability of information:

“Once someone somewhere made available a document, database, graphic,
. . . , it should be accessible (subject to authorisation) by anyone with any
computer in any country. And it should be possible to make a reference –a
link– to that thing, so that others could find it” [BL00]

In order to satisfy the above requirement, the World Wide Web Consortium (W3C)
established a set of Web design principles[BL02b], which are described in Table 1.1.
The adherence of the Web technologies and its fundamental concepts to the above
principles has been important for its success as a communication medium[JW02]. This
section describes the fundamental Web background: the communication protocols, the
markup languages, the resource identifiers and the browsers.

CHAPTER 1. INTRODUCTION 6

Principle Explanation

Simplicity Reducing new concepts while increasing the scope
of applications.

Modular Design Break features to loosely coupled groups.

Tolerance Strict specifications but error tolerant implementa-
tions.

Decentralisation No central point of control, in order to limit the
possibility of failure.

Test of independent invention No restrictions on any of the processes. Individual
protocols, representations and architectures must be
equally applicable.

Principle of least power Representations of minimum functionality enable
reusing the same representation in multiple do-
mains.

Table 1.1: World Wide Web design principles[BL02b]

Most Web communication uses the Hypertext Transfer Protocol (HTTP)[FIG+99],
which allows simple and efficient communication of Web documents[BL00]. A Web
resource, which can be a document, is identified by a Uniform Resource Identifier
(URI)[BLFIM98]. The use of URIs enforces the Web design principles, because they
decouple the Web from specific protocols and data representations[BL00]. A Uniform
Resource Locator (URL) is a URI that identifies a resource via its primary access
mechanism[BLFIM98], such as its network location and the corresponding communi-
cation protocol.

The Web design does not restrict resource description representations. The Hy-
pertext Markup Language (HTML)[RHJ99] was created to form a common ground for
all Web communications. The initial HTML version defined a minimal markup for
the hypertext documents structure and not their presentation details[BL00]. However,
since its inception, HTML1 has incorporated numerous presentation specific features,
in order to fulfill the increased document presentation requirements. The inclusion of
such presentation features is against the fundamental design principles of HTML: min-
imal, common base and processible by any device. Consequently, additional languages,
which range from styling enhancements to high end multimedia representations, have
been developed for describing Web resources.

A document user uses a Web browser to interact with the Web information. There
is no well defined set of representations that a browser must support, because of the
lack of data representation constraints. Therefore, browsers have adopted extensible
designs, and even the earliest browser implementations, such as WWWInda[GNSP94]
and Viola[Wei94], focused on component based designs that enabled the presentation of
a multitude of data representations. Current browser implementations have evolved to
generic middleware platforms, instead of purpose specific applications, because of the
increased presentation functionality requirements. Typical current browser function-
ality includes multiple media type presentation and support for generic programming
languages, such as Java. Moreover, there is widespread use of extension technologies,

1Up to HTML 4.01. The more recent XHTML has removed all unnecessary presentational aspects.

CHAPTER 1. INTRODUCTION 7

such as plug-ins and Java applets, for incorporating additional presentation functional-
ity. Notwithstanding the variety of supported functionality and extension mechanisms,
the browser developers are constantly racing to meet the ongoing development of new
languages and technologies.

1.4 Extensible Markup Language (XML) fundamentals

The eXtensible Markup Language recommendation (XML)[BPSMM00] aims to estab-
lish a common Web document representation. XML is extensible, because, as a meta-
language, it can be the basis of application specific languages that can describe any
information. A common representation is necessary, because it provides the founda-
tion for a common document processing layer that enables extensible browser designs,
which support a multitude of languages.

Sections 1.4.1 to 1.4.3 will describe the fundamental concepts of the XML repre-
sentation, the XML languages and its adequacy for the Web, respectively. Section
1.4.4 will describe the Document Object Model (DOM), which is a standard interface
for XML information manipulation and a key component for a common document
processing layer.

1.4.1 XML core

A Web language must follow the Web design principles, and it must therefore be generic,
device independent and simple. Additionally, it must specify the minimum required
concepts and only contain the necessary functionality. Finally, it must be both strict, in
terms of the specification, and tolerant, in terms of the processing. HTML is not suffi-
ciently generic, since it cannot be extended to represent every information domain.
HTML was based on the Standard Generalised Markup Language (SGML)[ISO86],
which is sufficiently generic, since it allows the definition of application specific lan-
guages, but its complexity is not appropriate for the Web.

XML is a simplification of SGML, and it is designed according to the Web design
principles. The XML recommendation[BPSMM00] defines the core XML concepts: its
syntax, a set of processing guidelines and how to define purpose specific XML languages.
This section overviews the core XML concepts, but its detailed description is outside
the scope of this thesis, and it can be found in the XML recommendation[BPSMM00].

The XML syntax is a device independent textual representation of trees. An XML
document is a tree, and its individual nodes contain the document information. For
instance, the document illustrated in Listing 1.1 contains three elements (lines 2, 3 and
6), an attribute (line 3) and a text node (line 4). The line 2 element is the document
element, because it contains all other document nodes. Each XML document has one
and only one document element. Each element can contain attributes, other elements
and text. The tree structure of XML documents is based on the containment of the
elements in a document.

An XML document must be well formed and may be valid. A well formed document
does not violate the core syntactic principles of XML, such as the proper element
nesting and the single document element. A valid XML document is both well formed
and consistent with a syntax specification, which is expressed using a schema language.
The XML recommendation defines the Document Type Definition (DTD), which is a
minimal schema language. A DTD defines the structure of a document by specifying

CHAPTER 1. INTRODUCTION 8

1 <?xml version=” 1.0 ”?>
2 <element1>

3 <element2 a t t r 1=” value ”>
4 Text content
5 </element2>

6 <element2/>
7 </element1>

Listing 1.1: An XML document

its elements, their attributes and their valid nesting. There is a variety of alternative
schema languages, which are described in Section 2.2.1.

An XML language is defined by the set of all XML documents that are valid for
a corresponding syntax specification. A language author is the creator of an XML
language, and a document author is the creator of an XML document. The author
of a document and of its corresponding languages can be the same entity, but they
generally are separate entities.

XML languages that conform to the modular design principle must only cover a
well defined data domain. A document can combine multiple language constructs,
in order to describe information that spans multiple data domains. The core XML
syntax does not identify the separate language constructs, but the XML Namespaces
recommendation[BHL99] introduces a syntax for assigning XML names to unique URI-
based namespaces. XML Namespaces are the foundation for a distributed Web-based
repository of unique names, and they allow the unambiguous combination of language
constructs, because their origin remains explicit. A mixed namespace document is a
document that combines constructs from more than one namespace.

The documents in Listing 1.2, illustrate the benefits of namespaces. Both docu-
ments combine a language that describes the presentation layout of a document and
another language that describes furniture. Each language contains the element table,
and the example documents describe a tabular layout of information on furniture ta-
bles. The separation between the individual table elements (lines 2, 6 and 11) is not
well defined in the first document, because there are no namespaces. On the contrary,
their separation is explicit in the second document, because they belong to separate
namespaces.

1.4.2 XML languages

Organisations and individual language authors have used XML to create a multitude
of XML languages. Table 1.2 is an illustrative subset of standard XML languages,
which range from document layout to rich multimedia and interaction languages. Each
language covers an application domain, using a well defined data representation and an
optional processing and presentation model. Contrary to the modular design principle,
the initial versions of the languages in Table 1.2 were designed as single monolithic
specifications. A subset of the current specifications, such as the XHTML, SVG and
SMIL, have been partitioned into a number of loosely coupled modules. Such modular
specifications can apply to a wider set of devices, because a browser must only support a
subset of the specified modules. Moreover, modular languages simplify the specification
of language integration to mixed namespace documents. For instance, SVG animation

CHAPTER 1. INTRODUCTION 9

1 <?xml version=” 1.0 ”?>
2 <tab le >

3

4 <row>

5 <column>

6 <t ab l e mate r ia l=” i ron ”>
7 An o f f i c e t ab l e
8 </tab le>

9 </column>

10 <column>

11 <t ab l e mate r ia l=”wood”>
12 A kit chen t ab l e
13 </tab le>

14 </column>

15 </row>

16 </tab le >

1 <?xml version=” 1.0 ”?>
2 < l : t a b l e xmlns : l=” h t tp : // layout . org /”
3 xmlns : f=” h t tp : // f u r n i t u r e . org /”>
4 <l : row >

5 <l :column>

6 < f : t a b l e mate r ia l=” i ron ”>
7 An o f f i c e t ab l e
8 </ f : t a b l e >

9 </l:column>

10 <l :column>

11 < f : t a b l e mate r ia l=”wood”>
12 A kit chen t ab l e
13 </ f : t a b l e >

14 </l:column>

15 </l : row >

16 </ l : t a b l e >

Listing 1.2: Mixed namespace XML documents with and without namespaces

uses the SMIL timing module. There is currently an ongoing effort to apply the same
modular principles to the majority of existing specifications.

Most Web browser implementations natively support a subset of the languages in
Table 1.2. Modular language design allows a browser to only support the functionality
subset that can be supported by a device. However, browsers only support a finite set
of languages, and an XML document might use a language that is not supported by
a browser. A document transformation can transform such a document to a natively
supported representation. The subsequent chapters will thoroughly investigate XML
document transformations.

1.4.3 XML and the Web

XML is adequate for the Web, because it is consistent with its design principles. XML
is generic, because it allows the creation of custom languages for any data domain. Its
textual and concise syntax is easy to author and process, in relation to other generic
languages, such as SGML. XML is device independent, because its encoding is explic-
itly defined, and relevant external information, such as schema specifications, is also
expressed in a device independent manner. The XML recommendation specifies only
the necessary core concepts, and it avoids introducing limiting device specific process-
ing and presentation concepts. Finally, the separation of well-formedness and validity
results in a syntax specification that is both strict and tolerant: schema specifications
can precisely constrain the syntax of documents, but their validation is optional.

The XML adequacy for the Web does not ensure that it will successfully address
the Web data representation problems. The Web is a freely evolving, ever-changing
collection of data sources [Via01], and the way that the Web community uses XML
cannot be controlled. A major danger with XML is that everyone can create documents,
using several custom syntaxes, leading to a multitude of incompatible languages or
incompatible language extensions. Nevertheless, XML namespaces can be used as
a regulatory technology that averts such an outcome, because it separates language
constructs and discourages uncontrolled language extensions.

CHAPTER 1. INTRODUCTION 10

Scope Language Description

XHTML[PAA+00] The extensible HTML (XHTML) is an XML based
representation of HTML.

MathML[CIMP03] The Mathematical Markup Language (MathML)
is a representation of both the structure and the
content of mathematical notation.

Document
layout / styling

XSL-FO[ABC+01a] XSL Formating Objects (XSL-FO) is a vocabu-
lary for document formating semantics, which is
mainly focused towards printed media.

CSS[BCHL04] The Cascading Style Sheets (CSS) is a language
that allows attaching style to structured docu-
ments. CSS is not an XML language, but doc-
ument authors typically use it to customise the
presentation of XML documents.

SVG[FJJ03] Scalable Vector Graphics (SVG) is an XML rep-
resentation of vector graphics, which covers their
presentation, interaction and animation.

Graphics / mul-
timedia

SMIL[ABC+01b] The Synchronised Multimedia Integration Lan-
guage (SMIL) is a representation for interactive
multimedia applications. It consists of separate
modules that can be reused in other languages.
For instance, the SVG animation is based on the
SMIL timing component.

XUL[GHHW01] The XML User Interface Language (XUL) is a
model and a language for building graphical user
interfaces. For instance, the user interface of the
Mozilla browser is an XUL application.

Interaction XForms[DKMR03] XForms evolved from HTML Forms, which is a
core component of interactive Web applications.
XForms provides a device neutral language for the
“online interaction of a person and another, usu-
ally remote, agent”[DKMR03]

Scripting XBL[Hya01]

The XML Binding Language (XBL) is a represen-
tation for attaching behaviour to XML elements,
in a similar manner to CSS attaching style to XML
elements. XBL uses device neutral scripting lan-
guages, such as ECMAScript[ECM99], to define
element behaviour.

Transformation XSL-T[Cla99b]

The XSL Transformations (XSL-T) is a language
that describes transformations of XML documents
to other, XML or non-XML, documents. The
principal application of XSL-T is to transform
XML documents that use arbitrary XML lan-
guages to documents that only use languages that
are natively supported by a browser.

Generic scope RDFXML[BM04]

The XML representation of the Resource Descrip-
tion Framework[KCM04], which is the foundation
of the Semantic Web. It can represent any infor-
mation in terms of labelled graphs that use URIs
as vertices.

Table 1.2: XML languages examples

CHAPTER 1. INTRODUCTION 11

org.w3c.dom.Element

element1 org.w3c.dom.Element

element2

org.w3c.dom.Text

"Text content"

org.w3c.dom.Element

element2
org.w3c.dom.Document

org.w3c.dom.Attr

attr1="val"

Figure 1.2: DOM example

1.4.4 The Document Object Model

The Document Object Model (DOM)2 is a generic and device independent programming
interface for manipulating XML data. DOM provides a well defined way for XML based
applications to interoperate, and it is necessary for designing modular applications. The
current DOM recommendation is DOM level 2, and there is work in progress for the
DOM level 3, which focuses on better namespace and validation support. DOM level 1
specified the necessary interfaces for manipulating XML and HTML data, and it was
typically used in the browser-scripting and browser-parser boundaries.

All the DOM levels are based on a “DOM core” recommendation, such as the
DOM level 3 Core[HHW+04], which defines the document content access and update
interfaces. The DOM interfaces expose a document as a tree structure of nodes. Each
node is an instance of a subclass of the Node class. For instance, a node that corresponds
to an XML element is an instance of an Element class, which is a subclass of the Node

class. Figure 1.2 illustrates the DOM tree that corresponds to the XML example in
Listing 1.1. The additional recommendations enhance or specialise the DOM core
functionality. DOM level 2 (DOM-2) recommendations define a DOM based event
model, a document traversal utility interface and XML presentation interfaces. The
DOM-3 recommendations are not currently complete, but they appear to extend DOM-
2 recommendations towards better namespace and validation support.

1.5 Concluding remarks

This chapter introduced this thesis and established the fundamental Web and XML
background. XML was introduced to address the HTML shortcomings, but its under-
defined processing introduced a separate set of issues. The validation, transformation
and presentation of mixed namespace documents and the necessary binding and adapta-
tion mechanisms are undefined. This thesis attempts to utilise the presentation domain
constraints towards a generic preprocessing framework and a preprocessing model. The
latter allows the validation and transformation of mixed namespace documents, which
combine an open set of languages, using a distributed set of processing information.

2All DOM technical recommendations are available through the W3C Web site:
http://www.w3.org/DOM/DOMTR.

CHAPTER 1. INTRODUCTION 12

The next chapter reviews the existing XML presentation processing literature.

Chapter 2

XML presentation processing

There are several ways to process an XML document and, within the Web, user initiated
document presentation is the dominant form of XML processing. The previous chapter
established the fundamental Web and XML background. This chapter reviews the XML
document presentation literature, according to a top level processing model, which is
described in Section 2.1. The structure of the subsequent literature review follows
the proposed processing component separation. Specifically, Sections 2.2, 2.3 and 2.4
investigate the current validation, transformation and XML presentation approaches,
respectively. Section 2.5 examines the extent to which current browsers implement the
necessary processing functionality.

2.1 A top level presentation processing model

Successful communication of a piece of information requires a shared understanding
of that information. Schema languages, which are described in Section 2.2, pro-
vide well defined and machine processible language syntax specifications. However,
beyond the syntax level, XML languages do not have explicit machine processible
semantics[BL02a]. As Cover states in [Cov98], the interpretation of XML documents
relies on the human understanding of language specifications, and they are generally
meaningless to a machine.

The foundation of a generic presentation processing model consists of both well
defined machine processible semantics and their well defined association with document
constructs. There is currently no generic XML presentation processing model, because
of the lack of such a foundation. Section 2.1.1 will examine the core generic presentation
processing requirements and Section 2.1.2 will establish the corresponding high level
component separation.

2.1.1 Presentation processing requirements

The W3C organised a workshop that focused on addressing the lack of a generic XML
processing model[web04]. There was no clear conclusion, but it was agreed that pre-
defined processing step sequences, such as validation followed by transformation, are
not adequate[HM01, WMF01, Heg01] for the Web, because they are only sufficient for
a functionality subset of a fixed set of XML languages. Consequently, a well defined
representation of the processing iterations is necessary.

An application can natively support only a finite set of languages. Therefore, the
unrestricted multitude of XML languages necessitates a well defined binding between

13

CHAPTER 2. XML PRESENTATION PROCESSING 14

No predefined processing sequences

Distributed binding between languages and their processing

Generic integration model for mixed namespace documents

Provision for a variety of device capabilities and user preferences

Conformance to the Web design principles

Table 2.1: Generic XML presentation processing requirements

the individual languages and their corresponding processing information. Distributed
binding methods, where the owner of a resource assigns its interpretation, are more
adequate for the Web than centralised ones[J+03].

An XML presentation processing model that enables XML language reuse and
multi-domain information representation must support mixed namespace documents.
However, in addition to the lack of well defined processing of individual languages, there
is no generic language integration model, and mixed namespace document process-
ing remains undefined1[BL02a]. Predefined language integration profiles, such as the
XHTML+SVG+MathML profile[Mas02], only provide short term solutions, because
each set of XML languages requires a separate profile. Language authors continuously
define new XML languages, and their interdependence becomes exponentially harder to
enumerate in such profiles[Dub04]. Inline document processing semantics associations,
such as the xml-stylesheet processing instruction[Cla99a], neither provide distributed
binding nor adequately address the integration of languages, because they are as com-
plex as the integration profiles and document-instance specific. Consequently, a generic
presentation processing model requires a sufficiently generic integration model that de-
fines the processing of mixed namespace documents, according to the processing of
their individual language constructs.

Finally, an XML presentation processing model must fulfill the Web design prin-
ciples, introduced in the previous chapter, and accommodate the associated variety
of devices and user preferences. Table 2.1 summarises the above XML presentation
processing requirements.

2.1.2 Presentation processing components

There is currently no well defined XML presentation processing model, but, as Fig-
ure 2.1 illustrates, the set of core components and external entities can be specified.
Specifically, the document author wishes to convey some information and encodes it in
an XML document, using one or more XML languages. Each XML language is created
by a language author. The document user has a set of user preferences and uses some
device, in order to interact with an XML document presentation, in the optimal way
for the corresponding user preferences and device capabilities.

The presentation of an XML document consists of the creation of a data set and
of its rendering to a specific device[Heg01]. A presentation component is a necessary
XML browser component and is responsible for the XML data set rendering. The initial
data set creation steps are the document parsing and the optional document validation,

1W3C TAG Issue: mixedNamespaceMeaning-13: October 2003.

CHAPTER 2. XML PRESENTATION PROCESSING 15

Transformation

ParsingValidation

Presentation

Device

Document

User

Document

Document

Author

Language

Author(s)

LanguageLanguageLanguage

Figure 2.1: Presentation processing components and external entities

which are respectively performed by the parsing component and the validation com-
ponent. A document can contain languages that are not natively supported, because
presentation component can natively render a finite set of XML languages. Therefore
a transformation component is necessary for mapping unsupported constructs to the
corresponding natively supported constructs.

The subsequent chapters of this thesis will use a formal notation that assists the
concise communication of the proposed concepts. This chapter will gradually introduce
the necessary notation, which will be precisely defined in subsequent chapters. Lp will
denote the set of a presentation component’s natively supported languages. An XML
document d contains constructs from the languages in Ld. When Ld − Lp 6= ∅ the
transformation component is responsible for mapping the constructs of every language
L ∈ Ld − Lp to their corresponding constructs of languages in Lp.

A presentation processing model must define how the above components interop-
erate to create the optimal presentation of a document, according to a combination
of a document, a user and a device. Currently, only document parsing is well defined
for all XML documents. The rest of the components and their interoperation are un-
defined, and the only existing presentation processing model agreement is that there
must not be any predefined processing order. Consequently, the individual processing
components, illustrated in Figure 2.1, appear to loosely interoperate, and there is no
concepts of predefined ordering, such as processing layers or iterations.

The lack of generic processing models did not inhibit the introduction of a multitude
of approaches for the individual processing components. The remainder of this chapter
will discuss the existing literature for each processing component.

2.2 Validation

The XML recommendation requires that a document is well formed, but document
validity is optional. The distinction between well formedness and validity assists the
development of XML parsers, efficient XML processing, and liberal evolution of schema
languages. However, validation is an important component of an XML presentation
processing model. Specifically, XML processing components that use the foundation of
a validation component are easier and less error-prone to develop: they do not require
ad hoc conditional validation logic, which is necessary, because the decentralised nature
of the Web does not allow a priori document validity assumptions. Additionally, if

CHAPTER 2. XML PRESENTATION PROCESSING 16

Authoring Process

Document Author

Document V Server

Authoring

Validation

Figure 2.2: Validation during document authoring: The V-circle represents the valida-
tion process and the dashed arrow represents the validation feedback.

Presentation Process

Document User

Remote

Interaction

Presentation/

OrchestrationDocument

V Local

Interaction

V

Server V

V2

V1

V3

Figure 2.3: Validation during document presentation

validation is a common practice, language authors are more likely to provide language
schemas, as opposed to ambiguous descriptive syntax specifications.

Validation processing applies to both document authoring and presentation. The
document author can perform authoring validation to ensure the validity of a docu-
ment. The presentation process can validate a document before its presentation (pre-
presentation validation), and it can also validate the results of a process or user in-
teraction during the presentation (presentation validation). Figure 2.2 illustrates the
authoring validation, where the document author receives the validation process feed-
back. Figure 2.3 illustrates a processing validation example, where V1 validates the
input document, V2 validates the result of a user interaction and V3 validates a docu-
ment prior to its submission. The XForms[DKMR03] processing model is an example
of V2 and V3.

Autonomous validation processes use schema specifications to independently test
the validity of documents. In contrast, integrated validation approaches use schemas to
perform compile time analysis that ensures the validity of document operations. For in-
stance, the XML transformers typechecking approach[MSV00] ensures the validity of a
transformer’s output. Integrated validation is efficient, but it requires strict component
design that limits its application. For instance, in the above validation examples, only
V3 can use integrated validation, because of the well defined communication between
components of the same application.

Section 2.2.1 reviews the existing integrated and autonomous validation approaches,
and Sections 2.2.2 and 2.2.3 focus on the mixed namespace document validation and

CHAPTER 2. XML PRESENTATION PROCESSING 17

the validation information binding, respectively.

2.2.1 Validation approaches

Autonomous validation approaches use either grammar–based or rule–based schema
languages to describe the corresponding validation rules. The former define validity
using a document grammar, and the latter use structure assertions.

The Document Type Definition (DTD) is a part of the XML recommendation, and
it was the first XML validation approach. DTD is a minimal grammar–based language
that can express element containment, attribute containment and unique identifiers.
However, it does not cover current XML applications[Via01], because it does not sup-
port namespaces, data types and expressive element and attribute restrictions. Conse-
quently, a multitude of alternative schema languages have been developed, such as the
W3C XML Schema recommendation[TBMM01, BM01, Fal01]. XML Schema addresses
most of the DTD shortcomings, and it includes extensible element and attribute data
types, namespaces support and a modular syntax. Nevertheless, XML Schema cannot
express attribute interrelation constraints, and the use of subset of its concepts, such
as any and all, is overly restrictive. XML Schema does not conform to the XML
minimalistic nature, because of its lengthy specification and its mutually redundant
concepts, such as inheritance and substitution groups.

The most prominent current schema language is Relax NG[CM01], which is based
on an XML formal model and defines grammars using element, attribute and text
patterns. It provides more control over attributes than XML Schema and, even if it
does not contain a data model, it can reuse existing data models, such as the XML
Schema data model[BM01]. Other grammar–based approaches include the Unified
Constraint Model for XML (UCM)[FKS01], which uses a minimal core of recursive
regular expressions, and examplotron[Vli03], which uses document examples to infer
the syntax of a language.

Rule–based schema languages offer several attractive features, but they tend to lack
important features of the grammar–based approaches. For instance, Schematron[Jel03]
uses XPath[CD99] structure assertions to provide very expressive element and attribute
interrelations, and as an XSL-T meta-stylesheet, it has a device independent implemen-
tation. However, it lacks important string data types, type defaults and inheritance
features. Similarly, the Document Structure Description (DSD) [KMS00, Mol03] uses a
generic model of contextual regular expressions tests, but it lacks powerful restrictions
between sibling nodes. Rule and grammar–based approaches complement each other,
and combined approaches, such as SchemaPath[MCV04], which introduces rule–based
constraints to XML Schema, result in a powerful combination of both models.

Integrated validation approaches validate the document modification processes, in-
stead of the documents. XDuce[HP03] is an XML processing platform that treats ele-
ment types as object oriented types, and the associated modification methods enforce
document validity. Instead of controlling the document processing, other approaches
control the document modification rules. For instance, [KSR02] describes the modi-
fication of existing transformation specifications, in order to ensure that they always
produce valid documents.

Two studies[LC00, MLM01] compare the existing validation approaches either by
their set of supported features or by comparing them to a generic formal model. DTD
is the least expressive approach and Relax NG, and XDuce cover most of the necessary
validation functionality spectrum. However, no existing approach is more expressive

CHAPTER 2. XML PRESENTATION PROCESSING 18

Mixed Namespace Validator

Document Validator

Schema Integrator

Language 1

Language 2

Language n

Schema 1

Schema 2

Schema n

Feedback

Independent

Schemas

Combined

Schema

Figure 2.4: A generic schema integrator

than the others, and generic XML validation cannot rely on a single specification. On
the contrary, it must either allow a multitude of validation technologies or use a more
generic abstract model, such as the formal model described in [MLM01].

2.2.2 Mixed namespace validation

Apart from the DTD, all introduced validation approaches are namespace aware: they
allow the association of namespaces with schemas and the use of namespace qualified
elements and attributes. However, such namespace awareness is not sufficient for mixed
namespace validation. Language authors develop XML languages independently, and
there is a multitude of independently developed schemas. The relationship between
the language L of a mixed namespace document, which combines constructs from lan-
guages L1, L2, . . . , Ln, and the individual language specifications is not well defined.
This is a consequence of the lack of a generic method to interpret mixed namespace
documents[BL02c]. Well defined mixed namespace document interpretation is neces-
sary for combining the schema specifications of any languages L1, L2, . . . , Ln to a mixed
namespace language L for a document d where Ld = {L1, L2, . . . , Ln} (Figure 2.4).

Current mixed namespace processing applications either introduce purpose specific
integration profiles or abandon validation altogether, because of the lack of a generic
integration model. X-Smiles[PHV02] is an XML browser that supports mixed names-
pace documents, but it does not perform any validation prior to the presentation.
W3C defines a custom integration profile[Mas02] for combining the XHTML, SVG and
MathML languages, but such custom integration profiles are limited and not adequate
for the Web, as described in Section 2.1.1. Moreover, the W3C XHTML modularisation
recommendation[AAB+01] focuses on design principles for the creation of integration
profiles, as opposed to the development of a generic integration model.

The Namespace Routing Language(NRL)[Cla03] and the namespace-based valida-
tion dispatching language (NVDL), which is a part of the Document Schema Defini-
tion Languages (DSDL)[ISO04] multi-part validation standard, attempt generic mixed
namespace validation. NRL defines a syntax for associating namespace URIs with

CHAPTER 2. XML PRESENTATION PROCESSING 19

1 <?xml version=” 1.0 ”?>
2 < l : t a b l e xmlns : l=” . . ”
3 xmlns : f=” . . . ”>
4

5 <l : row >

6 <l :column>

7 < f : t a b l e >

8 An o f f i c e t ab l e
9 </ f : t a b l e >

10 </l:column>

11 <l :column>

12 < f : t a b l e >

13 A kit chen t ab l e
14 </ f : t a b l e >

15 </l:column>

16 </l : row >

17 </ l : t a b l e >

(a)

1 <?xml version=” 1.0 ”?>
2 < l : t a b l e xmlns : l=” . . ”
3 xmlns : f=” . . . ”>
4

5 <l : row >

6 < f : t a b l e >

7 An o f f i c e t ab l e
8 </ f : t a b l e >

9 <l :column>

10 </l:column>

11 <l :column>

12 < f : t a b l e >

13 A kit chen t ab l e
14 </ f : t a b l e >

15 </l:column>

16 </l : row >

17 </ l : t a b l e >

(b)

1 <?xml version=” 1.0 ”?>
2 <xhtml : t ab l e
3 xmlns : f=” . . . ”
4 xmlns:xhtml=” . . . ”>
5 <xhtml :t r>

6 <xhtml:td>

7 < f : t a b l e >

8 An o f f i c e t ab l e
9 </ f : t a b l e >

10 </xhtml:td>

11 <xhtml:td>

12 < f : t a b l e >

13 A kit chen t ab l e
14 </ f : t a b l e >

15 </xhtml:td>

16 </xhtml :t r>

17 </xhtml :tab le >

(c)

Listing 2.1: Erroneous NRL and NVDL validation example

schema specifications and the corresponding mixed namespace validation process. The
latter allows the combination of a multitude of schema languages by separating doc-
uments into single namespace subtrees and validating them independently. Moreover,
a namespace can be associated with a sequence of schema specifications, in order to
allow the combination of multiple schema languages for defining the syntax of an XML
language. Finally, NRL introduces user defined execution modes that allow context
dependent subtree validation, which accommodates for multi-namespace schema spec-
ifications, such as the proposed integration profiles. NVDL is similar to NRL, and it
validates individual document subtrees using namespace to schema associations. Both
NRL and NVDL store the necessary associations in a single file.

Both NRL and NVDL use a minimal integration model: if the individual subtrees
of a document are valid, then the document is also valid. Such a model does not cover
several integration cases. For instance, consider the integration example in Listing
2.1(a). The subtrees of the individual languages are valid and therefore the document
is also valid. However, in Listing 2.1(b), the information in lines 6–8 appears in the
table, but it is outside of any column. Such a structure is not valid, according to the
semantics of a table layout construct. Nevertheless, since all subtrees are valid, both
NRL and NVDL will consider Listing 2.1(b) as a valid document. Listing 2.1(c) is
an alternative where the document author uses XHTML tables. The XHTML syntax
only allows tables within the context of a body element; therefore, NRL and NVDL
will produce validation errors. Nevertheless, the document is semantically equivalent
to the first valid example.

Unlike the above approaches, there are generic languages that allow well defined
information integration. RDF is the foundation of the semantic Web, and it can rep-
resent any type of information, in a similar manner to XML. However, the processing
of RDF documents that combine multiple RDF syntaxes is well defined. Therefore, a
possible solution to the XML integration problems might be based on RDF.

A comparison between the XML and RDF versions of a structured document, which

CHAPTER 2. XML PRESENTATION PROCESSING 20

is included in Appendix D (page 299), illustrates the benefits and drawbacks of such an
approach. An initial observation is that the RDF version is more than twice the size of
the XML version, more difficult to author and more difficult to comprehend. These are
consequences of the principal information focus of RDF, as opposed to the structure
focus of XML. Specifically, the RDF document contains more information than the
XML document, it is more precise and it clearly defines the associations between the
individual information items. In contrast, XML is more focused on the information
structure and, as Berners-Lee states in [BL98b], it provides order, which makes more
sense and is easier to comprehend than the RDF unordered sets of statements.

Information integration depends on the association between different pieces of infor-
mation, and RDF integration is straightforward, because such associations are explicit.
However, neither substituting XML with RDF nor using RDF-style information asso-
ciations within XML are adequate solutions to the XML integration problems. XML
and RDF belong to separate information representation domains, which fulfill different
sets of requirements. RDF is primarily machine oriented, and it is not easy to author
and comprehend. XML focuses on the order of information, instead of the information
associations, which results in a more human oriented syntax that is a major factor in
its success. Both of the above solutions would result in a representation that does not
fit within the human oriented scope of XML. Consequently, this thesis will not cover
presentation approaches that are specific to either the RDF or the semantic Web and
cannot be adapted to the XML information representation model.

2.2.3 Schema binding

Schema binding concerns the explicit or implicit association of the necessary schema
specifications for validating a document. The validation approaches introduced in Sec-
tion 2.2.1 either do not specify such associations or propose inline document associa-
tions. For instance, a document can either have an inline DTD specification or refer
to an external DTD resource, using a declaration at the beginning of the document.
XML Schema defines attributes, within the “document instance” namespace, that can
provide schema location hints to the validator. NRL and DSDL approaches introduce
namespace to schema associations, but their schema binding is absent, because the
associations reside in a separate file, and there is no well defined way to locate it.

Explicit document associations ensure the availability of validation information,
but they delegate the validation information specification responsibility to the docu-
ment author. However, the document author typically focuses in the document con-
tent and not in its processing. Moreover, “the design choice for the Web is that the
owner of a resource assigns the authoritative interpretation of representations of the
resource”[J+03]. Consequently, the language author, who is the “owner” of a language,
should be responsible for specifying its processing information, which includes the val-
idation information.

Namespaces can enable the wide availability of processing specifications that are
developed by language authors. Namespaces provide unique XML construct identi-
fication, which is the basis of any form of association. Language authors typically
control their chosen namespace URIs and any URI-associated Web resources, such as
Web documents, and they can use them to associate a language to its human and
machine processible information. Such an approach enables the distributed specifica-
tion of language processing information and makes the Web a “distributed registry of
languages”[BL03].

CHAPTER 2. XML PRESENTATION PROCESSING 21

There is currently no consensus on the association between namespace URIs and
the corresponding human and machine processible language information. If the names-
pace URIs are also URLs, they enable well defined resource retrieval by a browser.
Schema specifications were initially considered as the adequate resource to associate
with a namespace URI. However, schemas only provide syntax information, and they
are not adequate for human consumption. [BL02d] proposes embedding RDF-based
language processing information within XHTML human readable language descrip-
tions, but there is currently no corresponding well defined RDF vocabulary.

The Resource Directory Description Language (RDDL)[BB02] is an XML syntax
that specifically addresses the representation of namespace related resources. RDDL
extends XHTML to allow the incorporation of links to machine processible resources
within human readable XHTML descriptions. Each link has a “nature” and a “pur-
pose”. The nature specifies the type of the linked resource, such as an XML Schema
specification type, and the purpose further refines the usage of the resource. There is a
predefined collection of the most commonly used natures and purposes, but language
authors can add their own. RDDL is not currently widely used, but it provides an
easy transition from the existing plain XHTML descriptions and allows the use of sev-
eral resource types. Therefore, it is a prominent approach for the association between
namespace URIs and language processing information.

2.2.4 Validation summary

Document validation is an important processing step during both document author-
ing and presentation. The existing set of validation approaches and schema languages
covers a wide range of functionality, but no individual approach covers all existing
functionality. Therefore, a generic XML presentation processing model must enable
the incorporation of the existing multitude of validation approaches. Mixed namespace
document validation is currently based on several short term solutions, such as inte-
gration profiles. NRL and DSDL proposed a minimal language integration model, but
it is not sufficiently generic for many integration cases. Finally, most approaches either
provide document based or no validation information binding, instead of using names-
pace URI based associations. RDF and RDDL have been proposed as alternatives for
encoding such associations.

2.3 Transformation

Early adoption of XML in Web browsers was impeded by the lack of a well defined XML
presentation processing model. The CSS recommendation[BCHL04] was initially used
to attach style information to XML constructs, but CSS is restricted by the initial doc-
ument structure, because it cannot transform a document. The XSL Transformations
(XSL-T)[Cla99b] address the CSS restrictions by separating the document presentation
from its structure and transforming XML documents to other XML or textual repre-
sentations. Transforming an XML document to a natively supported representation
enables its presentation.

A transformation maps the constructs of a language L1 to the constructs of a
language L2, according to an optional external input. The external input can be any
relevant information, such as an XML document or a set of transformation parameters.
T L2

L1
will denote the set of all transformations that map documents of L1 to documents

CHAPTER 2. XML PRESENTATION PROCESSING 22

of L2. d1
T
−→

I
d2, or d1

T
−→d2 for insignificant external transformation input, denotes

the mapping of d1 to d2 according to a transformation T and an external input I. If
T ∈ T L2

L1
and d1 is a valid document of L1, then d2 is a valid document of L2.

TL L

I

d1 d21 2
1

Figure 2.5: Transformation symbol

Figure 2.5 represents the mapping d1
T1−→
I

d2 of d1 to d2, according to the transfor-

mation T1 ∈ T
L2

L1
. A transformation can have multiple inputs and produce multiple

outputs, which are not necessarily restricted to XML. However, XML can represent
any information, and multiple inputs and multiple outputs can be incorporated into a
single XML document. Moreover, any non-XML information can be represented by an
equivalent XML document. Therefore, without reducing the generality, this thesis will
only consider single XML input and output transformations.

XML transformations can apply in multiple points of several applications, such as
generic data manipulation, content styling, Web publishing, and device specific content
adaptation. For instance, consider an XML document that lists a set of computer sci-
ence literature authors and the example transformation steps, illustrated in Figure 2.6.
T1 can select a subset of the authors, and T2 can transform the resulting author data to
a language, such as XHTML, which is natively supported by the client browser. T3 can
perform pre-presentation processing, such as converting XML Links to their equivalent
XHTML representation. During the presentation, T4 can modify the presented data,
in order to generate presentation effects, such as animation. Finally, if the document
user can edit the presented information, T5 can transform the user input to an XML
representation adequate for transmission to a server. The above transformation steps
can be freely distributed, since the inter-transformation communication uses XML,
which is device independent. The illustrated transformation steps illustrate an exam-
ple distribution over a server, a client, and an adaptation proxy. However, different
configurations can be used; for instance, all the processing can take place in the client.

The remainder of this Section (2.3) investigates the existing XML transformation
literature. Section 2.3.1 summarises existing transformation approaches that can be
enhanced by the transformation pipeline approaches in Section 2.3.2. Sections 2.3.3,
2.3.4 and 2.3.5 focus on content adaptation using transformations, binding of transfor-
mation information for mixed namespace documents and the interoperation between
transformation and validation, respectively.

2.3.1 Transformation approaches

XSL-T[Cla99b] was the first XML transformation language and it enables mapping
XML documents to other, XML or non-XML, documents. XSL-T uses an XML syntax
for its transformation rules, which consist of a set of output templates that are executed
recursively, according to either the structure of the input document or to explicit tem-
plate invocations. XPath[CD99] is an integral part of XSL-T, because it provides the

CHAPTER 2. XML PRESENTATION PROCESSING 23

ClientProxyServer

T1
L1 L2

I

T5
L7 L8

I

T4
L5 L6

I

T3
L3 L4

I

T2
L2 L3

I

PresentationDocument

Figure 2.6: Multiple transformation applications during document presentation

necessary syntax for referring to source document constructs and defining functional
data computations. XSL-T has been widely adopted, but it introduced multiple prac-
tical problems, such as the lack of data types, the lack of multiple inputs and outputs
and the restricted error handling and namespace support. The recently standardised
XSL-T 2.0 addresses these problems.

The main criticism of XSL-T is the disproportional complexity of its syntax to the
complexity of the defined transformations, which is particularly apparent for minimal
transformations, such as removal and copying of elements[ET01]. SXSLT[KK03] is
an alternative approach that claims to have a more concise syntax and better formal
properties. SXSLT syntax is based on Scheme[KCR98], and it is more concise than
XSL-T. However, using non-XML syntaxes for transformations is against the concept
of a common data representation, and it can complicate several transformation appli-
cations, such as meta-stylesheets. Meta-stylesheets are transformation specifications
that produce other transformation specifications.

Additional transformation approaches include the XDuce[HP03] transformations
and the Streaming Transformations for XML(STX)[CBN+03]. The former defines
transformations as operations on XML types, as introduced in Section 2.2.1, and pat-
tern based production rules. XDuce allows both declarative and imperative transfor-
mation specifications and their validation at compilation time. STX focuses on efficient
transformation application, and it minimises the memory and processing requirements
by manipulating sequences of XML structure events, as opposed to DOM trees. The
streaming nature of STX reduces its expressiveness, but the use of look-ahead and
history techniques permits the support of a substantial subset of XSL-T functionality.

Finally, in addition to generic transformation approaches, the processing of other
XML languages can also result in document transformation. A typical example is the
XML Inclusions language[MO03], which defines a syntax for including external content
to an XML document. The external content inclusion results in document modifi-
cations. Most such languages can be implemented by the above generic approaches;
therefore they only provide a functionality subset of the generic approaches.

2.3.2 Transformation pipelines

The interoperation between multiple transformation steps is not well defined, because
each of the aforementioned approaches uses separate transformation rule syntaxes and
processing models. For instance, consider the example illustrated in Figure 2.6, where

CHAPTER 2. XML PRESENTATION PROCESSING 24

T

L1 L4

T1
L1 L2

T3
L3 L4

T2
L2 L3

I

Figure 2.7: Transformation pipeline example

T3 is responsible for mapping the XML Links constructs to their XHTML equivalents.
Processing additional languages would either require a combination of separate trans-
formations, or a single transformation that combines their functionality. The former
modular approach is preferable, because it allows complex transformation specifica-
tions through division into simpler ones, and it combines the capabilities of multiple
approaches. Transformation pipelines enable the interoperation of separate transfor-
mation technologies, and they provide a declarative approach for connecting multiple
transformation steps, which is less error-prone than the alternative of using generic
scripting.

Existing transformation pipeline approaches fit into the single framework of de-
scribing the document flow between four component types: sources, transformations,
mergers and sinks. The sources and the sinks are responsible for the initial input and
the final output of the document, and they provide the input/output interface of a
pipeline. The transformations are the core processing components, since they mod-
ify the XML document. Mergers exist in a subset of the existing pipeline proposals,
and they are purpose specific transformations that use multiple document inputs. A
pipeline is also a transformation. Figure 2.7 illustrates a composite transformation
that corresponds to the sequential pipeline composition of the first three transforma-
tion steps illustrated in Figure 2.6. Specifically, T1 ∈ T

L2

L1
, T2 ∈ T

L3

L2
and T3 ∈ T

L4

L3
.

The resulting pipeline T is a transformation: T ∈ T L4

L1
∈ T

XPipe[McG01] is an early pipeline approach, which aims to reduce complexity by
composing transformations out of small and reusable components. XPipe architecture
is based on four layers. The first layer contains an extensible set of reusable components
that perform simple transformations. The second layer combines these components
into reusable pipelines, which provide enhanced transformation functionality. XRigs,
which is the third layer, uses the pipelines to build more complex structures, such
as transformation loops and duplexers. Finally, XGrid, the topmost layer, focuses on
transformation clustering for efficient execution using parallel processing. XPipe was
an ambitious project, and it had the potential to allow efficient execution and modular
design of arbitrary complex transformations. However, there has been only a partial
implementation of the first two layers. XPipe was subsequently subsumed within a
commercial solution, and details of further developments are not publicly available.

Cocoon[Maz02] is a widely deployed approach that uses pipelines for Web publish-
ing. Cocoon offers an extensive library of predefined reusable transformations, which
are the basis for pipelines that perform the most common Web publishing tasks. Co-
coon and other similar approaches, such as the Lazy XML processing proposal[NSL02],

CHAPTER 2. XML PRESENTATION PROCESSING 25

Device type Examples Description

generic http://www.example.org/document.html The original URI

mobile
http://www.example.org/document.wml Use of file extension

or
http://www.example.org/mobile/document.html path component

printer
http://www.example.org/document.pdf Use of file extension

or
http://www.example.org/print/document.html path component

Table 2.2: Example of implicit device capabilities information within URIs

target server side transformations, and they use a data-pull model: the last step of
the pipeline controls the data flow. On the other hand, push-based approaches, such
as the W3C XML Pipeline[WM02], use models similar to tools like make (part of
POSIX[Por04]). Such models organise the individual transformation steps according
to separate processing targets, and the document data are pushed through them.

In addition to integrating existing approaches, Transmorfer [ET01] proposes a trans-
formation pipeline model within a complete transformation language. Transmorfer al-
lows using regular expressions for more concise transformation definitions and provides
recursive application of transformations. The latter simplifies the processing of natu-
rally recursive transformations. For instance, an XML Inclusions processing transfor-
mation can introduce new content that also contains inclusion constructs. Transmorfer
will recursively invoke the same transformation, until all of the constructs have been
processed.

2.3.3 Transformations for content adaptation

Transformations can adapt XML documents to the characteristics of a variety of de-
vices. Cocoon offers some primitive adaptation support by associating the transfor-
mation pipelines with URIs, because the current use of URIs has device capabilities
implications that assist the identification of the basic characteristics of a client device.
For instance, consider the URI examples in Table 2.2. The first URI does not have
any device capabilities implications. The second and third imply that the associated
resource targets are mobiles, because of either the “wml” extension or the “mobile”
part in the URI. In a similar manner, the last two URIs imply an associated resource
that is optimised for printing. The Cocoon associations between URIs and pipelines
enable a Web server to process the same source document using separate pipelines,
which correspond to separate URI implied device capabilities.

The benefits of such adaptation approaches are limited, because the URI implicit
adaptation information is not well defined and restricted. Additionally, such device
dependent URIs are against the authoring principles for the Web[GFMS03], because a
URI identifies an information resource and not a device dependent information repre-
sentation. Nevertheless, they enable simple adaptation that does not require additional
client-server cooperation, and there are currently no other generic multi-language trans-
formation approaches that offer more powerful content adaptation.

In contrast, the device independent authoring domain includes several proposals for
adapting a document according to a set of device capabilities and user preferences.
However, they do not allow generic document transformation, because they either re-
strict the document languages set or rely on a static presentation component that

CHAPTER 2. XML PRESENTATION PROCESSING 26

closely interoperates with the transformation process. The investigation of device in-
dependent authoring approaches is included in a subsequent section (2.4), because the
restricted set of languages and the presentation component specific adaptation are more
relevant to the presentation component.

The application of transformations for content adaptation extends further than
the introduced XML transformations. Specifically, Web content may also use binary
data, such as images and videos, which also require adaptation to a variety of devices.
[PZB02] proposes a binary pipeline, which combines binary data transformations that
adapt binary content to a variety of devices. The adaptation of XML document as-
sociated binary data is necessary, but it is outside the scope of this thesis, which is
primarily concerned with XML processing.

2.3.4 Binding and mixed namespace transformations

The stylesheet processing instruction[Cla99a] is the dominant way of associating a
transformation definition with a document. Such document based approaches share
most of the document based validation binding problems described in Section 2.2.3,
notwithstanding the weaker relationship between transformations and XML languages.
Specifically, the document author should not be required to specify the document pro-
cessing. Language processing information should be associated with the individual
languages, instead of the documents, and transformation specifications are a partial
language processing definition. Cocoon provides the only alternative transformation
binding mechanism, which associates transformation specifications with URIs and URI
patterns. The Cocoon binding separates the document from its processing, but the
associations remain document specific, and document modifications can require exten-
sive reconfiguration of the associated transformation pipelines. Consequently, there
is still an implicit relationship between the document author and the final document
processing.

The majority of transformation approaches allow namespace aware transformations
that use namespace qualified constructs. However, there is currently no proposal for
associating individual namespaces to reusable transformations that can be combined for
processing a mixed namespace document. The lack of such proposals is a consequence
of the current principal perception of transformations as an independent step of XML
document processing and not as a way to define the processing of XML languages.

2.3.5 Interoperation with validation

As described in Section 2.1.2, an XML presentation model must define the interoper-
ation between its individual processing components. The output of a transformation
process T ∈ T L2

L1
is well defined, if its input document d1 is a valid document of L1.

The output d2 of T is guaranteed to be a valid document of L2, if the transformation
process behaves correctly and has no errors. The interoperation of the transformation
and the validation processes is necessary, in order to ensure well defined processing
behaviour and to assist the identification of implementation errors.

In addition to transformation processing steps, the W3C XML Pipeline approach
also allows validation steps within the pipelines. Additionally, validation approaches
that are implemented as transformations, such as the previously introduced Schema-
tron, can be incorporated in all transformation pipeline approaches. More fine grained

CHAPTER 2. XML PRESENTATION PROCESSING 27

transformation and validation interoperation occurs within integrated validation pro-
cessing models. For instance, the result of any transformation in XDuce is a priori
known to produce valid results, and there is no need for additional runtime validation.
Similarly, the type checking approach described in [MSV00], ensures that the result of
a transformation T L2

L1
will be a valid document of L1, if the input is a valid document

L1.

2.3.6 Transformation summary

Transformations are important for an XML presentation processing model, and they
have several applications in document styling, Web publishing and content adapta-
tion. There are several generic transformation languages, where XSL-T is the most
widely used, notwithstanding that it is relatively more complex than the alternatives.
Transformation pipelines enable the combination of transformation steps to form more
expressive, easier to develop and more reusable processing components.

Current approaches that bind transformation information to XML constructs are
problematic, because they delegate the document processing responsibility to the doc-
ument author. The lack of language based associations results in the lack of generic
mixed namespace transformation models.

Content adaptation is a prominent application for transformations, but apart from
implicit and ambiguous URI based associations, there are no generic approaches that
adapt XML content to the variety of devices and user preferences that will inevitably
be required for the Web.

Finally, the interoperation between the validation and transformation processes
can be expressed by incorporating validation steps within transformation pipelines.
Additionally, integrated validation approaches allow the validity to be a priori known,
without requiring a separate runtime validation.

2.4 Presentation

A document user uses a Web browser, which runs on a target device, to interact with
the presentation of an XML document. The presentation component is the interface
between the XML data, the document user and the target device, and it is responsi-
ble for adequately presenting the XML document according to the document author
intentions, the target device capabilities and the document user preferences.

The presentation component can natively support a finite set of XML languages,
the native presentation languages set Lp. As Figure 2.8 illustrates, the other process-
ing model components interoperate for mapping the source document to its natively
supported interpretation. In a similar manner to the transformation and validation
components, the presentation component benefits from mixed namespace documents
and an extensible native presentation language set. The former allows better Lp utilisa-
tion, and the latter is necessary to accommodate the ever increasing Web presentation
requirements. Additionally, the presentation component must simultaneously fulfill
the, possibly conflicting, document author requirements, document user requirements
and target device capabilities.

Sections 2.4.1, 2.4.2 and 2.4.3 focus on the Lp set: its members, its extensibility and
the corresponding mixed namespace support. Section 2.4.4 investigates both presenta-
tion and transformation approaches for adapting the document presentation, according

CHAPTER 2. XML PRESENTATION PROCESSING 28

Target Device

Other Presentation

Model Components
Presentation

User

Preferences

Device

Capabilities

Document

User

Browser

pL

Figure 2.8: The presentation component as an interface between the target device, the
document user and the document author.

to the user preferences and device capabilities. Finally, Sections 2.4.5 and 2.4.6 intro-
duce several imperative scripting and declarative constraint approaches, which can
enhance the functionality of the presentation component.

2.4.1 Native presentation languages set Lp

The members of Lp significantly influence a presentation model’s capabilities, because
Lp represents its interface, and all presentation information must be encoded using the
languages in Lp. Before the advent of XML, the presentation model capabilities were
restricted by a limited set of Web languages, and an Lp that covered the functionality of
HTML and CSS was sufficient. However, XML content can require arbitrary complex
presentation, and the members of Lp must cover a wide presentation functionality
spectrum that is difficult to enumerate.

Existing W3C recommendations include a multitude of presentation oriented XML
languages that are candidate members of an adequate Lp, because they cover a wide
range of presentation functionality. For instance, HTML and CSS have covered the
majority of the document layout and hyper-linking uses, over the last decade. Extensive
use does not in itself prove sufficient coverage of a presentation area, but it does give
an indication of sufficient coverage for the most common requirements. However, the
illustrated sufficiency has been maintained by continuous extensions that have resulted
in complex and feature saturated languages, which, as mentioned in Section 1.3, are
against the minimalistic nature of the Web.

XML allows the creation of purpose specific languages, and it can address the prob-
lem of overly complex languages, but XML languages are evolving in a similar way to
HTML. For instance, SMIL 1.0 contained the core multimedia integration function-
ality in a thirty pages recommendation. The SMIL 2.0 recommendation[ABC+01b]
attempted to cover most necessary Web multimedia functionality, and it resulted in
a twenty fold recommendation size increase. Similarly, SVG started as simple vector
graphics syntax, but evolved to a very broad language, which includes animation, text
layout, streaming media and presentation of arbitrary XML content. Such languages
are versatile, but they do not conform to the minimalistic nature of the Web and most
include features that not all devices can support. As Allen states in [All04], the Web
needs simple building blocks that can be combined to provide extended functionality.

CHAPTER 2. XML PRESENTATION PROCESSING 29

Functionality
categories

Hardy[Har04] Allen[All04] Birbeck[Bir04]

Layout document layout generic layout styling, generic rendering

Multimedia integration, animation
media support

generic rendering
animation

Interaction Interface components Input events

dynamic document model,
system module, communi-
cations.

Behaviour code/data binding
binding

Events, validationconstraints
Extensibility extensible architecture building blocks generic presentation

model
Adaptation resolution independence views object broker

Table 2.3: Proposed Web content presentation building blocks

Consequently, there is an ongoing effort to partition existing languages into a set of
loosely coupled modules.

Hardy[Har04], Allen[All04] and Birbeck[Bir04] propose three separate sets of the
necessary presentational building blocks for the Web. As Table 2.3 illustrates, all
proposals cover the same functionality categories: document layout, multimedia, in-
teraction, behaviour specification, extensibility and adaptation for a variety of devices.
The core difference between the three proposals is the granularity level of the proposed
building blocks. For instance, [All04] describes individual presentation components,
but [Bir04] describes a higher level generic presentation model. All proposals contain
language examples, but they define the necessary functionality using sets of features,
instead of specific XML languages. Such descriptions enable well defined functionality
categories, which do not depend on language specific features.

None of the above proposals proves the sufficiency of either the functionality cat-
egories or their corresponding building blocks in Table 2.3. Sufficiency investigations
for the freely evolving Web are difficult, but sets of use cases can assist the require-
ments identification, within sufficiently narrow categories. In the multimedia domain,
[OGHR03] uses a set of use cases to define the requirements for a multimedia vocab-
ulary for the Web. [Sch02] establishes the SMIL 2.0 time model sufficiently for the
majority of the Web multimedia requirements. Use cases do not provide indisputable
proofs of sufficiency, but they are a valid alternative for the Web, where sufficiency is
impractical or impossible to prove.

2.4.2 Extensibility of the native presentation languages set

The transformation component enables the presentation of non native presentation
XML languages (not in Lp), if the Lp functionality is sufficient. The presentation
component must be extensible, in order to allow Lp to evolve in parallel with the
continuously increasing Web presentation requirements.

Plug-ins and applets are the currently prevalent method of extending the func-
tionality of the presentation component. A plug-in is a device and browser specific
component that fully controls the presentation of a new language or media type. An
applet is a device independent component that controls a rectangular screen area and

CHAPTER 2. XML PRESENTATION PROCESSING 30

Java VM Plug-in

: Plug-in

Presentation

Model

Presentation

Component

Device

Device API

: Java API1pL 2pL
pL

'

pL

Figure 2.9: Lp extension using plug-ins and applets

runs on a Java virtual machine. Both approaches can provide arbitrary complex pre-
sentations, since, as Figure 2.9 illustrates, they are not restricted by the underlying
presentation model. Plug-ins directly access the device API and add their “plug-in
Lp2” to the combined L′p . The applet approach exposes the generic Java API as a part
of the L′p. Both applets and plug-ins implement their own presentation model that does
not depend on other components or presentation models, and they can impede the in-
teroperation between separate plug-ins, applets and the existing presentation model.
Therefore, the presentation of documents that combine the languages in L′p becomes
problematic, because it requires a well orchestrated component interoperation.

Alternative extension approaches that integrate into the existing native presenta-
tion model can overcome the above interoperation issues, but they require generic and
extensible presentation models. For instance, using CSS to define the style of new
languages enables language interoperation on the foundation of the common CSS pre-
sentation model. However, as described in Section 2.3, CSS is not sufficiently generic,
because it closely couples the structure and the presentation of documents, and it only
covers a presentation functionality subset.

Scripting approaches, such as the ECMAScript [ECM99] and the light–weight Web–
based applications[Bos04], do not directly extend the Lp set, but they allow presen-
tation and processing model customisations. ECMAScript, which is the standardised
version of JavaScript, is a scripting language that can manipulate XML data, using the
DOM interfaces, and access runtime presentation information, through the browser
API. The light–weight Web–based applications approach is a scripting alternative to
applets, which is closely integrated to a hosting document. Both approaches extend
the presentation component functionality by manipulating and combining its existing
functionality. However, they do not have an explicit binding with XML constructs
and, therefore, they cannot directly extend the Lp . Moreover, the lack of a well defined
browser API restricts their presentation processing model access. The light–weight
Web–based applications approach proposes a custom processing model, which exposes
a well defined interface, but it leads to the same problems with applets and plug-ins.

The XML Binding Language (XBL)[Hya01] and the Rendering Custom Content
(RCC), which is a component of the current SVG 1.2 working draft, combine imper-
ative scripting and declarative associations to enhance the presentation component
functionality. XBL uses an object oriented model for associating behaviour with XML
structures, in a similar way to the CSS styling information association. Specifically,

CHAPTER 2. XML PRESENTATION PROCESSING 31

Presentation

Component

Device

Device API

Presentation

Model

Extension

pL

pL1pL

'

pL

Figure 2.10: Extension with presentation model integration

XBL associates the name of an element and its position in a document to a set of
properties, event handlers and “hidden content”. The “hidden content” uses other
XML languages to specify the presentational behaviour of an element. RCC uses a
similar approach to XBL, but it is specific to the SVG presentation model. The SVG
“hidden content”, or “shadow tree” in the SVG terminology, solely consists of SVG
elements that define the presentation of an element. RCC binding uses the qualified
element names, instead of the positional XBL bindings. RCC does not explicitly sup-
port the XBL concept of object oriented scripting, and it is less generic than XBL,
but it conforms to the SVG processing and presentation model. Both XBL and RCC
are restricted by the existing presentation model, but their combination of binding,
scripting and language reuse is the most promising current approach for an extensible
Lp.

Figure 2.10 illustrates how presentation model integration approaches, such as XBL
and RCC, add new languages to a presentation model. The definition of the presen-
tation of a new language uses the existing Lp . The resulting L′p seamlessly integrates
both the original Lp and the introduced extension Lp1 . Further extensions can use the
combined L′p and allow recursive reuse of existing functionality.

2.4.3 Presentation of mixed namespace documents

A presentation component benefits from mixed namespace document processing, be-
cause it enables the combination of the individual Lp presentation building blocks into
a coherent whole, and it also enables the seamless integration of Lp extensions. More-
over, there are existing Lp candidates that require mixed namespace processing, such
as the XML Linking language (XLink)[DMO01]. XLink defines a syntax and a model
for generic XML links that provide bidirectional, multiple source and multiple target
linking. The “simple” XLink links are similar to the HTML links, and their syntax
consists of the single href attribute of the XLink namespace. The href attribute can
be attached to an element of any XML language, in order to specify the URL that the
element is linked to. A document that uses XLink is a mixed namespace document, be-
cause it must use constructs from both the XLink and the content description language
namespace.

In a similar manner to the other processing components, the lack of a generic

CHAPTER 2. XML PRESENTATION PROCESSING 32

integration model impedes the presentation of mixed namespace documents. How-
ever, an Lp integration model can achieve generic integration by utilising the, yet
undefined, presentation domain constraints in a more straightforward manner than
a generic transformation and validation integration model. Specifically, the Lp lan-
guages are the interface of the presentation component, which has the well defined
purpose of document presentation. As described in Section 2.4.2, prominent Lp ex-
tension approaches must integrate all extensions to a common underlying presentation
model. Consequently, each presentation component implementation explicitly bounds
the functionality of the Lp languages and of their extensions. The RCC proposal and
the X-Smiles browser[PHV02], which are discussed below, utilise the presentation do-
main constraints for mixed namespace document presentation.

In contrast, namespace assimilation and integration profiles do not utilise the
presentation domain constraints. Namespace assimilation approaches assimilate in a
namespace the necessary constructs of other languages. For instance, SVG declares the
SMIL animation constructs, within its own namespace. Namespace assimilation allows
customized integration, according to the host language presentation model, but it does
not comply with the modularity requirement and results in monolithic specifications
and redundant constructs. Moreover, continuous updates are necessary to keep such
specifications up to date. Integration profiles define how to integrate a fixed set of lan-
guages, and they do not necessarily introduce redundant constructs or require updates
when one of their individual languages is updated. However, existing profiles, such as
the XHTML + SVG + MathML profile [Mas02], do not define sets of integration rules,
but combine the individual specifications into a profile specification. Therefore, they
bear redundancy and must be updated, when the languages are updated. Additionally,
current approaches focus more on the syntax, and not the presentation integration.

Namespace assimilation and integration profile approaches are problematic, because
they do not utilise the presentation domain constraints, in order to propose a generic
presentation integration model. Integration proposals that use the presentation domain
constraints face a trade off between versatility and integration capabilities. [MMM04]
proposes mixed namespace documents presentation on top of a common presentation
framework. For instance, RCC enables the presentation of mixed namespace documents
by mapping their constructs to the SVG presentation model. The common presentation
model allows powerful integration, because it enables well defined interoperation be-
tween the individual languages. Such approaches require a well defined and sufficiently
generic presentation model, which is difficult to establish, as discussed in Section 2.4.1.

The X-Smiles browser[PHV02] proposes more loose interoperation, in order to pro-
vide more generic integration. Each language namespace is associated with a language
specific presentation module. A document subtree is presented by the instance of the
presentation module that corresponds to its root node namespace. Each instance al-
locates a rectangular rendering area and can interoperate with other modules, if the
subtree contains multiple namespaces constructs.

Figure 2.11 illustrates the DOM tree and the presentation layout of a mixed names-
pace document that contains XHTML, XForms and SVG constructs. The root of the
tree is an XHTML node, and X-Smiles uses an XHTML presentation module instance
to cover the browser rendering area. The XHTML presentation module interoperates
with the XForms and SVG modules, for the presentation of the XForms and SVG sub-
areas, using a box layout model and a set of predefined interfaces. The X-Smiles model
successfully integrates nine W3C recommendations, but the box layout cannot cover
all integration cases, and the interface based interoperation is problematic, because

CHAPTER 2. XML PRESENTATION PROCESSING 33

Browser Window

XHTML

XForms

SVG

XHTML Document Node

Document Fragment

Legend

Figure 2.11: X-Smiles mixed namespace document presentation. The various colours
represent the nodes and the presentation of different languages

interface extensions require component modifications. A viable alternative, illustrated
in [Zil04], is property based component interoperation, where the introduction of new
properties does not require existing component modifications, because they can ignore
any unknown properties.

2.4.4 Presentation adaptation

The presentation of an XML document must fulfill the possibly conflicting require-
ments of the adaptation factors: the document author, the document user and the
target device. The granularity of the Lp presentation information distributes the adap-
tation responsibility between the transformation and the presentation components. As
illustrated in Figure 2.12, the more abstract the input of a component in relation to
its output, the more adaptation freedom and responsibility it has. In 2.12 (a) the Lp

interface between the transformation and presentation components lies in the middle
of the overall adaptation range, and the adaptation capability/responsibility is divided
equally between them. On the contrary, the Lp presentation information is more ab-
stract in (b) and more precise in (c), and the adaptation capabilities/responsibilities
are separated in a corresponding uneven manner. This section will describe both trans-
formation and presentation adaptation approaches.

A component that performs content adaptation must be able to access the adap-
tation factor requirements. The document author requirements are directly available
to all processing components, because they are either explicitly or implicitly contained
within the XML documents. For instance, a style attribute can explicitly specify the
font-size of a paragraph, and an <h1> XHTML element implies a larger and bolder
font than the main body of a document. On the contrary, an alternative source must
provide the document user and target device requirements. URIs can contain implicit
device type information, such as “desktop”, “printer” and “mobile”, as illustrated in
Section 2.3.3. CSS permits the use of separate presentation styles for separate device
types. However, such approaches are not sufficiently generic, since the type of a device
is only one of the several relevant adaptation factors.

CHAPTER 2. XML PRESENTATION PROCESSING 34

pL
Precise

presentation

information

Abstract

presentation

information

Document

Source
Document

Presentation

PresentationTransformation

PresentationTransformation

PresentationTransformation

Presentation

Adaptation Range

Transformation

Adaptation Range

 interface between

Transformation and

Presentation

(b) Abstract

(c) Precise

(a) Balanced

pL

pL

Figure 2.12: Adaptation responsibility/capability according to Lp granularity

The Composite Capabilities/Preferences Profile W3C recommendation[RHDS99]
(CC/PP) is an RDF syntax that enables more precise requirements specification. A
CC/PP profile is a collection of statements about user preferences, hardware and soft-
ware capabilities. CC/PP profiles are “composite”, because they can be composed out
of a default profile and multiple temporary and/or permanent modification sub-profiles.
A presentation model can use CC/PP to access the adaptation factor requirements, for
a given target device, document and presentation session. For instance, a CC/PP de-
fault profile, which is associated with a target device, can contain the corresponding
software and hardware capabilities. The target device can also be associated with a
permanent sub-profile that describes software upgrades and session independent user
preferences. Finally, the presentation session can be associated with a temporary sub-
profile that contains temporary requirements, such as the user preferences for a specific
document. The extensible CC/PP profiles can express any adaptation requirement, and
their composite nature minimises the profile communication requirements, because it
allows caching the most static sets of requirements. However, it does not provide a
well defined resolution mechanism for conflicting statements, which is necessary for
composing independently developed profiles.

As mentioned above, the adaptation capabilities of a component improve, if its in-
put is sufficiently more abstract than its output. However, especially when documents
are not authored with adaptation in mind, the adaptation range might not allow suffi-
ciently powerful adaptation. The proposals described in [YW03] and [CMZ03] focus on
adapting existing HTML content to limited resource devices, such as mobile phones.
HTML describes the presentation of a document, but it does not convey higher level
concepts, such as the relative content importance and semantic document partition-
ing, which are necessary for the proposed adaptation. The above proposals attempt to
guess the original author intentions by a heuristic analysis of the HTML source, which
takes into account the source indentation and the proposed screen positioning of the
individual elements. The resulting documents are more adequate than the originals for

CHAPTER 2. XML PRESENTATION PROCESSING 35

limited resource devices. However, such approaches are limited, because when the orig-
inal author intentions are lost, heuristics can only estimate a limited subset of them,
with questionable accuracy.

Device independent authoring aims to provide more powerful content adaptation
by preserving the high level author intentions in the document. Existing approaches
allow either the adaptation of generic XML content or of application domain specific
content. For instance, CSS supports alternative presentations of generic XML content
for various devices, because it allows the association of separate stylesheets with sep-
arate devices. As mentioned above, such a selection mechanism does not cover the
variety of adaptation requirements; moreover, such stylesheets are document specific,
do not allow functionality reuse and associate the presentation semantics with the doc-
ument, instead of the XML languages. The proposal in [OH02] enables significantly
more powerful adaptation, because it extends the adaptation requirements spectrum
by associating CSS stylesheets and XSL-T transformation specifications with CC/PP
profile queries.

Application domain specific adaptation approaches can only adapt a subset of XML
documents, but they can exploit the properties of an application domain to offer power-
ful adaptation. For instance, the adaptive grid [JLS+03] provides high quality document
layout, for a variety of page sizes. The document author provides information streams
and sub-streams, which define the information sequence and grouping that the docu-
ment user must perceive. The document author can also define a set of adaptive page
layout templates, using numerical constraints on the page size and the visual compo-
nent position. The layout engine solves the resulting constraints system and uses the
most appropriate template for each page, which is also adapted to the corresponding
information streams.

The adaptive grid approach is limited to adapting page layout specifications, ac-
cording to a single group of adaptation requirements: the page dimensions. The highly
constrained application domain enables more autonomous and powerful adaptation
than the above generic approaches. Specifically, the layout engine is able to automati-
cally evaluate the best template for each page, without the intervention of the document
author or the document user. Moreover, the domain specific constraint definitions al-
low precise template adaptation, according to presentation time variables that cannot
influence the adaptation processes in the above CSS and XSL-T based approaches.
Finally, as opposed to the CSS stylesheets, the page templates are reusable and not
document specific.

However, the adaptive grid is highly constrained and not adequate for adapting
other information domain content, such as multimedia. As described in [OGHR03],
multimedia content requires different adaptation approaches than text based media,
because it uses different adaptation abstractions and processing models. For instance,
typical text layout does not include temporal orchestration or media type and media
transmission negotiation, which are central to a multimedia presentation. The above
work[OGHR03] summarises the core requirements of a high level multimedia repre-
sentation that preserves the necessary high level author intentions, for adapting the
content to a variety of devices. The Cuypers presentation engine[OGC+01] precisely
defines a high level multimedia content representation and a corresponding adaptation
mechanism. It combines a generic prolog-based solver with multiple domain specific
linear constraint solvers, and it iteratively transforms the original representation to
increasingly more device specific representations, according to a set of predefined rules.

Both the adaptive grid and the Cuypers presentation engine use constraint systems

CHAPTER 2. XML PRESENTATION PROCESSING 36

Requirements

XML compatible syntax
Point of execution specification

Predefined interfaces
Predefined but extensible processing model

Interoperation between independently developed code
Distributed, instead of centralised processing model

Interoperation with declarative approaches

Table 2.4: Imperative approaches requirements for XML presentation

to express the presentation interrelationships within a document. Constraints are a high
level, declarative, tolerant and both device and processing model independent way to
express presentation information. However, generic constraint solvers are complex and
computation intensive processes that cannot be used for all devices that can access
the Web. However, as Section 2.4.6 describes, restricted special purpose solvers can
efficiently address the most common requirements for Web presentations. Constraints
are high level constructs that can express the author presentation intentions, in a device
independent manner, and provide a sufficient adaptation range for powerful adaptation.
Section 2.4.6 will overview the field of constraint based document presentation for the
Web.

2.4.5 Scripting

Scripting and other imperative presentation descriptions can reduce a presentation com-
ponent’s adaptation range, because they are more precise than declarative alternatives.
However, as described in [Fou04], declarative techniques should be used when possible,
but “scripting is here to stay”, because it enables the Lp functionality to catch up with
the evolving Web presentation requirements. Ultimately, any arbitrary presentation
can be implemented in a generic imperative language, and there are proposals, such as
[LFCH02], where an imperative-only approach controls the content presentation.

Many presentation approaches use imperative techniques, and all the Lp proposals,
illustrated in Section 2.4.1, include code binding and event handling that require imper-
ative descriptions. The introduced Lp extension approaches, such as applets, plug-ins
and XBL, also use imperative specifications to define the behaviour of new constructs.
Finally, the most prominent mixed namespace presentation approaches, illustrated in
Section 2.4.3, are the interfaces of X-Smiles and the RCC/XBL proposals. The former
use imperative Java interface implementations, while the latter use scripting for events
processing. This section describes the existing imperative approaches and how they
relate to the presentation of XML documents.

Table 2.4 summarises the requirements of imperative approaches that are adequate
for generic XML document presentation. Specifically, they must conform to the Web
design principles and fit within an XML processing model. Since XML parsing is part
of an XML processing model, imperative specifications that can be embedded within
XML documents must either use an XML or an XML compatible syntax. Both trans-
formation and presentation components can use imperative specifications to modify

CHAPTER 2. XML PRESENTATION PROCESSING 37

the document tree and to control the presentation, respectively. Therefore, an imper-
ative specification must also explicitly or implicitly specify its point of execution and
its corresponding interoperation with the XML processing components. A well defined
processing model can assist the definition of the necessary interfaces and of the alterna-
tive points of execution, but it must be sufficiently extensible to cope with the evolving
Web.

Additionally, mixed namespace document presentation requires interoperation be-
tween independently developed imperative specifications. Distributed processing tech-
niques are more adequate for the Web than centralised ones, as described in [CLNL03].
For instance, a dependency resolution process, such as linking, must be able to locate
the required code libraries using URIs, instead of local identifiers that are only valid
within a single device. Finally, an imperative approach must be able to coexist and
interoperate with declarative ones, so that the latter can be used whenever possible.

The JavaScript and ECMAScript approaches, which were introduced in Section
2.4.2, provide generic purpose scripting, and they are extensively used to customise
and control the presentation of Web content. However, they do not fulfill the above
requirements. Specifically, they do not have an XML compatible syntax, and they are
often hidden within XML comments, to avoid harming the well formedness of doc-
uments. Since they are not XML specific, they do not define an XML processing
model, a point of execution and the corresponding well defined interfaces, apart from
the independently defined DOM interfaces. Additionally, they do not offer a binding
mechanism that allows their interoperation with declarative approaches. Finally, they
do not have a distributed processing model that enables the interoperation of inde-
pendently developed code, and they require that all the code is included in or linked
from a single document. Additional specifications, such as the DOM ECMAScript in-
terfaces and the XHTML event handlers, provide mechanisms for using JavaScript and
ECMAScript within XML processing, but they are not sufficient to fulfill all the above
requirements.

XML-specific imperative approaches can fulfill the above requirements, but most
current approaches focus on document validity and Web services, instead of document
presentation. For instance, the XML Objects approach[KL02] associates Java classes
to XML elements. However, the class association does not influence the presentation of
the corresponding elements, because it solely provides the necessary interfaces for DOM
tree manipulations that result in valid documents. Web services oriented approaches
[FGK02, CLNL03] focus on Web services imperative definitions that associate appli-
cation logic with URIs. Such associations allow their distributed interoperation, but
they do not enable presentation behaviour binding to XML constructs.

The above approaches are not designed for XML presentation and only fulfill a
subset of Table 2.4 requirements. Binding techniques, such as XBL, which was intro-
duced in Section 2.4.2, can bridge such imperative approaches with an XML processing
model. XBL explicitly separates the scripts that are executed before the presentation
from the event handlers that are executed during the presentation. XBL decouples the
scripting from the XML syntax, because the imperative specifications do not neces-
sarily reside within the binding specifications. Moreover, XBL enables interoperation
between declarative and imperative approaches, because the bindings are a combina-
tion of existing XML elements and scripting. As Figure 2.10 (page 31) illustrated,
each binding results in an element that wraps the binding definition by extending the
Lp. New bindings can easily reuse existing ones by declaratively using their respective
XML elements.

CHAPTER 2. XML PRESENTATION PROCESSING 38

1

:comp1

3

:comp3

5

:comp4

2

:comp2

4

:comp4

DOM Node

Object of

"Comp"
:comp

Registry

Component repository

Comp2

Component repository

Comp1 Comp4

Comp3

Comp Class "Comp"

Legend

Figure 2.13: XVM relationship between DOM nodes and Java objects

XBL enables the use of existing scripting approaches for XML presentation by in-
troducing a minimal processing model and a binding mechanism. It decouples the
scripts from the XML syntax, explicitly defines the point of execution and allows inter-
operation between declarative and imperative approaches and between independently
developed code. However, XBL does not define the necessary presentation model in-
terfaces. Moreover there is no well defined document independent way to retrieve the
necessary binding information.

The XML Virtual Machine (XVM)[LKSW04] is a generic purpose XML processing
approach that explicitly defines a binding location mechanism. Specifically, XVM asso-
ciates Java classes to XML elements, according to their qualified name, using a registry
service that locates the appropriate class within a set of distributed class repositories.
After the creation of the DOM tree, XVM attaches objects of the associated classes
to the DOM element nodes. Each element’s attached object is responsible for the pro-
cessing of the respective element. The parent of an element, or a bootstrap process for
the root node, is responsible for interoperating with the registry service to retrieve and
instantiate the attached object.

Figure 2.13 illustrates the relationship between the DOM nodes and the Java ob-
jects. Each element is responsible for locating the necessary classes and attaching the
respective objects to its children. For instance, the XVM bootstrap process attaches
the :comp1 object to the root node 1. Subsequently, :comp1 interoperates with the
registry to locate the implementations of the Comp2 and Comp3 classes, which are re-
spectively associated with Node 2 and Node 3. :comp1 fetches the implementations
from the component repositories, instantiates the objects and attaches them to the
child nodes. The process continues recursively, until all the necessary objects have
been attached.

XVM is designed as a generic XML processing layer that can support more specific
XML applications. XVM fulfils the distribution and point of execution requirements
by its distributed processing model that separates between the object instantiation
and subsequent processing. It does not explicitly cover the other requirements, but
it provides the means to build applications that do. An example XVM application,

CHAPTER 2. XML PRESENTATION PROCESSING 39

illustrated in [LKSW04], introduces a simplistic presentation model, where all the pre-
sentable objects implement a common interface. The root element interoperates with
its descendants, using the common interface, to perform the layout and the presenta-
tion in a rectangular canvas. The example application fulfils the predefined presentation
model interfaces and interoperation requirements.

2.4.6 Constraints

Several Web presentation proposals use numerical constraints, because they can express
and resolve the possibly conflicting requirements of the adaptation factors. This sec-
tion describes the fundamentals of numerical constraints, summarises requirements of
constraint solvers for Web content presentations and overviews the existing proposals.

G. Badros provides an early but comprehensive literature review[Bad98] of the uses
of constraints in interactive applications. Efficient constraint resolution has been an
active research field for the last 50 years, and its applications span a wide variety of sub-
jects. Constraint resolution is processor intensive, because there are no efficient generic
purpose constraint solvers. However, there are several purpose specific approaches,
which fulfill restrictive time complexity requirements.
CX1,X2,...,Xn

and the more concise Cn will denote the set of all constraints over the
variables X1,X2, . . . ,Xn. Every constraint C ∈ Cn is an expression of the form:

f(X1,X2, . . . ,Xn) op c

where f is a function over the variables X1,X2, . . . ,Xn, c is a constant and op is an
operator where op ∈ {<,>,=,≤,≥}. There are several subsets of Cn, according to the
values that X1,X2, . . . ,Xn and c can take. CR

n is the set of all constraints C where
X1,X2, . . . ,Xn and c are real numbers. Similarly, CZ

n is the set of constraints over
integers.

A tuple X = (x1, x2, . . . , xn) satisfies a constraint C : f(X1,X2, . . . ,Xn) op c iff
the expression f(x1, x2, . . . , xn) op c is true. A constraint problem is a conjunction of
constraints:

P = C1 ∧ C2 ∧ · · · ∧ Cm

PCn
is the set of all problems that consist of constraints Ci ∈ Cn. A tuple X =

(x1, x2, . . . , xn) is a solution to the problem P iff X satisfies Ci,∀i ∈ [1,m]. Finally, a
constraint solver is a function that maps a problem to a set of solutions. For instance,
a constraint solver for constraints in CR

n is a function S : PCn
−→ ℘(Rn) that maps

each problem in PCn
to a set of n-tuple solutions.

Adequate constraint resolution systems for interactive applications must be efficient
and allow over and under constrained systems, as described in [BB98, Bad98]. Effi-
ciency is important for presenting Web documents, because of the variety of the target
device capabilities and the document users expectation for nearly instant document
rendering. Since there are no efficient generic purpose solvers, it is necessary to restrict
the types of constraints used for document presentation and to choose the optimal
presentation attributes representation. The latter can influence the complexity of the
required solver. For example, consider the two lines in Figure 2.14a, and a constraint
C that requires that they have equal lengths. If the lines are defined using pairs of
coordinates, then C will be the a polynomial equation:

(x3 − x1)
2 + (y3 − y1)

2 = (x4 − x2)
2 + (y4 − y2)

2

CHAPTER 2. XML PRESENTATION PROCESSING 40

(x1, y1)

(x4, y4)

(x3, y3)

(x2, y2)

(x1, y1)

(x2, y2)
l2

l1

(a) (b)

1

2

Figure 2.14: Alternate presentation attributes representations: line representation us-
ing a pair of coordinates (a) or starting coordinates, angle and length (b)

Alternatively, if the lines are defined using their starting coordinate, their angle and
their length, as illustrated in 2.14b, C will be the simpler linear equation l1 = l2.

Efficient problem solution reevaluation is necessary for supporting user interaction
and time dependent content, such as animations. Solution reevaluation must follow the
principle of the “least astonishment”[Bad98] and only introduce the minimum possible
modifications. For instance, dragging the 2.14a (x3, y3) point, within an interactive
presentation, must result in modifying only x3 and y3 and no other variable, except if
there is a constraint that requires so. Finally, a constraint resolution system for the
Web must allow under and over constrained systems, in order to accommodate the
possibly conflicting or incomplete requirements of the presentation adaptation factors.

The core differences between existing constraint solvers relate to their efficiency
and generality tradeoff, because most solvers allow both under and over constrained
systems. The most efficient solvers are the local propagation solvers (LPS), which
consider a single constraint at a time. Local propagation problems are the problems
that can be solved by an LPS. For instance, consider a local propagation problem:

P =

C1 : X1 = 2
C2 : X2

1 + X2 = 3
C3 : X1 + X2 + X3 = 7

Figure 2.15a is a graph representation of the variable relationships expressed by the
constraints in P . An LPS can solve P by identifying the value of the most restricted
variable, which indicated by a greater number of edges, and propagating the solution
to the less restricted ones. As Figure 2.15b illustrates, C1 explicitly defines the value
of X1. Given that X1 = 2 and using the constraint C2, X2 = −1. In a similar manner,

X1 = 2,X2 = 1
C3=⇒ X3 = 6.

One way problems are the subclass of the local propagation problems, where each
constraint is an assignment that only constrains the value of a single variable. One
way problem solvers are faster than general LPS, because the corresponding graph is
directed, which reduces the amount of possible constraint order permutations. For
instance, if C3 was X3 := 7 - X1 - X2, it is explicit that C3 must be used after the
evaluation of X1 and X2.

Local propagation problems are only a subset of the general constraint problems,
but LPS are efficient and do not introduce restrictive assumptions, such as constraint

CHAPTER 2. XML PRESENTATION PROCESSING 41

(a)

2:1X

2C

1:2 X

6:3X

3C 3C

(b)

2C 2

2 -1

1X
2C

2X

3X

3C 3C

3C

2C

1C
2C

1C 2

Figure 2.15: Graph representation of a local propagation constraint problem (a) and
of its solution (b)

linearity. One way solvers impose even less restrictions, and constraints can use ar-
bitrary complex expressions, without increasing the complexity of the solver. Con-
sequently, several constraint based approaches for the Web are based on LPS. For
example, the Constraint CSS (CCSS)[BBMS99] extends CSS with constraints that ex-
press relationships between style attributes, where font size constraints are resolved
with a one way LPS. The constraint resolution processing overhead is negligible, and
the resulting syntax is significantly more expressive than the original CSS syntax.

The adaptive grid [JLS+03] also uses one way constraints, to enable desktop publish-
ing quality layout to Web documents for a variety of page sizes. It uses a set of layout
templates, which include a set of constraints that enable page size specific template
adaptation. Finally, the functional extensions for XML proposal[KST03] considerably
extends the SMIL animation and SVG presentation model functionality by introducing
one way constraints over the presentation attributes. The one way constraints, within
the above work, are expressed as functional specifications of presentation attributes,
which are reevaluated in real time.

The introduction of local propagation constraints can extend the functionality of a
presentation model, but they can only express a limited set of problems. For example,
consider the Figure 2.14b and a problem that requires both equal line lengths (l1 = l2)
and a total length of 4 (l1 + l2 = 4). An LPS cannot produce the solution l1 = l2 =
2, because it is a simultaneous constraint problem, which requires the simultaneous
consideration of multiple constraints. There are no computationally efficient generic
solvers of simultaneous constraint problems.

However, linear constraints over real values can express the most common layout
requirements. CLn will denote the set of linear constraints, which is the subset of Cn,
where C ∈ CLn iff C ∈ Cn and C is of a linear form:

a1X1 + a2X2 + · · ·+ anXn op c

where a1, . . . , an are constants. The set of linear constraints over real numbers is
denoted by CLR

n and CLR
n ⊂ C

R
n .

The Simplex algorithm provides an efficient solver for PCLR
n

problems, and it can

CHAPTER 2. XML PRESENTATION PROCESSING 42

solve under-constrained problems by minimising a linear expression, the objective func-
tion. The Cassowary[BB98] and the QOCA[BMSX97] algorithms are incremental ver-
sions of the Simplex algorithm, which apply the “least astonishment” principle and
also allow over constrained systems. Both Cassowary and QOCA fulfill the above re-
quirements for Web document presentation, within the domain of linear constraints,
and they form the basis of several presentation approaches. The previously introduced
CCSS approach uses the Cassowary algorithm for solving linear problems to position
presentable objects. The work in [BLM00] uses linear constraints within multiple layout
templates, in a similar manner to the use of one way constraints in the introduced adap-
tive grid. Finally, the constraints extensions to SVG[BTM+01] uses linear constraints
for positioning SVG graphics. All the above approaches conclude that the resulting
presentation models are efficient and that the use of constraints provides higher level
presentation descriptions, which allow powerful adaptation to a variety of devices.

No efficient generic solver exists for nonlinear simultaneous problems, but there
are several proposals that efficiently address the most relevant problem subsets for
presenting Web documents. For instance, font size constraints require finite domain
constraints in CZ

n , because most platforms only display integer font sizes. Moreover, the
selection of multiple layout templates requires disjunction of constraints, as opposed
to the above definition of constraint problems as a conjunction of constraints. The
backtracking techniques that are used in the field of logic programming, such as in
Prolog, are specifically designed to handle finite domain problems and disjunctions.
However, as [Bad98, LMS99] describe, even optimised backtracking algorithms are
exponentially complex and not adequate for interactive applications.

However, both the finite domain constraints and constraint disjunctions that are
commonly required for document presentation can be solved efficiently. A font size
constraints observation[LMS99] is that they contain at most two variables and can be
addressed by a polynomial complexity solver. Constraint conjunction problems can be
also solved efficiently by an algorithm proposal[MMSB01] that eliminates the disjunc-
tions by activating only one constraint of each disjunction at any time. Reevaluations
that invalidate the active constraint trigger a mechanism that selects a new active
constraint. A similar approach[HMM02] can address multiple cases of nonlinear si-
multaneous constraints by reducing nonlinear problems to linear ones, within a small
range of values. Reevaluations that result in values out the specified range trigger the
generation of a new approximation generation, which corresponds to the new value
range.

2.4.7 Presentation summary

The presentation component is responsible for conveying an XML document according
to the possibly conflicting requirements of the adaptation factors: the document user,
the document author and the target device. A presentation component that is adequate
for generic XML processing must be extensible, because it can only natively support
a limited set of languages Lp . Moreover, it must provide a presentation integration
model, content adaptation and both imperative and declarative mechanisms, such as
scripting and constraints, for customising the document presentation

The lack of well defined Web content presentation functionality boundaries impedes
establishing the sufficiency of an Lp set. Moreover, combining the existing standardised
XML languages does not result to an adequate Lp, because they contain redundant

CHAPTER 2. XML PRESENTATION PROCESSING 43

features and their sufficiency has not been established. A set of presentation func-
tionality studies[Har04, All04, Bir04] derive Lp sets from abstract sets of features, but
they neither investigate their sufficiency nor illustrate the derivation of the individual
languages.

Both XBL and RCC are prominent binding approaches, which can form the foun-
dation of an extensible Lp that supports mixed namespace documents and combines
imperative and declarative processing descriptions. They both can reuse an existing
presentation model, to seamlessly integrate language extensions within an existing Lp ,
and they allow inter-language interoperation by mapping everything to a single presen-
tation model. The X-Smiles interface-based interoperation alternative is generic, but
it does not provide powerful integration, and the inevitable updates to its interfaces
would require updating all their corresponding components.

ECMAScript and JavaScript imperative approaches are not designed for XML, but
they fulfill a substantial subset of the XML imperative definition requirements, if they
are used within the XML tailored bindings of XBL. The XML Virtual Machine (XVM)
is a processing model specifically designed for XML. It does not directly provide a
presentation solution but provides the foundation for applications that can fulfill all
imperative definition requirements. In order to utilise the full potential of XBL/RCC
and XVM, well defined and sufficient Lp and presentation model interfaces are neces-
sary, but there currently are no such specifications.

The adaptation range of both the transformation and presentation components in-
creases when their input is significantly more abstract than their output. Heuristic
approaches can extend the adaptation range of a component, but they can only derive
a very restricted set of the original document author intentions. Predefined stylesheet
selection according to queries on generic requirement specifications, such as CC/PP
profiles, can offer powerful adaptation. However, stylesheet selection is a one way pro-
cess, which is not adequate for resolving conflicting requirements, and its interoperation
with the presentation process is limited. Numerical constraints can convey the orig-
inal author’s intentions in several abstraction levels, resolve conflicting requirements
and enhance the presentation component adaptation capabilities. Generic constraint
solvers are complex, but there are efficient solvers for the majority of the required con-
straint systems for Web content presentation. However, there are no well defined ways
for integrating constraint definitions to a Lp and for generically integrating the several
individual solvers.

2.5 XML Browsers

This chapter has separated the XML document presentation process into four interop-
erating components, but most existing approaches are independent proposals and they
are not combined within a Web browser. This section will summarise the support of
the individual processing components within existing Web browsers, in order to assess
the presentation functionality that is accessible by document authors and users.

There is a multitude of available Web browsers, but Internet Explorer (IE), the
Mozilla family browsers, and Opera are currently the most widely used implementa-
tions, as illustrated in Figure 2.16. All three browsers support XML, but only IE
and Mozilla focus on generic XML presentation. Opera natively supports XHTML
and XML styling with CSS, but it does not support document transformations. Both
Mozilla and IE support generic DOM manipulation, using JavaScript and XSL-T based

CHAPTER 2. XML PRESENTATION PROCESSING 44

IE
64%

Mozilla
28%

Opera
2%

Other
6%

Figure 2.16: Browser user statistics, according to the approximate 2006 averages in
http://www.w3schools.com

document transformations. IE supports additional imperative approaches that allow
access to rich component libraries. Mozilla focuses on supporting multiple Web rec-
ommendations, such as SVG and XBL. None of the above browsers explicitly demon-
strate a generic and customisable presentation model. However, IE and Mozilla define
browser specific interfaces that enable imperative access to their internal presenta-
tion components, for dynamically initiating document manipulation processes, such as
transformation and validation.

The Amaya, X-Smiles andXEBRA[THHH01] browsers are not as widely deployed,
but they possess several distinctive characteristics. Amaya has been specifically devel-
oped by W3C for testing several of the Web recommendations. In a similar manner
to Opera, Amaya neither supports XSL-T nor includes a generic mechanism for XML
presentation. However, it supports XHTML, MathML, SVG and their combination
based on integration profiles. It thus can provide insights into the profile based pro-
cessing of mixed namespace documents. X-Smiles supports a variety of XML languages
and mixed namespace documents, according to the simplistic integration model intro-
duced in Section 2.4.3. XEBRA stands out because of its simplicity, and it is based on
interpreted LISP programs that process XML documents, using a set of loosely cou-
pled components. A XEBRA processing example[THHH01] illustrates that a fourteen
line long specification is sufficient for defining an HTML browser, which combines an
existing HTML parser, an XSL-T transformer and an XSL-FO renderer.

Table 2.5 summarises the processing properties of the above browsers. The Web
design principles require simple and modular Web browsers. Only X-Smiles and XE-
BRA can be considered as simple, because their architectures are straightforward, their
components interoperation is well defined, and they are relatively straightforward to
extend. The extent to which modularity enhances a browser’s functionality depends
on its underlying presentation model and the interoperation between its modules. All
introduced browsers are modular, but only X-Smiles and XEBRA are modular in a
way that directly benefits the document users and authors.

As Section 2.4.1 described, the sufficiency of an Lp is not well defined. However,
the variety of languages and the extensibility mechanisms that a browser supports can
indicate its potential for supporting a sufficient Lp. IE, Mozilla and X-Smiles support
a wide range of XML languages and also support plug-ins and other platform specific
extension approaches. Additionally, Mozilla and X-Smiles extensions can respectively

CHAPTER 2. XML PRESENTATION PROCESSING 45

IE Mozilla Opera Amaya X-Smiles XEBRA
Simple •• ••
Modular • • • • •• ••
Rich Lp •• •• •• P

Extensible Lp • •• •• P
Non DTD validation • •

Transformation •• •• • ••
Dynamic pres. model

Scripting •• •• • • ••
Pres. component interfaces •• •• • ••

Constraints
GMNS presentation • ••
GMNS validation

GMNS transformation
Generic content adaptation

Table 2.5: Properties of current browser implementations. GMNS stands for “Generic
Mixed Namespace”. • signifies possession of a property. •• identifies a property that
is central to and enhances the functionality of an implementation. P identifies the
potential to acquire a property.

use the XBL and the X-Smiles interfaces, which allow their integration with the un-
derlying presentation model. XEBRA includes only a minimum set of components and
does not provide a presentation model that can incorporate additional components.
However, a combination of additional components and a generic integration layer can
potentially lead to a sufficient and extensible Lp . On the contrary, Amaya and Opera
do not offer similar generic extension mechanisms, and their current Lp is significantly
restricted.

A generic presentation model must not dictate a predefined processing sequence (as
described in Section 2.1.1), but none of the approaches above provides such a generic
processing model. However, IE, Mozilla and XEBRA allow dynamic imperative access
to their processing components, which can allow to create transformation pipelines,
customise the presentation model and potentially orchestrate the interoperation be-
tween the validation and transformation processes. Apart from Amaya, all introduced
browsers offer several forms of scripting, and the IE, Mozilla and XEBRA internal com-
ponent interfaces allow the introduction of custom presentation models. In contrast,
X-Smiles, which both supports JavaScript and has well defined component interfaces,
does not allow such presentation model customisations. Finally, none of the above
browsers have a presentation model that supports constraint based presentation.

There is minimal support for generic mixed namespace processing that is not based
on profiles. Mozilla supports XBL, which allows generic presentation of mixed names-
pace documents, but they ultimately have to be mapped, through the XBL bindings, to
either a single namespace document or to a profile-based mixed namespace document.
The simplistic integration model of X-Smiles is the only generic mixed namespace pro-
cessing candidate. The lack of generic mixed namespace transformation or validation
models can be attributed to the lack of namespace based bindings to validation and
transformation processing information.

CHAPTER 2. XML PRESENTATION PROCESSING 46

Finally, most Web browsers include minimal adaptation capabilities, such as choos-
ing alternative fonts, page sizes and stylesheets, according to the type of the target
device. However, there is no explicit generic content adaptation model for either their
presentation or their transformation components.

The above browser discussion should not be taken as an evaluation of their relative
usefulness and applicability, but, as an indication of their adequacy for generic XML
presentation. For instance, XEBRA illustrates some prominent design concepts, but it
is not a complete browser and does not appear in any browser usage statistics. On the
other hand, Opera is not a prominent generic XML content presentation approach, but
it is very efficient, renowned for its CSS implementation and used by a considerable
minority of Web users.

Summarising, current browsers offer rich and extensible sets of functionality, but
not within a generic XML presentation framework. The lack of such a framework
leads to problematic interoperation between Lp extensions and to platform specific
imperative presentation model customisations. Moreover, generic mixed namespace
processing support, explicit content adaptation and declarative presentation specifica-
tion constructs, such as constraints, are missing.

2.6 Discussion

The lack of generic XML presentation processing models impedes a thorough review
of the XML presentation literature, because the set of related research areas is not
well defined. This chapter identified the relevant research areas by outlining the top
level XML presentation processing components: parsing, validation, transformation
and presentation. Subsequently, it investigated the relevant existing approaches and the
core issues that they must address: mixed namespace document processing, processing
information binding and adaptation. Document parsing is well defined, but there is
a multitude of incompatible alternative validation, transformation and presentation
approaches. Their corresponding mixed namespace processing, processing information
binding and adaptation are neither well defined nor adequate for the Web.

Most XML document processing approaches use inline processing instructions,
which delegate the document processing specification responsibility to the document
author. Namespace URI based associations, such as the RDDL and XBL proposals, are
more adequate for the Web, but the current lack of a generic integration models impedes
their wide deployment. A generic integration model is necessary for their deployment,
because it allows the inference of a document’s processing from the processing of its
individual constructs. Language integration profiles and namespace assimilation are
only short term solutions, because they do not fulfill the Web design requirements, and
their enumeration becomes exponentially complex, under the continuous introduction
of new languages. Existing integration models do not cover document transforma-
tion, and they are not sufficiently generic and powerful. NRL enables the independent
validation of a mixed namespace document’s subtrees, but it does not define the nec-
essary construct relationships to avoid erroneous validation cases. The X-Smiles and
XBL/RCC models do not provide sufficient inter-language interoperation and a suffi-
ciently generic underlying processing model, respectively.

The transformation and presentation processing components share the responsibil-
ity to adapt a document, according to a variety of user preferences and device capabili-
ties. CC/PP provides a generic and extensible adaptation requirements representation,

CHAPTER 2. XML PRESENTATION PROCESSING 47

Processing issues Resolution directions

Component interoperation. Dynamic interoperation, within a generic processing model.
No generic integration mod-
els.

Extend prominent approaches, such as NRL, to incorporate
the necessary construct associations.

No adequate distributed
binding.

Combine URI associations with a distributed location mech-
anism, such as RDDL.

No generic processing adap-
tation.

Fine grained adaptive processing information associations.
Definition of presentation domain constraints.
Sufficiently generic constraint solvers.

No well defined presentation
functionality set.

Use case based functionality investigation.
Set of minimalistic languages that cover the identified func-
tionality.

Lp extensibility.
No adequate imperative
approaches.
No integrated constraint
mechanisms.

Well defined presentation model and interfaces.
Scripting and constraints binding, using adequate technolo-
gies, such as XBL or XVM.
Well defined Lp integration model.

Table 2.6: Summary of the identified XML processing issues and their corresponding
resolution directions

but most adaptation approaches use imprecise sources of adaptation requirements, such
as URL address implications or limited sets of device types. The proposed CC/PP
based stylesheet selection is more powerful, but it focuses on the document as a whole,
instead of allowing the separate adaptation of its individual constructs. The most
powerful adaptation approaches focus on constrained areas, and they are not adequate
for the Web. However, declarative presentation specification techniques, such as con-
straints, can enhance the adaptation capabilities of a generic presentation component.
Generic constraint support is complex and inefficient, but there are efficient solvers for
the most common Web layout problems.

Modern Web browsers implement a rich set of functionality and natively support
a variety of XML languages. However, the lack of a well defined set of the necessary
presentation functionality for a generic processing model impedes its development. A
generic processing model is essential for reusing the rich existing functionality, towards
generic XML content presentation, and for developing a generic functionality extension
mechanism.

2.6.1 Current issues and resolution directions

The literature review in this chapter identified the core processing problems for pre-
senting XML documents and the core directions towards addressing them, which are
summarised in Table 2.6.

The core processing issues are the lack of well defined component interoperation and
of generic integration models. The former is essential for document processing that does
not use inadequate static processing sequences. Moreover, the processing components
require an integration model, because it provides the foundation for well defined pro-
cessing of mixed namespace documents that use an open set of independently developed
languages. The current adaptation profile and namespace assimilation approaches are

CHAPTER 2. XML PRESENTATION PROCESSING 48

not adequate for the Web. An adequate proposal can reuse the prominent integration
approaches, such as the NRL, and also incorporate the RDF’s concept of well defined
associations to the XML authoring model.

The remaining processing issues relate to the binding, adaptation and presentation
of XML documents. An adequate binding mechanism, which allows the processing
an open set of languages, must be distributed and follow the Web design principles.
The widely used document based binding is neither distributed nor compliant with the
Web design principles. URI based binding, such as in RDDL, is more extensible and
distributed, and it can form the basis of an adequate binding mechanism.

The most powerful adaptation approaches are not adequate for an open set of
languages, but their principles can be applied for generic document processing. The
most prominent generic adaptation approach is the CC/PP based stylesheet selection,
but its document wide stylesheets are not sufficiently fine grained. A well defined set
of presentation processing domain constraints can enable more precise adaptation and
the application of powerful adaptation approaches, such as constraint systems.

Generic scripting and constraint approaches require a well defined presentation
model that must rely on a well defined and extensible Lp. The sufficiency of the indi-
vidual application domain functionality proposals is not well established, but use case
based investigations are an adequate alternative method for defining the sufficient pre-
sentation functionality, within an application domain. An Lp definition can be based
on a set of such use case based investigations, which cover all the necessary application
domains, and a derivation of the corresponding set of minimal languages. An exten-
sible Lp set is necessary for a dynamic information medium, such as the Web, but
commonly used extension technologies, such as plug-ins and applets, are problematic.
A well defined presentation model can be the foundation of an adequate Lp exten-
sion mechanism that can provide the necessary interfaces for taking full advantage of
prominent extension technologies, such as XBL and RCC.

2.6.2 Concluding remarks

There are several approaches for the individual areas of XML document presentation
processing; however, most existing approaches do not follow the Web design principles,
and there is no generic XML presentation processing model that is adequate for the
Web. An adequate model must define the parsing, validation, transformation and pre-
sentation of mixed namespace documents, using a distributed binding model, according
to a variety of preferences and capabilities. Most binding approaches are document
based, because of the lack of a generic integration model. Profiles and namespace
assimilation are only short term integration solutions, and the more generic NRL and
NVDL approaches do not define the necessary construct relationships. CC/PP provides
an adequate adaptation requirements representation, but most existing adaptation ap-
proaches use imprecise adaptation requirements sources. The proposed CC/PP based
stylesheet selection is powerful, but more fine grained stylesheet applications are nec-
essary. Finally, there is currently a wide spectrum of presentation functionality, but
the lack of a well defined Lp set results to the absence of a generic presentation model.

This chapter reviewed the existing XML presentation processing literature, identi-
fied the core XML presentation processing problems and established the core directions
toward addressing them. The literature review followed the introduced top level pro-
cessing model, which allowed the identification of the necessary processing components
and their necessary functionality and interoperation for generic document processing.

CHAPTER 2. XML PRESENTATION PROCESSING 49

Specifically, it introduced an original way of addressing XML processing: the vari-
ous forms of processing, such as validation and transformation, are not independent,
but they represent the individual parts of a common processing model. Each intro-
duced processing component is important in itself, but its interoperation with all other
components is also important. The next chapter proceeds to providing the necessary
definitions for investigating the restrictions of the presentation domain and for unam-
biguously expressing our hypothesis.

Chapter 3

Definitions and the hypothesis

The vision behind the Web is that anyone can make available any form of information
and link to everything available in the Web, as described in Section 1.3. A processing
entity must be able to both locate the necessary information and derive its adequate
interpretation, within its specific context. For instance consider the example document
illustrated in Listing 3.1, which is duplicated from Section 1.4.1. An XML browser
requires machine processible presentation descriptions of each document construct and
of the relationships between the individual constructs. A human might be able to
interpret a document, according to the corresponding language specifications and the
descriptive construct names. However, the typical interaction with Web information
occurs through the interface of a browser. Consequently, machine processible descrip-
tions of Web information are necessary and the main future direction for the Web is
to make its information more machine processible, as Berners-Lee has described in
[BL98a].

Generic processing descriptions of an information domain are feasible, if there is
a core set of information constructs, which have well defined processing and can be
combined to describe every possible processing of all information domain data. Specif-
ically, a grounded document[BL02a] is a document that exclusively contains constructs
of such a core set. The processing of a non-grounded document, which may contain
additional constructs, can be described as a combination of the core constructs.

For instance consider the XML presentation domain and a corresponding core set
of XML languages, which include all necessary presentation functionality for present-
ing XML documents. A document that only uses the above languages is a grounded
document, and a document that contains at least an element or an attribute of another
language is not grounded. The presentation of a non grounded document can be de-
scribed using a grounded document, since the core set of languages can describe any
conceivable presentation. XML transformations can map any XML document to its
presentation by transforming its constructs to their corresponding core set presentation
interpretation.

The SMIL, CSS, XSL-FO, SVG, XForms, XBL and XML Events languages can be
considered as the core set of languages for Web browser functionality, because they
cover the key Web functionality of existing Web browsers[Har04]. A document that
uses SVG and SMIL constructs to describe an animated vector graphic is a grounded
document. In contrast, a document that describes a tabular layout of animated vector
graphics, using the http://layout.org language illustrated in Listing 3.1, is not a
grounded document. However, the presentation of such a non grounded document

50

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 51

1 <?xml version=” 1.0 ”?>
2 < l : t a b l e xmlns : l=” h t tp : // layout . org /”
3 xmlns : f=” h t tp : // f u r n i t u r e . org /”>
4 <l : row >

5 <l :column>

6 < f : t a b l e mate r ia l=” i ron ”>
7 An o f f i c e t ab l e
8 </ f : t a b l e >

9 </l:column>

10 <l :column>

11 < f : t a b l e mate r ia l=”wood”>
12 A kit chen t ab l e
13 </ f : t a b l e >

14 </l:column>

15 </l : row >

16 </ l : t a b l e >

Listing 3.1: XML document with namespaces

can be described using the languages in the core set. For instance, a CSS stylesheet
can describe the tabular layout of the http://layout.org, using the CSS box layout
functionality.

The unrestricted nature of both the Web information and of its processing impedes
the development of a complete core set of processing constructs. The document presen-
tation domain does not constrain the processed information, but, as a specific type of
processing, it constrains the corresponding processing domain. Such constraints are not
well defined, and existing presentation technologies do not utilise them for generic Web
content presentation. If the set of XML presentation processing domain constraints
can be well defined, they can form the foundation for establishing the corresponding
core functionality set and developing a generic presentation processing model.

The previous chapters introduced the necessary XML, Web, and XML presentation
processing background. This chapter establishes the foundation for the remainder of
this thesis by defining the necessary presentation processing terminology, defining the
scope of this thesis and stating our hypothesis, in sections 3.1, 3.2 and 3.3, respectively.

3.1 XML presentation processing definitions

The study of document presentation processing requires unambiguous definitions of
the necessary terms, in order to investigate the constraints of the presentation domain
and to communicate the ideas of this thesis. However, most of the accustomed Web
terminology is not well defined and has context dependent interpretations. For instance,
Table 3.1 illustrates four separate interpretations of the term semantics, according to
the context of its use. This section defines the necessary unambiguous presentation
processing terminology.

3.1.1 XML documents and languages

Within the context of the Web, the term document refers to any Web resource descrip-
tion, which can use any existing or future data representation. This thesis only focuses

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 52

Context Example Interpretation

Core XML
The inherent rich se-
mantics of XML.

Structured information and use of meaningful
names.

XML Schemas

Schemas define the
semantics of XML
languages.

Syntactical constraints with optional data type
information.

RDF The semantic Web.
General purpose machine processible informa-
tion, in the form of graphs.

Ontologies
Semantically rich
representation.

Ontological extension of RDF that allows in-
ferences and clever data queries.

Table 3.1: Context dependent interpretations of the term semantics

on XML documents, because, as described in Section 1.4.3, XML is sufficiently generic
to represent any information, it is adequate for the Web and its standard representation
provides the foundation for a generic document processing model.

XML documents (D): D represents the set of all well-formed XML documents.

XML languages (L): L represents the set of all XML languages

An XML document encodes information using several components, such as ele-
ments, attributes, text, comments, processing instructions and document type decla-
rations. The elements and attributes of an XML document define the tree structure
of the represented information and express the relationship between a document and
its corresponding XML languages. The term XML constructs will refer to the set of
all XML elements and attributes, which can be defined as optionally qualified XML
names.

XML constructs (Σ): The set of all XML constructs Σ includes all qualified or
unqualified names of XML elements and attributes:

Σ = (URI ∪ ε)× S

where URI is the set of URIs, S is the set of all non-qualified XML names and ε is
an null URI

The relationship between documents and languages with their constructs can be
expressed by a set of functions. Functions docConstructs() and langConstructs() will
map a document and a language, respectively, to their corresponding set of XML
constructs. Whether a construct σ ∈ Σ is an element or an attribute depends on ei-
ther its usage within a document or its definition within a language, because XML
elements and attributes share the same alphabet Σ. Consequently, the element and at-
tribute specific functions docConstructsa(), langConstructsa(), docConstructse() and
langConstructse() are necessary for separating between attribute and element con-
structs.

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 53

Document constructs functions (docConstructs):
docConstructs : D → ℘(Σ) is a function where, ∀d ∈ D, docConstructs(d) is the set
of all the XML constructs in d.
docConstructse : D → ℘(Σ) is a function where, ∀d ∈ D, docConstructse(d) is the
set of all the XML constructs that appear as elements in d.
docConstructsa : D → ℘(Σ) is a function where, ∀d ∈ D, docConstructsa(d) is the
set of all the XML constructs that appear as attributes in d.

Language constructs functions (langConstructs):
langConstructs : L → ℘(Σ) is a function where, ∀L ∈ L, langConstructs(L) is the
set of all the XML constructs that are defined by L.
langConstructse : D → ℘(Σ) is a function where, ∀L ∈ L, langConstructse(L) is the
set of all the XML constructs that are defined as elements by L.
langConstructsa : D → ℘(Σ) is a function where, ∀L ∈ L, langConstructsa(L) is the
set of all the XML constructs that are defined as attributes language L.

XML namespaces are the standard mechanism for the unique identification of doc-
ument constructs, which, as described in Section 2.2.3, is the necessary foundation
for information associations in an open environment, such as the Web. Therefore,
namespaces are necessary for associating XML documents to their corresponding XML
languages and for any other document construct based association. This thesis fo-
cuses on the sets of namespace qualified documents DQ ⊂ D and namespace bound
languages LQ ⊂ L, where all element constructs have an associated namespace URI.
Attribute constructs do not require qualification, because unqualified attributes are
uniquely identifiable within the context of their parent element: “The combination of
the attribute name with the element’s type and namespace name uniquely identifies
each unqualified attribute”[BHL99].

Namespace qualified XML documents (DQ): The set of all namespace qualified
XML documents DQ ⊂ D is the subset of XML documents where ∀d ∈ DQ, ∀σ =
(uri , s) ∈ docConstructse(d), uri 6= ε

Namespace bound XML languages (LQ): The set of all namespace bound XML
languages LQ ⊂ L is the subset of XML languages where ∀L ∈ LQ ∀σ = (uri , s) ∈
langConstructse(L), uri 6= ε

As described in Section 2.1.1, a presentation processing model must allow the pro-
cessing of mixed namespace XML documents, which can contain constructs of multiple
XML languages. The relationship between an XML document d and its correspond-
ing XML languages Ld is only well defined for the uniquely identifiable constructs of
namespace qualified documents and namespace bound languages.

Document’s languages (Ld): For a namespace qualified document d ∈ DQ, the
set of its languages is the subset of the XML bound languages Ld ⊂ LQ, where
∀σ ∈ docConstructse(d), ∃L ∈ Ld where σ ∈ langConstructse(L)
and
∀σ = (uri , s) ∈ docConstructsa(d), uri 6= ε, ∃L ∈ Ld where σ ∈ langConstructsa(L).

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 54

3.1.2 XML semantics

A language author designs an XML language, in order to define the necessary syntax
for conveying the data of an information domain. Within this thesis, the term XML
semantics will refer to a language author’s intended usage and interpretation of an XML
language. An unambiguous XML language must have a single precisely defined usage
and interpretation; consequently, it must have a single precisely defined semantics.

XML semantics (I): For each XML language L ∈ L, there is a single pre-
cisely defined semantics I ∈ I, which represents the language intended usage and
interpretation by its author. The set I is the set of all XML language semantics.

The presentation semantics are the subset of XML semantics that are a presenta-
tion, as opposed to XML semantics that can be associated with a presentation. For
instance, the tabular layout language, illustrated in Listing 3.1, can be associated with
presentation semantics, because the primary interpretation of its constructs is their
corresponding tabular presentation layout. On the contrary, the furniture description
language must be associated with non presentation semantics, because its primary in-
terpretation relates to generic information about furniture. Nevertheless, its constructs
can also be associated with a furniture information presentation. The subsequent sec-
tion will further clarify the above separation, using the concept of presentation lan-
guages and presentation documents.

Presentation semantics (IP): The set of all presentation semantics is the subset
of XML semantics IP ⊂ I, that define a language’s interpretation according to the
presentation of its constructs to the document user.

3.1.3 Presentation languages and documents

The presentation semantics definition enables the definition of presentation languages
and presentation documents, as the sets of languages that are associated with pre-
sentation semantics and of namespace qualified documents that only use presentation
language constructs, respectively. The presentation documents must be namespace
qualified, in order to ensure their well defined association with the corresponding lan-
guages.

Presentation languages (LP): The set of all presentation languages is the subset
of XML languages LP ⊂ L, where each L ∈ LP is associated with presentation
semantics I ∈ IP .

Presentation documents (DP): The presentation documents subset of names-
pace qualified XML documents is the set DP ⊂ DQ, where ∀d ∈ DP the set of
document languages Ld contains only presentation languages: Ld ⊂ L

P .

For example, consider the document illustrated in Listing 3.1, which uses the two
XML languages L1 and L2 that are associated to the namespaces http://layout.org
and http://furniture.org, respectively. L1’s language author should associate L1

to a semantics definition I1, which defines its interpretation as a tabular information
presentation. On the contrary, the semantics I2, which are associated to language L2,
should define its interpretation based on the various furniture characteristics.

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 55

Therefore, I1 ∈ I
P and I2 /∈ IP , because I1 defines the L1 interpretation, according

to its tabular layout presentation to the document user. I2 defines the L2 interpreta-
tion, according to the corresponding abstract furniture information. Therefore, L1 is
a presentation language (L1 ∈ L

P) and L2 is not a presentation language (L2 /∈ LP).
The document in Listing 3.1 is not a presentation document, because it contains the
f:table element construct of L2, which is not a presentation language. If the f:table
elements where removed, the document would become a presentation document, be-
cause it would only contain constructs of the presentation language L1.

The above example is based on the semantics that the language authors “should”
provide, because the interpretation of a language only depends on its associated seman-
tics and not on its construct names or the common understanding of their interpreta-
tion. For instance, the language author of L2 could interpret the f:table element as
the presentation of a letter “T”, which is either brown, if the material is wood, or grey,
if the material is iron. Such an interpretation converts L2 to a presentation language.
Nevertheless, while such an interpretation is not invalid, it does not follow the common
human understanding of the semantics of L2 constructs.

The presentation documents definition does not relate to the feasibility of present-
ing an XML document. Specifically, there are multiple methods to present all XML
documents, such as presenting their source, their DOM tree, or their mapping to a set
of natively supported constructs. However, only the presentation documents have a
primary interpretation that is their presentation, as opposed to an interpretation that
can be associated with a presentation.

3.1.4 Document processing

The defined XML semantics represent the abstract notion of a language author’s inten-
tions and not a physical representation of processing information. The term processing
model semantics will refer to the interpretation of a semantics definition, within the
context of a processing model. IP is the set of all processing model specific imple-
mentations of all XML language semantics that can be implemented for the processing
model P . An XML processing model P defines how to process an XML document,
according to the corresponding processing model specific semantics of its languages.

Processing model semantics (IP): ∀I ∈ I, iff there is a semantics implemen-
tation IP of the semantics I for the processing model P , then IP ∈ IP

Processing models (P): ∀d ∈ DQ, where for all the languages in Ld =
{L1, . . . , Ln} there are the respective processing model’s P semantics {IP1, . . . , IPn},
P defines how to locate, combine and apply these semantics to interpret d, according
to the processing model specific interpretation of the languages in Ld. P denotes
the set of all processing models.

For instance, the processing semantics of an XML language can consist of a schema
and a transformation specification. The latter can be the presentation interpretation
of the language, for an application with a set of natively supported languages Lp ,
by mapping all its constructs to their equivalent Lp constructs. The corresponding
processing model would be responsible for locating and using the above semantics, for
both validating a document and for transforming it into its presentation interpretation.

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 56

XML document processing can be defined, in respect to a processing model, as
the location, combination and application of the processing model semantics that cor-
respond to a document’s languages. A Web browser can be informally defined as a
combination of one or more processing model implementations that process presenta-
tion documents, a set of arbitrary mechanisms for the presentation of non-presentation
documents and a set of additional mechanisms for the presentation of non-XML doc-
uments. As described in the next section, non-presentation and non-XML documents
processing is outside the scope of this thesis. Therefore, a formal definition of the term
Web browser is not necessary, because this thesis only focuses on the defined processing
models and document processing.

Document processing: The processing of a document d ∈ DQ by a processing
model P ∈ P, when there are P specific semantics for all languages in Ld, is the
location, combination and application of the above semantics by an implementation
of the processing model P .

3.2 The scope of this thesis

The presentation of namespace qualified XML documents (DQ) is separated into the
presentation of the presentation documents (DP) and the non-presentation documents
(DQ −DP). There is a document d ∈ DP for every conceivable information presenta-
tion, because DP includes all possible uses of all presentation languages. Documents
in DQ −DP include constructs of non-presentation languages, and their presentation
can be context dependent. The presentation of any non presentation document can
be defined as a presentation document, since DP includes all possible presentations.
Consequently, studying the presentation of XML documents requires to firstly study
the presentation of documents in DP .

This thesis will primarily focus on presentation documents, because their processing
provides the foundation for presenting all XML documents, covers all possible presenta-
tions and allows the utilisation of the presentation domain constraints. Specifically, the
presentation domain constraints cannot be used for the generic presentation of XML
documents, because their presentation can be context dependent. XML documents
can describe any information that can be used in the context of any application, and it
is difficult, or even impossible, to define the corresponding constraints. Nevertheless,
several of the proposals in this thesis also apply to the processing of non-presentation
XML documents.

This thesis focuses on XML processing models and the processing model
semantics that are necessary and sufficient for processing presentation doc-
uments, according to the Web design principles.

Presentation documents are namespace qualified documents; unqualified documents
are outside the scope of this thesis. As stated in Section 3.1.1, such a restriction is
necessary for developing a generic processing model for the Web.

The remainder of this thesis focuses on the domain specified by the above defini-
tion. In order to avoid cluttering this thesis with excessive term qualifications, unless
stated otherwise, the terms XML document, XML language and semantics will refer to
the terms presentation XML document, presentation XML language and presentation
semantic, respectively.

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 57

3.3 The hypothesis

Most user initiated processing of Web information results in information presentation
by either directly presenting the information or presenting the result of another form of
information processing, such as a query. XML presentation languages are the successors
of HTML, which focuses on human consumable hypertext, and they should provide the
means for information presentation, through the interface of a browser. The wide
applicability of information presentation, within the Web, and the relationship of XML
to HTML necessitate an XML processing model for presentation XML documents.

Presentation document processing is an important problem, but, as Chapter 2 con-
cluded, current approaches are neither sufficient for the variety of XML documents
nor adequate for the Web. The lack of well defined presentation domain constraints,
impedes the creation of generic XML processing models, even if existing approaches
and browsers provide a wealth of functionality. Specifically, there are several prominent
approaches and ways to combine them for individual aspects of document processing.
However, there is no generic processing architecture that utilises the constraints of the
presentation domain, in order to allow the combination of the individual approaches,
towards a generic processing model for presentation documents.

Hypothesis: The presentation document processing domain is sufficiently restrictive
to allow the development of generic processing models, which are adequate for the Web
and can process a significant subset of current and future presentation documents. The
combination and extension of existing technologies, in a way that utilises the presen-
tation document domain constraints, can form the basis of such generic processing
models.

The remainder of this thesis focuses on proving the above hypothesis, using a pre-
processing framework and a preprocessing architecture proposal. Specifically, the next
chapter proposes a presentation document preprocessing framework, which identifies
the necessary presentation document validation and transformation functionality for
the Web. The preprocessing framework development is solely based on applying the
Web design principles to the scope of this thesis; consequently, it acts as both a founda-
tion for building and as a measure for evaluating preprocessing architectures. Chapters
5 to 9 introduce individual proposals for each preprocessing sub-model, and Chap-
ter 10 combines all the proposals to the XMLPipe preprocessing model. XMLPipe is
a generic processing model that combines and extends existing validation and trans-
formation approaches, in order to allow XML language integration and presentation
adaptation, according to the adaptation requirements: the target device capabilities
and the document author and user requirements.

XMLPipe utilises the presentation domain constraints to propose a generic inte-
gration model that covers a significant subset of the presentation documents. The
proposed integration model allows the combination of independently developed pro-
cessing semantics for validating and transforming presentation documents.

XMLPipe solely focuses on presentation document validation and transformation
and does not include the presentation component that is responsible for rendering a
document’s presentation. However, as stated in the Chapter 1, the enhanced processing
functionality, achieved by exploiting the presentation domain restrictions, allows the
extrapolation of our observations to cover the whole spectrum of the hypothesis.

CHAPTER 3. DEFINITIONS AND THE HYPOTHESIS 58

3.4 Concluding remarks

Well defined terminology and concepts are fundamental for a sound discussion of XML
processing models and for an investigation of the presentation domain constraints.
However, most of the commonly used Web and XML terminology is either underdefined
or ambiguous. This chapter defined the necessary XML processing terminology for the
rest of this thesis and used it to define the scope of this thesis and our hypothesis.

The introduced terminology focuses on namespace bound documents and languages,
because namespace qualified constructs are necessary for a well defined relationship be-
tween a document and its corresponding languages. Such a relationship is essential for
deriving the interpretation of a document from the semantics of its individual con-
structs.

The introduced definitions establish the separation and relationship between sev-
eral ambiguous concepts. Specifically, the abstract notion of semantics describes the
intended interpretation of a language’s constructs by its language author. In contrast,
the processing model semantics are processing model specific instances of a language’s
semantics. The subsets of presentation semantics and presentation documents also
allow the unambiguous separation between the processing of presentation language
constructs and the generic presentation of any language construct. Additionally, the
definition of presentation constructs according to their associated semantics, as op-
posed to the implicit language semantics, clarifies the separation between a language
and its semantics.

Document presentation is an essential form of information processing for the Web,
and the processing of presentation documents is the foundation of presenting any XML
document. Section 3.2 restricted the scope of this thesis to the processing of presenta-
tion documents. Section 3.3 expressed our hypothesis, which focuses on the feasibility
of generic presentation models for the Web, when they utilise the constraints of the
presentation domain.

The following chapters proceed to the support of our hypothesis, using the founda-
tion set by the previous chapters’ literature review and this chapter’s definitions. The
hypothesis support will focus on the validation and transformation processing steps.
Specifically, this thesis will firstly introduce a preprocessing framework that defines the
core preprocessing components and their corresponding requirements. Subsequently, it
will proceed to individual proposals for all preprocessing components and their com-
bination into the XMLPipe preprocessing model, which provides the foundation for
supporting our hypothesis.

Chapter 4

A preprocessing framework

Existing XML processing approaches offer a wealth of functionality, but the lack of a
generic processing model impedes their combination towards generic processing of pre-
sentation documents. Additionally, current Web browsers expose a rich set of natively
supported languages Lp, but the browsers are neither adequate for generic content
adaptation nor provide mixed namespace validation, transformation and presentation.

Mixed namespace

document

Adaptive mixed namespace

transformation and

validation process

dL
1pL

3pL

2pL
Desktop

Printer

Mobile

Desktop

Browser

Mobile

Browser

Printer

Driver

Languages

semantics

Legend

Process

Document

d
L

Device

3pL

Document flow using
languages in

Process interface
accepting documents
using languages in

dL

3pL

Figure 4.1: A preprocessing approach

Preprocessing approaches do not cover all presentation document processing func-
tionality, because they only provide document validation and transformation. However,
they allow the reuse of existing browsers, within a generic processing model for XML.
As Figure 4.1 illustrates, an XML preprocessor can offer the necessary validation and
transformation functionality to provide generic adaptation, validation and transfor-
mation of mixed namespace documents. For instance, the adaptive mixed namespace
transformation and validation process can process a mixed namespace document d, ac-
cording to the semantics of its languages, and transform it to its optimal interpretation,
for several device and browser combinations.

Preprocessing approaches are beneficial for introducing a new document processing
paradigm: they do not require the time consuming development of a complete presenta-
tion architecture; they do not require the document users to migrate to alternative Web
browsers, and they can reside on both the server and the client side. The remainder of
this thesis focuses on supporting our hypothesis, using a preprocessing architecture.

59

CHAPTER 4. A PREPROCESSING FRAMEWORK 60

Our hypothesis refers to the development of generic processing models that are ade-
quate for the Web. The last chapter’s term and scope definitions defined the boundaries
of the presentation document processing domain, but they did not provide an adequacy
benchmark for generic XML processing models. A preprocessing framework that de-
fines all necessary preprocessing functionality can provide the foundation for evaluating
preprocessing approaches. Such a framework must identify the individual subproblems
that a preprocessing approach must solve, their corresponding requirements and their
composition towards a generic preprocessing model.

This chapter identifies the top level requirements of a generic preprocessing model
for XML and refines them into a framework that consists of the core processing com-
ponents and their associated requirements. Section 4.1 summarises the core problems
addressed during the definition of the framework requirements. Section 4.2 proceeds
to the identification of the top level framework entities, and Section 4.3 proceeds to
include the necessary additional entities. Finally, Section 4.4 refines the expressed en-
tities requirements into the top level framework architecture and into the requirements
of its individual components. The resulting separation of the preprocessing issues sets
the context for the subsequent discussion and evaluation of our proposed preprocessing
model: the XMLPipe preprocessing model.

4.1 Towards a generic preprocessing framework

Underdefined and unrestricted areas, such as the processing of XML documents, impede
the expression of an indisputable set of requirements, which is necessary for a sound
preprocessing framework. The proposed framework avoids unnecessary assumptions
by only using the widely accepted Web design principles and the requirements of the
preprocessing external entities, within the context of the constraints and definitions of
Section 3.2.

The requirements of the external entities, such as the document author and docu-
ment user, are essential for formulating a generic preprocessing framework. However,
the lack of existing generic XML processing models, which conform to the Web de-
sign principles, impedes the objective expression of such requirements and the proof of
their correctness. Current human requirements are adapted to the existing processing
models; threfore, traditional requirements identification methods, such as statistical
analysis of actual human requirements, can lead to deficient processing models. For
instance, the Web applications position paper[Fou04] of the Mozilla foundation and
the Opera organisation, which serve a significant Web user subset, condemns extensive
namespace usage, because it confuses document authors. Additionally, it suggests that
XML languages should include all necessary foreign language XML constructs that can
be used in conjunction with them. However, as Section 2.4.3 described, such namespace
assimilation approaches result in monolithic specifications and redundant constructs,
and they are not adequate for the Web. Consequently, they are not adequate for generic
XML processing.

The proposed framework eliminates such obsolete requirements, because it does not
use actual human entities requirements. In contrast, it uses well established Web, XML
and software design principles to support the set of external entities requirements it
uses. Such an approach may lead to an incomplete or subjective set of requirements,
but it ensures that the resulting framework will be sufficiently generic for the Web.

CHAPTER 4. A PREPROCESSING FRAMEWORK 61

Preprocessor Document

Document

author

Device

Browserinteraction
pL

d
L

Document user

Preprocessing

initiation

Figure 4.2: Preprocessing framework: top level entities

Document author requirements and assumptions

Single presentation XML document input
Document associated with a URL

Open set of languages
Well defined integration model

Human oriented language semantics descriptions
Authoring validation

Inline presentation control capability

Table 4.1: Document author requirements and assumptions

4.2 Top level entities

This section initiates the investigation of the external entities requirements. In order to
avoid introducing unnecessary assumptions, it only addresses the top level entities that
are explicitly related to a preprocessing model. Their investigation will indicate the
necessary additional entities. The subsequent collective study of all identified require-
ments and the Web design principles will conclude with a concise set of preprocessing
model requirements.

As illustrated in Figure 4.2, the top level entities are the document author, the
document user and the documents user’s browser and device. The document author
produces a document d that uses the languages in Ld. The document user interacts
with the document presentation, using a browser that exposes an interface, which
consists of the languages in Lp. Either the browser or the document user can initiate
the document preprocessing.

4.2.1 Document author

Table 4.1 summarises the assumptions and requirements of the document author. Ac-
cording to the scope of this thesis, the document d is a presentation XML document.
An XML document can be the aggregation of multiple documents, since XML doc-
uments can represent any information. As described in Section 2.3, assuming that
a preprocessing model only processes a single document at a time does not harm its
generality. Additionally, a document author must associate that single document with
a URL, because URLs are necessary for Web information identification and location.

CHAPTER 4. A PREPROCESSING FRAMEWORK 62

Document user requirements and assumptions

Only provides the document URL
and an optional set of preferences

Expects an adequate presentation for the user
preferences and the capabilities of the browser and the device

Efficient processing
Presentation consistency

Table 4.2: Document user requirements and assumptions

As described in Section 1.4.1, according to the least power Web design princi-
ple, each XML language must cover a single data representation domain. A fixed set
of languages can cover all necessary presentation functionality, but, according to the
modularity and the test of independent invention principles, the document author must
be free to choose any set of existing or future presentation XML languages. Therefore,
a preprocessing model must support an open set of languages. As described in Section
2.4.3, namespace assimilation and integration profiles are not adequate for the Web
and for an open set of languages. In contrast, generic authoring and processing of
mixed namespace documents requires a generic integration model, which defines how
to combine the individual language constructs and processing semantics.

In a similar manner to a browser, a document author cannot a priori know the
semantics of all XML languages. A well defined mechanism for locating human ori-
ented descriptions of language semantics is necessary, to allow the wide deployment of
the multitude of existing and future languages. Additionally, exhaustive testing and
debugging are not applicable for documents that combine an open set of languages and
that can be processed according to a multitude of adaptation requirements. Therefore,
a preprocessing model must offer a document validation mechanism that is indepen-
dent of the adaptation requirements. Such a mechanism is essential for performing the
authoring validation, which was introduced in Section 2.2.

Document authors span the spectrum between the two extremes of designers and
structuralists, as described in [BBMS99]. Structuralists focus primarily on the con-
veyed information and its high level structure. Designers focus more on the aesthetics
of the information presentation and require precise control over the document presen-
tation. Consequently, a processing model that is adequate for the variety of document
authors must allow, but not require, fine grained inline specification of both document
processing and adaptation.

4.2.2 Document user

Table 4.2 summarises the assumptions and requirements of the document user. The
document user uses a browser, which runs on a device, to interact with the document
presentation. A preprocessing model must require the minimum user input, because
Web content should be available to everyone, and the document user assumptions must
be the minimum necessary. Specifically, the document user must provide the docu-
ment URL, in order to identify a document, and an optional set of user preferences, for
personalising the document presentation. The preprocessing model is responsible for

CHAPTER 4. A PREPROCESSING FRAMEWORK 63

Device/Browser adaptation requirements

Adaptation for a variety of devices
Adaptation for a variety of Lp sets

Adaptation for a variety of browser integration models

Table 4.3: Device and browser adaptation requirements

retrieving all the necessary information for generating an optimal document represen-
tation, according to the browser capabilities, device capabilities and user preferences.

The processing of a document may vary according to its intended usage, such as
for browsing or for printing. However, such variations are subproblems of document
processing for a diverse set of capabilities and requirements. For instance, document
processing for printing is interchangeable to document processing for a printer target
device, as illustrated in Figure 4.1.

Finally, timely and consistent information processing are necessary qualities for
most information media. The interactive nature of Web information presentation and
the nearly instant presentation of the widespread HTML and XHTML documents ne-
cessitate efficient document processing. Consistency is necessary for ensuring that a
document’s presentation remains the same when the presentation parameters, such as
the user preferences and the browser capabilities, remain the same.

4.2.3 Target device and browser

Table 4.3 summarises the necessary adaptation requirements for supporting the mul-
titude of Web devices and browsers. Specifically, an adaptation mechanism must ac-
commodate the wide range of devices that can access the Web. In a similar manner,
there is a multitude of browsers, which can natively support a wide range of languages
and integration models. Generic document preprocessing must take into account the
Lp set and the integration models that a browser supports.

4.3 Additional entities

Both the browser and the document preprocessor can natively support only a limited
set of XML languages. However, according to the aforementioned document user and
author requirements, a document can use an open set of languages, and neither the
document user nor the document author have to provide the necessary processing
and adaptation information. This section introduces the language author and the
semantics author external entities, in order to study the language creation process and
to investigate the location of all necessary processing semantics. Figure 4.3 incorporates
the language author and the semantics author, within a more fine grained illustration
of the interactions between the external entities and a preprocessor.

The language author creates a language and, as Section 2.2.3 described, must pro-
vide its authoritative interpretation. Specifically, the language author must provide a
language’s semantics, which, within the scope of this thesis, is identical to its inter-
pretation. In contrast, as Figure 4.3 illustrates, the semantics author is responsible
for providing the processing model specific implementations of a language’s semantics.

CHAPTER 4. A PREPROCESSING FRAMEWORK 64

Legend

Preprocessor Document

Document

author

Device

Browser
interaction pL

d
L

Document user

preprocessing

initiation

Document

user

Browser

preprocessing

initiation

Group

Document /
Information group

User

Preferences
Device

Capabilities
Browser

Capabilities

Adaptation

Requirements

Document

URL

Processing Parameters
Other preprocessing

initiator

External

preprocessing

initiation

Initiation

interface

Semantics

author

Language

author

Language /

Language

semantics

Abstract

entity

Processing model

specific semantics

Human oriented

language

description

Language

information

BindingBinding

Figure 4.3: Preprocessing framework: all external entities

Language authors may also provide processing model semantics, but separate seman-
tics authors are necessary for a processing model that conforms to the Web design
principles. Specifically, a language author that is solely responsible for a language’s
processing information becomes a central point of control/failure, which is against
the Web decentralisation principle. Additionally, according to the test of independent
invention, the language author would have to provide the processing model specific
semantics for all existing and future processing models. Such an assumption is not
realistic for a freely evolving information system, such as the Web.

Each language corresponds to exactly one language author, who is responsible for
all the processing model independent resources that are central to a language: its
namespace URI, the administration of the corresponding Web space if the URI is a
URL, and the human oriented language description. In contrast, there can be multiple
semantics authors for each language, and they are responsible for both providing the
necessary processing model semantics and associating them with the language.

Table 4.4 summarises the requirements of the language and semantics authors. Any
dependencies between separate languages or semantics implementations share the draw-
backs of integration profiles, and they are against the principle of independent invention,
because they can restrict the languages that can be combined in a document. Conse-
quently, language authors require a method to independently define XML languages
and, in a similar manner, the semantics authors require a method to independently
define processing model semantics. The independent languages and semantics defini-
tions necessitate a well defined method to associate high level language descriptions and
processing model semantics to the corresponding languages. Such associations must
enable the location of all necessary information, by both the document authors and the

CHAPTER 4. A PREPROCESSING FRAMEWORK 65

Entity Requirements

Language Independent definition of languages
author Well defined human oriented description binding

Independent semantics development
Semantics Well defined processing semantics binding

author Multiple processing semantics binding
Multiple processing models binding

Table 4.4: Language and semantics authors requirements

Adaptation requirements representation requirements

Composite representation
Conflicting requirements resolution

Extensible representation

Table 4.5: Requirements of an adaptation requirements representation

processing models. According to the test of independent invention, the semantics im-
plementation associations must allow several implementations for multiple processing
models, as well as multiple implementations for the same processing model.

A preprocessing model must generate an optimal document interpretation, accord-
ing to the preprocessing adaptation factors: the user preferences and the browser and
device capabilities. As Figure 4.3 illustrates, document preprocessing can be initiated
by the document user, the browser (as a response to a document user interaction with
the browser) or another external entity, such as a Web server that preprocesess a docu-
ment. A well defined preprocessing initiation method requires a well defined adaptation
requirements representation, because the preprocessing initiation entity must provide
all necessary adaptation information.

Table 4.5 summarises the adaptation information representation requirements. As
described in Section 2.4.4, requirement sets composition is necessary for efficiently
communicating the requirements and for combining the requirements of several inde-
pendent sources: the browser, the device and the document user. Since the requirement
sources are independent, adaptation requirement conflict resolution is necessary. Fi-
nally, extensibility is necessary, because the unrestricted nature of the Web devices and
browsers impedes the development of a fixed set of adaptation parameters.

4.4 Framework architecture and requirements

The previous sections described the requirements of a preprocessing model’s external
entities. Each identified requirement relates to the design of either the processing model
as a whole or its individual components. Table 4.6 groups all external entities require-
ments, according to their corresponding subset of preprocessing functionality. This
section describes the development of a preprocessing framework that has a well defined
set of components and requirements, based on the above external entities requirements.

CHAPTER 4. A PREPROCESSING FRAMEWORK 66

Functionality Entity Requirement

Assumptions
Single input XML document
URL identifiable/retrievable document

Global

Web design principles

Document user
Efficient processing
Presentation consistency

Int. model
Document author

Open set of languages
Generic integration model
Low and high level presentation specification

Language author Independent definition of languages
Semantics author Independent development of semantics

Binding

Document author Human oriented semantics descriptions

Document No necessary inline presentation information
author/user No necessary inline adaptation information

Document user Well defined way to provide adaptation requirements
Language author Well defined human oriented description binding

Well defined processing semantics binding
Well defined way to specify semantics

Semantics author
Multiple semantics specifications
Multiple processing models

Validation Document author Authoring validation

Adaptation

Document user
Adaptation according to browser capabilities, device
capabilities and user preferences
Adaptation for a variety of devices

Device/Browser Adaptation for a variety of Lp sets
Adaptation for a variety of integration models
Well defined representation

Preferences Composite representation
representation Extensible representation

Conflicting requirements resolution

Table 4.6: Assumptions and external entities requirements, grouped according to their
corresponding functionality subsets

4.4.1 Validation

As described in Section 2.2, a well defined validation process enables authoring val-
idation and assists the development of document processing components, because it
suppresses the requirement for custom validation logic. Figure 4.4 illustrates the pre-
processing framework validation. A generic validation model must incorporate several
schema languages, because of the test of independent invention and because no ex-
isting validation approach is more expressive than the others, as described in Section
2.2.1. Therefore, the validation model must allow the instantiation of several schema
validators that correspond to the individual validation approaches.

The validation driver component is responsible for driving the validation process,
and it delegates all validation requests to the integration model validation driver, be-
cause the validity of a mixed namespace document depends on its integration model.
The integration model validation driver drives all relevant schema validators, according
to the corresponding integration model.

All validation components must be able to process document portions, in addition

CHAPTER 4. A PREPROCESSING FRAMEWORK 67

Integration model implementation

Document/

partial document

d Validation

driver

Integration model

validation driver

dL
dL

Integration

model

Schema

validator(s)

Language

schema(s)

Validation feedback

Portions

of .d

Implementation of

Validation feedback

Figure 4.4: Preprocessing framework: Validation module

Integration model implementation

Document /

partial document

d

Transformation

driver

dL

Integration

model

Implementation of

Pipeline

specification(s)

Integration

model

transformation

driver

Req

n
dd ...1

Req

Transformation result ()d'

Transformation

pipeline driver

Req

dL
ndd...1

1d

n
d

1
d

nd

Transformer(s)

Transformation

specification(s)

Req

Adaptation

requirements

Req

Figure 4.5: Preprocessing framework: Transformation module

to complete documents. The individual portions of a mixed namespace document can
correspond to separate languages; therefore, they can require separate schema valida-
tor instances. Both the validation driver and the integration model validation driver
must be able to process individual document portions, because d can be a partial doc-
ument, during the interoperation between the transformation and validation models.
Specifically, a transformation process must be able to validate its input, and transfor-
mation processing can also apply to individual document portions, as the subsequent
transformation model investigation will illustrate.

4.4.2 Transformation

Figure 4.5 illustrates the top level preprocessing framework transformation model,
which transforms a document d to its optimal representation d′, according to a set
of adaptation requirements Req . Well defined methods for independently developing
transformation specifications, integrating a multitude of transformation technologies
and processing document portions are necessary, because of the requirement for inde-
pendent processing semantics and the test of independent invention principle.

CHAPTER 4. A PREPROCESSING FRAMEWORK 68

In a similar manner to the validation model, the transformation driver drives the
transformation of d by delegating the transformation request to the integration model
transformation driver, which is specific to the integration model of d. The requirement
for multiple transformation technologies also covers transformation pipelines support,
since a pipeline is a transformation. However, built-in transformation pipelines are
beneficial, because they provide the foundation for combining multiple transformation
technologies. Consequently, the integration model transformation driver delegates all
transformation requests, for the separate document portions d1 . . . dn, to the transfor-
mation pipeline driver, instead of directly calling the individual transformers. Subse-
quently, the transformation pipeline driver calls the necessary transformers, according
to the corresponding pipeline specification.

A transformation model, which fulfils the document user’s adaptation requirements,
must have access to the set of adaptation requirements Req . Moreover, it must provide
well defined methods to use the adaptation requirements, within the transformation
pipelines and the transformation specifications, in order to enable transformations,
which are sensitive to the adaptation requirements.

There is no reason to assume that a document transformation is a one step process,
where its output requires no further processing. A recursive transformation mechanism
is necessary for multiple-step transformations. Moreover, it is beneficial for processing
naturally recursive languages and for reusing the functionality of existing XML lan-
guages. For instance, consider the documents illustrated in Listing 4.1. The semantics
of the n1:p construct, in authorsOut.xml, is to present its content as a paragraph.
Moreover, the semantics of the n2:description construct, illustrated in authors.xml,
is to present the contents of all its n2:dItem constructs as a list of paragraphs that fol-
low the content of the n2:name construct. Recursive transformations allow reusing the
n1 constructs for defining the n2:description semantics. For instance, a transformer
that corresponds to the n2 namespace can map authors.xml to authorsOut.xml.
Subsequently, the transformer that corresponds to the n1 namespace can transform
authorsOut.xml to its most appropriate representation, according to set of adaptation
requirements.

Additionally, consider the transformation of the n3:imp construct, illustrated in
import.xml, which must insert the referenced document (d.xml)1 in its place. The
processing model must recursively apply the n3:imp transformation for processing all
n3:imp occurrences, in both import.xml and the imported d.xml.

4.4.3 Binding

A preprocessing model must automatically locate the necessary validation and trans-
formation semantics, because it cannot natively support an open set of XML languages
and no external entity is required to provide document processing information. There-
fore, a preprocessing model must include a binding model that specifies how to organise,
distribute and locate the necessary processing model semantics. Figure 4.6 illustrates
the top level organisation of the processing semantics and the interoperation between
the binding process and the other preprocessing components.

The processing semantics must be associated with XML languages and not with

1d.xml is not a well formed XML document, because it contains two root elements. However,
within this example, it is used as a text file, which results in a well formed document by substituting
the n3:imp construct.

CHAPTER 4. A PREPROCESSING FRAMEWORK 69

1 <n1:doc>

2 <n 1 : s e c t i o n
3 name=”D. author”>
4 <n1:p>

5 The en t i t y that
6 c r e a t e s an XML
7 document .
8 </n1:p>

9 <n1:p>

10 The document author
11 has a s e t o f
12 requ irements .
13 </n1:p>

14 </n1 : s e c t i on>

15 </n1:doc>

authorsOut.xml

1 <n2 :d e s c r i p t i on >

2 <n2:name>
3 D. author
4 </n2:name>
5 <n2:dItem>

6 The en t i t y that
7 c r e a t e s an XML
8 document .
9 </n2:dItem>

10 <n2:dItem>

11 The document author
12 has a s e t o f
13 requ irements .
14 </n2:dItem>

15 </n2 :d e s c r i p t i on >

authors.xml

1 <n2 :d e s c r i p t i on >

2 <n2:name>
3 D. author
4 </n2:name>
5 <n3:imp r e f=”d . xml”/>
6 </n2 :d e s c r i p t i on >

import.xml

1 <n2:dItem>

2 <n3:imp r e f=”d1 . xml”/>
3 </n2:dItem>

4 <n2:dItem>

5 <n3:imp r e f=”d2 . xml”/>
6 </n2:dItem>

d.xml

Listing 4.1: Documents that can benefit from recursive transformations

Integration model

validation driver

Integration model

transformation driver

Namespace

URI

Human oriented

semantics description

Processing

semantics Integration model

syntax semantics

Processing model

processing semantics

Processing

model ID

Integration

model ID

Transformation

semantics

Integration

model ID

Other semantics

Requirements

expressions

Binding

process

1

0..*

0..*

0..*

Language semantics

URI-based

location

Document user

URI

Human oriented description

(URI, integration model ID)

(URI, integration model ID, processing

model ID, adaptation requirements)

Syntax semantics

Transformation semantics

Legend

Inter-model input interface By reference containment

Inter-model output interface
By reference containment, associated with

additional data

Figure 4.6: Preprocessing framework: Binding module

CHAPTER 4. A PREPROCESSING FRAMEWORK 70

documents, because the document author is not required to provide processing in-
formation and document based processing association is problematic, as described in
Section 2.2.3. Therefore, the semantics organisation must be based on the namespace
URIs, since they uniquely identify namespace bound XML languages. Namespace URIs
must also be the foundation of the principal semantics location mechanism, because
they ensure the wide availability of independently developed processing semantics for
both document authors and processing models.

A preprocessing model, in addition to its principal semantics location mechanism,
must support alternative location mechanisms, in order to avoid central points of
failure. For instance, consider that the principal semantics location mechanism for
XHTML used its namespace URL, for locating all necessary XHTML processing se-
mantics. If a processing model did not support an alternative location mechanism, the
failure of either a Web server or a client’s connectivity could prohibit the presentation
of XHTML documents, for the duration of the failure. Consequently, the proposed
semantics organisation, illustrated in Figure 4.6, accommodates alternative location
mechanisms by associating each namespace URI to multiple semantics specifications.

The document user and both the integration model validation and transformation
drivers must provide a language’s URI to the binding process, because it is the basis of
the principal semantics location mechanism. Specifically, the document user uses the
binding process to retrieve the human oriented language descriptions. The integration
model validation driver requires a set of syntax semantics. In addition to the corre-
sponding namespace URI, it must specify the document’s integration model, because
separate integration models can require different validation processing semantics.

Finally, the integration model transformation driver, in addition to a language’s
URI, must provide the integration model, the processing model and the adaptation
requirements, in order to retrieve the optimal transformation semantics. In a similar
manner to the validation semantics, the transformation semantics can be integration
model specific. Additionally, they are also processing model specific, because the trans-
formation outcome depends on the way that a model processes a document. Moreover,
a preprocessing model must enable the use of separate transformation specifications
for separate sets of adaptation requirements, because document transformation can be
adaptation requirements dependent.

4.4.4 Integration model and overall processing

An integration model, which is adequate for a preprocessing approach, must define how
to validly nest language constructs, within a mixed namespace document. Additionally,
it must define how to combine the processing semantics of the individual languages, in
order to process a mixed namespace document. Consequently, the document authoring
process, the validation process driver and the transformation process driver must be
integration model specific.

A generic integration model cannot use predefined inter-language relationships, be-
tween either language constructs or processing semantics. Such relationships do not
allow the independent definition of an open set of languages, because they share the
problems of integration profiles. As described in Section 2.1.1, integration profiles are
against the test of independent invention and exponentially difficult to enumerate for
the continuously expanding set of languages. Well defined processing APIs and well
defined sets of languages can form the integration basis for a restricted set of lan-
guages, such as the Lp of a presentation component that covers a well defined range

CHAPTER 4. A PREPROCESSING FRAMEWORK 71

of functionality. However, they are not adequate for the integration of an open set
of languages, because they are against the minimalistic nature of XML[BL02a] and
they require the enumeration of all possible integration scenarios, for a multitude of
abstraction levels. Consequently, a generic integration model must define the necessary
construct relationships, without using predefined integration profiles, APIs or sets of
languages.

Finally, a preprocessing model must define the necessary orchestration of its indi-
vidual components, for performing its two principal applications: authoring validation
and document transformation, according to a set of adaptation requirements. Specifi-
cally, a preprocessing model must define the necessary algorithms for both processing
applications and the necessary components interoperation for implementing those al-
gorithms. The latter must also ensure the validity of each transformed document or
document portion, in order to assist the development of the individual transformers.

4.4.5 The complete preprocessing framework

Table 4.7 summarises all the requirements that a preprocessing model for presentation
XML documents should fulfill. Specifically, it combines the requirements of the external
entities, initially summarised in Table 4.6, and the additional requirements introduced
in Section 4.4. The proposed XML preprocessing framework consists of the Table 4.7
requirements and the three modules, illustrated in Figures 4.4, 4.5 and 4.6.

The proposed preprocessing framework can be applied for both developing and eval-
uating generic XML preprocessing models. The preprocessing framework development
did not use arbitrary assumptions, but it was solely based on the Web design principles
and the external entities requirements, within the boundaries set by the scope of this
thesis. Consequently, either the absence of any component illustrated in Figures 4.6,
4.5 and 4.4, or the lack of compliance to any of the Table 4.7 requirements indicates
that a processing model is not sufficiently generic for the Web, within the scope of
this thesis. Moreover, the proposed component separation assists the development of
preprocessing models, because it divides the problem of generic XML processing to
smaller and more manageable subproblems with well defined requirements.

4.5 Discussion

The remainder of this thesis will use a preprocessing model to prove our hypothesis.
Specifically, it will illustrate that the development of generic processing models that
are adequate for the Web is feasible, when utilising the constraints of the presentation
domain. However, the definitions of Section 3.2, which describes the domain of presen-
tation document processing, are not sufficient for identifying whether a preprocessing
approach is adequate for the Web.

This chapter proposed a preprocessing framework, which established the function-
ality subsets of a preprocessing model and their corresponding requirements. Such a
framework is essential for proving our hypothesis, because it provides the means to
identify the adequacy of a preprocessing approach for the Web. Additionally, the iden-
tified functionality subsets assist both the development of new preprocessing models
and the independent investigation of their components.

CHAPTER 4. A PREPROCESSING FRAMEWORK 72

Functionality Requirements

Assumptions
Single presentation XML document
URL identifiable/retrievable document

Global

Web design principles
Efficient processing
Presentation consistency
Authoring validation

Validation Multiple validation technologies
Validation of documents and document portions

Int. model
Independent definition of schemas

validation
Well defined combination of independent schemas
Orchestration of the individual validators

Transformation

Multiple transformation technologies
Transformation of documents and document portions
Built-in transformation pipelines
Adaptation requirements sensitive transformation components
Well defined way to use adaptation requirements in both the pipelines
and the transformation specifications

Int. model
Independent transformation definitions

transformation
Well defined combination of independent transformations
Orchestration of the individual transformers
Recursive transformation processing

Int. model

Open set of languages
Low and high level presentation information in the document
Independent definition of languages
Well defined combination of separate languages’ constructs
No predefined construct relationships
No use of predefined exhaustive APIs or sets of languages
No language specific interoperation between processing components

Int. model Well defined authoring validation and adaptation algorithms
processing Well defined component orchestration to implement those algorithms

Ensure valid transformation input

Binding

No necessary presentation information in the document
No necessary adaptation information in the document
Well defined organisation, distribution and location of human oriented
descriptions and processing model semantics
URI-based semantics association and principal location mechanism
URI based human oriented semantics location
Validation semantics location and organisation based on the language
URI and the integration model
Transformation semantics location and organisation based on the lan-
guage URI, the integration model, the processing model and the adap-
tation requirements
Alternative location mechanisms

Adaptation

Well defined adaptation requirements representation
Adaptation for a variety of Lp sets
Adaptation for a variety of browser integration models
Composite representation
Extensible representation
Conflicting requirements resolution

Table 4.7: Preprocessing framework requirements

CHAPTER 4. A PREPROCESSING FRAMEWORK 73

4.5.1 Evaluation

A sound preprocessing framework must use indisputable requirements and assump-
tions, in order to provide the foundation for evaluating the adequacy of preprocessing
approaches for the Web. The proposed framework is based on the Web design princi-
ples and the requirements of the external entities. The soundness of the Web design
principles is well established, because they have been fundamental to the success of the
Web. There is no reliable source for the requirements of the external entities, because
human requirements are adapted to the accustomed processing practices, and they can
lead to deficient processing models. Therefore, the identified requirements are derived
from assumptions that are based on the Web design principles. The correctness and
sufficiency of the requirements cannot be proven. However, since they are based on the
Web design principles, they should reflect the adequacy of a preprocessing model for
the Web.

The derivation of the proposed framework, from the identified requirements and
assumptions, is also sound. Specifically, the framework consists of the identified func-
tionality areas, their corresponding requirements and Figures 4.4, 4.5 and 4.6. These
three figures define the necessary interoperation between the individual components of
each functionality area. The proposed functionality areas and their requirements are
derived by grouping the initial set of requirements and assumptions. Additionally, the
proposed set of components and their interoperation, illustrated in the three figures, are
a direct consequence of the grouped requirements and the observations of the existing
processing approaches, described in the literature review (Chapter 2). Consequently,
the processing framework is as sound as its initial requirements.

The defined component interoperation and requirement grouping enable the in-
dependent evaluation and proposal of the individual preprocessing components. For
instance, the adequacy of a validation model can be evaluated by the extent to which it
fulfils the validation requirements of Table 4.7 and it fits within Figure 4.4. In a similar
manner, the same requirements and figure can be used as a guideline for developing a
new validation model.

A framework that is adequate for evaluating preprocessing approaches must provide
a sufficient set of requirements. The proposed framework attempts to cover all the spec-
trum of XML preprocessing, within the scope of this thesis, but sufficiency is neither
adequate nor provable. Specifically, there are neither existing and indisputable sets of
preprocessing requirements nor existing generic processing models. Consequently, there
is no benchmark for comparing the identified requirements and processing components.
Additionally, a preprocessing model contains a multitude of processing components, and
it can combine several existing technologies. Exhaustive coverage of all the necessary
functionality, at a sufficiently fine grained level to ensure the sufficiency of a prepro-
cessing model, would result to a prohibitive multitude of requirements. Consequently,
the proposed framework provides an indication of, and does not prove, the adequacy
of a preprocessing model.

In a similar manner, a framework that can be used for evaluating the adequacy
of preprocessing approaches, must only require the necessary preprocessing function-
ality. If this is the case, each unfulfilled requirement would indicate a deficiency of a
preprocessing model. However, the necessity of the introduced requirements cannot be
proven, because, as stated above, the framework requirements are sound, but their cor-
rectness cannot be proven. Nevertheless, all framework requirements and components
are inferred from the Web design principles. Consequently, the lack of adherence of a

CHAPTER 4. A PREPROCESSING FRAMEWORK 74

preprocessing model to the proposed framework is a good indication, but not a proof,
of its inadequacy for the Web.

As a consequence of the above evaluation, the proposed preprocessing framework is
derived from a sound set of requirements, but its requirements cannot be proven to be
either necessary or sufficient. Nevertheless, it is based on the Web design principles and
provides an indication of the adequacy of preprocessing approaches, which is essential to
proving our hypothesis. Moreover, it assists the development of original preprocessing
proposals.

4.5.2 Evaluation of existing approaches

The literature review of Chapter 2 indicated the core strengths and weaknesses of ex-
isting XML processing approaches. However, their evaluation according to the prepro-
cessing framework is beneficial, because its provides a straightforward way to evaluate
the adequacy of processing approaches for the Web.

Integration profiles and namespace assimilation approaches are widely used. How-
ever, they only address a document’s syntax, instead of its processing. Moreover, they
do not comply with most framework requirements, because they do not fulfill the sim-
plicity, modularity and least power Web design principles, they are not adequate for
an open set of languages and they require predefined language associations. X-Smiles
proposes a more loose integration model that allows an open set of languages and does
not require their close interoperation. However, the looser integration necessitates the
introduction of predefined interfaces, for the interoperation of the individual language
processors, and prohibits the development of a well defined validation process. NRL
and NVDL are the most prominent integration approaches, and they fulfill the frame-
work requirements, if their context features are not used (because their use is based on
predefined language combinations). Therefore, the NRL and NVDL concepts of sub-
tree partitioning and namespace based association of processing semantics can provide
the foundation for a generic integration model.

Adaptive document processing requires a well defined representation of the adapta-
tion requirements and a well defined document adaptation mechanism. CSS stylesheets
allow the application of a different style, according to the device type. Moreover, the
adaptive Cocoon processing uses URI device implications to infer the type of a de-
vice. However, neither approach fulfils the framework requirements. CC/PP provides
a composite extensible representation of adaptation requirements, and it fulfils all the
framework requirements, apart from the requirement for a conflict resolution mecha-
nism. Consequently, CC/PP can form the the basis of a generic adaptation mechanism.

The proposal in [OH02] uses CC/PP profile queries to control a document’s pro-
cessing, and it is the most powerful generic adaptation mechanism. Device independent
authoring approaches can offer more powerful adaptation, but they can only be used in
highly constrained domains and they are not adequate for an open set of languages and
a variety of integration models. In contrast, the above CC/PP based adaptation com-
bines both an adequate representation of adaptation requirements and the potential to
support a multitude of languages and integration models.

No existing transformation approaches fulfill the framework requirements of mixed
namespace and adaptive transformations. Specifically, there is no existing generic way
to transform mixed namespace documents, according to the semantics of their indi-
vidual constructs. The above CC/PP based adaptation approach enables the adaptive

CHAPTER 4. A PREPROCESSING FRAMEWORK 75

transformation of a document, but it cannot individually address the document sub-
trees.

There is a multitude of existing schema languages and validation models, but they
can only fulfill the framework requirements within the context of NRL or NVDL. As
described above, NRL and NVDL provide the only prominent methods to validate
mixed namespace documents, according to independently defined schemas.

The preprocessing framework requires URI based association and primary location
of semantics. Most schema bindings, such as in the XML Schema and NRL, use URI
based associations. However, their location mechanisms are either document specific
or not well defined. RDDL is the only generic binding method that uses URIs for
both semantics association and location. The preprocessing framework also requires
secondary location mechanisms. XVM provides a distributed location mechanism that
can use several repositories to store URI associations. However, it is not based on the
URIs of the individual resources.

Most of the aforementioned approaches do not cover their corresponding framework
requirements. However, there is also no existing generic method to combine them
into a more powerful document processing approach. Consequently, the existing XML
processing approaches do not provide an adequate model for the generic processing of
presentation XML documents.

4.6 Summary

This thesis will use a preprocessing model to prove our hypothesis, because preprocess-
ing approaches can provide generic validation and transformation, without the transi-
tion and implementation difficulties of complete processing approaches. The proof of
our hypothesis requires a well defined method to evaluate the adequacy of the proposed
preprocessing model. This chapter proposed a preprocessing framework that enables
the evaluation of preprocessing approaches.

The proposed framework defines the components of a preprocessing model, their in-
teroperation and their corresponding requirements. Specifically, a preprocessing model
consists of a validation model, a transformation model, an integration model and a
binding model. The validation and transformation models are responsible for vali-
dating and transforming a presentation document. Both models are specific to an
integration model, because it defines how to combine the processing semantics of the
individual languages, in order to process a mixed namespace document. The binding
model is responsible for locating and retrieving all necessary processing semantics.

The proposed framework can neither be proven correct nor complete. However it
provides an adequate method to evaluate preprocessing approaches, in order to prove
our hypothesis. Specifically, there is no well defined benchmark for comparing the
framework requirements, because there are currently no generic processing models for
presentation documents. Traditional requirement identification methods, such as sta-
tistical analysis, are not reliable, because Web users are accustomed to the existing
practices. Nevertheless, all identified requirements and components are based on the
well established Web design principles. Consequently, they can provide a good indica-
tion of the adequacy of a preprocessing model for the Web.

The investigation of existing processing approaches, according to the proposed
framework, illustrated that there are no adequate approaches for the generic process-
ing of presentation documents. The subsequent chapters will introduce the necessary

CHAPTER 4. A PREPROCESSING FRAMEWORK 76

processing models to cover all aspects of a preprocessing model.

Chapter 5

XMLPipe integration model

This chapter initiates the XMLPipe preprocessing model investigation by describing
the XMLPipe integration model, because an integration model provides the foundation
of a preprocessing model. Specifically, it defines the interpretation of a mixed names-
pace document, according to the interpretation of its constructs. Such a well defined
interpretation is necessary for authoring and processing a document, according to the
semantics of its individual languages.

The XMLPipe integration is based on three observations, which apply to a signifi-
cant subset of presentation languages. Firstly, each language has a subset of constructs,
the processing of which is independent of their context. The term handled constructs
will refer to such constructs. Secondly, the processing of document subtrees that are
rooted at handled constructs is also independent of their context. Thirdly, the handled
constructs can be classified into distinct categories. For each handled construct rooted
subtree, the category of its handled construct defines its relationship with its context.

There are currently no generic integration models. Section 5.1 investigates the
underlying reasons for the lack of such integration models. It also identifies the most
prominent current approaches, which can provide the foundation for the XMLPipe
integration model. Section 5.2 investigates the three handled construct observations,
and Section 5.3 describes how they can enable the processing of presentation documents.
Section 5.3 does not provide the details of document transformation and validation,
because they depend on the transformation and validation model, respectively. The
corresponding Chapters 7 and 8 will apply the XMLPipe integration model to precisely
define the XMLPipe document processing.

5.1 Integration model considerations

Well defined information interpretation requires well defined interpretation of the in-
dividual information pieces and of their relationships, as described in Section 2.2.2.
Consequently, well defined document processing requires that the processing of the
document constructs is well defined and that their processing relationships are also
well defined.

Language specifications provide all the necessary information for processing single
namespace presentation documents. For instance, consider the presentation document
in Figure 5.1. The XHTML specification defines the presentation of all XHTML con-
structs and their dependencies with their context and their contents. The illustrated
DOM tree summarises the presentation dependencies of the first xhtml:p construct.

77

CHAPTER 5. XMLPIPE INTEGRATION MODEL 78

1 <xhtml:html>
2 <xhtml:body>

3 <xhtml:p>Par1
4 </xhtml:p>

5 <xhtml:p>Par2
6 </xhtml:p>

7 <s v g : r e c t
8 x=”0”
9 y=”0”

10 width=”100”
11 he igh t=”100”/>
12 </xhtml:body>

13 </xhtml:html>

xhtml:html xhtml:body

xhtml:p

svg:rect

xhtml:p

"Par1"

"Par2"

Present as a paragraph

semantics association

xhtml:p to
xhtml:body
association

within the
presentation of the
xhtml:body element

that contains
the text of its

text node
children

xhtml:p to
text children
association

Present as a rectangle

semantics association

No well defined
association

?

Figure 5.1: Processing associations between language constructs

Specifically, xhtml:p must be presented as a paragraph, within the boundaries of its
xhtml:body parent element. The presentation of xhtml:p also depends on its descen-
dants, because it must contain the contents of all its text node children.

However, the language specifications are not sufficient for processing mixed names-
pace documents. Specifically, the ancestors and the descendants of a mixed namespace
document construct σ do not necessarily belong to the same language as σ. Conse-
quently, the presentation dependencies between σ and its context/contents are not well
defined. For instance, consider the svg:rect element, which is illustrated in line 7 of
Figure 5.1. The SVG recommendation specifies that it must presented as a rectangle.
However, neither the XHTML nor the SVG specifications define how to orchestrate its
presentation with the presentation of its ancestor xhtml:body element.

Integration profiles and predefined integration constructs are inadequate methods to
provide the missing processing associations between languages. Specifically, integration
profiles, such as the XHTML+SVG+MathML profile, are not adequate for an open set
of languages, as described in Section 4.4. Predefined integration constructs are XML
constructs with well defined processing associations between their context and their
contents. They can enable the processing of mixed namespace documents, but such
fixed sets of constructs are against the principle of independent invention. Moreover,
they do not comply with the XML authoring model, which is not compatible with such
well defined associations between its constructs, as described in Section 2.2.2.

NRL and NVDL are the most prominent integration approaches for validation,
but they do not define the necessary processing relationships for presentation docu-
ments. Specifically, they attempt to provide generic integration, which also covers
non-presentation documents. Therefore, they cannot utilise the constraints of the pre-
sentation domain, in order to define the presentation associations between language
constructs. Consequently, they can result to erroneous validation of presentation doc-
uments, as illustrated in Listing 2.1 (page 19).

Therefore, a generic integration model for presentation documents can adopt the
subtree separation concept of NRL and NVDL, but it must also define the presentation
relationships between language constructs. Such relationships cannot be based on

CHAPTER 5. XMLPIPE INTEGRATION MODEL 79

1 <n1:doc>

2 <n 1 : t i t l e >

3 Document t i t l e
4 </n 1 : t i t l e >

5 <n1 : s e c t i on>

6 <n 1 : t i t l e >

7 Sec1
8 </n 1 : t i t l e >

9 <n1:p>Par1</n1:p>

10 <n1:p>Par2</n1:p>

11 <n4:box>

12 <n1:p>Par3</n1:p>

13 <n1:p>Par4</n1:p>

14 </n4:box>

15 </n1 : s e c t i on>

16 </n1:doc>

(a)

1 <xhtml:html>
2 <xhtml:head><xh tm l : t i t l e >

3 Document t i t l e
4 </x h tm l : t i t l e></xhtml:head>

5 <xhtml:body>

6 <xhtml:h1>Document t i t l e </xhtml:h1>

7 <xhtml:h2>1 . Sec1</xhtml:h2>

8 <xhtml:p>Par1</xhtml:p>

9 <xhtml:p>Par2</xhtml:p>

10 <xhtml : t ab l e
11 border=”1”><xhtml :t r><xhtml:td>

12 <xhtml:p>Par3</xhtml:p>

13 <xhtml:p>Par4</xhtml:p>

14 </xhtml:td></xhtml :t r></xhtml :tab le >

15 </xhtml:body>

16 </xhtml:html>

(b)

Listing 5.1: Handled constructs example

predefined integration profiles or integration constructs. In contrast, the integration
model must utilise the constraints of the presentation domain, in order to define generic
relationships that cover all presentation languages.

5.2 Handled construct observations

The XMLPipe integration model is based on three observations, which apply to a signif-
icant subset of the presentation languages. This section will describe these observations
and provide the foundation for the subsequent XMLPipe integration model proposal.

5.2.1 Handled constructs

The first observation is that each presentation language contains a subset of constructs,
where their processing can be defined independently of their context, within a docu-
ment. The term handled constructs will refer to such constructs. For instance, consider
Listing 5.1(a), which represents a mixed namespace document that contains a title, a
section, two top level paragraphs and two additional paragraphs, which are enclosed in
a box. Listing 5.1(b) represents an adequate interpretation of 5.1(a) for an XHTML
browser. The placement of the source n1:p constructs (Listing 5.1(a), lines 9, 10,
12, 13) depends on their ancestors. However, their processing is context independent.
Specifically, the transformation of both the first two n1:p elements (lines 9, 10), which
are enclosed in an n1:section element, and the last two n1:p elements (lines 12,
13), which are enclosed in an n4:box element, always results in an xhtml:p construct
(Listing 5.1(b) lines 8, 9, 11, 12). Consequently, n1:p is a handled construct.

Not all presentation language constructs are handled constructs. For instance, the
processing of the two n1:title elements differs according to their context. The first
occurrence (line 2) defines the document title, but the second occurrence (line 6) defines

CHAPTER 5. XMLPIPE INTEGRATION MODEL 80

a section title. Consequently, their XHTML interpretations (Figure 5.1(b), lines 2–6
and 7) are substantially different. Additionally, the processing of an n1:title element
that occurs within a n4:box is not well defined, because its association with its context
is undefined. Consequently, n1:title is not a handled construct, because its processing
definition depends on its context.

Language authors must explicitly specify the handled constructs of a language, be-
cause they are central to the XMLPipe integration model. Functions langConstructsHC ,
langConstructsHC

e and langConstructsHC
a will map a language to its set of handled con-

structs, and they are a subset of the binding model interface, which will be described
in Chapter 9. Specifically, langConstructsHC returns all the handled constructs of a
language. langConstructsHC

e and langConstructsHC
a return only the element and at-

tribute handled constructs, respectively. They are necessary, because the XMLPipe
integration model treats elements and attributes differently.

Handled constructs function (langConstructsHC):
langConstructsHC : L → ℘(Σ) is a function where,
∀L ∈ L, σ ∈ langConstructsHC (L) iff σ ∈ langConstructs(L) and σ is a handled
construct.

Element handled constructs function (langConstructsHC
e):

langConstructsHC
e : L → ℘(Σ) is a function where, ∀L ∈ L,

langConstructsHC
e (L) = langConstructsHC (L)− langConstructsa(L).

Attribute handled constructs function (langConstructsHC
a):

langConstructsHC
a : L → ℘(Σ) is a function where, ∀L ∈ L,

langConstructsHC
a (L) = langConstructsHC (L)− langConstructse(L).

5.2.2 Handled construct rooted subtrees

A consequence of the existence of handled constructs is that the processing of a single
namespace subtree that is rooted at a handled construct is also independent of its
context.

Corollary 1 Consider a valid d ∈ DQ, where Ld = {L}, and that the syntax of L
enforces the processing relationships between its constructs. If d′ is a subtree of d
that is rooted at a handled construct σ ∈ langConstructsHC (L), the processing of d′

can be defined independently of its context in d.

Proof:
In order to prove the above corollary, it is sufficient to prove that the processing of all
constructs of d′ can be defined independently of the context of d′. Consider that ΣL

and Σ′
L represent the handled and non-handled constructs of L, respectively:

ΣL = langConstructsHC (L)
Σ′

L = langConstructs(L)− ΣL

Each node of d′ can correspond to either a handled construct or a non-handled
construct. By definition, the processing of all nodes that correspond to a handled

CHAPTER 5. XMLPIPE INTEGRATION MODEL 81

construct σ ∈ ΣL can be defined independently of their context. In contrast, the
processing definition of nodes that correspond to a non handled construct σ ∈ Σ′

L may
depend on their ancestor nodes.

Consider that the processing definition of a node n, which corresponds to construct
σ, depends on an ancestor n′, which corresponds to a construct σ′. Since the syntax of
L enforces the processing relationships between its constructs, it must require that σ
can only occur as a descendant of σ′. If n′ is an ancestor of the subtree d′, the syntax
of L must also constrain the root of d′ to be a descendant of σ′, when it contains σ at
the place that corresponds to n. Consequently, if the processing definition of a node in
d′ depends on a ancestor node of d′, the syntax of the root of d′ depends on its context.
The d root is a handled construct, and, by definition, its processing cannot depend on
its context. Therefore, the processing definition of every non handled construct of d′

does not depend on the context of d′.
Consequently, the above proves Corollary 1, because the processing of all d′ con-

structs and of d′ as a whole can be defined independently of its context.
Most handled constructs are elements, because attributes are closely related to the

context of their parent elements. The processing of an attribute must relate to its
context, because it cannot exist without a well defined parent element. Nevertheless,
its processing might be defined independently of its context. Therefore, all above
observations apply interchangeably to both elements and attributes.

For instance, consider the document illustrated in Listing 5.2(a). According to the
semantics of the XLink language, any element that contains an xlink:href attribute
(lines 9 and 12) must be interpreted as a link to the specified attribute URL. Addition-
ally, consider a preprocessing application that adapts Listing 5.2(a) for an XHTML
browser that does not support XLink links. It must enclose all elements that con-
tain xlink:href attributes into an XHTML anchor element xhtml:a, as illustrated
in Listing 5.2(b) (lines 8 and 12). The adaptation of the xlink:href attributes in-
volves their parent element, because it must be enclosed within the xhtml:a element.
However, their processing can be defined independently of their context, because it is
interchangeable for both n1:p and n3:box elements. Consequently, the xlink:href

attribute can be considered as a handled construct.

5.2.3 Handled constructs classification

The final observation is that the valid occurrence of handled construct rooted subtrees
depends on the type of their root construct. For a significant subset of the presentation
languages, their handled constructs can be classified into three types: content oriented
constructs (COC), functionality oriented constructs (FOC) and structure modification
constructs (SMC).

Most presentation language handled constructs are content oriented constructs, and
they introduce presentable content. Specifically, the semantics of a COC describe the
introduction of a well defined and presentable piece of information, at a place that
corresponds to its position in a document. For instance, consider the n1:doc, n1:p
and n4:box elements, illustrated in Listing 5.2(a). If their corresponding semantics are
that they introduce a document, a paragraph and a box, at the place that they occur in
a document, they are all COC handled constructs. Additional COC examples, within
widely used languages, are the html, p and em XHTML elements and the svg and rect

SVG elements.

CHAPTER 5. XMLPIPE INTEGRATION MODEL 82

1 <n1:doc>

2 <n 1 : t i t l e >

3 Document t i t l e
4 </n 1 : t i t l e >

5 <n1 : s e c t i on>

6 <n 1 : t i t l e >

7 Sec1
8 </n 1 : t i t l e >

9 <n1:p x l i n k : h r e f=” ur i1 ”>Par1
10 </n1:p>

11 <n1:p>Par2</n1:p>

12 <n4:box x l i n k : h r e f=” ur i2 ”>
13

14

15 <n3:imp r e f=”pars . xml”/>
16

17

18 </n4:box>

19 </n1 : s e c t i on>

20 </n1:doc>

(a)

1 <xhtml:html>
2 <xhtml:head><xh tm l : t i t l e>

3 Document t i t l e
4 </x h tm l : t i t l e></xhtml:head>

5 <xhtml:body>

6 <xhtml:h1>Document t i t l e </xhtml:h1>

7 <xhtml:h2>1 . Sec1</xhtml:h2>

8 <xhtml:a h r e f=” ur i1 ”>
9 <xhtml:p>Par1</xhtml:p>

10 </xhtml:a>

11 <xhtml:p>Par2</xhtml:p>

12 <xhtml:a h r e f=” ur i2 ”>
13 <xhtml : t ab l e
14 border=”1”><xhtml :t r><xhtml:td>

15 <xhtml:p>Par3</xhtml:p>

16 <xhtml:p>Par4</xhtml:p>

17 </xhtml:td></xhtml :t r></xhtml :tab le >

18 </xhtml:a>

19 </xhtml:body>

20 </xhtml:html>

(b)

Listing 5.2: Handled constructs classification example

The functionality oriented constructs do not introduce a separate piece of pre-
sentable information, but they amend the presentation of their context, in a context
independent way. As described in the previous section, an element that contains an
xlink:href attribute (Listing 5.2(a), lines 9 and 12) must be interpreted as a link
to the specified attribute URL. Consequently, the xlink:href attribute amends the
presentation of its parent element, in a context independent way, because it converts
it to a link, independently of which element its parent is. Therefore, the xlink:href

attribute is a FOC .
The classification of a construct as a COC or as a FOC depends on both its seman-

tics and its syntax. For instance, the XHTML anchor element xhtml:a introduces the
same presentation functionality with the xlink:href attribute. The former converts
its content to a link, and the latter converts its parent element to a link. However,
xhtml:a is a COC , because it introduces a well defined piece of information, since it
contains the linked content.

The final commonly observed category of handled constructs are the structure mod-
ification constructs. SMC are constructs that the primary purpose of their associated
semantics is to modify the document tree. For instance, the semantics of the n3:imp

element, illustrated in Listing 5.2(a) (line 15), is to import the referenced document.
Consequently, it is an SMC , because its semantics describe a modification of the doc-
ument tree. Most SMC constructs can also be classified as COC or FOC , according
to their exact semantics. However, the SMC category is necessary, because document
validation must process such constructs separately, since the introduced modifications
can alter the validity of a document.

The classification of a language’s handled constructs is essential for the processing

CHAPTER 5. XMLPIPE INTEGRATION MODEL 83

of presentation documents. The symbols COC , FOC and SMC will represent the
functions that map a language to its corresponding subsets of handled constructs.
COC , FOC and SMC are a part of the binding model interface.

Handled construct classification functions (COC , FOC , SMC):
The functions
COC : L → ℘(Σ), FOC : L → ℘(Σ) and SMC : L → ℘(Σ) are defined as follows:
∀σ ∈ langConstructsHC (L) :
σ ∈ COC (L), if σ is a COC
σ ∈ FOC (L), if σ is a FOC , and
σ ∈ SMC (L), if σ is an SMC .

5.2.4 Valid nesting of subtrees

For the majority of presentation languages, the valid nesting of handled construct
rooted subtrees depends on the classification of their root handled constructs.

Specifically, SMC rooted subtrees can usually occur at any place in a document,
because tree modification functionality can apply to any context. For instance, con-
sider any document d. Any subtree d′ of d can be retrieved by an external source.
Consequently, d′ can be substituted by an SMC construct that imports d′, such as the
n3:imp construct in 5.2(a). Therefore, such an SMC construct can validly occur at
any place in a document.

FOC rooted subtrees can also occur at any place, because presentation amendments
are always applicable in a presentation document. Specifically, since a FOC amends
the presentation of its context, it should occur as a descendant of a COC , which
are the only constructs that introduce well defined pieces of presentable information.
However, a FOC might also validly occur under another FOC , so that they both amend
the presentation of their context. Additionally, a FOC can also occur as a descendant
of an SMC , because, after the SMC processing, the new context of the FOC construct
will either be a COC or another FOC . Consequently, FOC rooted subtrees can validly
occur at any place in a document. For instance, the xlink:href attribute, illustrated
in Listing 5.2(a), is a FOC . xlink:href can be added to any element of Listing 5.2(a),
because all information can be presented as a link.

The nesting of COC rooted subtrees is more restrictive. Specifically, only constructs
that allow the introduction of presentable content can be parents of COC constructs,
because they introduce a presentable piece of information. For instance, consider that
the semantics specification of the n1:doc construct, illustrated in Listing 5.2(a), states
that is must contain exactly one title and a sequence of sections. n1:p and n4:p are
COC constructs, and they can occur as children of the n1:section element, because
a document section can be the host of arbitrary content. In contrast, they cannot
validly occur under the n1:doc element, because they will not belong to a document
section, and they will contradict the n1:doc semantics: it must only contain a title and
a sequence of sections. In a similar manner, an XHTML paragraph cannot be validly
placed between lines 4 and 5 of Listing 5.2(b), because it would introduce presentable
content outside the body of the document.

CHAPTER 5. XMLPIPE INTEGRATION MODEL 84

5.3 Handled constructs based integration

The aforementioned observations enable the partitioning a single namespace presenta-
tion document into a collection of autonomous information entities with well defined
associations. The autonomous information entities are the handled construct rooted
subtrees, because their processing can be defined independently of their context. The
associations between the handled construct rooted subtrees are well defined, because
the classification of their root handled constructs defines their relationship and valid
integration with their context.

All observations are solely based on the existence of handled constructs and their
classification, and they do not depend on language specific features. Consequently, they
can be extended to mixed namespace documents. This section derives the XMLPipe
integration model by extending the aforementioned observations to mixed namespace
presentation documents.

5.3.1 Valid mixed namespace documents

A document tree can be processed autonomously, if it is rooted at an element handled
construct that is not a FOC . Specifically, consider a single namespace document tree
d, which is rooted at a handled construct σ of a language L. According to Corollary
1, the processing of d can be defined independently of its context. If σ is an attribute,
d cannot occur outside the context of a parent element. If σ is a FOC , the processing
of d may require to access its context. In contrast, the processing of most subtrees
that are rooted at an element COC or SMC does not require access to their context.
Consequently, d can be processed autonomously, if σ is a non FOC element handled
construct and d is valid, according to the syntax of L.

If the nesting observations in Section 5.2.4 are followed, the insertion of a handled
construct rooted subtree into a document that can be processed autonomously, results
in a document that can also be processed autonomously. Specifically, consider that
d can be processed autonomously and d′ is rooted at a handled construct σ′, of a
language L′. d′′ will denote the result of inserting d′ at either a place in d where
content is expected, if σ′ is a COC , or at any place in d, otherwise. d′′ can be processed
autonomously, because d can be processed autonomously, the processing of d′ is well
defined, and the processing relationship between d′ and its context is also well defined.
Specifically, if σ′ is a FOC , the processing of d′ will amend the presentation of its
context, within d′′, in a well defined way. If σ′ is an SMC , its processing will modify
the document tree in a well defined way, independently of its context in d′′. Finally,
if σ′ is a COC , the relationship to its parent is well defined, because it introduces
presentable content at a place where presentable content is expected. Consequently, d′′

can be processed autonomously.
The XMLPipe integration model uses the above tree composition to ensure that

the processing of valid mixed namespace documents is well defined. Specifically, a
valid mixed namespace document, according to the XMLPipe integration model, is
composed out of a collection of handled construct rooted trees. Its root construct must
be a non-FOC element handled construct and all COC rooted subtrees must only occur
at places where content is expected.

The symbol VImX

L1
will denote the set that contains all valid documents, according

to the XMLPipe integration model, which combine the constructs of an open set of

CHAPTER 5. XMLPIPE INTEGRATION MODEL 85

presentation languages L1. The definition of VImX uses the
+
←−
Im

operator, which de-

fines the set of valid tree compositions, according to an integration model Im. ImX

will represent the XMLPipe integration model. The definition of VImX formulates
the XMLPipe integration model, but it does not indicate how to author and process
valid mixed namespace documents. The following two sections will addresses these
applications of the proposed integration model.

Valid tree composition (
+
←−
Im

): For all d1, d2 ∈ DQ, d1
+
←−
Im

d2 is the set of all

documents that can be produced by placing d2 at a valid place within d1, according
to the integration model Im .

Valid XMLPipe integration model composition (
+
←−
ImX

): For all d, d′ ∈ DQ,

where d′ is rooted at a construct σ′,

d
+
←−
ImX

d′ =

∅ , if σ′ 6∈
⋃

∀L∈L
d′

langConstructsHC (L)

{d1, . . . , dn} ,

d1, . . . , dn result from placing d′ at any place in d

and σ′ ∈
⋃

∀L∈L
d′

(FOC (L) ∪ SMC (L))

{d1, . . . , dn} ,

d1, . . . , dn result from placing d′ at a place in d where

content is expected and σ′ ∈
⋃

∀L∈L
d′

COC (L)

XMLPipe valid documents (VImX): For a set of languages L1, the set of the
XMLPipe integration model valid documents VImX

L1
is defined as follows:

d ∈ VImX

L1
iff

Ld = {L}, d is rooted at σ ∈ (COC (L) ∪ SMC (L)) ∩
langConstructsHC

e (L) and d is a valid tree of L
OR

∃d1, d2, where d1 ∈ V
ImX

L1
, Ld2

= {L2}, d2 is rooted at σ2 ∈

langConstructsHC (L) and d2 is a valid tree of L2, so that d ∈

d1
+
←−
ImX

d2

5.3.2 Mixed namespace document authoring

According to the XMLPipe integration model, a document author must be aware of
the VImX definition, the syntax of an open set of languages, their handled constructs
and the places where content is expected. This information allows the combination of
a set of independently developed presentation languages into a valid mixed namespace
document. Specifically, the syntax and the handled constructs of a language are the
necessary information for creating valid single namespace trees that are rooted handled
constructs. The classification of the handled constructs and the identification of places

CHAPTER 5. XMLPIPE INTEGRATION MODEL 86

where content is expected enable the valid integration of the individual subtrees into a
mixed namespace document. Consequently, document authors can use the XMLPipe
integration model to create valid presentation documents, which use an open set of
languages, without relying on predefined integration profiles.

For instance, consider the example document illustrated in Listing 5.2(a). The sym-
bols L1, L3, L4 and Lxlink will denote the languages that correspond to the namespace
prefixes n1, n3, n4 and xlink. Additionally, consider that all four languages have a
well defined set of handled constructs:

COC (L1) = {doc, p},FOC (L1) = SMC (L1) = ∅
SMC (L3) = {imp},COC (L3) = FOC (L3) = ∅
COC (L4) = {box},FOC (L4) = SMC (L4) = ∅

FOC (Lxlink) = {href},COC (Lxlink) = SMC (Lxlink) = ∅

The n1:doc and n1:p constructs of L1 are COC , because they introduce a document
and a paragraph, respectively. Both are well defined pieces of presentable information
and their presentation is independent of their context. In a similar manner, the n4:box
construct of L4 is also a COC . The xlink:href construct of Lxlink is a FOC , because
its processing influences its parent element in an element independent way (it converts
it to a link). The n3:imp construct of L3 is an SMC , because it modifies the document
tree by importing external content at its place. Finally, the n1:section, n1:p and
n4:box elements denote the places where content is expected.

A document author can create 5.2(a) by combining its individual subtrees, accord-
ing to the VImX definition. The document authoring process can begin by creating
the n1:doc handled construct, the title and the first section, according to the L1 syn-
tax. Subsequently, the n4:box element can be introduced as a child of the n1:section
element, because n4:box is a COC and n1:section denotes a place where content
is expected. Finally, the document author can validly introduce the xlink:href and
n3:imp constructs at any document position, because they are FOC and SMC , respec-
tively.

5.3.3 Mixed namespace document processing

A document author can obtain the necessary information to author a document by the
corresponding language specifications. However, an integration model specific process,
such as validation or transformation, must be able to access machine processible rep-
resentations of all necessary information: the handled construct information and the
places where presentable content is expected.

As described in Section 5.2, the functions COC , FOC , SMC , langConstructsHC ,
langConstructsHC

e and langConstructsHC
a are a part of the XMLPipe binding model

interface, and they map a language to its handled constructs information. The symbol
ISemantics will represent the set of all XMLPipe integration model semantics, which
contains the necessary information for implementing the above functions. Specifically,
an ISemantics member contains 5-tuples of qualified construct name sets, which cor-
respond to the COC , SMC , FOC , element and attribute handled constructs. The
XMLPipe binding model, which is described in Chapter 9, will define how the integra-
tion model semantics are retrieved for each language.

None of the aforementioned functions map a language to its corresponding informa-
tion of places where content is expected. Such information is very closely related to the

CHAPTER 5. XMLPIPE INTEGRATION MODEL 87

XMLPipe integration model semantics (ISemantics): ISemantics represents
the set of all XMLPipe integration model semantics. Each member of ISemantics
is a 5-tuple of sets of qualified names that correspond to the COC , SMC , FOC ,
element and attribute handled constructs of a language, respectively:

ISemantics = ℘(Σ)5

If is ∈ ISemantics and is = (Σ1,Σ2,Σ3,Σ4,Σ5), then

∀σ ∈ Σi :

σ is a COC construct , if i = 1
σ is a SMC construct , if i = 2
σ is a FOC construct , if i = 3
σ is an element construct , if i = 4
σ is an attribute construct , if i = 5

syntax of a language, and it requires more complex structures than a simple enumera-
tion. We will propose two alternative methods to identify the places where presentable
content is expected: a heuristic method and an explicit identification method.

Consider a construct σ of a language L. The heuristic method is to assume that σ
denotes a place where content is expected, if the syntax of L allows the occurrence of
a σ′ ∈ COC (L) as a child of σ. The rationale behind this method is that if a construct
can be the parent of COC constructs of the same language, it should also be a valid
parent of COC constructs of other languages. Nevertheless, a heuristic approach can
produce incorrect results. For instance L might require a specific σ′ ∈ COC (L) as a
child of σ, instead of any arbitrary COC construct. Additionally, if a language does
not contain COC constructs, the proposed heuristic method cannot infer the places
where content is expected.

The explicit identification method requires that the schema of a language includes
a predefined construct at all places where arbitrary COC constructs can occur. The
introduction of such a predefined construct is not against the principle of independent
invention, because it must only occur within schemas that are specific to the proposed
integration model. Such an approach is more precise than the heuristic method, but
it requires that all document languages are associated with integration model specific
schemas. A processing model can combine both approaches by using the explicit iden-
tification method, when such schemas are available, and the heuristic approach, as a
fallback mechanism.

An integration model specific component can use the above information to parti-
tion a valid mixed namespace document into a collection of handled construct rooted
subtrees, which enable its processing. Specifically, consider a d ∈ VImX

Ld
that is rooted

at a construct σ of a language L. d consists of a top level single namespace tree d′ and
a collection of subtrees d1 . . . dn, which are rooted at handled constructs σ1 . . . σn that
belong to other languages: ∀i, σi ∈ Ld − L. According to the XMLPipe integration
model, a valid mixed namespace document is composed out of valid single namespace
trees, which are inserted at valid places within their context. Consequently, d′ is a
valid single namespace document, which is rooted at a handled construct, and d1 . . . dn

occur at valid places, according to the classification of their root constructs σ1 . . . σn.

CHAPTER 5. XMLPIPE INTEGRATION MODEL 88

n1:doc

COC

n1:title

n1:section

"Document

Title"

n1:p

COC

xlink:href="uri1"

FOC

ref="pars.xml"

n1:title "Sec1"

"Par1"

n1:p

COC

"Par2"

n4:box

COC

xlink:href="uri2"

FOC

n3:imp

SMC

Legend

Non handled construct node

Handled construct node

Tree separation

Figure 5.2: XMLPipe integration model subtree separation example

An integration model specific component can process d by combining the indepen-
dently developed semantics of each document language, if they are adequate for subtree
processing. Specifically, if the processing semantics specification for L defines the pro-
cessing of handled construct rooted trees, it enables the independent processing of d′.
The processing of d is well defined, if d1 . . . dn also have well defined processing: all
of d′ and d1 . . . dn will have well defined processing, and their processing relationships
will be well defined by the classification of the σ1 . . . σn handled constructs. In a sim-
ilar manner to d, d1 . . . dn are also valid XMLPipe documents. Therefore, a recursive
application of the same subtree partitioning as above can show that their processing is
well defined. Consequently, d can be processed according to the processing semantics
of its individual languages.

Each integration model specific process can use different methods to separate a
mixed namespace document into its individual subtrees and to combine the processing
semantics of each language. Such methods are closely related to the nature of each
process. Therefore, this section will not describe the details of the validation and
transformation of mixed namespace documents. The subsequent Chapters 7 and 8 will
propose the XMLPipe validation and transformation models, respectively, and they
will provide the corresponding document processing details. Nevertheless, the high
level concepts of the document processing are common. Specifically, an integration
model specific process must separate a mixed namespace document into its individual
subtrees, process them independently and combine the processing results.

The subtree separation consists of traversing a mixed namespace document and
creating a separate subtree, for each handled construct σ. If σ is a non-FOC element,
it can be the root of the corresponding subtree. Otherwise, the subtree root must be
the parent of σ, because attributes can only exist within their parent element and the

CHAPTER 5. XMLPIPE INTEGRATION MODEL 89

processing of FOC rooted subtrees may require access to its context. For instance,
Figure 5.2 illustrates the resulting subtrees for the XML document in Listing 5.2(a).
The xlink:href attribute is a FOC construct. Consequently, its corresponding sub-
trees also include its parent elements n1:p and n4:box. All other handled constructs,
such as the n3:imp, n4:box and n1:p, are non-FOC element handled constructs. Con-
sequently, they become the root constructs of their corresponding subtrees.

After the subtree separation, an integration model specific process processes each
subtree separately, according to the semantics of the corresponding language. Finally,
it combines the results of each subtree processing into an output document.

5.4 Discussion

The proposed integration model enables the generic processing of mixed namespace
documents by utilising the constraints of the presentation domain. Specifically, it is
based on three handled construct observations that are specific to presentation docu-
ments. The observations have been made to single namespace documents, and their
extrapolation allowed the definition of valid mixed namespace documents, as a compo-
sition of valid single namespace subtrees. The proposed definition of valid documents
enables the generic authoring and processing of mixed namespace documents, because
it only requires the independently specified semantics of each language, instead of fixed
integration profiles.

The preprocessing framework specifies several requirements that relate to the in-
tegration model, but this section will only address a subset of them. Most relevant
requirements are specific to the integration model specific validation and transforma-
tion processes. Consequently, these requirements will be discussed in the subsequent
chapters, after describing the XMLPipe validation and transformation models. This
section will focus on evaluating the top level integration model concepts, which are
independent of the individual processes.

Firstly, the XMLPipe integration model allows the integration of an open set of
languages, which can contain both high and low level presentation information, because
it imposes minimal restrictions on the processed languages. Specifically, it only requires
that each language has a set of handled constructs. All presentation languages have
at least a handled construct, because the processing definition of their designated root
construct must always be independent of its context. Consequently, the XMLPipe
integration allows the integration of all presentation XML languages.

Moreover, the preprocessing framework requires a well defined way to author and
process mixed namespace documents, which does not require predefined relationships
between the document languages. The introduced concept of handled constructs en-
ables the authoring and processing of mixed namespace documents by individually
addressing their single namespace subtrees, because it enables the separation of a doc-
ument into autonomous information entities. No predefined relationships are necessary,
because each subtree is processed independently. The handled constructs classification
establishes the construct relationships that are not covered by the individual language
specifications. These relationships solely depend on the classification of the handled
constructs, and not on predefined associations. Therefore, the use of handled constructs
enables the processing and authoring of documents that combine a set of independently
developed languages, because it eliminates the requirement for predefined relationships.

CHAPTER 5. XMLPIPE INTEGRATION MODEL 90

The classification of the handled constructs into a predefined set of three cate-
gories should not be considered as a restriction of the XMLPipe integration model. In
contrast it represents a balanced trade-off between integration generality and power.
More fine grained construct relationships could enable more precise integration, but
they would cover a narrower integration spectrum. In contrast, more abstract or no
classification, such as in NRL, could allow a wider integration spectrum. However, it
would not provide the necessary foundation for the well defined processing of presenta-
tion documents. The proposed three categories, do not significantly constrain the used
languages, but they establish the necessary construct relationships for validating and
transforming presentation documents, as the subsequent chapters will illustrate.

Finally, the XMLPipe integration model is significantly more powerful than exist-
ing approaches. It adopts the two most prominent generic integration approaches and
enhances them by incorporating the presentation domain specific observations of han-
dled constructs. Specifically, the proposed document processing and authoring address
the individual document subtrees separately, in a similar manner to NRL and NVDL.
Moreover, the classification of the handled constructs provides well defined associations
between the individual constructs, in a similar manner to the explicit associations of
RDF. The XMLPipe integration model is the only approach that allows authoring and
processing of mixed namespace documents, in a way that is adequate for the Web,
because it is the only integration approach that fulfils the preprocessing framework
requirements.

5.5 Summary

This chapter introduced the XMLPipe integration model, which establishes the foun-
dation of XMLPipe. Specifically, it utilises the common characteristics of the majority
of presentation languages, in order to extend the NRL and NVDL concept of subtree
separation. The resulting integration enables the processing and authoring of mixed
namespace documents, according to the independently developed semantics of their
individual languages. The use of independently developed semantics is essential for
a generic preprocessing model, such as XMLPipe, that processes mixed namespace
documents that combine an open set of languages.

An integration model is necessary for processing mixed namespace documents, be-
cause it defines the necessary construct relationships, which are not covered by the
language specifications. Specifically, presentation language specifications define the
presentation processing of their individual constructs and of the construct relationships,
which is necessary for presenting a document. However, the processing relationships
in mixed namespace documents are not always well defined. Integration profiles can
define them, but they are not adequate for an open set of languages. NRL and NVDL
are prominent integration approaches that are adequate for an open set of languages,
but they provide generic integration and do not specify the necessary relationships for
presentation document processing.

The XMLPipe integration model introduces the necessary associations, by extrap-
olating three observations of the structure of single namespace presentation documents
to mixed namespace documents. Firstly, each presentation language has a set of han-
dled constructs. The processing of all handled constructs can be defined independently
of their context. Secondly, the processing of a handled construct rooted subtrees can
also be defined independently of their context. Thirdly, the handled constructs can

CHAPTER 5. XMLPIPE INTEGRATION MODEL 91

be classified into three categories. The classification of the root construct of a sub-
tree specifies the presentation relationship between the subtree and its context. The
proposed integration model extends these observations to define the set of valid mixed
namespace documents.

According to the definition of valid mixed namespace documents, document authors
can create mixed namespace documents, knowing only the syntax of the individual lan-
guages and the corresponding handled constructs information. The integration model
specific processing of mixed namespace documents depends on the nature of the pro-
cessing, and it differs between document validation and transformation. However, the
high level process remains the same, and it consists of separating the document into
its individual subtrees, processing them, according to their corresponding language
semantics, and combining the processing results.

The XMLPipe integration model fulfils the relevant preprocessing framework inte-
gration requirements. Consequently, it sets an adequate foundation for the validation
and transformation of presentation documents, in a way that is adequate for the Web.
However, the individual proposals of integration model specific processes will be post-
poned until Chapter 7. The following chapter will describe the XMLPipe adaptation
model, because it sets the necessary foundation for proposing the XMLPipe transfor-
mation model.

Chapter 6

XMLPipe adaptation model

An adaptation model defines the representation and processing of the adaptation re-
quirements. A well defined adaptation model is essential for investigating the process-
ing of presentation documents, because all transformation processing components and
their corresponding transformation semantics depend on the adaptation requirements,
as described in Section 4.4.

This chapter describes the XMLPipe adaptation model. The adaptation model dis-
cussion begins with the definition of the XMLPipe adaptation profiles, which define a
representation of adaptation requirements, in a similar manner to the CC/PP profiles.
Adaptation profile composition is necessary, because it enables the efficient transmis-
sion of the adaptation requirements, from separate adaptation requirement sources (e.g.
the browser, device and document user), as described in Section 4.3. Consequently, the
XMLPipe adaptation model provides a well defined method to compose independently
specified adaptation profiles. It also defines a method to choose the optimal transfor-
mation specification for a document subtree, over a set of alternatives. This method
provides the core adaptation model functionality, because it allows the well defined
adaptive transformation of document subtrees. The composition of adaptation profiles
and the optimal transformation selection require a well defined mechanism for querying
the adaptation requirements. The XMLPipe adaptation model introduces the concept
of the adaptation expressions, which are a declarative method to express the necessary
adaptation profile queries.

The next section describes the main advantages and disadvantages of CC/PP, which
is the most prominent existing representation of adaptation requirements. Subse-
quently, Section 6.2 will define the XMLPipe adaptation profiles and expressions, which
adopt the core CC/PP concepts. Finally, Sections 6.3 and 6.4 will describe the profile
composition process and optimal transformation selection processs, respectively.

6.1 Adaptation considerations

Section 2.4.4 introduced the Composite Capabilities/Preference Profiles (CC/PP) rec-
ommendation, which is the most prominent existing method for representing adapta-
tion requirements. The CC/PP representation is a two level hierarchy of RDF-based
attribute and value pairs. Each CC/PP attribute is uniquely identified by a corre-
sponding URI. The CC/PP recommendation does not include a typing mechanism,
but the CC/PP attribute data types can be defined by RDF Schemas, which, in turn,
use the XML Schema data types.

92

CHAPTER 6. XMLPIPE ADAPTATION MODEL 93

CC/PP provides an extensible representation of adaptation requirements. Specif-
ically, the URI qualified attributes allow an extensible representation, because they
ensure unique and context independent identification of all CC/PP attributes. These
two properties are essential for the unambiguous introduction of new attributes, be-
cause they eliminate the conflicts between independently defined CC/PP attributes.

Composite representations are beneficial and adaptation requirement queries are
necessary, as described in this chapter’s introduction. However, CC/PP complicates
the support of the necessary adaptation functionality. CC/PP allows profile compo-
sition, but it does not provide a well defined mechanism to resolve conflicting values.
Such a mechanism is essential for the composition of independently defined profiles.
Moreover, any RDF query language can be used for expressing queries to the RDF-
based CC/PP representation. An adaptation model that uses CC/PP queries must
incorporate support for a multitude of relevant technologies: RDF, RDF Schema, XML
Schema data types and one or more RDF query languages. The support of these tech-
nologies is not prohibitive, but it could be considered as unnecessarily complex for an
adaptation model.

6.2 Adaptation profiles and expressions

This section will define the XMLPipe representation of adaptation requirements and
adaptation requirement queries. The introduction of their individual concepts will
follow a rather non-intuitive sequence, in order to avoid forward references, within
their definitions.

The XMLPipe adaptation model uses a simpler representation and data typing
method than CC/PP, in order to avoid the inherent complexity of supporting all the
relevant RDF technologies, which are necessary for enabling CC/PP profile queries.
However, it will adopt the CC/PP concept of URI identified adaptation attributes,
because they allow an extensible representation. The remainder of this thesis will
use the term adaptation terms, as opposed to the CC/PP term attributes, in order to
disambiguate between references to XML attributes and adaptation attributes.

Specifically, an XMLPipe adaptation term is a combination of a URI and a local
name. Terms will represent the set of all adaptation terms. A pair of an adapta-
tion term and a data value expresses an adaptation requirement, as a user/browser
capability or a user preference. For instance, consider that the uri1:supported and
uri2:noImages adaptation terms, where the former corresponds to the set of technolo-
gies that a browser supports and the latter corresponds to the preferred use of images
within a presentation. The pair

(uri1:supported, {http://www.w3.org/1999/xhtml})

expresses the capability of a browser to render XHTML documents. The pair

(uri2:noImages, true)

expresses the preference for a presentation that does not contain images.

Adaptation terms set (Terms): The set of all adaptation terms Terms is the
set of all pairs of a URI and an XML local name:

Terms = URI × S

where URI is the set of all URIs and S is the set of all XML local names.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 94

Typed adaptation terms, where each term is associated to its corresponding set of
acceptable values, are beneficial, because they enable the validation of term–value pairs
and assist the evaluation of adaptation requirement queries. The XMLPipe adaptation
model associates each adaptation term with a member of a predefined collection of
data types. Each data type specifies a term’s acceptable set of values, a set of valid
operations (such as multiplication of numerals) and a set of conversion functions (such
as converting a numeral to a string). TermTypes will represent the set of all XMLPipe
adaptation term types. Each type Type ∈ TermTypes will represent a set that contains
all valid data values. Moreover, the Numeric and Boolean symbols will correspond to
the numeric and boolean data types. The separate definitions of Numeric and Boolean
are necessary, because they will be used in the subsequent proposal of the optimal
transformation selection process.

Adaption term types (TermTypes): The set of all adaptation term types
TermTypes contains all adaptation term data types

Numeric data type (Numeric): The numeric type Numeric ∈ TermTypes is the
XMLPipe numeric data type, and its acceptable values are real numbers:
if v ∈ Numeric then v ∈ R

Boolean data type (Boolean): The boolean type Boolean ∈ TermTypes is the
XMLPipe boolean data type, and it contains the values true and false:
Boolean = {true, false}

Adaptation requirement queries are necessary for the profile composition and op-
timal transformation selection, as Sections 6.3 and 6.4 will illustrate. The term adap-
tation expression will refer to the XMLPipe declarative mechanism for querying the
values of adaptation terms. Specifically, an adaptation expression is a function that

maps a tuple of values to a result value. The set FType′

{Type1,...Typen}
will represent the set

of all adaptation expressions that map an n-tuple of values, which belong to an n-tuple
of term types Type1, . . . Typen, to a value of type Type ′. The convenience set F

Type2

(Type1)n

will represent the subset of expressions that map n values of a type Type1 to a value
of type Type2, and it will be extensively used in the following sections. Finally, the set
F will represent all XMLPipe adaptation expressions.

For instance, if f(x1, x2) = x1 + x2 and f ′(x1) = (x1 == 2), then f ∈ FNumeric
(Numeric)2

and f ′ ∈ FBoolean
(Numeric)1

. Both both f and f ′ belong to F .

Adaptation expressions from a value tuple to a value (FType′

{Type1,...Typen}
): The

set FType′

{Type1,...Typen}
contains all XMLPipe expressions of the form

f : Type1 × Type2 × · · · × Typen → Type ′

Adaptation expressions from a single type value tuple to a value
(F

Type2

(Type1)n): F
Type2

(Type1)n = F
Type2

{Type1, . . . ,Type1
︸ ︷︷ ︸

n

}

CHAPTER 6. XMLPIPE ADAPTATION MODEL 95

Term Term semantics

Data type

Default value

Conflict resolution

expression

1

1

0..1

TermSemantics

locateTermSem ()

Figure 6.1: Adaptation term semantics

All adaptation expressions (F): The set F includes all XMLPipe expressions:

F =
⋃

∀n∈N,Type′,∀Type1...Typen

FType′

{Type1,...,Typen}

where N is the set of natural numbers {1, 2, . . . }

An extensible representation of adaptation requirements, which does not rely on
a fixed set of adaptation terms, necessitates well defined processing semantics, for
each adaptation term. The above term type, term value and adaptation expres-
sion definitions allow the definition of the adaptation term semantics. Specifically,
TermSemantics will represent the set of all adaptation term semantics. Each member
of TermSemantics is a triplet of a term data type, a valid default value and conflict
resolution expression. As described above, a data type is necessary for the validation
of term–value pairs and the evaluation of adaptation requirement queries. Addition-
ally, a default value is beneficial for an extensible representation, because it ensures
the well defined evaluation of adaptation expressions, when the value of a referenced
term is not specified. Finally, the conflict resolution expression is a binary adaptation
expression (which uses two input values) that assists the resolution of conflicting value
specifications, as Section 6.3 will illustrate.

Term semantics (TermSemantics): The set of all term semantics TermSemantics
contains all valid triplets of a term type, a default value and a conflict resolution
expression:

TermSemantics =
⋃

∀Type∈TermTypes

(

{Type} × Type ×
(

{ε} ∪ FType

(Type)2

))

A well defined method to locate a term’s semantics, is also essential for an ex-
tensible representation, because it ensures that a preprocessing model can retrieve all
necessary adaptation term information. Figure 6.1 illustrates the relationship between
a term and its semantics. Function locateTermSem is a part of the binding model
interface (described in Chapter 9), and it maps a term to its corresponding seman-
tics. For instance, consider that τ corresponds to the uri1:supported term, and that

CHAPTER 6. XMLPIPE ADAPTATION MODEL 96

locateTermSem(τ) = ts , where ts = (SetOfStrings , {}, x1 ∪ x2). The semantics of τ
specify that its data type is a set of strings, its default value is an empty set of strings
and its default conflict resolution mechanism is to combine the conflicting sets of strings.

The convenience functions termType(), termDefault () and termResolve() map an
adaptation term to its data type, default value and resolution expression, respectively.
These functions are necessary for a more concise method to refer to the individual
components of a term’s semantics.

Term semantics location function (locateTermSem): The term semantics loca-
tion function locateTermSem : Terms → TermSemantics maps an adaptation term
to its corresponding semantics:
∀τ ∈ Terms , locateTermSem(τ) returns the semantics associated with τ , according
to the XMLPipe binding model.

Term semantics convenience functions (termType,termDefault ,termResolve):
For every term τ ∈ Terms , where locateTermSem(τ) = (Type , v, f), the utility
functions are defined as follows

termType : Terms → TermTypes , termType(τ) = Type

termDefault : Terms →
⋃

∀Type∈TermTypes

(Type), termDefault(τ) = v

termResolve : Terms → F , termResolve(τ) = f

The association between a term and its semantics, enables the definition of an
adaptation statement, which expresses an adaptation requirement. Specifically, an
adaptation statement is a pair of an adaptation term and a valid data value, according to
its semantics. Statements will represent the set of all XMLPipe adaptation statements.
Moreover, an adaptation profile is a set of adaptation statements, and it can express
the set of adaptation requirements that influence the processing of an XML document.
Profiles will represent the set of all adaptation profiles.

Adaptation statements (Statements): The set of all adaptation statements
Statements includes all pairs of a term and a value of its corresponding type.

Statements =
⋃

∀τ∈Terms

({τ} × termType(τ))

Adaptation profiles (Profiles): The set of all adaptation profiles Profiles includes
all sets of adaptation statements: Profiles = ℘(Statements)

For example, consider the two example profiles in Listings 6.1 and 6.2, which de-
scribe an XHTML browser running on a desktop computer and a WML mobile, respec-
tively. Each profile (profile) consists of a set of statements (statm) that express the
relevant adaptation factor requirements. Each statement specifies the namespace URI
and local name of an adaptation term (ns, name), and it includes its corresponding
value. For instance, line 2 of Listing 6.1 specifies that the target device is a “desktop”.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 97

1 <p r o f i l e name=”desktop1 ”>
2 <statm ns=”xmlPipeUri” name=”deviceType ”>desktop</statm>

3 <statm ns=”xmlPipeUri” name=” supported ”>
4 <item>h t tp : //www.w3 . org /1999/xhtml</item>

5 <item>h t tp : //www.w3 . org /2001/XMLSchema−i n s t an c e</item>

6 <item>xmlPipeUri/ P r o f i l e /Mime/ image/ jpeg</item>

7 <item>xmlPipeUri/ P r o f i l e /Mime/ v ideo /mpeg</item>

8 </statm>

9 </p r o f i l e >

Listing 6.1: Adaptation profile for a desktop device

1 <p r o f i l e name=”mobile1 ”>
2 <statm ns=”xmlPipeUri” name=”deviceType ”>mobile</statm>

3 <statm ns=”xmlPipeUri” name=” supported ”>
4 <item>h t tp : //www. wapforum . org /DTD/wml 1 . 1 . xml</item>

5 <item>xmlPipeUri/ P r o f i l e /Mime/ image/wbmp</item>

6 </statm>

7 <statm ns=”xmlPipeUri” name=”maxImageX”>96</statm>

8 <statm ns=”xmlPipeUri” name=”maxImageY”>100</statm>

9 </p r o f i l e >

Listing 6.2: Adaptation profile for a mobile device

In a similar manner, line 2 of Listing 6.2 specifies that the corresponding device is a
“mobile”. Lines 3–8 of Listing 6.1 specify that the target browser can render XHTML,
JPEG and MPEG content. The aforementioned semantics location functions allow
the location of all necessary term semantics, without additional external input. For
instance it is sufficient to use the namespace and local name of the maxImageX and
supported terms, in order to retrieve their semantics:

termType(xmlPipeURI, maxImageX) = Numeric
termType(xmlPipeURI, supported) = SetOfStrings

6.3 Profile composition

The efficient transmission of the user preferences and browser/device capabilities ne-
cessitates a well defined mechanism to combine independently developed adaptation
profiles, as described in Section 4.3. The concepts of adaptation terms and adaptation
expressions, which have been established in the previous section, can form the basis
of such a mechanism. This section will describe the XMLPipe profile composer that is
responsible for combining multiple adaptation profiles and resolving their conflicts.

6.3.1 Profile composition observations

The mobile adaptation profile (Listing 6.2) can be partitioned into the profiles illus-
trated in Listings 6.3, 6.4 and 6.5. The profile in Listing 6.3 can be provided by the
mobile manufacturer, and it represents the static capabilities of the described mobile
device: the device type, Wireless Markup Language (WML) support and the maximum
rendered image size. The vendor of a Wireless Bitmap (WBMP) rendering upgrade,

CHAPTER 6. XMLPIPE ADAPTATION MODEL 98

1 <p r o f i l e name=”mobi leDefau lt ”>
2 <statm ns=”xmlPipeUri” name=”deviceType ”>mobile</statm>

3 <statm ns=”xmlPipeUri” name=” supported ”>
4 <item>h t tp : //www. wapforum . org /DTD/wml 1 . 1 . xml</item>

5 </statm>

6 <statm ns=”xmlPipeUri” name=”maxImageX”>150</statm>

7 <statm ns=”xmlPipeUri” name=”maxImageY”>150</statm>

8 </p r o f i l e >

Listing 6.3: Default mobile profile

1 <p r o f i l e name=”mobileCustom ”>
2 <statm ns=”xmlPipeUri” name=” supported ”>
3 <item>xmlPipeUri/ P r o f i l e /Mime/ image/wbmp</item>

4 </statm>

5 </p r o f i l e >

Listing 6.4: Software upgrade profile

1 <p r o f i l e name=”mobileUser ”>
2 <statm ns=”xmlPipeUri” name=”maxImageX”>96</statm>

3 <statm ns=”xmlPipeUri” name=”maxImageY”>100</statm>

4 </p r o f i l e >

Listing 6.5: User preferences profile

which adds WBMP rendering capability to a mobile browser, can provide the profile
illustrated in Listing 6.4. Finally, a user that wishes to override the default image size
capabilities can provide the profile illustrated in Listing 6.5.1

The composition of the three adaptation profiles must result to the initial mobile
profile (Listing 6.2). Specifically, the composition process must resolve the conflict be-
tween the supported statements, in the first two listings, and between the maxImageX

and maxImageY statements, in the first and third listings. The WBMP support state-
ment in Listing 6.4 introduces a software upgrade, and the resulting profile must specify
support for both WML and WBMP. Consequently, the conflict resolution mechanism
must combine the values of the two supported statements. In contrast, the user defined
image dimensions are meant to override the default device statements. Consequently,
the conflict resolution mechanism must favour the statements of Listing 6.5.

The resolution of conflicting adaptation statements can depend on several factors.
Specifically, the resolution of conflicting image dimension specifications is entity depen-
dent, because the document user statements override the device defaults. The conflict
resolution of the supported statements is term dependent, because the term supported

expresses a cumulative property: the introduction of new technologies extends the ex-
isting set of supported technologies. Statement dependent conflict resolution can be
beneficial for overriding existing entity dependent or term dependent resolution mech-
anisms. For instance, a document user who wishes to retrieve an image-free document
must be able to introduce a supported statement that overrides the supported term

1The document user can explicitly provide such adaptation statements, but no exposure to the adap-
tation profile syntax is necessary. For instance, a graphical user interface to document processing, such
as a browser, can automatically derive the user preferences profile from the its internal configuration.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 99

conflict resolution, in order to remove the WBMP support statement. Consequently,
the illustrated profile partitioning demonstrated that the resolution of conflicting adap-
tation statements can be entity dependent, term dependent or statement dependent.

A generic conflict resolution mechanism must not depend on predefined sets of ei-
ther adaptation requirement partitions or requirement specifying entities. Specifically,
the optimal partitioning of a profile is a design decision that can be specific to each case
of adaptation requirements specification. For instance, the partitioning of a particular
set of adaptation requirements might depend how they are distributed, if it aims to
optimise their transmission efficiency. Additionally, the preprocessing of a document
can be influenced by a fixed set of external entities: the document user, the browser
and the device. However, the specification of their adaptation requirements may in-
volve additional entities. For instance, the browser capabilities might be specified by a
combination of a default profile and several software upgrade profiles.

A generic conflict resolution mechanism can avoid such predefined sets and methods
by using binary adaptation expressions and a predefined ordering guideline. Specifi-
cally, within the context of a well defined ordering guideline, binary adaptation expres-
sions, between a preceding and a conflicting value, can resolve the majority of statement
conflicts. For instance, if default statements occur before custom statements, a binary
expression that always returns the conflicting value can resolve the maxIntegerX con-
flicts. Additionally, an order independent union, between the preceding and conflicting
values, can resolve the conflicts between the supported statements. The sufficiency of
such binary expressions cannot be proven, because of the unlimited variety of methods
to partition adaptation requirements and resolve conflicting statements. Nevertheless,
they cover several conflict resolution scenarios and they are adequate for a generic con-
flict resolution mechanism, because they do not rely on fixed requirement partitioning
methods.

6.3.2 XMLPipe composite profiles

A profile composition mechanism that is based on an ordering guideline requires an
ordered set of adaptation statements. However, the introduced adaptation profiles
alone are not adequate, because they are sets of adaptation statements. The XMLPipe
conflict resolution will use the concept of composite profiles. A composite profile is a
sequence of composite statements and of external references to other composite profiles.
A composite statement is similar to an adaptation statement, but it can also include
a conflict resolution expression. CProfiles will represent the set of composite profiles,
and CStatements will represent the set of composite adaptation statements.

A composite profile provides the necessary foundation for profile composition, be-
cause it allows arbitrary partitioning of the adaptation requirements, provides ordered
adaptation requirements and includes statement-specific expressions for conflict reso-
lution. Specifically, the preprocessing initiation entity can use the composite profile
external references to arbitrarily partition a composite profile, into a sequence of sub-
profiles. Subsequently, the preprocessing initiation entity must only transmit a subset
of the sub-profiles. The preprocessing implementation can choose the most efficient
method to retrieve the remainder of the referenced sub-profiles. Moreover, both inline
and referenced composite statements are ordered, because a composite profile is a se-
quence of statements and external references. Finally, each composite statement can
contain an optional statement specific expression for conflict resolution.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 100

Composite statements (CStatements): CStatements is the set of all composite
statements and it contains all pairs of an adaptation statement and an optional
binary adaptation expression, which maps two values of the corresponding term
type to a value of the same type.

CStatements =
⋃

∀τ∈Terms

(

({τ} × termType (τ))×
(

F
termType(τ)

(termType(τ))2
∪ {ε}

))

Composite profiles (CProfiles): The set of all composite profiles CProfiles con-
tains all composite statement sequences.

CProfiles =
⋃

∀n∈N

(CStatements)n

6.3.3 XMLPipe profile composition

The XMLPipe profile composer component is based on a predefined ordering guide-
line and three prioritised levels for the specification of conflict resolution expressions:
a default resolution expression, adaptation term specific expressions and statement
specific expressions, in ascending priority order. The profile composer maps the com-
posite profile, which is provided by the preprocessing initiation entity, to a conflict-free
adaptation profile, that can be used by other XMLPipe components.

An ordering guideline, which is adequate for an extensible adaptation model, must
not depend on predefined categories of adaptation terms. The XMLPipe ordering
guideline avoids such dependencies by using the abstract concept of document pro-
cessing relevance. Specifically, the composite statements must be ordered in ascending
relevance to the document processing. For instance, consider a set of adaptation re-
quirements, where both browser and device capabilities consist of their default and
custom portions. The browser can be considered as more relevant to the document
processing than the device, and custom adaptation requirements are more relevant
than default ones:

default device statements→ custom device statements → default browser
statements→ custom browser statements → user preferences

The combination of such an ordering guideline with three prioritised levels of con-
flict resolution enable the resolution of most conflicting statements. Specifically, the
default XMLPipe conflict resolution always favours a newly introduced value, because
it must be more relevant to the document processing, according to the above ordering
guideline. A term conflict resolution expression, which is specified in a term’s seman-
tics, overrides the default conflict resolution, in order to allow term-specific conflict
resolution. Statement specific resolution expressions have the highest priority, in or-
der to allow the preprocessing initiation entity to override both the default and the
term-specific resolution mechanisms.

The XMLPipe profile composer implements the function ccompose , which uses the
three conflict resolution levels to convert a composite profile into an adaptation profile.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 101

ccompose iterates through the sequence of ordered composite statements and adds them
to the output adaptation profile. If a source composite statement does not conflict with
a previous output adaptation statement, ccompose adds it to the resulting profile. If
it conflicts with a previous statement and it includes a conflict resolution expression,
ccompose evaluates the expression over the two conflicting values, and uses its result for
the output profile. Otherwise, ccompose uses the term specific resolution expression, if
it exists. If there is no term specific resolution expression, ccompose applies the default
conflict resolution and substitutes the old statement, in the output adaptation profile,
with the conflicting composite statement, in the source composite profile.

Profile composition (ccompose): The profile composition function ccompose :
CProfiles → Profiles , maps a composite profile cpr ∈ CProfiles to its corresponding
adaptation profile pr :

function ccompose(cpr)→ pr
Let cpr = (((τ1, v1), f1) , ((τ2, v2), f2) , . . . , ((τn, vn), fn))
Let pr = ∅
for (i = 1 . . . n)

if 6 ∃(τ, v) ∈ pr where τ = τi then
pr = pr ∪ (τi, vi)

else
if fi 6= ε then

pr = (pr − (τ, v)) ∪ {(τ, fi(v, vi))}
else if termResolve(τ) 6= ε then

f = termResolve(τ)
pr = (pr − (τ, v)) ∪ {(τ, f(v, vi))}

else
pr = (pr − (τ, v)) ∪ {(τ, vi)}

end if
end if

end for
end function

6.3.4 Profile composition example

Listing 6.6(a) illustrates a composite profile example that uses two external references,
in order to allow more efficient transmission of the adaptation requirements. Specifi-
cally, it includes two user preference statements and two external references to a default
and a custom mobile profile, illustrated in Listings 6.3 and 6.4, respectively. A prepro-
cessing initiation entity, such as a mobile user over a low bandwidth mobile network,
must only transmit the document in Listing 6.6(a) to the preprocessing implementa-
tion. The preprocessing implementation, which may run on a mobile proxy within a
faster network, can subsequently import the external profiles.

The profile composition process must resolve all statement conflicts and produce the
initial mobile adaptation profile, which has been illustrated in 6.2 (page 97). Firstly,
the profile composition process combines all sub-profiles into a composite profile, which

CHAPTER 6. XMLPIPE ADAPTATION MODEL 102

1 <p r o f i l e name=”mobileUser ”>
2 <i n c lude
3 r e f=”mobileDefaultURI ”/>
4 <i n c lude
5 r e f=”mobileCustomURI”/>
6 <statm . . .
7 name=”maxImageX”>96</statm>

8 <statm . . .
9 name=”maxImageY”>100</statm>

10 </p r o f i l e >

(a)

1 <term ns=” . . . ”
2 name=” supported ”
3 type=” SetOfS t r ings ”>
4 <default/>
5 <r e s o l u t i on >

6 <union>

7 <prevTermVal/>
8 <termVal/>
9 </union>

10 </re so lv e >

11 </term>

(c)

(b)

1 <p r o f i l e name=”mobileUser ”>
2 <statm . . . name=”deviceType ”>
3 mobile
4 </statm>

5 <statm . . . name=” supported ”>
6 <item>WML URI</item>

7 </statm>

8 <statm . . .
9 name=”maxImageX”>150</statm>

10 <statm . . .
11 name=”maxImageY”>150</statm>

12 <statm . . . name=” supported ”>
13 <item>WBMP URI</item>

14 </statm>

15 <statm ns=”xmlPipeUri”
16 name=”maxImageX”>96</statm>

17 <statm ns=”xmlPipeUri”
18 name=”maxImageY”>100</statm>

19 </p r o f i l e >

(d)

1 <statm . . . name=” supported ”>
2 <item>WML URI</item>

3 <r e so lv e ><expr>
4 <termVal/>
5 </expr></re so lv e >

6 </statm>

Listing 6.6: Profile composition example

is illustrated in 6.6(b). Subsequently, ccompose resolves all statement conflicts. Specif-
ically, it initiates the profile composition by copying the statements in lines 1–11, of
Listing 6.6(b), because they do not introduce any conflicts. The supported statement
at line 12 conflicts with the adaptation statement at line 5. Listing 6.6(c) illustrates
a simplified representation of the supported term semantics. The semantics specify a
term’s type, default value (empty set) and default conflict resolution expression. The
latter returns the union of the two conflicting values: f(fvalue1, fvalue2) = v1 ∪ v2.
ccompose uses the term conflict resolution expression to resolve the introduced con-
flict. Specifically, it updates the resulting profile’s supported statement to specify
both WML and WBMP support. The image dimension statements in lines 15–18
conflict with the ones in lines 8–11. We assume that the corresponding terms do not
define an explicit conflict resolution expression. Therefore, ccompose applies the default
XMLPipe conflict resolution, and it favours the latest occurring values. The resulting
adaptation profile is equivalent to the profile in Listing 6.2.

Statement conflict resolution expressions can override the default behaviour. For
instance, if the statement of Listing 6.6(d) was appended to the initial composite profile,
the resulting profile would differ from Listing 6.2. The introduced statement includes
the conflict resolution expression f ′(fvalue1, fvalue2) = v2, which is the same as the
default XMLPipe conflict resolution that always favours the most recent value. The
statement expression would override the supported term resolution expression, and
the resulting profile would only declare WML support, as opposed to both WML and

CHAPTER 6. XMLPIPE ADAPTATION MODEL 103

WBMP. Such statement specific expressions ensure that the preprocessing initiation
entity can override the default conflict resolution mechanism when necessary.

6.4 Binding adaptation specification

An adaptation model must define an adequate method for choosing the optimal alter-
native over a set of independently developed transformations. Specifically, the optimal
interpretation of a document can differ for separate sets of adaptation requirements.
Consequently, the transformation semantics binding can depend on the adaptation re-
quirements, as it has been illustrated in Section 4.4. For each language, its alternative
transformation specifications can be developed by several independent semantics au-
thors. Therefore, the adaptation model must define an adequate set of adaptation
requirement queries, which can be associated with each transformation specification,
and a corresponding evaluation method that allows the selection of the optimal trans-
formation specification, for an adaptation profile.

The XMLPipe transformation selection mechanism is based on two adaptation mea-
sures: the adequacy measure and the applicability measure. The adequacy measure
evaluation uses a set of adaptation expressions that are sufficiently constrained to pro-
vide a comparable adequacy measure, between independently developed transformation
specifications. In contrast, the applicability measure evaluation uses a single arbitrary
complex expression, which enables semantics authors to precisely specify whether a
transformation applies to an adaptation profile. Each transformation is associated
with an applicability expression and a set of adequacy expressions. Their evaluation
provides a comparable measure, which allows the selection of the optimal transforma-
tion specification, between a set of independently defined alternatives. The subsequent
sections 6.4.1, 6.4.2 and 6.4.3 will describe the details of the adequacy measure, the
applicability measure and the combined adaptation measure, respectively.

6.4.1 The adequacy measure

The adequacy measure evaluation uses a set of adequacy expressions, which are pur-
posely constrained, in order to correspond to a single adaptation requirement. Specifi-
cally, an adequacy expression is an adaptation expression that can only use the value of
a single adaptation term. Therefore, the evaluation of an adequacy expression can only
represent the fulfilment of a single adaptation requirement, because each adaptation
term corresponds to a distinct adaptation requirement. In order to ensure that ade-
quacy expressions provide comparable results, their return values are constrained to be
either numeric, within the [0, 1] range, or boolean. A result of 1 or true represents full
satisfaction of the corresponding adaptation requirement. In contrast a result of 0 or
false represents no requirement satisfaction. Intermediate numeric values represent
partial satisfaction. The set EAd will represent the set of all adequacy expressions.
Each member of EAd is a pair of a term and a unary expression that evaluates to
either a Numeric or a Boolean value.

Adequacy expressions (EAd): The set EAd of all adequacy expressions contains
all pairs of terms and unary expressions that evaluate to a Numeric or a Boolean
value.

EAd =
⋃

∀τ

((

{τ} × FNumeric
(termType(τ))1

)

∪
(

{τ} × FBoolean
(termType(τ))1

))

CHAPTER 6. XMLPIPE ADAPTATION MODEL 104

If each transformation specification is associated with a set of adequacy expres-
sions, a weighted sum of their evaluation could provide an absolute measure of the
transformation’s adequacy, for an adaptation profile. Specifically, the transformation’s
adequacy can relate to multiple adaptation requirements. The evaluation of each ad-
equacy expression provides a comparable measure of the transformation’s adequacy,
according to a distinct adaptation requirement. If the relative importance of the indi-
vidual adaptation terms was well defined, such a weighted sum would provide a measure
of a transformation’s adequacy for an adaptation profile.

However, the relative importance of the adaptation terms cannot be well defined,
within a generic and extensible processing model. Firstly, predefined importance re-
lationships are not adequate, because adaptation expressions can use an open set of
adaptation terms. Moreover, the relative importance of terms can vary according to
the individual adaptation scenarios. For instance, consider a transformation specifi-
cation T , which is only adequate for WML mobile browsers that run on 100 or more
pixels wide displays. An adequacy expression that requires WML support can be con-
sidered as equally important to an expression that requires a sufficiently wide display,
because the presentation of T output requires both. In contrast, the WML support
expression is more important for an alternative transformation T ′ that optimises its
output for displays that are wider than 100 pixels, but it is also adequate for smaller
displays. Therefore, a weighted sum of the two adequacy expressions is not sufficient
for choosing between T and T ′, since the relative importance of the two adaptation
requirements is not well defined. Consequently, the measure evaluation cannot use a
weighted sum of the adequacy expression evaluations.

The XMLPipe adequacy measure evaluation avoids the ambiguous weighted sums,
and it favours extensibility and generality by considering all adequacy expressions as
equally important. Specifically, such an approach cannot cover all adequacy expression
cases, but, since their relative importance cannot be well defined, a generic approach
can only assume that they are equally important. Therefore, if a transformation is
associated with a set of adequacy expressions, its adequacy measure for an adaptation
profile can be obtained by the sum of their evaluation. BA will represent all sets of
adequacy expressions. The adequacy function will map a pair of a profile and a set of
adequacy expressions to the corresponding adequacy measure. In addition to summing
the evaluation results of all adequacy expressions, adequacy is also responsible for
normalising their results to the predefined adequacy expression range. Moreover, when
an adaptation expression refers the value of a term that is not specified in an adaptation
profile, adequacy uses its corresponding default value.

6.4.2 The applicability measure

The applicability measure and the applicability expressions are necessary, because ad-
equacy expressions are too constrained to sufficiently express the applicability of a
transformation specification, for an adaptation profile. Specifically, the adequacy ex-
pressions have been restricted to only access the value of a single term, in order to
provide comparable adequacy measures, which are essential for independently devel-
oped transformation specifications. However, more complex adaptation expressions
are necessary for specifying the applicability of transformation specification, because it
might depend on an arbitrary combination of multiple adaptation requirements.

For instance, consider two transformation specifications T and T ′. T produces

CHAPTER 6. XMLPIPE ADAPTATION MODEL 105

Set of adequacy expression sets (BA): BA is the set of all binding expression
sets: BA = ℘(EAd)

Adequacy measure function (adequacy): The adequacy measure function
adequacy : Profiles × BA → Numeric maps a profile and a set of adequacy ex-
pressions to the corresponding adequacy measure.

adequacy(pr , ba) =
∑

∀ead∈ba

mt(pr , ead)

where the function mt : Profiles × EAd → Numeric is defined as:

mt(pr , (τ, f)) =

1 ,m ∈ (1,∞) ∪ {true}
m , 0 ≤ m ≤ 1
0 ,m ∈ (−∞, 0) ∪ {false}

, where

m =

{
f(v) ,∃(τ, v) ∈ pr
f(termDefault(τ)) , 6 ∃(τ, v) ∈ pr

WML documents, and T ′ produces a combination of WML mark-up and WBMP im-
ages. ba and ba′ will represent their corresponding sets of adequacy expressions.

ba = {(supported, WMLURI ∈ v)}
ba′ = {(supported, WMLURI ∈ v), (supported, WBMPURI ∈ v)}

Their common adequacy expression evaluates to true for adaptation profiles that spec-
ify WML support. The second adequacy expression of ba′ evaluates to true only for
adaptation profiles that specifie WBMP support. Additionally, consider the adapta-
tion profiles pr1, pr2 and pr3 that specify WML support, WML/WBMP support and
neither WML nor WBMP support, respectively.

Within the context of profiles pr 2 and pr 3, ba and ba′ are sufficient for evalu-
ating the applicability of T and T ′. Specifically, according to profile pr 2, both T ′

and T are applicable, because it specifies support for both WML and WBMP. The
corresponding adequacy measures return positive values that reflect this observation:
adequacy(pr 2, ba

′) = 2, adequacy(pr 2, ba) = 1. In a similar manner, neither T nor T ′

apply to pr3, because it does not support the required WML rendering. The adequacy
measures also reflect this observation: adequacy(pr 3, ba

′) = adequacy(pr 3, ba) = 0.
However, an adequacy measure does not always provide an applicability measure.

Specifically, T ′ is not adequate for pr1, because pr 1 does not state support for WBMP.
However, the adequacy measures for both T and T ′ are positive: adequacy(pr 1, ba

′) =
adequacy(pr 1, ba) = 1. No combination of adequacy expressions can express the appli-
cability of T ′, because it requires WML AND WBMP support. However, the adequacy
function sums the results of the individual expressions, and it corresponds to a binary
OR of the individual expressions. Therefore, separate applicability expressions are
necessary.

The XMLPipe applicability expressions can be arbitrarily complex and refer to
multiple terms, in order to precisely express the applicability of a transformation. Ap-
plicability expressions do not have to be as constrained as the adequacy expressions,
because their evaluation does not have to produce a comparable measure. Nevertheless,

CHAPTER 6. XMLPIPE ADAPTATION MODEL 106

the range of their evaluation result is constrained, because it must provide an unam-
biguous applicability measure. EAp will represent the set of all XMLPipe applicability
expressions. Each EAp member is an adaptation expression over a tuple of term values,
which can result to either a Numeric or a Boolean value. For instance, the applicability
expression of T ′ must require WML and WBMP support:

eap = {(supported, supported), WMLURI ∈ v1 AND WBMPURI ∈ v2}
The applicability function maps a pair of an applicability expression and an adaptation
profile to their corresponding applicability measure.

Applicability expressions (EAp): The set EAp contains all applicability ex-
pressions. Each EAp member is a pair of an n-tuple of terms and of an adaptation
expression, which has a corresponding n-tuple of arguments. The expression must
evaluate to either a Numeric or a Boolean value.

EAp =
⋃

∀n∈N

∀Type∈{Numeric,Boolean}
⋃

∀τ1,...τn∈Terms

(

{(τ1, . . . , τn)} × FType

{termType(τ1),...,termType(τn)}

)

Applicability measure function expression (applicability): The applicability
measure function applicability : Profiles × EAp → Numeric maps a pair of a profile
and an applicability expression to the corresponding applicability measure:

applicability(pr , ((τ1, . . . τn), f)) =

1 , γ ∈ [1,∞) ∪ {true}
γ , 0 ≤ γ ≤ 1
0 , γ ∈ (−∞,−1] ∪ {false}

where γ = f(v1, . . . vn) and ∀i ∈ [1, n]

vi =

{
v ,∃(τi, v) ∈ pr
v′ , 6 ∃(τi, v) ∈ pr , termDefault(τi) == v′

6.4.3 The adaptation measure

The XMLPipe adaptation measure combines the aforementioned applicability and ad-
equacy expressions to allow the selection of the optimal transformation, over a set of
alternatives, for an adaptation profile. Specifically, B is the set of all binding adapta-
tion specifications. Each member of B consists of an optional applicability expression
and a set of adequacy expressions. If each transformation is associated with a binding
adaptation specification, the adaptation model can choose the optimal transformation
specification, over a set of independently defined alternatives.

The adaptation measure evaluator is the adaptation model component that en-
ables the selection of the optimal transformation specifications. It maps a pair of a
binding adaptation specification and an adaptation profile to the corresponding adap-
tation measure. The adaptation measure evaluator implements the measure function,
which combines the adequacy and applicability measures, returned by the adequacy and
applicability functions, respectively. Specifically, consider a binding adaptation spec-
ification B = (eap, ba). If B contains an applicability expression (eap 6= ε), measure
returns the product of the applicability and adequacy measures: measure(pr , B) =

CHAPTER 6. XMLPIPE ADAPTATION MODEL 107

applicability(pr , eap)×adequacy(pr , BAdset). Such a product is an adequate measure,
because it equals the comparable adequacy measure, if a transformation is applicable,
and it equals zero, if a transformation is not applicable. Moreover, it results to a
reduced adequacy measure, when a transformation is partially applicable. If there is
no applicability expression, XMLPipe uses the most common applicability expression,
which is a logical AND of all adequacy expressions. In such a case, measure is equiva-
lent to adequacy , if all adequacy expressions evaluate to non-zero values, and it equals
zero, otherwise.

Binding adaptation specification (B): The set of all binding adaptation spec-
ifications B consists of pairs of an optional applicability expression and a set of
adequacy expressions.

B = ({ε} ∪ EAp)× BA

Adaptation measure function (measure): The adaptation measure function
measure : Profiles × B → Numeric provides the absolute adaptation measure that
corresponds to a binding specification, according to an adaptation profile.

measure(pr , (eap, ba)) =

0 , if eap = ε, ∃ead ∈ ba so that
mt(pr , ead) = 0

ad , if eap = ε, and
∀ead ∈ ba,mt(pr , ead) > 0

ap · ad , otherwise

where ad = adequacy(pr , ead), and ap = applicability (pr , eap), and mt is the func-
tion defined in the adequacy measure function definition, in page 105.

Listing 6.7 contains three adaptation specifications that enable the illustration of
the adaptation measure usage and the adaptation measure evaluator processing. Con-
sider three independently developed transformations T1, T2 and T3. T1 and T2 output
XHTML and WML markup, respectively. T3 outputs WML markup that may ref-
erence WBMP images, which are optimised for 100 pixel wide displays. B1, B2 and
B3 will represent their corresponding binding adaptation specifications, and they are
illustrated in Listings (a), (b) and (c), respectively. Specifically, B1 contains a single
adequacy expression, which declares the adequacy of T1 for XHTML browsers. B1 does
not require an applicability expression, because it can be inferred from the adequacy
expression: T1 is only applicable to XHTML supporting profiles. In a similar man-
ner, B2 also includes a single adequacy expression, which declares the adequacy and
applicability of T2 for WML browsers.

In contrast, T3 requires an an explicit applicability expression (lines 2-9) and a
set of three adequacy expressions (lines 10-25). The first two adequacy expressions
declare its adequacy for browsers that support WML and WBMP. The third adequacy
expression declares the adequacy of T3 for 100 pixel wide displays. Specifically, it
evaluates to 1 for a 100 pixels display, and it tends to 0 for narrower or wider displays:

1 −
∣
∣
∣
maxImageX−100

100

∣
∣
∣. A display width of 100 pixels is beneficial, but not necessary.

Consequently, B3 contains an explicit applicability expression that only requires WML
and WBMP support.

The proposed adaptation measure enables the straightforward selection of the op-
timal transformation, according to an adaptation profile, because all of T1, T2 and T3

CHAPTER 6. XMLPIPE ADAPTATION MODEL 108

1 <adaptation>

2 <adequacy>

3 <expr ns=” . . . ”
4 name=” supported ”>
5 <contains >

6 <termVal/>
7 <val>XHTML URI</val>
8 </contains >

9 </expr>
10 </adequacy>

11 </adaptation>

(a)

1 <adaptation>

2 <adequacy>

3 <expr ns=” . . . ”
4 name=” supported ”>
5 <contains >

6 <termVal/>
7 <val>WML URI</val>
8 </contains >

9 </expr>
10 </adequacy>

11 </adaptation>

(b)

1 <adaptation>

2 <app l i c a b i l i t y ><expr>
3 <and>

4 <contains ><termVal name=” supported ”/>
5 <val>WML URI</val></contains >

6 <contains ><termVal name=” supported ”/>
7 <val>WBMP URI</val><contains >

8 </and>

9 </expr></app l i c a b i l i t y >

10 <adequacy>

11 <expr name=” supported ”><contains >

12 <termVal/>
13 <val>WML URI</val></contains ></expr>
14 <expr name=” supported ”><contains >

15 <termVal/>
16 <val>WBMP URI</val></contains ></expr>
17 <expr name=”maxImageX”>
18 <sub>

19 <val>1</val>
20 <abs><div>

21 _{<termVal/><val>100</val>}

22 <val>100</val>
23 </div></abs>
24 </sub></expr>
25 </adequacy>

26 </adaptation>

(c)

Listing 6.7: Adaptation binding information example

have an associated binding adaptation specification. Specifically, the optimal trans-
formation is the one that corresponds to the maximum non-zero measure result. For
instance, consider the adaption profiles pr1 and pr 2, which have been illustrated in
Listings 6.1 and 6.2 (page 97), respectively. Only T1 is adequate for pr 1, because it
is the only XHTML producing transformation. The adaptation measures reflect this
observation: measure(pr 1, B1) == 1, measure(pr 1, B2) == measure(pr 1, B3) == 0. In
contrast, T1 is not adequate for pr2, which declares support for WML mark-up, WBMP
images and a 96 pixels wide display. T2 and T3 are both applicable. T3 is the optimal
alternative, because it utilises the WBMP presentation capability and its output is op-
timised for 100 pixel wide displays. measure evaluation is consistent with these observa-
tions: measure(pr 2, B1) == 0, measure(pr 2, B2) == 1 and measure(pr 2, B3) == 2.96.
Therefore, when transformation specifications are associated with binding adaptation
specifications, the adaptation measure evaluator allows the identification of the optimal
alternative, for each adaptation profile.

6.5 The complete adaptation model

The complete XMLPipe adaptation model consists of the profile composer, the adap-
tation measure evaluator and the defined term semantics, as illustrated in Figure 6.2.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 109

Term semantics

Data type

Default value

Conflict resolution

expression

1

1

0..1

TermSemantics

Binding

component

Term

URI
Term

semantics

Profile composer
Adaptation measure

evaluator

Composite

profile

Adaptation

profile

Binding

adaptation

informationMeasure

Adaptation

profile

Figure 6.2: Adaptation requirements processing

The profile composer component implements the ccompose function, which maps the ex-
ternally provided composite profile to a conflict-free adaptation profile. ccompose uses
either the default XMLPipe conflict resolution mechanism or explicit conflict resolution
expressions, which can be specified in the term semantics or the composite statements.
Each XMLPipe transformation must be associated with a binding adaptation specifica-
tion, which expresses its dependency to the adaptation requirements. The adaptation
measure evaluator component implements the measure function, which maps pairs of
adaptation profiles and binding adaption specifications to comparable adequacy mea-
sures. These adequacy measures enable the straightforward identification of the optimal
transformation, for an adaptation profile, because it is the one that corresponds to the
maximum positive adequacy measure. Both the adaptation measure evaluator and the
profile composer interact with the binding component, in order to obtain all necessary
term semantics.

6.6 Discussion

The preprocessing of presentation documents requires a well defined representation of
adaptation requirements and a well defined way to process them, in order to choose the
optimal processing for each document subtree. The proposed XMLPipe binding model
covers all necessary concepts. Specifically, the introduced composite profiles cover the
external representation of adaptation requirements, because a preprocessing initiation
entity can use a composite profile to provide all necessary adaptation information. The
profile composer provides the necessary functionality to convert an input composite
profile into a conflict-free adaptation profile, which can be accessed by all adaptation
sensitive processing components. Finally, the well defined binding adaptation specifica-
tion and the adaptation measure evaluator allow any component to choose the optimal
transformation, over a set of alternatives, for an adaptation profile.

The preprocessing framework covers both the representation of the adaptation re-
quirements and their processing. Specifically, it requires that an adaptation model must

CHAPTER 6. XMLPIPE ADAPTATION MODEL 110

define a composite and extensible representation of adaptation requirements. Addition-
ally, it requires a well defined methodology for combining independently developed sets
of adaptation requirements and for choosing the optimal transformation over a set of
alternatives.

An extensible adaptation requirement representation that allows an open set of
adaptation terms is essential for covering the multitude of current and future adaptation
requirements. The proposed adaptation terms, adaptation statements and adaptation
profiles adopt the extensible CC/PP concept of URI qualified names, and they ensure
the extensibility of the proposed representation. Moreover, the proposed adaptation
term semantics provide all the necessary information for processing adaptation require-
ments that use an open set of adaptation terms. Furthermore, the default term values
enable the semantics authors to liberally use newly introduced adaptation terms. If a
profile does not specify a value for a newly introduced term, the measure evaluator can
use the corresponding default value to evaluate any expressions that reference the new
term. Consequently, the XMLPipe adaptation model allows both the representation
and the processing of an open set of adaptation requirements.

The introduced concept of composite profiles and the profile composer enable the
use of composite adaptation requirement specifications. Specifically, the composite
profile external references enable the arbitrary combination of distributed adaptation
requirement sources. The profile composer is based on an ordering guideline. The or-
dering guideline is adequate for the Web, because it allows the specification of conflict
resolution expressions, without requiring explicit relationships between the adaptation
requirement sources. Additionally, the three prioritised levels of conflict resolution ex-
pressions enable the fine grained specification of how to resolve any introduced conflicts,
during profile composition. The default XMLPipe conflict resolution always favours the
values that are more relevant to the document processing. The entities that define the
adaptation terms or the adaptation statements can override the default behaviour by
providing term and statement specific resolution expressions, respectively.

The CSS recommendation uses a similar ordering guideline, in order to resolve
conflicts between style attribute declarations. Specifically, it orders all declared style
attributes according to three factors: the entity that specifies each attribute, the speci-
ficity of each declaration and the order of the declaration. The entity dependent order-
ing is based on a set of three predefined entities: the user agent, the document author
and the document user. The specificity is a measure of how specific is a declaration
for a document element. A CSS implementation resolves conflicts by always using the
latest occurring declaration, according to the above ordering, because it is the most
specific declaration that is defined by the most relevant entity. Predefined sets of enti-
ties can allow fine grained resolution, but the XMLPipe adaptation model does not rely
on such sets, because they are not adequate for the resolution of conflicting adaptation
requirements, as described in Section 6.3.1. In contrast, it requires that the adaptation
statements are ordered, according to their document processing relevance. Such an
ordering allows the resolution of conflicting statements that can be specified by a mul-
titude of entities. Additionally, XMLPipe allows the specification of conflict resolution
expressions, which enable more fine grained resolution than simply choosing one of the
conflicting values. Consequently, the CSS conflict resolution model can be adequate
for the constrained domain of style attributes specification, but the XMLPipe conflict
resolution proposal is more applicable for the composition of extensible adaptation
profiles.

CHAPTER 6. XMLPIPE ADAPTATION MODEL 111

The proposed adaptation requirements representation is more appropriate for a pre-
processing model than CC/PP, because of the introduced term semantics and profile
composer. CC/PP is the most prominent existing approach for representing adapta-
tion requirements. The XMLPipe adaptation model adopts the CC/PP concept of
URI qualified adaptation terms, which is essential for an extensible representation of
an open set of adaptation requirements. Furthermore, the XMLPipe adaptation model
also covers the processing of an open set of adaptation requirements, as opposed to
CC/PP, which only covers their representation. Specifically, the XMLPipe concepts of
adaptation expressions and term semantics are the basis for the well defined process-
ing, for an open set of requirements. Each term has a well defined default value, which
ensures that semantics authors can specify adequacy expressions that use newly in-
troduced adaptation terms, without requiring that all adaptation profiles specify their
values. The proposed profile composer allows fine grained conflict resolution, which en-
ables the integration of independently developed profiles. CC/PP does not enable such
integration, as it does not provide a conflict resolution mechanism. Moreover, it can-
not provide the foundation for supporting the proposed conflict resolution mechanism;
CC/PP is RDF-based, and it is not designed to preserve the order of the adaptation
statements, which is essential for the proposed ordering guideline.

The proposed adaptation measure evaluator enables the straightforward selection of
an optimal transformation, over a set of independently developed alternatives. Specif-
ically, each transformation must be associated with an applicability expression and
a set of adequacy expressions. The evaluation of each adequacy expression provides
a measure of the extent to which a transformation fulfils an adaptation requirement.
Under the assumption that all adaptation requirements are equally important, the
set of adequacy expressions can be used to calculate a comparable adequacy measure,
for each alternative transformation. The adaptation measure evaluator composes the
adaptation measure out of the comparable adequacy measure and of the applicability
measure, which ensures that the adaptation measure is positive only for applicable
transformations. The identification of the optimal transformation specification, for an
adaptation profile, is straightforward, because the optimal transformation is the one
that corresponds to the highest positive adaptation measure.

The XMLPipe adaptation model does not adapt documents in itself, but it provides
the necessary foundation for more powerful adaptation than existing generic adaptation
approaches. The CC/PP based stylesheet selection, proposed in [OH02], is the most
prominent existing approach for generic adaptation. Nevertheless, it uses simplistic
CC/PP queries and it does not allow the independent development of the individual
stylesheets. In contrast, the proposed combination of applicability and adequacy ex-
pressions enables significantly more powerful adaptation. The applicability expressions
provide a precise specification of when a transformation applies to an adaptation profile,
and the adequacy expressions allow the evaluation of the relative adequacy of multiple
independently developed specifications.

6.7 Summary

A well defined representation and processing of the adaptation requirements is nec-
essary, because both the binding of transformation specifications and the individual
transformation components depend on the adaptation requirements. The proposed

CHAPTER 6. XMLPIPE ADAPTATION MODEL 112

XMLPipe adaptation model covered their representation, by introducing the compos-
ite profiles and the adaptation profiles. Additionally, it defined the necessary processing
for composing independently defined profiles and for choosing the optimal transforma-
tion specifications, over a set of independently developed alternatives.

Specifically, the internal XMLPipe representation of adaptation requirements is an
adaptation profile, which consists of a set of adaptation statements. Each adaptation
statement is a pair of an adaptation term and of its corresponding value. Adaptation
terms are uniquely identified by URIs, which allow the unambiguous representation of
an open set of adaptation requirements. In contrast, the proposed external represen-
tation consists of composite profiles, which are sequences of statements. The profile
composer component maps the externally provided composite profiles into adaptation
profiles, and it is responsible for resolving any conflicting adaptation requirements.

The adaptation measure evaluator is responsible for supporting the selection of the
optimal transformation specification, according to an adaptation profile. The XMLPipe
adaptation model requires that each transformation specification is associated with an
adaptation binding specification, which consists of an applicability expression and a
set of adequacy expressions. The adaptation measure evaluator maps a pair of an
adaptation binding specification and an adaptation profile to an absolute comparable
adaptation measure. Within the context of an adaptation profile, the transformation
specification that corresponds to the higher adaptation measure is considered as the
optimal transformation for a document subtree.

The proposed processing and representation of adaptation requirements fulfill the
corresponding preprocessing framework requirements, and they compare favourably to
the most prominent existing approaches. Therefore, they provide an adequate founda-
tion for the adaptive transformation of presentation documents. The next chapter will
describe the XMLPipe transformation model, which interoperates with the introduced
adaptation model, in order to choose the optimal transformation for each document
subtree.

Chapter 7

XMLPipe transformation model

This chapter describes the XMLPipe transformation model, which is the core XMLPipe
sub-model, and it defines the necessary processing for adapting a presentation docu-
ment, according to a set of adaptation requirements. The XMLPipe transformation
model is based on the proposed integration and adaptation models. Specifically, it uses
the XMLPipe integration model, described in Chapter 5, to enable the combination of
independently developed transformation specifications for processing mixed namespace
documents. Moreover, it uses the adaptation model, described in the previous chapter,
which enables the selection of the optimal transformation specifications, according to
an adaptation profile.

The XMLPipe transformation model consists of the integration model transfor-
mation driver and the built-in transformation pipelines. The former drives the doc-
ument transformation process, and it is based on a subtree separation process and a
recursive postorder document traversal. The transformation driver interoperates with
the adaptation measure evaluator to choose the optimal transformation semantics for
each document subtree. The XMLPipe transformation semantics are specifications of
transformation pipelines, which are essential for enhancing the existing transformation
functionality. Each XMLPipe transformation pipeline consists of multiple atomic trans-
formations that encapsulate the existing transformation functionality under a common
interface, in order to enable the seamless integration of a multitude of existing trans-
formation technologies.

Section 7.1 overviews the existing transformation approaches, which were initially
described in Section 2.3, and it identifies the core issues that a transformation model
must address. Sections 7.2 and 7.3 establish the necessary foundation for describing
the XMLPipe transformation model. The former establishes a driving example of a
presentation document that assists the subsequent transformation model description.
The latter establishes the fundamental notation and the necessary assumptions, for
illustrating that mixed namespace document transformation is feasible, in Section 7.4.
Section 7.5 proceeds to the description of the binding and selection of the transfor-
mation semantics. Section 7.6 loosens the most restrictive assumptions, in order to
extend the applicability of the proposed transformation. Finally, Section 7.7 intro-
duces the XMLPipe pipelines and atomic transformations, and Section 7.8 combines
all the introduced components into the XMLPipe transformation model.

113

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 114

7.1 Transformation model considerations

The XMLPipe transformation model cannot be based on existing transformation tech-
nologies, because they do not allow generic transformation of mixed namespace docu-
ments. Specifically, modular transformation specifications, such as XSL-T, allow the
composition of separate single namespace specifications. However, such compositions
use predefined language relationships and have the same drawbacks as profile-based ap-
proaches. Sequential composition approaches, such as the XEBRA browser[THHH01]
(described in Section 2.5), do not necessarily require predefined language combinations.
However, sequential composition is not sufficient for the generic processing of mixed
namespace documents, as described in Section 4.4.

A preprocessing model benefits from built-in support of transformation pipelines.
As described in Section 4.4, transformation pipelines allow simpler modular trans-
formation specifications, and they enable seamless integration and extension of the
existing transformation functionality. Consequently, the XMLPipe transformation se-
mantics can define the necessary subtree transformations using transformation pipeline
specifications, as opposed to plain transformation specifications.

Existing transformation pipeline approaches fit into a single framework: they com-
pose complex transformations out of transformers, sources, mergers and sinks, as de-
scribed in Section 2.3.2. The XMLPipe built-in transformation pipeline mechanism can
adopt the existing concepts by extending them to cover document subtree processing
and adaptive transformation composition. Subtree processing is necessary, because the
proposed integration model partitions the processing of a document into the processing
of its individual subtrees. Adaptive transformation composition is beneficial, because
it allows the composition of adaptive transformations out of existing transformation
specifications.

A preprocessing model must define the necessary interoperation, between its val-
idation and transformation models, in order to validate the input of transformation
processes prior to their execution. Such interoperation is necessary, because the re-
sult of a transformation is only well defined if its input is valid. Integrated validation
approaches, such as XDuce, are an efficient method to ensure the validity of docu-
ment subtrees, as described in Section 2.2. However, they are inadequate for generic
document processing, because they require constrained processing environments and
constrained development of transformation specifications. In contrast, transformation
pipeline based validation, such as in the XML Pipelines (described in Section 2.3.2),
is more adequate, because it enables the liberal introduction of validation processing
steps. XMLPipe can adopt the pipeline based validation by introducing validation
processing steps, within its built-in transformation pipelines.

The transformation model is responsible for adapting its input documents. Exist-
ing transformation approaches provide either restricted generic adaptation or powerful
domain-specific adaptation. Domain-specific adaptation approaches, such as device in-
dependent authoring proposals, offer powerful adaptation. However, they only support
a narrow set of XML languages, and they are not adequate for generic document pro-
cessing. CC/PP based stylesheet selection is the most prominent generic approach,
but, as described in the previous chapter, the XMLPipe adaptation measure evaluator
allows more fined grained transformation selection. Consequently, the XMLPipe trans-
formation model can utilise the proposed adaptation model to transform presentation
documents.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 115

Language COC FOC SMC COC placeholders

Ldoc

doc:document,

doc:p, doc:emdoc:em, doc:img,
doc:p

Lalt alt:alt alt:case

Lxl xl:href, xl:type
Limp imp:import

Table 7.1: Driving example integration model semantics: the handled constructs and
the places where content is expected

7.2 A driving example

This section introduces a presentation document driving example, illustrated in List-
ing 7.1, that will assist the subsequent transformation model discussion. Specifically,
document.xml is the core example document, and it contains external references to
authors.xml and imp.xml. document.xml combines the constructs of the four lan-
guages Ldoc , Lalt , Limp and Lxl , which are associated with the doc, alt, imp and xl

namespace prefixes, respectively. Table 7.1 summarises their corresponding integration
model semantics, which consist of each language’s handled constructs and the places
where context is expected.

The constructs of Ldoc describe a document’s layout. Specifically, the doc:document
element (line 1) introduces a document with multiple nested doc:section constructs
(such as in lines 11 and 15), which represent its sections and subsections. Each Ldoc

document must have a single title and a set of authors, which are represented by the
doc:title (such as in lines 4 and 12) and the doc:authors (authors.xml, line 2)
elements, respectively. Each section can contain zero or more paragraphs (doc:p – line
13) that can contain text, emphasised text (doc:em element – line 13) and inline images
(doc:img element – line 14). Ldoc contains four content oriented handled constructs
(COC):

COC (Ldoc) = {doc:document, doc:em, doc:img, doc:p}

doc:document, doc:em, doc:img and doc:p are COC handled constructs, because
they introduce the well defined pieces of presentable information that correspond to a
document, emphasised content, an image and a paragraph, respectively. In contrast,
the remaining Ldoc constructs introduce context dependent information that cannot
be processed independently. For instance, the doc:title element introduces the title
of its parent element. Arbitrary COC subtrees can only occur within the doc:p and
doc:em constructs, because they are placeholders of arbitrary presentable information:
most presentable information can be part of a paragraph and can be emphasised.

The alt:alt element (line 2) of Lalt introduces adaptive content, as a sequence
of alt:case elements. Each alt:case element has an optional test attribute, which
contains a boolean expression over an adaptation term. The semantics of the alt:alt

element is to substitute itself with the content of the first adequate alt:case element,
for an adaptation profile, which must contain either an expression that evaluates to true
or no expression. The alt:alt element is a structure modification construct (SMC),
because its primary semantics is to modify the document tree. The alt:case element
is a COC placeholder, because it is the parent of the arbitrary substitution alternatives.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 116

1 <doc:document>

2 <al t :a l t >

3 <a l t : c a s e t e s t=” u r i#deviceType=mobile ”>
4 <d o c : t i t l e >Mobile example</d o c : t i t l e >

5 </a l t : c a s e >

6 <a l t : c a s e >

7 <d o c : t i t l e >Desktop example</d o c : t i t l e >

8 </a l t : c a s e >

9 </al t :a l t >

10 <imp:import h r e f=” authors . xml” s e l e c t=” ∗∗/ [@id=’MP DHS’] ”/>
11 <doc : s e c t i on >

12 <d o c : t i t l e >The doc language</d o c : t i t l e >

13 <doc:p>The root language a l l ows <doc:em>emphasized</doc:em> text ,
14 images <doc:img h r e f=”xmlPipe . g i f ”/> and nested s e c t i o n s .</doc:p>

15 <doc : s e c t i on >

16 <d o c : t i t l e >Nested s e c t i on</d o c : t i t l e >

17 </doc : s e c t i on >

18 </doc : s e c t i on >

19 <doc : s e c t i on >

20 <d o c : t i t l e >Mixed namespace support</d o c : t i t l e >

21 <doc:p>A fo r e i g n namespace SMC const ruc t to import t ex tua l c on t en t :
22 <imp:import h r e f=”imp . xml” s e l e c t=”∗∗/ tex t / t ex t () ”/> , an FOC XLink
23 a t t r i b u t e f o r <doc:em xl:type=” simple ” xl :href=” . . . ”> l i n k s</doc:em>

24 and an SMC subt ree that a l l ows adaptat ion s e n s i t i v e c on t en t :
25 </doc:p>

26 <al t :a l t >

27 <a l t : c a s e t e s t=” h t tp : // . . . /# deviceType=mobile ”>
28 <doc:p>This i s a mobile</doc:p>

29 </a l t : c a s e >

30 <a l t : c a s e >

31 <doc:p>This i s NOT a mobile</doc:p>

32 </a l t : c a s e >

33 </al t :a l t >

34 </doc : s e c t i on >

35 </doc:document>

document.xml

1 <c : c o l l e c t i o n >

2 <doc :au thor s id=”MP DHS”>
3 <doc :author f i r s t=”M” l a s t=”Ped”
4 mail=”mp49@kent . ac . uk”/>
5 <doc :author f i r s t=”D” l a s t=”Shr”
6 mail=”dhs@kent . ac . uk”/>
7 </doc :authors >

8 </c : c o l l e c t i o n >

authors.xml

1 <root>

2 <text>Text node 1</text>

3 <text>Text node 2</text>

4 </root>

imp.xml

Listing 7.1: The driving presentation document example

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 117

Language Limp introduces the imp:import element (line 10), which is also an SMC .
Its semantics is to substitute itself with the external content that is referenced by its
attributes. The href attribute specifies the URL of a document, and the optional
select attribute specifies an XPath expression, which allows the selection of a docu-
ment portion.

Finally, Lxl represents the simple links of the XLink recommendation[DMO01].
Lxl uses xl:href attribute (line 23), which specifies the link target, and the xl:type

attribute, which contains the fixed value “simple”, which denotes a simple XLink link.
Both attributes are functionality oriented constructs (FOC), because they amend the
presentation of their parent in a well defined way: they convert it into a link.

The XMLPipe transformation model must successfully process document.xml, be-
cause document.xml combines the constructs of the four presentation languages in a
meaningful way, according to their semantics. Specifically, the processing of the SMC
constructs, in lines 2 and 10, provides the required title and author information. Ac-
cording to the Lalt semantics, the processing of the alt:alt element, in line 2, will
result in a doc:title element. According to the semantics of Limp , the processing of
the imp:import element, in line 10, will result in the doc:authors rooted subtree, il-
lustrated in authors.xml. The processing of the remaining SMC occurrences will also
result in a valid document: imp:import in line 22 introduces textual content within a
paragraph, and alt:alt in line 26 introduces a paragraph within a section. Further-
more, the Lxlink attributes, in line 23, convert their parent doc:em element into a link.
The presentation interpretation of document.xml is well defined: it is a document that
contains a title, a set of authors and a sequence of nested sections, which may contain
formated text, links and images. Therefore, the XMLPipe transformation model must
be able to adapt it to a variety of devices, if the corresponding processing semantics
are provided.

A document that has a well defined interpretation is not necessarily valid. For
instance, document.xml combines the constructs of the example languages in a mean-
ingful way. However, before the processing of the SMC constructs, it is not a valid
XMLPipe document. Specifically, document.xml does not contain the mandatory au-
thor information and doc:document does not contain the required doc:title child,
which specifies the document’s title. Additionally, the doc:title elements, in lines 4
and 7, occur under foreign namespace elements, but they are not handled constructs.
Consequently, document.xml is not valid according to the XMLPipe integration model.

We will introduce the concept of semantic correctness, in order to describe doc-
uments that have a well defined interpretation, independently of their validity. For
instance, document.xml is semantically correct, but it is not valid. The XMLPipe
transformation model will focus on the processing of semantically correct documents,
because a document that has a well defined interpretation, must also have a well defined
processing.

The existence of semantically correct but invalid documents does not indicate a
deficiency of the XMLPipe integration model, which defines the validity of mixed
namespace documents. The processing of SMC constructs can introduce arbitrary tree
modifications. An integration model’s definition of valid documents cannot account for
such modifications, because they can depend on processing semantics that are outside
the scope of an integration model. For instance, the document modifications intro-
duced by both the imp:import and alt:alt constructs depend on their corresponding
transformation semantics. An integration model cannot use the transformation seman-
tics of a construct, because they are specific to a possibly independent transformation

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 118

model. Nevertheless, the explicit identification of such constructs, by the introduc-
tion of the SMC category, enables their adequate processing by a preprocessing model.
Specifically, as the next chapter will illustrate, the XMLPipe validation model tests the
semantic correctness of a document by separately processing its SMC rooted subtrees.
Consequently, the proposed integration model is not deficient, because it provides the
necessary foundation for processing documents that contain SMC constructs.

7.3 Transformation fundamentals

Before proceeding to the transformation model proposal, this section introduces the
necessary notation and assumptions. Specifically, Section 7.3.1 introduces a precise
transformation notation.1 Section 7.3.2 establishes the necessary assumptions for the
subsequent transformation processing proposal.

7.3.1 Mixed namespace transformation notation

The previously introduced transformation notation did not identify the individual lan-
guages of a document. Specifically, Chapter 2 introduced the set T L2

L1
, which contains

all transformations that map the constructs of a language L1 to the constructs of a
language L2. If L1 and L2 contain constructs from multiple namespaces, the trans-
formation’s input and output are mixed namespace documents. However, there was
no explicit specification of the individual languages, because there was no well de-
fined relationship between the interpretation of a mixed namespace document and the
interpretation of its individual languages.

The introduced concept of integration models enables a fined grained expression
of mixed namespace transformations, which reflects the independent definition of the
XML languages. Specifically, a mixed namespace transformation T can process doc-
uments that combine a set of languages L1, according to an integration model Im1.
A transformation does not necessarily transform the constructs of all input languages,
but it may only transform the constructs of a language subset L2 ⊆ L1. For in-
stance, a transformation that corresponds to a language might be able to transform its
constructs, within a mixed namespace document that also contains constructs from ad-
ditional languages. The output of T can also combine a set of languages L3, according
to an integration model Im2. The set of mixed namespace transformations T L3:Im2

L1:Im1(L2)

will represent all such transformations: T ∈ T L3:Im2

L1:Im1(L2)
.

Set of mixed namespace transformations (T L3:Im2

L1:Im1(L2)
): Consider that L2 ⊂

L1 ∈ ℘(L), L3 ∈ ℘(L), and that Im1 and Im2 are two integration models. The set of
mixed namespace transformations T L3:Im2

L1:Im1(L2)
⊂ T includes all transformations that

process the constructs of languages in L2 for mapping an input document, which
combines the constructs of the languages in L1 using the integration model Im1, to
an output document, which combines the constructs of the languages in L3, using
the integration model Im2.

The above notation enables the expression of the required transformation model
functionality. Specifically, for each valid mixed namespace document d, the transfor-
mation model must combine the transformation semantics of all languages in Ldoc to

1Such notation could not be introduced in the literature review chapter, because it uses the concept
of integration models, which has been introduced by this thesis.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 119

define a transformation T . T must transform d to its most adequate interpretation d′,
according to an adaptation profile pr . Therefore, T ∈ T

Lp :ImP

Ld:ImX(Ld), where Lp and ImP

correspond to the set of natively supported languages and the natively supported inte-
gration model, as specified by the adaptation profile pr . ImX represents the XMLPipe
integration model.

7.3.2 Assumptions

The feasibility of generic mixed namespace transformations can only be established un-
der the set of assumptions summarised in Table 7.2. They ensure that a transformation
model can transform valid XMLPipe documents, according to an adaptation profile.
Each assumption is associated with a unique identifier. The subsequent discussion will
use these identifiers to refer to the individual assumptions.

Assumption 1: each non natively supported language must be associated with at
least an adequate transformation specification, for each adaptation profile. Such an
assumption is necessary to ensure that there is sufficient information to process pre-
sentation documents. If there is no adequate transformation specification for a non
natively support language, according to an adaptation profile, a preprocessing model
cannot create an adequate document interpretation for that profile.

Assumption 2: a transformation specification, which is associated with a language
L, must allow the processing of all handled construct rooted subtrees that are valid
documents of L. Specifically, the processing of handled construct rooted subtrees is
well defined, independently of their context, according to Corollary 1. Therefore, the
transformation semantics of L must enable their processing as individual entities. For
instance, the doc:p rooted subtree, illustrated in lines 13–14 of the driving example, is
a valid XMLPipe document, because it is a valid document of Ldoc and doc:p is a COC
handled construct. The transformation specification that corresponds to language Ldoc

must allow the independent transformation of doc:p rooted subtrees, and it must not
always require a doc:document ancestor. For example, an XSL-T specification can
define separate root level transformation templates for each handled construct.

Assumption 3: transformation specifications must copy all unknown content to its
corresponding place in the transformation output. Such an assumption ensures that
the individual transformations preserve the document’s interpretation. Specifically,
each document subtree can contain multiple handled construct rooted subtrees, that
use constructs of several languages. A transformation, which is associated with a lan-
guage, must copy the subtrees of other languages, in order to preserve the information
they convey. For instance consider the alt:alt rooted subtree, in lines 26–33 of the
driving example, which contains two doc:p constructs. Independent of the invocation
order of the individual transformers, the transformation that corresponds to alt:alt

must copy the contents of alt:case to their corresponding place, within its output.
Otherwise, the resulting document will lose the information that was enclosed in the
doc:p elements.

Assumption 4: the design of transformation specifications that correspond to FOC
or attribute handled constructs must allow their processing within the context of a
foreign namespace element. Specifically, the processing of all handled construct rooted
subtrees can be defined independently of their context. However, the processing of
FOC and attribute handled constructs might require access to the their context; con-
sequently, the XMLPipe transformation model must allow the corresponding transfor-
mations to also access the context of the handled constructs. For instance, consider a

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 120

ID Assumption Description
1 Transformation

existence
There is an adequate transformation specification for each
language not in Lp .

2 Valid subtree
transformation

Transformation specifications can process all valid handled
construct rooted trees of their corresponding language.

3 Copy unknown
content

Each transformation must copy any foreign namespace
subtrees to their corresponding place, within the trans-
formation output.

4 FOC and attribute
context

The transformation specifications that correspond to ei-
ther FOC or attribute handled constructs must be able to
process them within the context of a foreign namespace
element.

5 No circular
dependencies

No circular dependencies between transformation specifi-
cations of separate languages.

6 No Lp dependencies Transformations must not produce Lp constructs, the pro-
cessing of which can introduce non Lp constructs.

7 Integration models
equivalence

d ∈ VImX

Ld
iff d ∈ VImP

Ld
.

8 Valid output If T corresponds to a language L, then T ∈ T L:ImX

L:ImX ({L}).

9 COC preservation A COC rooted subtree must be transformed to another
COC rooted subtree.

10 SMC restriction The transformation of an SMC rooted subtree cannot pro-
duce a COC subtree, unless it occurs at a place where
content is expected.

11 FOC valid processing The processing of FOC and attribute handled constructs
must preserve the semantic correctness of the document.
Specifically, they can add ancestors to their parent ele-
ment, only if

• the parent element is a handled construct

• it can occur at the corresponding place, within the
added ancestors

• the root of the new content is a handled construct,
which can be a COC only if the parent element is a
COC .

Additionally, they can add content to their parent, only if

• the added content is valid

• it occurs at a place where content is expected, if it
is rooted at a COC construct.

Table 7.2: Transformation assumptions

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 121

transformation T that adapts the Lxl constructs, for an XHTML browser presentation.
T must have access to the context of the Lxl attribute, in order to be able to enclose it
within an anchor element, which is the XHTML equivalent of the Lxlink simple links.
For example, if T processes the xl:href attribute, in line 23 of the driving example, it
must be able to enclose the doc:em element within an anchor XHTML element. There-
fore, the transformation model must allow T to process the Lxl attributes, within the
context of their parent element.

Assumption 5: the transformation of language constructs is not necessarily a one
step process, and it can require the recursive application of multiple transformations.
In the majority of cases, a transformation maps a construct to an alternative represen-
tation that is closer to its natively supported interpretation. However, there are cases
where circular relationships may be introduced. A typical example is the transforma-
tion of an imp:import construct, which can introduce content that includes further
imp:import constructs. Such relationships must be avoided, in order to ensure the
termination of a document’s transformation. For instance, consider the XML con-
structs σ1 and σ2 and the transformations T1 and T2, which are associated with their
corresponding languages. If T1 transforms σ1 to σ2 and T2 transforms σ2 to σ1, the
processing of a document that contains either σ1 or σ2 will never terminate.

Assumption 6: document preprocessing can only be sufficient, if no transformation
outputs natively supported constructs that can require further preprocessing. Specif-
ically, such constructs can introduce non natively supported constructs during the
presentation of a document, after the preprocessing has finished. Moreover, they might
delay the introduction of constructs that are necessary for document preprocessing. For
instance, consider that σ is an Lp construct that imports arbitrary external content.
Additionally, consider that transformation T corresponds to the import language Limp

and that it maps the imp:import construct to the natively supported σ construct. If
the imp:import element in line 10 of the driving example is processed by T , the author
information will only be imported at presentation time. Consequently, it will not be
available for the subsequent preprocessing of the doc:document construct, which will
fail. Therefore, transformation specifications must not introduce Lp constructs that
may require further preprocessing.

Assumption 7: the XMLPipe transformation model must provide the means to
adapt documents, which are valid according to the XMLPipe integration model, to
their interpretations, which must be valid according to a natively supported integration
model. However, the feasibility of generic mixed namespace transformation can only
be proven if the XMLPipe and the natively integration models are closely related.

Firstly, a valid output document must be a valid XMLPipe document. Specifically,
a transformation result must be valid, according to the natively supported integration
model. Since the transformation of a construct is not necessarily a one step process, a
transformation result can contain both natively and non-natively supported constructs.
Therefore, if there are non-natively supported constructs, the transformation result
must be also valid according to the XMLPipe integration model, because they require
further preprocessing. Consequently, the presentation integration model ImP must be
less or equally generic than the XMLPipe integration model ImX .

Secondly, the inverse integration model relationship must also hold, because a
generic transformation component cannot be aware of all presentation integration mod-
els. Specifically, there must be no interoperation between the individual transformation
specifications, since they can be independently developed. Therefore, the XMLPipe

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 122

transformation model, which is specific to the XMLPipe integration model, is respon-
sible for combining the output of the separate transformation results into the resulting
document. The transformation driver cannot be a priori aware of all presentation in-
tegration models. Therefore, it can only combine the transformation results according
to its corresponding integration model, which is the XMLPipe integration model.

The last two observations necessitate the equivalence of the XMLPipe integration
model with the presentation integration models, because they must both be equally or
less generic than the other. Therefore, a document d belongs to VImX

Ld
if and only if

d ∈ VImP

Ld
. Such an assumption is sufficiently restrictive to offset all XMLPipe practi-

cal applications. Specifically, if the integration models must be equivalent, XMLPipe
cannot preprocess documents for any existing browser, because no existing browser
supports the XMLPipe integration model. Nevertheless, the integration model equiva-
lence is only necessary for proving the feasibility of generic document transformation,
but it is not necessary in practice, as Section 7.6 will illustrate.

Assumption 8: the transformation specifications must preserve the document’s pre-
sentation structure and semantic validity. Specifically, each transformation specifica-
tion must produce a valid output subtree, when its input is valid. Consequently, since
the presentation and XMLPipe integration models must be equivalent, an XMLPipe
transformation T , which corresponds to a language L, must belong to T L:ImX

L:ImX({L}). The
set of all languages L is used for both the input and output of T , because the parent
element of attribute and FOC handled constructs can belong to any language.

Assumptions 9 and 10: COC constructs must be both preserved and not arbitrarily
introduced, in order to preserve the document’s interpretation and validity. Specifically,
since only COC rooted subtrees introduce well defined pieces of presentable informa-
tion, the transformation of a COC rooted subtree must always result to another COC
rooted subtree. Additionally, the transformation of an SMC construct must not pro-
duce a COC subtree, unless it occurs at a place where content is expected. For instance
consider the SMC imp:import element, illustrated at line 10 of the driving example.
If it is transformed to a COC rooted subtree, the resulting document would be invalid,
because no content is expected under the doc:document element.

Assumption 11: finally, the processing of FOC or attribute rooted subtrees can
modify their context, but it must do so in a valid way. Specifically, their processing
can amend the presentation of their parent by either enclosing it within a subtree or by
adding attribute or element descendants. In the former case, the transformation result
will only be valid, if the parent is a handled construct, which can occur within the
generated subtree. In the latter case, the added descendants must be valid and only
occur at places where content is expected if they are COC . In both cases, all added
content must be rooted at a handled construct. For instance, consider the aforemen-
tioned transformation T , which processes the Lxl constructs by enclosing their parent
element within an XHTML anchor element. T can enclose the doc:em element within
a xhtml:a element, because doc:em is a handled construct. The xhtml:a element can
be the root of the added context, because it is also a handled construct. If xhtml:a

was not a handled construct, the output of T would be invalid, because xhtml:a would
be included under the foreign namespace doc:p element.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 123

7.4 Transforming valid documents

This section illustrates the feasibility of a generic mixed namespace transformation and
defines the corresponding transformation algorithm. Firstly, Section 7.4.1 establishes
the relationship between valid documents and their processing. Section 7.4.2 uses
this relationship and the assumptions of Table 7.2 to illustrate that there is a well
defined transformation T that maps each valid XMLPipe document to its optimal
interpretation. Finally, Section 7.4.3 describes an algorithmic definition of T .

7.4.1 Valid documents processing

This section will assist the subsequent transformation investigation by mapping the
definition of valid documents (introduced in Section 5.3.1) to its document processing
equivalent and introducing an alternative definition of valid documents, which is based
on a sequence of compositions.

The set of XMLPipe valid documents can be expressed in a non-recursive man-
ner. Corollary 2 is an alternative valid document definition that uses a sequence of
single namespace tree compositions, as opposed to the recursive composition of mixed
namespace trees.

Corollary 2 d ∈ VImX

Ld
if and only if there is a sequence of n ≥ 1 single namespace

valid documents d1, . . . , dn, so that d ∈ (dn · · ·
+
←−
ImX

(d3
+
←−
ImX

(d2
+
←−
ImX

d1)) · · ·), where ∀i ∈

[1, n], di is a valid single namespace document of Li (di ∈ Li), it is rooted at a
handled construct σi ∈ langConstructsHC (Li) and σn can only be an element COC
or SMC handled construct.

Proof: According to the valid documents definition, d in VImX

Ld
if and only if there

is a sequence of n ∈ [1, 2] valid documents d1, . . . , d2, so that d ∈ dn
+
←−
ImX

· · ·
+
←−
ImX

d1,
2

where dn is rooted at an element COC or SMC handled construct, dn ∈ V
ImX

Ld
for

n > 1, and ∀i ∈ [1,min(n − 1, 1)] di is a valid single namespace document of Li. The
recursive application of the valid documents definition resolves recursive references to
valid mixed namespace documents. Specifically, d in VImX

Ld
if and only if there is a

sequence of n ∈ [1,∞) valid documents d1, . . . , dn, so that d ∈ dn
+
←−
ImX

· · ·
+
←−
ImX

d1, where

dn is rooted at an element COC or SMC handled construct, dn ∈ V
ImX

Ld
for n > 1, and

∀i ∈ [1,min(n − 1, 1)] di is a valid single namespace document of Li. If n equals the
number of single namespace subtrees in d, then dn is also a single namespace document.
Therefore, each valid document can be composed out of n single namespace subtrees.
Inversely, the composition of n single namespace subtrees results to a valid document.
Therefore, Corollary 2 is correct.

Proposition 1 maps the original definition of valid documents to a definition of
documents with well defined processing. It assists the subsequent transformation dis-
cussion, because proving the feasibility of document transformation is subproblem of
proving the feasibility of their well defined processing.

2The valid tree composition notation
+
←− has been introduced in the integration model chapter, in

page 85.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 124

Proposition 1 All valid XMLPipe documents have well defined processing if

• d has well defined processing ∀d ∈ VImX

Ld
, where Ld = {L} and d is rooted at

σ ∈ langConstructsHC
e (L) ∩ (COC (L) ∪ SMC (L)).

• All documents in d1
+
←−
ImX

d2 have a well defined processing, if d1 ∈ V
ImX

Ld1

, Ld2
=

{L2}, d2 is rooted at σ2 ∈ langConstructsHC (L2) and d1 has well defined
processing.

Proof: In order to prove Proposition 1, it is sufficient to prove that, if both of its
conditions are true, the processing of a valid document is well defined. Consider that
d ∈ VImX

Ld
is a valid document and that both proposition conditions are true.

If d is a single namespace document, then Ld = {L} and d is rooted at σ ∈
langConstructsHC

e (L) ∩ (COC (L) ∪ SMC (L)), according to the valid documents def-
inition. Therefore, its processing is well defined, according to the first proposition
condition.

If d is not a single namespace document, then d ∈ d1
+
←−
ImX

d2, where d1 ∈ V
ImX

Ld1

and

d1 ∈ L2 where Ld2
= {L2}. According to the second proposition condition, d has well

defined processing. Therefore, the above proposition is correct.

7.4.2 Transformation of valid documents

In order to prove the feasibility of mixed namespace document transformation, it is
sufficient to prove that for all valid documents d ∈ VImX

Ld
and adaptation profiles pr ∈

Profiles , there is a well defined transformation T ∈ T
Lp :ImX

Ld:ImX(Ld), where d
T
−→d′ and d′

is the most adequate interpretation of d, according to the profile pr . The output of T
uses the XMLPipe integration model, as opposed to the presentation integration model,
because they are equivalent, according to Assumption 7. The remainder of this section
will use Proposition 1 to prove the existence of a finite T , under the transformation
assumptions summarised in Table 7.2.

Proposition 2 Under the assumptions of Table 7.2, all valid XMLPipe documents
d can be transformed by a finite iterative transformation T ∈ T

Lp :ImX

Ld:ImX(Ld) to their

most adequate representation d′, according to an adaptation profile pr.

Proof: Proposition 2 can be proven by separately considering whether d uses na-
tively or non-natively supported constructs and whether d is single or mixed namespace
document.

If d is a valid document that solely consists of natively supported constructs (d ∈
VImX

Lp
), then it is a valid document of the presentation integration model and it does

not require further XMLPipe processing, according to assumptions 6 and 7. Therefore,

T is the identity transformation T ε, where d
T ε

−→d.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 125

The transformation of each single namespace valid document is well defined. Specif-
ically, consider the case where d is not natively presentable (d 6∈ VImX

Lp
) and d is a single

namespace document (Ld = {L}), which is rooted at an element COC or SMC handled
construct σ ∈ (COC (L)∪SMC (L))∩ langConstructsHC

e (L). According to assumptions
1, 5 and 8, there is a non identity transformation T ′ that is adequate for pr and can
transform d to a valid XMLPipe representation d1. T ′ is not an identity transformation,
because if d1 = d then T ′ would introduce a circular dependency with itself, which is
not allowed by Assumption 5. Consequently, a valid single namespace document either
is in its most adequate representation or there is a non-identity transformation that
maps it to another valid XMLPipe document.

For the mixed namespace document case, consider a valid document d1 ∈ V
ImX

Ld1

and

a valid single namespace document d2, where Ld2
= {L2} and d2 is rooted at a handled

construct σ2 ∈ langConstructsHC (L2). Additionally, consider that d1 is either natively
presentable or there is a corresponding non-identity transformation T1 that maps it to
its valid interpretation d′1.

If d2 can be natively presented, the transformation of all documents in d1
+
←−
ImX

d2 is

well defined. Specifically, consider that d2 can be natively presented. If d1 can also be

natively presented (Ld1
⊆ Lp), all documents d3 ∈ d1

+
←−
ImX

d2 will be valid documents

that only contain natively presentable constructs.
Otherwise, if d1 is not in its presentable form, there is a transformation T1 that can

process all documents in d3 ∈ d1
+
←−
ImX

d2. Specifically, according to Assumption 3, T1

must copy all foreign namespace content to its corresponding place, within its output.

Therefore, if d3
T ′

−→d′3, d′3 is a valid XMLPipe document, which contains d2 at a place
that corresponds to its initial placement in d3. Consequently, if d2 can be natively

presented and both d1 and d2 are valid documents, all documents in d1
+
←−
ImX

d2 either

are natively presentable or have a well defined a non-identity transformation that maps
them to other valid XMLPipe documents.

If d2 cannot be natively presented and its processing does not relate to its context,

the transformation of all documents in d1
+
←−
ImX

d2 is also well defined. Consider that d2

contains non natively presented constructs and its root handled construct is an element
COC or SMC (σ2 ∈ (COC (L2) ∪ SMC (L2)) ∩ langConstructsHC

e (L2)). According to
the above single namespace document discussion, there must be a non-identity trans-

formation T2 that maps d2 to a valid document d′2: d2
T2−→d′2. If d′2 replaces d2 within

any d3 ∈ d1
+
←−
ImX

d2, the resulting document d′3 will be valid, according to assumptions

9 and 10. Specifically, if σ2 is a COC , d2 can only occur at at a place where content
is expected, because d3 is valid. Therefore, d′2 can also occur at the same place within
d1, because it is rooted at a handled construct. If d2 is rooted at an SMC construct,
d′2 will only be rooted at a COC construct, if d2 occurs at a place where content is
expected. Therefore, d′2 can always occur at the same place as d2. Consequently, if
σ2 ∈ COC (L2) ∪ SMC (L2), there is a non-identity transformation that can transform

all documents in d1
+
←−
ImX

d2 to valid XMLPipe documents.

Furthermore, if d2 cannot be natively presented and its processing relates to its

context, the transformation of all documents in d1
+
←−
ImX

d2 is well defined. Specifically,

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 126

3d
2d1d

3d
5d4d

5σ 5σ

Figure 7.1: Tree separation illustration

consider all documents d3 ∈ d1
+
←−
ImX

d2, where d2 is placed within an element σ5 of

d1. Additionally, consider the documents d4 and d5, where d4 is d1 without the σ5

rooted subtree and d5 consists of σ5, its descendants and d2. Figure 7.1 illustrates
the relationship between d3, d4 and d5. There must be a transformation T2 that can
process d2, within the context of its parent element, according to assumptions 1, 2

and 4. Consequently, T2 can process d5, so that d5
T2−→d′5. According to assumption

11, replacing d5 with d′5 results in a valid document. Therefore, if σ2 ∈ FOC (L2) or
σ2 ∈ langConstructsHC

a (L2), there is a well defined non-identity transformation that
maps d3 to another valid document

The composition of all the above cases proves Proposition 2. Specifically, all sin-
gle namespace valid documents are either directly presentable or can be transformed
by a non-identity transformation. Moreover, if both d1 and d2 are valid, d2 is a sin-
gle namespace document and d1 is either directly presentable or can be transformed

by a non-identity transformation, then all documents in d1
+
←−
ImX

d2 are either directly

presentable or can be transformed by a non-identity transformation. Consequently,
every valid XMLPipe document either is directly presentable or there is a non-identity
transformation that maps it to another valid document, according to Proposition 1.
According to Assumption 5, there are no circular dependencies, between the individual
transformation specifications. Therefore, a finite iterative transformation T can trans-
form a valid XMLPipe document to its most adequate representation, according to a
profile pr .

7.4.3 The transformation algorithm

Proposition 2 establishes the existence of an adequate transformation T for a mixed
namespace document d, but it does not define how to transform d. Nevertheless, the
above proof of Proposition 2 is a declarative construction of T . This section will use
the above proof as its foundation, in order to establish the various document trans-
formation aspects: the separation of d into its individual subtrees, the independent
application of the language transformations to each subtree and the combination of the
transformation outputs into the output document d′. Subsequently, it will describe the
resulting XMLPipe transformation algorithm.

A subtree separation process that individually processes each handled construct
subtree is adequate for the XMLPipe transformation process. Specifically, the lan-
guage specific transformations, for a language L, can process document subtrees that
are rooted at either a handled construct σ of L, if σ is a COC or an SMC element
construct, or an ancestor of a handled construct, otherwise. The proof of Proposition 2
performed only the minimum necessary separations, at the inter-language boundaries

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 127

Figure 7.2: Post order tree traversal

of a document. However, a subtree separation process that individually processes each
handled construct subtree is beneficial. Such a process can impede the use of intra-
language relationships between handled constructs, because it separates all handled
construct subtrees (even if they belong to the same namespace as their context). Nev-
ertheless, the lack of such relationships ensures the uniform and language independent
processing of all handled constructs, independently of their corresponding language.
Consequently, the XMLPipe subtree separation process creates a separate subtree for
each document handled construct, in a similar manner to the process introduced in
Section 5.3.3 (page 88).

The individual subtrees of a document d must be processed in a postorder man-
ner, illustrated in Figure 7.2, because the proof of Proposition 2 transformed each
document subtree before its context. Such a transformation order is necessary for
preserving the context of handled constructs and for ensuring that all necessary con-
tent is available, prior to a transformation. Specifically, the transformation of FOC
rooted subtrees can relate to their context, within the source document. If a FOC
rooted subtree is transformed after its ancestors, its relationship with its context may
be harmed by the transformation of its ancestors. Additionally, the transformation of
SMC rooted subtrees must precede the transformation of their context, because they
can introduce document modifications that are necessary for transforming their con-
text. For instance, consider the alt:alt and imp:imp rooted subtrees, in lines 2 and
10 of the driving example. Both subtrees must be processed before doc:document,
because they introduce the document title and author information, which is necessary
for transforming the doc:document rooted subtree. Consequently, XMLPipe processes
the individual subtrees in a postorder manner.

An iterative transformation that processes a document’s subtrees, in a postorder
manner, can produce its optimal interpretation in a finite number of iterations. Specif-
ically, consider an iterative postorder separation process that replaces all subtrees with
the output of their corresponding transformations, until all document constructs be-
long to languages in Lp. As described in the proof of Proposition 2, replacing a subtree
with the output of its corresponding transformation results in a valid document, which
is an interpretation of the original presentation information. Consequently, each itera-
tion will result in a document interpretation that is closer to the document’s optimal
presentation, according to a profile pr . Since there are no circular transformation de-
pendencies, such an iterative process will result to a natively presentable document
interpretation, within a finite number of steps.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 128

XMLPipe mixed namespace transformation:
The function transform : D × Profiles → D represents the transformation T ∈
T

Lp :ImX

Ld:ImX(Ld), which maps a valid XMLPipe document d to its most appropriate

representation d′, according to a profile pr .

function transform(D doc,Profiles pr)→ D
let d′ = d
let n be the first node of d′, according to a postorder tree traversal
while (true)

let σ be the XML construct that corresponds to n
let L be the language that corresponds to σ
let n′ be the the next postorder tree traversal node after n
if L 6∈ Lp AND σ ∈ langConstructsHC (L)

if T ′ is the optimal transformation for L, according to profile pr

if σ ∈ (COC (L) ∪ SMC (L)) ∩ langConstructsHC
e (L)

Separate d1 from d′, where d1 is rooted at n.
else

Separate d1 from d′, where d1 is rooted at the parent of n.
end if

apply T ′ to d1: d1
T ′

−→d′1
if d′1 is not an empty tree

replace d1 with d′1, within d′

let n be the first node of d′1 according to a postorder traversal
else

let n = n′

end if
else //there is no appropriate transformation

the transformation fails; exit
end if

else //the n rooted subtree does not require separate processing
if n is the root of d′

if all d′ nodes belong to languages in Lp

the transformation is successful; exit
else

the transformation fails; exit
end if

else
let n = n′

end if
end if

end while
end function

Figure 7.3: The XMLPipe transformation algorithm

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 129

Figure 7.3 illustrates the XMLPipe transformation algorithm (transform function),
which is such an iterative process. Specifically, the main algorithm loop performs a pos-
torder search for non-natively supported handled constructs. For each such construct,
it uses the XMLPipe binding model to locate the optimal corresponding transforma-
tion. transform fails if there is no adequate transformation, because it cannot map
the subtree to a natively supported representation. Otherwise, transform separates
the appropriate subtree, applies the corresponding transformation and uses its output
to replace the initial subtree. If the generated subtree is not empty, the postorder
search proceeds into the newly introduced nodes, because they may require further
preprocessing.

transform terminates after traversing all document nodes. If all the resulting con-
structs are natively supported, transform considers d′ as the optimal interpretation of d,
and it terminates successfully. If there are remaining non-natively supported constructs,
transform fails, because either d is invalid or the used transformation specifications do
not comply with the assumptions of Table 7.2. In both cases, the algorithm terminates
in a finite number of steps, because there are no circular dependencies between the
transformation specifications.

7.5 Transformation semantics

A generic document transformation process must use an optimal transformation speci-
fication for each document subtree, but transform does not define the details of such a
process. This section introduces the necessary transformation semantics, for performing
such a selection. Moreover, it investigates their binding and the necessary interopera-
tion between the transformation model and the binding and adaptation models, which
allows the selection of the optimal subtree transformation.

The specification of subtree transformations by transformation pipelines is benefi-
cial, because pipelines integrate and enhance functionality of the existing transforma-
tion technologies. Consequently, XMLPipe semantics describe all transformations using
transformation pipeline specifications. PipeSpec will represent the set of all XMLPipe
transformation semantics specifications, and it will be described in the subsequent
transformation pipelines section (Section 7.7).

Set of all pipeline specifications (PipeSpec): The set PipeSpec contains all
XMLPipe pipeline specifications

The pipeline specifications can be associated with language URIs, but a more fine
grained association that is based on handled constructs is beneficial. Specifically, for
each language L, its corresponding transformations must define the processing of all
its valid documents, according to Assumption 2. Therefore, it is sufficient to asso-
ciate the namespace URI of L with its corresponding pipeline specifications. However,
their association with the individual language handled constructs assists the modu-
lar specification of transformation semantics, because the individual constructs of a
language can require significantly different processing. For instance, consider a trans-
formation that is adequate for XHTML browsers and is associated with language Ldoc

(introduced in the driving example). A declarative transformation technology, such as
XSL-T, can straightforwardly map the Ldoc constructs to their corresponding XHTML
representation. However, if the semantics author also wishes to adapt the doc:img

referenced images to an adequate representation for the target browser, an imperative

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 130

Handled

construct
locateHCTS()

Handled

construct

transformation

semantics

Binding adaptation

information

Transformation

pipeline specification1

Transformation semantics

0..1

1..*

Figure 7.4: Handled construct transformation semantics

transformation specification is necessary, such as a Java based DOM manipulator. If
transformation specifications are associated with the individual handled constructs, the
transformation semantics of Ldoc can be composed out of an imperative and a declara-
tive specification, for the doc:img rooted subtrees and the remaining Ldoc constructs,
respectively. Therefore, the XMLPipe transformation specifications are associated with
each individual handled construct.

The XMLPipe adaptation model established the binding adaptation specification,
which provides the necessary information for choosing the optimal transformation spec-
ification, for an adaptation profile. The adaptation measure evaluator enables the selec-
tion of the optimal transformation alternative, because it maps each binding adaptation
specification to an absolute comparable measure. Therefore, the XML transforma-
tion semantics contain an optional binding adaptation specification, in addition to the
transformation pipeline specification. The binding adaptation specification is optional,
because not all transformation specifications depend on the adaptation requirements.
For instance, the processing of most SMC constructs, such as the imp:import handled
construct, is adaptation requirements independent.

Figure 7.4 outlines the organisation of the XMLPipe transformation semantics.
Specifically, each handled construct is associated with one or more transformation
semantics alternatives. Each alternative consists of a transformation pipeline specifi-
cation and an optional binding adaptation specification. HCTSemantics will represent
the set of all XMLPipe transformation semantics.

Transformation semantics (HCTSemantics): The set HCTSemantics contains
all the transformation semantics, which consist of an optional binding adaptation
specification and a pipeline specification:

HCTSemantics = ((B ∪ {ε}) × PipeSpec)

The adaptation and binding models enables the optimal transformation location
and selection. Specifically, the XMLPipe binding model is responsible for retrieving all
alternative transformation semantics that correspond to a handled construct. Func-
tion locateHCTS () will map a handled construct to its corresponding transformation
specifications, and it is a part of the binding component interface. The process of
selecting the optimal specification can use the adaptation model measure function, in

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 131

order to retrieve a comparable adaptation measure for each alternative. The optimal
transformation alternative is the transformation that is associated to either the max-
imum adequacy measure or no binding adaptation specification, if there are no other
adequate pipeline specifications. The latter case accommodates adaptation require-
ment independent specifications, which do not require an associated binding adaptation
specification. Function bestHCTS uses locateHCTS and measure to return the optimal
pipeline specification for a pair of a handled construct and an adaptation profile.

Transformation semantics location function (locateHCTS): The handled
construct transformation semantics location function
locateHCTS : Σ → ℘(HCTSemantics) maps a qualified term to its corresponding
semantics: ∀σ ∈ Σ, locateHCTS (σ) = {hcts1, hcts2, . . . , hctsn}, where ∀i, hcts i is an
alternative transformation semantics for σ.

Optimal pipeline selection function (bestHCTS): The optimal pipeline se-
lection function bestHCTS : Σ × Profiles → PipeSpec maps a pair of a handled
construct and an adaptation profile to their corresponding optimal pipeline specifi-
cation. If locateHCTS (σ) = {(B1, ps1), . . . , (Bn, psn)} then bestHCTS (σ, pr) = psk,
where

measure(pr , Bk) = max
∀i,Bi 6=ε

(measure(pr , Bi)) 6= 0

OR
Bk = ε, if max

∀i,Bi 6=ε
(measure(pr , Bi)) = 0

7.6 Addressing the assumption constraints

The transform and semantics definitions allow the transformation of presentation doc-
uments only when the Table 7.2 assumptions apply. However, a subset of these as-
sumptions are sufficiently restrictive to prohibit most XMLPipe practical applications.
For instance, they require that the presentation integration model is equivalent to the
XMLPipe integration model, but no existing browser supports such a model. More-
over, they do not allow the processing of semantically correct but invalid documents,
such as the driving example, because they require that the input and output of all
transformations is valid. Such assumptions were necessary for proving the feasibility of
a mixed namespace transformation process, but the proposed algorithm has a signifi-
cantly wider applicability. This section describes an investigation of the assumptions,
within the context of the proposed algorithm, and proposes a looser set of assumptions
and a corresponding set of algorithm modifications.

7.6.1 Subtree copying

The subtree transformations must copy all foreign namespace content to its correspond-
ing place within their output, according to Assumption 3. Existing transformation
technologies provide straightforward ways to copy XML subtrees that occur at well
defined places within a document. However, the development of most transformation
specifications that copy all foreign namespace subtrees, which can occur at any doc-
ument position, is either impossible or prohibitively complex. Nevertheless, for the
majority of XML languages, it is is sufficient to only copy foreign namespace subtrees
at well defined places.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 132

Copying foreign namespace subtrees only at places where content is expected is
sufficient, in the majority of cases. Specifically, the assumed subtree copying is neces-
sary for preserving the presentation information that is introduced by the individual
subtrees. If a document subtree introduces presentable information, it must be either
a COC rooted subtree or an SMC rooted subtree that its processing results in a COC
rooted subtree. Both can validly occur only at places where content is expected, ac-
cording to Assumption 10. FOC constructs amend the presentation of their context;
consequently, most FOC rooted subtrees occur as children of COC , because COC ex-
plicitly introduce presentable content. Furthermore, most COC constructs, such as
the driving example’s doc:em and doc:p elements, expect arbitrary content as their
children. Consequently, copying foreign namespace subtrees at places where content
is expected is sufficient for preserving all presentable pieces of information and the
majority of presentation customisations introduced by FOC rooted subtrees.

If a FOC rooted subtree occurs at a place where content is not expected, such a
reduced subtree copying scheme will not result in presentable information loss, but it
may result in reduced presentation functionality. Specifically, if the transformation of
a FOC rooted subtree adds content to its parent element to amend its presentation
and it occurs at a place where content is not expected, the processing of its ancestors
will ignore the introduced content. The resulting presentation might not be optimal,
but it will not miss any presentable information, because FOC constructs only amend
existing presentable information. Alternatively, the transformation of a FOC rooted
subtree can introduce new context to its parent. The new context must be rooted at
a handled construct σ, which can be a COC , a FOC or an SMC . The first case can
only happen, if σ occurs at a place where content is expected, according to Assumption
11. Consequently, the transformation result will be preserved by the processing of its
context. If the introduced context is a FOC subtree, the new subtree only enhances
the functionality its context; therefore, there will be no loss of presentable information,
if it is not copied. Thirdly, if the introduced context is an SMC rooted subtree, its
iterative processing will result in one of the first two cases.

Consequently, transformation specifications that copy all foreign namespace sub-
trees are beneficial. However, for most integration cases it is sufficient to only copy
foreign namespace subtrees that occur at places where content is expected. When such
copying is not sufficient the transformed document may not be optimal, but it does
not miss any presentable information. Therefore, a looser version of Assumption 3
is beneficial, because it significantly simplifies the development of the transformation
specifications. The revised Assumption 3 is that each transformation must copy, at a
minimum, all foreign namespace subtrees that occur at places where content is expected
to their corresponding place within its output.

7.6.2 Transformation of semantically correct invalid documents

There are two cases of semantically correct but invalid documents. The first case is
when the processing of an SMC construct introduces content that is required by its
ancestors. For instance, consider the alt:alt and imp:import constructs, in lines 2
and 10 of the driving example. Their transformation introduces the necessary docu-
ment title and author information. However, the document is invalid prior to their
processing, because the doc:document does not contain the required doc:title and
doc:author elements. The second case of semantically correct but invalid documents
is when either the ancestors or the descendants of an SMC are invalid as independent

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 133

subtrees, but become valid after its transformation. For instance, the alt:alt rooted
subtree, it line 2 of the driving example, is an invalid document subtree, because the
doc:title element is not a handled construct and it cannot validly occur under a for-
eign namespace element. The transformation of the alt:alt rooted subtree substitutes
itself with one of the alternative doc:title elements, which can validly occur under
the doc:document.

The design of the proposed transformation algorithm relied on the assumption that
the input document is valid, according to the XMLPipe integration model. However,
it can process semantically correct but invalid documents, without any modifications.
Specifically, it successfully addresses the first case, because its postorder document
traversal ensures that each subtree is processed after all its descendant SMC rooted
subtrees. For instance, transform processes the doc:document rooted subtree after
processing the imp:import construct, which imports the necessary author information.
transform also addresses the second case of invalid semantically correct documents, be-
cause it requires no inter-language interoperation. Each language transformation must
only copy foreign namespace subtrees and not attempt to interpret them. Therefore,
the transformation of an SMC rooted subtree can copy the foreign namespace subtrees,
without checking their validity. Furthermore, the postorder transformation order en-
sures that the necessary modifications of any invalid ancestor subtrees, will have been
made prior to their processing. For instance, the alt:alt construct transformation can
copy the doc:title elements to its output, independently of their validity. After its
transformation, its previously invalid context (the doc:document rooted tree) becomes
valid, because it contains the necessary document title information. Therefore, the
defined transform function is adequate for semantically correct but invalid documents.

7.6.3 Circular transformation dependencies

Assumption 5 prohibits circular transformation relationships, but the processing of
several languages can benefit from such relationships. Specifically, the termination
of transform is guaranteed only when there are no circular dependencies, which can
lead to infinite transformation loops. For instance, consider the Limp language. The
transformation of the imp:import construct can potentially introduce a circular depen-
dency with itself, if an imp:import element imports a document that contains further
import statements. If a document contains an imp:import element that imports the
same document, the transform function will iterate indefinitely. Limp semantics must
be constrained to only allow single level content inclusion, in order to comply with
Assumption 5. Such a restriction would guarantee the transformation termination, but
it would significantly reduce its functionality.

Circular transformation relationships can be allowed, if there is a well defined
method to identify and terminate any infinite transformation loops. A set of prede-
fined interfaces/protocols could allow sufficient interoperation, between the individual
transformations, to enable the identification of such loops. However predefined inter-
faces and/or protocols are not adequate for an open set of languages. An alternative
method, which does not require inter-language interoperation, is to allow the interop-
eration of separate transformation invocations that correspond to the same language.
Such interoperation is sufficient, because each infinite transformation loop must result
in a periodic application of the same transformation, since there can only be a finite
number of transformations. Therefore, the XMLPipe transformation model can allow

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 134

circular transformation relationships, if it enables the interoperation between transfor-
mations instances that correspond to the same language.

The XMLPipe transformation model utilises its internal adaptation profile repre-
sentation to achieve the necessary interoperation, because the adaptation requirements
information is available to all transformation components. Specifically, each language
L can have a set of language specific terms, which are adaptation terms that belong to
the same namespace as L. A transformation can introduce adaptation statements that
use language specific terms, which correspond to the same language as the transfor-
mation. For each transformation T that processes a document subtree, the XMLPipe
transformation model provides all relevant language specific statements: statements
that correspond to the same language and have been introduced by the ancestors of
its input subtree ancestors. This mechanism allows a transformer to pass informa-
tion to all transformers that process its output and correspond to the same language.
Each transformer can use the provided information to identify and terminate any in-
finite transformation loops. Additionally, this mechanism prohibits the interoperation
between unrelated transformer instances, such as transformers that correspond to sep-
arate languages or to unrelated document subtrees.

For instance, a transformation T that corresponds to the Limp language can use
language specific terms to detect the recursive inclusion of the same document. Specif-
ically, each transformation instance can add the URI of the imported document to a
language specific statement. If an imp:import construct imports a document that has
already been imported by its ancestors, the language specific statement will already
include the corresponding document URI. The transformer can avoid the infinite inclu-
sion loop by either terminating the transformation or ignoring the import construct.

Consequently, Assumption 5 is not necessary, if the transformation algorithm con-
tains the necessary functionality for propagating the language specific term information.
In contrast, it can be substituted by an alternative assumption: if a transformation
can introduce a circular dependency, it must also detect and terminate any infinite
transformation loops.

7.6.4 Processing natively supported constructs

Assumption 6 prohibits the generation of Lp constructs that require additional pre-
processing, in order to ensure the sufficiency of a preprocessing approach. However,
the preprocessing of natively supported constructs can be beneficial. For instance, the
preprocessing of a natively supported construct for document inclusion can allow the
preprocessing of any included content. Moreover, document preprocessing can adapt
the binary representation of XHTML referenced images that are not supported by a
target browser, in a similar manner to the doc:img processing, which was described in
Section 7.5.

transform can enable the preprocessing of natively supported constructs, after the
introduction of two minor modifications. The first “if ” condition must no longer test
whether a construct is non natively supported, but whether it has an associated trans-
formation. Furthermore, it is beneficial that transform traverses the output of a trans-
formation, only when it differs from the transformation’s input. Specifically, the trans-
formation of a natively supported construct can either modify it or leave it unchanged,
since it can be natively presented. Such a transformation introduces a circular depen-
dency with itself, and must use the necessary intra-language interoperation to avoid

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 135

infinite loops. However, since identity transformations are common in such transforma-
tions, the additional subtree traversal check can significantly simplify the development
of the transformation specifications.

The introduced transform modifications allow the substitution of Assumption 6
with a looser alternative. Specifically, a transformation can introduce natively sup-
ported constructs that require further preprocessing, if there is an adequate transfor-
mation that can preprocess them.

7.6.5 Integration models equivalence

The final assumption that must be addressed is the equivalence of the XMLPipe and
the presentation integration models (Assumption 7). This assumption was necessary,
because the XMLPipe transformation model cannot be aware of all presentation inte-
gration models. However, such an assumption impedes all XMLPipe practical applica-
tions, because no existing browser supports the XMLPipe integration model.

However, adequate design of the transformation specifications can allow the docu-
ment preprocessing for presentation integration models that are less generic than the
XMLPipe integration model. Specifically, the postorder processing order ensures that
each transformation only processes constructs of its corresponding language and of
natively supported languages. Therefore, a transformation can integrate its output
constructs with the previously processed subtrees in a valid way, according to the tar-
get presentation integration model. For instance, if a presentation integration model
requires a connecting element between an element and its foreign namespace children,
the individual transformations can add such connecting constructs, before copying the
foreign namespace subtrees. Additionally, if the target browser does not support any
integration model, a transformation can either output the same language as its subtrees
or discard any foreign namespace subtrees. The latter can result in information loss,
but it allows a partial presentation of an otherwise non presentable document.

If all transformation specifications enforce the target integration model, Assumption
7 can be loosened to only require that the presentation integration model is less generic
than the XMLPipe integration model.

7.6.6 Alternative assumptions and transformation algorithm

Table 7.3 summarises the revised set of transformation assumptions, according to the
aforementioned discussion. A subset of these assumptions are the transformation spec-
ification design principles. Specifically, specifications that are adequate for subtree
transformations within a mixed namespace document must follow assumptions 2, 3
and 4. Furthermore, transformations that preserve the semantic validity of documents,
must follow assumptions 9, 10 and 11.

Figure 7.5 illustrates the revised transformation algorithm, which includes the nec-
essary modifications for the revised set of assumptions. Specifically, it no longer requires
that all processed handled constructs are not natively supported. Additionally, it only
traverses a transformation’s output when it differs from its input, in order to assist the
development of transformations that process natively supported constructs. Moreover,
it uses the bestHCTS function to precisely define the transformation selection process.

Most algorithm modifications are responsible for the proposed intra-language inter-
operation, which allows the identification of infinite transformation loops. Specifically,
consider a transformation T ′ that is associated with a language L. If T ′ transforms a

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 136

ID Assumption
1 There is an adequate transformation specification for each language not in

Lp .
2 Transformation specifications can process all valid handled construct rooted

trees of their corresponding language.
3 Each transformation must copy at least the foreign namespace subtrees that

occur at places where content is expected to their corresponding place within
the transformation output, and it must enforce the presentation integration
model.

4 The transformation specifications that correspond to either FOC or at-
tribute handled constructs must be able to process them within the context
of a foreign namespace element.

5 Circular dependencies between transformation specifications can occur, if
they ensure that their recursive application does not result in an infinite
transformation loop.

6 The output of a transformation can introduce an Lp construct σ that re-
quires further preprocessing, if there are adequate transformation specifica-
tions for preprocessing σ.

7 If d ∈ VImP

Ld
then d ∈ VImX

Ld
.

8 If T corresponds to a non SMC construct of language L, its input and its
output must be valid according to the XMLPipe integration model. In the
case of SMC handled constructs the transformation input and output is not
necessarily valid, but it must be semantically correct.

9 A COC rooted subtree must be transformed to another COC rooted sub-
tree.

10 The transformation of an SMC rooted subtree cannot produce a COC
subtree, unless it occurs at a place where content is expected.

11 The processing of FOC and attribute handled constructs must preserve the
semantic correctness of the document. Specifically, it must add ancestors
to their parent element, only if

• the parent element is a handled construct

• it can occur at the corresponding place, within the added ancestors

• the root of the new content is a handled construct, which can be a
COC only if the parent element is a COC .

Additionally, it can add content to their parent, only if

• the added content is valid

• it occurs at a place where content is expected, if it is rooted at a
COC construct.

Table 7.3: Alternative transformation assumptions and design principles. The intro-
duced modifications have been emphasised

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 137

Revised XMLPipe mixed namespace transformation:

function transformRev (D d,Profiles pr)→ D
let d′ = d
let n be the first node of d′, according to a postorder tree traversal
while (true)

let σ be the XML construct that corresponds to n
let L be the language that corresponds to σ
let n′ be the next postorder tree traversal node after n
if σ ∈ langConstructsHC (L)

if bestHCTS (σ, pr) 6= ε

if σ ∈ (COC (L) ∪ SMC (L)) ∩ langConstructsHC
e (L)

Separate d1 from d′, where d1 is rooted at n.
else

Separate d1 from d′, where d1 is rooted at the parent of n.
end if
let pr ′ contain all adaptation statements associated with L

apply T ′ to d1: d1
T ′

−→d′1, using both pr and pr ′

let pr ′′ contain all L specific statements introduced by T ′

if d′1 6= d1 AND d′1 is not an empty tree
associate pr ′′ with L and with the parent of n
replace d1 with d′1, within d′

let n be the first node of d′1, according to a postorder traversal
else

if there is a language specific pr1 associated to n′ parent
discard pr 1

end if
let n = n′

end if
else if L 6= L′ //No appropriate transformation

the transformation fails; exit
end if

else //the n rooted subtree does not require separate processing
if n the root of d′

if all d′ nodes belong to languages in Lp

the transformation is successful; exit
else the transformation fails; exit
end if

else
let n = n′

if there is a language specific pr1 associated with the parent of n′

discard pr1

end if ; end if ; end if ; end while
end function

Figure 7.5: Revised transformation algorithm

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 138

Integration model
transformation driver

ndd ′′...1

Transformation
pipeline driver

pr

ni dd ...

d' pr d

Binding
component

)},(),...,,{(11 ii ikikii pBpB

],1[ni ∈∀

Int. Model ID
Proc. Model ID

iσ

Adaptation measure
evaluator

ijB

ni pp ...

prijmeasure
Legend

d
pr

d'

ni dd ...

ndd ′′...1

Input document

Document subtrees

Transformed document

Adaptation profile

Transromed sutbrees

Legend

ip
ijmeasure

ijB

iURI URI of root construct

ijp root construct j-alternative
pipeline specification

j-alternative binding specification

j-alternative adequacy measure
most adequate pipeline for

id

id

id

],1[ni ∈∀
],1[ikj ∈∀

Figure 7.6: Integration model transformation driver

subtree that is rooted at a construct n and introduces adaptation statements that are
specific to L, transformRev associates them with the parent of n. The adaptation state-
ments are not associated with n, because the subsequent transformations can modify
the n rooted subtree and may harm such associations. The proposed intra-language
interoperation allows a transformation to only pass information to the transformations
of its descendants. Therefore, language specific adaptation statements only apply to
the descendants of n, and the postorder traversal removes all adaptation statement
associations when moving up the tree.

The integration model transformation driver implements transformRev , in order to
drive the transformation of a presentation document. Figure 7.6 illustrates the inte-
gration model transformation driver, its interface and its interoperation with the other
processing components. Specifically, it converts an input document d to an output
document d′, according to an adaptation profile pr . The postorder subtree separation
of d results in the d1 . . . dn subtrees. For each subtree di, the integration model trans-
formation driver provides the corresponding handled construct σi and the integration
model identifier to the the binding component, in order to obtain the corresponding
transformation specifications. The binding component returns a set of multiple pairs of
transformation specifications and binding adaptation specifications. Subsequently, the
adaptation measure evaluator is used, in order to choose the optimal transformation
specification. Finally, the integration model transformation interacts with the transfor-
mation pipeline driver, which instantiates a pipeline transformation and applies it to
di. After the substitution of di with the transformation output, the integration model
transformation driver continues the postorder traversal, until it terminates.

7.7 Built-in transformation pipelines

The integration model transformation driver interoperates with the transformation
pipeline driver, because the XMLPipe transformation semantics use pipeline specifica-
tions to define the processing of the individual handled constructs. The pipeline driver
is responsible for instantiating the transformations that correspond to the pipeline

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 139

specifications and applying them to the document subtrees. This section describes the
XMLPipe transformation pipelines and transformation pipeline driver.

7.7.1 Atomic transformations

Each transformation pipeline may consist of multiple atomic transformations, which
allow the seamless integration of multiple transformation technologies. Specifically, the
concept of atomic transformations enables the encapsulation of the individual transfor-
mations under a common interface. The atomic transformation interface can be imple-
mented by both generic transformation technologies, such as XSL-T, or purpose built
transformers, such as imperative DOM manipulators. Consequently, the XMLPipe
transformation components can seamlessly use a variety of existing and future trans-
formation technologies, if they access them through the common atomic transformation
interface.

Atomic transformations must allow the transformation of document subtrees, in
addition to complete XML documents, as described in Section 7.1. Such a requirement
does not influence the common atomic transformation interface, since the structure of
a document subtree is interchangeable with the structure of a document, because of
the recursive nature of XML trees. However, document-specific operations must be
avoided. For instance, generic transformation approaches provide document specific
constructs, such as the XSL-T document root references. Such constructs are not well
defined within the context of subtree processing. Such a constraint does not reduce
the functionality of the individual transformations, because absolute constructs can be
substituted by alternative relative constructs, which are adequate for subtree process-
ing. Consequently, the semantics authors must not use document-specific constructs,
in order to ensure the adequacy of the atomic transformations for the XMLPipe trans-
formation model.

Atomic transformations do not produce an output subtree, as opposed to the ma-
jority of transformations. Specifically, an atomic transformation directly modifies its
input, because transformRev transforms documents by substituting each subtree with
the result of its corresponding transformation. Transformation implementations that
are specific to XMLPipe can directly support such behaviour. However, existing trans-
formation approaches produce an output document, instead of modifying their input.
Consequently, atomic transformation wrappers are necessary for adapting the existing
transformation functionality to the XMLPipe tree modifying behaviour.

Finally, atomic transformations must be able to both access the adaptation pro-
file and introduce language specific adaptation statements. Adaptation profile access
is essential for adaptive transformations, which customise their output according to
the adaptation requirements. A straightforward way to introduce language specific
adaptation statements is also essential, because it allows the necessary intra-language
communication for identifying and terminating infinite transformation loops. In a sim-
ilar manner to above, XMLPipe specific transformation implementations can straight-
forwardly access and modify the adaptation requirements. In contrast, the wrappers
of existing transformation technologies must provide technology specific methods to
access and introduce the adaptation statements.

The atomic transformation interface can consist of a single function. Each atomic
transformation processes a document subtree, according to an adaptation profile and
can optionally introduce a set of language specific statements. Therefore, a single
two-parameter function that accepts a pair of a document subtree and an adaptation

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 140

profile and returns a list of adaptation statements is sufficient. Such an interface does
not restrict the functionality of a transformation and does not require more transfor-
mation functionality than the transformation of document subtrees. Consequently, it
is adequate for encapsulating the multitude of current and future transformation tech-
nologies. The pilot XMLPipe implementation, which will be described in Chapter 10,
uses such a function for the atomic transformation interface.

However, we will define the atomic transformations as functions that map an adap-
tation profile to a transformation, in order to be consistent with the introduced trans-
formation notation. Specifically, A will represent the set of all XMLPipe atomic trans-
formations. Each atomic transformation A ∈ A is a function that maps an adaptation
profile pr to a transformation, which transforms a document subtree to its correspond-
ing transformation output. For each atomic transformation A ∈ A and adaptation

profile pr , d
A(pr)
−→

I
d′ represents the transformation of d to d′, according to the adapta-

tion profile pr and the external input I.

Atomic transformations (A): The set of atomic transformations A contains all
functions A : Profiles → T L:ImX

L:ImX(L).

7.7.2 Transformation wrappers

Atomic transformation wrappers are necessary for using existing transformation tech-
nologies. The atomic transformation interface allows direct modification of document
subtrees, access to the adaptation requirements and introduction of language specific
adaptation statements. Semantics authors can define atomic transformations by either
directly implementing the atomic transformation interface or using an existing transfor-
mation technology, such as XSL-T. XMLPipe specific transformation implementations
can directly access the atomic transformation functionality. However, atomic trans-
formation wrappers are necessary for the integration of existing transformation tech-
nologies. Such wrappers are responsible for modifying the input subtree, according to
the output of the underlying transformation technology, and for providing technology
specific means to access the adaptation requirements and introduce language specific
adaptation statements. Additionally, it is beneficial if the transformation wrapper de-
velopers map the XMLPipe transformation design principles, summarised in Table 7.3,
to the corresponding technology specific design guidelines. Such design guidelines assist
the semantics authors to create transformation specifications that are adequate for the
XMLPipe, without being aware of the underlying XMLPipe transformation model.

For instance, consider an XSL-T atomic transformation wrapper, which uses an ex-
isting XSL-T implementation. The wrapper must pass its input subtree to the XSL-T
transformer and replace it with the transformation’s result. XSL-T stylesheet specifi-
cations do not include a mechanism for accessing sets of adaptation requirements. The
wrapper can insert an adaptation profile representation to the transformation’s input,
using XMLPipe specific elements. An XSL-T stylesheet will be able to use XPath ex-
pressions to access the adaptation requirements information. A similar method can be
used for the introduction of language specific adaptation statements. For instance, if
the transformation output contains such XMLPipe specific elements, the wrapper can
interpret them as language specific adaptation statements.

Table 7.4 describes the XSL-T design guidelines, which correspond to a subset of
the Table 7.3 assumptions (2, 3 and 4). Specifically, each stylesheet must include top

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 141

Guideline Description Example
Multiple
top-level
templates
(based on As-
sumption 2)

There must be a top-level XSL-T
template for each handled con-
struct that the transformation
processes.

For language Ldoc, there must
be a top level template for the
doc:document, doc:em, doc:img

and doc:p constructs. For instance:
<xsl:template match=’’doc:p’’>

Relative XPath
expressions
(based on As-
sumption 2)

XPath expressions must use rel-
ative paths instead of absolute
document root references.

Use */doc:section instead of
//*/doc:section. Such changes
might require stylesheet restructur-
ing.

Copy unknown
content
(based on As-
sumption 3)

Include identity transformations,
for all content, and null transfor-
mations for content that must not
be copied to the output. Apply
them, at a minimum, to places
where content is expected.

Use
<xsl:apply-templates

select=’’*’’/>

instead of
<xsl:apply-templates

select=’’doc:p’’/>

Copy unknown
context
(based on As-
sumption 4)

For attribute or FOC handled
constructs, apply the copy tem-
plates at the root of the tree, in-
stead of directly using the lan-
guage constructs

Use
<xsl:apply-templates

select=’’*’’/>,
instead of
<xsl:apply-templates

select=’’./@xl:href’’/>

in combination with generic content
copying templates.

Table 7.4: XSL-T transformation design guidelines

level transformation templates for all the handled constructs that it processes, in or-
der to allow the processing of handled construct rooted subtrees. XSL-T uses XPath
expressions for the selection of document node sets. XSL-T stylesheets must solely
use relative XPath expressions, because absolute XPath expressions are not well de-
fined, within the context of subtree processing. Additionally, all stylesheets must copy
foreign namespace content that occurs at places where content is expected and at as
many other places as possible. Stylesheets that correspond to FOC or attribute han-
dled constructs must also copy their foreign namespace parent and its descendants,
because the subtree separation process for FOC and attribute handled constructs in-
cludes their parent element. The semantics authors that use XSL-T must only be aware
of the identified design principles, and they are not required to know the details of the
XMLPipe transformation model.

7.7.3 Transformation pipelines composition

XMLPipe transformation pipelines are composed out of atomic transformations and
validation commands. Existing alternative pipeline approaches consist of transformers,
sources, mergers and sinks, as described in Section 7.1. However, only transformers
are relevant to XMLPipe. Specifically, sources and sinks are not necessary, because
the document input and output are a priori defined by the subtree separation process.
In a similar manner, mergers are not necessary, because there is a single document
input. The validation commands are necessary, because they allow the interoperation

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 142

11 Im:L 22 Im:L

'
1L 1T

22 Im:L 33 Im:L

'
2L 2T

11 Im:L 33 Im:L

'
2

'
1 LL ∪

),(21 TTseq

Figure 7.7: XMLPipe transformation pipelines: sequence pipeline

Sequence pipeline (seq): The sequence seq pipeline is a function

seq :
⋃

∀
L1,L1

′,L2,
L2

′,L3, Im1, Im2

T L2:Im2

L1:Im1(L1
′)
× T L3:Im3

L2:Im2(L2
′)
→ T L3:Im3

L1:Im1(L1
′∪L2

′)

where d
seq(T1,T2)
−→ d′ iff d

T1−→d1 and d1
T2−→d′.

between the pipeline driver and the validation model. A pipeline based interoperation
approach between the transformation and validation models is adequate for XMLPipe,
as described in Section 7.1. Consequently, the XMLPipe transformation pipelines are
solely composed out of atomic transformations and validation commands.

The XMLPipe pipeline composition uses a recursive application of three composi-
tion methods: transformation sequence, transformation selection and dynamic trans-
formation. XMLPipe allows the recursive composition of transformation pipelines,
because a transformation pipeline is also a transformation, as described in Section
2.3.2. Furthermore, it is beneficial, because it allows the arbitrary complex nesting of
transformation pipelines.

The transformation sequence pipeline is a sequential composition of two transforma-
tions, where the second transformation is applied to the result of the first. Sequential
composition is essential for the modular design of transformation specifications, be-
cause it allows their partitioning into sequences of simpler steps. Figure 7.7 illustrates
the sequence pipeline. seq(T1, T2) represents the sequential composition of T1 and T2:
it firstly applies T1 to the document input and subsequently applies T2 to the output of
the first transformation. The sequence pipeline input and output document types are
identical to the input of T1 and the output of T2, respectively. A sequence pipeline only
combines two transformations, but nested sequence pipelines can create arbitrarily long
transformation chains. For instance, seq(seq(T1, T2), T3) is the sequential composition
of T1, T2 and T3.

The transformation selection pipeline enables the selection of alternative transfor-
mations, according to the adaptation requirements. A selection pipeline consists of a
set of transformations that are associated with optional adaptation expressions. For
each adaptation profile, the optimal transformation alternative can be chosen, in a sim-
ilar manner to the transformation semantics selection by bestHCTS function. Figure
7.8 illustrates a transformation selection pipeline that chooses between three transfor-
mations: T1, T2 and T3. For an adaptation profile pr , sel((T1, B1), . . . , (Tn, Bn)) is
equivalent to the optimal transformation of {T1 . . . Tn}, according to pr . The input

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 143

1531 Im:LLL ∩∩ 2642 Im:LLL ∪∪

'
5

'
3

'
1 LLL ∪∪

11 Im:L
22 Im:L

'
1L 1T

13 Im:L 24 Im:L

'
3L 2T

15 Im:L 26 Im:L

'
5L 3T

Figure 7.8: XMLPipe transformation pipelines: transformation selection

Selection pipeline (seq): The selection sel pipeline is a function

seq :
⋃

∀n,∀i ∈ [1, n],
∀Li1,Li1

′,Li2 , Im1, Im2

(T
L12

:Im12

L11
:Im11(L11

′)
× (B ∪ {ε}))× · · · ×

×(T
Ln2

:Imn2

Ln1
:Imn1(Ln1

′)
× (B ∪ {ε}))→

→ T
L12

∪···∪Ln2
:Im2

L11
∩···∩Ln1

:Im1(L1
′∪···∪Ln1

′)

where for an adaptation profile pr , sel((T1, B1), . . . , (Tn, Bn)) = Tk where

measure(pr , Bk) = max
∀i,Bi 6=ε

(measure(pr , Bi)) 6= 0

OR
Bk = ε, if max

∀i,Bi 6=ε
(measure(pr , Bi)) = 0

and output document types of a selection pipeline depend on all the transformations,
as opposed to the the sequential composition. Specifically, its input is the intersec-
tion of the inputs of its individual transformations, because the selection mechanism
can choose any of the alternative transformations. In a similar manner, its output
document type is the union of the output types of its individual transformations.

The dynamic transformation pipeline enables the customisation of transformations,
according to dynamically produced information. Specifically, dynamic pipelines feed
the output of a transformation to the external input of another transformation. If an
atomic transformation uses its external input to acquire its transformation stylesheet,
a dynamic transformation pipeline enables the dynamic generation of a transformation.
Dynamic pipelines can significantly simplify some transformation specifications. For
instance, consider the imp:import construct, illustrated in the driving example. The
select attribute of the imp:import element specifies an XPath expression, which
selects the imported nodes. XSL-T stylesheets do not allow dynamic XPath expressions.
Therefore, an XSL-T stylesheet cannot reuse its built-in XPath engine, in order to
perform the selection of the imported content. A dynamic pipeline enables the dynamic
creation of an XSL-T stylesheet that statically contains the necessary XPath expression.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 144

11
Im:L

22
Im:L

'

1L
1T

22
Im:L 33 Im:L

'

2L 2T

11
Im:L 33 Im:L

'

1L
44

Im:L 55 Im:L

'

4L 3T
'

2LU

Figure 7.9: XMLPipe transformation pipelines: dynamic transformation

Dynamic pipeline (dyn): The dynamic pipeline dyn pipeline is a function

dyn :
⋃

∀L1,L1
′,L2,L2

′,
L3,L4,L4

′,L5, Im1,
Im2, Im3, Im4, Im5

T L2:Im2

L1:Im1(L1
′)
×T L3:Im3

L2:Im2(L2
′)
×T L5:Im5

L4:Im4(L4
′)
→ T L3:Im3

L1:Im1(L1
′∪L2

′)

where d
dyn(T1,T2,T3)
−→ d′ iff d

T1−→d1 and d
T3−→d2 and d1

T2−→
d2

d′.

Figure 7.9 illustrates the dynamic transformation composition. dyn(T1, T2, T3) rep-
resents the application of T2 to the output of T1, according to the output of T3. Specif-

ically, the input document d is firstly transformed by T1, which produces d1: d
T1−→d1.

Additionally, d is also transformed by T3, which produces d′1: d
T3−→d′1. Finally, the

application of T2 to d1, according to d′1, results in the output of the dynamic pipeline

d′: d1
T2−→
d′
1

d′. The output of T3 only customises T2, and it does not explicitly process

the resulting document. Consequently, the input and the output of a dynamic trans-
formation are the same as the input and the output of a sequential composition of T1

and T2.
The transformation pipeline driver is responsible for the interoperation between

validation and transformation, because a pipeline based interoperation approach is ad-
equate for XMLPipe, as described Section 7.1. Specifically, a semantics author would be
aware of which transformation specifications require validated input, because semantics
authors are the entities that define the individual transformation pipelines and atomic
transformations. Consequently, XMLPipe transformation pipeline specifications allow
the introduction of explicit validation steps, in addition to the atomic transformations.
Such validation steps enable a semantics author to liberally introduce all the necessary
validation processing.

Two types of pipeline initiated validation methods are necessary: the complete
subtree validation and the handled construct subtree validation. The former tests the
validity of all the nodes of a subtree, and it is necessary for ensuring the validity of a
subtree, according to the XMLPipe validation model. The latter only tests the validity
a subtree’s top level nodes, which belong to the same namespace as its root element.
Handled construct validation is essential for processing semantically correct but invalid

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 145

documents, because it allows the validation of only the necessary constructs for trans-
forming a subtree. For instance, consider the driving example languages Ldoc and Lalt .
A transformation pipeline that is associated with Ldoc may require a complete subtree
validation step, in order to ensure the validity of the transformed subtrees. In contrast,
a transformation pipeline that is associated with Lalt can use the handled construct
subtree validation, in order to allow the transformation of semantically correct docu-
ments. Specifically, the contents of the alt:case element do not have to be valid, in a
semantically correct document, as described in Section 7.2. The handled construct val-
idation overcomes this problem by only testing the usage of the alt:alt and alt:case

constructs, which are necessary for the application of the transformation.
Both validation methods can be used as atomic transformations, within a pipeline

specification. Specifically, a subtree validation process can also be considered as a
transformation process, because it process a subtree, introduces the necessary default
attribute values and either returns successfully or fails. The XMLPipe pipeline specifi-
cations allow the use of two predefined constructs, which correspond to the two subtree
validation methods, in the same places that they allow atomic transformations. The
pipeline driver interoperates with the XMLPipe validation model, described in Chapter
8, in order to perform each validation step.

Summarising, an XMLPipe transformation pipeline can be an atomic transforma-
tion, a subtree validation step or their composition, using one of the tree pipeline
composition methods. Section 7.5 introduced an abstract definition of XMLPipe trans-
formation pipeline specifications, in order to allow the definition of the transformation
semantics. The above description of the XMLPipe pipelines allow a more fine grained
definition of transformation pipelines.

XMLPipe pipelines (Pipelines): The set of all XMLPipe pipelines Pipelines
contains all transformations in T L:ImX

L:L(ImX), that correspond to all atomic transforma-
tions, subtree validation constructs and pipeline compositions of pipelines. For a
profile pr ,

p ∈ Pipelines iff

p = A(pr) , A ∈ A
p = validateSubtree

p = validateHC

p = seq(p1, p2) , p1, p2 ∈ Pipelines
p = dyn(p1, p2, p3) , p1, p2, p3 ∈ Pipelines
p = sel(p1, B1, · · · , pn, Bn) ,∀i ∈ [1, n]pi ∈ Pipelines , Bi ∈ B

7.8 The complete transformation model

Figure 7.10 combines all introduced components, into the complete XMLPipe trans-
formation model. Specifically, the integration model transformation driver drives the
transformation process and implements the revised transformation algorithm, illus-
trated in Figure 7.5. For each document subtree d1 . . . dn, it interacts with the binding
component, in order to retrieve the relevant pairs of transformation pipeline specifica-
tions and adaptation binding specifications {(Bi1, pi1), . . . , (Biki

, piki
)}. After interact-

ing with the adaptation measure evaluator and choosing the most adequate specification
pi, it passes the control to the transformation pipeline driver.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 146

Handled
construct

transformation
semantics

Binding adaptation
information

Pipeline
specification1

Transformation semantics

0..1

Integration model
transformation driver

ndd ′′...1

Transformation
pipeline driver

pr

ni dd ...

d' pr d

Binding
component

)},(),...,,{(11 ii ikikii pBpB

],1[ni ∈∀

Int. Model ID
iσ

Adaptation measure
evaluator

ijB

ni pp ...

prijmeasure],1[ni ∈∀
],1[ikj ∈∀

Atomic
transformation

implementations

ijd ′

ijij Id ,

],1[ni ∈∀

Sequence pipeline

Dynamic pipeline

Selection pipeline

Atomic
transformation

2

31..*

Validation driver

ijdFeedback &
defaults

Binding
adaptation

specification 0..1

ijpr

Figure 7.10: XMLPipe transformation model

The transformation pipeline driver is responsible for driving the transformation of
the individual subtrees, according to the corresponding pipeline specifications. The
pipeline driver must interoperate with the adaptation measure evaluator, in order to
choose the optimal alternative transformation for the selection pipelines.3 Additionally,
the pipeline driver also interoperates with the validation component to support the
pipeline initiated subtree validations.

7.9 Discussion

This chapter described the XMLPipe transformation model that is the core XMLPipe
sub-model, because it enables the adaptive transformation of presentation documents
that combine an open set of languages.

The XMLPipe transformation model allows the processing of all necessary pre-
sentation documents. Specifically, the proposed transformation algorithm was based
on the initial set of assumptions that only allowed the processing of valid XMLPipe
documents. Nevertheless, the subsequent algorithm investigation illustrated that the
proposed subtree processing order enables the processing of all semantically correct

3Figure 7.10 does not illustrate the interoperation between the pipeline driver and the binding
component, in order to avoid a cluttered layout.

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 147

documents, independently of their validity. Consequently, the XMLPipe transforma-
tion model enables the processing of all presentation documents that have a well defined
interpretation.

The preprocessing framework requires that the transformation model defines all
the necessary interoperation with other sub-models for transforming a document. The
XMLPipe transformation model interoperates with the binding, adaptation and vali-
dation models. The bestHCTS function defines its interoperation with the binding and
the adaptation model, in order to retrieve the required transformation semantics and
choose the optimal alternative, respectively. The XMLPipe pipeline specifications al-
low the introduction of two subtree validation alternatives. The transformation pipeline
driver interoperates with the validation model, in order to perform each of these al-
ternatives. The details of the validation model interoperation will be described in the
following chapter.

The preprocessing framework also requires that XMLPipe ensures the validity of a
subtree prior to its transformation, because the result of a transformation is only well
defined if its input is valid. A separate validation invocation for each document subtree
can be considered as unnecessary processing overhead, if a document is a priori known
to be valid. Consequently, the XMLPipe transformation model does not automatically
validate each transformed subtree. Nevertheless, a semantics author or an XMLPipe
implementation can straightforwardly force the validation of all subtrees. For instance,
the semantics authors can insert a deep subtree validation statement as the first step
of each transformation pipeline. Such statements would result in the validation of
each subtree, prior to its transformation. Alternatively, an XMLPipe implementation
can automatically perform the same validation steps, if an implementation specific
invocation option is specified. Therefore, the default transformation model provides
the necessary functionality for fulfilling the subtree validation requirement. However,
it focuses on reducing the transformation computational complexity, as opposed on
ensuring the document validity.

Regarding the individual subtree transformations, the preprocessing framework re-
quires the use of an open set of transformation technologies. The well defined common
interface of atomic transformations and its simplicity enable the seamless integration of
a multitude of transformation technologies, because any transformation can implement
it. Specifically, a semantics author can create an XMLPipe specific transformation by
directly implementing the atomic transformation interface. Alternatively, existing and
future transformation technologies, such as XSL-T, can be supported by the introduc-
tion of an atomic transformation wrapper.

A transformation model must provide built-in transformation pipelines, because
they allow the integration of the existing and future transformation technologies and
enable the enhancement of their functionality. The XMLPipe transformation pipelines
are a core component of the proposed transformation model, because the transforma-
tion semantics use pipeline specifications to describe the processing of the language
constructs. Each pipeline is a recursive composition of atomic transformations, which
allows the specification arbitrary complex transformations. Furthermore the use of
atomic transformations allows the seamless integration of a multitude of transforma-
tion approaches.

The preprocessing framework requires that all transformation components allow the
transformation of both complete documents and document portions. The atomic trans-
formations, the transformation pipelines and the transformation driver enable such pro-
cessing. The subtree data structure is interchangeable from a document, because of its

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 148

recursive nature, as described in Section 7.7.1. Only the atomic transformations require
special consideration, in order to ensure that the transformation specifications do not
use document specific constructs and are adequately designed for subtree processing.
The established transformation design principles, in Table 7.3, and their mapping to the
individual transformation technologies, such as in Table 7.4, assist the development of
transformation specifications that are adequate for subtree processing. Consequently,
the design of the XMLPipe transformation model allows subtree processing and also
assists the design of adequate transformation semantics.

The preprocessing framework requires a well defined recursive algorithm that uses
independently developed transformation specifications. The transformRev function
enables the orchestration of the individual transformation specifications. Specifically,
it defines the separation of a document into its individual subtrees, their transformation
and the composition of the transformation results. The transformation specifications do
not require inter-language relationships, which would prohibit the adequate processing
of documents that combine an open set of languages. In contrast, a specification,
which corresponds to a language L, only depends on the XMLPipe transformation
design guidelines and the set of L handled constructs. Consequently, the proposed
transformation model provides the necessary recursive orchestration of independently
developed specifications, for processing mixed namespace presentation documents.

The proposed mixed namespace processing is more powerful than existing transfor-
mation approaches, because there is no existing alternative that enables the generic pro-
cessing of mixed namespace documents. Specifically, XSL-T allows modular stylesheet
composition, but it introduces similar drawbacks to the adaptation profiles. The XE-
BRA browser enables the sequential composition of multiple transformation specifi-
cations, but predefined processing sequences are not adequate for generic document
processing, as described in Section 7.1. In contrast, transformRev uses the XMLPipe
integration model, in order to combine independently developed transformation speci-
fications for transforming mixed namespace documents.

The preprocessing framework requires timely transformation execution. However,
the computational efficiency of transformRev cannot be evaluated. Firstly, a realistic
evaluation of its computational complexity is not feasible, because it depends on several
factors that cannot be appropriately formulated: the input constructs, their nesting,
their corresponding processing semantics, the number of alternative specifications and
the computational complexity of the adaptation measure evaluator. Additionally, each
transformation can be arbitrarily complex. Consequently, an approximation of the
average transformation complexity is not useful, because it is conceptually as valid as
an approximation of the complexity of an average Java program. Secondly, assessing
the efficiency of an approach requires an efficiency benchmark. Such a benchmark does
not exist, because no existing approach offers comparable transformation functionality.

However, experimental measurements can provide an indication of the overall com-
putational complexity, which is more reliable than theoretical approximations. Worst
and best case computational complexity approximations are feasible, but they are of
limited use, because of the multitude of required assumptions. For instance, consider
that a fixed number of simple transformations are applied to each document node.
Given the recursive nature of transformRev , a worst case scenario is that each docu-
ment node is a handled construct that can only contain a single child node (in which case
the tree becomes a sequence of nodes). In such a case, the computational complexity of
transformRev is n times the computational complexity of the atomic transformations,

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 149

where n represents the number of document nodes. For instance, if the atomic trans-
formations belong to O(n), then transformRev belongs to O(n2). In a similar manner,
if the atomic transformations belong to O(n2), then transformRev belongs to O(n3).
Such computational complexity can be prohibitive for the efficient transformation of
large documents. However, for the majority of presentation documents, the computa-
tional complexity of transformRev is of the same order as the atomic transformations
complexity, as it will be illustrated by the experimental efficiency evaluation in Chapter
10. Specifically, the structural properties of most presentation documents significantly
simplify their transformation. However, such structural properties cannot be formally
defined, because they depend on the syntax of the individual languages. Consequently,
the definition of transformRev does not guarantee the timely execution of transforma-
tions. However, the experimental observation of equivalent computational complexity
to the atomic transformations illustrates that there are no fundamental complexity
issues.

Regarding the document adaptation, the preprocessing framework requires that all
transformation processing steps are adaptation requirement sensitive. The integration
model transformation driver interoperates with the adaptation component, in order
to choose the optimal specification for each document subtree, according to the ex-
ternally provided adaptation profile. Additionally, the introduced selection pipeline
allows the specification of adaptation requirement sensitive pipelines. Furthermore,
all atomic transformations can access the adaptation profile. Specifically, XMLPipe
specific transformation implementations can directly access the adaptation profile in-
formation. Generic transformation specifications can use a set of technology specific
methods, which must by provided by the corresponding wrappers.

Additionally, a transformation model must enable the processing of documents
that contain both high and low level presentation languages, for a variety of Lp sets
(sets of natively supported languages). The XMLPipe transformation model fulfils
this requirement by not restricting the set of input and output languages. Specifically,
transformRev can adapt a document for any set of natively supported language sets, if
the necessary transformation semantics exist. The input of transformRev can contain
any presentation language that has associated transformation semantics, independently
of its abstraction level. Additionally, transformRev can transform natively supported
languages, which correspond to the lowest possible presentation level for a given adap-
tation profile, because they are the interface of the target browser. Consequently, the
XMLPipe transformation model covers the required adaptation spectrum, and it can
adapt both high and low level presentation specifications, according to an unrestricted
variety of natively supported language sets.

Adaptation for a variety of adaptation requirements also necessitates the support
of an open set of presentation integration models. However, transformRev can only
support presentation integration models that are less generic than the XMLPipe inte-
gration model, according to the expressed assumptions. Nevertheless, such an assump-
tion is not significantly restrictive, because current browser integration models are less
generic than the XMLPipe integration model, because they support either no integra-
tion model or very limited integration. Therefore, the XMLPipe transformation model
does not entirely fulfill the integration model adaptation requirement, but its adap-
tation capabilities are not significantly harmed, because of the XMLPipe integration
model’s generality.

The XMLPipe transformation model compares favourably to existing generic adap-
tation approaches. The CC/PP based stylesheet selection, proposed in [OH02], is the

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 150

most prominent existing approach for generic adaptation. The proposed adaptation
model allows more precise transformation selection, as described in Section 6.6. Ad-
ditionally, the handled construct based association of the XMLPipe transformation
semantics assists the adaptation of handled constructs that may require significantly
different processing. Device independent authoring approaches can offer more powerful
adaptation than the XMLPipe transformation model, because they can use the foun-
dation of a well defined presentation model or a constrained set of languages. However,
XMLPipe cannot adopt similar techniques, because they would harm its generality. In
contrast, the XMLPipe transformation model could be considered as a good balance
between adaptation functionality and generality, because it allows powerful adaptation,
but it does not restrict the set of supported languages or target platforms.

Finally, the preprocessing framework requires that for a fixed set of adaptation re-
quirements, the document presentation remains consistent, between separate process-
ing instances. The XMLPipe transformation model cannot guarantee such consistency,
because the resulting document interpretation depends on a set of freely evolving dis-
tributed semantics and the relative adequacy of its members. Any semantics modifica-
tion or introduction can result in a different processing output. Nevertheless, if there is
not malicious modification of the processing semantics, any modification will introduce
new functionality or enhance the existing functionality. Therefore, any presentation in-
consistencies can be considered as similar to browser presentation inconsistencies that
result from presentation engine updates. Consequently, XMLPipe cannot guarantee
the consistency of document processing, but the possible inconsistencies would result
from infrequent updates, and they can be considered as acceptable for an evolving set
of processing semantics.

Summarising, the XMLPipe transformation model fulfils most relevant framework
requirements and it compares favourably to existing transformation approaches. Specif-
ically, it fulfils all framework requirements, apart from the adaptation for arbitrary pre-
sentation integration models and for efficient document transformation. However, the
sole support of presentation integration models that are less generic than the XMLPipe
integration model is not significantly restrictive, because XMLPipe integration is more
generic than all existing integration models. Additionally, efficient execution cannot
be guaranteed, but experimental measurements can illustrate that there are no funda-
mental algorithmic efficiency issues.

7.10 Summary

This chapter presented the XMLPipe transformation model, which is the core sub-
model of XMLPipe, because it is responsible for producing a document’s interpretation.
Specifically, it creates the optimal interpretation of semantically correct presentation
documents according to an adaptation profile, using an open set of independently
developed transformation specifications.

The XMLPipe transformation model is based on a well defined set of assumptions,
which are necessary for its feasibility. Our investigation firstly established a sufficiently
restrictive set of assumptions for proving the feasibility of mixed namespace transfor-
mation and developing the corresponding algorithm. Subsequently, it provided a looser
set of assumptions and a revised algorithm that extend the practical applications of
the proposed transformation model. Additionally, a subset of the assumptions provide
the necessary design guidelines, for developing transformation specifications that are

CHAPTER 7. XMLPIPE TRANSFORMATION MODEL 151

adequate for the proposed processing.
The integration model transformation driver implements the core transformation

algorithm, which consists of a recursive postorder separation, transformation and com-
position of the individual document subtrees. The transformation algorithm is based on
the XMLPipe integration model, which allows the separate processing of the document
subtrees. For each subtree, the integration model transformation driver interoperates
with the binding and adaptation models, in order to choose the optimal transformation
specification. Subsequently, it delegates the transformation request to the transforma-
tion pipeline driver, which is responsible for transforming the individual subtrees.

The proposed transformation pipelines allow the seamless integration of a multitude
of transformation technologies. Specifically, each transformation pipeline is a recursive
composition of atomic transformations and subtree validation processing steps. The
atomic transformations provide a common interface, which allows the integration of
separate transformation technologies. Atomic transformation wrappers allow the reuse
of existing transformation implementations, such as XSL-T transformers. The valida-
tion processing steps enable a semantics author to validate a document subtree prior
to its transformation. The proposed pipelines offer three transformation composition
methods, which allow sequential transformation composition, runtime transformation
creation and adaptation requirements sensitive transformation. The resulting recursive
combination of atomic transformations and validation steps allows the composition of
arbitrary complex transformations out of simpler specifications.

The XMLPipe transformation model enables the generic preprocessing of presen-
tation documents, because it fulfils most relevant framework requirements and is more
powerful than existing approaches. The subsequent chapters will introduce the re-
maining XMLPipe sub-models, which are necessary for supporting the transformation
model.

Chapter 8

XMLPipe validation model

The XMLPipe validation model is responsible for providing the necessary validation
functionality to the transformation model and the document authors. The transfor-
mation model requires two types of subtree validation: complete subtree validation
and handled construct validation. Additionally, the document authoring process ne-
cessitates an authoring validation method that evaluates whether a document can be
successfully processed. Therefore, authoring validation must evaluate the semantic cor-
rectness of a document, because semantically correct documents have a well defined
interpretation and can be processed by the proposed transformation model. In a similar
manner to the proposed transformation model, a generic validation model must utilise
the XMLPipe integration model, in order to enable the composition of independently
developed validation semantics for the validation of mixed namespace documents. Con-
sequently, the XMLPipe validation model must provide subtree validation and semantic
correctness evaluation of mixed namespace documents, according to an independently
developed set of validation semantics.

NRL and NVDL are the most prominent validation approaches, for mixed names-
pace documents. The seamless integration of a multitude of validation technologies is
necessary, because no existing validation is more generic than the others, as described
in Section 2.2.1. Neither NRL nor NVDL constrain the used set of schema specifi-
cations, since separate validation technologies can be used for the validation of each
document subtree. Additionally, the XMLPipe integration model defines the validity of
a document according to the validity of its individual subtrees. Consequently, the NRL
and NVDL subtree-based validation can be adopted by the XMLPipe validation model.
However, it must be extended to accommodate the the concept of semantic correctness
and the relationships between the individual subtrees, according to the classification of
their root handled constructs.

This chapter separately introduces the validation driver and the validation model
interface. The former is responsible for validating document subtrees, according to
the XMLPipe integration model. The latter provides the required functionality to the
document authors and transformation model.

8.1 Validation driver

The validation driver must address similar issues to the transformation driver, but a
more thorough investigation is feasible, because document validation is better defined
than document transformation. Section 8.1.1 initiates the validation driver discussion

152

CHAPTER 8. XMLPIPE VALIDATION MODEL 153

by proving the equivalence between subtree validation methods and the XMLPipe
valid documents definition, under a set of assumptions. Section 8.1.2 proceeds to
the investigation of the proposed methods for identifying the places where content is
expected (described in Chapter 5), since they influence the valid composition of COC
rooted subtrees. Section 8.1.3 describes the adequate processing order and subtree
separation process. Section 8.1.4 describes the XMLPipe atomic validations, which
cover the validation of the individual subtrees and enable the seamless integration
of several validation technologies. Section 8.1.5 introduces the necessary validation
semantics and their binding. Finally, Section 8.1.6 combines all introduced concepts
into the XMLPipe validation driver and algorithm.

8.1.1 Adequacy of subtree validation

According to the XMLPipe integration model, a validation model can process a mixed
namespace document by processing its individual subtrees. Such an approach can only
be adequate, if it is equivalent to the integration model definition of valid documents.
This section establishes the adequacy of subtree-based validation approaches by proving
their equivalence to the valid documents definition, under a set of assumptions.

Document validation can be considered as a form of transformation, because both
validation and transformation processes can modify a document and return processing
feedback. Specifically, a validation process modifies a document when it introduces
default attribute values, and it returns feedback on the document validity. A trans-
formation also modifies a document by definition, and it can return feedback on its
success or failure. The following validation notation will reflect its relationship with
transformation. If the validation of a document d by a validation process V results

in d′, we will write d
V
−→d′. The validation process can either succeed or fail, if the

document is valid or invalid, respectively.
A usable validation process must provide rich validation feedback that covers most

invalid construct occurrences within a document. Consequently, the validation model
must rely on a minimal set of assumptions, which do not restrict the processing of
well formed documents. Table 8.1 summarises the minimum necessary set of validation
assumptions, which are a subset of the transformation assumptions. Firstly, there must
be at least one schema specification for each presentation language, in order to allow the
separate processing of each document subtree. Secondly, schema specifications must not
require that all subtrees are rooted at a single document element, but they must allow
handled construct rooted subtrees, since such subtrees are valid XMLPipe documents.
Finally, the schema specifications of a language L that contains FOC and/or attribute
handled constructs must declare a “foc” element that contains all such constructs.
The predefined foc element is similar to transformation model concept of a foreign
namespace parent for FOC and attribute handled constructs. The validation model
cannot reuse the foreign namespace parents of handled constructs, because not all
validation technologies allow the declaration of document constructs within arbitrary
foreign namespace elements. For instance, the XML Schema does not allow the <any>

wildcard construct as a top level element. The following validation investigation will
use the minimal foundation of the described assumptions and introduce additional
assumptions/guidelines as necessary.

According to Corollary 2 (page 123), d is a valid document if and only if there is
sequence of single namespace valid documents d1, . . . , dn, where d1 is rooted at either

CHAPTER 8. XMLPIPE VALIDATION MODEL 154

ID Assumption Description
12 Schema existence For each L ∈ L, there is at least an associated schema

specification.
13 Subtree validation The design of schema specifications allows the validation

of handled construct rooted subtrees.
14 Context validation Schema specifications that contain FOC and attribute

handled constructs must declare a foc element of the same
language, which contains all such constructs

Table 8.1: Validation assumptions

a COC or an SMC element, so that d ∈ (dn · · ·
+
←−
ImX

(d3
+
←−
ImX

(d2
+
←−
ImX

d1)) · · ·). In order to

prove the adequacy of a subtree validation process V , it is sufficient to show that a

document d is valid if and only if d
V
−→d′ is successful.

A subtree validation process is adequate for single namespace documents (n =
1). Consider that d is a single namespace document of a language L. According
to Assumption 12, there is a validation process V1 that can validate d. Additionally,
consider that V1 does not allow stand alone attribute or FOC construct rooted subtrees.

If the validation process d
V1−→d′ is successful, then the nesting of d constructs is valid

and d is rooted at a COC or an SMC element handled construct. Therefore, if the
validation process is successful, the document is valid (d ∈ VImX

L). Conversely, if

d ∈ VImX

L , it validly combines the constructs of L and it is rooted at either a COC
or an SMC element construct. According to the subtree validation assumption 13,

the validation process d
V1−→d′ must be successful. Consequently, for single namespace

documents a subtree validation process V is equivalent to the XMLPipe integration
model definition, if V does not allow stand alone attribute or FOC construct rooted
subtrees.

Regarding mixed namespace documents, if d is valid, then the subtree validation
process is successful. Specifically, if d ∈ VImX

Ld
, there is a sequence of n ≥ 2 single

namespace valid documents d1, . . . , dn, so that d ∈ (dn · · ·
+
←−
ImX

(d3
+
←−
ImX

(d2
+
←−
ImX

d1)) · · ·).

∀i ∈ [1, n] Ldi
= {Li}, di ∈ V

ImX

Li
and d1 is rooted at either a COC or an SMC el-

ement handled construct. According to Assumption 12, there is a validation process
V1 for each subtree di. If d1 is rooted at a COC or an SMC element construct, its
corresponding validation Vi will be successful, in a similar manner to the above single
namespace case. If a subtree di is rooted at an attribute or a FOC construct, its vali-
dation within the predefined foc element must also be valid, according to Assumption
14. Consequently, the subtree validation of a valid mixed namespace document is suc-
cessful, if it processes each FOC or attribute handled construct rooted subtree within
the predefined foc element.

Conversely, if d is invalid, the validation process will be unsuccessful. Specifically, if
d is invalid, it cannot be validly composed out of a sequence of valid single namespace
subtrees. Therefore, it either consists of invalid single namespace subtrees and/or their
nesting is not valid. In the former case the subtree validation process will fail, because

if a subtree di is invalid and Vi corresponds to Li, di
Vi−→d′i will fail. If the nesting

of the subtrees is invalid, either there a COC rooted subtree that occurs at a place

CHAPTER 8. XMLPIPE VALIDATION MODEL 155

ID Assumption Description
15 foc introduction The separation of subtrees that are rooted at FOC

or attribute handled constructs must introduce the
predefined foc element.

16 Context test The validation of FOC and attribute handled con-
struct rooted documents must fail.

17 Handled construct test The subtree separation process must fail, if the root
of a subtree is not a handled construct.

18 COC test The subtree separation process must fail, if a COC
rooted subtree appears at a place where no content
is expected.

Table 8.2: Subtree separation design principles

where no content is expected and/or the root of d is an attribute or a FOC handled
construct. A subtree validation process will fail, if it ensures the COC nesting validity
and that attribute and FOC constructs do not occur as document roots. Consequently,
subtree validation process will fail for invalid documents, if it tests the valid occurrence
of COC , FOC and attribute handled constructs.

Consequently, under the introduced assumptions, a subtree validation process is
equivalent to the integration model definition of valid documents, for both single and
mixed namespace documents. Table 8.2 summarises the additional introduced assump-
tions, which express the subtree separation design principles. Specifically, a subtree
separation process must introduce the necessary predefined foc constructs, when it
separates subtrees that are rooted at either FOC or attribute handled constructs. Ad-
ditionally, it must fail when the nesting of the individual subtrees is not valid: when
a subtree is not rooted at a handled construct, when FOC or attributes appears as
document root constructs and when COC constructs occur at places where no content
is expected. Summarising, if a subtree validation process adheres to the principles in
Table 8.2 and the language schemas follow the assumptions of Table 8.1, the validation
of a document is successful if and only if the document is valid.

8.1.2 COC placeholders identification

A validation process must be aware of the places where content is expected, because
they determine the valid nesting of COC rooted subtrees. The defined integration
model semantics do not specify these places, because their identification is closely re-
lated to the syntax of the presentation languages. Section 5.3.3 described two methods
for identifying the places where content is expected: the explicit identification method
and the heuristic method. A validation process must incorporate at least one of these
methods, in order to adequately validate a document.

The explicit identification method can be straightforwardly applied, if the subtree
separation process substitutes each COC rooted subtree with a predefined construct.
According to the explicit identification method, each schema must denote the places
where content is expected. If the subtree separation process substitutes each COC
rooted subtree with the predefined coc element, it is sufficient that the validation
schemas allow a valid occurrence of coc at all places where content is expected. In a
similar manner to the predefined foc element, coc must belong to the same namespace

CHAPTER 8. XMLPIPE VALIDATION MODEL 156

as its parent element. For instance, consider a document d of a language L that contains
a COC rooted subtree d′ of another language L′. Additionally, consider that the subtree
separation process maps d to d′′ by the substitution of d′ with the predefined construct
coc. If d is valid, the validation of d′′ will be successful, because coc will occur at a
place where content is expected and the schema of L must allow coc at all places where
content is expected. Otherwise, the validation will fail, because the subtree separation
process will introduce a coc element at an invalid place, according to schema of L.
Consequently, the explicit identification method is a good candidate, because it only
requires an adequate subtree separation process and minimal schema modifications.

The heuristic method provides a fallback mechanism when there are no XMLPipe
specific schemas, but its incorporation would significantly complicate the reuse of exist-
ing validation approaches. The application of the heuristic method requires information
on which language constructs can contain COC constructs of the same language. The
language schemas provide such information, but most validation technology implemen-
tations, such as XML Schema validators, do not provide the necessary interfaces to
obtain it. Consequently, the XMLPipe specific validators would be unable to reuse
existing implementations, because they would have to implement specific interpreters
of the corresponding schemas.

Consequently, the XMLPipe validation model will only adopt the explicit identifi-
cation method, in order to avoid complicating the incorporation of existing validation
technologies.

8.1.3 Subtree separation and processing order

Modular validation technologies, such as XML Schemas, can validate mixed namespace
documents without requiring subtree separation. For instance, XML Schema can vali-
date a mixed namespace document, if there is a schema specification for each language
and each schema allows valid occurrences of foreign namespace subtrees, according to
the XMLPipe integration model. Such approaches are more computationally efficient
than subtree separation approaches, because they do not require the separate processing
of each subtree, the introduction of predefined constructs and the separate invocation
of validator implementations. However, they restrict the usage of validation technolo-
gies, because all combined schemas must use the same validation technology. Moreover,
the introduction of the necessary integration placeholders impedes the development of
the schemas, because it significantly increases their complexity. Consequently, such
approaches are feasible, but they cannot form the basis of the XMLPipe validation
model.

An adequate subtree separation process for validation must create separate sub-
trees at the namespace boundaries of a document, unlike the transformation subtree
separation. The transformation model separates all handled construct rooted subtrees,
independently of the namespace of their context. Such a separation assists the use
of significantly different transformers, for the processing of subtrees that belong to
the same language. Moreover, it impedes the introduction of intra-language transfor-
mation relationships that can harm the uniform and context independent processing
of handled construct rooted subtrees. None of these issues applies to document val-
idation. Specifically, syntax specifications of a language’s constructs are unlikely to
require separate validation technologies, because each validation technology must al-
low the syntax specification of all the constructs of language. The majority of languages
should not require intra-language handled construct constraints, because the proposed

CHAPTER 8. XMLPIPE VALIDATION MODEL 157

transformation processing separately addresses each handled construct subtree. How-
ever, prohibiting any class of syntax constraints should be avoided, because the more
syntax constraints a validation method can express the more powerful syntax specifica-
tions it allows. Consequently, a validation subtree separation process must only create
separate subtrees at a document’s namespace boundaries.

A validation subtree separation process must also introduce the predefined foc and
coc constructs. The validation of both attribute and FOC element handled constructs
must occur within the context of the predefined foc element, according to Assumption
15. Additionally, the explicit identification method of the places where content is
expected requires the introduction of coc elements, as indicators of all separated COC
rooted subtrees.

The order of the subtree separation and validation is irrelevant, but a preorder pro-
cessing sequence is beneficial. The processing order is irrelevant because subtree vali-
dation only introduces minor tree modifications, as opposed to transformation. Such
minimal modifications do not influence the validation of a subtree’s content or context;
consequently, the processing order is insignificant. However, a preorder processing pro-
cess allows the straightforward support of the handled construct subtree validation,
which only processes the topmost constructs that belong to the same namespace as a
subtree’s root. If a preorder validation process is used, handled construct subtree vali-
dation can be achieved by only performing the first validation iteration. Consequently,
the XMLPipe validation subtree separation creates separate subtrees at the namespace
boundaries of a document, in a preorder manner.

8.1.4 Atomic validations

A common validation interface allows the seamless integration of multiple validation
technologies. In a similar manner to the atomic transformations, the XMLPipe atomic
validations provide such an interface. A validation process is also a transformation pro-
cess, as described in Section 8.1.1. Consequently, the XMLPipe atomic validations can
be defined as the transformation processes that map a document to its validated form,
according to an optional external input. Atomic validation wrappers are responsible
for the incorporation of generic validation technologies, such as XML Schema, and they
can use the external transformation input to retrieve the schema specifications. The
set AV will represent the set of all atomic validations.

XMLPipe atomic validation processes (AV): The set of all XMLPipe atomic
validation processes AV is the subset of all transformations that map an XMLPipe

document to its validated form. For each V ∈ AV the validation process d
V
−→

I
d′ is

successful if and only if d is a valid document, according to the external input I. d′

is the validated result.

Each atomic transformation must follow a set of design guidelines, in order to
be adequate for the XMLPipe validation model. Table 8.3 summarises the atomic
validation design guidelines. Specifically, according to the last two assumptions of Table
8.1, each schema specification must allow the validation of handled construct rooted
subtrees by providing top level declarations of all SMC and COC element handled
constructs and declaring all FOC and attribute rooted subtrees within the predefined
foc element. Additionally, atomic validations must allow the occurrence of the coc

construct at all places where content is expected, according to the adopted explicit

CHAPTER 8. XMLPIPE VALIDATION MODEL 158

ID Description XML Schema
13 Declaration of the valid element SMC and

COC rooted subtrees.
Top level handled construct declara-
tions, such as
<xsd:element name=’’p’’>

14 Declaration of FOC and attribute han-
dled construct rooted subtrees, within the
context of the predefined foc element.

Introduce a foc top level element:
<xsd:element name=’’foc’’>

FOC elements/attributes
</xsd:element>

19 Allow the occurrence of a coc element at
places where content is expected.

Include an
<xsd:any maxOccurs=’’unbounded’’>

rule at places where content is expected.
20 No explicit document root references or

other absolute path expressions.
XML Schema does not contain such con-
structs.

Table 8.3: Design guidelines and their XML Schema mapping

identification method. Furthermore, schema specifications must not contain absolute
references, in a similar manner to the atomic transformations.

The atomic validation wrapper developers must map the above design guidelines
to the validation technology specific equivalents, in order to assist the schema author-
ing process. The rightmost column of Table 8.3 illustrates equivalent XML Schema
guidelines. The first two are direct applications of their descriptions, using the XML
Schema syntax. An XML schema can denote the places where content is expected by
either explicitly declaring the predefined coc element or using the <xsd:any> construct,
if its top level declarations only include handled constructs. The latter is beneficial,
because it allows the occurrence of both the coc element and all language handled con-
structs. No XML Schema specific guideline is necessary for avoiding document specific
constructs, because XML Schema does not contain such constructs.1

8.1.5 Validation semantics

The XMLPipe validation semantics of a language consist of multiple pairs of a schema
specification and an atomic validation implementation reference. VSemantics will rep-
resent the set of all validation semantics and Figure 8.1 illustrates the validation se-
mantics organisation. In addition to the schema specification, the atomic validation
implementation reference is necessary, because it allows the use of an unrestricted set
of validation technologies. Each language is associated with one or more instances of
validation semantics, because the syntax of a language can be defined in several schema
languages. As opposed to the transformation semantics, handled construct based bind-
ing is not necessary, because document validation is a more constrained process that
does not require separate validation technologies for the individual constructs of a lan-
guage. The function locateVS () is a part of the binding component interface, and it
maps a language’s URI to its corresponding set of validation semantics.

1However, other schema languages may contain document specific constructs. For instance,
Schematron[Jel03] defines the syntax of XML languages, using XPath structure assertions that can
be document specific.

CHAPTER 8. XMLPIPE VALIDATION MODEL 159

Language

URI
locateVS()

1..*

Validation semantics

Atomic validation

Language schema
Wrapper

implementation

1 1

Figure 8.1: Language validation semantics

Validation semantics (VSemantics): VSemantics contains all XMLPipe vali-
dation semantics. Each member of VSemantics is a pair of references to a schema
specification and to the corresponding atomic validation implementation.

Validation semantics location function (locateVS): The validation semantics
location function locateVS : URI → ℘(VSemantics) maps an XML language URI
to the set of its corresponding validation semantics. ∀uri ∈ URI , locateVS (uri) =
{vs1, vs2, . . . , vsn}, where ∀i, vsi is one of the alternative validation semantics for
the language that corresponds to uri .

The selection of the optimal validation alternative is not well defined, because all al-
ternatives are equivalent, since they must define the same syntax. However, XMLPipe
implementations can use implementation specific parameters to choose between mul-
tiple validation alternatives. For instance, consider a language that has both XML
Schema and Relax-NG syntax specifications. An implementation that has a cached
XML Schema wrapper implementation, might choose the former schema, in order to
avoid the extra overhead of remotely retrieving a Relax NG wrapper. Alternatively,
it can choose the Relax NG specification, because Relax NG is more expressive than
XML Schema, as described in Section 2.2. Such implementation specific issues are out-
side the scope of the XMLPipe model; consequently, the optimal validation selection
process is delegated to the design of its implementations.

8.1.6 The validation algorithm

The aforementioned validation discussion established the necessary foundation for an
algorithmic definition of the subtree validation process. Figure 8.2 illustrates the al-
gorithmic definition of function validate . validate validates a subtree of a document
d that is rooted at a node n. If the boolean parameter deep is false, it inhibits the
processing of foreign namespace subtrees, in order to allow the application of validate
for both the complete subtree validation and handled construct validation.

validate is recursively defined according to the subtree design principles, sum-
marised in Table 8.2, and the proof of the subtree validation adequacy, illustrated
in Section 8.1.1. Specifically, it firstly ensures that the subtree root node is a handled

CHAPTER 8. XMLPIPE VALIDATION MODEL 160

Validation algorithm (validate): validate validates the subtree of d that is rooted
at the node n and results in the validated document.

function validate(D d,Node n,Boolean deep)→ D
let σ = (uri , s) be the construct that corresponds to n
let L be the language that corresponds to σ
//Instantiate the atomic validation for the identified subtree
let VS = locateVS (uri)
if (σ 6∈ langConstructsHC (L) OR VS == ∅) the validation fails; end if
let vs be the most appropriate member of VS (implementation specific)
let V ∈ AV be the validation process that corresponds to vs
//Separate the subtrees
for each subtree di of n rooted at a construct σi of a language Li 6= L

separate di from d
if (σi ∈ COC (Li)) AND (deep == true)

add a (uri , coc) element at its place
end if

end for
//apply the validation
let d′ be the subtree of d, which is rooted at n
if σ ∈ langConstructsa(L) OR σ ∈ FOC (L)

if n has an ancestor n′′

let d′ = (uri , foc)
+
←−d′ //add the predefined foc construct

else
the validation fails

end if
end if

apply V to d′: d′
V
−→d′′

if the application of V was unsuccessful
the validation fails

end if
//re-compose the subtree and recurse
remove all (uri , foc) and (uri , coc) elements from d′′

replace d′ with d′′ within d
for each separated subtree rooted at ni

add the subtree at its corresponding place in d
if deep == true

call validate(d, ni, deep)
end if

end for
the validation is successful; return d

end function

Figure 8.2: XMLPipe validation algorithm

CHAPTER 8. XMLPIPE VALIDATION MODEL 161

Binding component

Integration model
validation driver

ndd ′′...1

Atomic validation
implementations

ndd ...1

d' d

},...,{ 1 iiki vsvs
],1[ni ∈∀Int. Model ID

iuri

feedback

validate()

feedback

locateVS()

deep

Figure 8.3: Integration model specific validation: top level

construct and that there is a corresponding validation semantics specification. Sub-
sequently, it chooses the optimal semantics alternative, in an implementation specific
way, and it instantiates the corresponding atomic transformation process V . Prior to
the application of V , validate prepares the document subtree by separating any for-
eign namespace subtrees and adding the predefined foc and coc constructs. The coc

constructs are not added when deep == false, because the shallow validation process
does not test the nesting of foreign namespace subtrees. The prepared subtree only
contains constructs of L and the predefined coc and foc elements. The application of
V tests the validity of the L constructs and the valid nesting of COC rooted subtrees,
because of the introduced coc elements. If deep == false the validation process con-
cludes with the removal of all introduced coc and foc elements and the recomposition
of the subtrees. Otherwise, validate also recurses into the foreign namespace subtrees.
If validate terminates successfully the specified subtree is valid, because it consists of
valid single namespace subtrees that are nested in a valid way.

Figure 8.3 illustrates the XMLPipe validation driver that drives a document’s val-
idation process by implementing validate and interoperating with the binding com-
ponent and the atomic validation implementations. Specifically, the validation driver
maps an input document d to its validated version d′. The validate input parameters
are a document and a subtree’s root node, but the illustrated validation driver omits
the node information, in order to be consistent with the transformation model illustra-
tions. For each document subtree d1, . . . , dn, the validation uses the binding component
to retrieve the corresponding set of validation specifications. Subsequently, it instanti-
ates the optimal atomic validation processes, which are responsible for validating the
individual subtrees.

8.2 Validation model interface

The validation model interface is a set of wrapper components that use the validation
driver functionality to serve the validation requests of the transformation model and
the document authors. Specifically, there are two processing validation wrappers and
an authoring validation wrapper. The former are thin wrappers, because they only

CHAPTER 8. XMLPIPE VALIDATION MODEL 162

Integration model

validation driver

feedback

validate()

deep

validateHC

d' feedback

validateSubtree

d' feedback

truefalse

d d

d' d

Figure 8.4: XMLPipe processing validation interface

delegate the validation requests to the validation driver, since validate provides all
necessary functionality for both complete subtree and handled construct validation. In
contrast the authoring validation wrapper requires more substantial processing, because
it must orchestrate both the validation and the transformation drivers, in order to
overcome the SMC validation issues.

8.2.1 Processing validation interface

The processing validation interface consists of two separate wrappers, illustrated in
Figure 8.4, that correspond to the two transformation pipeline validation constructs:
validateSubtree and validateHC. The transformation pipeline driver invokes both
components as atomic transformations. For element SMC and COC rooted subtrees,
the document subtrees provided by the transformation model can be directly processed
by validate . Regarding the subtrees that are rooted at either a FOC or an attribute
handled construct, transformRev provides a subtree that is rooted at the parent of
the corresponding handled construct. The parent element inclusion allows correct sub-
tree validation, because validate tests the valid nesting of FOC and attribute rooted
subtrees by ensuring their occurrence within a parent element. Both wrappers must
provide the handled construct node to validate , as opposed to its parent, because the n
parameter of validate must be the root of a valid subtree. Consequently, it is sufficient
that validateSubtree and validateHC call validate(d, n, deep), where d is their input
document subtree, n is the topmost subtree handled construct and deep is either true,
for validateSubtree, or false, for validateHC.

8.2.2 Authoring validation

Authoring validation could evaluate several document characteristics, but semantic
correctness is the most adequate feasible alternative. The other alternatives are the
document’s validity, according to the XMLPipe integration model, and the feasibility
of its transformation. The former consists of a single validate function call, but it is not
adequate for semantically correct but invalid documents. The latter is the most benefi-
cial, because its provides an indication of whether the document and the corresponding
language semantics follow the XMLPipe design principles. However, it would require

CHAPTER 8. XMLPIPE VALIDATION MODEL 163

to transform a document for all possible adaptation profiles, because each profile can
result to different transformation invocations. Such exhaustive processes are not fea-
sible, because there are infinitely many combinations of adaptation requirements and
sample space reduction optimisations are ineffective. For instance, a validation model
can attempt to processing a document for all processing semantics alternatives, which
may be less numerous than the adaptation profile alternatives. The value of such opti-
misations is limited, because they do not guarantee successful document processing and
they are also prohibitively inefficient, because of the open set of languages and process-
ing semantics. Consequently, the evaluation of semantic correctness can be considered
as an good balance between the feasibility and adequacy of a validation process.

The semantic correctness of a document can be evaluated by a two step process,
which eliminates the SMC rooted subtrees before validating the document. A document
is semantically correct, if it is either a valid XMLPipe document or an invalid document
that becomes valid after the processing of its SMC rooted subtrees, as described in
Section 7.6. Therefore, if a document is semantically correct, a pre-validation processing
step that transforms all SMC subtrees must produce a valid document. The validity
of the resulting document can be evaluated by a deep subtree validation.

The correct usage of the SMC constructs is essential for both the document’s va-
lidity and the success of their transformation. Therefore, an additional validation step
is necessary for the SMC subtrees, because they are not visible to the above deep sub-
tree validation process. Deep subtree validation is not adequate for the SMC rooted
subtrees, because the nesting of their foreign namespace subtrees is irrelevant to their
processing and it is validated by the subsequent deep subtree validation. For instance,
the nesting of the alt:alt subtree constructs, in lines 2–9 of the transformation driving
example (page 116), is not valid, but it becomes valid after its processing. In contrast,
handled construct validation is both adequate and sufficient. Specifically, it ensures the
valid usage of the SMC construct and its top level descendants that are interpreted by
the subtree transformation. Additionally, it does not validate the foreign namespace
subtrees, which are simply copied by the SMC transformation. Consequently, the au-
thoring validation process must perform a handled construct validation step for each
SMC rooted subtree, before its transformation.

The introduction of a transformation processing step can harm the adaptation re-
quirements independence of the authoring validation process. Adaptation requirements
independence is essential, because exhaustive evaluation for all adaptation requirement
combinations is not feasible, as described above. However, the transformation of most
SMC constructs either does not depend on the adaptation requirements or it does
in validation insignificant ways. For instance, the processing of the driving example
imp:import construct is adaptation requirements independent. In contrast, the pro-
cessing of the Lalt depends on the adaptation requirements, because they influence the
alt:case element selection. However, the alternative transformation results do not
differ in validation significant ways. For example, the transformation of the alt:alt

construct, in line 2 of the driving example, results in separate document title defini-
tions, according to the adaptation requirements. However, both alternatives produce a
doc:title element that contains a child text node, and they are equivalent in terms of
their validation. Consequently, under the assumption that the processing of SMC con-
structs does not differ in validation significant ways for separate adaptation requirement
sets, the authoring validation process can remain adaptation requirements independent
by using a dummy adaptation profile for the SMC subtree transformations.

The dummy profile can be minimal and only state support for the input document’s

CHAPTER 8. XMLPIPE VALIDATION MODEL 164

languages. Specifically, the binding adaptation specifications of the SMC transforma-
tion semantics can use the value of any adaptation term. However, the dummy profile
does not have to contain a value for each adaptation term, because each term has a
default value that can be used for evaluating adaptation expressions. Additionally, the
specification of the supported languages is not necessary. However a set that includes
all document languages is consistent with the subsequent document processing by a
validation process that can process all document languages. Consequently, the dummy
profile will consist of a single adaptation statement that states support for all document
languages.

The dummy profile can partially drive the SMC transformation process, but trans-
formation algorithm modifications are necessary. Consider a document d and the cor-
responding dummy profile pr that states support for all languages in Ld. Most trans-
formation specifications associated with COC or FOC require support for languages
that existing browsers support, as opposed to the typically more abstract languages
in Ld. Consequently, the above dummy profile would prohibit the processing of most
non-SMC rooted subtrees. However, the SMC constructs transformation can intro-
duce content from additional languages, which may not belong to Ld. If the introduced
content consists of SMC rooted subtrees, transformRev may process them success-
fully, since their associated semantics may be adaptation requirements independent.
However, if the introduced content is COC or FOC rooted subtrees of languages not
in Ld, the transformation process will most probably fail, because it is unlikely that
adequate transformation semantics will exist. Consequently, the dummy profile can
drive the SMC transformation process, if no low level presentation constructs are used,
no semantics specifications are adequate for high level constructs and no inclusion of
foreign language COC/FOC subtrees takes place. Such constraints are both overly
restrictive for a validation process and ambiguous, because the distinction between low
and high level constructs cannot be well defined. Consequently, the dummy profile is
not sufficient for driving the SMC transformation process.

A set of transformation algorithm modifications address all the above issues and
enable the elimination of SMC subtrees without restricting the set of processed doc-
uments. Figure 8.5 illustrates the necessary modifications: the underlined statements
denote new or modified statements and the arrows (⇐=) denote the omission of one
or more statements. The first modification introduces the necessary dummy profile,
which states support for all document languages. Subsequently, the selection of all
handled construct rooted subtrees has been substituted with the selection of all SMC
handled constructs that have an adequate transformation specification. Prior to the
transformation application, a handled construct validation step is performed, in order
to ensure the validity of the topmost subtree constructs. The transformation is only
performed, if the validation is successful. transformAuth never fails, because it only
assists the subsequent validation process, which is responsible to producing the valida-
tion feedback. Consequently, it does not fail when a transformation is unsuccessful or
if there are no adequate transformation specifications for an SMC rooted subtree.

The algorithm modifications are not backwards compatible with transformRev , be-
cause it is only adequate for SMC elimination and not for generic document trans-
formation. Therefore, the transformation driver must implement both transformRev
and transformAuth , in order to provide the necessary functionality for both document
transformation and validation.

The authoring validation can be defined as a two step transformation. validateAuth
will represent the composite transformation process that firstly calls transformAuth ,

CHAPTER 8. XMLPIPE VALIDATION MODEL 165

Authoring validation transformation (transformAuth): transformAuth is a
transformation that eliminates as many SMC rooted subtrees as possible.

function transformAuth(D d)→ D
let pr be the dummy profile that states support for all languages in Ld

let d′ = d
let n be the first node of d′, according to a postorder tree traversal
while (true)

let σ be the XML construct that corresponds to n
let L be the language that corresponds to σ
let n′ be the the next postorder tree traversal node of n
if L ∈ SMC (L) AND bestHCTS (σ, pr) 6= ε

⇐= if σ ∈ langConstructsHC
e (L)

Separate d1 from d′, where d1 is rooted at n.
else

Separate d1 from d′, where d1 is rooted at the parent of n.
end if
let pr ′ be all adaptation statements associated with L
apply a handled construct validation to d1

if the validation was successful

apply T ′ to d1: d1
T ′

−→d′1 using both the initial pr and pr ′

else d′1 = d1

end if
let pr ′′ be the set of all L-specific statements introduced by T ′

if d′1 6= d1 AND d′1 is not an empty tree
Associate pr ′′ with L and with the parent of n
Replace d1 with d′1 within d′

let n be the first node of d′1, according to a postorder traversal
else

if there is a language specific pr1 for the parent of n′

discard pr 1

end if
let n = n′

end if
⇐= else //the n rooted subtree does not require separate processing

if n the root of d′

the transformation is successful; exit

⇐= else
let n = n′

if there is a language specific pr1 associated with the parent of n′

discard pr1

end if ; end if ; end if ; end while
end function

Figure 8.5: Authoring validation transformation algorithm

CHAPTER 8. XMLPIPE VALIDATION MODEL 166

Integration model

validation driver

d'

dummy profile

d

validateSubtree

d''

feedback

d'

d

Authoring

validation

d'' feedback

validateAuth

Figure 8.6: XMLPipe authoring validation

which removes as many SMC rooted subtrees as possible, and subsequently calls
validateSubtree, which performs a deep subtree validation. Figure 8.6 illustrates
the authoring validation wrapper, which interoperates with both the transformation
driver and the validateSubtree wrapper, in order to perform the validateAuth trans-
formation.

Authoring validation (validateAuth): The authoring validation is a transfor-
mation that maps a document d to its validated output d′′, and it is composed out
of a pre-validation transformation step and a subsequent subtree validation step:

d
validateAuth
−→ d′′ iff d

transformAuth
−→ d′ and d′

validate
−→ d′′

8.3 The complete validation model

Figure 8.7 illustrates the complete XMLPipe validation model, which consists of the
integration model validation driver, the two processing validation wrappers and the
authoring validation wrapper. The integration model validation driver is the core
validation component and it combines independently developed validation semantics
to validate mixed namespace documents, according to the XMLPipe integration model.
The validateHC and validateSubtree wrappers translate the corresponding pipeline
validation requests to validation driver requests. The authoring validation wrapper
allows the evaluation of a document’s semantic correctness. In addition to the validation
driver, it also uses the transformation driver to eliminate the SMC rooted subtrees.

8.4 Discussion

A generic validation model must provide the necessary authoring and processing val-
idation to fulfil the preprocessing framework requirements. Specifically, it must allow
the document author to validate a presentation document, in a device independent
manner. Additionally, it must fulfill the transformation pipeline validation requests by
performing both deep subtree validation and handled construct validation.

CHAPTER 8. XMLPIPE VALIDATION MODEL 167

Binding
component

Integration model
transformation driver

d' pr d

Validation semantics

Atomic
Transformation

Language schema
Wrapper

implementation

1 1

Integration model
validation driver

ndd ′′...1

Atomic validation
implementations

ni dd ...

},...,{ 1 iiki vsvs

],1[ni ∈∀

Int. Model. ID

iuri

validate()

feedback

feedback

deep

validateHC

d' feedback

validateSubtree

d' feedback

truefalse

d

d' d

d

d'

dummy profile

d

d''

feedback

d'

d

Authoring
validation

d'' feedback

Figure 8.7: The XMLPipe validation model

The three proposed wrappers use the validation driver to provide all necessary func-
tionality. The validation driver evaluates the validity of mixed namespace documents,
according to the XMLPipe integration model. The validation driver processes each doc-
ument subtree separately, in a process that is proven to be equivalent to the XMLPipe
valid documents definition. The two processing validation wrappers offer handled con-
struct and deep subtree validation by forwarding the pipeline driver requests to the
validation driver. The authoring validation wrapper uses both the transformation and
the validation drivers, in order to evaluate the semantic correctness of a document.
Semantic correctness is more adequate for authoring validation than validity, because
the XMLPipe transformation model can process semantically correct but invalid doc-
uments. The authoring validation process uses the transformation driver, but it uses
a dummy adaptation profile to remain adaptation requirements independent. This
independence is illustrated by the validateAuth definition that does not require an
adaptation profile parameter. Therefore, the XMLPipe validation model provides the
necessary functionality and fulfils the preprocessing framework requirement for author-
ing validation.

The preprocessing framework requires that both languages and their correspond-
ing validation semantics can be independently defined. The schema design guidelines

CHAPTER 8. XMLPIPE VALIDATION MODEL 168

and the predefined foc and coc constructs allow such independent definitions. The
proposed guidelines use these predefined constructs, as opposed to foreign namespace
references. The semantics authors can use them to specify the places where content is
expected and to provide well defined context for the context-dependent FOC and at-
tribute handled constructs. Specifically, a schema specification must allow valid occur-
rences of coc at all places where arbitrary presentable content is expected. Moreover,
all top level attribute and FOC handled constructs must be declared within the foc

element. Such validation semantics definitions do not introduce inter-language relation-
ships, which would impede the independent development of languages and semantics
definitions.

The preprocessing framework requires document subtree validation according to an
unrestricted variety of validation technologies. The XMLPipe atomic validation inter-
face does not restrict the individual validation processes, and it can be implemented
by any autonomous validation technology. Additionally, the validation design guide-
lines, summarised in Table 8.3, are sufficient for the development of atomic validations
that are adequate for subtree processing. If atomic validation wrapper developers map
these guidelines to their validation technology equivalents, such as the XML Schema
guidelines, they further assist the development of adequate schemas by the seman-
tics authors. In addition to the atomic validations, both the validation driver and
the wrappers can process document subtrees. Consequently, the XMLPipe validation
model allows the validation of document subtrees, using a multitude of autonomous
validation technologies.

The preprocessing framework requires that each subtree is validated prior to its
transformation. As described in Section 7.9, the XMLPipe transformation model can
fulfill this requirement, but it does not validate subtrees prior to their transformation,
in order to avoid the additional processing overhead. Authoring validation is an ap-
proximate alternative that overcomes the processing overhead problem, because the
document must only be validated once. Specifically, authoring validation ensures that
most SMC subtrees can be successfully processed and result to a valid document. If
the transformation specifications follow the transformation design principles, the pro-
cessing of each subtree will result to a valid output subtree that occurs at a valid place,
because the input subtree is valid and occurs at a valid place. Consequently, if all SMC
trees can be validated and all design principles are followed, an authoring validation
success is a good indication that every transformed subtree will be valid. Therefore,
in addition to the explicit subtree validation, authoring validation provides an approx-
imate method to ensure the validity of the subtrees, which does not depend on the
adaptation requirements and does not slow down the transformation process.

The preprocessing framework requires timely validation execution, in a similar man-
ner to the transformation execution. Document validation is better defined than trans-
formation, and the computational complexity of validate can be approximated.

The proposed atomic validation interface does not restrict the individual valida-
tion processes, which can be arbitrarily complex. However, tree-automata can cover
all required validation functionality, as described in [MLM01], and their investigation
can indicate the upper necessary computational complexity. [BML+04] investigates
tree-automata and suggests that the computational complexity of validating a DOM
tree with n nodes is O(n log(n)). Consequently, atomic validations can be arbitrarily
complex, but the upper necessary computational complexity is O(n log(n)).

Function validate also processes the individual document subtrees in n log(n) time.

CHAPTER 8. XMLPIPE VALIDATION MODEL 169

Specifically, consider a document subtree, which contains n nodes, after the separa-
tion of its foreign namespace subtrees. validate processes each subtree by locating and
instantiating the appropriate atomic transformation, separating and recombining any
foreign namespace subtrees, applying the atomic validation and removing any added
coc and foc constructs. The atomic transformation location and instantiation pro-
cesses can be considered to take a fixed amount of time c, because they do not depend
on n and the number of validation alternatives is relatively insignificant. Addition-
ally, the separation of the foreign namespace subtrees requires 2n− 1 iterations, which
is the number of iterations required by a preorder traversal. The subsequent atomic
validation application processes the n subtree nodes in O(n log(n)) time, as described
above. Finally, the tree recomposition and the removal of the predefined elements can
approximately be performed in O(n) time, because their number can be considered to
be proportional to the subtree size. Consequently, the computational complexity of
each subtree iteration is O(c + 2n− 1 + n log(n) + n + n) = O(n log(n)).

validate combines the individual subtree validations, and it validates a document
in O(nlog(n)) time. Consider document with n nodes that consists of k subtrees
that contain n1, n2, . . . , nk nodes. The described subtree validation process occurs
exactly once for each document subtree. Therefore, its computational complexity is
O(n1 log(n1)+n2 log(n2)+ · · ·+nk log(nk)) ⊆ O(n log(n)). Consequently, the proposed
validation algorithm belongs to the same computational complexity order as existing
validation approaches. Its execution can be slower than single namespace subtree
validation, because, in addition to the subtree validation, each iteration must locate the
necessary semantics, instantiate the atomic validations and perform tree modifications.
However, the diminished performance is offset by the functionality gains, since validate
enables the validation of documents that combine an open set of languages.

NRL and NVDL are the most prominent existing approaches for generic mixed
namespace validation. Both approaches can use a multitude of validation technologies
to validate the individual subtrees of a mixed namespace document. The XMLPipe val-
idation model adopts their core concepts and allows the independent subtree validation
by atomic validations, which can be implemented by any validation technology. How-
ever, it is also based on the XMLPipe integration model that provides a well defined
document interpretation and enables better presentation document validation, which
overcomes the NRL/NVDL erroneous validation problems (described in Section 2.2.2).
Additionally, the XMLPipe validation model allows the evaluation of a document’s
semantic correctness, which is a better indication, than simple validity, of whether a
document can be successfully processed. Consequently, the proposed XMLPipe valida-
tion model adopts the most prominent existing concepts and extends them to provide
further validation functionality.

Summarising, the proposed validation model fulfils all relevant processing frame-
work requirements and provides both authoring validation and the necessary processing
validation functionality. Consequently, it is an adequate validation model for a generic
preprocessing model.

8.5 Summary

A validation model is an essential component of a preprocessing model, because it can
provide the required validation functionality for the transformation model and the doc-
ument authors. This chapter described the XMLPipe validation model, which offers the

CHAPTER 8. XMLPIPE VALIDATION MODEL 170

required validation functionality and is adequate for the Web, because it fulfils the rel-
evant preprocessing framework requirements. Specifically, it consists of an integration
model specific validation driver, which provides the core validation functionality, and a
set of validation wrappers, which provide the necessary interface to the transformation
model and document authors.

The validation driver enables the use of independently developed validation seman-
tics to validate mixed namespace documents that use an open set of languages. It
performs a preorder validation of a document’s subtrees. The subtrees are validated
by atomic validations that implement the common atomic validation interface. Such a
common interface enables the integration of a multitude of current and future valida-
tion technologies. The subtree based validation is equivalent to the integration model
definition of valid documents, under a well defined set of assumptions. The well de-
fined assumptions assist the independent development of validation specifications that
are adequate for the proposed processing, because it is sufficient that they are obeyed
by the semantics authors. Furthermore, they provide a well defined method to de-
note the places where content is expected by the introduction of the coc construct.
Such a method is necessary because the validation driver adopts the explicit method
of identifying the places where content is expected.

Three validation wrappers provide the necessary validation functionality to the
transformation model and the document author. Specifically, the validateSubtree

and validateHC wrappers perform the deep subtree and handled construct validation
processing steps, which are required by the transformation pipeline driver. They both
delegate the validation requests to the validation driver, which provides both types
of validation. The authoring validation wrapper is more substantial and it evaluates
the semantic correctness of a document by firstly transforming its SMC subtrees and
subsequently validating the transformation result.

Chapter 9

XMLPipe binding model

All introduced XMLPipe sub-models defined a corresponding set of processing seman-
tics and used URI-based associations to define the conceptual organisation of their
semantics. This chapter describes the XMLPipe binding model, which maps the con-
ceptual semantics organisation to their physical organisation and distribution.

9.1 Binding considerations

The binding model interface consists of the set of semantics access functions that have
been defined by the previous sub-models. Specifically, the integration model introduced
five access functions: langConstructsHC , langConstructsHC

e , langConstructsHC
a , COC ,

SMC and FOC . The adaptation model introduced the locateTermSem function, which
maps the qualified name of an adaptation term to its type. The transformation model
introduced the locateHCTS function, which maps the qualified name of a handled
construct to its corresponding transformation semantics. Finally, the locateVS function
maps a language’s URI to a set of alternative validation semantics. An adequate binding
model must encapsulate the physical organisation and distribution of the processing
semantics, under the interface of these functions.

The physical organisation and distribution of processing semantics are interrelated
but separate problems. The former specifies the information structure within a physical
medium. The latter defines their distribution into multiple physical media and the
corresponding location and retrieval mechanisms. A binding model must address both
problems, in order to ensure a well defined way to retrieve the processing semantics.
Moreover, since the semantics authors must be able to provide semantics specifications,
they also require well defined semantics distribution.

Existing semantics organisation approaches are either document-based or URI-
based. Document-based organisation proposals, such as the DTD declarations and the
xml-stylesheet processing instruction, are not adequate for XMLPipe. They share
the same drawbacks as profile based integration approaches, because they require pre-
defined integration of all document languages and impede the liberal integration of
XML languages into mixed namespace documents. URI-based approaches, such as the
XML Schema instance attributes and the NRL schema associations, are more adequate.
Specifically, all XMLPipe resources, such as handled constructs and adaptation terms,
are uniquely identifiable by URIs. Furthermore, the explicit association between such
resources and their processing semantics assists the liberal semantics composition, for
processing mixed namespace documents. Consequently, the XMLPipe binding model

171

CHAPTER 9. XMLPIPE BINDING MODEL 172

must provide a URI-based organisation of the processing semantics.
Existing distribution methods can be classified into three categories: document

based, local repository based and URI based. Document based approaches, such as the
DTD and the XML Schema document links, are not adequate for XMLPipe, because
they force the document author to provide document processing semantics. Addi-
tionally, local repository methods are not adequate for an open set of languages and
semantics, because they cannot ensure the wide availability of a continuously evolving
set of languages and semantics specifications. However, local repositories can be the
basis of a secondary location mechanism, because they can allow more efficient retrieval
of the commonly used processing semantics. URI-based distribution methods are ade-
quate for XMLPipe, because they ensure the wide availability of processing semantics
and allow the author of a resource to define its authoritative interpretation. Conse-
quently, an adequate binding model must define a URI-based semantics distribution
and it may include a secondary location mechanism that is based on local repositories.

The RDDL[BB02] approach provides a well defined URI-based mechanism for dis-
tributing any type of human and machine oriented semantics. Specifically, an XHTML
document that corresponds to the URI of a resource can contain the necessary human
oriented semantics. Such a document can also contain multiple RDDL links to the
corresponding processing semantics. Each RDDL link has a “nature” and “purpose”
that denote the type of the corresponding semantics. RDDL does not restrict the set of
valid “natures” and “purposes”; consequently, it allows the description of all necessary
XMLPipe semantics. Therefore, a binding model can use RDDL links for distributing
and locating its processing semantics.

9.2 Semantics organisation

The organisation of the XMLPipe semantics must allow the coexistence of all intro-
duced semantics specifications. However, it must not significantly restrict their physical
representation, because each distribution method may require custom semantics repre-
sentations.

Figure 9.1 illustrates the proposed semantics organisation, which consists of a list
of semantic links. Each semantic link maps the URI of a resource to its corresponding
semantics. The nature attribute can take one of four predefined values that correspond
to the four types of XMLPipe processing semantics. Such links can be represented by
several technologies, such as RDDL links and RDF associations.

Each URI can be associated with multiple transformation, validation and adap-
tation term semantics, but with only a single handled constructs specification. The
handled construct specifications must be unique, because the handled constructs of
each presentation language must be unambiguously defined. In contrast, each URI
can be associated with a list of validation, transformation and adaptation semantics.
The validation semantics consist of a list of atomic validations, because there can be
multiple atomic validations for each presentation language. Both adaptation and trans-
formation semantics require an additional association level, in order to identify the local
adaptation term names and the language handled constructs, respectively.

CHAPTER 9. XMLPIPE BINDING MODEL 173

Term semantics

Semantics links

list

0..*

From URI: Identifier

To URL: Semantics link

Nature: Type of semantics

Semantics link

xmlPipeURI:

intModelSemantics

xmlPipeURI:

termSemantics

xmlPipeURI:

valSemantics

xmlPipeURI:

transSemantics

nature=

nature=

nature=

nature=

Handled constructs

List of local terms to

term semantics

associations

0..1

0..1

List of atomic

validations

0..1 Atomic

validation

1..*

1..*

0..1 1..*
List of

handlers
Handler

List of

handled

constructs

Handled

construct

transformation

semantics

1
1

Figure 9.1: XMLPipe semantics organisation

9.3 Semantics distribution

A semantics distribution method must define how to locate the necessary semantics,
how to orchestrate the several location mechanisms and how to map the semantics
organisation to their physical representation. The XMLPipe binding model combines
a well defined location mechanism with an open set of secondary location mechanisms.
A caching process uses a set of trust levels to orchestrate the multiple location mecha-
nisms.

9.3.1 Principal location mechanism

The principal location mechanism is based on the introduction of embedded RDDL links
into the Web page that corresponds to each resource’s URIs. Figure 9.2(a) illustrates

Alternative

semantics

repository

URI entry
Semantics

entry

0..* 0..*
Semantics

1

URI
XHTML/RDDL

document

0..*

xlink:href: Semantics URL

xlink:role: Type of semantics

RDDL Link1

(a)

(b)

Semantics

1

Figure 9.2: Location mechanisms information organisation for the (a) principal and (b)
secondary location mechanisms

CHAPTER 9. XMLPIPE BINDING MODEL 174

the corresponding physical semantics representation. A URI that points to an RDDL
enabled Web document provides a well defined link between itself and the corresponding
resource’s RDDL description. Each RDDL link represents a semantics link (described
in the previous section) and uses the predefined XMLPipe nature URIs to differentiate
between the four types of XMLPipe processing semantics. The RDDL links do not
specify the “From URI ” attribute, because it is the same as the Web page’s URL.

The principal location mechanism allows the straightforward specification and loca-
tion of both processing and human oriented semantics, for an open set of presentation
languages. Specifically, the author of resource, such as an XML language, can incorpo-
rate RDDL processing semantics links into the Web page that describes the resource.
A human entity who knows the resource’s URI, can use it to view the descriptive Web
page in a Web browser. In a similar manner, a processing model can use the resource’s
URI to retrieve all RDDL processing semantics links. The linked processing semantics
express the resource’s authoritative interpretation.

9.3.2 Secondary location mechanisms

A generic preprocessing model benefits from a set of secondary location mechanisms,
as described in Section 4.4. Firstly, the combination of multiple location mechanisms
can eliminate central points of failure. Secondly, secondary location mechanisms assist
the independent definition of processing semantics, because a semantics author is not
necessarily related to the author of a resource, who is responsible for its associated
RDDL links. Finally, Web pages that correspond to existing XML languages do not
include XMLPipe specific RDDL links. Secondary semantics repositories can assist
the initial adoption of a preprocessing approach, such as XMLPipe, by providing the
corresponding processing semantics. Consequently, the XMLPipe binding model must
allow the incorporation of secondary location mechanisms.

The XMLPipe binding model solely defines the high level semantics representation,
in order to avoid restricting the secondary location mechanisms. The details of the
interoperation between the binding model and the semantics repositories depend on
the individual repositories and are delegated to the binding model implementations.
Examples of secondary semantics repositories are a local semantics database and a
remote Web-based semantics repository. A binding model implementation can use
database specific functionality to access the former and a Web service1 based interface
to access the latter.

Figure 9.2(b) illustrates the semantics organisation within a secondary semantics
repository. Secondary semantics repositories can cache semantics specifications of sev-
eral other repositories. Therefore, they can contain multiple entries that correspond to
the same pair of URI and nature. Consequently, in addition to the initial semantics
organisation, illustrated in Figure 9.1, the Semantics entry information is necessary for
differentiating between semantics specifications that are associated with the same URI
and nature pair.

1Web services are the “programmatic interfaces” that enable application to application commu-
nication, within the Web. Information about the W3C Web services activity can be found in:
http://www.w3.org/2002/ws/.

CHAPTER 9. XMLPIPE BINDING MODEL 175

Processing

semantics cache

URI specific

semantics entries

URI: Resource identifier

Nature: Semantics type

0..1
Handled constructs

semantics entry

URL: Source location

Time: Update timestamp

1 Handled constructs

information

0..*

Adaptation terms

semantics entry

URL: Source location

Time: Update timestamp

1
List of terms

Term semantics
0..*

Validation semantics

entry

URL: Source location

Time: Update timestamp

0..*

0..*

1 List of atomic

validations

Atomic

validation 0..*

Transformation

semantics entry

URL: Source location

Time: Update timestamp

1 List of

handlers

Handler 0..*

0..*

xmlPipeURI:

intModelSemantics

xmlPipeURI:

termSemantics

xmlPipeURI:

valSemantics

xmlPipeURI:

transSemantics

nature=

nature=

nature=

nature=

List of

handled

constructs

Handled

construct

transformation

semantics

1
1

Figure 9.3: Semantics cache physical representation

9.3.3 The semantics cache

The XMLPipe binding model includes a local semantics cache that accelerates the
process of semantics retrieval, during the processing of a document. It minimises
duplicate remote retrievals by caching the recently used semantics.

Figure 9.3 illustrates the semantics cache organisation. It follows the secondary
repository organisation, illustrated in Figure 9.2(b), because the semantics cache can
be considered as a secondary semantics repository. For each cached pair of a URI and
processing semantics type there is a semantics link that points to one or more semantics
entries. The semantics cache utilises the “semantics entry” field to track the original
semantics source and keep the the cache up-to-date.

An unambiguous set of processing semantics, which does not include conflicting or
redundant entries, is essential for well defined document processing. The processes that
insert or update the cached data are responsible for resolving any semantics conflicts
and omitting duplicate entries. Specifically, there can be a single handled construct
information entry for each URI, because each presentation language can only have
one specification of its handled constructs. The adaptation term types must also be
unambiguously defined, but different terms of the same namespace can be defined in
separate semantics repositories. Therefore, the cache organisation allows more than
one adaptation term entries for each URI. Additionally, multiple transformation and
validation entries can exist for each URI, because each language and handled construct
can be associated with several alternative transformation and validation semantics.

CHAPTER 9. XMLPIPE BINDING MODEL 176

Secondary location sources

Primary location sources

Binding Component

URL: ns1

URL: ns2

URL:altURI3
URL:altURI2

URL: altURI1

Semantics cache

ns1 processing

semantics

ns5 processing

semantics

ns1 processing

semantics

ns2 processing

semantics

Human oriented

description

Human oriented

description

Cache import

cacheImport

Cache access

locateSemantics

Term semantics

access

locateTermSem

Validation

semantics access

locateVS

Transformation

semantics access

locateHCTS

Handled construct

information access

COC, FOC, SMC

langConstructsHC

langConstructse
HC

langConstructsa
HC

Adaptation term

semantics

Validation

semantics

Transformation

semantics
Handled construct

information

Figure 9.4: XMLPipe binding model

9.3.4 Orchestrating the location mechanisms

The XMLPipe binding model combines all remotely retrieved processing semantics into
the semantics cache and uses the cached information to fulfill all processing semantics
requests. Figure 9.4 illustrates the XMLPipe binding model. Cache import manip-
ulates the semantics cache by implementing the location mechanisms and resolving
any conflicting semantics specifications. Cache access is responsible for accessing the
semantics cache and notifying cache import, when additional processing semantics are
required. The remaining four access components use cache access to implement the
binding model interface.

The cache access component implements the locateSemantics function, which maps
a pair of a URI and a type of processing semantics to the corresponding cached se-
mantics entries. If no relevant entries exist, locateSemantics calls cacheImport (cache
import component), to ensure that all relevant processing semantics have been imported
into the cache.

The cache import component implements the cacheImport function, which is re-
sponsible for orchestrating the location mechanisms and resolving conflicting seman-
tics specifications. cacheImport uses a predefined set of secondary repositories and
a corresponding set of trust levels. Both lists can be specified by either the prepro-
cessing initiation entity or the default configuration of an XMLPipe implementation.
Firstly, cacheImport creates an empty list of trust level and semantics specification
pairs. Subsequently, it uses the principal location mechanism and assigns the prede-
fined trust level of “1” to all retrieved semantics specifications. “1” is the fixed trust
level of a resource’s authoritative interpretation. Subsequently, cacheImport iterates
trough all trusted secondary repositories, which are the repositories that correspond to
a greater trust level than a predefined minimum value. Conflicting specifications are

CHAPTER 9. XMLPIPE BINDING MODEL 177

Semantics location function (locateSemantics): The locateSemantics function
is defined by the following algorithm:

function locateSemantics(URI uri ,URI nature)→
ISemantics ∪ (Σ× TermSemantics)∪
℘(℘(VSemantics)) ∪ ℘(℘((℘(Σ) × HCTSemantics)))

let cache be the semantics cache
if there is no c ∈ cache that corresponds to uri and nature

cacheImport (uri ,nature)
end if
let ret = ∅
for each c ∈ cache that corresponds to uri and nature

Add the processing semantics described by c to ret
end for
return ret

end function

resolved according to the trust level of the corresponding repositories: specifications
that correspond to higher trust levels are always preferred. The interoperation with
the secondary semantics repositories is encapsulated by function altSem and purposely
left undefined, in order to allow an open set of secondary location mechanisms.

The binding model interface consists of four access components: term semantics
access, validation semantics access, transformation semantics access and handled con-
struct information access. It is sufficient that they return all matching cache en-
tries, since cacheImport ensures that the cache has no conflicting or redundant en-
tries. Specifically, handled construct information access implements the COC , FOC ,
SMC , langConstructsHC , langConstructsHC

e and langConstructsHC
a functions by re-

turning the corresponding members of the 5-tuple locateSemantics return value. The
term semantics access implements locateTermSem and returns the semantics entry that
corresponds to the local name of the requested term. The validation and transformation
semantics access components implement the locateVS and the locateHCTS functions,
respectively. Both functions must combine the sets returned by locateSemantics , be-
cause there can be multiple validation and transformation semantics specifications for
each language. In a similar manner to locateTermSem , locateHCTS function must only
use the specifications that correspond to the local name of the input handled construct.

9.4 Evaluation

A binding model that is adequate for generic document preprocessing must fulfill the
requirements of both the preprocessing framework and the other XMLPipe components.
The latter is necessary, because the proposed preprocessing framework did not include
the adaptation term and handled construct semantics. Their omission does not indicate
a deficiency of either the preprocessing framework or the XMLPipe model, because they
are XMLPipe specific and do not apply to all preprocessing models.

CHAPTER 9. XMLPIPE BINDING MODEL 178

Cache import (cacheImport): The cacheImport function updates the semantics
cache information, using both principal and secondary location mechanisms.

function cacheImport (URI uri ,URI nature)
let cache be the semantics cache
let alt be the URI list of the alternative retrieval mechanisms
let trust ∈ URI × R be the predefined URI trust associations
let trustMin be the minimum trust threshold
let foundSemantics = false
let semList = ∅ be an empty set of pairs of semantics and trust levels
//attempt to use the principal location mechanism
sem = RDDLParse(uri ,nature)
if sem 6= ∅; add (sem, 1) to semList ; end if
//Use the alternative location mechanisms
for each uri ′ ∈ alt

if ∃(uri ′, x) ∈ trust AND x ≥ trustMin
sem = altSem(uri ′, uri ,nature)
if sem 6= ∅

if nature == intModelSemantics

if semList == ∅ OR ((x′, sem ′) ∈ semList AND x > x′)
semList = ∅
add (x, sem) to semList

end if
else if nature == termSemantics

add (x, sem ′) to semList , where sem ′ includes all term
semantics not declared in semList for higher priorities.

remove old duplicate term declarations from semList
else if nature == valSemantics

add (x, sem ′) to semList , where sem ′ includes all atomic
validations, which do not have the same wrapper
implementation to a higher priority semList entry.

remove old duplicate (same wrapper implementation) atomic
validations from semList

else if nature == transSemantics

add (x, sem) to semList
end if ; end if ; end if ; end for
if semList 6= ∅

replace cache entry for uri and nature with semList
end if

end function

Figure 9.5: Cache import algorithm

CHAPTER 9. XMLPIPE BINDING MODEL 179

Handled construct information access functions: ∀uri ∈ URI , where
locateSemantics(uri , XMLPipeURI : intModelSemantics) = (Σ1,Σ2,Σ3,Σ4,Σ5):
langConstructsHC (uri) = Σ4 ∪ Σ5, langConstructsHC

e (uri) = Σ4,
langConstructsHC

a (uri) = Σ5, COC (uri) = Σ1, SMC (uri) = Σ2, FOC (uri) = Σ3

Adaptation term semantics location function: ∀uri ∈ URI , s ∈ S,
locateTermSem((uri , s)) = ts ij

iff locateSemantics(uri , XMLPipeURI : termSemantics) =
{{(s11, ts11), . . . , (s1n1

, ts1n1
)} . . . , {(sk1, tsk1), . . . , {sknk

, tsknk
}} and sij = s.

Otherwise, locateTermSem((uri , s)) = ε

Transformation semantics location function:
∀σ = (uri , s) ∈ Σ, where locateSemantics(uri , XMLPipeURI : transSemantics) =
{QH 1, . . . ,QH n} ∈ ℘(℘((℘(Σ)× HCTSemantics))),

locateHCTS (σ) =
⋃

i∈[1,n]

{hcts : (σ, hcts) ∈ QH i}

Otherwise, if locateSemantics(uri , XMLPipeURI : transSemantics) = ∅,
then locateHCTS (σ) = ∅

Validation semantics location function: ∀uri ∈ URI ,
if locateSemantics(uri , XMLPipeURI : valSemantics) = {VS 1, . . . ,VSn} 6= ∅,

locateVS (uri) =
⋃

i∈[1,n]

VS i

otherwise, locateVS (uri) = ∅

The proposed binding model provides access to all necessary processing seman-
tics, and it covers the semantics access requirements of both the preprocessing frame-
work and the other XMLPipe sub-models. Specifically, the implementations of the
locateHCTS () and locateVS () functions provide the necessary validation and transfor-
mation processing semantics. The handled construct information and adaptation term
functions cover the requirements of the XMLPipe adaptation and integration model,
respectively. Additionally, they follow the same binding principles as the validation and
transformation functions, in order to allow the processing of an open set of languages,
according to an open set of adaptation requirements.

The preprocessing framework requires that both semantics organisation and prin-
cipal location mechanism are URI-based. According to the proposed semantics organ-
isation, the semantics of each resource are associated with its URI. Additionally, the
URI of a resource is sufficient for locating its principal semantics using the RDDL-
based principal location mechanism. Therefore, the XMLPipe binding model fulfils the
organisation and primary location requirements.

Additionally, the location of human oriented resource descriptions must also be
URI-based, according to the preprocessing framework. The RDDL-based principal

CHAPTER 9. XMLPIPE BINDING MODEL 180

location fulfils this requirement, because it integrates both human oriented and machine
processible descriptions under a resource’s URI. It is sufficient that a person uses the
URI of a resource within any Web browser to retrieve its human-oriented description.

The preprocessing framework requires the use of processing and integration model
identifiers, within the processing semantics associations. Such identifiers enable the co-
existence of processing semantics, for multiple processing models. The proposed seman-
tics organisation does not use processing model identifiers, because all semantic links
use URI qualified natures that also uniquely identify the XMLPipe processing model.
Furthermore, no integration model identifier is necessary, because the XMLPipe pro-
cessing model is tightly coupled with the XMLPipe integration model. Consequently,
the proposed binding model does not use the required identifiers, but the URI qualified
natures are adequate alternatives.

A binding model that is adequate for the Web must follow the decentralisation
principle and not rely on centralised semantics repositories. The cacheImport function
allows the combination of an open set of location mechanisms that can use multiple
semantics repositories. Multiple repositories allow document processing when the prin-
cipal location mechanism is unavailable or inadequate, such as when a resource’s author
does not provide RDDL links to the corresponding processing semantics. Furthermore,
they ensure that semantics authors can define a resource’s processing semantics inde-
pendently of its author.

The preprocessing framework requires that no inline processing information is nec-
essary, within a presentation document. The proposed organisation and principal lo-
cation mechanisms ensure that a construct’s URI is sufficient for locating all necessary
processing semantics. Therefore, the XMLPipe binding model enables document pro-
cessing without requiring any inline processing information.

The binding model must assist the timely execution of document processing, in a
similar manner to all other sub-models. The XMLPipe transformation and validation
models can require several semantics specifications, in order to process a presentation
document. For instance, a document’s transformation requires a set of adaptation
term semantics, the handled construct information for each document language, the
transformation semantics for each document handled construct and, possibly, a set of
validation semantics. The distributed nature of the proposed location mechanism can
introduce considerable processing delays, because most such processing semantics must
be remotely retrieved. The proposed local semantics cache addresses this problem,
because once the necessary processing semantics are cached, remote retrieval is no
longer necessary.

Summarising, the proposed binding model is adequate for a generic preprocessing
model, because it fulfils the requirements of both the preprocessing framework and the
other preprocessing sub-models.

9.5 Summary

This chapter described the XMLPipe binding model, which links the XMLPipe pro-
cessing components to their corresponding distributed processing semantics. It encap-
sulates the physical organisation and distribution details under the interface of the
semantics location functions.

Both proposed semantics location and organisation are URI-based. The semantics
organisation is URI-based, because all XMLPipe processing semantics describe URI

CHAPTER 9. XMLPIPE BINDING MODEL 181

identifiable resources. The principal semantics location uses the URI-based RDDL
approach, because it provides a straightforward method to publish and locate the au-
thoritative processing semantics, for an open set of languages.

The XMLPipe binding model combines the principal RDDL-based location mech-
anism with an open set of secondary location mechanisms. The secondary location
mechanisms are essential for avoiding central points of failure and ensuring the inde-
pendence of the semantics definition processes. Specifically, semantics authors that are
not also the authors of a resource, such as language authors, can use secondary seman-
tics repositories to specify its processing semantics. Furthermore, secondary location
mechanisms ensure the semantics availability, when the principal RDDL-based mech-
anism is either unavailable or inadequate. A predefined set of trust levels is used to
orchestrate the location mechanisms and produce a concise set of processing semantics,
which is stored in a local cache. The set of access components that provide the binding
model interface use the local cache to serve the requests of all XMLPipe sub-models.

The proposed binding model is an adequate foundation for generic document pro-
cessing, because it can support an open set of languages without requiring document
specific processing information. Furthermore, it encapsulates the physical semantics or-
ganisation and distribution, under the well defined interface of the predefined location
functions.

The combination of the XMLPipe binding sub-model with the previously intro-
duced sub-models covers all XMLPipe preprocessing functionality. The next chapter
will introduce the necessary components to combine all sub-models into the complete
XMLPipe model.

Chapter 10

The complete XMLPipe model

The sub-models introduced in the previous chapters described all aspects of XMLPipe
preprocessing, but a set of additional components are necessary for completing the
XMLPipe model. The core preprocessing functionality is covered by the validation
and transformation sub-models, which use the proposed integration model to process
a presentation document, according to the independently developed semantics of its
languages. The adaptation model provides the necessary functionality for compos-
ing adaptation profiles and selecting the optimal transformation specification, for each
document subtree. The binding model bridges all sub-models with their correspond-
ing processing semantics. The necessary additional functionality must cover document
parsing and the interface to the preprocessing entities. The former has not been cov-
ered by the previous sub-models, because parsing is already well defined for all XML
documents. The latter is necessary for orchestrating the parser and the individual
sub-models, in order to fulfill the preprocessing entity requests.

This chapter composes the complete XMLPipe model, illustrates the feasibility of
generic preprocessing and supports our hypothesis. Specifically, Section 10.1 introduces
the necessary additional processing components and combines them with the introduced
sub-models into the complete XMLPipe model. Sections 10.2 and 10.3 focus on im-
plementing the XMLPipe preprocessing model and describe the core implementation
issues and a pilot XMLPipe implementation, respectively. Section 10.4 illustrates the
feasibility of generic document preprocessing by describing a comprehensive case study
that uses the XMLPipe pilot implementation to process a presentation document, ac-
cording to three separate adaptation profiles. Finally, Sections 10.5 and 10.6 illustrate
the feasibility of generic document preprocessing and the soundness of our hypothesis,
by investigating the case study and the complete XMLPipe model.

10.1 Composing the XMLPipe model

The XMLPipe sub-models defined all preprocessing functionality, but not the interface
to the external entities which interact with a preprocessing model. This section will
investigate the necessary interactions and introduce the required processing components
for completing the XMLPipe model.

182

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 183

Secondary semantics repositories

Primary semantics repository

URL:altURI3
URL:altURI2

Human oriented

description &

processing semantics

Language author

Processing

semantics

Semantic author

Figure 10.1: Semantics definition process

10.1.1 Interface to the semantics and language author

The language and semantics authors define all processing semantics. However, they
only interact with a preprocessing model indirectly through the principal and sec-
ondary semantics repositories, as illustrated in Figure 10.1. The XMLPipe binding
model has defined the processing semantics organisation, for all semantics repository
types, and the principal location mechanism details. In contrast, it has purposely left
the secondary location mechanisms undefined, in order to avoid constraining them.
Therefore, no additional processing components are necessary and the proposed bind-
ing model is sufficient for the semantics definition process.

10.1.2 Interface to the document user and author

The document users and authors directly interact with a preprocessing model. The
document user can use XMLPipe to transform a document to its optimal interpre-
tation, according to a composite adaptation profile. The document author can use
XMLPipe to perform authoring validation, in order to ensure the semantic validity of a
document. The proposed XMLPipe sub-models covered all necessary processing func-
tionality, apart from document parsing and the validation/transformation interfaces to
the document author/user.

Document parsing is well defined for all XML documents, as described in Section
2.1.1 (page 13). Consequently, XMLPipe can use any standards compliant XML parser.
Function parse maps the URL of a document to its corresponding DOM tree, and it
represents the interface of standards compliant DOM parsers.

DOM parser (parse): Function parse : URI → D represents the interface of a
standards compliant DOM parser, and it maps a URI uri to its corresponding DOM
representation d ∈ D.

The validation driver component provides the preprocessing interface to the doc-
ument authors. It implements the XMLPipeVal function, which drives the authoring
validation of a document that corresponds to an input URL. Firstly, XMLPipeVal uses
the document parser to retrieve the DOM tree of the specified URL. Subsequently, it
uses the authoring validation driver (validateAuth), to perform the authoring validation
of the parsed document.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 184

Profile composer

Composite

profile

Adaptation

profile

Integration model

transformation driver

d' pr d
d

Authoring validation

d'' feedback

Preprocessing

initiation entity

Document

repository

Validation driverTransformation driver

cpr URL d'

cpr

pr

URL d'' feedback

URL

d

URL

d

XML Parser

d

Document

Autoring

d

Document Author

feedback & validated

document

Authoring

Validation

Composite

profile

Document URL

Adapted document

Document

Adaptation

transformRev()
validateAuthccompose()

parse()XMLPipeTransform() XMLPipeValidate()

Figure 10.2: Document transformation and authoring validation

XMLPipe validation driver (XMLPipeVal): XMLPipeVal : URI → D is a
function that represents the authoring validation XMLPipe interface. For a uri ∈

URI , XMLPipeVal(uri) = d′ where parse(uri) = d and d
validateAuth
−→ d′

The transformation driver provides the XMLPipe interface to the document users.
The transformation driver implements the XMLPipeTrans function, which is respon-
sible for transforming the document to its optimal interpretation, according to a com-
posite adaptation profile. Firstly, XMLPipeTrans uses the parser to parse the in-
put document and, subsequently, uses the integration model transformation driver
(transformRev) to adapt the parsed document. Prior to the document transformation,
it also interoperates with the adaptation model’s profile composer (ccompose), in order
to convert the input composite profile to an adaptation profile.

XMLPipe transformation (XMLPipeTrans): XMLPipeTrans : URI ×
CProfiles → D represents the XMLPipe transformation interface. For a URI
uri ∈ URI and a composite profile cpr ∈ CProfiles , XMLPipeTrans(uri , cpr) = d′

where parse(uri) = d, ccompose(cpr) = pr and transformRev (d, pr) = d′.

Figure 10.2 illustrates the interaction between XMLPipe and its external entities.
Initially, the document author creates a document d and associates it with a URL, by
adding it to a document repository, such as a Web server or a local storage medium.
The document author can provide the URL of the document to the validation driver,
in order to request its authoring validation. The validation driver interacts with the
XML parser to retrieve the DOM tree d and, subsequently, delegates the validation
request to the authoring validation component. The document user can request the

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 185

transformation of a document by providing its URL and a composite adaptation profile
to the transformation driver. The transformation driver firstly uses the XML parser, to
retrieve the DOM tree that corresponds to d. Subsequently, it uses the profile composer
to convert the composite profile cpr to an adaptation profile pr . Finally, it delegates
the transformation request to the integration model transformation driver and returns
the transformed document d′ to the document user.

10.1.3 The complete XMLPipe model

The complete XMLPipe model consists of the aforementioned transformation and val-
idation drivers, the document parser and the previously introduced XMLPipe sub-
models. Figure 10.3 illustrates the complete XMLPipe model. An external entity can
initiate the processing of a document by interacting with either the transformation
driver or the validation driver. Subsequently, the driver components orchestrate the
corresponding process and return any feedback to the preprocessing initiation entity.

Upon a transformation request, the transformation driver firstly uses the document
parser to map the input URL to a DOM document tree d. It also uses the profile
composer to map the composite profile cpr to an adaptation profile pr . Subsequently,
it delegates the transformation request to the integration model transformation driver,
which is responsible for transforming the parsed document d, according to the adap-
tation profile pr . The remainder of the transformation process consists of a postorder
separation and transformation of all document subtrees. For each handled construct
σi, the integration model transformation driver interacts with the binding component,
in order to locate the corresponding set of transformation semantics. The returned
transformation semantics consist of several transformation pipelines pij , which are as-
sociated with corresponding binding adaptation specifications Bij . Each Bij consists of
an optional applicability expression and a set of adequacy expressions. The adaptation
measure evaluator assigns an adaptation measure to each specification Bij, according
to the adaptation profile pr . The integration model transformation driver uses the as-
signed measures to identify the optimal transformation pipeline specification, for each
document subtree. After the transformation of all d subtrees, the integration model
transformation driver returns the resulting document d′ to the transformation driver.

The transformation pipeline driver is responsible for the transformation of each doc-
ument subtree. Specifically, for each transformation pipeline specification, it combines
the specified set of atomic transformations to create the corresponding transformation
pipeline. The created transformation pipelines map each document subtree di to its
corresponding transformation result d′i. If a pipeline specification requests subtree val-
idation, the pipeline driver uses the validateHC and validateSubtree functions to
interoperate with the validation model.

Upon a validation request, the validation driver uses the XML parser to map the
input URL to the corresponding DOM document d and delegates the validation request
to the authoring validation component. Subsequently, the authoring validation com-
ponent produces d′ by interacting with the integration model transformation driver,
which eliminates as many SMC rooted subtrees as possible. Specifically, the integra-
tion model transformation driver applies a postorder separation and transformation
of all SMC handled construct rooted subtrees, according to their associated transfor-
mation pipeline specifications. Subsequently, the authoring validation driver uses the
validateSubtree function to perform a deep subtree validation of d′.

Both validateHC and validateSubtree functions delegate the validation requests

C
H

A
P

T
E

R
1
0
.

T
H

E
C

O
M

P
L
E

T
E

X
M

L
P

IP
E

M
O

D
E

L
186

Term
URI

Term
semantics

Profile composer
Adaptation measure

evaluator

Composite
profile

Adaptation
profile

Binding
adaptation
information

Measure

Adaptation
profile

Integration model
transformation driver

ndd ′′...1

Transformation
pipeline driver

pr

ni dd ...

d' pr d

)},(),...,,{(11 ii ikikii pBpB],1[ni ∈∀
iσ

ijB

ni pp ...pr

ijmeasure
],1[ni ∈∀
],1[ikj ∈∀

Atomic
transformation

implementations

ijd ′

ijij Id ,

],1[ni ∈∀

ijd
Feedback &

Defaults

ijpr

Integration model
validation driver

ndd ′′...1

Atomic validation
implementations

ni dd ...

},...,{ 1 iiki vsvs],1[ni ∈∀
iuri

validate()

feedback

feedback deep

validateHC

d' feedback

validateSubtree

d' feedback

truefalse

d

d' d

d

d'

dummy profile

d

d''
feedback

d'

d

Authoring
validation

d'' feedback

Processing semantics
cache

Cache import process
cacheImport

Cache Access
locateSemantics

Term Semantics
Access

locateTermSem

Validation semantics
access

locateVS

Transformation
semantics access

locateHCTS

Handled construct information access

COC, FOC, SMC, langConstructsHC
langConstructseHC, langConstructsaHC

Handled
construct

information

Transformation
semantics

Validation
semanticsTerm

URI

All Components

Binding Component Secondary Location SourcesPrimary Location Sources

URL:altURI3
URL:altURI2 Processing

semantics
Human oriented
descriptions &

processing semantics

Preprocessing
initiation entity

Document
Repository

Validation
Driver

Transformation driver

cpr URL d'

cpr

pr pr dd'

URL d'' feedback

URL
d

URL
d XML Parser

d

d

Document author

feedback & validated
document

Composite profile
Document URL

Adapted document

Semantics authors
Language authors

Adaptation
component

Transformation Component

Validation Component

Driving component

Figure 10.3: The XMLPipe preprocessing model

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 187

to function validate , which is implemented by the integration model validation driver.
As opposed to the integration model transformation driver, function validate separates
and processes the document subtrees in a preorder manner. It separates document sub-
trees, if they are rooted at a handled construct that belongs to a separate namespace
than their parent. For each subtree belonging to a namespace uri i, the integration
model validation driver uses the binding component to locate the corresponding col-
lection of validation specifications vsi1, . . . , vs iki

. Subsequently, it chooses the most
appropriate specification, in an implementation specific manner. Afterwards, it creates
the atomic validation that corresponds to the chosen specification and validates the
document subtree.

Both the authoring validation and transformation processes require access to the
XMLPipe processing semantics, illustrated in Figure 10.4. The binding component
bridges the individual XMLPipe components with their corresponding semantics and
it is responsible for their efficient retrieval. The primary location mechanism uses
RDDL links, which are embedded in the Web pages that correspond to the URI of
each resource. XMLPipe also allows an open set of secondary location mechanisms.
When a component requests a set of processing semantics, the binding component
updates its internal cache with all relevant information, resolves any conflicting entries
and returns the relevant entries. The local processing semantics cache acts a local
repository and, in addition to accelerating the processing, enables the processing of
documents within environments that lack constant network connectivity.

10.2 XMLPipe implementation issues

The described XMLPipe model is sufficiently detailed to outline the design of an
XMLPipe implementation. However, it does not cover a set of fine grained design
details and implementation specific issues. This section describes the core set of imple-
mentation issues we addressed, during the development of the pilot XMLPipe imple-
mentation.

10.2.1 Presentation integration model

The initial set of transformation assumptions required that all presentation integra-
tion models are equivalent to the XMLPipe integration model. Such a requirement is
not always necessary, because the transformation process of a document subtree can
access all descendant subtrees and enforce their integration according to the target
presentation integration model. Consequently, the revised set of assumptions loosened
the integration models equivalence assumption to only require that the presentation
integration model is less generic than the XMLPipe integration model (Assumption 7,
Table 7.3).

Most existing presentation approaches do not support generic integration models
and significantly restrict the structure of valid documents. Specifically, they can only
process either single namespace documents or mixed namespace documents that use a
predefined integration profile. Most languages and integration profiles specify a single
document root element that introduces well defined context independent content. The
corresponding valid documents can only be rooted at such an element.

Independent subtree transformations are not sufficient for adapting XMLPipe doc-
uments to such restrictive representations, unless the input documents are overly con-
strained. According to the XMLPipe integration model, each handled construct rooted

C
H

A
P

T
E

R
1
0
.

T
H

E
C

O
M

P
L
E

T
E

X
M

L
P

IP
E

M
O

D
E

L
188

List of Semantic

Links

0..*

From URI: Identifier

To URL: Semantics Link

Nature: Type of semantics

Semantics Link

xmlPipeURI:

intModelSemantics

xmlPipeURI:

termSemantics

xmlPipeURI:

valSemantics

xmlPipeURI:

transSemantics

nature=

nature=

nature=

nature=
List of local terms to

term semantics

associations

0..1

0..1

List of atomic

validations

0..1 1..*

0..1

1..*

Handled constructs

information

COC constructs

Integration Model

Semantics

FOC constructs

SMC constructs

1

Attribute constructs

Element constructs

1

1

1

1

Term semantics

Data type

Default value

Conflict resolution

expression

1

1

0..1Term semantics

Language validation semantics

Atomic

transformation
Language schema

Wrapper

implementation

1

1

Handled

Construct

Transformation

Semantics

Binding adaptation

information

Pipeline

Specification
1

Handled construct transformation semantics

0..1

Sequence Pipeline

Dyanmic Pipeline

Selection Pipeline

Atomic

Transformation

2

3
1..*Binding

Adaptation

Information
0..1

List of

handlers

Handler
List of handled

constructs 1

1

Figure 10.4: XMLPipe processing semantics

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 189

subtree d has a well defined presentation. Therefore, the result of a subtree transfor-
mation d′ must also have a well defined presentation, because it is an interpretation
of d. Independently of the individual transformations, the output document is only
guaranteed to be valid, if the source document contains a single handled construct and
its associated transformation maps it to the root construct of a natively supported lan-
guage. Otherwise, the resulting document would either be rooted at not the predefined
document root element or contain multiple such elements.

For instance, consider the processing of the Ldoc constructs (illustrated in the driv-
ing example, in Section 7.2) for a browser that supports XHTML. The html construct
is the only valid root element of an XHTML document, and it must only appear as a
document’s root. Consequently, the transformation semantics for Ldoc should map all
Ldoc handled constructs (doc:document, doc:p, doc:em, doc:imh) to an html rooted
tree. Such a mapping is necessary to guarantee that all Ldoc handled construct rooted
subtrees are mapped to valid XHTML documents. If an input document uses multiple
handled constructs, such as in the driving example document, its XMLPipe processing
would result in an invalid XHTML document that contains multiple html elements.

Well defined interoperation between the individual subtree transformers can assist
the adaptation of a document for restrictive integration models, but it is not adequate
for XMLPipe. For instance, interoperation between subtree transformation instances
can allow them to choose between generating a document root construct or another con-
struct, which is adequate for the integration of a subtree within its context. However,
such interoperation relies on restrictive assumptions about the set of natively supported
languages. Consequently, it is not adequate for a generic preprocessing model.

Without transformation interoperation there can be no validity guarantees, but the
transformation specifications can be designed to produce valid documents, in the ma-
jority of integration cases. Most existing languages only allow documents to be rooted
at a single predefined element. However, they contain constructs that introduce sub-
trees with well defined interpretation and can appear in most document places. For
instance, the xhtml:p element always introduces a paragraph and it can appear in most
places within an XHTML document. The semantics authors can utilise such language
constructs, in order to define transformation specifications that result in valid docu-
ments. For instance, if the transformations of handled construct rooted subtrees map
their source subtrees to target subtrees that are rooted at such constructs, the resulting
document will be valid in most cases. Moreover, unsupported language combinations
can be avoided, if the document users provide minimal adaptation profiles, which only
include languages that can be combined within a single document. Consequently, most
documents can be adapted to the current presentation integration models, if the trans-
formation specifications utilise the design of the presentation languages and document
users provide minimal adaptation profiles.

A side effect of the absence of generic presentation integration models is the ne-
cessity of DOCTYPE document type declarations. Generic integration models define a
document’s interpretation, according to its constructs. Without such models, docu-
ment type declarations are necessary for defining the type of a document and linking
to the corresponding syntax specifications. Therefore, in addition to creating valid pre-
sentation documents, an XMLPipe implementation must also produce document type
declarations.

Choosing the optimal resulting document type and producing the corresponding
declaration requires interoperation between the transformers and a fixed set of language
and integration profile document types. The former is necessary, because the individual

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 190

transformers must interoperate, in order to choose a commonly supported document
type. The latter is necessary for a well defined interoperation between the transformers,
because the necessary form of interoperation relates to the nature of the individual
document types. In a similar manner to above, such a solution is not adequate for a
generic preprocessing model.

The XMLPipe pilot implementation avoids restrictive solutions, by partially ad-
dressing the DOCTYPE generation problem. Specifically, the transformation that corre-
sponds to the document root handled construct has access to all transformed subtrees.
Consequently, it can choose the most appropriate DOCTYPE declaration. Therefore,
the pilot implementation allows the document root transformation to specify the type
of a document. Such a solution does not allow the individual transformers to inter-
operate, in order to choose the optimal document type. However, it does not harm
the XMLPipe’s processing generality and it only requires minimal adaptation profiles.
Minimal profiles are necessary for ensuring that all transformations use languages that
belong to the same integration profile.

The aforementioned solutions to the presentation integration model and document
type issues are temporary solutions, because they cannot guarantee optimal optimal
document interpretations and the validity of the processed documents. We do not
attempt to provide permanent solutions, because the current design of natively sup-
ported presentation languages is problematic. Integration profiles and the associated
document type declarations are against the Web design principles, and they are not
adequate for the continuously evolving set of XML languages. Consequently, it is rea-
sonable to assume that future presentation components will adopt generic integration
models and not require restrictive integration profiles. The XMLPipe transformation
specifications would then be able to utilise these integration models to generate versatile
mixed namespace documents.

10.2.2 Semantics representation

A stable, concise and easy to use processing semantics representation is necessary for
the adoption of a preprocessing model, because it encourages the semantics authors to
specify the processing semantics for a variety of XML languages. Conciseness and ease
of use assist the creation of the specifications. Stability minimises the inconsistencies
between separate XMLPipe implementations and ensures the wide applicability of the
semantics specifications.

Notwithstanding the importance of the XMLPipe processing semantics representa-
tion, this thesis primarily focuses on the semantics organisation and the corresponding
document processing. Consequently, the XMLPipe binding model established the pro-
cessing semantics organisation and their distribution, but not their representation.

The pilot XMLPipe implementation uses a representation that is adequate, but not
necessarily optimal. Appendix E outlines the XMLPipe pilot semantics representation
and provides a reference for interpreting the subsequent semantics descriptions. The
proposed representation focuses on reducing the XMLPipe implementation complexity
by allowing straightforward parsing and processing. Moreover, it defines the represen-
tation of all XMLPipe semantics and it is self explanatory. However, it should not be
considered as a proposal or a guide of the optimal semantics representation.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 191

10.2.3 Node context information issues

Information on each document node’s source and processing is necessary for meaningful
error reporting. During the proposed document transformation, each document node
might originate from a separate source and might result from multiple transformation
applications. A processing error can originate in either the document sources or the
transformation specifications. Consequently, an error reporting mechanism, which as-
sists the document authoring and semantics development, must report all document
sources and transformations that relate to an offending document node.

All processing components benefit from accessing such rich contextual informa-
tion. Since most processing components can already access the adaptation require-
ments information, the XMLPipe pilot implementation reuses the adaptation profile
representation to encode each node’s location and processing information. Specifically,
it associates each node with a node context specification, which consists of a set of
adaptation statements that describe the node’s original location and processing his-
tory. Each processing component can access a node’s context specification to either
report an error or to amend it.

Creating and updating node context specifications is not sufficient, because most
subtree transformations discard them. Specifically, atomic transformations can use
third party implementations, such as XSL-T transformers. Most non XMLPipe spe-
cific implementations do not directly modify the input subtree. Instead, they create
new nodes that have no associated context information. The application of such trans-
formations to a document subtree discards all its node context information.

The pilot XMLPipe implementation ensures that all document nodes are always
associated with approximately correct error reporting information by a combination of
node context serialising and cascading. Specifically, it provides utility functions that
enable the transformation wrappers to serialise and parse node context information,
using an XML representation. Prior to a subtree’s transformation, a wrapper can se-
rialise its context information within the subtree. The transformation will preserve
most context information, because XMLPipe transformations must copy as many for-
eign namespace subtrees as possible to their corresponding place in the transformation
output. After the transformation application, the wrapper can parse the retained con-
text information and re-attach it to the subtree nodes. Such a context serialisation
technique preserves most of the context information. The remaining nodes, inherit
their parent’s context information, because a node’s parent is likely to have the same
origin and processing. The combination of the applied node context serialisation and
cascading ensures that all document nodes have approximately correct node context
information.

The XMLPipe pilot implementation uses the node context information to resolve
relative URLs, in addition to reporting errors. Specifically, the resolution of relative
URLs depends on the initial source document of their corresponding XML construct.
For instance, the URL resolver for a link can use the document source of the link
handled construct. In contrast the URL resolver of an XSL-T wrapper must use the
location of both the input document and the transformation stylesheet, because a
URL reference can originate from both. The node context provides the necessary
information to such resolvers. The XML Base recommendation[Mar01] provides similar
functionality, but it is not necessary for XMLPipe, because the existing node context
mechanism is sufficient.

The XMLPipe implementation also uses the node context information to keep track

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 192

Implementation issue Resolution

Restrictive presentation
integration models

Minimal adaptation profiles and semantics specifications that
ensure the validity of most output documents by utilising the
design of natively supported languages.

DOCTYPE declarations The document root transformation can specify the output doc-
ument type.

Semantics representation Concise, easy to author and well defined. Current implementa-
tion focuses on ease of processing, and it defines an adequate,
but not necessarily optimal, semantics representation.

Node location
information

Association of node context information to each node, cascading
location information and serialisation of location information,
prior to the application of atomic transformations.

Language specific adap-
tation statements

Adaptation statements insertion to the node context of each
subtree’s parent element.

Relative URL resolution Use the location information of the most relevant node(s).

Table 10.1: XMLPipe implementation issues

of the language specific adaptation statements. As illustrated by the transformRev al-
gorithm (page 137), the integration model transformation driver keeps track of the
language specific adaptation statements, which are introduced by a subtree’s transfor-
mation, by associating them with the subtree’s parent node n. The pilot implemen-
tation reuses the node context information, and it is sufficient to add the language
specific adaptation statements to the node context information that is associated with
the parent n.

10.2.4 Summary

Table 10.1 summarises the addressed implementation issues and the corresponding
proposed resolutions, which enable the creation of an XMLPipe implementation.

10.3 The pilot implementation

This section describes our pilot implementation of the XMLPipe preprocessing model.
The core purpose of the pilot implementation is to illustrate the feasibility of prepro-
cessing presentation documents that use an open set of XML languages, according to a
variety of adaptation requirements and independently developed processing semantics.
In its current status, the pilot implementation does not contain all XMLPipe function-
ality, but it covers a sufficient functionality subset for fulfilling its purpose. Section
10.3.1 investigates the sufficiency of the implemented functionality subset and Section
10.3.2 outlines the pilot implementation’s design. Finally, Section 10.3.3 summarises
the implementation’s command line interface.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 193

10.3.1 Sufficient functionality subset

The current pilot implementation covers a subset of the XMLPipe sub-models: the
integration model, the transformation model and the adaptation model. The transfor-
mation model implementation is complete and includes the proposed atomic transfor-
mations, transformation pipelines and transformation driver. The adaptation model
implementation coves all adaptation functionality, but it does not incorporate the ap-
plicability and custom conflict resolution expressions. In contrast, it uses the adequacy
expressions to derive the default applicability expression and always uses the default
conflict resolution mechanism. The binding model implementation provides the neces-
sary semantics location interfaces and processing semantics parsing functionality, but
it currently supports only a local document secondary repository.

The implemented functionality subset is sufficient for illustrating the feasibility of
the proposed XMLPipe processing. A transformation model implementation can illus-
trate the feasibility of orchestrating independently developed transformation semantics
to transform mixed namespace documents. The XMLPipe validation model is based
on the same integration principles as the XMLPipe transformation model. Therefore,
the latter implicitly illustrates the feasibility of orchestrating independently developed
validation semantics to validate presentation documents. Regarding the adaptation
model implementation, the absence of applicability and conflict resolution expressions
does not harm the core adaptation functionality, because they are only necessary when
the default applicability and resolution are not adequate. Therefore, their support is
beneficial, but they are not necessary for illustrating the feasibility of adaptive docu-
ment transformation. Finally, the simplistic location mechanism implementation does
not combine processing semantics from multiple sources. Nevertheless, if the semantics
representation and organisation are location independent, they can sufficiently illus-
trate the feasibility of using independently developed semantics. Consequently, the
partial pilot implementation fulfils its purpose, because it can illustrate the feasibility
of processing presentation documents that use an open set of languages, according to a
variety of adaptation requirements and independently developed processing semantics.

10.3.2 Implementation outline

An XMLPipe implementation must provide a well defined preprocessing interface to
a document preprocessor of an adequate design, using an appropriate programming
language.

A combination of a command line interface and a well defined preprocessing API is
adequate for XMLPipe. Preprocessing approaches can be used at either the server or
the client processing side. A command line interface can be used for both client and
server side processing by a person or a script, respectively. In a similar manner, the
preprocessing interface can be used by both a browser or a server side application.

We chose the Java programming language for the pilot XMLPipe implementation.
Its wide applicability and device independence is beneficial for XMLPipe, because XML
document preprocessing can be used in a multitude of environments. Additionally,
the Java virtual machine enables the straightforward integration of remotely retrieved
atomic transformations and validations, without requiring their pre-compilation for
multiple platforms or runtime compilation. Furthermore, the existing applet security
mechanisms can assist security extensions to the XMLPipe model, because they address
a similar problem: execution of automatically retrieved, possibly malicious, processing

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 194

Driving Component
process()

XMLPipeCmd

transformDocument()

parseSemantics()

XMLPipe

ErrorHandler

parseSemantics()

SemanticsParser

TermTypesMap TermType

PrimaryCache

TermsMap

ProfilesMap

AdaptationStatement

HandledConstructsMap HandledConstruct

HCAssociations

AtomicTransformation

AdaptationExpression

SelectionTransformationDynamicTransformation

Transformer

AdequacyExpression

IdentityTransformation

SequenceTransformation

TransformationsMap

XSLTTransformation

11

1

1
1..*

1..*1

1 1..*

1 1..*

1

1

1..*1

0..*

0..*

1

1..*

Transformation Component

Binding Component Adaptation Component

Term

AdaptationProfile

1

Figure 10.5: Pilot implementation class hierarchy

components.
Figure 10.5 illustrates the top level class hierarchy of the pilot implementation. The

separate background compartments group the individual classes, according to their
corresponding XMLPipe sub-models. The pilot XMLPipe class hierarchy follows the
organisation of the processing semantics. Most classes represent a processing semantics
concept and they cover both the corresponding internal information representation and
the relevant functionality.

The driving component consists of the XMLPipeCmd, XMLPipe and ErrorHandler

classes. XMLPipeCmd implements the transformation driver, interacts with the prepro-
cessing initiation entity and orchestrates the use of the other classes. Upon a transfor-
mation request, it parses the input document and instantiates the XMLPipe class, which
is responsible for performing the document transformation. Subsequently, it serialises
the transformation output. Moreover, XMLPipeCmd initiates the parsing of all necessary
processing semantics, keeps track of their internal representation and instantiates an
ErrorHandler object. The latter controls all error and information processing messages
and utilises the node context information to produce context rich error messages.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 195

The pilot implementation contains the minimum necessary binding functionality,
as described in Section 10.3.1. The implemented binding component consists of the
internal processing semantics representation and the SemanticsParser. The latter is
responsible for converting the XML processing semantics representation to the corre-
sponding internal representation. Specifically, prior to document processing, XMLPipe
interoperates with the SemanticsParser to add all available processing semantics to
a PrimaryCache object. PrimaryCache contains five sets of associations that map
the individual named resources to their corresponding classes. For instance, TermsMap
maps the qualified names of all cached terms to Term class instances. HCAssociations
represents the transformation handlers. Each HCAssociations object maps a handled
construct to a transformation pipeline (Transformer), according an optional set of
adequacy expressions. Additionally, a HCAssociations object can also include a set
of adaptation statements that provide a declarative method for introducing temporary
adaptation profile modifications, within a transformation pipeline.

The adaptation component consists of a set of classes that represent the term data
types, adaptation statements and adaptation expressions. The TermTypesMap maps the
data type names, such as SetOfStrings, to their corresponding subclasses (not illus-
trated) of TermType. The TermType class and its subclasses cover all built-in adaptation
term data types. Each TermType subclass contains the necessary functionality for pars-
ing, serialising and performing operations. Consequently, the TermType subclasses con-
tain the core functionality for evaluating adaptation expressions. AdequacyExpression
class, which subclasses AdaptationExpression, contains an evaluate function that
uses the individual TermTypes to evaluate adequacy expressions, according to an adap-
tation profile.

Finally, the transformation model implementation consists of the driving trans-
formation methods, included in the XMLPipe class, the Transformer abstract class
and its subclasses. Specifically, the XMLPipe transformDocument member function
implements the integration model transformation driver that is responsible for the
depth first transformation of the input document. The abstract Transformer class
contains the common interface and functionality of both atomic and pipeline trans-
formations. Each proposed transformation pipeline corresponds to a subclass of the
Transformer class. A transformation pipeline class is responsible for orchestrating a
set of transformations, which are also instances of the Transform class, according to
a pipeline specification. The AtomicTransformation class contains the interface and
common functionality of all atomic transformations. For instance, the built-in XSL-T
atomic transformation (XSLTTransformation class) inherits AtomicTransforamtion.
IdentityTransformation is a predefined identity atomic transformation, which is used
when a transformation pipeline requires an atomic transformation, but the processing
semantics omit it.

10.3.3 The invocation

The XMLPipeCmd class implements the XMLPipe command line interface. The pre-
processing initiation entity must specify the name of an adaptation profile and the
locations of both the input document and the processing semantics file. For instance,

java XMLPipeCmd -c config.xml aMobile document.xml

will use the processing semantics in config.xml to transform document.xml, accord-
ing to the adaptation profile aMobile. The processing semantics file specification is

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 196

necessary, because of the partially implemented binding component. Future XMLPipe
extensions, which fully implement the proposed binding model, will not require such
explicit semantics repository specifications.

10.4 A case study

This thesis has described the XMLPipe processing model and the XMLPipe imple-
mentation, but it has not explicitly illustrated the feasibility of the proposed XMLPipe
processing. This section will use the XMLPipe pilot implementation to illustrate the
feasibility of the proposed document preprocessing, by describing a case study that
coves all preprocessing aspects. The pilot XMLPipe implementation covers a subset of
the XMLPipe model functionality. However, the following case study will seamlessly
cover all preprocessing aspects, in order to illustrate the complete spectrum of the
proposed document preprocessing.

Sections 10.4.1 and 10.4.2 set the foundation of the case study by introducing the in-
put document and a set of adaptation profiles, which enable the illustration of XMLPipe
adaptation capabilities. Sections 10.4.3 to 10.4.8 describe the necessary processing se-
mantics and their corresponding binding. Section 10.4.9 describes the combination of
all processing semantics by the processing sub-models, during the authoring validation
and transformation of the input document. Finally, Section 10.4.11 describes the pro-
cessing of an additional XML language and illustrates how semantics authors can reuse
existing constructs to simplify the processing semantics definitions.

10.4.1 The input document

The case study will reuse the transformation driving example document, introduced in
Section 7.2 (page 115). The driving example document is adequate for a preprocessing
case study, because it includes multiple XML languages, combines their constructs in
several ways and is sufficient for illustrating all XMLPipe preprocessing functionality.
Additionally, it is adequate for evaluating XMLPipe’s ability to process semantically
correct but invalid documents, because it combines the constructs of presentation lan-
guages in a semantically correct way, but the integration of the SMC constructs is
invalid.

This section will outline the semantics and syntax of the document languages, which
were precisely described in Section 7.2. Figure 10.1 illustrates the case study document.
document.xml is the main input document. authors.xml and imp.xml contain the in-
cluded author information and textual content, respectively. Ldoc constructs define
the layout of a document that includes a title, a set of authors and nested sections,
which can contain multiple paragraphs. Lalt introduces adaptive content by associat-
ing a sequence of content alternatives to a set of adequacy expressions. Limp allows
the inclusion of arbitrary XML content, according to a URI and an XPath expres-
sion. Finally, Lxl represents the simple links subset of XLink. The xl:type attribute
introduces a link and the xl:href attribute specifies the link’s target.

Both document validation and transformation require well defined classification of
all language handled constructs. Listing 10.2 illustrates the handled constructs infor-
mation representation, according to their initial classification in Table 7.1 (page 115).
Each language has a corresponding constructs element. The constructs elements do
not have to appear in a single document, and they can occur in separate repositories

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 197

1 <doc:document>

2 <al t :a l t >

3 <a l t : c a s e t e s t=” u r i#deviceType=mobile ”>
4 <d o c : t i t l e >Mobile example</d o c : t i t l e >

5 </a l t : c a s e >

6 <a l t : c a s e >

7 <d o c : t i t l e >Desktop example</d o c : t i t l e >

8 </a l t : c a s e >

9 </al t :a l t >

10 <imp:import h r e f=” authors . xml” s e l e c t=” ∗∗/ [@id=’MP DHS’] ”/>
11 <doc : s e c t i on >

12 <d o c : t i t l e >The doc language</d o c : t i t l e >

13 <doc:p>The root language a l l ows <doc:em>emphasized</doc:em> text ,
14 images <doc:img h r e f=”xmlPipe . g i f ”/> and nested s e c t i o n s .</doc:p>

15 <doc : s e c t i on >

16 <d o c : t i t l e >Nested s e c t i on</d o c : t i t l e >

17 </doc : s e c t i on >

18 </doc : s e c t i on >

19 <doc : s e c t i on >

20 <d o c : t i t l e >Mixed namespace support</d o c : t i t l e >

21 <doc:p>A fo r e i g n namespace SMC const ruc t to import t ex tua l c on t en t :
22 <imp:import h r e f=”imp . xml” s e l e c t=”∗∗/ tex t / t ex t () ”/> , an FOC XLink
23 a t t r i b u t e f o r <doc:em xl:type=” simple ” xl :href=” . . . ”> l i n k s</doc:em>

24 and an SMC subt ree that a l l ows adaptat ion s e n s i t i v e c on t en t :
25 </doc:p>

26 <al t :a l t >

27 <a l t : c a s e t e s t=” h t tp : // . . . /# deviceType=mobile ”>
28 <doc:p>This i s a mobile</doc:p>

29 </a l t : c a s e >

30 <a l t : c a s e >

31 <doc:p>This i s NOT a mobile</doc:p>

32 </a l t : c a s e >

33 </al t :a l t >

34 </doc : s e c t i on >

35 </doc:document>

document.xml

1 <c : c o l l e c t i o n >

2 <doc :au thor s id=”MP DHS”>
3 <doc :author f i r s t=”M” l a s t=”Ped”
4 mail=”mp49@kent . ac . uk”/>
5 <doc :author f i r s t=”D” l a s t=”Shr”
6 mail=”dhs@kent . ac . uk”/>
7 </doc :authors >

8 </c : c o l l e c t i o n >

authors.xml

1 <root>

2 <text>Text node 1</text>

3 <text>Text node 2</text>

4 </root>

imp.xml

Listing 10.1: The case study input document

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 198

1 <con s t ru c t s ns=”doc URI”>
2 <hc name=”document” c l a s s=” coc ” node=” e l ”/>
3 <hc name=”em” c l a s s=” coc ” node=” e l ”/>
4 <hc name=”img” c l a s s=” coc ” node=” e l ”/>
5 <hc name=”p” c l a s s=” coc ” node=” e l ”/>
6 </const ruc t s>

7 <con s t ru c t s ns=” a l t URI”>
8 <hc name=” a l t ” c l a s s=”smc” node=” e l ”/>
9 </const ruc t s>

10 <con s t ru c t s ns=”imp URI”>
11 <hc name=” import ” c l a s s=”smc” node=” e l ”/>
12 </const ruc t s>

13 <con s t ru c t s ns=”XLink URI”>
14 <hc name=” h r e f ” c l a s s=” fo c ” node=”at ”/>
15 <hc name=” type” c l a s s=” fo c ” node=”at ”/>
16 </const ruc t s>

Listing 10.2: Handled constructs information

that correspond to the different languages. Each handled construct is specified by a hc

element that specifies its classification and whether it is an element or an attribute.

10.4.2 The adaptation profiles

The preprocessing case study will use three adaptation profiles that span a broad
adaptation requirements spectrum, in order to illustrate and evaluate the XMLPipe
adaptation capabilities. The three adaptation profiles correspond to a desktop browser,
a limited early mobile phone and a conceptual XSL-FO printer. The desktop browser
profile covers the top end of the capabilities spectrum, and the corresponding document
interpretation must be a rich interactive presentation. In contrast, the early mobile
profile describes a device with limited presentation and interaction capabilities. The
corresponding document interpretation must be simple, but retain sufficient browsing
functionality. The conceptual XSL-FO printer profile covers the non-interactive set of
Web devices. The corresponding document interpretation must be rich, in a similar
manner to the desktop browser profile, but it must be optimised for the non-interactive
printer medium.

Adaptation profiles that describe all the capabilities/preferences of the above three
cases would require a multitude of adaptation statements. Nevertheless, in order to
maintain a manageable case study complexity level, the corresponding specifications
will only include the necessary statements for processing the example document.

The desktop browser profile states native presentation support for XHTML and
binary images, because they are sufficient for a rich presentation of the example docu-
ment. Listing 6.1 (page 97) contains all necessary statements for such a desktop browser
profile. It states that the device type is a “desktop” and the natively supported rep-
resentations include XHTML and binary media content. The optimal document inter-
pretation for the desktop browser profile must be optimised for desktop browsing and
map all document constructs to XHTML. Specifically, the resulting document must be
continuous, contain all document information and use full size images. The constructs
of all document languages must be mapped to their XHTML equivalents.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 199

1 <p r o f i l e name=”XSLFOPrinter”>
2 <statm ns=”XMLPipeURI/Terms”
3 name=”deviceType ”>p r in t e r</statm>

4 <statm ns=”XMLPipeURI/Terms”
5 name=” supported ”>
6 <item>h t tp : //www.w3 . org /1999/XSL/Format</item>

7 </statm>

8 </p r o f i l e >

Listing 10.3: Printer adaptation profile

Listing 10.3 illustrates the case study printer profile. Existing printers do not di-
rectly support XSL-FO, but the case study will use an XSL-FO representation, because
it provides the necessary paged media presentation abstractions and it can be consid-
ered as a valid XML alternative to the customary printer languages. The optimal
XSL-FO printer document interpretation must contain all content and images, in a
similar manner to the desktop browser interpretation. However, it must be partitioned
into a sequence of pages, and it must not include any interactive content, such as
interactive links.

The mobile phone profile purposely describes a low-end mobile device, in order to
enable the illustration of the XMLPipe adaptation capabilities. Listing 6.6(a) (page
102) has illustrated a composite profile for a low-end device, which corresponds to the
adaptation profile illustrated in Listing 6.2 (page 97). The described mobile device only
supports WML (Wireless Markup Language) and WBMP (Wireless Bitmap) images
that are no larger than 100 × 96 pixels. The optimal document interpretation, for
such a device, must only use the supported WML and WBMP representations and use
an adequate layout for a limited display size. Furthermore, since WML 1.1 parsers
rarely support XML namespaces, the document interpretation must also not contain
namespace declarations.

10.4.3 Validation semantics

The XMLPipe implementation does not cover the XMLPipe validation model, as de-
scribed in Section 10.3. Nevertheless, this section will describe the validation semantics,
in order to illustrate their design and assist the subsequent description of validation
processing.

The validation semantics consist of the necessary atomic validation declarations
and schema specifications, for all document languages. A schema specification must be
adequate for the proposed validation model and follow the XMLPipe validation design
principles (summarised in Table 8.3, page 158). This section describes the individual
schemas, but most of their corresponding listings are only included in the case study
appendix.

The Ldoc schema specification (Listing F.25, page 332) includes a separate top level
element declaration for each handled construct and allows coc occurrences at all places
where content is expected. The four top level element declarations, which correspond
to the four handled constructs doc:document, doc:em, doc:img and doc:p, enable the
validation of all the handled construct rooted subtrees. The
<xsd:any processContents="strict"/> construct is introduced at all places where

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 200

1 <?xml version=” 1.0 ”?>
2 <xsd:schema xmlns:xsd=”XML Schema URI”
3 xmlns:ns=”XLink URI”
4 targetNamespace=”XLink URI”
5 elementFormDefault=” q u a l i f i e d ”>
6 <x s d : a t t r i b u t e name=”type ” type=” x sd : s t r i n g ”
7 f i x ed=” simple ”/>
8 <x s d : a t t r i b u t e name=” h r e f ” type=” x sd : s t r i n g ”/>
9

10 <xsd :e lement name=” fo c ”>
11 <xsd:complexType>

12 <x s d : a t t r i b u t e r e f=” ns : type ” use=” requ i r ed ”/>
13 <x s d : a t t r i b u t e r e f=” n s : h r e f ” use=” requ i r ed ”/>
14 </xsd:complexType>

15 </xsd :e lement>
16 </xsd:schema>

Listing 10.4: Lxl schema specification

content, is expected, which are within the doc:p and doc:em elements. The any

XMLSchema element is used, because it allows valid occurrences of both the Ldoc

handled constructs and the predefined coc element, which is introduced by the subtree
separation process at all places that foreign namespace COC constructs occur. The
schema specification is independent of the other languages and, apart from the top
level declarations and the any element, does not differ from a non XMLPipe-specific
schema.

Limp contains a single handled construct that does not accept any child elements.
Consequently, the corresponding schema (Listing F.13, page 323) consists of a single
element declaration.

The schema specification for language Lalt (Listing F.19, page 326) also contains
a single top level declaration that corresponds to the alt handled construct. alt can
contain an arbitrary number of case elements, which can contain COC child elements.
Therefore, the any XMLSchema construct is used within the alt:case declaration, in
a similar manner to the aforementioned doc:p and doc:em declarations.

The Lxl schema specification, illustrated in Listing 10.4, declares two attribute FOC
handled constructs under the predefined foc element. The XMLPipe validation model
separates all attribute FOC handled constructs from their context and adds them to
a root foc element. Consequently, the handled constructs declaration within foc is
adequate for validating the two Lxl attributes.

The proposed separation of attribute handled constructs is beneficial, because it en-
ables their validation. Regarding the Lxl attributes, an element can contain either both
or none of them. Simple top level declarations of the attributes cannot express such
relationships. In contrast, their inclusion within the predefined foc element enables the
precise definition of their relationship. Additionally, if XMLPipe used the actual parent
element of the attributes, instead of the predefined foc element, the schema specifica-
tion would have to include a top level wildcard declaration, which is not always feasible.
For instance, XML Schema does not allow top level xsd:any declarations.

A language’s validation semantics must also associate its URI with the correspond-
ing schema specifications. Listing 10.5 illustrates the association of Ldoc to its schema

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 201

1 <con f i g xmlns=”XMLPipeURI” name=”DOC va l i d a t i on ”>
2 <va l i d a t o r s >

3 <va l i d a t o r
4 name=”XMLPipe Validators XMLSchema”
5 implClass=” . . . ”
6 implSource=”SourceURL”/>
7 </va l i d a t o r s >

8

9 <va l i d a t i on ns=”DOC URI”>
10 <atomVal r e f=”XMLPipe Validators XMLSchema”
11 s r c=”Schema URL”/>
12 </va l idat ion >

13 </con f ig>

Listing 10.5: Ldoc validation semantics declaration

specification. The validator declaration (lines 2–7) specifies a named atomic val-
idation implementation. The subsequent atomic validation declaration (lines 9–12)
introduces the relationship between the language namespace, the atomic validation
implementation and the language schema.

10.4.4 Transformation semantics: Lalt language

Successful document processing requires that each handled construct is associated with
at least one adequate transformation pipeline, for all three adaptation profiles. The case
study transformation semantics will provide all necessary pipelines for the case study
profiles. However, in practice, the semantics development process is independent of the
adaptation profile development. The use of adequacy and applicability expressions, as
opposed to explicit adaptation profile references, allows such independence.

A single atomic transformation is sufficient for processing the constructs of Lalt .
Listing 10.6 illustrates the Lalt transformation semantics declarations. The atomic
transformation declaration, in line 3, introduces a Java transformer that performs direct
DOM manipulation. It substitutes the alt element with the content of the optimal
alt:case element, according to the adaptation requirements. In a similar manner to
the validation semantics, the atomic transformation declaration specifies a name, a
Java implementation class and an implementation location. Additionally, it states that
the declared atomic transformation does not accept dynamic external input, which is
solely used in dynamic transformation pipelines.

The handler element associates a set of handled constructs to a transformation
pipeline. The illustrated handler has no adequacy and applicability expressions, be-
cause the proposed transformation is adequate for all adaptation profiles, since it im-
plements the content selection internally. Attribute hcList includes a single hcRef

element that corresponds to the single handled construct of Lalt . The pipe element in-
troduces a transformation pipeline that, in this case, consists of a single transformation
step, which refers to the above atomic transformation.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 202

1 <con f i g xmlns=”XMLPipeURI”>
2 <t rans formers >

3 <t ran s fo rmer name=”XMLPipe XPEx ALT”
4 implClass=” AltHandler”
5 implSrc=” . . . / AltHandler . c l a s s ”
6 dynamic=” f a l s e ”/>
7 </transformers >

8

9 <handler name=”Generic Alt Handler ”>
10 <hcL i s t ns=”ALT URI”>
11 <hcRef name=” a l t ”/>
12 </hcList>

13 <pipe>

14 <t rans form r e f=”XMLPipe XPEx ALT”
15 s r c=””/>
16 </pipe>

17 </handler>

18 </con f ig>

Listing 10.6: Lalt transformation semantics declarations

10.4.5 Transformation semantics: Limp language

Limp transformation semantics also require a single transformation pipeline, because
Limp content inclusion is adaptation requirements independent. The transformation of
the imp:import element must substitute itself with the referenced document’s portion
that is specified by the select attribute’s XPath expression. It is beneficial to use the
XMLPipe built-in XSL-T transformer to evaluate such expressions, because XSL-T has
built-in XPath support.

XSL-T does not allow dynamic XPath expressions evaluation, but the XMLPipe
dynamic pipelines can address this limitation. A dynamic pipeline can be used to
firstly create an XSL-T stylesheet that statically contains the necessary XPath expres-
sion and, subsequently, apply it to the document subtree. Listing 10.7 illustrates the
corresponding transformation declaration. The option element introduces a pipeline
that dynamically creates an XSL-T stylesheet, which statically includes the select

attribute’s XPath expression. The last transform element introduces an atomic trans-
formation that dynamically applies the generated XSL-T stylesheet to the document
subtree. Consider that T1 represents the option transformation and T2 the dynamic
XSL-T atomic transformation. The described transformation pipeline corresponds to
dyn(ε, T1, T2), where T2 applies the stylesheet generated by T1. The proposed dynamic
pipeline enables the substitution of a complex XPath evaluator with a minimal XSL-T
stylesheet (Listing F.15, page 324).

For example, consider the imp:import construct in line 10 of the case study ex-
ample. T1 uses the href and select attributes to dynamically generate the stylesheet
illustrated in Listing 10.8. The result of applying the generated stylesheet to the
imp:import rooted subtree is the inclusion of the author information, as illustrated in
Listing 10.9.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 203

1 <con f i g xmlns=”XMLPipeURI”>
2 <handler name=”ImportHandler ”>
3 <hcL i s t ns=”Import URI”>
4 <hcRef name=” import ”/>
5 </hcList>

6 <pipe>

7 <dynamic>
8 <normal/>
9 <option>

10 <t rans form r e f=”XMLPipe XSLT”
11 s r c=” . . . / import . x s l ”/>
12 </option>

13 <t rans form r e f=”XMLPipe DXSLT”
14 s r c=”XMLPipe:dynamic”/>
15 </dynamic>
16 </pipe>

17 </handler>

18 </con f ig>

Listing 10.7: Limp dynamic
transformation pipeline

1 <x s l : s t y l e s h e e t version=” 1.0 ”>
2 <x s l : t emp la t e match=”n: import ”>
3 <xs l : copy−o f
4 s e l e c t=”document (authors . xml)

{∗∗/[id =’MP DHS’] } ”/>
5 </x s l : t emp lat e >

6 </x s l : s t y l e s h e e t >

Listing 10.8: Dynamically generated
stylesheet

1 <doc :au thor s id=”MP DHS”>
2 <doc :author f i r s t=”M” l a s t=”Ped”
3 mail=”mp49@kent . ac . uk”/>
4 <doc :author f i r s t=”D” l a s t=”Shr”
5 mail=”dhs@kent . ac . uk”/>
6 </doc :authors >

Listing 10.9: Dynamic transformation
result

10.4.6 Transformation semantics: Lxl language

The processing of Lxl requires adaptation requirement dependent semantics. Both
XHTML and WML have built-in linking support that is equivalent to the XLink sim-
ple links. Therefore, the desktop and mobile transformation pipelines must map the
XLink links to their corresponding XHTML and WML representations. XSL-FO has
also built-in linking support, but interactive links are not adequate for printed me-
dia. Consequently, the corresponding transformation outputs a non-interactive link
representation, which consists of the link’s name followed by the parenthesised link
target.

All Lxl transformations must create the corresponding link representation and copy
the subtree root, its children and all non-XLink attributes. The latter is necessary,
because, during the transformation of attribute handled constructs, the attributes are
included within their parent elements. Consequently, the subtree transformation is
responsible for copying their parent element and its contents to their corresponding
places within its output.

Listing 10.10 illustrates the Lxl XSL-T stylesheet for XHTML browsers, which also
outlines the structure of all three transformation specifications. The utility templates
in lines 11 and 13 are responsible for removing the XLink attributes and copying the re-
maining elements and attributes, respectively. The template at line 1 is responsible for
processing the XLink attributes; it encloses their parent element to an anchor xhtml:a
element. The WML stylesheet is identical, apart from the namespace declarations,
because WML and XHTML share a common links syntax.

Listing 10.11 represents the non-interactive Lxl stylesheet. It copies the linked
element and encloses the link URL in parentheses, as opposed to using a natively
supported link representation. The resulting non-interactive link interpretation does
not depend on the set of natively supported languages and it can be used for any
non-interactive device.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 204

1 <x s l : t emp la t e
2 match=” ∗ [@x l i n k :h r e f] ”>
3 <a h r e f=”{@x l ink :h r e f }”>
4 <xs l : copy >

5 <x s l : app l y−templates
6 s e l e c t=”@∗ | ∗ | t ex t () ”/>
7 </x s l : copy >

8
9 </x s l : t emp lat e >

10

11 <x s l : t emp la t e match=” @xl ink : ∗”/>
12

13 <x s l : t emp la t e match=”@∗ |∗ ”>
14 <xs l : copy−o f s e l e c t=” . ”/>
15 </x s l : t emp lat e >

Listing 10.10: XSL templates for the
interactive interpretation of Lxl

1 <x s l : t emp la t e
2 match=” ∗ [@x l i n k :h r e f] ”>
3 <xs l : copy >

4 <x s l : app l y−templates
5 s e l e c t=”@∗ | ∗ | t ex t () ”/>
6 </x s l : copy>

7 (<x s l : v a l u e −o f
8 s e l e c t=” @x l i n k :h r e f ”/>)
9 </x s l : t emp lat e >

10

11 <x s l : t emp la t e match=”@xl ink : ∗”/>
12

13 <x s l : t emp la t e match=”@∗ |∗ ”>
14 <xs l : copy−o f s e l e c t=” . ”/>
15 </x s l : t emp lat e >

Listing 10.11: XSL templates for the
non-interactive interpretation of Lxl

1 <adequacy>

2 <expr ns=”XMLPipeURI/Terms”
3 name=” supports ”>
4 <contains>

5 <termVal/>
6 <val>XHTML URI</val>
7 </contains>

8 </expr>
9 <expr ns=”XMLPipeURI/Terms”

10 name=” supports ”>
11 <not>
12 <contains>

13 <termVal/>
14 <val>XLink URI</val>
15 </contains >

16 </not>
17 </expr>
18 </adequacy>

Listing 10.12: Lxl XHTML handler
adequacy expressions

1 <adequacy>

2 <expr ns=”XMLPipeURI/Terms”
3 name=”deviceType ”>
4 <equals>

5 <termVal/>
6 <val>p r in t e r</val>
7 </equals>

8 </expr>
9 </adequacy>

Listing 10.13: Lxl non-interactive
handler adequacy expressions

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 205

The Lxl language’s transformation associations require adequacy expressions, be-
cause the optimal processing of its constructs depends on the adaptation require-
ments. Listings 10.12 and 10.13 illustrate the adequacy expressions associated with
the XHTML and the non-interactive transformation pipelines, respectively. The former
ensures that the target browser supports XHTML but not XLink. The non-interactive
adequacy expression does not depend on any natively supported languages and only
ensures that the target device is a printer, which is a non-interactive device.

Explicit applicability expressions are not necessary. The default applicability ex-
pression is sufficient, because all defined adequacy expressions correspond to required
conditions and it requires that all adequacy expressions evaluate to non-zero values.

For example, consider the link at line 23 of the driving example:

<doc:em x l : t y p e=” s imple ” x l : h r e f=” . . . ”> l i n k s</doc:em>

Its presentation interpretation is an emphasised text portion that links to the specified
URL. The desktop and mobile adaptation profiles do not support XLink links, but
they support XHTML and WML links, respectively. Therefore, XMLPipe will use the
aforementioned XHTML and WML transformation pipelines to interpret the simple
XLink links to their natively supported representation:

<a h r e f=” . . . ”>
<doc:em>l i n k s</doc:em>

In contrast, XMLPipe will use the non-interactive pipeline for the printer adaptation
profile, which results in the proposed non-interactive links representation:

<doc:em>l i n k s (URL)</doc:em>

All transformations use the doc:em construct to represent emphasised content, because
its subsequent processing will result to the optimal emphasis representation, for each
adaptation profile.

10.4.7 Transformation semantics: Ldoc language

The Ldoc transformation semantics are also adaptation requirement dependent, and
multiple transformation pipelines are necessary for mapping the Ldoc constructs to
their optimal natively supported representation. The optimal representation must use
the set of natively supported languages, for each adaptation profile. Additionally, it
must have an adequate layout, because Ldoc constructs define the overall structure of
a document.

The Ldoc transformation semantics will include four transformation pipelines. A
separate XSL-T stylesheet for each adaptation profile is sufficient for interpreting all
Ldoc constructs. Additionally, an image converting transformation is beneficial for the
WML/WBMP mobile processing, because it is unlikely that the document source’s
doc:img constructs will refer to WBMP images. Therefore, the transformation se-
mantics for Ldoc will consist of three transformation pipelines that are associated with
all Ldoc handled constructs, and an additional image conversion pipeline that is only
associated with the doc:img construct.

The Ldoc desktop transformation can directly map all Ldoc constructs to their na-
tively supported counterparts. The corresponding XSL-T stylesheet uses four top level
templates, which correspond to the four Ldoc handled constructs. Listing 10.14 out-
lines the resulting interpretation of the example document. The top level document
template produces the necessary top level XHTML elements, such as head and body.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 206

1 <html xmlns=”XHTML URI”>
2 <head>

3 < t i t l e >Desktop example</ t i t l e >

4 </head>

5 <body>

6 <h1>Desktop example</h1>
7 <div>

8 <a h r e f=” . . . ”>M Ped
9 </div>

10 . . .
11 <h1>1 The doc language</h1>
12 <p> . . . emphasized

13 text , images
14
15 and nested s e c t i o n s .</p>

16 <h2>1 . 1 Nested s e c t i on</h2>
17 . . .
18 </body>

19 </html>

Listing 10.14: Ldoc interpretation for
a desktop browser

1 <app l i c a b i l i t y >

2 <contains >

3 <termVal ns=”XMLPipeURI/Terms”
4 name=” supported ”/>
5 <val type=” St r ing ”>XHTML URI</val>
6 </contains >

7 </app l i c a b i l i t y >

8 <adequacy>

9 <expr ns=”XMLPipeURI/Terms”
10 name=” supported ”>
11 <contains >

12 <termVal/>
13 <val type=” St r ing ”>XHTML URI</val>
14 </contains >

15 </expr>
16 <expr ns=”XMLPipeURI/Terms”
17 name=”deviceType ”>
18 <equals>

19 <termVal/>
20 <val>desktop</val>
21 </equals>

22 </expr>
23 </adequacy>

Listing 10.15: Ldoc XHTML desktop
binding adaptation specification

The presentation of the document authors consists of their names, which are linked to
their e-mail addresses. The section element’s interpretation is a heading text that is
numbered according to its original order and nesting. Such a numbering is feasible,
because sections can only occur within the context of a document, since they are not
handled constructs. Finally, the doc:em, doc:p and doc:img are interpreted as their
identical XHTML constructs.

The binding of the Ldoc transformation semantics requires an explicit applicabil-
ity expression, which is illustrated in Listing 10.15. The described desktop browser
transformation applies to all XHTML browsers, but it is more adequate for desktop
computers that do not impose significant display size limitations and can display a
variety of binary image representations. Therefore, the applicability expression only
requires XHTML support, but adequacy expressions also express the transformation’s
adequacy for desktop computers.

The XSL-FO printer transformation specification interprets the Ldoc constructs in a
similar manner to the desktop browser transformation, but it uses XSL-FO constructs
and an more adequate layout for printed media. It generates a paged document layout
and optimises its content for fixed page dimensions. The doc:document construct is
mapped to the top level XSL-FO constructs that define the static page layout, the
document title and the author information. The document paragraph constructs are
mapped to XSL-FO block elements, which represent individual flows of text. The
formating constructs are mapped to their corresponding combinations of font sizes and
faces. The doc:img construct interpretation uses the corresponding XSL-FO graphics
import construct: <external-graphic>

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 207

The mobile transformation semantics must address the limitations of both the WML
and the described device. Current high end mobile phones provide rich processing and
interaction capabilities. However, as described in Section 10.4.2, the case study mobile
profile describes a very limited device, in order to allow the evaluation of XMLPipe’s
adaptation capabilities. WML only supports primitive formating and scripting, and
most of the earlier mobiles do not support text font variations. Moreover, they have low
resolution monochrome screens and do not support the majority of desktop browsing
functionality, such as scroll bars and navigation buttons. The corresponding stylesheet
must map the Ldoc constructs into an adequate interpretation for such limited capa-
bilities.

The Ldoc interpretation for the case study mobile profile consists of a hierarchical
organisation of minimal text portions. A WML document consists of page templates
and cards. The former define each page’s browsing behaviour by attaching actions to
the interactive components of the mobile, such as its buttons. The document content is
divided among several interlinked cards. The WML mobile transformation stylesheet
creates a separate card, for each document paragraph, and a contents table card, for
each document section. The generated templates assist the document navigation by
customising the mobile controls to navigate at either the next text portion or to the
table of contents. WML contains an em construct, but it does not modify the text
appearance in devices with minimal font support. Therefore, the proposed stylesheet
encloses the emphasised text into asterisks, in order to ensure the explicit presentation
of the doc:em construct.

1 <wml>
2 <template>

3 <do l a b e l=” s t a r t ” type=” r e s e t ”>
4 <go h r e f=”#N400001 ”/>
5 </do>
6 <do l a b e l=”back” type=”prev ”>
7 <prev/>
8 </do>
9 </template>

10 . . .
11 <card id=”N400024 ”>
12 <do l a b e l=”next ” type=” accept ”>
13 <go h r e f=”#N400030 ”/>
14 </do>
15 <p>A fo r e i g n namespace . . .
16 <a h r e f=” . . . ”>∗ l i n k s ∗
17 . . . </p>

18 </card>

19 <card id=”N400030 ”>
20 <p>This i s a mobile</p>

21 </card>

22 </wml>

Listing 10.16: Ldoc interpretation for
a WML mobile

1 <handler name=”WBMP cov e r t e r ”>
2 <hcL i s t . . . ><hcRef name=”img”/>
3 </hcList>

4 <adequacy>

5 <expr ns=”DOC URI”
6 name=”doNotRecurse ”>
7 </not><termVal/></not>
8 </expr>
9 <expr ns=” . . . ” name=” supports ”>

10 <contains >

11 <termVal/><val>WBMP URI</val>
12 </contains>

13 </expr>
14 <expr ns=” . . . ” name=” supports ”>
15 <not><contains >

16 <termVal/><val>JPEG URI</val>
17 </contains></not>
18 </expr>
19 </adequacy>

20 <context>

21 <statm ns=”DOC URI”
22 name=”doNotRecurse ”>t rue</statm>

23 </context>

24 . . .
25 </handler>

Listing 10.17: Ldoc WML mobile partial
binding adaptation specification

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 208

Listing 10.16 outlines the example document interpretation for the WML mobile.
The WML template at lines 2–9 programs the two primary mobile navigation buttons
to navigate to the previous page and the top level index. Within cards that do not
represent the last paragraph of a section, such as the card at line 11, an additional
association programs the middle mobile button to navigate to the next paragraph.
The “links” text, at line 16, is an emphasised link within the example document; The
illustrated WML output encloses the corresponding text within asterisks and the WML
<a> anchor element.

WML 1.1 does not support namespace declarations and requires a DOCTYPE
declaration. The proposed transformation pipeline addresses the lack of namespaces
support by including an XSL-T transformation that removes all namespace declara-
tions. XMLPipe allows the document root’s transformation (doc:document element)
to specify the resulting document’s DOCTYPE declaration. Therefore, it is sufficient that
the transformation template that corresponds to the doc:document element produces
a WML DOCTYPE declaration.

The transformation of the doc:img construct to its corresponding WML construct
is not sufficient for a low-end mobile. The desktop and printer stylesheets mapped
the doc:img construct to its corresponding natively supported construct, under the
assumption that there is native support of the referenced image representation. Such
an assumption does not apply to low-end WML mobile devices that are unlikely to
support other image representations than WBMP. The case study processing semantics
address the mobile image representation limitations by associating an image converter
to the doc:img handled construct.

Listing 10.17 is a partial representation of the image converter’s declaration. The
binding adaptation specification consists of a set of adequacy expressions. The default
applicability expression, which requires that all adequacy expressions evaluate to non-
zero values, provides an approximate applicability measure. Specifically, it requires
WBMP support and lack of JPEG support. A browser that supports WBMP and
not JPEG images is likely to only support the simplistic WBMP format and no other
more complex image representations. The WBMP converter is not specific to mobiles
or WML, because it can be used for any adaptation profile that supports WBMP
images. Consequently, the proposed applicability/adequacy expression does not include
any device type requirement. The image converter atomic transformation produces a
temporary WBMP representation of the original image, according to the image size
constraints of the target device. It also maps the source doc:img construct to an
output doc:img construct that refers to the temporary WBMP file.

The doNotRecurse adequacy expression, in line 5, ensures that the conversion trans-
formation will not recurse indefinitely. Specifically, doNotRecurse is a language specific
term that belongs to the same URI as Ldoc . During the initial doc:img subtree process-
ing the image conversion transformer is applicable, because all illustrated expressions
are true, since the default value of doNotRecurse is false . The context statement, in
line 21, instructs the pipeline driver to introduce a language specific statement that
changes doNotRecurse value to true. Since doNotRecurse is a language specific term,
XMLPipe retains its value during the processing of the doc:img rooted subtree. There-
fore, the image converter will not be applicable when XMLPipe traverses the newly
generated doc:img construct.

The handled construct based association of transformation semantics is essential
for modular transformation semantics specifications and independent introduction of

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 209

Secondary Repository

Mobile ventor profile

repository

Software upgrade ventor

profile repository

Import URI

XLink URI

Binding component

Profile composer

XMLPipe

Desktop

profile

XSL-FO

profile

Mobile

profile

Default mobile

profile

Software upgrade

profile

Handled constructs

declarations

Validation semantics

Transformation

semantics

ALT URI

Handled constructs

declarations

Validation semantics

Transformation

semantics

DOC URI

Handled constructs

declarations

Validation semantics

Transformation

semantics

Language specific

term declaration

XLink handled

construct declarations

XLink validation

semantics

XLink transformation

semantics

Human oriented

description

XMLPipeURI/Terms

XMLPipe terms

declarations

XMLPipeURI/Terms

Figure 10.6: Proposed processing semantics distribution

partial transformers, such as the image converter. Its design and adequacy expres-
sions are significantly different from the aforementioned generic WML transformation
pipeline. The handled construct based associations enable its association with the
doc:img construct, independently of the generic WML pipeline.

10.4.8 Semantics binding

An adequate distribution of the described processing semantics requires a combination
of both primary and the secondary location mechanisms. The pilot XMLPipe imple-
mentation has limited binding support and uses a single processing semantics reposi-
tory, as described in Section 10.3. Consequently, the document processing experiment
uses a single local file that contains all described processing semantics. Nonetheless,
this section will describe a theoretical adequate semantics distribution, in order to
illustrate the benefits of the proposed binding model.

Figure 10.6 illustrates the proposed distribution of the case study processing se-
mantics.

The location of the composite adaptation profiles does not relate to the binding
model, because the preprocessing initiation entity must provide all adaptation require-
ments information. The profile composer is responsible for resolving any composite
profile external references and retrieving the corresponding adaptation requirements.
For instance, the proposed mobile profile contains two external references to the default
device profile and to the software upgrade profile. The profile composer retrieves both
and combines them with the mobile profile statements.

The Ldoc , Limp and Lalt languages have been introduced by this case study, and Lxl

corresponds to the W3C XLink language. Therefore, the principal location mechanism
can be used for the case study languages by adding RDDL links to the Web pages that

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 210

correspond to their URIs. The XMLPipe binding model can use the namespace URIs
to locate these RDDL links and retrieve all necessary handled construct, validation
and transformation semantics. W3C owns the XLink namespace URI and there are
no XMLPipe specific RDDL links in the corresponding Web page. Consequently, a
secondary location mechanism is necessary for locating the Lxl processing semantics. In
addition to the core processing semantics, the interpretation of the adaptation profiles
and the optimal pipeline selection process require the semantics of several adaptation
terms. The case study uses a set of well defined XMLPipe adaptation terms and the
language specific doNotRecurse term. All the adaptation term processing semantics,
in a similar manner to the case study specific languages, can be located using the
RDDL links in the corresponding Web pages. The RDDL link that corresponds to
the doNotRecurse term must coexist with the Ldoc processing semantics, because they
both share the same namespace URI.

The proposed semantics distribution is one of many alternative distributions. For
instance, any of the case study language semantics can also reside in secondary seman-
tics repositories. In fact, the local processing semantics repository that is used by the
XMLPipe pilot implementation is such a secondary repository. Moreover, the proposed
binding model is guaranteed to use the remote semantics repositories only during its
first invocation. Subsequent processing can use the local semantics cache to acquire
the required processing semantics, without requiring any external communication.

10.4.9 Document processing

The described processing semantics enable the authoring validation and adaptive trans-
formation of the example document, for all three adaptation profiles. A detailed de-
scription of all processing steps would be prohibitively lengthy, because of the recursive
nature of the proposed processing. Therefore, this section will describe each process-
ing step once. Subsequently, Section 10.4.10 will illustrate the collective output of all
processing steps.

Both the document user and the document author provide the example document’s
URI uri to initiate its processing. For document transformation, the document user
also provides a composite adaptation profile cpr , which can correspond to any of the
three case study profiles: the XHTML desktop, the WML mobile or the XSL-FO
printer profile. For instance, the pilot implementation invocation for transforming
document.xml according to the mobile adaptation profile is

java XMLPipeCmd aMobile document.xml

The pilot implementation does not support validation, but the corresponding invocation
could be

java XMLPipeCmd -V document.xml

The authoring validation invocation omits the adaptation profile name, because au-
thoring validation is adaptation requirements independent.

For both validation and transformation, the first processing step is document pars-
ing. The validation and transformation drivers use the XML parser to map uri to its
corresponding DOM tree d = parse(uri).

The next step, in the case of transformation, is to retrieve and process the composite
profile. XMLPipe retrieves the specified composite profile cpr from a local profile
repository. Subsequently, the transformation driver uses the profile composer to convert

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 211

it to an adaptation profile pr = ccompose(cpr). For example, consider the invocation of
ccompose for the mobile composite profile, which consists of the sequence of adaptation
statements illustrated in Figures 6.3, 6.4 and 6.5 (page 98). Initially, ccompose adds
the statements of Listing 6.3 to the resulting adaptation profile pr . Subsequently, it
resolves the first introduced conflict, because of the statement in Listing 6.4, using the
resolution expression of the supported term: a union of the two conflicting values. The
resulting profile contains both WML and WBMP URIs. Finally, Listing 6.5 introduces
two statements that conflict with the initial image size specifications. ccompose applies
the XMLPipe default conflict resolution, because there are no term or statement specific
resolution expressions. Therefore, the resulting profile restricts the maximum image
width and height to 96 and 100 pixels, respectively.

The profile composer retrieves the required processing semantics by interoperating
with the binding component. For instance, consider the supported adaptation term.
When the profile composer encounters the supported adaptation statement, it retrieves
the term’s semantics by invoking the locateTermSem binding component function.

ts1 = locateTermSem((XMLPipeURI/Terms, supported)

The locateTermSem function delegates the above request to the generic locateSemantics
function. locateSemantics returns the corresponding semantics information, if it is
available in the processing semantics cache. Otherwise, it uses cacheImport to en-
sure that the semantics cache is up-to-date. The Web page that corresponds to the
XMLPipeURI/Terms URL, contains an RDDL link to the supported term semantics.
cacheImport uses this RDDL link to locate the corresponding term semantics. This
case study does not include any conflicting semantics. However, if there where conflict-
ing semantics, cacheImport would only cache the most trusted semantics, according to
the set of predefined repository trust levels. The semantics retrieval process is identical
for all other XMLPipe processing semantics: the validation semantics, transformation
semantics and handled construct information.

After the document parsing and profile composition, the transformation driver
passes the transformation request to the integration model transformation driver, which
implements the transformRev function. transformRev performs a postorder document
traversal and transforms the individual handled construct rooted subtrees. Figure 10.7
illustrates the simplified1 postorder document traversal and subtree transformation sub-
stitution, for the example document. The postorder traversal begins at the contents
of the first alt:case element and proceeds until it encounters the alt:alt element,
which is a non-natively supported handled construct. Subsequently, it calls bestHCTS
to choose the corresponding optimal pipeline transformation specification. alt:alt is
associated with a single transformation pipeline (T ′) that has no associated adequacy
or applicability expressions. Therefore, bestHCTS returns its corresponding transfor-
mation pipeline T . transformRev separates the subtree d1 that is rooted at alt:alt, as
Figure 10.7 illustrates, because alt:alt is an element SMC construct. The application

of T ′ to d1 results in d′1: d1
T ′

−→d′1. d′1 is not null and d1 6= d′1, because d′1 contains one of
the alternative subtrees, originally enclosed within the alt:case elements. Therefore,
transformRev substitutes d1 with d′1 and resumes the document traversal from the in-
nermost node of the newly added d′1. In a similar manner, transformRev processes all
the constructs of d, until the document solely consists of natively supported constructs.

1It is a simplified illustration, because it does not contain all the tree substitutions and their corre-
sponding recursive traversals.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 212

doc:

document

alt:case

alt:case
alt:alt

imp:import

doc:

section

doc:p

doc:em

 doc:img

doc:section

doc:sectiondoc:p

doc:em

imp:

import

xl:type="..."

xl:href

alt:case

alt:case

alt:alt

doc:p

doc:p

doc:title T'
Legend

Handled construct node

Non handled construct node

Insignificant subtree

Post-order traversal sequence

Subtree transformation /
substitution

First traversal step

d1

d'1

Figure 10.7: Transformation processing: document traversal and subtree transforma-
tion

The processing of handled constructs that are associated with multiple pipeline
specifications requires interoperation with the adaptation measure evaluator, as op-
posed to the described alt:alt transformation. For instance, during the processing of
xl:type and xl:href, bestHCTS must interoperate with the adaptation measure eval-
uator, in order to choose the optimal transformation pipeline. Consider that the binding
specifications Bd, Bm and Bp correspond to the XHTML, WML and printer transforma-
tion pipelines, respectively. Additionally, consider the example mobile adaptation pro-
file prm. The desktop pipeline is not adequate for the mobile profile, because the mobile
adaptation profile does not state XHTML support: measure(prm, Bd) = 0. In a similar
manner measure(prm, Bm) = 2 and measure(prm, Bp) = 0. Consequently, bestHCTS
returns the WML pipeline for the mobile profile. Subsequently, transformRev uses it
to transform the simple XLink links to their equivalent WML constructs.

The transformation of the doc:img construct deserves special mention, because it
uses language specific adaptation statements and there are conflicting transformation
pipelines. When transformRev reaches the doc:img construct, bestHCTS must choose
the optimal transformation pipeline between four alternatives: the doc:img specific
pipeline and the three generic Ldoc pipelines.

When interpreting d for the mobile profile, only the generic WML and the doc:img
specific image converter correspond to non-zero measure results, because the other
pipelines require unsupported languages (XHTML and XSL-FO). Consider that the

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 213

binding information Bi and Bm correspond to the WBMP image converter and to the
generic WML pipeline, respectively. During the first subtree invocation, the former
results in a higher measure: measure(prm, Bm) = 2 and measure(prm, Bi) = 3. There-
fore, transformRev will prioritise the image conversion pipeline. The image conversion
pipeline substitutes the initial doc:img element with another doc:img element that
refers to a temporary WBMP version of the initial image. Additionally, the context

element, used in the pipeline definition, introduces the value true for the language
specific term doNotRecurse.

Subsequently, transformRev revisits the newly introduced doc:img construct and
calls bestHCTS . The introduced true doNotRecurse value applies to the doc:img

rooted subtree and influences the adaptation measure evaluation. Specifically, the im-
age converter applicability expression requires that doNotRecurse is false; therefore
the image converted is no longer applicable: measure(prm, Bi) = 0. Consequently,
transformRev uses the generic WML transformation pipeline, which maps doc:img to
its corresponding WML image inclusion construct. Subsequently, the traversal contin-
ues to the remaining document constructs. The processing of other doc:img constructs
is not affected, because the language specific term value modifications are local to each
subtree.

The pipeline driver is responsible for applying all described subtree transforma-
tions by instantiating and invoking the individual atomic transformations, which are
described by the pipeline specifications. For example, consider the imp:import trans-
formation pipeline, which is a dynamic transformation. It contains two atomic spec-
ifications A1 and A2, which correspond to the non-dynamic and the dynamic XSL-T
atomic transformations, respectively. The pipeline driver instantiates the correspond-
ing pipeline by locating and instantiating T1 and T2, which are the transformations
that correspond to the A1 and A2 specifications. Subsequently, it applies T ′ to d1:

d1
seq(validateHC,dyn(T ε,T1,T2))

−→ d′1.

If the preprocessing initiation entity requests authoring validation, the authoring
validation component, which implements the validateAuth function, performs a two
step authoring validation process. Firstly, it calls the transformAuth function, which
is implemented by the transformation driver, in order to remove as many SMC rooted
subtrees as possible. In a similar manner to the described document transformation,
transformAuth traverses the document in a postorder manner. However, it only trans-
forms the SMC rooted subtrees, which are the alt:alt and imp:import rooted sub-
trees. Prior to their transformation, it also calls validateHC, in order to ensure the
validity of the topmost processed constructs. All the SMC rooted subtrees of the ex-
ample document are valid. Consequently, transformAuth succeeds and validateAuth
proceeds to calling validate , in order to validate the SMC free document. The lat-
ter is valid, according to the XMLPipe integration model. Therefore, the authoring
validation process succeeds.

Both validateHC and validateSubtree delegate all validation requests to validate .
Figure 10.8 illustrates how validate traverses the document tree and separates the
individual subtrees. As opposed to document transformation, document validation
begins with the document root construct. For each subtree, validate firstly separates
all foreign namespace subtrees. Subsequently, it locates and applies the optimal atomic
validation. For instance, as Figure 10.8 illustrates, validate firstly separates all foreign
namespace descendants of doc:document and validates the resulting single namespace
subtree. After the validation of a subtree, validate recurses into its foreign namespace

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 214

doc:

document

alt:case

alt:case
alt:alt

imp:import

doc:

section

doc:p

 doc:img

doc:section

doc:sectiondoc:p

doc:em

imp:

import
xl:type="..."

xl:href
alt:case

alt:case

alt:alt

doc:p

doc:p

doc:em

V

V

V

V

xl:foc

V

alt:coc

alt:coc

V

V

V

Legend

Validation traversal

First traversal step

V

Temporarily introduced node

Subtree validation

Figure 10.8: Validation processing: document traversal and subtree separation

subtrees.
During the separation of the document subtrees, validate introduces the necessary

predefined foc and coc constructs. For example, as Figure 10.8 illustrates, validate
adds both XLink attributes to a temporary foc element. The foc element provides a
well defined context to the XLink attributes, and it enables the specification of schemas
that restrict their syntax. After their validation, validate removes the foc element and
adds them back to their original parent (the doc:em element). Additionally, during the
separation of the doc:p constructs from the second alt:alt rooted subtree, validate
temporarily replaces them with the predefined coc construct. The coc element denotes
foreign namespace subtrees that are rooted at a COC . The validation specifications
must allow the occurrence of coc all places where foreign namespace content is ex-
pected. Consequently, its introduction ensures that subtree validation fails, if there are
invalidly nested COC rooted subtrees.

10.4.10 The transformed document

The previous section described all aspects of XMLPipe document processing. The
processing of the example document results in a different output for each of the three
example adaptation profiles. This section will describe the individual transformation
outputs and illustrate their rendering by the corresponding browsers and devices.

For each adaptation profile, the produced output is adequate for the corresponding
device and browser. For instance, Figure 10.9 illustrates the document interpretation
for the desktop browser profile. The interpretation of Ldoc constructs as a continuous

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 215

Figure 10.9: Document transformation result: Desktop profile

content flow is adequate for online document browsing.
In addition to the overall document layout, the interpretation of the individual con-

structs is also adequate for the desktop profile. Specifically, the sections are numbered
according to their nesting, and the abstract author information has been transformed
to a list of author names, which are linked to their e-mail addresses. The doc:em

and doc:img constructs have been transformed to their corresponding XHTML con-
structs. The alt:alt SMC handled construct has also been interpreted correctly, as
illustrated by the document title that is “Desktop example” instead of “Mobile exam-
ple”. The linked text “links”, towards the end of the rendered document, illustrates
that XMLPipe mapped the XLink attributes to the corresponding XHTML anchor
element. Finally, the processing of the imp:import SMC rooted has imported the
referenced author information.

In a similar manner to the desktop profile, the XSL-FO printer profile also allows
rich content presentation. The corresponding interpretation only differs in the overall
layout and the presentation of links. Figure 10.10 illustrates an XSL-FO previewer’s
rendering of XMLPipe’s output, for the XSL-FO printer profile. As opposed to the
desktop continuous content flow, the printer interpretation consists of a sequence of
fixed size pages. The top level formating consists of centred headings and justified

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 216

Figure 10.10: Document transformation result: XSL-FO printer profile

text, which are more adequate for printed media. The interactive interpretation of
links is not adequate for printed media. Consequently, the source links have been
interpreted as pairs of their name and URL target.

The document interpretation for the mobile profile, illustrated in Figure 10.11, dif-
fers substantially from the desktop and printer interpretations, because of the example
mobile’s limited presentation and interaction capabilities.

There is a table of contents for the whole document and for each document section,
in order to assist the browsing of the document using a small low resolution display.
The first screenshot illustrates the root contents table, which links to the two top level
sections. The second screenshot (on the right) illustrates the contents table of the
first section, which contains a paragraph (“text section”) and a nested section. The
document user does not have to scroll over large portions of text and can use the content
table links to navigate through the document sections and paragraphs.

All document constructs have been mapped to their optimal interpretations for the
mobile profile. The first screenshot illustrates the correctness of the alt:alt (lines
7–14) processing, because the document title is “Mobile example”. The third screen-
shot shows the imported image and the mobile rendering of emphasised text, which
is enclosed in asterisks. The processing of the doc:img construct uses both the the
image converter, which maps the source JPEG representation to a WBMP file, and
the generic WML transformation, which maps the doc:img to its corresponding WML
construct. The fourth and fifth images illustrate the imported content and the WML
interpretation of the XLink simple links. Finally, the last screenshot illustrates the

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 217

Figure 10.11: Document transformation result: Mobile profile

correct selection of the optimal alt:alt alternative paragraph: “This is a mobile”.

10.4.11 Reusing the semantics of existing languages

The recursive nature of the proposed processing allows the reuse of existing languages to
simplify the processing semantics of a new language. For instance, the transformation
semantics of Ldoc and Lxl consist of multiple transformation pipelines that fulfill several
sets of adaptation requirements. If the transformation semantics of a new language L
map its constructs to the constructs of Ldoc , no multiple transformation pipelines will
be necessary, because the processing of Ldoc constructs is well defined for all case study
profiles.

An illustration of the above language reuse concept requires a higher level pre-
sentation language than Ldoc and Lxl . However, the case study languages have been
purposely kept simple, and they cannot provide the foundation for usable higher level
presentation languages. Nevertheless, they can be used for the presentation interpre-
tation of a non-presentation language’s constructs.

Listing 10.19 uses such a language to describe a compact disk (CD) collection. Each
cd:cd entry of the non-presentation language Lcd defines the information of a CD: its
URI identifier, cover image, title and list of authors and songs. Listing 10.18 uses the
constructs of Ldoc , to define the top level structure of a document, and the constructs
of Limp, to import the compact disk information from Listing 10.19.

The compact disk language is not a presentation language, because the primary
interpretation of its constructs relates to the disk information and their presentation is
context dependent. For instance, within the context of the above example, each cd:cd

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 218

1 <doc:document
2 <d o c : t i t l e >CD c o l l e c t i o n</d o c : t i t l e >

3 . . .
4 <doc : s e c t i on >

5 <d o c : t i t l e >The CDs</d o c : t i t l e >

6 <doc:p>One subsec t ion per CD</doc:p>

7 <doc : s e c t i on >

8 <d o c : t i t l e >

9 <imp:import h r e f=”imp2 . xml”
10 s e l e c t=” //∗/∗ [@uri=’ u r i : c d I n f o1 ’]
11 / ∗ [1] / t ex t () ”/>
12 </d o c : t i t l e >

13 <imp:import h r e f=”imp2 . xml”
14 s e l e c t=” //∗/∗ [@uri=’ u r i : c d I n f o1 ’] ”/>
15 </doc : s e c t i on >

16 <doc : s e c t i on >

17 <d o c : t i t l e >

18 <imp:import h r e f=”imp2 . xml”
19 s e l e c t=” //∗/∗ [@uri=’ u r i : c d I n f o3 ’]
20 / ∗ [1] / t ex t () ”/>
21 </d o c : t i t l e >

22 <imp:import h r e f=”imp2 . xml”
23 s e l e c t=” //∗/∗ [@uri=’ u r i : c d I n f o3 ’] ”/>
24 </doc : s e c t i on >

25 </doc : s e c t i on >

26 </doc:document>

Listing 10.18: Semantics reuse example:
driving document

1 <media xmlns=”CD URI”
2 xmlns :x l=”XLink URI”>
3 <cd coverImg=” cdcover1 . jpg ”
4 u r i=” u r i : c d I n f o 1 ”>
5 < t i t l e > . . . </ t i t l e >

6 <a r t i s t s >

7 <a r t i s t name=” . . . ”/>
8 <a r t i s t name=” . . . ”/>
9 </a r t i s t s >

10 <songs>

11 <song> . . . </song>

12 <song> . . . </song>

13 </songs>

14 </cd>

15 . . .
16 <cd coverImg=” cdcover3 . jpg ”
17 u r i=” u r i : c d I n f o 3 ”>
18 < t i t l e > . . . </ t i t l e >

19 <a r t i s t s >

20 <a r t i s t name=” . . . ”/>
21 </a r t i s t s >

22 <songs>

23 <song> . . . </song>

24 <song> . . . </song>

25 <song> . . . </song>

26 <song> . . . </song>

27 </songs>

28 </cd>

29 </media>

Listing 10.19: Semantics reuse
example: imported document

rooted subtree can be presented as a sequence of paragraphs that contain all compact
disk information. If the same information was presented as a result of a media database
query, a more compact presentation would be more adequate.

For the purpose of this case study, we will associate the constructs of Lcd with
their adequate transformation semantics for their illustrated use, in Listings 10.18 and
10.19. Specifically, each CD information entry can be considered as an independent
information entity that has a well defined presentation. Consequently, the cd element
construct is a COC construct, because it introduces a well defined piece of presentable
information and its processing can be defined independently of its context.

A single atomic transformation that reuses the Ldoc and Lxl constructs is sufficient
for processing all Lcd constructs. Specifically, an XSL-T stylesheet can map each cd el-
ement to a series of doc:p paragraph elements. The first can contain the compact disk
cover image and the compact disk title, which can also be a link the associated unique
URI. The subsequent paragraphs can list the compact disk artists and songs. The asso-
ciated stylesheet consists of two simple transformation templates. The corresponding
transformation semantics require a minimal declaration and neither applicability nor
adequacy expressions, because the atomic transformation is adaptation requirements
independent.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 219

The above minimal specification of transformation semantics is sufficient for adapt-
ing the illustrated documents, according to all case study profiles. Figure 10.12 illus-
trates the rendering of the XMLPipe pilot implementation output for all three adapta-
tion profiles. The XHTML desktop interpretation is a continuous flow of the document
information, which uses interactive links and full sized images. The interpretation for
the XSL-FO printer profile also provides a rich presentation, but it uses a paged layout
and a non interactive presentation of links. The mobile interpretation consists of a
set or hierarchically organised cards. The corresponding CD cover images have been
converted to low resolution WBMP images.

The illustrated rendering is not of a high standard, because the case study languages
are simple and do not contain fine grained presentation functionality. However, it
establishes that the proposed processing allows reusing existing languages to simplify
the processing semantics of new languages.

10.5 Case study discussion

The purpose of the described case study is twofold. Firstly, it must bridge the described
theory with its practical applications, by illustrating how to combine all introduced con-
cepts to preprocess a presentation document. Secondly, it must illustrate the feasibility
of generic document processing for the Web, which is essential for supporting our hy-
pothesis. The subsequent XMLPipe discussion section will describe the adequacy of
XMLPipe, but a case study provides clearer insight in the benefits and feasibility of
generic document processing.

The case study has adequately illustrated all XMLPipe concepts. Specifically, it
described the necessary semantics specifications for processing a mixed namespace pre-
sentation document, according to three separate profiles. The processing description
covered both the authoring validation and transformation. Furthermore, it described
how each processing component operates for both processes. The provided rendering
of the output documents indicated their adequacy for the corresponding adaptation
profiles. Therefore, the case study fulfilled its initial purpose, since it illustrated how
XMLPipe enables the adaptation of presentation documents that combine indepen-
dently developed languages, without requiring processing information by either the
document user or the document author.

The following discussion focuses on investigating whether the case study has suf-
ficiently illustrated the feasibility of generic document processing. Specifically, it will
describe the adequacy of the chosen case study example, the illustrated semantics def-
initions and the illustrated processing. Section 10.5.1 focuses on the chosen processing
scenario and the sufficiency of the case study document and adaptation profiles. Sec-
tion 10.5.2 addresses the proposed specifications, their simplicity and their adequacy for
open sets of languages. Finally, Section 10.5.3 describes how the case study illustrated
the feasibility of document validation and transformation, for a variety of adaptation
requirements.

10.5.1 Processing scenario discussion

An adequate processing scenario must cover the variety of Web information sources
and consumers, within the scope of this thesis. A preprocessing scenario consists of
a set of languages, a document that combines them and a set of target adaptation
profiles. The unrestricted nature of the Web impedes the development of exhaustive

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 220

AAAA

Figure 10.12: Semantics reuse example: document rendering for all case study profiles

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 221

case studies, because there are unlimited combinations of presentation documents and
adaptation profiles. Nevertheless, an adequate processing scenario can use examples
that span the necessary information and functionality spectrum, without introducing
a prohibitive multitude of processing cases. Such examples can indicate the feasibility
of generic processing, by illustrating the breadth of a processing model.

The minimal design of the driving example languages and document does not al-
low a sufficient coverage of the presentation document domain, but they illustrate a
combination of common presentation abstractions that are defined by independently de-
veloped languages. Specifically, the four example languages are presentation languages
and the resulting document is a presentation document. The example languages and
document focus on reducing the complexity of the case study, and they do not expose a
rich set of presentation functionality. However, they introduce document and text for-
mating abstractions, interactive links, dynamic content and images, which are essential
to many document presentation applications. Additionally, they follow the modular
design principle, and each language covers a minimal application domain and is defined
independently of the others, since there are no predefined inter-language relationships.

In a similar manner to the input languages, the example adaptation profiles cannot
cover the whole spectrum of Web adaptation requirements. However, they allow suffi-
cient illustration of the XMLPipe adaptation capabilities, because the three adaptation
profiles describe significantly different devices that belong to opposing sides of the Web
device capabilities spectrum. Specifically, the desktop profile corresponds to high-end
devices and browsers, and it allows a rich presentation of all the driving example con-
structs. In contrast, the mobile adaptation profile corresponds to a minimal set of
processing and presentation capabilities. The supported WML and WBMP represen-
tations do not allow a straightforward presentation of most driving example constructs,
and the limited display and navigation capabilities require a highly customized docu-
ment layout. The combination of the desktop and mobile profiles test the adaptation
range that a processing model can provide. The XSL-FO printer adaptation profile
lies in the middle of the capabilities spectrum, but it does not allow any interaction.
The lack of interaction capabilities poses a significant adaptation challenge, because
it requires different output layout and presentation of naturally interactive constructs
(such as links).

10.5.2 Processing semantics discussion

A core case study aim was to illustrate that XMLPipe enables the straightforward
specification of processing semantics that are adequate for an open set of independently
developed languages. A semantics specification process is adequate for an open set of
independently developed languages, if it neither relies on predefined language relation-
ships nor on predefined integration profiles. Moreover, a semantics specification process
is straightforward, if it does not require complex processing definitions and complex
associations. This section will show that the described case study illustrated both the
adequacy and straightforward nature of the XMLPipe semantics specifications.

The XMLPipe semantics for a language consist of its handled construct, validation
and transformation specifications. The case study illustrated that they are adequate
for an open set of independently developed languages, because no specification relied
on inter-language relationships or integration profiles.

The handled construct specifications depended on the semantics and the syntax
of the corresponding languages, and not on other languages. In a similar manner,

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 222

each language’s validation semantics did not refer to other languages, and they only
depended on its handled constructs and syntax. Furthermore, the predefined foc and
coc constructs allowed the identification of the necessary integration points, such as
the places where content is expected, without requiring references to foreign namespace
constructs.

The XMLPipe transformation model allows the individual transformers to access
foreign namespace constructs, but no illustrated transformation specification required
such access. The transformation semantics consist of the transformation pipelines
and their corresponding atomic transformations. Both may access foreign namespace
constructs, because each transformed subtree is not separated from its descendant
foreign namespace subtrees. However, no illustrated specification required references
to other languages, and they only had to obey the XMLPipe transformation design
guidelines (such as copying foreign namespace content).

The case study also illustrated that the lack of inter-language dependencies and
the well defined design guidelines enable the straightforward definition of all necessary
semantics. A semantics author can define the semantics of a language L, without re-
ferring to all other languages that can be potentially combined with L. Additionally,
the well defined validation and transformation design guidelines provide all necessary
information for the creation of adequate semantics specifications. The semantics au-
thors must only be aware of the design guidelines, and they are not required to have a
thorough understanding of the XMLPipe processing. Furthermore, the proposed design
guidelines do not complicate the specification of schemas and transformations, since
the illustrated specifications would not be significantly simpler, if they were designed
for single namespace processing.

The transformation semantics specification is further simplified, because of the pro-
posed handled construct based binding, transformation pipelines and recursive pro-
cessing. The handled construct binding and the transformation pipelines assist the
definition of modular transformations, which combine simple specifications to achieve
complex transformation tasks. For instance, the illustrated image converter required a
significantly different design and binding from the generic Ldoc handler. The handled
construct based associations enabled its definition as a separate transformer, without
requiring its integration in the Ldoc transformer. Additionally, the dynamic transforma-
tion pipelines enabled the processing of Limp by a simple seven line long specification.
Without the proposed transformation pipeline a significantly more complex XPath
evaluator would be necessary. Furthermore, the semantics author can utilise the recur-
sive XMLPipe processing to reuse existing languages, in order to simplify the semantics
specifications. For instance, the semantics of Lcd would require multiple transformation
specifications, in order to cover a variety of adaptation requirements. Nevertheless, the
case study illustrated that a single minimal XSL-T stylesheet is sufficient, if it reuses
the other case study languages.

Summarising, the case study illustrated that the XMLPipe processing semantics
are adequate for independently developed languages and their definition is not overly
complex.

10.5.3 Processing discussion

In addition to illustrating the adequacy of the XMLPipe semantics, the case study also
aimed to illustrate the feasibility of the proposed processing for the Web. Such an aim
can be accomplished by showing that a set of independently developed semantics can

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 223

be combined to validate and transform mixed namespace presentation documents. The
transformation must be adequate for an unrestricted variety of adaptation requirement
sets. Furthermore, it must not require explicit processing/adaptation information from
either the document user or the document author, because such information restricts
the document processing and impedes the processing of an open set of languages.

The case study illustrated that neither document processing nor document adap-
tation information is required by either the document user or the document author.
The input case study document consists of only the information that the document au-
thor wishes to convey. The document user, who is the preprocessing initiation entity,
only specifies the desirable type of processing (such as validation or transformation)
and a set of adaptation requirements. The subsequent XMLPipe processing steps use
the XMLPipe binding model to retrieve all the necessary processing semantics, for
transforming and validating the document. The current version of the XMLPipe pi-
lot implementation only supports a local semantics repository, and the document user
might have to specify its location. However, a complete implementation would com-
bine the proposed principal and secondary location mechanisms to retrieve all required
information, without the intervention of the document user.

The case study processing descriptions illustrated the feasibility of combining inde-
pendently developed processing semantics to correctly preprocess a presentation doc-
ument. The illustrated authoring validation process combined the language validation
semantics and the necessary transformation semantics (for processing the SMC rooted
subtrees), and it successfully validated the example document. In a similar manner,
the illustrated transformation processing used the independently developed transfor-
mation semantics, in order to recursively transform each document subtree into its
optimal representation. The resulting documents provided an adequate interpretation
of the original information, according to the three adaptation profiles.

The case study only used three predefined profiles. However, it illustrated that
XMLPipe preprocessing is adequate for the versatility of the Web environment and
does not depend on fixed adaptation profiles. If the transformation selection directly
depended on the individual profiles, a separate binding would be required for each
adaptation profile. Furthermore, the transformation semantics would have to be up-
dated upon the modification of a profile, because it would express a different set of
adaptation requirements. In contrast, the optimal transformation selection was solely
based on the evaluation of the applicability and adequacy expressions, and not on the
specific adaptation profiles. For instance, the desktop Ldoc handler could be chosen for
any XHTML supporting desktop, and not only for the example desktop profile.

Summarising, the case study illustrated the feasibility of validating and adapting
mixed namespace documents for an open set of adaptation profiles, according to inde-
pendently developed processing semantics. Within the context of the sound processing
scenario and the illustrated adequacy of the semantics definition process, it has illus-
trated the feasibility of all XMLPipe processing model aspects for the Web.

10.6 XMLPipe model discussion

This chapter introduced the necessary concepts for composing the complete XMLPipe
preprocessing model and illustrating the feasibility of the proposed processing. The
transformation and validation driver components orchestrate the individual XMLPipe
sub-models to serve a preprocessing entity’s transformation and validation requests.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 224

The discussion of the implementation issues and pilot XMLPipe implementation pro-
vided the core foundation for implementing the XMLPipe preprocessing model. The
case study used both the proposed theory and the XMLPipe implementation to suc-
cessfully illustrate the feasibility of the proposed processing.

The following discussion investigates the adequacy of XMLPipe for the Web and
extrapolates the XMLPipe observations to the complete processing domain, in order
to support our hypothesis.

10.6.1 Framework based evaluation

The XMLPipe preprocessing model is adequate for the Web, because it consists of a
set of sub-models that cover all preprocessing framework functionality and fulfill their
corresponding framework requirements. The driving components, introduced in this
chapter, are necessary for the XMLPipe preprocessing model, but they do not affect
its adherence to the preprocessing framework. The XMLPipe sub-models, which were
introduced in the previous chapters, covered all necessary preprocessing functionality.
They are also adequate for the Web, because they either fulfil all their corresponding
framework requirements or provide well balanced tradeoffs, if strict adherence to the
framework can harm the processing generality. Consequently, the XMLPipe prepro-
cessing model is adequate for the Web. Nevertheless, a further investigation of its
adherence to the Web design principles and of its efficiency is feasible within the con-
text of complete XMLPipe proposal, its pilot implementation and the introduced case
study.

Both the XMLPipe sub-models and XMLPipe as a whole adhere to the Web design
principles. Specifically, XMLPipe is as simple as possible, because it does not introduce
redundant functionality that is not directly related to the preprocessing framework re-
quirements. Furthermore, XMLPipe is modular, because its individual components
interoperate closely, but they are clearly separated and their interoperation is well
defined. XMLPipe also enables modular processing, because the semantics authors
can independently develop the processing semantics of each language. Moreover, the
proposed document processing is decentralised, because the XMLPipe binding model
enables the distribution of all the necessary processing semantics. The test of indepen-
dent invention is fulfilled, because the well defined atomic validation and transformation
interfaces allow the seamless integration of a multitude of validation and transforma-
tion technologies. Finally, XMLPipe enables the design of languages that conform to
the principle of least power, because it defines the processing of mixed namespace docu-
ments that combine an open set of languages. Consequently, it allows the combination
of multiple languages that can cover minimal application domains.

The preprocessing framework requires computationally efficient processing of pre-
sentation documents. The proposed validation algorithm has been shown to be slower
than single namespace validation, but of the same computational complexity order
(both are O(n log(n))). Consequently, the proposed XMLPipe validation can be char-
acterised as efficient, considering that it enables the significantly more generic process-
ing of mixed namespace documents that combine an open set of languages. As opposed
to the validation, the multitude of factors that influence a document’s transformation
impede the investigation of its computational complexity, as described in Section 5.4.
The exact nesting of a a document, and more precisely its average depth, can signif-
icantly influence the efficiency of its transformation, because of the recursive nature

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 225

of the transformation algorithm. Therefore, the proposed validation processing is effi-
cient, but the computational efficiency of the transformation processing, which is the
core of the XMLPipe processing model, cannot be proven.

However, the average transformation complexity can be reliably inferred from an
experimental investigation that utilises the structural characteristics of presentation
documents. Specifically, consider the case study example document, which is adequate
for illustrating the XMLPipe processing functionality, as described in Section 10.5.1.
An n-fold increase of its size would result in a similar increase of its number of nodes.
However, its depth would not vary significantly, because typical size gains result from
additional information (e.g. more sections and paragraphs) and not from increased
presentation complexity (e.g. deep nesting of the presentation constructs). There-
fore, documents that contain different number of copies of the case study document
constructs are adequate for a reliable experimental investigation of the relationship
between a document’s size and the duration of its transformation.

A reliable experimental investigation must use a multitude of document sizes and
perform multiple processing measurements for each size, in order to eliminate irrelevant
variations, such as operating system processing overheads. Our experiment consisted
of measuring the pilot implementation transformation time for 21 automatically gen-
erated documents, which contained from one to 2500 copies of the example document
constructs (corresponding to a range of approximately 70 to 170000 document nodes).
Each document was processed 10 consecutive times, and the minority of measurements
that significantly deviated from the average, due to irrelevant outside factors, were
discarded. Our experimental investigation was based on the arithmetic average of the
remaining values.

Assessing the efficiency of a transformation approach requires a well defined com-
parison benchmark, but no existing approach offers comparable transformation func-
tionality to XMLPipe, as described in Section 7.9. However, comparing the XMLPipe
execution time to a single XSL-T atomic transformation is beneficial. XMLPipe in-
corporates several XSL-T atomic transformations and its processing is expected to be
significantly slower than their processing, because of its enhanced processing function-
ality. However, the execution time comparison can illustrate wheteher XMLPipe is of
higher computational complexity than simple atomic transformation and, under the as-
sumption that current transformation approaches are adequate for the Web, illustrate
whether XMLPipe is sufficiently fast for the Web.

A separate document must be used for the atomic transformation processing, be-
cause a stand-alone atomic transformer cannot adequately process the case study ex-
ample document. Our experiment used a modified version of the example document
that only contains Ldoc constructs. The constructs of the remaining languages have
been replaced by an equivalent number of Ldoc constructs, and the number of handled
constructs has been preserved, in order to preserve the document complexity.

Figure 10.13 illustrates the collected data and their statistical analysis. The two
sets of data correspond to the measurements of the pilot XMLPipe implementation and
the Apache Xalan XSL-T transformer, which is the transformer used by the XMLPipe’s
XSL-T atomic transformation. Each mark illustrates the average, minimum and max-
imum duration measurements for the corresponding input document. The data regres-
sion analysis results in the illustrated polynomial functions, which have been drawn
over the data marks. The squared correlation coefficients (R2) provide a reliable statis-
tical measure of how well the polynomial functions match the experimental data. Both
R2 values indicate a nearly excellent match, and they are significantly greater than

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 226

y = 1E-09x2 + 0.0004x + 2.8154

R2 = 0.9997

y = 2E-10x2 + 3E-05x + 1.1328

R2 = 0.9982

0

20

40

60

80

100

120

0 50000 100000 150000 200000

nodes

d
u

ra
ti

o
n

 (
se

c)

XMLPipe

XSL-T (Xerces)XSL-T (Xalan)

Figure 10.13: Transformation duration in relation to the document nodes

their counterparts for linear, logarithmic and exponential functions. Consequently, the
described functions are a reliable approximation of the relationship between the number
of document nodes and the processing time of both XMLPipe and Xalan XSL-T.

The first observation is that XMLPipe’s computational complexity is O(n2), which
could be considered as inadequate for the efficient processing of Web documents. How-
ever, the factor of n2 (1E − 09) is significantly smaller than the factor of n (4E − 04).
The illustrated experiment purposely used large documents2 in order to enable the in-
vestigation of the processing tendencies, which are not apparent for typical document
sizes. Nevertheless, for typical presentation documents, within the [0, 20000] nodes
range, XMLPipe behaves in a nearly linear fashion, because of the small factor of n2.

Furthermore, the XMLPipe execution time is significantly slower that the single
XSL-T transformation execution time, but they both belong to the same computational
complexity class. Specifically, both regression functions are described by second degree
polynomials, where the factor of n2 is 5 orders less than the factor of n. Consequently,
the two functions express the same class of computational complexity. The execution
times relationship becomes more apparent by drawing the execution time ratio between
XMLPipe and XSL-T. Figure 10.14 illustrates their execution duration ratio. Within
the [0, 60000] range the ratio is not fixed but it increases. Such an increasing ratio
may result from memory allocation variations, since XMLPipe’s memory footprint is
significantly larger than the footprint of a single XSL-T transformation. However, for
large documents, the ratio becomes fixed and is the same to the ratio between the
factors of n2.

2The largest document results in a 670 pages long presentation.

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 227

0

10

0 50000 100000 150000 200000

nodes

X
M

L
P

ip
e/

X
S

L
-T

 r
at

io

Figure 10.14: Transformation duration ratio between XMLPipe and XSL-T

Therefore, XMLPipe is slower than a single XSL-T transformation, but its compu-
tational complexity is of the same order. Considering its significantly more powerful
processing, an approximately 10-fold increase of the transformation time can be con-
sidered as acceptable. Consequently, XMLPipe fulfils the preprocessing framework
efficiency requirement, because our investigation does not illustrate any computational
efficiency problems and it can efficiently process large presentation documents.

Both the complete XMLPipe preprocessing model and its individual components
fulfill the preprocessing framework requirements. Therefore, the XMLPipe proposal al-
lows the processing of presentation documents that combine an open set of presentation
languages, in a way that is adequate for the Web.

10.6.2 Hypothesis support

Our hypothesis was that the development of generic processing models is feasible within
the environment of the Web, if they utilise the constraints of the presentation domain
and address the problem of document processing as a whole. Such a hypothesis can
be supported by firstly developing a sufficiently generic processing model and subse-
quently illustrating that its sufficiency stems from following the principles expressed in
our hypothesis. Consequently, the support of our hypothesis would benefit from a com-
plete processing model that addressed all presentation document processing aspects:
validation, transformation and rendering.

A preprocessing model, such as XMLPipe, does not include a rendering sub-model,
but it is an adequate first step towards generic document processing and it is sufficient
for supporting our hypothesis. A preprocessing model is simpler than a complete
processing model, because it reuses existing presentation functionality and does not

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 228

require the time consuming development of a generic rendering component. Moreover,
it assists the transition from existing processing technologies, because it both allows
the document users to keep their chosen Web browsers and can be used on both the
server and the client side. Current XML processing approaches are not sufficient for the
generic processing of presentation XML documents. Therefore, a preprocessing model
can sufficiently support our hypothesis, if it can reuse existing browsers to provide
such generic processing. Additionally, more preprocessing model observations can be
extrapolated to generic processing models, in order to further illustrate the soundness
of our hypothesis. This section will use the proposed XMLPipe model to support our
hypothesis.

XMLPipe fulfils the preprocessing framework requirements, as described in Section
10.6.1. Consequently, XMLPipe is an adequate preprocessing model for the Web,
because the proposed framework provides a sound indication of a preprocessing model’s
adequacy, as described in Section 4.5

Addressing the processing problem as a whole has been essential for the adequacy of
XMLPipe. The proposed XMLPipe model combines the integration, validation, trans-
formation, adaptation and binding sub-models. The functionality of their composition
is greater than the sum of their individual processing capabilities, because removing a
sub-model would result in more unfulfilled framework requirements than the ones that
correspond to it. For instance, consider that XMLPipe did not contain the proposed
distributed binding sub-model. The resulting model, in addition to not fulfilling the
binding requirements, would also impede the independent definition of all necessary
semantics and the processing of an open set of languages. In a similar manner, the lack
of an adaptation model would not only prohibit the document adaptation, but it would
also harm most XMLPipe functionality, because there would be no method to choose
the optimal transformation for each subtree. Consequently, addressing the problem of
document processing as a whole is integral to the adequacy of XMLPipe.

Utilising the constraints of the presentation domain, has also been essential to
XMLPipe’s adequacy. The XMLPipe integration model uses the handled construct ob-
servations, which are specific to presentation documents, in order to define the validity
of mixed namespace documents. The validation and transformation models, which are
the core XMLPipe sub-models, use the integration model to enable the processing of
mixed namespace documents. If XMLPipe was not based on such observations, it would
either require predefined integration profiles or allow overly generic integration, such
as the unconstrained integration of NRL and NVDL. Such approaches would result in
a deficient preprocessing model, because the former is not adequate for the Web and
the latter does not provide the a sufficient foundation for presentation document pro-
cessing (it does not define the necessary relationships between the individual subtrees,
as described in Section 5.4).

The adequacy of XMLPipe for the Web illustrates the soundness of our hypothesis,
within the preprocessing domain. According to the above discussion, both princi-
ples expressed in our hypothesis have been integral to the adequacy and feasibility of
XMLPipe. Consequently, the design of generic preprocessing models is feasible when
they address the problem as a whole and utilise the constraints of the presentation
document processing domain.

XMLPipe also illustrates the applicability of principles expressed in our hypothe-
sis beyond the document preprocessing domain, because it enables generic document
processing. Its combination with existing browsers allows rendering presentation doc-
uments that combine an open set of languages, according to an open set of adaptation

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 229

requirements. Such processing results from the XMLPipe preprocessing functional-
ity and not from the browser’s presentation engine, because no current browser pro-
vides sufficiently generic document processing. Consequently, the application of the
principles expressed in our hypothesis enables the generic processing of presentation
documents.

The application of the principles expressed in our hypothesis to an original ren-
dering sub-model can further enhance the provided generic processing. A rendering
sub-model must support a set of natively presentable languages and a corresponding
presentation integration model. The former can benefit from utilising the presenta-
tion domain constraints, because it must cover a significant portion of the presentation
functionality spectrum. The latter can either use or extend the XMLPipe integration
model, which is based on the presentation domain constraints. Additionally, a render-
ing component is not sufficient in itself, and a processing model benefits from addressing
the document processing problem as a whole. For instance, the rendering model can
interoperate with a transformation model, in order to process non natively supported
constructs and to allow presentation time transformations. A rendering model can also
interoperate with a validation model, to ensure the validity of a document prior to its
presentation. Furthermore, a generic binding model can be used to allow an exten-
sible set of presentation languages. Consequently, our hypothesis also applies to the
development of complete processing models.

Summarising, XMLPipe has illustrated our hypothesis for both the preprocessing
and complete processing domains. Specifically, it enables the generic preprocessing of
presentation documents, because it follows the principles expressed in our hypothesis.
Additionally, its combination with existing rendering components enables the generic
processing of presentation documents. Furthermore, the principles expressed in our
hypothesis can be applied to a complete processing model, in order to provide richer
processing functionality. Consequently, our hypothesis is correct.

The presentation domain is sufficiently constrained to allow the develop-
ment of generic processing models. Such processing models can be developed
by utilising its constraints and addressing the document processing problem
as a whole.

10.7 Summary

This chapter concluded our proposal by completing the XMLPipe model and illus-
trating the soundness of our hypothesis. Specifically, it introduced the validation and
transformation drivers, addressed the core XMLPipe implementation issues and de-
scribed our pilot XMLPipe implementation. An extensive case study illustrated the
feasibility of XMLPipe and its adequacy for the Web, in combination with a prepro-
cessing framework based evaluation. The discussion section extrapolated the XMLPipe
preprocessing observations to the whole spectrum of presentation document processing
and illustrated the correctness of our hypothesis.

The introduced validation and transformation drivers were necessary, because they
provided a processing interface to the external entities. The validation driver receives
the authoring validation request from the document author and uses the document
parser and integration model validation driver to fulfill it. In a similar manner, the
transformation driver receives the transformation requests by the preprocessing ini-
tiation entities, and uses the document parser, the adaptation component and the

CHAPTER 10. THE COMPLETE XMLPIPE MODEL 230

integration model transformation driver to fulfill them.
The resulting XMLPipe model provides a detailed description of all processing as-

pects, but it does not cover all XMLPipe implementation issues. Existing presentation
integration models are overly restrictive and they impede the generic document process-
ing, because they only allow single namespace documents or profile based composition.
The proposed short term solution consists of using minimal adaptation profiles and
allowing a document’s root transformation to generate DOCTYPE declarations. The
former ensures that XMLPipe output documents use a minimum set of languages. The
latter ensures that the resulting documents are adequately presented. The XMLPipe
model did not define the representation of the processing semantics, because an ad-
equate representation is not the main focus of this thesis. The pilot implementation
establishes a representation that is adequate, but not necessarily optimal. Finally, the
recursive processing of document subtrees according to a distributed set of specifications
results in losing the majority of necessary context information for error reporting. The
proposed solution is to associate the necessary location information with the document
nodes and preserve it by serialising it prior to each subtree transformation.

The document processing case study used the pilot implementation to illustrate the
feasibility and benefits of the proposed processing. It illustrated the processing of the
transformation driving example document for three adaptation profiles, which cover
a wide spectrum of adaptation capabilities. Initially, it described all the necessary
processing semantics: the handled construct information, the validation semantics and
the transformation semantics. Subsequently, the pilot implementation was used to
transform the case study document, according to the three profiles. Moreover, the
case study illustrated that the proposed recursive processing allows the straightforward
introduction of additional languages.

The proposed XMLPipe model allows the generic preprocessing of presentation
documents and enables the illustration of the correctness of our hypothesis. It only
covers document preprocessing and does not address document rendering. However,
its combination with existing browsers can provide generic document processing. Fur-
thermore, the XMLPipe concepts can be applied for the development of a complete
processing model that allows additional processing functionality. The adequacy and
power of XMLPipe prove our hypothesis, because they are a direct consequence of
following the two principles expressed in our hypothesis: addressing the problem as a
whole and utilising the constraints of the presentation domain.

Chapter 11

Future research and concluding
remarks

This thesis established the importance of presenting XML documents, described a
generic XML preprocessing model and provided the foundation for the development of
future processing proposals. Our investigation started with the literature review, which
indicated that current processing approaches cover a wide spectrum of functionality,
but they are not adequate for the generic processing of presentation documents within
the Web. We hypothesised that generic document presentation can be achieved by util-
ising the constraints of the presentation processing domain and addressing the problem
of document presentation as a whole. A preprocessing framework was the first step
towards supporting our hypothesis, because it established the necessary functionality
for adequately preprocessing documents within the Web. The XMLPipe preprocessing
model proposal applied the principles expressed in our hypothesis within the prepro-
cessing domain, and it enabled the validation and transformation of mixed namespace
presentation documents that combine an open set of languages. Its evaluation using
the preprocessing framework and a comprehensive case study illustrated that it is both
feasible and adequate for the Web, because it follows the principles expressed in our hy-
pothesis. Finally, the XMLPipe preprocessing observations where extrapolated to cover
the complete spectrum of presentation document processing and prove the proposed
hypothesis.

This chapter concludes this thesis by further investigating our hypothesis, sum-
marising the contributions of this thesis and describing a set of future research propos-
als.

11.1 Expressing and supporting the hypothesis

Chapter 2 described a review of the existing XML processing approaches that inspired
the formulation of our hypothesis. The literature review illustrated that existing ap-
proaches provide a wealth of XML processing functionality, but they only address the
individual processing problems separately and outside the context of a generic pro-
cessing model. No existing approach can combine the individual solutions to provide
adequate generic document processing for the Web. Our hypothesis was based on
the observation that there are no generic processing approaches, because the necessary
functionality set is not well defined. This is a consequence of the lack of well established
XML processing domain boundaries, which could allow the definition of the required

231

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 232

functionality.
The domain of XML document presentation can be overly generic as the foundation

of a generic processing model. XML documents can represent any information, and
their presentation can be arbitrarily complex and depend on the context of their use. In
order to assist the development of a generic processing model, we restricted the scope
of this thesis to the processing of presentation documents. Presentation documents can
also require arbitrarily complex presentations, but their presentation semantics are well
defined and do not depend on their context. Additionally, presentation document pro-
cessing is the necessary first iteration towards the presentation of all XML documents,
because the presentation of any XML document can be expressed by a presentation
XML document.

The formulation of our hypothesis was based on the assumption that the domain of
processing presentation documents is sufficiently constrained to facilitate the develop-
ment of generic processing models. Presentation documents can express any type of in-
formation, but the common characteristics of their processing can enable the definition
and development of all required processing functionality. Therefore, we hypothesised
that processing approaches can utilise the constraints of the presentation document
processing domain to addresses all processing issues, in a way that is adequate for the
Web.

We supported our hypothesis by investigating the presentation document prepro-
cessing domain, which further restricts the scope of this thesis to approaches that
do not include a rendering component. Specifically, none of the preprocessing frame-
work, XMLPipe and the case study addressed the rendering of presentation documents
(apart from the example rendering by existing browsers). However, they established
the soundness of our hypothesis in the preprocessing domain, in such a way that also
allowed the extrapolation of our observations to cover the whole spectrum of presenta-
tion document processing. Additionally, preprocessing approaches are beneficial as a
first step towards generic processing, because the lack of a rendering component sim-
plifies their implementation and they can be adopted without requiring the users to
change their browser of choice.

A preprocessing framework was the first step towards supporting our hypothesis.
The necessary preprocessing functionality is not self-evident, because the preprocess-
ing domain is insufficiently constrained and the Web processing requirements can be
ambiguous. Supporting our hypothesis for the preprocessing domain required a well
defined method to evaluate the adequacy of preprocessing approaches. The preprocess-
ing framework provided such a method by applying the Web design principles, within
the preprocessing domain, to identify the necessary preprocessing functionality and
partition it into several interoperating components.

The XMLPipe preprocessing model provided the core support of our hypothesis,
since it enabled generic document preprocessing by utilising the presentation domain
constraints and addressing the problem as a whole. Specifically, the XMLPipe model
addressed the preprocessing problem as a whole, because its individual sub-models cov-
ered all preprocessing aspects. Additionally, the XMLPipe integration model utilised
the presentation domain constraints to define the interpretation of mixed namespace
documents, because it was based on a set of presentation document structure observa-
tions. The preprocessing framework based evaluation of XMLPipe illustrated that the
proposed sub-models and their composition is adequate for transforming and validating
presentation documents for the Web. Additionally, the described case study illustrated

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 233

the feasibility of the proposed processing. XMLPipe supported our hypothesis, be-
cause its adequacy stems from following the principles expressed in the hypothesis, as
described in the previous chapter.

The final step towards supporting our hypothesis was the extrapolation of the pre-
processing observations to the domain of generic presentation document processing.
Such an extrapolation was feasible, because the combination of XMLPipe with existing
browsers allows the generic processing of presentation documents, which is not feasible
by the browsers alone. Furthermore, the principles expressed in our hypothesis can be
applied to further enhance the provided processing functionality by the introduction of
a generic rendering component and its interoperation with the proposed preprocessing
components.

11.2 Contributions

The core contribution of this thesis to the XML document processing domain is the
XMLPipe preprocessing model and both the formulation and support of our hypothesis.
Additionally, each XMLPipe sub-model can also be considered as a separate contribu-
tion, because the XMLPipe sub-models have been shown to significantly outperform
existing approaches.

11.2.1 XMLPipe and the hypothesis

XMLPipe is a significant contribution, because it offers necessary document processing
functionality that is not sufficiently covered by existing approaches. Specifically, it
provides adaptive transformation and validation of mixed namespace documents that
combine an open set of languages, according to a distributed set of processing seman-
tics. XML allows the creation of new languages and language authors will continue to
create new languages that cover a multitude of information domains. Therefore, the
transformation of documents that combine an open set of languages is necessary for
mapping them to their natively presentable interpretations. Document transformations
must be adaptive, because they must accommodate for the multitude of users, devices,
and browsers that can access Web documents. Document validation is not explicitly
related to their presentation, but it assists the process of document authoring and the
development of document transformations. The use of distributed semantics is essen-
tial for the development of languages and their processing definitions, since centralised
approaches are not adequate for the distributed nature of the Web.

The support of our hypothesis is the second core contribution of this thesis, because
it provides the foundation for developing generic XML processing models. Specifically,
XML documents can cover a broad spectrum of information and may require arbitrary
presentation functionality. The support of our hypothesis illustrated that the presen-
tation domain is sufficiently constrained to allow the development of generic processing
models for presenting XML documents. Furthermore, the hypothesis establishes the
two core principles for developing such models: addressing the problem of presentation
as a whole and utilising the presentation domain constraints. The XMLPipe preprocess-
ing model has illustrated the value of our hypothesis, since it used these two principles
to provide generic document preprocessing, which is significantly more powerful than
existing approaches.

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 234

11.2.2 The preprocessing framework and the individual sub-models

The proposed preprocessing framework allows the evaluation and assists the develop-
ment of preprocessing approaches. Such a framework is necessary, because the required
preprocessing functionality is not self-evident and there are no existing specifications
that define it. The proposed framework design was based on an application of the Web
design principles to the presentation document preprocessing domain, which provided a
sound set of functionality requirements. The core preprocessing framework purpose was
to allow the evaluation of XMLPipe. Inversely, XMLPipe also illustrated the adequacy
of the preprocessing model, because the adoption of the framework component separa-
tion resulted in the generic preprocessing of presentation documents. Consequently, the
preprocessing framework can be considered as a separate contribution, because it can
assist the development and evaluation of presentation document processing approaches.

The XMLPipe validation and transformation models provide the core XMLPipe
functionality. However, the remaining XMLPipe sub-models also contribute separately
to the XML processing domain.

This thesis introduced the concept of integration models that infer the interpreta-
tion of mixed namespace documents. Existing integration approaches are either based
on predefined integration profiles or the arbitrary composition of valid document sub-
trees. The former are not adequate for the composition of an open set of languages.
The latter do not provide the necessary foundation for document processing, because
the interpretation of mixed namespace documents remains undefined. In contrast, inte-
gration models, such as the proposed XMLPipe integration model, define the necessary
document interpretation for document authoring and processing, within a constrained
application domain. For instance, both XMLPipe validation and transformation models
require the foundation of the XMLPipe integration model, in order combine the pro-
cessing semantics of the individual languages. Furthermore, document authors must
follow the expressed integration guidelines to ensure the well defined interpretation
and processing of a document. Consequently, the introduction of the integration model
concept is beneficial for the generic processing of mixed namespace documents.

In addition to the general concept of integration models, the XMLPipe integration
model in specific is also a separate contribution. Specifically, the handled construct
observations, the valid documents definition and the subtree separation process provide
the foundation for processing presentation documents by either the XMLPipe or other
processing models. The proposed integration model is not the only adequate alternative
for defining the interpretation of presentation documents, since other integration models
might devise different integration rules. However, it is sufficient for allowing generic
validation and transformation of mixed namespace presentation documents.

The concept of semantic correctness, as opposed to validity, is also original within
this thesis. Existing processing approaches only consider document validity as an in-
dication of a document’s correctness. However, it is not adequate for evaluating the
correctness of documents that contain structure modification constructs. The disam-
biguation between the validity and semantic correctness of a document allows to over-
come the SMC construct processing issues, in order to evaluate whether a document
has well defined interpretation.

The core contribution of the XMLPipe adaptation model is the well defined method
to select an optimal specification over a set of independently developed alternatives.
Such a selection is essential for enabling both adaptive processing and distributed de-
velopment of processing semantics. Existing approaches, such as the CC/PP based

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 235

stylesheet selection[OH02], allow the application of alternative stylesheets, according
to a set of adaptation requirements. However, they neither allow sufficiently expres-
sive queries nor can select between independently developed specifications, because the
choice depends on document-specific custom logic. In contrast, the XMLPipe bind-
ing adaptation specifications and the adaptation measure evaluator allow the optimal
specification selection over a set of independently developed alternatives, according to
declarative adequacy specifications. The proposed selection cannot be guaranteed to
always provide the correct alternative. However, consistent design of the transforma-
tion binding specifications can allow the identification of the optimal or near-optimal
alternative, in the majority of cases.

The XMLPipe composite profiles are also a significant adaptation model contribu-
tion. Specifically, existing approaches, such as CC/PP, allow the extensible representa-
tion of adaptation requirements, but they do not define their corresponding processing.
In contrast, the XMLPipe adaptation model defines both the representation and the
processing for an extensible set of adaptation requirements. The core composite profile
contribution is the profile conflict resolution mechanism, which can resolve conflicting
adaptation statements without requiring predefined relationships between the entities
that specify the statements. Such a resolution mechanism is necessary for the Web,
because there is not fixed set of entities that can influence the processing of a document.

The proposed binding model bridges the individual models with their corresponding
semantics and allows their distribution, according to principal and secondary semantic
repositories. Such a distributed binding model is essential for processing an open set of
languages, without requiring inline document processing information. The described
location mechanisms are not original in themselves. However, their application to
locate all necessary XML processing semantics is innovative and enables the liberal
introduction of XML languages and their use within mixed namespace documents.

11.3 Future research

This thesis has sufficiently covered the presentation domain to illustrate the feasibility
of generic presentation document preprocessing and to support our hypothesis. The
introduced concepts have illustrated an original document processing paradigm that
can cover the processing requirements of unrestricted information domains, such as the
Web. This section outlines the most significant extensions and future research ideas
inspired by this thesis.

11.3.1 XMLPipe extensions and optimisations

The current pilot XMLPipe implementation is not complete and it only covers the
necessary functionality for illustrating the feasibility of generic document preprocessing.
Therefore, the most imminent extension of our work is to implement the remainder of
the XMLPipe model. Specifically, the additional required components must cover the
proposed validation, binding and profile composition functionality.

Additionally, XMLPipe could be integrated into a browser, in order to provide
a more intuitive interface to document preprocessing. A document user would not
have to separately request a document’s preprocessing and rendering. In contrast,
the browser would automatically invoke XMLPipe to retrieve the optimal document
interpretation and, subsequently, present it to the user. Additionally, the browser
interface can significantly simplify the specification of the adaptation requirements,

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 236

since the document user would no longer have to specify a composite profile and the
browser could automatically compose it out of its browser-specific settings.

This thesis has not thoroughly investigated the representation of the processing
semantics. As described in the previous chapter, a well defined, concise and easy to
use processing semantics representation is necessary for the wide adoption of a pre-
processing architecture. The proposed semantics representation covers all necessary
information, but it is not necessarily optimal and it could be improved. For instance,
a more compact adaptation expressions syntax would significantly assist the semantics
authoring process, because the proposed tree-based syntax is overly elaborate. Further-
more, XMLPipe semantics use several named entities, such as atomic transformations,
in addition to the core URI identified resources, such as handled constructs and lan-
guages. The proposed representation requires that named entities are identified by
limited scope names and are declared prior to their use, within each processing se-
mantics document. The reduced scope enables the use of non universally-unique short
names, which are essential for their frequent use in pipeline specifications. However,
such a method requires multiple declarations of the same entities, which can result to
inconsistencies. An alternative method would be to use URIs for the unique identifi-
cation of all entities. URIs would allow the location of all necessary definitions by the
proposed binding model, in a similar manner to the location of all processing seman-
tics. Additionally, URI-based entity references can be sufficiently short, if namespace
prefixes are allowed.

XML processing approaches must be computationally efficient, in order to allow
the timely processing of potentially large documents. The transformation and valida-
tion investigations concluded that the computational complexity of both processes is
adequate. Specifically, the computational complexity of transforming presentation doc-
uments is the same as the complexity of simple XSL-T transformations. Moreover, the
computational complexity of mixed namespace validation is of the same order as the
validation of single namespace documents. However, both processes are significantly
slower than existing approaches. Both the pilot implementation and proposed theory
focused principally on the feasibility of generic document processing and not on its effi-
ciency. Consequently, since the computational complexity investigation did not indicate
fundamental complexity problems, significant efficiency improvements can be achieved
by combining a set of algorithm optimisations and a more efficient implementation.

Firstly, the execution time of atomic transformation wrappers can be significantly
reduced, if XMLPipe-specific implementations of the individual transformation tech-
nologies are used. Specifically, the incorporation of most existing transformation tech-
nologies requires time consuming subtree separation, because both their input and
output are XML documents, as opposed to document subtrees. DOM implementations
associate each document node with a corresponding document node. Consequently, de-
taching a subtree’s parent from its context is not sufficient, and each subtree document
node must be separately imported into a new document, prior to the transformation ap-
plication, and subsequently re-imported to the original document. If atomic validations
were directly transforming document subtrees, without requiring their separation and
re-insertion, they could result to significantly reduced transformation time. A draw-
back of such an approach is that most atomic transformations would have to implement
all necessary functionality, instead of using existing implementations. However, the de-
velopment of such atomic transformations can be gradual. Furthermore, if XMLPipe
is widely accepted, third party implementations could provide the necessary interfaces
for efficient subtree processing.

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 237

Further efficiency improvements can be achieved by limiting the duplicate pro-
cessing. For instance, the transformation driver must use the adaptation model to
choose the optimal transformation, for each document subtree. This process requires
retrieving all alternative semantics and evaluating their corresponding adaptation ex-
pressions. The selection result remains the same, if the adaptation requirements and the
set of available specifications are not modified. In most document processing scenarios,
these parameters remain fixed, during the execution of multiple consecutive transfor-
mations. Consequently, the time consuming process of optimal semantics selection can
be avoided for most subtrees, if XMLPipe caches the optimal transformation selection
for each handled construct.

Additional efficiency benefits can be achieved by reducing the recursive document
traversals of transformRev . Specifically, transformRev locates the document handled
constructs by traversing all document nodes and all transformation result nodes. A
first level reduction can be achieved by reducing the number of separated subtrees. For
instance, if a handled construct rooted subtree contains other handled constructs and
they are all associated with the same optimal transformation pipeline, transformRev
could transform all subtrees together. Subsequently, transformRev would only traverse
the resulting nodes once and proceed to the remainder of the document. Separate
subtree transformations would require traversing the resulting nodes more than once.
Additionally, transformRev can avoid traversing a transformations’ result when no fur-
ther processing is necessary, if adequate transformation meta-information is available.
For instance, if each transformation is associated with the list of handled constructs it
produces, it can be a priori decided whether traversing its output is necessary.

11.3.2 Transformation model extensions

The proposed postorder subtree transformation is adequate for most integration cases,
because it ensures that each subtree transformation can access all necessary content
and that the relationships between FOC constructs and their context is not harmed.
However, no predefined order can be adequate for all integration cases. For instance,
consider that the semantics of an SMC construct is to substitute itself with a portion
of its descendants, which is specified by an XPath expression. The processing of such a
construct must be performed prior to any transformation of its descendants. However, if
its descendants contain handled constructs, transformRev will process them first. The
fixed postorder traversal, provided by transformRev , is not adequate for processing
such constructs.

A transformation model extension can allow custom processing order, but it may
complicate the design of the subtree transformations. For instance, transformRev could
allow the individual transformers to specify whether the corresponding subtree must
be processed before or after the processing of its descendants. Such information can
be provided by either the transformation semantics associations or the transformation
specifications.

The proposed transformation selection method could be extended to further sup-
port transitional language mappings. For instance, consider two transformations T1

and T2 that map the constructs of L1 to L2 and the constructs of L2 to L3, respec-
tively. Additionally, consider a document d that contains constructs of L1 and an
adaptation profile pr that only declares support for L3. The XMLPipe transforma-
tion model cannot adapt d for pr , because there is no direct transformation to L3.
However, transformRev could successfully process d by applying both T1 and T2. A

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 238

transformation model extension could allow such processing by incorporating inter-
mediate transformations to the selection process. For instance, it could represent the
transformation relationships using a graph and compute the optimal transformation
route for each document subtree, which can consist of one or more transformation
applications.

11.3.3 Adaptation model extensions

The introduced binding adaptation specifications enable the fine grained association of
transformation specifications with their corresponding adaptation requirements. How-
ever, adaptation expressions can be extended to allow more precise transformation
selection. Firstly, a wider set of term data types and operators is necessary for ver-
satile adaptation expressions. Secondly, the adaptation expressions could be extended
to access the transformed subtree. Such expressions can assist the transformation of a
subset of handled constructs, such as the case study doc:img element. Specifically, for
the mobile adaptation profile, the case study transformation semantics will always use
the WBMP converter to process the doc:img element, independently of the referenced
image. If document access was available, the transformation selection process could
also take into account the referenced image and only invoke the WBMP converter for
non-WBMP images. Such extended adaptation expressions can be straightforwardly
introduced in the applicability expressions. However, special care is required for any
adequacy expression extensions, in order to preserve their comparable nature: each
adequacy expression must correspond to exactly one adaptation requirement.

The proposed adaptation model did not incorporate the existing CC/PP repre-
sentation. CC/PP support would significantly increase the adaptation model’s com-
plexity, because of the multitude of necessary relevant technologies. Additionally, the
unordered CC/PP statements are inadequate for the proposed conflict resolution mech-
anism. Nevertheless, a CC/PP extension to XMLPipe would assist the interoperation
with several existing technologies, since CC/PP is the most commonly used adaptation
requirements representation. Such an extension must specify the necessary relevant
technologies and adapt the proposed conflict resolution to the unordered CC/PP state-
ments.

11.3.4 Validation model extensions

The places where content is expected is the only XMLPipe processing information
that is not explicitly specified by the XMLPipe semantics. The XMLPipe integra-
tion model chapter described two methods for identifying such places. The proposed
validation model only used the explicit identification method, in order to avoid the
inherent complexity of also supporting the heuristic identification method. However, a
minor extension to the validation interface and the subtree separation process can allow
the incorporation of several identification methods, without necessarily increasing the
complexity of the atomic validations. Specifically, the atomic validation interface can
be extended to provide information on the types of supported identification methods.
validate can query the atomic validations and use the most precise available identifi-
cation method. For instance, if an atomic validation supports the proposed explicit
identification method, it is sufficient that validate introduces the predefined coc con-
structs. Otherwise, if only the heuristic method is supported, validate should use the
atomic transformation interface to retrieve the set of constructs that accept arbitrary

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 239

content. validate could then use this information to test the valid nesting of the sub-
trees, without introducing the predefined coc constructs.

A more substantial extension of the validation model would be to omit the subtree
separation altogether and use a composite super-schema to validate each document.
Such an extension would require a common schema language that covers all necessary
validation functionality. As described in Chapter 2, no existing validation technol-
ogy covers all existing validation functionality. However the development of such a
schema language is feasible, if it uses the foundation of tree automata, because they
can cover the validation functionality of all existing validation approaches, as described
by [MLM01]. If the validation model incorporates such an extension, the atomic vali-
dations must map the existing schema specifications to the common schema language.
A top level validator can combine all the specifications into a schema for the mixed
namespace document and, subsequently, validate the document as a whole, without
separately processing its individual subtrees. Such a validation model can complicate
the atomic validation development, but it can significantly improve the validation ef-
ficiency and also provide the foundation for a new generic language that covers all
existing validation functionality.

11.3.5 Integration model extensions

The XMLPipe integration model defines the interpretation of mixed namespace pre-
sentation documents by incorporating presentation document specific observations to
the NRL/NVDL subtree separation concept. Its adequacy has been indirectly illus-
trated by the feasibility and adequacy of XMLPipe for mixed namespace validation
and transformation. A more explicit investigation could utilise the multitude of existing
presentation languages. For instance, the existing standardised presentation languages
cover a broad spectrum of presentation functionality. An investigation of how they fit
within the XMLPipe integration model and how their resulting integration compares
to existing integration profiles could provide further insight into the adequacy of the
proposed integration model.

The XMLPipe integration model utilised the handled construct observations to
define the valid integration of independently developed languages, without requiring
inter-language interoperation. Additional observations can allow enhanced integration
accuracy. For instance, at an adequate abstraction level, a predefined set of presenta-
tion data types and interfaces may sufficiently cover the presentation document domain.
Such data types would allow more precise definition of which documents are valid. For
instance, each construct could be associated with the data type it introduces and the
set of descendant data types it can accept. Additionally, well defined interfaces can
enable powerful interoperation between independently developed transformers. Such
an approach could require significantly more complex semantics specifications. Fur-
thermore, it can only be adequate for generic document processing, if all introduced
data types and interfaces are derived from presentation domain constraints; otherwise,
they would restrict the document processing and the set of supported languages.

In addition to extending the XMLPipe integration model, XMLPipe can benefit
from supporting multiple integration models in each document. Specifically, the cur-
rent XMLPipe model requires that all documents follow the same integration model,
which is tightly coupled with the proposed processing. The support of multiple inte-
gration models can allow well defined intermediate processing states, more fine grained

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 240

integration and provide the foundation for more generic document processing. Specif-
ically, during the proposed document transformation, the processed document is in
an intermediate state that combines both the XMLPipe and the target integration
model. A method to combine integration models would allow such states to be well
defined, without requiring the introduced assumption that the target integration model
is less generic than the XMLPipe integration model. Additionally, a single integration
model cannot cover all integration cases. An integration model combination method
can extend the applicability of a processing model by allowing the use of the opti-
mal integration model, for each document portion. Furthermore, it can provide the
foundation for extending XMLPipe outside the presentation processing domain. For
instance, a document can combine both presentation and non-presentation constructs,
where the former are integrated according to the XMLPipe integration model and the
latter according to another data-oriented integration model.

However, support for multiple integration models requires addressing several issues:
the association of integration models with the document portions, the description the
associated processing in a device independent manner and the interoperation of the
separate integration models. Only the first issue can be straightforwardly addressed
by the combination of unique integration model identifiers and a predefined construct,
such as an XML attribute, that can associate all document portions to such identifiers.
The second issue can be addressed by either remotely retrievable processing drivers
or requiring the atomic transformations to perform the necessary integration. The
major obstacle is that most document processing aspects are tightly coupled with the
underlying integration model. For instance, the proposed validation and transformation
models are integration model specific, their interoperation is related to the integration
model, and the transformation semantics binding is based on handled constructs, which
are an integration model concept. Devising a method to dynamically incorporate an
integration model into a processing model is a difficult problem. Finally, the a solution
to the last issue can be based on investigating the constraints of the integration model
domain, in a similar way as the XMLPipe integration model was based on investigating
the constraints of the presentation processing domain. However, it is not clear if such
constraints exist.

11.3.6 Binding model extensions

The XMLPipe binding model precisely defined the principal location mechanism, which
is based on RDDL. However, it purposely left the secondary location mechanisms un-
defined, in order to avoid imposing any functionality restrictions. However, a further
investigation of the secondary location mechanisms could allow more fine grained def-
inition of the interoperation between the several repositories and the binding model.
Additionally, it can provide the foundation for a more powerful semantics selection
mechanism than the simplistic list of trust levels.

The proposed document processing raises several security and trust issues that
must be addressed before its wide deployment. XMLPipe processes XML documents
by combining distributed semantics specifications, atomic validation and atomic trans-
formation implementations. A first level security extension would be to substitute the
simplistic set of predefined trust levels with distributed trust networks, which are a sim-
ilar approach to the accustomed concept of trusted certification entities. Specifically,
each XMLPipe implementation instance can have a list of fully or partially trusted
entities, which can in turn have further sets of trusted entities. Each implementation

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 241

can combine all known trust sets into a trust network, and use it to decide whether a
specification can be trusted. Additionally, the resulting trust levels can be fed to the
semantics selection process to enable a trust-level sensitive process of choosing the opti-
mal transformations. Furthermore, the trust levels can be used to control the execution
of the downloaded code, which can run in a applet-like sand-box, if it is not sufficiently
trusted. This thesis only focused on illustrating the feasibility of generic document
processing, because the time and space constraints did not allow the incorporation of a
security mechanism. However, the above ideas can be used to support secure processing
of presentation documents, according to a distributed set of semantics.

11.3.7 Towards a complete processing model

This thesis focused on document preprocessing, but a complete processing model that
included a rendering sub-model would have provided more powerful processing of pre-
sentation documents. Additionally, it would have directly supported our hypothesis,
without requiring to extrapolate the XMLPipe preprocessing observations to the com-
plete processing domain. Nevertheless, the combination of the literature review (in
Chapter 2), our hypothesis and the XMLPipe processing concepts can provide the
foundation for extending XMLPipe to a complete processing model.

An adequate rendering sub-model must, at a minimum, address the issues of es-
tablishing a sufficient set of natively supported languages, incorporating imperative
and declarative behaviour descriptions and interoperating with the preprocessing sub-
models.

A sufficient and well defined set of natively supported languages (Lp) is neces-
sary, because it defines the rendering sub-model’s interface. An adequate Lp can be
composed out of either existing presentation languages or minimal feature-based lan-
guages. Specifically, existing standardised presentation languages are adequate Lp

candidates, because they cover a wide spectrum of presentation functionality. Most
existing languages are overly broad and may include redundant constructs, but their
recent partitioning into loosely coupled modules allows their use within an adequate
Lp. Alternatively, an Lp definition can be based on the composition of new minimalis-
tic languages that correspond to a set of presentation features. Table 2.3 (page 29) has
summarised three proposals of the necessary features for presenting Web documents.

The definition of Lp also requires a corresponding integration model that defines the
combination of all natively supported languages. The proposed XMLPipe integration
model can be used, because the natively supported languages of a rendering sub-model
are also presentation languages. However, a more specific integration model can utilise
the well defined set of languages to provide more fine grained construct associations
and allow inter-language interoperation.

Native support for dynamic functionality descriptions, such as scripting and nu-
meric constraints, assist the development of precise presentation descriptions. Such
descriptions are essential for rich presentation functionality and for adequately extend-
ing the Lp. The former is true, because they can be used to create highly customised
presentations by customising and combining the constructs in Lp. As Section 2.4.2 de-
scribed, plug-ins and applets can extend a browser’s set of natively supported languages,
but they do not allow the integration of the extensions within the common underlying
presentation model. In contrast, the combination of functionality descriptions with
behaviour binding approaches, such as XBL and RCC, enables the introduction of Lp

extensions that are seamlessly integrated with the languages in Lp .

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 242

Furthermore, supporting declarative behaviour descriptions, such as numerical con-
straints, enhances a rendering sub-model’s integration and adaptation capabilities.
They provide a high level description of the interoperation between separate presenta-
tion objects, without requiring the use of restrictive predefined interfaces. Additionally,
they can enhance the adaptation capabilities of a rendering model, because as high level
descriptions they increase its adaptation range. The rendering model’s constraint solver
can combine all document descriptions, in order to find an optimal solution for a given
set of adaptation requirements. The core challenge for supporting such declarative be-
haviour descriptions is to identify the necessary types of descriptions and integrate their
corresponding solvers within a single presentation model, in a way that is adequate for
the Web.

Finally, a rendering sub-model must not be investigated independently, but in com-
bination with all other sub-models. As described in our hypothesis, the problem of
document processing must be addressed as a whole, because the functionality sum of
the individual models is a subset of their combined functionality. Specifically, the in-
teroperation between the rendering, transformation and validation models is necessary
for preparing a document prior to its presentation, as described in Section 10.6.2. Ad-
ditionally, the introduction of a rendering model changes the document presentation
process from a one way transformation to a bidirectional process, where the transforma-
tion model can feed a document into the rendering model and vice-versa. For instance,
the transformation model can provide a preprocessing document, in order to present it
to the user. Inversely, a script, a constraint solver or the document user can introduce
document modifications that require further transformation prior to their rendering.

11.3.8 Beyond presentation documents

The core presentation document processing ideas can be extended to non-presentation
documents, if their processing context is well defined. The processing of a non-
presentation document can either present it or perform some other form of processing.
In the first case, its presentation depends on its context, because non-presentation doc-
uments can be associated with several presentation semantics. In the latter case, the
desirable form of processing can depend on the application that accesses the document.
If such context information is well defined and the introduced processing domains are
sufficiently restrictive, generic processing models may be feasible.

Consider the presentation of documents that include constructs of non-presentation
languages. The presentation of such constructs is not a priori defined, and they can be
mapped to different presentations, according to their context. A simplistic method to
present them would be to allow the explicit association of transformation specifications
with the individual document subtrees. The transformation of each subtree can map
all its non-presentation constructs into their adequate presentable interpretation for
the given document context. However, such an approach is restrictive, because it relies
on the document author to provide the necessary processing information. It can also
inhibit the integration of multiple languages, because document specific stylesheets
have the same drawbacks as predefined integration profiles. Further investigation of
the non-presentation document domain is necessary to allow less restrictive methods
to present non-presentation documents.

Further extensions outside the domain of document presentation can be achieved
by introducing multiple semantics associations. XML language semantics do not nec-
essarily span multiple processing domains. For instance, consider the case study media

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 243

language Lcd and a document that uses its constructs. The presentation of such a docu-
ment requires presentation semantics, such as the illustrated case study semantics, that
describe the presentation layout of the media information. In contrast, its processing for
storing the media information into a database would require a different set of semantics
that define the construct data types and relationships. Consequently, the introduction
of multiple semantics associations can enable generic processing. Nevertheless, not all
processing domains have similar well defined constraints as the presentation document
processing domain, and generic document processing might not be always feasible.

Finally, the expressed ideas can inspire the development of processing models for
any distributed freely evolving system, such as the Web. Exhaustive predefined sets of
representations and processes are not adequate for such systems, because they can lead
to restricted functionality and custom incompatible extensions, since an information
system’s evolution cannot be always predicted. In contrast, predefined evolution mech-
anisms that allow the individual representations and processes to follow the progress
of an information system are more adequate. For instance, XMLPipe processing is not
based on predefined processing interfaces or predefined set of languages. On the con-
trary, it allows the integration of independently developed and continuously evolving
languages, which can describe any Web presentation. If XMLPipe used a predefined set
of languages or a predefined interoperation interface its generality would be restricted
and it would be eventually rendered obsolete. Similar mechanisms can be applied to
other information systems and allow them to freely evolve, under a minimum set of
constraints, according to their usage by the corresponding user community.

11.4 Concluding remarks

A well defined and powerful method to process presentation XML documents is nec-
essary, because most user initiated interaction with XML documents results in some
form of presentation. An adequate processing model must cover the parsing, validation,
transformation and presentation of documents that combine an open set of languages.
Additionally, document transformation and presentation must be adequate for a vari-
ety of adaptation requirements. Existing processing approaches cover a wide spectrum
of functionality, but they do not provide sufficiently generic and powerful processing
models. In contrast, they only cover a subset of the required functionality, which is
also not always adequate for the Web.

The lack of adequate XML presentation models might originate from the lack of
well defined boundaries for the presentation processing domain. Additionally, most ap-
proaches address the separate processing sub-problems individually. We hypothesised
that generic document presentation can be achieved by utilising the constraints of the
presentation processing domain and addressing the document processing problem as a
whole.

We supported our hypothesis by using XMLPipe to cover the preprocessing domain
and extrapolating the preprocessing observations to the generic document processing
domain. Specifically, we firstly developed a preprocessing framework that established
the necessary functionality of a preprocessing model that is adequate for the Web.
By applying the principles expressed in our hypothesis, we developed the XMLPipe
preprocessing model that enabled the validation and transformation of mixed names-
pace presentation documents that combine an open set of languages. The evaluation
of XMLPipe using the preprocessing framework and case study established both its

CHAPTER 11. FUTURE RESEARCH AND CONCLUDING REMARKS 244

adequacy and feasibility. The discussion of XMLPipe supported our hypothesis in the
preprocessing domain by establishing that XMLPipe’s adequacy is a direct consequence
of following the two principles expressed in our hypothesis. Finally, in order to confirm
the proposed hypothesis, the XMLPipe observations where extrapolated to cover the
complete spectrum of presentation document processing.

The confirmed hypothesis combined with the XMLPipe architecture enable the
generic processing of presentation documents and can be extended to cover additional
processing domains. The support of our hypothesis inspires the development of generic
processing models for presentation documents by utilising the constraints of the presen-
tation domain and addressing the problem as a whole. The same paradigm can be used
for the processing of non-presentation documents and for any other information in a
freely evolving information system. Such information systems increasingly become the
main means of information representation and retrieval. Adequate processing meth-
ods must not restrict them, but evolve with them. This thesis has illustrated that
such an approach is feasible for the XML presentation domain and can inspire similar
processing methods for all freely evolving systems.

Bibliography

[AAB+01] Murray Altheim, Murray Altheim, Frank Boumphrey, Sam Dooley, Shane
McCarron, Sebastian Schnitzenbaumer, and Ted Wugofski. Modulariza-
tion of XHTML. W3C, April 2001. Available in the Web:
http://www.w3.org/TR/xhtml-modularization/.

[ABC+01a] Sharon Adler, Anders Berglund, Jeff Caruso, Stephen Deach, Tony Gra-
ham, Paul Grosso, Eduardo Gutentag, Alex Milowski, Scott Parnell,
Jeremy Richman, and Steve Zilles. Extensible Stylesheet Language (XSL)
Version 1.0, W3C Recommendation. W3C, October 2001. Available in
the Web:
http://www.w3.org/TR/xsl/.

[ABC+01b] Jeff Ayars, Dick Bulterman, Aaron Cohen, Ken Day, Erik Hodge, Philipp
Hoschka, Eric Hyche, Muriel Jourdan, Michelle Kim, Kenichi Kubota,
Rob Lanphier, Nabil Layaida, Thierry Michel, Debbie Newman, Jacco
van Ossenbruggen, Lloyd Rutledge, Bridie Saccocio, Patrick Schmitz,
Warner ten Kate, and Thierry Michel. Synchronized Multimedia Integra-
tion Language (SMIL 2.0), W3C Recommendation. W3C, August 2001.
Available in the Web:
http://www.w3.org/TR/smil20/.

[All04] Sarah Allen. The Future of the Web is not the Past of Windows, Laszlo
Systems. In the W3C Workshop on Web Applications and Compound
Documents, June 2004.

[Bad98] Greg J. Badros. Constraints in Interactive Graphical Applications, Ph.D.
General Examination paper. University of Washington, December 1998.
Available in the Web:
http://www.cs.washington.edu/homes/gjb/papers/constraints-iga.pdf.

[BB98] Greg J. Bardos and Alan Borning. The Cassowary Linear Arithmetic
Constraint Solving Algorithm. Department of Computer Science and En-
gineering, University of Washington, June 1998. Available in the Web:
http://bauhaus.cs.washington.edu/homes/gjb/papers/cassowary-tr.pdf.

[BB02] Jonathan Borden and Tim Bray. Resource Directory Description Lan-
guage (RDDL). W3C, February 2002. Available in the Web:
http://www.rddl.org/.

[BBMS99] G. J. Badros, A. Borning, K. Marriott, and P. Stuckey. Constraint Cascad-
ing Style Sheets for the Web. In Proceedings of the 1999 ACM Conference
on User Interface Software and Technology, pages 73–82, November 1999.

245

BIBLIOGRAPHY 246

[BCHL04] Bert Bos, Tantek Celik, Ian Hickson, and Hakon Wium Lie. Cascading
Style Sheets, level 2 revision 1 CSS 2.1, W3C Candidate Recommendation.
W3C, February 2004. Available in the Web:
http://www.w3.org/TR/CSS21/.

[BHL99] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML.
W3C, January 1999. Available in the Web:
http://www.w3.org/TR/REC-xml-names.

[Bir04] Mark Birbeck. A Standards-based Virtual Machine. In the W3C Work-
shop on Web Applications and Compound Documents, June 2004.

[BL98a] Tim Berners-Lee. Realising the Full Potential of the Web. W3C, 1998.
Available in the Web:
http://www.w3.org/1998/02/Potential.html.

[BL98b] Tim Berners-Lee. Why RDF model is different from the XML model
(W3C Design Issues notes). W3C, October 1998. Available in the Web:
http://www.w3.org/DesignIssues/RDF-XML.

[BL00] Tim Berners-Lee. Weaving The Web. TEXERE Publishing Limited,
London, 2000.

[BL02a] Tim Berners-Lee. Axioms of Web Architecture: the meaning of a docu-
ment (W3C Design Issues notes). W3C, December 2002. Available in the
Web:
http://www.w3.org/DesignIssues/Meaning.html.

[BL02b] Tim Berners-Lee. Principles of Design (W3C Design Issues notes). W3C,
January 2002. Available in the Web:
http://www.w3.org/DesignIssues/Principles.html.

[BL02c] Tim Berners-Lee. The Interpretation of XML documents (W3C Design
Issues notes). W3C, March 2002. Available in the Web:
http://www.w3.org/DesignIssues/XML.

[BL02d] Tim Berners-Lee. Web Architecture from 50,000 feet (W3C Design Issues
notes). W3C, February 2002. Available in the Web:
http://www.w3.org/DesignIssues/Architecture.html.

[BL03] Tim Berners-Lee. The Stack of Specifications (W3C Design Issues notes).
W3C, June 2003. Available in the Web:
http://www.w3.org/DesignIssues/Stack.

[BLFIM98] Tim Berners-Lee, R. Fielding, U.C. Irvine, and L. Masinter. RFC 2396:
Uniform Resource Identifiers (URI): Generic Syntax. The Internet Engi-
neering Task Force, Network Working Group, Standards Track, August
1998. Available in the Web:
http://www.ietf.org/rfc/rfc2396.txt.

[BLM00] Alan Borning, Richard Kuang-Hsu Lin, and Kim Marriott. Constraint-
based document layout for the Web. Multimedia Systems, Springer-Verlag
New York, Inc., pages 177–189, 2000.

BIBLIOGRAPHY 247

[BM01] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes,
W3C Recommendation. W3C, May 2001. Available in the Web:
http://www.w3.org/TR/xmlschema-2/.

[BM04] Dave Beckett and Brian McBride. RDF/XML Syntax Specification (Re-
vised), W3C Recommendation. W3C, February 2004. Available in the
Web:
http://www.w3.org/TR/rdf-syntax-grammar/.

[BML+04] Denilson Barbosa, Alberto O. Mendelzon, Leonid Libkin, Laurent Mignet,
and Marcelo Arenas. Efficient Incremental Validation of XML Documents.
In ICDE ’04: Proceedings of the 20th International Conference on Data
Engineering, IEEE Computer Society, pages 671–682, 2004.

[BMSX97] Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. Solving Linear
Arithmetic Constraints for User Interface Applications. Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST’97),
ACM, New York NY USA, pages 87–96, 1997.

[Bos04] Bert Bos. Setting the scope for light-weight Web-based applications. In the
W3C Workshop on Web Applications and Compound Documents, June
2004.

[BPSMM00] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Ex-
tensible Markup Language (XML) 1.0 (Second Edition). W3C, October
2000. Available in the Web:
http://www.w3.org/TR/REC-xml.

[BTM+01] Greg J. Badros, Jojada J. Tirtowidjojo, Kim Marriott, Bernd Meyer,
Will Portnoy, and Alan Borning. Constraint extension to scalable vector
graphics. In Tenth International World Wide Web Conference, Hong
Kong, pages 489–498, May 2001.

[CBN+03] Petr Cimprich, Oliver Becker, Christian Nentwich, Honza Jirou, Michael
Kay, Paul Brown, Manos Batsis, Tom Kaiser, Pavel Hlavnicka, Niko Mat-
sakis, Cyrus Dolph, and Norman Wiechmann. Streaming Transformations
for XML (STX) Version 1.0. Published in the Web, May 2003. Available
in the Web:
http://stx.sourceforge.net/documents/spec-stx-20030505.html.

[CD99] James Clark and Steve DeRose. XML Path Language (XPath) Version
1.0. W3C, November 1999. Available in the Web:
http://www.w3.org/TR/xpath.

[CIMP03] David Carlisle, Patrick Ion, Robert Miner, and Nico Poppelier. Math-
ematical Markup Language (MathML) Version 2.0, W3C Recommenda-
tion. W3C, October 2003. Available in the Web:
http://www.w3.org/TR/2003/REC-MathML2-20031021/.

[Cla99a] James Clark. Associating Style Sheets with XML documents. W3C, June
1999. Available in the Web:
http://www.w3.org/TR/xml-stylesheet.

BIBLIOGRAPHY 248

[Cla99b] James Clark. XSL Transformations (XSLT) Version 1.0. W3C, November
1999. Available in the Web:
http://www.w3.org/TR/xslt.

[Cla03] James Clark. Namespace Routing Language. Thai Open Source Software
Center Ltd., June 2003. Available in the Web:
http://www.thaiopensource.com/relaxng/nrl.html.

[CLNL03] David W. Cheung, Eric Lo, Chi-Yuen Ng, and Thomas Lee. Web Services
Oriented Data Processing and Integration. In the twelfth international
World Wide Web conference (WWW2003), pages 252–261, May 2003.

[CM01] James Clark and Makoto Murata. RELAX NG Specification. OASIS,
December 2001. Available in the Web:
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html.

[CMZ03] Yu Chen, Wei-Ying Ma, and Hong-Jiang Zhang. Detecting Web Page
Structure for Adaptive Viewing on Small Form Factor Devices. In the
twelfth international World Wide Web conference (WWW2003), pages
225–233, May 2003.

[Cov98] Robin Cover. XML and Semantic Transparency, XML Cover pages, Tech-
nology Report. OASIS, November 1998. Available in the Web:
http://www.oasis-open.org/cover/xmlAndSemantics.html.

[DKMR03] Micah Dubinko, Leigh L. Klotz, Roland Merrick, and T. V. Raman.
XForms 1.0, W3C Recommendation. W3C, October 2003. Available
in the Web:
http://www.w3.org/TR/2003/REC-xforms-20031014/.

[DMO01] Steve DeRose, Eve Maler, and David Orchard. XML Linking Language
(XLink) Version 1.0. W3C, June 2001. Available in the Web:
http://www.w3.org/TR/xlink/.

[Dub04] Micah Dubinko. Position Paper on Compound Documents. In the W3C
Workshop on Web Applications and Compound Documents, June 2004.

[ECM99] ECMA. Standard ECMA-262: ECMAScript Language Specification,
Third Edition. ECMA International, December 1999. Available in the
Web:
http://www.ecma-international.org/publications/standards/Ecma-
262.htm.

[ET01] Jerome Euzenat and Laurent Tardif. XML transformation flow process-
ing. Markup Languages: Theory and Practice, 3:285–311, December 2001.

[Fal01] David C. Fallside. XML Schema Part 0: Primer, W3C Recommendation.
W3C, May 2001. Available in the Web:
http://www.w3.org/TR/xmlschema-0/.

[FGK02] Daniela Florescu, Andreas Grunhagen, and Donald Kossmann. XL: An
XML Programming Language for Web Service Specification and Com-
position. In Proceedings of the eleventh International World Wide Web
Conference, Hawaii, USA, pages 65–75, May 2002.

BIBLIOGRAPHY 249

[FIG+99] R. Fielding, UC Irvine, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol
– HTTP/1.1. The Internet Engineering Task Force, Network Working
Group, Standards Track, June 1999. Available in the Web:
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[FJJ03] Jon Ferraiolo, FUJISAWA Jun, and Dean Jackson. Scalable Vector Graph-
ics (SVG) 1.1 Specification, W3C Recommendation. W3C, January 2003.
Available in the Web:
http://www.w3.org/TR/SVG11/.

[FKS01] Wenfei Fan, Gabriel M. Kuper, and Jerome Simeon. A Unified Constraint
Model for XML. In Proceedings of the tenth international conference on
World Wide Web, pages 179–190, May 2001.

[Fou04] Mozilla Foundation. Position Paper for the W3C Workshop on Web Ap-
plications and Compound Documents. Mozilla Foundation and Opera
Software, June 2004. Available in the Web:
http://www.w3.org/2004/04/webapps-cdf-ws/papers/opera.html.

[GFMS03] Roger Gimson, Shlomit Ritz Finkelstein, Stephane Maes, and Lalitha
Suryanarayana. Device Independence Principles, W3C Note. W3C,
September 2003. Available in the Web:
http://www.w3.org/TR/2003/NOTE-di-princ-20030901/.

[GHHW01] Ben Goodger, Ian Hickson, David Hyatt, and Chris Waterson. XML User
Interface Language (XUL) 1.0. Mozilla Organization, 2001. Available in
the Web:
http://www.mozilla.org/projects/xul/xul.html.

[GNSP94] Yechezkal-Shimon Gutfreund, John Nicol, Russel Sansett, and Vincent
Phuah. WWWInda: An Orchestration Service for WWW Browsers and
Accessories. In proceedings of the second international WWW Confer-
ence, December 1994.

[Har04] Vincent Hardy. Web Applications and Compound Documents. In the
W3C Workshop on Web Applications and Compound Documents, June
2004.

[Heg01] Philippe Le Hegaret. The XML Processing model. Postion paper for the
XML processing model workshop, June 2001. Available in the Web:
http://www.w3.org/2001/06/ProcessingModel-plh.html.

[HHW+04] Arnaud Le Hors, Philippe Le Hegaret, Lauren Wood, Gavin Nicol,
Jonathan Robie, Mike Champion, and Steve Byrne. Document Object
Model (DOM) Level 3 Core Specification Version 1.0, W3C Proposed Rec-
ommendation. W3C, February 2004. Available in the Web:
http://www.w3.org/TR/DOM-Level-3-Core.

[HM01] Mary Holstege and R. Alexander Milowski. Issues related to chaining
XML Processes. Postion paper for the XML processing model workshop,
July 2001.

BIBLIOGRAPHY 250

[HMM02] Nathan Hurst, Kim Marriott, and Peter Moulder. Dynamic Approxima-
tion of Complex Graphical Constraints by Linear Constraints. In Pro-
ceedings of the 15th annual ACM symposium on User interface software
and technology, pages 191–200, October 2002.

[HP03] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing
language. ACM Transactions in Internet Technology, 2:117–148, 2003.

[Hya01] David Hyatt. XBL - XML Binding Language (W3C NOTE). W3C,
February 2001. Available in the Web:
http://www.w3.org/TR/2001/NOTE-xbl-20010223/.

[ISO86] ISO. ISO 8879:1986: Information processing — Text and office systems
— Standard Generalized Markup Language (SGML). International Orga-
nization for Standardization, August 1986.

[ISO04] ISO. Document Schema Definition Languages (DSDL) project under
ISO/IEC JTC 1/SC 34 WG 1. ISO, May 2004. Available in the Web:
http://dsdl.org/0525.pdf.

[J+03] Ian Jacobs et al. Architecture of the World Wide Web (Working Draft).
W3C, October 2003. Available in the Web:
http://www.w3.org/TR/webarch.

[Jel03] Rick Jelliffe. The Schematron: An XML Structure Validation Language
using Patterns in Trees. Academia Sinica Computing Centre, 2003. Avail-
able in the Web:
http://www.ascc.net/xml/resource/schematron/schematron.html.

[JLS+03] Charles Jacobs, Wilmot Li, Evan Schrier, David Bargeron, and David
Salesin. Adaptive grid-based document layout. ACM Transactions on
Graphics, ACM Press, 3:838–847, 2003.

[JW02] Ian Jacobs and Normal Walsh. Architectural Principles of the World Wide
Web, Working Draft. W3C, August 2002. Available in the Web:
http://www.w3.org/TR/2002/WD-webarch-20020830/.

[KCM04] Graham Klyne, Jeremy J. Carroll, and Brian McBride. Resource Descrip-
tion Framework (RDF): Concepts and Abstract Syntax, W3C Recommen-
dation. W3C, February 2004. Available in the Web:
http://www.w3.org/TR/rdf-concepts/.

[KCR98] Richard Kelsey, William Clinger, and Jonathan Rees. Revised Report on
the Algorithmic Language Scheme. Higher-Order and Symbolic Compu-
tation, 1:7–105, August 1998.

[KK03] Oleg Kiselyov and Shriram Krishnamurthi. SXSLT: Manipulation Lan-
guage for XML. In Practical Aspects of Declarative Languages, 5th In-
ternational Symposium, PADL 2003, New Orleans, LA, USA, pages 256–
272, January 2003.

[KL02] Martin Kempa and Volker Linnemann. On XML Objects. In Plan-X:
Programming Language Technologies for XML worskhop, October 2002.

BIBLIOGRAPHY 251

[KMS00] N. Klarlund, A. Moller, and M. I. Schwatzbach. DSD: A Schema Language
for XML. In ACM SIGSOFT Workshop on Formal Methods in Software
Practice, pages 39–47, 2000.

[KSR02] Bintou Kane, Hong Su, and Elke A. Rundensteiner. Consistently updating
XML documents using incremental constraint check queries. In Proceed-
ings of the fourth international workshop on Web information and data
management, pages 1–8, November 2002.

[KST03] Peter King, Patrick Schmitz, and Simon Thompson. Behavioural Reac-
tivity and Real Time Programming in XML. In Proceedings of the twelfth
International World Wide Web Conference, Budapest, May 2003.

[LC00] Dongwon Lee and Wesley W. Chu. Comparative analysis of six XML
schema languages. SIGMOD Record (ACM Special Interest Group on
Management of Data), 3:76–87, 2000.

[LFCH02] Simon Lok, Steven K. Feiner, William M. Chiong, and Yoav Hirsch. A
Graphical User Interface Toolkit Approach to Thin-Client Computing. In
proceedings of the eleventh International World Wide Web Conference,
Hawaii, USA, pages 718–725, May 2002.

[LKSW04] Quanzhong Li, Michelle Y Kim, Edward So, and Steve Wood. XVM:
A Bridge between XML Data and Its Behavior. In Proceedings of the
thirteenth International World Wide Web Conference, New York, pages
155–163, May 2004.

[LMS99] R Lin, K Marriott, and P Stuckey. Flexible Font-Size Specification in
Web Documents. In Proceedings of the 22 Australasian Computer Science
Conference, Auckland, New Zealand, January 1999.

[Mar01] Jonathan Marsh. XML Base. W3C, June 2001. Available in the Web:
http://www.w3.org/TR/xmlbase/.

[Mas02] Ishikawa Masayasu. An XHTML + MathML + SVG Profile (working
draft). W3C, August 2002. Available in the Web:
http://www.w3.org/TR/REC-xml-names.

[Maz02] Stefano Mazzocchi. Introducing Cocoon 2.0. XML.com, February 2002.
Available in the Web:
http://www.xml.com/pub/a/2002/02/13/cocoon2.html.

[McG01] Sean McGrath. Draft Essay on the XPipe Approach. Propylon, December
2001. Available in the Web:
http://xpipe.sourceforge.net/Articles/Documentation/fog0000000013.html.

[MCV04] Paolo Marinelli, Claudio S. Coen, and Fabio Vitali. SchemaPath, a Mini-
mal Extension to XML Schema for conditional constraints. In Proceedings
of the thirteenth International World Wide Web Conference, New York,
pages 164–174, May 2004.

[MLM01] Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy of XML
Schema Languages using Formal Language Theory. In Extreme Markup
Languages, Montreal, Canada, 2001.

BIBLIOGRAPHY 252

[MMM04] Cameron McCormack, Kim Marriott, and Bernd Meyer. Common ren-
dering framework for compound Web documents. In the W3C Workshop
on Web Applications and Compound Documents, June 2004.

[MMSB01] Kim Marriott, Peter Moulder, Peter J. Stuckey, and Alan Borning. Solv-
ing Disjunctive Constraints for Interactive Graphical Applications. In
Proceedings of the 7th International Conference on Principles and Prac-
tice of Constraint Programming, pages 361–376, 2001.

[MO03] Jonathan Marsh and David Orchard. XML Inclusions (XInclude) Version
1.0 (WD). W3C, November 2003. Available in the Web:
http://www.w3.org/TR/xinclude/.

[Mol03] Anders Moller. Document Structure Description 2.0. BRICS, 2003. Avail-
able in the Web:
http://www.brics.dk/DSD/dsd2.html.

[MSV00] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML Trans-
formers. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 11–22,
2000.

[NSL02] Markus L. Noga, Steffen Schott, and Welf Lowe. Lazy XML processing.
In Proceedings of the 2002 ACM symposium on Document engineering,
pages 88–94, 2002.

[OGC+01] Jacco van Ossenbruggen, Joost Geurts, Frank Cornelissen, Lynda Hard-
man, and Lloyd Rutledge. Towards Second and Third Generation Web-
Based Multimedia. In Tenth International World Wide Web Conference,
Hong Kong, pages 479–488, May 2001.

[OGHR03] Jacco van Ossenbruggen, Joost Geurts, Lynda Hardman, and Lloyd Rut-
ledge. Towards a Multimedia Formatting Vocabulary. In the twelfth inter-
national World Wide Web conference (WWW2003), pages 384–393, May
2003.

[OH02] Jacco van Ossenbruggen and Lynda Hardman. Smart Style on the Seman-
tic Web. In Semantic Web Workshop, the eleventh International World
Wide Web Conference, Hawaii, USA, May 2002.

[PAA+00] Steven Pemberton, Daniel Austin, Jonny Axelsson, Tantek Celik,
Doug Dominiak, Herman Elenbaas, Beth Epperson, Masayasu Ishikawa,
Shinichi Matsui, Shane McCarron, Ann Navarro, Subramanian Pe-
ruvemba, Rob Relyea, Sebastian Schnitzenbaumer, and Peter Stark.
XHTML 1.0 The Extensible HyperText Markup Language, Second edi-
tion, W3C Recommendation. W3C, August 2000. Available in the Web:
http://www.w3.org/TR/xhtml1/.

[PHV02] Kari Pihkala, Mikko Honkala, and Petri Vuorimaa. A browser framework
for hybrid XML documents. In Proceedings of the IASTED International
Conference on Internet and Multimedia Systems and Applications, pages
164–169, August 2002.

BIBLIOGRAPHY 253

[Por04] Portable Applications Standards Committee, IEEE Computer Society,
USA. Standard for information technology - portable operating system
interface (POSIX). System interfaces 1003.1, 2004. Available in the Web:
http://www.unix.org/single unix specification/.

[PS03a] Michael Pediaditakis and David Shrimpton. Device neutral pipelined pro-
cessing of XML documents”. In proceedings of the Twelfth International
World Wide Web Conference, page 2, 2003.

[PS03b] Michael Pediaditakis and David Shrimpton. Device-neutral pipelined pro-
cessing of XML documents. interChange, 9(4):33–36, 2003.

[PS04] Michael Pediaditakis and David Shrimpton. Towards a generic XML con-
tent presentation model. In the W3C Workshop on Web Applications and
Compound Documents, San Jose, California, USA, June 2004.

[PZB02] Thomas Phan, George Zorpas, and Rajive Bagrodia. An Extensible and
Scalable Content Adaptation Pipeline Architecture to Support Heteroge-
neous Clients. In Proceedings of The 22nd International Conference on
Distributed Computing Systems (ICDCS 2002), July 2002.

[RHDS99] Franklin Reynolds, Johan Hjelm, Spencer Dawkins, and Sandeep Singhal.
Composite Capability/Preference Profiles (CC/PP): A user side frame-
work for content negotiation. W3C, July 1999. Available in the Web:
http://www.w3.org/TR/NOTE-CCPP/.

[RHJ99] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Specification
W3C Recommendation. W3C, December 1999. Available in the Web:
http://www.w3.org/TR/html4/.

[Sch02] Patrick Schmitz. Multimedia meets computer graphics in SMIL2.0: A
Time Model for the Web. In Proceedings of the eleventh International
World Wide Web Conference, Hawaii, USA, pages 45–53, May 2002.

[TBMM01] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn. XML Schema Part 1: Structures, W3C Recommendation. W3C,
May 2001. Available in the Web:
http://www.w3.org/TR/xmlschema-1/.

[THHH01] Norio Touyama, Yasuyuki Hirakawa, Takashi Hattori, and Tatsuya
Hagino. XEBRA: The Design and Implementation of Integrated Pro-
gramming Environment for XML Processing and Browsing. In Poster
Proceedings of the The Tenth International World Wide Web Conference,
Hong Kong, May 2001.

[Via01] Victor Vianu. A Web Odyssey: From Codd to XML. In Symposium on
Principles of Database Systems, 2001.

[Vli03] Eric van der Vlist. Examplotron. Dyomedea, February 2003. Available in
the Web:
http://examplotron.org/.

BIBLIOGRAPHY 254

[web04] The W3C workshop on web applications and compound documents, June
2004. W3C, San Jose, California, USA
URL: http://www.w3.org/2004/04/webapps-cdf-ws/
Accessed at June 2006.

[Wei94] Pei Y. Wei. A Brief Overview of the VIOLA Engine, and its Applications.
O’Reilly and Associates, Inc., August 1994. Available in the Web:
http://www.xcf.berkeley.edu/ wei/viola/violaIntro.html.

[WM02] Norman Walsh and Eve Maler. XML Pipeline Definition Language Ver-
sion 1.0. W3C, February 2002. Available in the Web:
http://www.w3.org/TR/xml-pipeline/.

[WMF01] Norman Walsh, Eve Maler, and Christopher Ferris. Sun position paper.
XML processing model workshop, June 2001.

[YW03] Christopher C. Yang and Fu Lee Wang. Fractal Summarization for Mobile
Devices to Access Documents on the Web. In the twelfth international
World Wide Web conference (WWW2003), pages 215–224, May 2003.

[Zil04] Stephen Zilles. Web Applications/Compound Document Workshop Posi-
tion Paper. In the W3C Workshop on Web Applications and Compound
Documents, June 2004.

PRESENTING MULTI-LANGUAGE XML DOCUMENTS:
AN ADAPTIVE TRANSFORMATION AND VALIDATION

APPROACH.

APPENDICES

a thesis submitted to

The University of Kent at Canterbury

in the subject of computer science

for the degree

of doctor of philosophy.

By
Michael Pediaditakis

September 2006

Appendix A

Abbreviations

CC/PP: Composite Capabilities/Preferences Profile

CCSS: Constraint CSS

COC: Content Oriented Construct (there is also theCOC () binding model function)

CSS: Cascading Style Sheets

DOM: Document Object Model

DOM-2/DOM-3: DOM Level 2 and DOM Level 3, respectively

DSDL Document Schema Definition Languages

DTD: Document Type Definition

FOC: Functionality Oriented Construct (there is also the FOC () binding model func-
tion)

HTML: HyperText Markup Language

HTTP: HyperText Transfer Protocol

LPS: Local Propagation Solver

MathML: The mathematical markup language

NRL: Namespace Routing Language

NVDL: Namespace-based Validation Dispatching Language

RCC: Rendering Custom Content

RDDL: Resource Directory Description Language

RDF: Resource Description Framework

SGML: Standard Generalized Markup Language

SMC: Structure Modification Construct (there is also the SMC () binding model func-
tion)

SMIL: Synchronized Multimedia Integration Language

256

APPENDIX A. ABBREVIATIONS 257

SVG: Scalable Vector Graphics language

URI: Uniform Resource Identifier

URL: Uniform Resource Locator

W3C: World Wide Web Consortium (http://www.w3.org/)

WBMP: Wireless Bitmap

WML: Wireless Markup Language

WWW: The World Wide Web

XBL: XML Binding Language

XHTML: eXtensible HTML

XLink: XML Linking Language

XML: eXtensible Markup Language

XSL: eXtensible Stylesheet Language

XSL-FO: XSL Formating Objects

XSL-T: XSL Transformations

XUL: XML User Interface language

XVM: XML Virtual Machine

Appendix B

Terminology

This thesis introduced a new XML processing paradigm that combines several exist-
ing concepts and introduces a multitude of new terms. This thesis has defined all
introduced concepts and terminology. Moreover, it has provided unambiguous inter-
pretations of the necessary Web and XML terms, because the accustomed Web and
XML processing terminology is not always well defined. This terminology reference
appendix assists the reader by summarising all the terms used throughout this thesis.

Adaptation attribute is the CC/PP term for each URI identified resource that cor-
responds to an adaptation requirement. Within this thesis, we will use the term
adaptation term instead, in order to avoid any ambiguity with the XML attributes
term.

Adaptation component is the component that implements the XMLPipe adapta-
tion model.

Adaptation expression is an expression that maps a tuple of term values to a value.
Adaptation expressions are the basis of the XMLPipe adaptation requirements
query mechanism. The applicability, adequacy and conflict resolution expressions
are purpose specific instances of the abstract adaptation expressions. Each of
them allows the necessary computations for their respective application domain.

The set F contains all adaptation expressions. Specifically, FType′

{Type1,...Typen}
is the

set of all expressions that map an n-tuple of values, which correspond to the
Type1, . . . Typen term types, to a value of type Type ′. Additionally, the conve-

nience set F
Type2

(Type1)n represents all expressions that map n values of a type Type1

to a value of a type Type2.

Adaptation expressions processing is the evaluation of one or more adaptation
expressions, in order to either resolve a profile composition conflict or to evaluate
the adequacy of a specification.

Adaptation factors are the document author, the document user and the target de-
vice. An XML presentation model must adapt a presentation according to the
requirements of the adaptation factors, in order to be adequate for the target
device, fulfill the document user presentation requirements and conveys the doc-
ument author’s message.

Adaptation measure is the combined applicability and adequacy measure of a trans-
formation specification, and it is a comparable measure of how adequate is a

258

APPENDIX B. TERMINOLOGY 259

specification for an adaptation profile. Over a set of alternative specifications,
XMLPipe chooses the one that has the maximum non-zero adaptation measure.

Adaptation measure function is function measure which maps a pair of an adapta-
tion profile and a binding adaptation specification to the corresponding adequacy
measure. If there is an applicability expression, the adaptation measure is the
product of the applicability measure and the adequacy measure. If there is no
applicability expression, the returned measure equals the adequacy measure, if
all adequacy expressions evaluate to non-zero or to true. Otherwise, the resulting
measure is 0.

Adaptation Model is the model that defines a representation of the adaptation
requirements and a mechanism to use them for adapting a document. The
XMLPipe adaptation model defines the adaptation profiles, which are a repre-
sentation of the adaptation requirements. It also defines the necessary processing
for composing adaptation profiles and for selecting the most adequate semantics
definition over a set of independently developed alternatives.

Adaptation profile is a set of adaptation statements. The XMLPipe adaptation
profiles consist of sets of XMLPipe adaptation statements. Profiles is the set of
all XMLPipe adaptation profiles.

Adaptation profile composition is the process of composing multiple, possibly in-
dependently developed, adaptation profiles. The profile composition process must
resolve any introduced conflicts. ccompose is the XMLPipe profile composition
function, which resolves any introduced conflicts, using an ordering guideline and
three distinct levels of conflict resolution specifications: the default conflict res-
olution, the term specific conflict resolution and the statement specific conflict
resolution.

Adaptation Range is the freedom a component has for adapting its input document.
Generally, the more abstract its input is, in relation to its output, the greater the
adaptation range.

Adaptation requirements are the requirements of the adaptation factors.

Adaptation requirements representation is a representation for adaptation re-
quirements, such as CC/PP. The XMLPipe adaptation profiles represent sets of
adaptation requirements.

Adaptation statement is a statement that represents an individual adaptation re-
quirement. The XMLPipe adaptation statements consist of an adaptation term
and a value that corresponds to its type. The set Statements contain all XMLPipe
adaptation statements.

Adaptation statement conflict resolution expression is the highest priority res-
olution expression and it overrides both the adaptation term specific conflict res-
olution expression and the XMLPipe default conflict resolution. It enables the
authors of composite adaptation profiles to override the default conflict resolution
mechanism, in order to customise the resulting adaptation profile.

APPENDIX B. TERMINOLOGY 260

Adaptation term is the equivalent of the CC/PP adaptation attributes: a URI qual-
ified name that corresponds to an adaptation requirement. The set Terms is the
set of all XMLPipe adaptation terms.

Adaptation term default value is the value that is used during expression eval-
uation, if an adaptation profile does not specify a value for the corresponding
term. The default value of an adaptation term is specified in its semantics, and
it is essential for using an open set of adaptation terms. Specifically, semantics
authors can use applicability and adequacy expressions of a new term, even if a
profile does not specify its value. The adaptation term default value will ensure
a meaningful evaluation of the expression, until the profile authors introduce an
adequate adaptation statement.

Adaptation term semantics is the necessary processing information for adaptation
terms. TermSemantics is the set of all adaptation terms semantics and it con-
sists of tuples of a default value, a data type and an optional conflict resolution
expression.

Adaptation term semantics location function is the function locateTermSem . It
is responsible for mapping a term to its semantics. The XMLPipe binding com-
ponent implements locateTermSem by accessing the cached semantics entries for
the term’s namespace and returning the first matching definition.

Adaptation term specific conflict resolution expression is an optional part of
the adaptation term semantics. The profile composer uses it to resolve two con-
flicting statements, if there is no statement specific conflict resolution expression.

Adaptation term type is the data type associated with a term, and it is specified
by the term semantics. For instance, it can by a Numeric or Boolean .

Adequacy expression is a pair of a term and an unary adaptation expression that
evaluates to either a Numeric or a Boolean value. According to the XMLPipe
adaptation model, the evaluation of an adequacy expression provides a measure of
the fulfilment of an adaptation requirement. The set EAd contains all XMLPipe
adequacy expressions.

Adequacy expressions set is a set of adequacy expressions, and enables expressing
the adequacy of a semantics specification for the various adaptation profiles. The
adequacy measure function maps a pair of a set of adequacy expressions and an
adaptation profile to a comparable adequacy measure.

Adequacy measure results from the evaluation of a set of adequacy expressions,
for an adaptation profile. According to the XMLPipe adaptation model, the ade-
quacy measure is an absolute measure of the adequacy of a semantics specification
for an adaptation profile.

Adequacy measure function is the function adequacy , which calculates the ade-
quacy measure of a set of adequacy expressions for an adaptation profile, by
normalising and summing the evaluation of the individual adequacy expressions.

Alternative transformation algorithm : look at revised transformation algorithm

APPENDIX B. TERMINOLOGY 261

Applet is a pre-compiled Java program that enables rich document presentation by
allowing full Java control over a rectangular document area. Applets, in a similar
manner to plug-ins, introduce their own separate presentation model.

Applicability expression is an adaptation expression that maps multiple values to
a boolean or numeric value, which must be in the [0, 1] range. Applicability
expressions are used by the applicability function to compute the applicability
measure of a transformation specification, for an adaptation profile. EAp is the
set of all applicability expressions.

Applicability function is the function applicability and it is responsible for mapping
a pair of an applicability expression and an adaptation profile to the corresponding
applicability measure.

Applicability measure is the measure of how applicable is a transformation spec-
ification alternative is for an adaptation profile. An applicability measure of 0
represents inadequacy, 1 represents full applicability and intermediate values in-
termediate applicability. The applicability function is responsible for calculating
the applicability of an applicability expressions in EAp, according to an adapta-
tion profile.

Application domain specific adaptation refers to methods that allow the adapta-
tion of a document’s presentation, which are specific to an individual application
domain, such as the multimedia content domain.

Atomic transformation is a function that maps an adaptation profile to a trans-
formation that can process a subset of a language’s handled construct rooted
subtrees. Atomic transformations are defined as functions, in order to incorpo-
rate the concept of a transformation, in a adaptation profile dependent way. Each
XMLPipe transformation must implement the atomic transformation interface,
which allows the seamless interoperation of a multitude of existing and future
technologies. The set A contains all XMLPipe atomic transformations.

Atomic validation is process that validates a single namespace subtree, according to
an optional external input. The common atomic validation interface allows the
seamless integration of a multitude of validation technologies within the XMLPipe
validation model. A represents the set of all atomic validations, and it contains
all transformations that map a document subtree to its validated form.

Authoring validation is a part of the authoring process, because it provides docu-
ment validity feedback to the document author. The XMLPipe authoring val-
idation focuses on the semantic validity of a document, instead of its syntactic
validity, because it is more adequate for evaluating if a processing model can
successfully process a document. The XMLPipe authoring validation function
is validateAuth that describes a two step transformation, which interoperates
with both the transformation model and the processing validation interfaces. It
firstly attempts to eliminate as many SMC rooted subtrees as possible, and it
subsequently performs a deep subtree validation to the resulting document.

Authoring validation transformation is the authoring validation specific transfor-
mation algorithm that is responsible for preprocessing a document’s SMC rooted

APPENDIX B. TERMINOLOGY 262

subtrees. transformAuth is the corresponding function. transformAuth is neces-
sary, because there are no adequate alternative method to get the necessary SMC
processing functionality form the generic transformRev function of the transfor-
mation model.

Autonomous validation is the usual validation process, where a document is vali-
dated against a schema specification. It contrasts with the integrated validation
processes, which validate the processes that create or modify documents, instead
of their output.

Binary adaptation expression is an adaptation expression with exactly two pa-
rameters. A typical example of binary adaptation expressions are the conflict
resolution expressions.

Binding adaptation specification is the information that must be associated with
the individual semantics specifications, in order to allow the selection of the op-
timal specification for an adaptation profile. B is the set of all XMLPipe binding
adaptation specification. Each member of B is pair of an optional applicability
expression and a set of adequacy expressions.

Binding component is the XMLPipe component that implements the proposed bind-
ing model. It is responsible for retrieving all necessary processing semantics, for
processing a document.

Binding model is the XMLPipe sub-model that is responsible for bridging the other
sub-models (adaptation, validation, transformation, integration) with the pro-
cessing semantics. The proposed model uses a primary and a set of secondary
location mechanisms. It orchestrates them using a local semantics cache, which
contains a copy of all the necessary semantics, for the processing of a document.
The binding model interface consists of the semantics location functions defined
by the other preprocessing sub-models.

Browser refers to either an XML browser or a Web browser, according to its context.

Cache access is the XMLPipe binding model’s component that is responsible for
accessing the local semantics cache, in order to map a pair of a URI and a type
of semantics to a set of semantics specifications. The cache access component
implements the locateSemantics function.

Cache refresh is the XMLPipe binding model’s component that is responsible for or-
chestrating both primary and secondary location mechanisms, in order to update
the local semantics cache. The cache refresh process implements the cacheImport
function, which updates all cache entries that corresponding to a URI and a type
of processing semantics.

Cascading style sheets is a W3C recommendation that provides a syntax and a
method to attach presentation style to structured documents. CSS is not an
XML language, but it is related to XML, because document authors can use it
to customise the presentation of XML documents.

CC/PP based stylesheet selection is the document adaptation method proposed
in [OH02], which uses CC/PP profile queries to choose the optimal CSS or XSL-T

APPENDIX B. TERMINOLOGY 263

stylesheet for processing a document. It is the most prominent existing approach
for generic document adaptation.

Cocoon is server based Web publishing approach that associates URIs and URI pat-
terns to transformation pipelines.

Combination profiles Look at integration profiles.

Complete subtree validation is one of the two alternative XMLPipe subtree val-
idation methods, and it tests the validity of all subtree nodes. The XMLPipe
built-in pipelines include the predefined construct validateSubtree, which re-
sults to a complete subtree validation, prior to the subsequent pipeline processing
steps.

Composite profile is the XMLPipe adaptation requirements representation that the
preprocessing initiation entity provides. It consists of a sequence of composite
adaptation statements, as opposed to the adaptation profiles, which are sets of
statements. Composite profiles use statement sequences, because the XMLPipe
entity-independent conflict resolution is based on an ordering guideline. CProfiles
is the set of all composite adaptation profiles.

Composite adaptation statement is a pair of an adaptation statement and an op-
tional conflict resolution expression. CStatements is the set of all composite
adaptation statements.

Composite Capabilities/Preferences Profiles is a recommendation that specifies
a representation for the adaptation factor requirements. It uses an RDF-based
two level hierarchy of attribute-value pairs.

Conflict resolution is the process of resolving a conflict between two composite adap-
tation statements. ccompose is the function that performs all necessary conflict
resolution, and it is a part of the XMLPipe adaptation model.

Conflict resolution expressions are binary adaptation expressions, which map two
values of a data type into a single value of the same type. They are used in
the semantics of the adaptation terms and in the composite profile statements, in
order to define the resolution between two conflicting adaptation statements. The
XMLPipe adaptation model replaces two conflicting statements with the result
of evaluating a conflict resolution expression, over the conflicting values. The
ccompose function, which is implemented by the profile composer component, is
responsible for resolving all introduced conflicts.

Constraints refers to either numerical constraints or to the constraints of the presen-
tation document processing domain, according on the context of its use.

Constraint CSS is a numerical constraints CSS extension that combines simultane-
ous linear constraints for positioning and one way constraints for font sizes. It
allows significantly more generic presentation that the plain CSS, without signif-
icant performance costs.

Constraint problem is a conjunction of constraints of the form:

P = C1 ∧ C2 ∧ · · · ∧ Cm

APPENDIX B. TERMINOLOGY 264

Constraint problem solution A tuple X = (x1, x2, . . . , xn) is a solution to a prob-
lem P iff X satisfies Ci∀i ∈ [1,m].

Constraint satisfaction A tuple X = (x1, x2, . . . , xn) satisfies a constraint C :
f(X1,X2, . . . ,Xn) op c iff the expression f(x1, x2, . . . , xn) op c is true. c is
a constant and op is an operator where op ∈ {<,>,=,≤,≥}.

Constraint solver is a function S : PCn
−→ ℘(Rn) that maps each problem in PCn

to a set of n-tuple solutions.

Content oriented constructs are the handled constructs that introduce a well de-
fined piece of presentable information. According to the XMLPipe integration
model, COC constructs can only occur at places where content is expected. The
COC function maps a presentation language to its corresponding set of content
oriented constructs.

CSS stylesheet selection is the CSS method of associating a document with multi-
ple stylesheets, according to several device types, such as “mobile” and “desktop”.

Declarative presentation specification/description is the use of declarative con-
structs to prepare and control the presentation. Such constructs define presen-
tation relationships without defining how such relationships should be enforced.
Examples include numerical constraints and the declarative binding in X-Forms.

Deep subtree validation look at complete subtree validation.

Default conflict resolution is the default XMLPipe mechanism for resolving adap-
tation statement conflicts in composite adaptation profiles. The default resolution
always chooses the most recent value, and it is used when there are no term or
statement conflict resolution expressions. The corresponding conflict resolution
expression is f(v1, v2) = v2.

Device independent authoring is the concept of authoring content independently
of the several devices that it can be displayed. Device independent authoring ap-
proaches use purpose specific mechanisms to adapt the original content, according
to a variety of devices and user preferences. Most approaches impose significant
constraints on either the source syntax or the presentation component.

Document within the Web is a resource description. Within the context of this thesis
and after Section 3.2, the term document refers to a presentation document.

Document author is entity that creates an XML document.

Document constructs are all the XML constructs of a document. The relationship
between a document and its constructs is defined by functions docConstructs(),
docConstructse() and docConstructsa. They map a document to the set of all
its constructs, the set of all its element constructs and the set of all its attribute
constructs, respectively.

Document languages is the set of languages used in a document uses. The rela-
tionship between a mixed namespace document d and its corresponding set of
languages Ld is only well defined for namespace qualified document and names-
pace bound languages.

APPENDIX B. TERMINOLOGY 265

Document Object Model is the W3C recommendation that provides a generic and
device independent interface for manipulating XML data.

Document presentation is the rendering of a document, in order to present it to a
document user.

Document presentation processing is the necessary document processing for for
document presentation. Document presentation processing, in addition to docu-
ment presentation, also contains the document validation and transformation.

Document processing is the processing of a document by a processing model, which
locates, combines and applies the processing model specific semantics that corre-
spond to the document’s languages.

Document Schema Definition Languages is an ISO work in progress that aims to
generic XML validation. It is separated in several parts. The most relevant part
to this thesis is the namespace based validation dispatching language (NVDL).

Document Type Declaration is the XML document declaration that can associate
a document with its language and its syntax specifications. A document type
declaration is introduced by the DOCTYPE XML construct.

Document Type Definition is the first XML schema language, and it is a part of
the XML recommendation. It allows the specification of a language’s elements
and attributes and of their valid nesting.

Document User is the receiver of the information in an XML document. Typically,
the document user has a set of preferences and uses a device and a browser to
present an XML document, according to these preferences.

DOM parser is an XML parser that creates a DOM tree. XMLPipe uses DOM
parsers, and the function parse() defines their common interface.

Domain constraints are the set of constraints, within an application domain, that
can form the foundation of a generic processing model. The lack of such con-
straints results in an unbounded application domain and impedes proving the
sufficiency of any related theory.

Driving example is the presentation document example introduced in Section 7.2
(page 115).

Dummy profile the adaptation profile used by the authoring validation process to
drive the SMC subtrees elimination. Such a profile is necessary, because docu-
ment transformation is adaptation requirements dependent, but authoring vali-
dation must be adaptation requirements independent.

ECMAScript is a widely used device neutral scripting language, and it is the stan-
dardised foundation of JavaScript.

Explicit identification method is a method of identifying the places where arbi-
trary COC constructs can occur. The explicit identification method requires that
the individual schemas explicitly identify all such places. The XMLPipe subtree
separation process introduces the predefined coc construct at all places where for-
eign namespace COC rooted subtrees occur. Schema specifications must identify

APPENDIX B. TERMINOLOGY 266

the places where content is expected by allowing occurrences of the predefined
coc construct.

Extensible HTML is an XML representation of HTML.

Extensible Markup Language is an SGML-derived meta language and the corner-
stone of the W3C’s effort to establish a common data representation for the Web.

Functionality oriented constructs are the handled constructs that amend the pre-
sentation of their ancestors. According to the XMLPipe integration model, FOC
constructs can occur at any place in a document. The FOC function maps a pre-
sentation language to its corresponding set of functionality oriented constructs.

Fundamental concepts of the Web consist of the protocols, concepts, addressing
schemes and markup languages that where originally used for the majority of
Web-based communication. Namely, the Hypertext Transfer Protocol (HTTP),
the concept of links, the Uniform Resource Identifiers (URI) and the Hyper-Text
Markup Language (HTML).

Generic adaptation refers to document adaptation methods that do not restrict ei-
ther the document languages or the target presentation models. Generic adapta-
tion methods are typically more generic but less powerful than application domain
specific methods.

Generic document is a document which is not necessarily a presentation document.

Grammar–based schema is a schema which defines an XML language by defining
the exact grammar to which documents must conform.

Grounded document is a document that contains exclusively constructs that have a
pre-defined processing, within an application domain. In some cases, it is possible
to define the meaning of non-grounded documents by combining constructs of
grounded documents.

Handled constructs are a subset of presentation language constructs, where their
processing can be defined independently of their context. langConstructsHC is a
function that maps a language to its handled constructs.

Handled construct information access component is the binding model compo-
nent that implements the integration model semantics access functions: COC ,
SMC , FOC , langConstructsHC , langConstructsHC

e and langConstructsHC
a .

Handled construct subtree validation is one of the two XMLPipe subtree valida-
tion methods. It only test the validity of the top level constructs that belong to
the same namespace as the subtree’s root construct. Handled construct subtree
validation assists the processing of semantically correct but invalid documents,
because it allows the validation of only the constructs that are necessary for
processing a subtree. The XMLPipe pipelines include the predefined construct
validateHC, which introduces a handled construct subtree validation step prior
to the subsequent pipeline processing steps.

Heuristic identification method is one of the methods to identify the places where
arbitrary COC constructs can occur. According to this method the validation

APPENDIX B. TERMINOLOGY 267

model must attempt to infer the places where content is expected by the syn-
tax of the language. The proposed heuristic method considers all places where
COC construct of a language occur as places where any COC construct can oc-
cur. Such heuristic identification support complicates the design of the validation
wrappers, because they must implement XMLPipe specific schema interpreters.
Consequently, the XMLPipe validation model does not require such functionality,
and it relies on the explicit identification method.

Hidden content is the individual subtrees that are associated to document elements
by XBL. The hidden content is not part of the data part of the DOM tree, but
it exists for controlling the presentation of the individual elements.

Hypertext Markup Language is the common representation for describing Web
resources.

Hypertext Transfer Protocol is networking protocol used for the majority of Web
communications.

Imperative presentation specification/description is the use of imperative pro-
gramming techniques to prepare and control a presentation. Examples include
JavaScript within XHTML documents, Java applets and plug-ins.

Integrated validation is the pre-runtime customisation of various processing com-
ponents that ensures the validity of their output, against a predefined schema.
This essentially consists process validation, as opposed to data validation.

Integration model is a model that defines the interpretation of a mixed namespace
document according to the interpretation of its individual constructs.

Integration model semantics is the necessary language information for integration
model specific processing. Within the context of this thesis, the term integration
model semantics refers to the XMLPipe integration model semantics that consists
of the handled constructs information. The set ISemantics contains all XMLPipe
integration model semantics. Functions COC , SMC , FOC , langConstructsHC ,
langConstructsHC

e and langConstructsHC
a map a language to its corresponding

handled constructs.

Integration model transformation driver is the component that is responsible
for combining the independent language transformation specifications to trans-
form a mixed namespace document, which uses the corresponding integration
model. The XMLPipe integration model transformation driver implements func-
tion transformRev , which uses independently developed transformation semantics
to create the optimal interpretation of a document, according to a set of adapta-
tion requirements.

Integration model validation driver is the component that is responsible for com-
bining combining the individual language validation semantics to validate a mixed
namespace document or document subtree. The XMLPipe integration model vali-
dation driver implements the function validate , which is responsible for separating
a document in its single namespace subtrees and separately validating them.

APPENDIX B. TERMINOLOGY 268

Integration profile is a specification of the combined syntax and processing of a fixed
set of languages. For instance, the XHTML+SVG+MathML W3C profile defines
the syntax of valid documents that combine all three languages. Integration
profiles are problematic, because their enumeration for an increasing number of
XML languages becomes exponentially complex.

JavaScript See ECMAScript

Language author is the entity that creates an XML language.

Linear constraint is a numerical constraint of the form:

a1X1 + a2X2 + · · · + anXn op c

where a1, . . . , an are constants, c is also a constant and op is an operator where
op ∈ {<,>,=,≤,≥}.

Language constructs are all XML constructs defined by a language. Functions
langConstructs(), langConstructse() and langConstructsa define the relationship
between a language and its constructs.

Language semantics is the intended usage and interpretation of a language by its
author.

Language specific term is an adaptation term σ that shares the same namespace
URI with a language L. XMLPipe uses language specific terms to allow the
interoperation between separate instances of a language’s transformers. Such
interoperation is necessary for identifying and terminating infinite transformation
loops, which can occur because of cyclic transformation dependencies.

Local propagation problem is a numerical constraint problem that can be solved
by a local propagation solver.

Local propagation solver is a numerical constraint problem solver that only con-
siders a single constraint at a time.

Mathematical markup language is an XML representation of both the structure
and the content of mathematical notation.

Measure function See adaptation measure function.

Merger is transformation pipeline process that accepts multiple document inputs.

Minimal adaptation profile is an adaptation profile that, instead of specifying all
supported languages, only specifies a languages subset that can co-exist in a single
document. For instance, a browser that supports the XTHML+SVG+MathML
profile and SMIL should have two separate minimal profiles, because they cannot
be both used within a single document.

Mixed namespace document is an XML document that combines XML constructs
from multiple namespaces.

Mixed namespace transformations are transformations that map a mixed names-
pace document into another mixed namespace document. More information is
provided in the definition of transformation.

APPENDIX B. TERMINOLOGY 269

Multi-language document is a mixed namespace document. This term has been
used the abstract and introduction chapter, as more intuitive, before the intro-
duction of XML namespaces.

Namespace is a set of local names that can be used by the elements and attributes
of an XML document. A namespace is identified by a URI, and it provides a
separation between the constructs of different XML languages.

Namespace assimilation is the category of proposals, for the presentation of mixed
namespace documents, where a language assimilates all related constructs of other
languages within its namespace.

Namespace-based Validation Dispatching Language is a part of the Document
Schema Definition Languages (DSDL) standard. It is very similar to the Names-
pace Routing Language, and it provides a method to associate namespaces with
schema specifications and a model to validate mixed namespace documents. It is
described in page 18.

Namespace qualified documents are all documents that only contain element con-
structs with an associated namespace URI.

Namespace bound languages are all languages that only introduced element con-
structs that have an associated namespace URI.

Namespace Routing Language is a syntax to associate namespaces with schemas
and a model to validate mixed namespace documents. It is described in page 18
and in [Cla03].

Native presentation languages set is the set of languages that a a presentation
component natively supports. It is represented by the set Lp.

Node context is used by XMLPipe to keep track of the necessary node contextual
information, for rich error reporting. Its main contents are information on the
original node location and all applied transformations. XMLPipe also uses it to
keep track of language specific adaptation statements and to resolve relative URL
references.

Non-grounded document is a document that contains constructs that do not have
predefined meaning, within an application domain. In some cases, it is possible
to define the meaning of such constructs by combining constructs of grounded
documents.

Numerical constraints refers to the sub-area of mathematical programming that
focuses on finding tuples that simultaneously satisfy one or more numerical ex-
pressions.

One way problem denotes a sub-class of local propagation problems, where each
constraint is an assignment (it only constraints the value of a single variable)

Optimal pipeline selection function is function bestHCTS , and it is used by the
transformation driver to retrieve the optimal transformation pipeline, for each
document subtree. bestHCTS maps a pair of a handled construct and an adap-
tation profile to the corresponding optimal pipeline specification. It uses the

APPENDIX B. TERMINOLOGY 270

transformation semantics location function locateHCTS to retrieve the necessary
semantics and the adaptation model measure function to choose the most ade-
quate one, according to an adaptation profile.

Parsing is the process that maps the textual representation of an XML document to
a representation that is more accessible by applications, such as a DOM tree or
a sequence of SAX events. The parsing of a document is successful if and only
if the document is well formed. Parsing is well defined for all XML documents.
Within XMLPipe, parse represents the interface of a DOM parser.

Parsing component is the part of an XML processing model that is responsible for
parsing an XML document.

Plug-in is a commonly used extension mechanism that introduces a separate presen-
tation model, in order to present a new language or media type.

Point of execution the point within a processing model that a piece of imperative
code is executed. For instance, imperative code can be executed immediately
after parsing the input document or during the document presentation.

Pre-presentation validation is the validation of a document prior to any presenta-
tion processing.

Preprocessing architecture is a fine grained description of a preprocessing model
that can be directly mapped to an implementation.

Preprocessing model is an XML processing model that addresses all presentation
document processing issues apart from its rendering: validation, transformation,
adaptation, semantics binding, and languages integration.

Preprocessor is the implementation of a preprocessing architecture.

Presentation component is the minimal component of an XML browser that na-
tively supports a finite set of XML languages and can present them to a document
user by rendering their constructs.

Presentation documents are the namespace qualified documents that only contain
constructs of presentation languages. DP is the set of all presentation documents.

Presentation module is a part of a presentation model that is responsible for the
presentation of a specific XML language. The X-Smiles browser presentation
model is based on interoperating presentation modules.

Presentation model is the rendering sub-model of an XML processing model, which
is responsible for presenting XML constructs to the user.

Presentation processing model is is used before Section 3.2 equivalently to the
processing model.

Presentation languages are the XML languages that are associated with presenta-
tion semantics. LP is the set of all presentation languages.

APPENDIX B. TERMINOLOGY 271

Presentation semantics are the language semantics that describe the primary in-
terpretation of language constructs, according to their presentation. In contrast,
non-presentation semantics may be associated with a presentation, but such pre-
sentation is not the primary interpretation of the corresponding language con-
structs.

Presentation validation is a validation process that occurs during the presentation
of a document, and it ensures the validity of either inter-process communication
or newly introduced data. Presentation validation examples are the validation of
a user’s input in a form and the validation of a piece of information, prior to its
submission to a server.

Principal location mechanism is the core location mechanism of the XMLPipe
binding model, and its primary focus is to locate the authoritative interpreta-
tion of resources (such as XML languages). It uses processing semantics RDDL
links within the Web pages that corresponds to resource URIs.

Processing instruction is the XML construct for introducing inline document pro-
cessing information. For instance, an xml-stylsheet processing instruction
can be inserted at the beginning of a document to associate it with an XSL-
T stylesheet.

Processing model is a definition of how to locate, combine and apply processing se-
mantics for processing a mixed namespace document, according to set of adapta-
tion requirements (within the context of this thesis). P is the set of all processing
models.

Processing model semantics is the processing model specific interpretation of lan-
guage semantics. I(P) represents the set of processing model semantics for a
processing model P .

Processing semantics refers to the XMLPipe processing semantics, within the con-
text of this thesis.

Processing validation is the process of validating a document prior to its processing,
and it is usually initiated by a process and not a person. Within presentation
processing models, presentation and pre-presentation validation are the two main
subclasses of processing validation.

RDFXML is an XML representation of RDF.

RDF Schema is the W3C recommendation that allows the association of data types
to RDF associations. RDF Schema does not include a collection of data types,
but it can use other specifications, such as the XML Schema data types.

Relax NG is an alternative to W3C schemas that is based on an XML formal model.
Relax NG uses element, attribute and text patterns to define XML grammars.

Rendering Custom Content is the part of the SVG 1.2 specification that, in a
similar way to XBL, allows the presentations of unknown content by associating
foreign namespace elements with SVG “shadow trees”.

Resource is anything that can be identified by a URI, within the context of the Web.

APPENDIX B. TERMINOLOGY 272

Resource description is a piece of information that describes a resource. For in-
stance, an HTML document is the description for the resource that is identified
by the URI used to retrieve the document.

Resource Description Framework is the foundation of the Semantic Web. It uses
labelled graphs, which use URIs for vertices, to represent any type of information.

Resource Directory Description Language is an XML syntax for incorporating
machine processible resources links, within human readable XHTML descriptions.
Each link has a “nature” and a “purpose”. A link’s nature specifies the type of
the linked resource (e.g. a language schema). A link’s purpose refines the usage
of the linked resource.

Revised transformation algorithm is a revision of the initial XMLPipe transfor-
mation algorithm that widens the XMLPipe transformation model’s applicability,
by using a looser set of assumptions. transformRev is the function that imple-
ments the revised transformation algorithm.

Rule–based schema is a definition of an XML language, according to a set of rules
and assertions that must hold for valid documents.

Scalable Vector Graphics is an XML representation of vector graphics, which cov-
ers their presentation, interaction and animation.

Schema is a syntax specification for a class of documents. The specification is repre-
sented using a schema language.

Schema binding is any form of explicit or implicit association between a document’s
constructs and their corresponding schemas.

Schema document See schema.

Schema integrator is a component that combines schemas of separate languages into
a schema for mixed namespace documents that combine these languages.

Schema language is a language for specifying the syntax of a document.

Schema validator is a process that validates a document according to a schema spec-
ification.

Secondary location mechanisms is an open set of location mechanisms, which is
combined with the principal location mechanism by XMLPipe, in order to re-
trieve the required processing semantics. Secondary location mechanisms enable
independent development of semantics, avoid central points of failure and allow
the easier adoption of XMLPipe. The XMLPipe binding model does not explic-
itly define the details of any secondary location mechanisms. Nevertheless, it
defines the corresponding semantics organisation.

Selection pipeline is the XMLPipe pipeline that applies the optimal transformation,
over a set of alternatives, according to the adaptation requirements. Each alter-
native is associated with a binding adaptation specification, which is evaluated
in the same way as in the selection of the optimal transformation semantics. sel
is the function that maps a sequence of pairs of transformations and binding
adaptation specifications to a selection pipeline.

APPENDIX B. TERMINOLOGY 273

Semantically correct is a document with well defined interpretation, according to
the semantics of its languages. A semantically correct document is not necessar-
ily valid. The proposed XMLPipe authoring validation evaluates the semantic
correctness of a document, because the proposed transformation model can pro-
cess semantically correct but invalid documents. The proposed validation model
evaluates a document’s semantics correctness by a recursive elimination of the
SMC rooted subtrees that converts most invalid semantically correct documents
to valid documents.

Semantics has multiple interpretations depending on its context. Within this the-
sis semantics is equivalent to the language semantics. After Section 3.2, unless
stated otherwise, semantics refers to the even more specific notion of presentation
semantics.

Semantics cache is the local XMLPipe cache that caches all necessary processing
semantics, for processing a document. The semantics cache is accessed by the
cache access component, and it is updated by the cache import process.

Semantics location is the process of locating the necessary semantics specifications
for processing a document.

Semantics organisation is the organisation of the processing semantics within a
medium.

Sequence pipeline is the XMLPipe transformation pipeline that applies two trans-
formations in sequence. The sequential composition of multiple transformations
can be described as nested sequence pipelines. seq is the function that maps two
transformations to the corresponding sequence pipeline.

Shadow tree is the RCC equivalent of the XBL hidden content.

Simultaneous problem is a numerical constraint problem that cannot be solved by
an LPS, because it requires considering multiple constraints at a time.

Sink is a process that outputs a document after its processing, within the context of
transformation pipelines.

Source is a process that retrieves a source document prior to its processing, within
the context of transformation pipelines.

Statement See adaptation statements.

Standard Generalized Markup Language is a generic meta-language that is, how-
ever, overly complex for the Web. XML is a simpler alternative.

Structure modification constructs are the handled constructs where the principal
purpose of their semantics is to introduce document modifications. According
to the XMLPipe integration model, SMC constructs can occur at any place in a
document. SMC constructs require separate treatment by the validation process,
because the introduced document modifications must be taken into account. The
SMC function maps a presentation language to its corresponding set of structure
modification constructs.

APPENDIX B. TERMINOLOGY 274

Synchronized Multimedia Integration Language (SMIL) is an XML representa-
tion of interactive multimedia applications. SMIL consists of separate modules
that can be used in other languages. For instance, the SVG animation is based
on the SMIL timing component.

Target device is the device used by the document user to interacting with a docu-
ment’s presentation.

Term See adaptation term.

The Web The World Wide Web

Transformation is a mapping of a document to another document. Prior to the
XMLPipe transformation model chapter, T L2

L1
represents all transformations that

map the constructs of a language L1 to the constructs of a language L2, optionally
according to an external input. The transformation model chapter used the
introduced concept of integration models to allow more fine grained definition of
mixed namespace transformations. T L3:Im2

L1:Im1(L2)
is the set of all transformations

that process the constructs of languages in L2 for mapping an input document,
which combines the constructs of the languages in L1 using the integration model
Im1, to an output document, which combines the constructs of the languages in
L3, using the integration model Im2.

Transformation driver is the component that controls the transformation process
of a processing model. The transformation driver typically interoperates or in-
cludes several integration model transformation drivers, to which it delegates all
transformation requests. The XMLPipe transformation driver is represented by
function XMLPipeTrans and it is responsible for driving the XMLPipe transfor-
mation process by interoperating with the parser, the adaptation model and the
integration model transformation driver.

Transformation model is the sub-model of an XML processing model that is respon-
sible for transforming an XML document. Document transformation is useful for
content selection, content customisation and mapping non natively supported
language constructs to natively supported ones. Within XMLPipe, the transfor-
mation component implements the XMLPipe transformation model.

Transformation pipeline is a transformation that combines multiple simpler trans-
formations. The XMLPipe built-in transformation pipelines are recursive com-
positions of atomic transformations. The supported composition methods are
the sequence pipeline, the selection pipeline and the dynamic pipeline. Addition-
ally, an XMLPipe pipeline can contain calls to either handled construct or deep
subtree validation. Pipelines represents the set of all XMLPipe pipelines.

Transformation selection look at selection pipeline.

Transformation semantics is the necessary processing information for transforming
XML documents. The XMLPipe transformation semantics consist of the neces-
sary information for transforming valid document subtrees, which are rooted at
handled constructs. The set HCTSemantics represents the set of all XMLPipe
transformation semantics. Each member of HCTSemantics is a pair of a trans-
formation pipeline specification and an optional binding adaptation specification.

APPENDIX B. TERMINOLOGY 275

Transformation semantics access component is the binding model component
that implements the transformation semantics location function locateTermSem .

Transformation semantics location function is locateHCTS , which is the binding
model interface for locating the transformation semantics for a handled construct.
locateHCTS maps a qualified handled construct to its corresponding set of trans-
formation semantics.

Transformation sequence look at sequence pipeline

Transformation specification design guidelines are necessary guidelines for de-
signing transformation semantics that are adequate for the XMLPipe subtree-
based processing.

Transformer is a process that performs a transformation. Within the context of the
transformation pipelines, it is the only pipeline process that transforms the a
document. Within the context of the XMLPipe pipelines, it is represented by the
atomic transformations.

User preferences is a set of statements that express a user’s document presentation
preferences.

Uniform Resource Identifier is a uniform representation that can identify any Web
resource.

Uniform Resource Locator is a URI that identifies a resource, via a representation
of its primary access mechanism (e.g. the network location).

Valid document is an XML document that is both well formed and consistent with a
syntax specification. An integration model allows the validation of mixed names-
pace documents, according to schemas of their individual languages.

Validation is the process that tests the validity of a document, against a set of rules
(typically described by a schema).

Validation assumptions are the necessary assumptions for establishing the equiv-
alence of the proposed validation algorithm to the XMLPipe integration model
definition of valid documents.

Validation design guidelines are the necessary schema design guidelines for ensur-
ing the adequacy of schemas for the XMLPipe subtree validation model. An
XMLPipe atomic transformation must adhere to these guidelines. Generic val-
idation technology wrappers, which implement the XMLPipe atomic validation
interface, must map the top level design guidelines to the corresponding technol-
ogy specific ones.

Validation driver is that drivers the document validation process. It usually dele-
gates the validation requests to the corresponding integration model validation
driver. The XMLPipe validation driver implements function XMLPipeVal , which
interoperates with the document parser and the authoring validation driver, in
order to parse the input document and to perform its authoring validation, re-
spectively.

APPENDIX B. TERMINOLOGY 276

Validation model is the part of an XML processing model that is responsible for the
validation of XML documents.

Validation semantics is the necessary information for validating the usage of a lan-
guage’s constructs. The XMLPipe validation model semantics consist of a schema
specification and a reference to the an atomic validation implementation. The
set VSemantics contains all XMLPipe validation semantics. Function locateVS
represents the corresponding part of the binding component interface that maps
a language URI to a set of one or more validation semantics specifications.

Transformation semantics access component is the binding model component
that implements the validation semantics location function locateVS .

Validation semantics location function is function locateVS , which maps a lan-
guage URI to a set of one or more validation semantics specifications. The
XMLPipe binding component implementation of locateVS combines all available
specifications that are associated with a language’s namespace.

Web browser is an application that allows users to interact with the presentation of
all the - World Wide Web information.

Web design principles are the core design principles of the Web:

• Simplicity

• Modular Design

• Tolerance

• Decentralisation

• Test of independent invention

• Principle of least power

They have been described in Section 1.3.

Well formed document is an XML document that is consistent with the core XML
syntax rules. The XML recommendation only requires that a document is well
formed.

X-Smiles is XML browser that focuses on supporting several XML languages. It uses
a simplistic integration model to enable their generic integration.

XForms is a device neutral XML language for the “online interaction of a person and
another, usually remote, agent”[DKMR03]. XForms is an substantial extension
of the HTML forms, which are a core component of interactive Web applications.

XML Binding Language is a representation for attaching processing behaviour to
XML elements, in a similar manner to the way that CSS attaches style informa-
tion. XBL uses device neutral scripting languages, such as ECMAScript[ECM99],
to define an element’s behaviour.

XML browser is an interactive application that provides a partial or a complete
implementation of a processing model and of its user/machine interfaces. An
XML browser should, at a minimum, be able to present documents that use a
predefined set of languages.

APPENDIX B. TERMINOLOGY 277

XML constructs is the set of both qualified and unqualified XML elements and at-
tributes.

XML document is a textual tree representation of data, which conforms with the
XML syntax (well formed). After Section 3.2, unless stated otherwise, the term
XML document is used interchangeably to the term presentation document.

XML language is a set of XML documents that is usually specified by a schema.
After Section 3.2, unless stated otherwise, the term XML language is used inter-
changeably to the term presentation language.

XML linking language is a W3C recommendation that provides generic linking se-
mantics, by defining a set of attributes that can be attached to any XML element.

XML schema is a W3C validation proposal that addresses most of the DTD short-
comings. XML Schemas support namespaces, data types and inheritance.

XML semantics is used interchangeably with the term language semantics

XML user interface language is a model and a language for building graphical user
interfaces. The user interface of the Firefox browser is an XUL application.

XML Virtual Machine is a generic purpose XML processing approach that attaches
behaviour to XML constructs and uses a distributed binding mechanism.

XMLPipe is the proposed preprocessing model which combines all proposed sub-
models: the integration model, the adaptation model, the transformation model,
the validation model and the binding model. Their combination allows the generic
preprocessing of presentation documents, in a way that is adequate for the Web.

XMLPipe valid documents are the presentation documents that are valid accord-
ing to the XMLPipe integration model. They consist of either one or a valid
combination of single namespace subtrees rooted at a handled construct. FOC
and SMC subtrees can occur at any place, but COC rooted subtrees must only
occur at places where content is expected.

XMLPipe validation driver See validation driver.

XMLPipe transformation driver See transformation driver.

XPath is an path-like syntax for addressing the constructs of an XML document. It
is used in XSL to refer to source document constructs, define functional data
computations and provide a library of predefined functions.

XSL Formating Objects is a vocabulary for document formating semantics, and it
is mainly focused towards printed media.

XSL Transformations is a language that describes transformations of XML doc-
uments to other, XML or non-XML, documents. The principal application of
XSL-T is to transform XML documents that use arbitrary XML languages to
documents that only use natively supported languages, by a target browser.

Appendix C

Formalisms

This thesis has extensively used a formal notation to assist the precise communication
of the XML processing concepts. The introduced notation adopted many concepts of
functional analysis and set theory. Additionally, it introduced a multitude of new sym-
bols and formal concepts, because most XML and Web concepts are underdefined and
there is no formal model that covers all aspects of XML processing. This appendix aims
to assist the reader by providing a reference to all used notation, organised according
to the individual thematic areas.

C.1 Core notation

This section summarises the subset of set theory and function analysis notation used
by the introduced definitions.

C.1.1 Symbol conventions

The introduced symbols can span a wide complexity spectrum and can be sets, members
of that sets and sets of sets. The used notation uses small, capital and calligraphic
letters to differentiate between the relative complexity of each concept. Table C.1.1
summarises the used conventions. Small letters represent relatively simple set members,
such as local names (S) and documents (d). A capital letter, can either represent a set
of such constructs or a composite set member. For instance, D represents the set of
all documents. Additionally, L represents a language. Languages are represented by
capital letters, because an XML language can be considered as a composite construct
that is defined by the set of its valid documents. Caligraphic letters generally express
sets of such composite constructs. L represents the set of all languages. The used
notation is based on the relative (and possibly subjective) complexity of each construct,
in order to stress the relationships between the introduced terms.

Convention Example Description

Small letters d simple set members
Capital letter D, L sets or composite set members

Calligraphic letters L sets of composite entities

Table C.1: Symbol conventions

278

APPENDIX C. FORMALISMS 279

C.1.2 Sets notation

For all set members (∀)

∀ must can read as “for all members”. For instance, ∀d ∈ D can be read as “for all
documents of the set of all documents”.

There is a set member (∃)

∃ can be read as “There is a”. For instance, ∃d ∈ D can be read as “There is a
document in the set of all documents.

Empty set (∅)

∅ represents a set that has no members: ∅ = {}.

Null set member (ε)

ε represents a null set member that belongs to all sets and its addition to a set does
not modify the set: ∀ setsS, ε ∈ S, ∀ setsS, {ε} ∪ S = S.

Power set (℘)

For a set A, ℘(A) represents the power set (set of all subsets) of A. For instance, if
A = {1, 2, 3}, then

℘(A) = {∅, {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}}

C.1.3 Functions notation

Function definition (f : A→ B)

A function f : A → B is a function that maps values that belong to set A to values
that belong to a set B. For instance, if a ∈ A, then f(a) = b ∈ B. Functions can have
multiple input and output values. For instance f : A×B → C ×D × E maps pairs of
values (a, b) ∈ A×B to triples of values (c, d, e) ∈ C ×D × E.

The pipeline definitions combine set unions with the function definition notation.
For instance,

f :
⋃

i∈[1,2]

Ai → Bi

represents the union of functions f : A1 → B1 and f : A2 → B2.

C.2 Core XML notation

C.2.1 Documents

Documents are represented within this thesis using a small d: d, d1, d2, . . . , dn

APPENDIX C. FORMALISMS 280

XML documents (D) page 52

D represents the set of all well-formed XML documents.

XML constructs (Σ) page 52

The set of all XML constructs Σ includes all qualified or unqualified names of XML
elements and attributes:

Σ = (URI ∪ ε)× S

where URI is the set of URIs, S is the set of all non-qualified XML names and ε is an
null URI

Document constructs functions (docConstructs) page 52

docConstructs : D → ℘(Σ) is a function where, ∀d ∈ D, docConstructs(d) is the set of
all the XML constructs in d.
docConstructse : D → ℘(Σ) is a function where, ∀d ∈ D, docConstructs e(d) is the set
of all the XML constructs that appear as elements in d.
docConstructsa : D → ℘(Σ) is a function where, ∀d ∈ D, docConstructsa(d) is the set
of all the XML constructs that appear as attributes in d.

Namespace qualified XML documents (DQ) page 53

The set of all namespace qualified XML documents DQ ⊂ D is the subset of XML
documents where ∀d ∈ DQ, ∀σ = (uri , s) ∈ docConstructse(d), uri 6= ε

Presentation documents (DP) page 54

The presentation documents subset of namespace qualified XML documents is the set
DP ⊂ DQ, where ∀d ∈ DP the set of document languages Ld contains only presentation
languages: Ld ⊂ L

P .

C.2.2 XML languages

Languages are represented within this thesis using a capital L: L, L1, L2, . . . , Ln

XML languages (L) page 52

L represents the set of all XML languages

Language constructs functions (langConstructs) page 53

langConstructs : L → ℘(Σ) is a function where, ∀L ∈ L, langConstructs(L) is the set
of all the XML constructs that are defined by L.
langConstructse : D → ℘(Σ) is a function where, ∀L ∈ L, langConstructse(L) is the set
of all the XML constructs that are defined as elements by L.
langConstructsa : D → ℘(Σ) is a function where, ∀L ∈ L, langConstructsa(L) is the
set of all the XML constructs that are defined as attributes language L.

APPENDIX C. FORMALISMS 281

Namespace bound XML languages (LQ) page 53

The set of all namespace bound XML languages LQ ⊂ L is the subset of XML languages
where ∀L ∈ LQ ∀σ = (uri , s) ∈ langConstructse(L), uri 6= ε

Presentation languages (LP) page 54

The set of all presentation languages is the subset of XML languages LP ⊂ L, where
each L ∈ LP is associated with presentation semantics I ∈ IP .

C.2.3 Language sets

Document’s languages (Ld) page 53

For a namespace qualified document d ∈ DQ, the set of its languages is the smallest
subset of the XML bound languages Ld ⊂ LQ, where
∀σ ∈ docConstructse(d), ∃L ∈ Ld where σ ∈ langConstructse(L)
and
∀σ = (uri , s) ∈ docConstructsa(d), uri 6= ε, ∃L ∈ Ld where σ ∈ langConstructsa(L).

Set of natively supported languages (Lp)

The set of natively supported languages Lp represents the set of languages that a
presentation component/rendering sub-model/target browser can represent.

C.3 Processing models

Processing models (P) page 55

∀d ∈ DQ, where for all the languages in Ld = {L1, . . . , Ln} there are the respective
processing model’s P semantics {IP1, . . . , IPn}, P defines how to locate, combine and
apply these semantics to interpret d, according to the processing model specific inter-
pretation of the languages in Ld. P denotes the set of all processing models.

C.4 Semantics

C.4.1 Core definitions

XML semantics (I) page 54

For each XML language L ∈ L, there is a single precisely defined semantics I ∈ I,
which represents the language intended usage and interpretation by its author. The
set I is the set of all XML language semantics.

Presentation semantics (IP) page 54

The set of all presentation semantics is the subset of XML semantics IP ⊂ I, that

APPENDIX C. FORMALISMS 282

define a language’s interpretation according to the presentation of its constructs to the
document user.

Processing model semantics (IP) page 55

∀I ∈ I, iff there is a semantics implementation IP of the semantics I for the processing
model P , then IP ∈ IP

C.4.2 XMLPipe processing semantics

XMLPipe integration model semantics (ISemantics) page 87

ISemantics represents the set of all XMLPipe integration model semantics. Each mem-
ber of ISemantics is a 5-tuple of sets of qualified names that correspond to the COC ,
SMC , FOC , element and attribute handled constructs of a language, respectively:

ISemantics = ℘(Σ)5

If is ∈ ISemantics and is = (Σ1,Σ2,Σ3,Σ4,Σ5), then

∀σ ∈ Σi :

σ is a COC construct , if i = 1
σ is a SMC construct , if i = 2
σ is a FOC construct , if i = 3
σ is an element construct , if i = 4
σ is an attribute construct , if i = 5

XMLPipe validation semantics (VSemantics) page 158

VSemantics contains all XMLPipe validation semantics. Each member of VSemantics
is a pair of references to a schema specification and to the corresponding atomic vali-
dation implementation.

Transformation semantics (HCTSemantics) page 130

The set HCTSemantics contains all the transformation semantics, which consist of an
optional binding adaptation specification and a pipeline specification:

HCTSemantics = ((B ∪ {ε}) × PipeSpec)

Term semantics (TermSemantics) page 95

The set of all term semantics TermSemantics contains all valid triplets of a term type,
a default value and a conflict resolution expression:

TermSemantics =
⋃

∀Type∈TermTypes

(

{Type} × Type ×
(

{ε} ∪ FType

(Type)2

))

APPENDIX C. FORMALISMS 283

Term semantics functions (termType,termDefault ,termResolve) page 96

For every term τ ∈ Terms , where locateTermSem(τ) = (Type , v, f), the utility func-
tions are defined as follows

termType : Terms → TermTypes , termType(τ) = Type

termDefault : Terms →
⋃

∀Type∈TermTypes

(Type), termDefault(τ) = v

termResolve : Terms → F , termResolve(τ) = f

Binding adaptation specification (B) page 107

The set of all binding adaptation specifications B consists of pairs of an optional ap-
plicability expression and a set of adequacy expressions.

B = ({ε} ∪ EAp)× BA

C.4.3 XMLPipe semantics location functions

Handled construct information access functions page 179

∀uri ∈ URI , where locateSemantics(uri , XMLPipeURI : intModelSemantics) =
= (Σ1,Σ2,Σ3,Σ4,Σ5):
langConstructsHC (uri) = Σ4 ∪ Σ5,
langConstructsHC

e (uri) = Σ4,
langConstructsHC

a (uri) = Σ5,
COC (uri) = Σ1, SMC (uri) = Σ2, FOC (uri) = Σ3

Adaptation term semantics location function page 179

∀uri ∈ URI , s ∈ S,
locateTermSem((uri , s)) = ts ij

iff locateSemantics(uri , XMLPipeURI : termSemantics) =
{{(s11, ts11), . . . , (s1n1

, ts1n1
)} . . . , {(sk1, tsk1), . . . , {sknk

, tsknk
}} and sij = s.

Otherwise, locateTermSem((uri , s)) = ε

Transformation semantics location function page 179

∀σ = (uri , s) ∈ Σ, where
locateSemantics(uri , XMLPipeURI : transSemantics) =
{QH 1, . . . ,QH n} ∈ ℘(℘((℘(Σ)× HCTSemantics))),

locateHCTS (σ) =
⋃

i∈[1,n]

{hcts : (σ, hcts) ∈ QH i}

Otherwise, if locateSemantics(uri , XMLPipeURI : transSemantics) = ∅,
then locateHCTS (σ) = ∅

APPENDIX C. FORMALISMS 284

Validation semantics location function page 179

∀uri ∈ URI ,
if locateSemantics(uri , XMLPipeURI : valSemantics) = {VS 1, . . . ,VSn} 6= ∅,

locateVS (uri) =
⋃

i∈[1,n]

VS i

otherwise, locateVS (uri) = ∅

C.4.4 XMLPipe semantics binding

Semantics location function (locateSemantics) page 177

The locateSemantics function is defined by the following algorithm:

function locateSemantics(URI uri ,URI nature)→
ISemantics ∪ (Σ× TermSemantics)∪
℘(℘(VSemantics)) ∪ ℘(℘((℘(Σ) × HCTSemantics)))

let cache be the semantics cache
if there is no c ∈ cache that corresponds to uri and nature

cacheImport (uri ,nature)
end if
let ret = ∅
for each c ∈ cache that corresponds to uri and nature

Add the processing semantics described by c to ret
end for
return ret

end function

Cache import (cacheImport) page 178

The cacheImport function updates the semantics cache information, using both princi-
pal and secondary location mechanisms.

function cacheImport (URI uri ,URI nature)
let cache be the semantics cache
let alt be the URI list of the alternative retrieval mechanisms
let trust ∈ URI ×R be the predefined URI trust associations
let trustMin be the minimum trust threshold
let foundSemantics = false
let semList = ∅ be an empty set of pairs of semantics and trust levels
//attempt to use the principal location mechanism
sem = RDDLParse(uri ,nature)
if sem 6= ∅; add (sem , 1) to semList ; end if
//Use the alternative location mechanisms
for each uri ′ ∈ alt

if ∃(uri ′, x) ∈ trust AND x ≥ trustMin
sem = altSem(uri ′, uri ,nature)

APPENDIX C. FORMALISMS 285

if sem 6= ∅
if nature == intModelSemantics

if semList == ∅ OR ((x′, sem ′) ∈ semList AND x > x′)
semList = ∅
add (x, sem) to semList

end if
else if nature == termSemantics

add (x, sem ′) to semList , where sem ′ includes all term
semantics not declared in semList for higher priorities.

remove old duplicate term declarations from semList
else if nature == valSemantics

add (x, sem ′) to semList , where sem ′ includes all atomic
validations, which do not have the same wrapper
implementation to a higher priority semList entry.

remove old duplicate (same wrapper implementation) atomic
validations from semList

else if nature == transSemantics

add (x, sem) to semList
end if ; end if ; end if ; end for
if semList 6= ∅

replace cache entry for uri and nature with semList
end if

end function

C.5 Integration model

Integration models are represented within this thesis using the symbol Im: Im, Im1,
Im2, . . ., Imn. ImX represents the XMLPipe integration model and ImP repre-
sents the presentation integration model of a presentation component/rendering sub-
model/target browser

Valid tree composition notation (
+
←−
Im

) page 85

For all d1, d2 ∈ DQ, d1
+
←−
Im

d2 is the set of all documents that can be produced by placing

d2 at a valid place within d1, according to the integration model Im.

APPENDIX C. FORMALISMS 286

C.5.1 XMLPipe valid documents

Valid XMLPipe integration model composition (
+
←−
ImX

) page 85

For all d, d′ ∈ DQ, where d′ is rooted at a construct σ′,

d
+
←−
ImX

d′ =

∅ , if σ′ 6∈
⋃

∀L∈L
d′

langConstructsHC (L)

{d1, . . . , dn} ,

d1, . . . , dn result from placing d′ at any place in d

and σ′ ∈
⋃

∀L∈L
d′

(FOC (L) ∪ SMC (L))

{d1, . . . , dn} ,

d1, . . . , dn result from placing d′ at a place in d where

content is expected and σ′ ∈
⋃

∀L∈L
d′

COC (L)

XMLPipe valid documents (VImX) page 85

For a set of languages L1, the set of the XMLPipe integration model valid documents
VImX

L1
is defined as follows:

d ∈ VImX

L1
iff

Ld = {L}, d is rooted at σ ∈ (COC (L) ∪ SMC (L)) ∩
langConstructsHC

e (L) and d is a valid tree of L
OR

∃d1, d2, where d1 ∈ V
ImX

L1
, Ld2

= {L2}, d2 is rooted at σ2 ∈

langConstructsHC (L) and d2 is a valid tree of L2, so that d ∈

d1
+
←−
ImX

d2

C.5.2 Further valid document definitions

Corollary 1 provides a simplified valid documents definition. It is useful when indi-
vidually addressing a document’s subtrees, because it defines valid mixed namespace
documents as compositions of valid single namespace documents (as opposed to the
previous recursive definition)

Corollary 2 page 123

d ∈ VImX

Ld
if and only if there is a sequence of n ≥ 1 single namespace valid documents

d1, . . . , dn, so that d ∈ (dn · · ·
+
←−
ImX

(d3
+
←−
ImX

(d2
+
←−
ImX

d1)) · · ·), where ∀i ∈ [1, n], di is a valid

single namespace document of Li (di ∈ Li), it is rooted at a handled construct σi ∈
langConstructsHC (Li) and σn can only be an element COC or SMC handled construct.

Additionally, Proposition 1 is an adaptation of the valid documents definition to
document processing. It provides the foundation for proving that valid documents have
well defined processing.

APPENDIX C. FORMALISMS 287

Proposition 1 page 124

All valid XMLPipe documents have well defined processing if

• d has well defined processing ∀d ∈ VImX

Ld
, where Ld = {L} and d is rooted at

σ ∈ langConstructsHC
e (L) ∩ (COC (L) ∪ SMC (L)).

• All documents in d1
+
←−
ImX

d2 have a well defined processing, if d1 ∈ V
ImX

Ld1

, Ld2
=

{L2}, d2 is rooted at σ2 ∈ langConstructsHC (L2) and both d1 and d2 have well
defined processing.

C.6 Validation

A validation process is defined by a validation specification. Separate symbols are used
to represent validation processes and validation specifications. Validation processes are
represented by V : V , V1, V2, . . . , Vn. Validation specifications are represented by the
symbol vs : vs , vs1, vs2, . . . , vsn.

Document validation can be considered as a form of transformation. The validation
notation reflects its relationship with transformation. If the validation of a document

d by a validation process V results in d′, we will write d
V
−→d′. The validation process

can either succeed or fail, if the document is valid or invalid, respectively.

C.6.1 Validation of XMLPipe documents

XMLPipe atomic validation processes (AV) page 157

The set of all XMLPipe atomic validation processes AV is the subset of all transfor-
mations that map an XMLPipe document to its validated form. For each V ∈ AV the

validation process d
V
−→

I
d′ is successful if and only if d is a valid document, according

to the external input I. d′ is the validated result.

Validation algorithm (validate) page 160

validate validates the subtree of d that is rooted at the node n and results in the
validated document.

function validate(D d,Node n,Boolean deep)→ D
let σ = (uri , s) be the construct that corresponds to n
let L be the language that corresponds to σ
//Instantiate the atomic validation for the identified subtree
let VS = locateVS (uri)
if (σ 6∈ langConstructsHC (L) OR VS == ∅) the validation fails; end if
let vs be the most appropriate member of VS (implementation specific)
let V ∈ AV be the validation process that corresponds to vs
//Separate the subtrees
for each subtree di of n rooted at a construct σi of a language Li 6= L

separate di from d
if (σi ∈ COC (Li)) AND (deep == true)

APPENDIX C. FORMALISMS 288

add a (uri , coc) element at its place
end if

end for
//apply the validation
let d′ be the subtree of d, which is rooted at n
if σ ∈ langConstructsa(L) OR σ ∈ FOC (L)

if n has an ancestor n′′

let d′ = (uri , foc)
+
←−d′ //add the predefined foc construct

else
the validation fails

end if
end if

apply V to d′: d′
V
−→d′′

if the application of V was unsuccessful
the validation fails

end if
//re-compose the subtree and recurse
remove all (uri , foc) and (uri , coc) elements from d′′

replace d′ with d′′ within d
for each separated subtree rooted at ni

add the subtree at its corresponding place in d
if deep == true

call validate(d, ni, deep)
end if

end for
the validation is successful; return d

end function

C.6.2 Processing validation

Processing validation wrappers (validateSubtree and validateHC)

The processing validation interface consists of two separate wrappers that correspond to
the transformation pipeline validation constructs: validateSubtree and validateHC.
They both call validate(d, n, deep), where d is their input document subtree, n is the
topmost subtree handled construct and deep is either true, for validateSubtree, or
false, for validateHC.

C.6.3 Authoring validation

Authoring validation (validateAuth) page 166

The authoring validation is a transformation that maps a document d to its validated
output d′′, and it is composed out of a pre-validation transformation step and a subse-

quent subtree validation step: d
validateAuth
−→ d′′ iff d

transformAuth
−→ d′ and d′

validate
−→ d′′

APPENDIX C. FORMALISMS 289

The XMLPipe validation driver implements the function XMLPipeVal that repre-
sents XMLPipe’s validation interface to the document author.

XMLPipe validation driver (XMLPipeVal) page 184

The function XMLPipeVal : URI → D represents the authoring validation XMLPipe
interface. For a uri ∈ URI , XMLPipeVal(uri) = d′ where parse(uri) = d and

d
validateAuth
−→ d′

C.7 Transformations

We have introduced a generic and a more specific notation for expressing sets of trans-
formations. The former is used prior to the introduction of the concept of integration
models, and it does not separate between the languages of mixed namespace documents.
The latter explicitly defines the input/output languages and integration models.

Simple set of transformations (T L2

L1
)

T L2

L1
will denote the set of all transformations that map documents of L1 to documents

of L2.

Set of mixed namespace transformations (T L3:Im2

L1:Im1(L2)) page 93

Consider that L2 ⊂ L1 ⊂ ℘(L), L3 ⊂ ℘(L), and that Im1 and Im2 are two integration
models. The set of mixed namespace transformations T L3:Im2

L1:Im1(L2)
⊂ T includes all

transformations that process the constructs of languages in L2 for mapping an input
document, which combines the constructs of the languages in L1 using the integration
model Im1, to an output document, which combines the constructs of the languages in
L3, using the integration model Im2.

Document transformation (
T
−→)

d1
T
−→

I
d2, or d1

T
−→d2 for insignificant external transformation input, denotes the map-

ping of d1 to d2 according to a transformation T and an external input I.

C.7.1 XMLPipe document transformation

The XMLPipe transformation model defines two transformation algorithms: transform
and transformRev . The former is based on the initial overly restrictive set of assump-
tions, summarised in Table 7.2, that were necessary for proving the feasibility of trans-
forming presentation documents. transformRev is based on transform , but it uses a
significantly less restrictive set of assumptions, summarised in Table 7.3.

Proposition 2 page 124

Under the assumptions of Table 7.2, all valid XMLPipe documents d can be trans-
formed by a finite iterative transformation T ∈ T

Lp :ImX

Ld:ImX(Ld)
to their most adequate

representation d′, according to an adaptation profile pr .

APPENDIX C. FORMALISMS 290

XMLPipe mixed namespace transformation page 128

The function transform : D×Profiles → D represents the transformation T ∈ T
Lp :ImX

Ld:ImX(Ld),

which maps a valid XMLPipe document d to its most appropriate representation d′,
according to a profile pr .

function transform(D doc,Profiles pr)→ D
let d′ = d
let n be the first node of d′, according to a postorder tree traversal
while (true)

let σ be the XML construct that corresponds to n
let L be the language that corresponds to σ
let n′ be the the next postorder tree traversal node after n
if L 6∈ Lp AND σ ∈ langConstructsHC (L)

if T ′ is the optimal transformation for L, according to profile pr

if σ ∈ (COC (L) ∪ SMC (L)) ∩ langConstructsHC
e (L)

Separate d1 from d′, where d1 is rooted at n.
else

Separate d1 from d′, where d1 is rooted at the parent of n.
end if

apply T ′ to d1: d1
T ′

−→d′1
if d′1 is not an empty tree

replace d1 with d′1, within d′

let n be the first node of d′1 according to a postorder traversal
else

let n = n′

end if
else //there is no appropriate transformation

the transformation fails; exit
end if

else //the n rooted subtree does not require separate processing
if n is the root of d′

if all d′ nodes belong to languages in Lp

the transformation is successful; exit
else

the transformation fails; exit
end if

else
let n = n′

end if
end if

end while
end function

Revised XMLPipe mixed namespace transformation page 137

The function transformRev : D × Profiles → D represents the transformation T ∈
T

Lp :ImX

Ld:ImX(Ld), which maps a valid XMLPipe document d to its most appropriate repre-

sentation d′, according to a profile pr .

APPENDIX C. FORMALISMS 291

function transformRev (D d,Profiles pr)→ D
let d′ = d
let n be the first node of d′, according to a postorder tree traversal
while (true)

let σ be the XML construct that corresponds to n
let L be the language that corresponds to σ
let n′ be the next postorder tree traversal node after n
if σ ∈ langConstructsHC (L)

if bestHCTS (σ, pr) 6= ε

if σ ∈ (COC (L) ∪ SMC (L)) ∩ langConstructsHC
e (L)

Separate d1 from d′, where d1 is rooted at n.
else

Separate d1 from d′, where d1 is rooted at the parent of n.
end if
let pr ′ contain all adaptation statements associated with L

apply T ′ to d1: d1
T ′

−→d′1, using both pr and pr ′

let pr ′′ contain all L specific statements introduced by T ′

if d′1 6= d1 AND d′1 is not an empty tree
associate pr ′′ with L and with the parent of n
replace d1 with d′1, within d′

let n be the first node of d′1, according to a postorder traversal
else

if there is a language specific pr 1 associated to n′ parent
discard pr1

end if
let n = n′

end if
else if L 6= L′ //No appropriate transformation

the transformation fails; exit
end if

else //the n rooted subtree does not require separate processing
if n the root of d′

if all d′ nodes belong to languages in Lp

the transformation is successful; exit
else the transformation fails; exit
end if

else
let n = n′

if there is a language specific pr1 associated with the parent of n′

discard pr 1

end if ; end if ; end if ; end while
end function

The XMLPipe transformation driver implements the function XMLPipeTrans that
represents XMLPipe’s transformation interface to the document user.

XMLPipe transformation (XMLPipeTrans) page 184

The function XMLPipeTrans : URI×CProfiles → D represents the XMLPipe interface

APPENDIX C. FORMALISMS 292

for document transformation. For a URI uri ∈ URI and a composite profile cpr ∈
CProfiles , XMLPipeTrans(uri , cpr) = d′ where parse(uri) = d and ccompose(cpr) = pr
and transformRev (d, cpr) = d′.

C.7.2 Authoring validation specific transformation

An authoring validation specific transformation process is necessary for preprocessing
a document’s SMC rooted subtrees. As opposed to transform and transformRev , the
authoring validation specific transformAuth has only document parameter, because the
authoring validation is adatation requirement independent.

Authoring validation transformation (transformAuth) page 165

transformAuth is a transformation that eliminates as many SMC rooted subtrees as
possible.

function transformAuth(D d)→ D
let pr be the dummy profile that states support for all languages in Ld

let d′ = d
let n be the first node of d′, according to a postorder tree traversal
while (true)

let σ be the XML construct that corresponds to n
let L be the language that corresponds to σ
let n′ be the the next postorder tree traversal node of n
if L ∈ SMC (L) AND bestHCTS (σ, pr) 6= ε

⇐= if σ ∈ langConstructsHC
e (L)

Separate d1 from d′, where d1 is rooted at n.
else

Separate d1 from d′, where d1 is rooted at the parent of n.
end if
let pr ′ be all adaptation statements associated with L
apply a handled construct validation to d1

if the validation was successful

apply T ′ to d1: d1
T ′

−→d′1 using both the initial pr and pr ′

else d′1 = d1

end if
let pr ′′ be the set of all L-specific statements introduced by T ′

if d′1 6= d1 AND d′1 is not an empty tree
Associate pr ′′ with L and with the parent of n
Replace d1 with d′1 within d′

let n be the first node of d′1, according to a postorder traversal
else

if there is a language specific pr 1 for the parent of n′

discard pr1

end if
let n = n′

end if
⇐= else //the n rooted subtree does not require separate processing

if n the root of d′

APPENDIX C. FORMALISMS 293

the transformation is successful; exit

⇐= else
let n = n′

if there is a language specific pr1 associated with the parent of n′

discard pr 1

end if ; end if ; end if ; end while
end function

C.7.3 Transformation specification selection

Optimal pipeline selection function (bestHCTS) page 131

The optimal pipeline selection function bestHCTS : Σ×Profiles → PipeSpec maps a pair
of a handled construct and an adaptation profile to their corresponding optimal pipeline
specification. If locateHCTS (σ) = {(B1, ps1), . . . , (Bn, psn)} then bestHCTS (σ, pr) =
psk, where

measure(pr , Bk) = max
∀i,Bi 6=ε

(measure(pr , Bi)) 6= 0

OR
Bk = ε, if max

∀i,Bi 6=ε
(measure(pr , Bi)) = 0

C.7.4 Transformation pipelines

Atomic transformations (A) page 140

The set of atomic transformations A contains all functions A : Profiles → T L:ImX

L:ImX(L).

Sequence pipeline (seq) page 142

The sequence seq pipeline is a function

seq :
⋃

∀
L1,L1

′,L2,
L2

′,L3, Im1, Im2

T L2:Im2

L1:Im1(L1
′)
× T L3:Im3

L2:Im2(L2
′)
→ T L3:Im3

L1:Im1(L1
′∪L2

′)

where d
seq(T1,T2)
−→ d′ iff d

T1−→d1 and d1
T2−→d′.

Selection pipeline (seq) page 143

The selection sel pipeline is a function

seq :
⋃

∀n,∀i ∈ [1, n],
∀Li1,Li1

′,Li2 , Im1, Im2

(T
L12

:Im12

L11
:Im11(L11

′)
× (B ∪ {ε}))× · · · ×

×(T
Ln2

:Imn2

Ln1
:Imn1(Ln1

′)
× (B ∪ {ε}))→

→ T
L12

∪···∪Ln2
:Im2

L11
∩···∩Ln1

:Im1(L1
′∪···∪Ln1

′)

APPENDIX C. FORMALISMS 294

where for an adaptation profile pr , sel((T1, B1), . . . , (Tn, Bn)) = Tk where

measure(pr , Bk) = max
∀i,Bi 6=ε

(measure(pr , Bi)) 6= 0

OR
Bk = ε, if max

∀i,Bi 6=ε
(measure(pr , Bi)) = 0

Dynamic pipeline (dyn) page 144

The dynamic pipeline dyn pipeline is a function

dyn :
⋃

∀L1,L1
′,L2,L2

′,
L3,L4,L4

′,L5, Im1,
Im2, Im3, Im4, Im5

T L2:Im2

L1:Im1(L1
′)
× T L3:Im3

L2:Im2(L2
′)
× T L5:Im5

L4:Im4(L4
′)
→ T L3:Im3

L1:Im1(L1
′∪L2

′)

where d
dyn(T1,T2,T3)
−→ d′ iff d

T1−→d1 and d
T3−→d2 and d1

T2−→
d2

d′.

XMLPipe pipelines (Pipelines) page 145

The set of all XMLPipe pipelines Pipelines contains all transformations in T L:ImX

L:L(ImX),
that correspond to all atomic transformations, subtree validation constructs and pipeline
compositions of pipelines. For a profile pr ,

p ∈ Pipelines iff

p = A(pr) , A ∈ A
p = validateSubtree

p = validateHC

p = seq(p1, p2) , p1, p2 ∈ Pipelines
p = dyn(p1, p2, p3) , p1, p2, p3 ∈ Pipelines
p = sel(p1, B1, · · · , pn, Bn) ,∀i ∈ [1, n]pi ∈ Pipelines , Bi ∈ B

C.8 XMLPipe adaptation model

C.8.1 Core concepts

Adaptation terms set (Terms) page 93

The set of all adaptation terms Terms is the set of all pairs of a URI and an XML local
name:

Terms = URI × S

where URI is the set of all URIs and S is the set of all XML local names.

Adaption term types (TermTypes) page 94

The set of all adaptation term types TermTypes contains all adaptation term data types

APPENDIX C. FORMALISMS 295

Numeric data type (Numeric) page 94

The numeric type Numeric ∈ TermTypes is the XMLPipe numeric data type, and its
acceptable values are real numbers:
if v ∈ Numeric then v ∈ R

Boolean data type (Boolean) page 94

The boolean type Boolean ∈ TermTypes is the XMLPipe boolean data type, and it
contains the values true and false:
Boolean = {true, false}

C.8.2 Adaptation profiles

Adaptation statements (Statements) page 96

The set of all adaptation statements Statements includes all pairs of a term and a value
of its corresponding type.

Statements =
⋃

∀τ∈Terms

({τ} × termType(τ))

Adaptation profiles (Profiles) page 96

The set of all adaptation profiles Profiles includes all sets of adaptation statements:
Profiles = ℘(Statements)

Composite statements (CStatements) page 100

CStatements is the set of all composite statements and it contains all pairs of an
adaptation statement and an optional binary adaptation expression, which maps two
values of the corresponding term type to a value of the same type.

CStatements =
⋃

∀τ∈Terms

(

({τ} × termType (τ))×
(

F
termType(τ)

(termType(τ))2
∪ {ε}

))

Composite profiles (CProfiles) page 100

The set of all composite profiles CProfiles contains all composite statement sequences.

CProfiles =
⋃

∀n∈N

(CStatements)n

APPENDIX C. FORMALISMS 296

C.8.3 Adaptation expressions

Adaptation expressions from a value tuple to a value (FType′

{Type1,...Typen}
) page 94

The set FType′

{Type1,...Typen}
contains all XMLPipe expressions of the form

f : Type1 × Type2 × · · · × Typen → Type ′

Adaptation expressions from a single type value tuple (F
Type2

(Type1)n) page 94

F
Type2

(Type1)
n = F

Type2

{Type1, . . . ,Type1
︸ ︷︷ ︸

n

}

All adaptation expressions (F) page 94

The set F includes all XMLPipe expressions:

F =
⋃

∀n∈N,Type′,∀Type1...Typen

FType′

{Type1,...,Typen}

where N is the set of natural numbers {1, 2, . . . }

Adequacy expressions (EAd) page 103

The set EAd of all adequacy expressions contains all pairs of terms and unary expres-
sions that evaluate to a Numeric or a Boolean value.

EAd =
⋃

∀τ

((

{τ} × FNumeric
(termType(τ))1

)

∪
(

{τ} × FBoolean
(termType(τ))1

))

Set of adequacy expression sets (BA) page 105

BA is the set of all binding expression sets: BA = ℘(EAd)

Applicability expressions (EAp) page 106

The set EAp contains all applicability expressions. Each EAp member is a pair of an
n-tuple of terms and of an adaptation expression, which has a corresponding n-tuple
of arguments. The expression must evaluate to either a Numeric or a Boolean value.

EAp =
⋃

∀n∈N

∀Type∈{Numeric,Boolean}
⋃

∀τ1,...τn∈Terms

(

{(τ1, . . . , τn)} × FType

{termType(τ1),...,termType(τn)}

)

C.8.4 Profile composition

The profile composition component of the XMLPipe adaptation model is responsible
for mapping a composite adaptation profile to an adaptation profile. It implements
function ccompose .

APPENDIX C. FORMALISMS 297

Profile composition (ccompose) page 101

The profile composition function ccompose : CProfiles → Profiles , maps a composite
profile cpr ∈ CProfiles to its corresponding adaptation profile pr :

function ccompose(cpr)→ pr
Let cpr = (((τ1, v1), f1) , ((τ2, v2), f2) , . . . , ((τn, vn), fn))
Let pr = ∅
for (i = 1 . . . n)

if 6 ∃(τ, v) ∈ pr where τ = τi then
pr = pr ∪ (τi, vi)

else
if fi 6= ε then

pr = (pr − (τ, v)) ∪ {(τ, fi(v, vi))}
else if termResolve(τ) 6= ε then

f = termResolve(τ)
pr = (pr − (τ, v)) ∪ {(τ, f(v, vi))}

else
pr = (pr − (τ, v)) ∪ {(τ, vi)}

end if
end if

end for
end function

C.8.5 Transformation selection

Adequacy measure function (adequacy) page 105

The adequacy measure function adequacy : Profiles × BA → Numeric maps a profile
and a set of adequacy expressions to the corresponding adequacy measure.

adequacy(pr , ba) =
∑

∀ead∈ba

mt(pr , ead)

where the function mt : Profiles × EAd → Numeric is defined as:

mt(pr , (τ, f)) =

1 ,m ∈ (1,∞) ∪ {true}
m , 0 ≤ m ≤ 1
0 ,m ∈ (−∞, 0) ∪ {false}

, where

m =

{
f(v) ,∃(τ, v) ∈ pr
f(termDefault(τ)) , 6 ∃(τ, v) ∈ pr

Applicability measure function expression (applicability) page 106

The applicability measure function applicability : Profiles × EAp → Numeric maps
a pair of a profile and an applicability expression to the corresponding applicability
measure:

applicability(pr , ((τ1, . . . τn), f)) =

1 , γ ∈ [1,∞) ∪ {true}
γ , 0 ≤ γ ≤ 1
0 , γ ∈ (−∞,−1] ∪ {false}

APPENDIX C. FORMALISMS 298

where γ = f(v1, . . . vn) and ∀i ∈ [1, n]

vi =

{
v ,∃(τi, v) ∈ pr
v′ , 6 ∃(τi, v) ∈ pr , termDefault(τi) == v′

Adaptation measure function (measure) page 107

The adaptation measure function measure : Profiles × B → Numeric provides the
absolute adaptation measure that corresponds to a binding specification, according to
an adaptation profile.

measure(pr , (eap, ba)) =

0 , if eap = ε, ∃ead ∈ ba so that
mt(pr , ead) = 0

ad , if eap = ε, and
∀ead ∈ ba,mt(pr , ead) > 0

ap · ad , otherwise

where ad = adequacy(pr , ead), and ap = applicability (pr , eap), and mt is the function
defined in the adequacy measure function definition, in page 105.

C.9 Document parsing

DOM parser (parse) page 183

Function parse : URI → D represents the interface of a standards compliant DOM
parsers, and it maps a URI uri to its corresponding DOM representation d ∈ D.

Appendix D

RDF integration example

This appendix includes the RDF/XML integration listings, described in Section 2.2.2.
Both Listing D.1 and Listing D.2 encode the same information, but the former

combines two XML languages and the latter uses RDF. The encoded information is a
structured document that contains author information, two sections, a nested subsec-
tion and formated text. In both cases there are two separate information areas: one
covering the document structure and one covering the author information.

The first observation is that the first document can be intuitively interpreted by
a person, but not necessarily by a process. A person could infer that the authors

element, in line 6, describes the authors of the document. However, this association
is not explicit and cannot be inferred by an XML processor that does not contain
specific information on the integration of the two languages. For instance, a predefined
integration specification can state that the authors element introduces a document’s
author, when it occurs before the document sections. However, a priori integration
information is similar to integration profiles, which are not adequate for processing an
open set of XML languages, as described Section 2.2.2.

The RDF example does not have such integration problems, because RDF enforces
well defined associations between the separate information pieces. The only way to
associate an author with a document is by a well defined association, which attaches
the author of a resource to that resource. Lines 22 and 23 (Listing D.2) represent
such an association. An RDF processor can use this association to explicitly infer
the authors of the document. Consequently, the RDF explicit associations allow well
defined integration, between separate information entities.

However, such explicit associations are closely tied to the RDF authoring model
and are not compatible with the easy to author and ordered XML authoring model.
Specifically, the explicit RDF associations and the rich processing information result
in a document that is double the size of the XML document and significantly more
difficult to author and comprehend. Consequently, as stated in 2.2.2, RDF based
solutions are outside the scope of this thesis. Nevertheless, the main concept of well
defined associations can provide the foundation for addressing the XML integration
problems.

299

APPENDIX D. RDF INTEGRATION EXAMPLE 300

D.1 The mixed namespace XML document

1 <?xml version=” 1.0 ”?>
2 <doc xmlns=” . . . ”
3 xmlns:a=” . . . ”>
4 < t i t l e >An example document</ t i t l e >

5 <date>18 June 2003</date>

6 <a:authors >

7 <a:author>

8 <a:name>Mike</a:name>
9 <a:surname>Ped i ad i t ak i s</a:surname>

10 </a:author>

11 <a:author>

12 <a:name>David</a:name>
13 <a:surname>Shrimpton</a:surname>

14 </a:author>

15 </a:authors >

16

17 <s ec t ion ><t i t l e >In t roduct ion</ t i t l e >

18 Sect ion tag can be used at d i f f e r e n t l e v e l s
19 <s ec t ion ><t i t l e >Pre l im ina r i e s </ t i t l e >

20 Such as in t h i s s e c t i on which
21 i s nested in the in t r odu c t i on .
22 </sec t ion >

23 </sec t ion >

24

25 <s ec t ion ><t i t l e >Conclusion</ t i t l e >

26 The number o f s e c t i o n s i s unbounded .
27 </sec t ion >

28 </doc>

Listing D.1: Integration Example: XML

D.2 The RDF document

1 <rdf:RDF
2 xmlns : rd f= ’ . . . ’
3 xmlns:docNs=’ . . . ’
4 xmlns:authNs=’ . . . ’>
5 <r d f :D e s c r i p t i o n rd f : abou t=’ h t tp : //www. cs . kent . ac . uk/˜mp49/MP’>
6 <r d f : t y p e r d f : r e s o u r c e= ’ h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling

/ exper iments/ i n t e g r a t i o n / r e f S e t / rd f / authors#author ’/>
7 <au thNs : f i r s t >Michael</au thNs : f i r s t >

8 <authNs : l a s t>Ped i ad i t ak i s</authNs : l a s t>

9 <authNs:homePage>h t tp : //www. cs . kent . ac . uk/˜mp49</authNs:homePage>

10 </rd f :De s c r i p t i on >

11 <r d f :D e s c r i p t i o n rd f : abou t=’ h t tp : //www. cs . kent . ac . uk/˜dhs/DHS’>
12 <r d f : t y p e r d f : r e s o u r c e= ’ h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling

/ exper iments/ i n t e g r a t i o n / r e f S e t / rd f / authors#author ’/>
13 <au thNs : f i r s t >David</au thNs : f i r s t >

14 <authNs : l a s t>Shrimpton</authNs : l a s t>

15 <authNs:homePage>h t tp : //www. cs . kent . ac . uk/˜dhs</authNs:homePage>

16 </rd f :De s c r i p t i on >

17

18 <r d f :D e s c r i p t i o n rd f : abou t=’ ’>
19 <r d f : t y p e r d f : r e s o u r c e= ’ h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /

XMLhandling/ exper iments/ i n t e g r a t i o n / r e f S e t / rd f /doc#document ’/>
20 <docNs : t i t l e >An RDF document</docNs : t i t l e >

21

APPENDIX D. RDF INTEGRATION EXAMPLE 301

22 <docNs:author r d f : r e s o u r c e=” h t tp : //www. cs . kent . ac . uk/˜mp49/MP”/>
23 <docNs:author r d f : r e s o u r c e=” h t tp : //www. cs . kent . ac . uk/˜dhs/DHS”/>
24

25 <!−− And the content −−>
26 <docNs:content>

27 <rd f :S eq>

28 < r d f : l i rd f :par seType=” L i t e r a l ”>
29 A paragraph
30 </ r d f : l i >

31 < r d f : l i >

32 <docNs : s ec t ion>

33 <docNs:content>

34 <rd f :S eq>

35 < r d f : l i rd f :par seType=” L i t e r a l ”>
36 A paragraph o f a s e c t i on
37 </ r d f : l i >

38 < r d f : l i >

39 <docNs:formatedText>

40 <docNs:content>

41 <rd f :S eq>

42 < r d f : l i rd f :par seType=” L i t e r a l ”>
43 And another paragraph that has some
44 </ r d f : l i >

45 < r d f : l i >

46 <docNs:emphasis >

47 <docNs:content>emphasized</
docNs:content>

48 </docNs:emphasis >

49 </ r d f : l i >

50 < r d f : l i rd f :par seType=” L i t e r a l ”>
51 t ex t
52 </ r d f : l i >

53 </rd f :S eq>

54 </docNs:content>

55 </docNs:formatedText >

56 </ r d f : l i >

57 </rd f :S eq>

58 </docNs:content>

59 </docNs : s ec t ion>

60 </ r d f : l i >

61 </rd f :S eq>

62 </docNs:content>

63 </rd f :De s c r i p t i on >

64 </rdf:RDF>

Listing D.2: Integration Example: RDF-XML

Appendix E

XMLPipe processing semantics
representation

This appendix overviews the processing semantics representation that is used by the
XMLPipe pilot implementation. Sections E.1 to E.2 introduce the top level representa-
tion concepts. The subsequent sections describe the syntax of the individual semantics
information entities.

E.1 The top level structure

The processing semantics representation is in XML, because XML is adequate and its
processing can reuse a preprocessing implementation’s components. Specifically, XML
is adequate, because XML documents can represent any information. Additionally, an
XMLPipe implementation must also include, at a minimum, an XML parser that can
be reused to process the processing semantics.

A well defined XML representation requires a well defined namespace URI. The
namespace URI that corresponds to the XMLPipe processing semantics language is
http://www.cs.kent.ac.uk/projects/XMLhandling/XMLPipe/XMLPipe

The same URI is also used as a prefix for all other XMLPipe specific resources. Addi-
tionally, the XMLPipeURI abbreviation will refer to the XMLPipe URI, when necessary.

The top level processing semantics structure allows the binding model to locate
the necessary processing semantics. We will only define the top level structure for
the primary semantics repositories, because secondary repositories can use repository-
specific semantics representations. Nevertheless, the returned semantics specifications
must always follow the common processing semantics defined in the subsequent sections.

The principal semantics repositories contain RDDL links to the XML documents
that contain the corresponding processing semantics. Listing E.1 illustrates four RDDL
links to separate types of processing semantics. Specifically, an RDDL link is introduced
by the resource element of the RDDL namespace. The xlink:type attribute must
always be “simple”, because all RDDL links are simple XLink links. The xlink:href

attribute specifies the URL of the document that contains the corresponding seman-
tics information. The xlink:role attribute specifies the role of an RDDL link. The
XMLPipe model defined four URIs that correspond to the four types of processing
semantics: the term declarations, the handled construct information, the validation
semantics and the transformation semantics. The xlink:role attribute of each RDDL
link can use one of these URIs to specify the type of XMLPipe semantics it links to.

302

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 303

The four separate xlink:role values, illustrated in lines 4, 7, 10 and 13, correspond
to the handled construct information, the adaptation term declarations, the validation
semantics and the transformation semantics, respectively.

1 <xhtml:html>
2 . . .
3 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
4 x l i n k : r o l e=”XMLPipeURI#intModelSemantics ”
5 x l i n k : h r e f=”HCInfo . xml”></rdd l : r e s ou r c e >

6 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
7 x l i n k : r o l e=”xmlPipeURI#termSemantics ”
8 x l i n k : h r e f=”TermInfo . xml”></rdd l : r e s ou r c e >

9 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
10 x l i n k : r o l e=”xmlPipeURI#valSemant ics ”
11 x l i n k : h r e f=” ValIn fo . xml”></rdd l : r e s ou r c e >

12 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
13 x l i n k : r o l e=”xmlPipeURI#transSemant ics ”
14 x l i n k : h r e f=”TransIn fo . xml”></rdd l : r e s ou r c e >

15 . . .
16 </xhtml:html>

Listing E.1: RDDL processing semantics links

The root element of all XMLPipe processing semantics documents, such as the
RDDL link targets, is the XMLPipeURI:config element that is the parent element
of all types of processing definitions. Its name attribute specifies the name of the
corresponding collection of processing semantics.

<xmlPipe : con f ig name=”XMLPipeSemanticsExample ”>
. . .
</xmlPipe :conf ig >

E.2 Data types and expressions

Each XMLPipe adaptation term is associated with a well defined data type, which is
necessary for validating the adaptation statements and evaluating the adaptation ex-
pressions. This section describes the predefined XMLPipe data types, their associated
operators and the individual types of adaptation expressions.

E.2.1 The predefined XMLPipe data types

Only a minimal set of data types is necessary, because most necessary adaptation
expressions describe simple numerical and string operations. The XMLPipe pilot im-
plementation defines four data types: Numeric, Boolean , String and SetOfStrings .
Table E.1 illustrates the XMLPipe data types. The Numeric, Boolean and String data
types represent the common notions of a number, a boolean value and a string. The
SetOfStrings is necessary for representing sets of URIs, which are used to describe URI
lists, such as the set of natively supported languages.

The adaptation expressions use a set of binary and unary operators/functions. Ta-
ble E.2 illustrates three XMLPipe unary operators: not, abs and round. not is the
boolean NOT operator and applies to boolean values. abs and round correspond to the

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 304

Data Type Example value Description
Numeric -1, 2.5, 100 Integers and decimals
Boolean true, false , 1, 0 Boolean values
String ”Any string value” Arbitrary length strings

SetOfStrings <item>String1</item>

<item>String2</item>

A set of strings, where each string is de-
noted by an <item> element

Table E.1: Adaptation terms data types

Operator Data types
not Boolean
abs Numeric

round Numeric

Table E.2: Unary operators

absolute and rounded value of a decimal and apply to Numeric values. Table E.3 illus-
trates the XMLPipe binary operators. add, sub, div and mul apply the corresponding
mathematical operations, between their two numeric arguments. In a similar manner
and and or apply their corresponding boolean operations. The operator equals applies
to all data types and returns true, when its two operands are equal. Finally, contains
and union test set membership and perform set union, respectively.

E.2.2 Adaptation expressions

The XMLPipe adaptation expressions consist of a hierarchical structure of operators,
functions, literal data values and references to term values. The XML representation
of each operator is an element with the same name as the operator. Unary operator
elements can only contain one operant child element, and binary operator elements
can contain two child elements. Such a hierarchical representation can lead to lengthy
expression definitions. However, it allows straightforward processing and, since most
XMLPipe adequacy expressions do not involve more than two operators, it can be
considered as an acceptable simplification.

The val element introduces literal data values, within an adaptation expression.
For instance: <val>1.4</val> and <val>String</val> introduce a Numeric and a

Datatype (l/r) Numeric Boolean String SetOfStrings
Numeric add, div, mul, sub, equals
Boolean and, or, equals
String equals

SetOfStrings contains equals,union

Table E.3: Binary operators

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 305

String value, respectively. The XMLPipe expression evaluator does not automatically
recognise the value types. According to the type of the adaptation expression, there
can be a default data type. In such cases, the expression evaluator assumes that every
unqualified literal is of the default data type. Literal values that do not belong to the
default data type must use the type attribute. For instance the following value will
always be interpreted as a string, independently of its context:

<val type="String">2.45</val>

A reference to the value of an adaptation term depends on the type of the adaptation
expression, because each type relates to a different set of terms. The following sections
will describe the separate methods of referencing term values. This section’s example
will use the most precise available notation, where both the name and the namespace
of the referenced term are provided.

The termVal element introduces the value of the term that corresponds to its name
and ns attribute values. For instance, Listing E.2 illustrates an example adaptation
expression. If uri:name1 and uri:name2 are adaptation terms and their corresponding
values are x and y, the illustrated example represents the expression

(x ∗ 30) + (80− y) == 20

1 <not>
2 <equals>

3 <add>

4 <mul>
5 <termVal ns=” u r i ” name=”name1”/>
6 <val type=”Numeric”>30</val>
7 </mul>
8 <sub>

9 <val type=”Numeric”>80</val>
10 <termVal ns=” u r i ” name=”name2”/>
11 </sub>

12 </add>

13 <val type=”Numeric”>20</val>
14 </equals>

15 </not>

Listing E.2: Adaptation expression example

E.2.3 Applicability expressions

The XMLPipe applicability expressions are the most comprehensive adaptation ex-
pressions, because they can arbitrarily combine the values of several terms. The only
restriction is that they must result to either a numeric or a boolean value.

Within an applicability expression there is no default literal value type. Conse-
quently, all literals must use the type attribute. Additionally, the value of any adap-
tation term can be used, and both its namespace and local name must be explicitly
specified.

For instance, the representation of the applicability expression

NOT (X) AND (Y CONTAINS “S1”) AND NOT (Y CONTAINS “S2”)

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 306

1 <app l i c a b i l i t y >

2 <and>

3 <and>

4 <not>
5 <termVal ns=” . . . ”
6 name=”x”/>
7 </not>
8 <contains>

9 <termVal ns=” . . . ”
10 name=”Y”/>
11 <val type=” St r ing ”>S1</val>
12 </contains>

13 </and>

14 <not>
15 <contains>

16 <termVal ns=” . . . ”
17 name=”Y”/>
18 <val type=” St r ing ”>S2</val>
19 </contains>

20 </not>
21 </and>

22 </app l i c a b i l i t y >

Listing E.3: Applicability expression example

is illustrated in Figure E.3. All termVal elements (lines 5, 9, 16) use both the ns and
name attributes to specify the corresponding adaptation term URI. Additionally, both
string literals (lines 11 and 18) explicitly specify their type.

E.2.4 Adequacy expression sets

An adequacy expression set consists of one or more adequacy expressions. Each ad-
equacy expression is restricted to using the value of a single term, as opposed to the
applicability expressions. The proposed syntax enforces this constraint by only allowing
the top level expression element to declare a term’s URI. The actual references to the
term value are represented by a termVal element, that has no ns and name attributes.

Listing E.4 illustrates the adequacy expression set {X CONTAINS “S1”, Y =
“S2”}. Each expr element introduces a set of adequacy expressions, and its ns and
name attributes specify the corresponding adaptation term.

The type of each expression’s adaptation term specifies the default expression data
type. Consider that the data type of X is SetOfStrings and the data type of Y is
String . The first occurrence of val explicitly specifies its data type, because it differs
from the data type of X, which is the default expression data type. In contrast, the
second occurrence of val (line 13) does not require such a declaration, because its
String data type is the same as the default expression data type.

E.2.5 Conflict resolution expressions

Conflict resolution expressions can only access the values of a single term, in a similar
manner to the adequacy expressions. However, they can refer to two separate values of
the same term: a previous value and a newly introduced conflicting value. Their result

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 307

1 <adequacy>

2 <expr ns=” . . . ”
3 name=”X”>
4 <contains >

5 <termVal/>
6 <val type=” St r ing ”>S1</val>
7 </contains>

8 </expr>
9 <expr ns=” . . . ”

10 name=”Y”>
11 <equals>

12 <termVal/>
13 <val>S2</val>
14 </equals>

15 </expr>
16 </adequacy>

Listing E.4: Adequacy expressions example

value must be of the same type as the corresponding adaptation term, because their
result is used as the new term’s value.

Conflict resolution expressions do not have to explicitly specify their corresponding
term, because it can always be inferred from their context. Specifically, conflict res-
olution expressions can only appear within adaptation term semantics and composite
profile statements. In the first case the resolution expression term is the term described
by the processing semantics. In the latter case, the resolution expression term is the
one referred by the composite adaptation statement.

In order to differentiate between the two term values, in a well defined manner, two
value reference elements are used: termVal and prevTermVal. The former refers to
the newly introduced conflicting value and the latter to the previous term value.

1 <r e s o l u t i on >

2 <termVal/>
3 </r e s o l u t i on >

4

5 <r e s o l u t i on >

6 <add>

7 <mul>
8 <prevTermVal/>
9 <val>10</val>

10 </mul>
11 <termVal/>
12 </add>

13 </r e s o l u t i on >

Listing E.5: Conflict resolution expressions example

For instance, consider a term T that has been associated with a value v1 and
that a new conflicting value v2 is introduced. Listing E.5 illustrates two valid conflict
resolution expressions. The former is equivalent to v2, and it is the same as the default

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 308

XMLPipe resolution mechanism. The latter is equivalent to (v1 × 10) + v2.

E.3 Adaptation processing semantics

The adaptation processing semantics consist of the adaptation term semantics, the com-
posite adaptation profiles and the binding adaptation specifications. The adaptation
term semantics provide the necessary information for processing adaptation statements
and adaptation expressions. The composite profiles represent the set of adaptation
requirements that a document must be adapted for. The binding adaptation specifi-
cations allow the optimal transformation selection. They will not be described in this
section, because their syntax has been covered in the aforementioned adequacy/applica-
bility expression syntax and their use will be illustrated in the following transformation
semantics discussion.

E.3.1 Adaptation term semantics

1 <terms ns=”URI1”>
2

3 <term name=”termLocalName” type=”Boolean”>
4 <de fau l t >t rue</de fau l t >

5 </term>

6

7 <term name=”term2LocalName” type=” SetOfS t r ings ”>
8 <de f au l t />
9 <r e s o l u t i on >

10 <union>

11 <prevTermVal/>
12 <termVal/>
13 </union>

14 </r e s o l u t i on >

15 </term>

16

17 </terms>

Listing E.6: Term semantics example

The semantics of an adaptation term associate its qualified name with its data type,
its default value and an optional conflict resolution expression. Listing E.6 illustrates
an example declaration of two adaptation terms.

All term declarations are enclosed within the terms element, which specifies their
URI. If a semantics repository uses a single document to describe multiple-URI terms,
multiple terms elements must be introduced.

The first minimal semantics declaration specifies that the acceptable data values of
the URI:termLocalName term are boolean values, and that its default value is “true”.
There is no explicit conflict resolution expression, and in the case of profile composition
conflicts the default XMLPipe resolution mechanism will be used.

The second declaration introduces a SetOfStrings term, which has an empty-set
default value and an explicit conflict resolution expression (the resolution element).
The resolution expression returns the union of the two conflicting values. Such a

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 309

resolution could be adequate for an adaptation term that specifies the set of natively
supported technologies.

E.3.2 Composite profiles

The preprocessing initiation entity must provide a composite adaptation profile to
specify a set of adaptation requirements. A composite adaptation profile is a sequence
of composite adaptation statements. Each statement can either specify a term’s value
or include a sequence of statements from an external composite profile. Additionally, a
composite adaptation statement can contain a conflict resolution expression, in order
to override the default term or XMLPipe conflict resolution mechanisms.

1 <p r o f i l e s >

2 <p r o f i l e name=”aMobile ”>
3 <i n c lude
4 r e f=” compositeProfi le1URL ”
5 name=” De fau l tMob i l eP ro f i l e ”/>
6 <i n c lude
7 r e f=” compositeProfi le2URL ”
8 name=”SoftwareUpdateMobi lePro f i l e ”/>
9 <statm ns=”XMLPipeURI/Terms”

10 name=”maxImageX”>96</statm>

11 <statm ns=”XMLPipeURI”
12 name=”maxImageY”>
13 <val>100</val>
14 <r e s o l u t i on >

15 <prevTermVal/>
16 </r e s o l u t i on >

17 </statm>

18 </p r o f i l e >

19 </p r o f i l e s >

Listing E.7: Composite adaptation profile example

Listing E.7 illustrates the declaration of a composite adaptation profile. In a similar
manner to most processing semantics constructs, all profile declarations are enclosed
within a profiles element. The profile element introduces a composite profile,
and its name attribute provides the profile name and identifier. The first two child
elements include the statements of composite profiles from other processing semantics
documents. Each include statement specifies the URL of the processing semantics file
and the name of the included composite profile (since a processing semantics document
can contain several profile declarations). The first statm element assigns the value “96”
to the (XMLPipeURI/Terms, maxImageX) term. The last statement describes a similar
association and also contains a statement specific conflict resolution expression. When
conflict resolution expressions are specified, the val element is used to enclose the term
value, in order to separate it from the expression. In this case, the statement value
is “100” and the conflict resolution expression always chooses the oldest between two
conflict values (the opposite of the default XMLPipe resolution mechanism).

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 310

Local name Data type Description

supported SetOfStrings The namespace URIs of all natively sup-
ported languages and representations.

deviceType String The type of the target device. Typical
values are: desktop, mobile, printer, text,
etc.

baseURI String The URI of a node’s primary source.
line Numeric The node’s line within its primary source.

column Numeric The node’s column within its primary
source.

transformations SetOfStrings The URLs of the applied transformation
specifications.

outputURI String The base URI for output documents.

Table E.4: Predefined adaptation terms

E.3.3 Predefined adaptation terms

XMLPipe allows the use of an open set of adaptation terms, in order to allow the
expression of all necessary adaptation requirements. Nevertheless, there is a set of pre-
defined adaptation terms that allow the well defined interoperation between XMLPipe
and the individual transformers. Table E.4 summarises the core predefined adaptation
terms. It lists only their local names, because they all share the common XMLPipe
term URI: XMLPipeURI/Terms.

The most commonly used term is supported, and it specifies the list of natively
supported technologies. Most binding adaptation specifications use its value and each
adaptation profile must provide the namespace URI of at least a supported technology.
deviceType is also commonly used for the primary classification of the target device
and shares the same values with the CSS device types.

baseURI, line, column and transformations are used for the node context infor-
mation and provide information on the source of a node and the applied processing.
Specifically, baseURI, line and column provide its source document and its location
within it. transformations contains a list of all the transformations that have been
applied to it. The node context information can be used explicitly by error reporting
processes or implicitly by the individual transformations. An error reporting process
can use a node’s location information to produce an error message. Subtree transfor-
mations may use this information implicitly, because, before processing a document
subtree, XMLPipe temporarily adds the node context information of the subtree’s root
node to the adaptation profile.

Finally, the combination of outputURI and baseURI provide the necessary infor-
mation for resolving relative URLs. baseURI defines a node’s source and is a good
candidate for resolving any relative input URLs. outputURI can be set by the prepro-
cessing initiation entity, in order to specify the base location of any generated content.

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 311

E.4 Handled construct declarations

The processing of a presentation document according to the XMLPipe preprocessing
model requires information on the handled constructs of its languages. A subset of
each presentation language’s constructs are handled constructs. A handled construct
must belong to exactly one of the three predefine categories: COC , FOC or SMC .
Additionally, a handled construct can be either an element or an attribute.

1 <con s t ru c t s ns=”DOC URI”>
2 <hc name=”document” c l a s s=” coc ” node=” e l ”/>
3 <hc name=”em” c l a s s=” coc ” node=” e l ”/>
4 <hc name=”img” c l a s s=” coc ” node=” e l ”/>
5 <hc name=”p” c l a s s=” coc ” node=” e l ”/>
6 </const ruc t s>

7

8 <con s t ru c t s ns=”IMPORT URI”>
9 <hc name=” import ” c l a s s=”smc” node=” e l ”/>

10 </const ruc t s>

11

12 <con s t ru c t s ns=”XLink URI”>
13 <hc name=” h r e f ” c l a s s=” fo c ” node=”at ”/>
14 <hc name=”type ” c l a s s=” fo c ” node=”at ”/>
15 </const ruc t s>

Listing E.8: Handled construct information example

Listing E.8 illustrates the declaration of three sets of handled constructs. Each
consructs element corresponds to an XML language and encloses handled construct
declarations that share the same namespace URI. A hc element declares a handled
construct, and it must specify its local name, its classification and whether it is an
element or an attribute. For instance, the language that correspond to DOC URI has four
handled constructs, which are all element COC constructs. In contrast, the language
that correspond to IMPORT URI has a single SMC element handled construct. Finally,
the language that corresponds to the XLink URI has two attribute FOC constructs.

E.5 Validation processing semantics

Each language’s validation semantics consist of a set of validators and a set of atomic
validations, which are associated with the language’s URI. Listing E.9 illustrates the
declaration of a validator and of an atomic validation that uses the declared validator.

All validator declarations must occur within the validators element. A validator is
introduced by the validator element, which specifies its name, its Java implementation
class and its Java implementation URL. A validator’s name must be unique, within each
processing semantics document, because the atomic validation declarations reference
the necessary validators using their name. The Java implementation class is the main
validator Java class, which must implement the XMLPipe atomic validation interface.
The implementation URL defines the location of a .class or .jar file that contains
the validator class.

The validation element introduces the validation semantics of the language that
corresponds to the URI specified by its ns attribute. validation can contain several

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 312

1 <va l i d a t o r s >

2 <va l i d a t o r
3 name=”validatorName ”
4 implClass=” javaPackage . JavaClass ”
5 implSource=”ImplementationURL”/>
6 </va l i d a t o r s >

7

8 <va l i d a t i on ns=”DOC URI”>
9 <atomVal r e f=”validatorName ”

10 s r c=”SchemaURL”/>
11 </va l idat ion >

Listing E.9: Validation semantics example

atomVal elements, which introduce the alternative atomic validations that are adequate
for the specified language. Each atomVal element uses its ref attribute to refer to
a validator implementation. All referenced validators must be declared within the
same processing semantics document. Additionally, atomVal specifies the location of a
schema specification, if necessary. For instance, if validatorName is an XML Schema
validator, then the atomVal src attribute can refer to the XML Schema specification
that defines the syntax of DOC URI.

E.6 Transformation processing semantics

The transformation processing semantics are similar to the validation semantics, but
require significantly more information. Specifically, they consist of atomic transformers,
their declarations, their composition into transformation pipelines and the pipelines
association with handled constructs, according to binding adaptation specifications.

E.6.1 Transformer declarations

1 <t rans formers >

2 <t ran s fo rmer name=”XMLPipe DXSLT”
3 implClass=” javaPackage . JavaClass ”
4 implSrc=”ImplementationURL”
5 dynamic=” t rue ”/>
6

7 <t ran s fo rmer name=”XMLPipe XSLT”
8 implClass=” javaPackage . JavaClass ”
9 implSrc=”ImplementationURL”

10 dynamic=” f a l s e ”/>
11

12 </transformers >

Listing E.10: Transformer declarations example

A transformer is similar to a validator and binds a name identifier to a subtree

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 313

transformer implementation. Listing E.10 illustrates the declaration of two transform-
ers. The transformer element introduces a transformer and it can only occur within a
transformers element. Each XMLPipe transformer has a name, which is used as a ref-
erence within the transformation pipelines. Additionally, it has an implementation class
which is the main transformer class and must implement the XMLPipe atomic trans-
formation interface. The implSrc attribute provides a link to the file that contains the
implementation class. Finally, the dynamic attribute specifies whether a transformer
can have dynamic external input or not. If its input is dynamic, the transformer can
be used as the combining transformation within a transformation pipeline. Otherwise,
if it requires a parameter, an external document source (such as a stylesheet) must be
explicitly specified whenever the transformer is used.

E.6.2 Pipeline declarations

All XMLPipe subtree transformations are described by transformation pipelines. A
transformation pipeline is a nested composition of atomic transformations and valida-
tion primitives, according to three pipeline composition methods: sequence pipeline,
dynamic pipeline and selection pipeline.

Listing E.11 illustrates a simple sequence pipeline. A transformation pipeline is
introduced within a handler definition by the pipe element. Sequential composition is
the default composition method and it does not have to be explicitly specified. The
illustrated sequential pipeline consists of a handled construct subtree validation and an
XSL-T transformation. transform introduces an atomic transformation by referencing
a declared transformer (ref attribute) and defining an external information source, if
necessary. The validate element can occur at all places where atomic transformations
can occur, and it instructs the pipeline driver to perform a subtree validation process.
When wholeTree is false, it performs handled construct validation. If wholeTree is
true, it performs a deep subtree validation.

Listing E.12 illustrates a sequential composition of a deep subtree validation and
a dynamic transformation pipeline. Dynamic transformation pipelines consist of two
sub-pipelines and an atomic transformation. The normal and option elements contain
transformations that independently process the input subtree. The final atomic trans-
formation, illustrated in line 12, combines their output by applying its corresponding
transformation to the output of normal, using the output of option as its external
input. In the illustrated example, the dynamic pipeline applies the transformation
stylesheet generated by the atomic transformation in line 9 to the output of the atomic
transformation in line 5. The “XMLPipe:dynamic” value of the src transform attribute
(line 13) is predefined and denotes that a transformation’s input must be dynamically
generated.

Listing E.13 illustrates a selection pipeline. Selection pipelines consist of a sequence
of alternative sub-pipelines. Each sub-pipeline is introduced with the case element
and can optionally have a set of adequacy expressions, enclosed in a test element.
The pipeline transformation driver applies either the sub-pipeline with the greatest
adequacy measure or the first sub-pipeline with no adequacy expressions, if all adequacy
measures are zero. The first illustrated sub-pipeline tests the value of a single term and
performs a single atomic transformation. The second sub-pipeline also performs a single
atomic transformation, but it has no associated adequacy expressions. Consequently, if
(termName, termURI) is associated to true or a positive numeric value, the first atomic
transformation will be used. Otherwise, the second atomic transformation will be

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 314

1 <pipe>

2 <va l i d a t e wholeTree=” f a l s e ”/>
3 <t rans form r e f=”XMLPipe XSLT”
4 s r c=” stylesheet1URL”/>
5 </pipe>

Listing E.11: Sequence transformation pipeline example

1 <pipe>

2 <va l i d a t e wholeTree=” t rue ”/>
3 <dynamic>
4 <normal>
5 <t rans form r e f=”XMLPipe XSLT”
6 s r c=” stylesheet1URL”/>
7 </normal>
8 <option>

9 <t rans form r e f=”XMLPipe XSLT”
10 s r c=” stylesheet2URL”/>
11 </option>

12 <t rans form r e f=”XMLPipe DXSLT”
13 s r c=”XMLPipe:dynamic”/>
14 </dynamic>
15 </pipe>

Listing E.12: Dynamic transformation pipeline example

1 <pipe>

2 <s e l e c t i o n >

3 <case>

4 <t e s t >

5 <expr name=”termName” ns=”termURI”>
6 <termVal/>
7 </expr>
8 </te s t >

9 <t rans form r e f=”XMLPipe XSLT”
10 s r c=” stylesheet4URL”/>
11 </case>

12 <case>

13 <t rans form r e f=”XMLPipe XSLT”
14 s r c=” stylesheet5URL”/>
15 </case>

16 </s e l e c t i o n >

17 </pipe>

Listing E.13: Selection pipeline example

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 315

applied.

E.6.3 Top level handlers declaration

The handler declarations define the transformation semantics of languages, by asso-
ciating handled constructs to transformation pipelines, according to the adaptation
requirements. A handler declaration consists of a name, a list of relevant handled con-
structs, an optional applicability expression, an optional set of adequacy expressions,
an optional set of adaptation statements and a transformation pipeline. Listing E.14
illustrates a an example handler declaration.

1 <handler name=”Doc handler ”>
2 <hcL i s t ns=”LanguageURI”>
3 <hcRef name=”document”/>
4 <hcRef name=”em”/>
5 <hcRef name=”img”/>
6 <hcRef name=”p”/>
7 </hcList>

8 <app l i c a b i l i t y >

9 <contains >

10 <termVal ns=”XMLPipeURI/Terms”
11 name=”termNamesupported ”/>
12 <val type=” St r ing ”>Language2URI</val>
13

14 </contains>

15 </app l i c a b i l i t y >

16 <adequacy>

17 <expr ns=”XMLPipeURI/Terms”
18 name=” supported ”>
19 <contains>

20 <termVal/>
21 <val type=” St r ing ”>Language2URI</val>
22 </contains>

23 </expr>
24 <expr ns=”XMLPipeURI/Terms”
25 name=”deviceType ”>
26 <equals>

27 <termVal/>
28 <val>desktop</val>
29 </equals>

30 </expr>
31 </adequacy>

32 <context>

33 <statm ns=”termURI” name=”termName”>
34 Value
35 </statm>

36 </context>

37 <pipe>

38 <t rans form r e f=”XMLPipe XSLT”
39 s r c=” stylesheetURL”/>
40 </pipe>

41 </handler>

Listing E.14: Handler declaration example

APPENDIX E. XMLPIPE PROCESSING SEMANTICS REPRESENTATION 316

The handler element introduces a handler declaration and its name attribute speci-
fies the handler’s name. The only required children are the hcList and pipe elements.
The former specifies the list of handled constructs that the handler can process. The
latter introduces the transformation pipeline that processes them.

The binding adaptation specification consists of the optional adequacy and ap-
plicability expressions. If none exists, XMLPipe considers the handler to be univer-
sally applicable and adaptation requirements independent. If there is an adequacy
expression, XMLPipe uses it to evaluate the handler’s adequacy measure, in order to
choose optimal handler for each document subtree. If there is an applicability expres-
sion, XMLPipe uses it to evaluate the handler’s applicability measure, which specifies
whether it is applicable for an adaptation profile. If there is no applicability expres-
sion, XMLPipe considers a handler applicable when all adequacy expressions evaluate
to non-zero adequacy measures.

The optional context element provides a straightforward way to introduce tem-
porary adaptation profile modifications, and its main application is the introduction
of language specific adaptation statements. context contains a composite adaptation
profile. XMLPipe integrates the introduced profile with the existing adaptation profile,
before applying the pipeline transformations. If no language specific statements are in-
troduced, all changes are discarded after the subtree transformation. Otherwise, they
remain visible by all transformations within the same subtree that also correspond to
the same language.

Appendix F

Case study sources

Section 10.4 illustrated the feasibility of the XMLPipe preprocessing model by describ-
ing a comprehensive case study that covered the validation and transformation of a
presentation document, according to three adaptation profiles. It only described the
details of a representative subset of the processing semantics and it abbreviated lengthy
constructs (such as the resource URIs), in order to comply with main text layout.

This appendix contains all the case study information and processing semantics, in
an unabbreviated form. Section F.1 includes the three case study input documents.
Section F.2 describes the declaration of case study wide and XMLPipe specific seman-
tics, such as the built-in XSL-T atomic transformation. Section F.3 illustrates the three
used composite profiles. The subsequent sections F.4, F.5, F.6 and F.7 describe the
necessary processing semantics for the Limp , Lalt , Ldoc and Lxl languages, respectively.
semantics. Finally, Section F.8 illustrates the processing semantics of the additional
Lcd language.

F.1 Input document

The case study input consists of three separate documents. document.xml illustrates
the main processed document, which contains references to imp.xml and authors.xml.

1 <doc:document
2 xmlns:doc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/document”
3 xmlns:imp=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/ import ”
4 xmlns :a l t=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/ a l t ”
5 xmlns :x l=” h t tp : //www.w3 . org /1999/ x l i n k /”>
6 <a l t : a l t >

7 <a l t : c a s e t e s t=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms#deviceType = mobile ”>

8 <d o c : t i t l e >Mobile example</d o c : t i t l e >

9 </a l t : c a s e >

10 <a l t : c a s e >

11 <d o c : t i t l e >Desktop example</d o c : t i t l e >

12 </a l t : c a s e >

13 </ a l t : a l t >

14 <imp:import h r e f=” authors . xml”
15 s e l e c t=” //∗/∗ [@id=’MP DHS’] ”/>
16

17 <doc : s e c t i on >

18 <d o c : t i t l e >The doc language</d o c : t i t l e >

19 <doc:p>The root language a l l ows <doc:em>emphasized</doc:em> text ,
20 images <doc: img h r e f=”xmlPipe . g i f ”/> and nested s e c t i o n s .</doc:p>

317

APPENDIX F. CASE STUDY SOURCES 318

21 <doc : s e c t i on >

22 <d o c : t i t l e >Nested s e c t i on</d o c : t i t l e >

23 <doc:p>This i s a nested s e c t i on</doc:p>

24 </doc : s e c t i on >

25 </doc : s e c t i on >

26 <doc : s e c t i on >

27 <d o c : t i t l e >Mixed namespace support</d o c : t i t l e >

28 <doc:p>A fo r e i g n namespace SMC const ruc t to import t ex tua l c on t en t :
29 (<imp:import h r e f=”imp . xml” s e l e c t=”//∗/ tex t / t ex t () ”/>) , a FOC XLink
30 a t t r i b u t e f o r <doc:em x l : t y p e=” s imple ” x l : h r e f=” h t tp : //www. cs . kent . ac .

uk”> l i n k s</doc:em>

31 and an SMC subt ree that a l l ows adaptat ion s e n s i t i v e c on t en t :
32 </doc:p>

33 <a l t : a l t >

34 <a l t : c a s e t e s t=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms#deviceType=mobile ”>

35 <doc:p>This i s a mobile</doc:p>

36 </a l t : c a s e >

37 <a l t : c a s e >

38 <doc:p>This i s NOT a mobile</doc:p>

39 </a l t : c a s e >

40 </ a l t : a l t >

41 </doc : s e c t i on >

42 </doc:document>

Listing F.1: document.xml

1 <root>

2 <text>Text node 1</text>

3 <text>Text node 2</text>

4 </root>

Listing F.2: imp.xml

1 <c o l l e c t i o n
2 xmlns:doc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/

document”>
3 <doc :au thor s id=”MP DHS”>
4 <doc :author f i r s t=”M” l a s t=”Ped”
5 mail=”mp49@kent . ac . uk”/>
6 <doc :author f i r s t=”D” l a s t=”Shr”
7 mail=”dhs@kent . ac . uk”/>
8 </doc :authors >

9 </c o l l e c t i o n >

Listing F.3: authors.xml

F.2 XMLPipe specific semantics

XMLPipe specific semantics are predefined adaptation terms and transformations that
are used by the XMLPipe implementation. For the purposes of this case study, the
necessary XMLPipe specific semantics consist of four adaptation terms and two atomic
transformations. The adaptation terms are used to represent the set of natively sup-
ported languages, the device type and the maximum image dimensions. The atomic
transformations are the static and dynamic versions of an XSL-T transformer. The lat-
ter is necessary for using XSL-T stylesheets within dynamic transformation pipelines.

APPENDIX F. CASE STUDY SOURCES 319

F.2.1 Top level binding

The principal RDDL-based location mechanism is used for the adaptation term seman-
tics, and it allows the semantics location using the namespace URI of the adaptation
terms. Listing F.4 illustrates the RDDL link that points to the XMLPipe specific term
semantics.

1 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
2 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#termSemantics ”
3 x l i n k : h r e f=”TermInfo . xml”/>

Listing F.4: RDDL link to XML specific semantics

There is no binding mechanism for the XMLPipe specific atomic transformations,
because they must be declared in each semantics document, according to the pilot
implementation semantics representation.

F.2.2 Adaptation terms

Listing F.5 illustrates the semantics of the XMLPipe specific adaptation terms. The
term XMLPipeURI/Terms:supported is used to specify the natively supported lan-
guages and representations. Its values are sets of strings, its default value is an
empty set and its default resolution expression is a union of the conflicting sets.
XMLPipeURI/Terms:deviceType is a String term that is used to specify the type of a
device. Its default value is “desktop”, because desktop computers can be considered as
the most common device for accessing Web resources. XMLPipeURI/Terms:maxImageX
and XMLPipeURI/Terms:maxImageY specify the maximum size of displayed images and
they must both be associated to numeric values. The default image size of “800x600”
pixels represents the accustomed window size that most Web pages are optimised for.

1 <terms ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/XMLPipe
/Terms”>

2 <term name=” supported ” type=” SetOfS t r ings ”>
3 <de f au l t />
4 <r e s o l u t i on >

5 <union>

6 <termVal/>
7 <prevTermVal/>
8 </union>

9 </r e s o l u t i on >

10 </term>

11

12 <term name=”deviceType ” type=” St r ing ”>
13 <de fau l t >desktop</de fau l t >

14 </term>

15

16 <term name=”maxImageX” type=”Numeric”>
17 <de fau l t >800</de fau l t >

18 </term>

19 <term name=”maxImageY” type=”Numeric”>
20 <de fau l t >600</de fau l t >

21 </term>

22

23 </terms>

Listing F.5: XMLPipe specific adaptation terms

APPENDIX F. CASE STUDY SOURCES 320

F.2.3 Atomic transformations

The two XMLPipe specific atomic transformations allow the use of XSL-T stylesheets
for both static and dynamic transformation specifications. Any processing semantics
specification can use the built-in XSL-T transformer by incorporating the atomic trans-
formation declarations illustrated in Listing F.6. Both atomic transformations use the
same Java class, but the former includes the attribute dynamic="true", which denotes
that its external information can be dynamically generated.

1 <t rans formers >

2 <t ran s fo rmer name=”XMLPipe DXSLT”
3 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . Transformers .

XSLTTransformer ”
4 implSrc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

Transformers /XSLT. c l a s s ”
5 dynamic=” t rue”/>
6

7 <t ran s fo rmer name=”XMLPipe XSLT”
8 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . Transformers .

XSLTTransformer ”
9 implSrc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

Transformers /XSLT. c l a s s ”
10 dynamic=” f a l s e ”/>
11 </transformers >

Listing F.6: XMLPipe specific atomic transformations

F.3 The composite adaptation profiles

Listing F.7 illustrates a single processing semantics document that contains all com-
posite adaptation profiles used in the case study. The mobile profile includes two adap-
tation statements and also imports the two profiles illustrated in Listings F.8 and F.9.
The former illustrates the default device adaptation profile, and the latter illustrates
the necessary additional statements for a WBMP software upgrade.

1 <con f i g name=” CaseStudyPro f i l e s ”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3 <p r o f i l e s >

4 <p r o f i l e name=”aDesktop”>
5 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/

XMLPipe/Terms”
6 name=”deviceType ”>desktop</statm>

7 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

8 name=” supported ”>
9 <item>h t tp : //www.w3 . org /1999/xhtml</item>

10 <item>h t tp : //www. i s i . edu/ in−notes / iana / ass ignments/media−types/
image/ g i f</item>

11 <item>h t tp : //www. i s i . edu/ in−notes / iana / ass ignments/media−types/
image/ jpeg</item>

12 </statm>

13 </p r o f i l e >

14

15 <p r o f i l e name=”aMobile ”>
16 <i n c lude
17 r e f=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/ p r o f i l e s /

mobi leDefau lt . xml”

APPENDIX F. CASE STUDY SOURCES 321

18 name=” De fau l tMob i l eP ro f i l e ”/>
19 <i n c lude
20 r e f=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/ p r o f i l e s /

mobileUpdate . xml”
21 name=”SoftwareUpdateMobi leProf i l e ”/>
22 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/

XMLPipe/Terms”
23 name=”maxImageX”>96</statm>

24 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

25 name=”maxImageY”>100</statm>

26 </p r o f i l e >

27

28 <p r o f i l e name=”XSLFOPrinter”>
29 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/

XMLPipe/Terms”
30 name=”deviceType ”>p r in t e r</statm>

31 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

32 name=” supported ”>
33 <item>h t tp : //www.w3 . org /1999/XSL/Format</item>

34 </statm>

35 </p r o f i l e >

36 </p r o f i l e s >

37 </con f ig>

Listing F.7: All case study composite profiles

1 <con f i g name=” De fau l tMob i l eP ro f i l e ”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3 <p r o f i l e s >

4 <p r o f i l e name=”aMobile ”>
5 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/

XMLPipe/Terms”
6 name=”deviceType ”>mobile</statm>

7 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

8 name=” supported ”>
9 <item>h t tp : //www. wapforum . org /DTD/wml 1 . 1 . xml</item>

10 </statm>

11 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

12 name=”maxImageX”>150</statm>

13 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

14 name=”maxImageY”>150</statm>

15 </p r o f i l e >

16 </p r o f i l e s >

17 </con f ig>

Listing F.8: mobileDefault.xml

1 <con f i g name=”SoftwareUpdateMobi leProf i l e ”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3 <p r o f i l e s >

4 <p r o f i l e name=”aMobile ”>
5 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/

XMLPipe/Terms”
6 name=” supported ”>

APPENDIX F. CASE STUDY SOURCES 322

7 <item>h t tp : //www. i s i . edu/ in−notes / iana / ass ignments/media−types/
image/vnd .wap .wbmp</item>

8 </statm>

9 </p r o f i l e >

10 </p r o f i l e s >

11 </con f ig>

Listing F.9: mobileUpdate.xml

F.4 Limp language

The Limp language introduces a single handled construct that imports external docu-
ment portions, according to an XPath expression. The processing semantics of Limp

consist of its handled construct information, an atomic validation and an adaptation
requirements independent transformation pipeline.

F.4.1 Top level binding

The binding of Limp processing semantics uses the principal RDDL-based location
mechanism, because it is a case study specific language and we have control over the
associated URI. The Web page that corresponds to
http://www.cs.kent.ac.uk/projects/XMLhandling/XPEx/import

is an XHTML document that contains the three RDDL links illustrated in Listing
F.10. The first, second and third RDDL links point to XML files that contain the han-
dled construct information, the validation semantics and the transformation semantics,
respectively.

1

2 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
3 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#intModelSemantics ”
4 x l i n k : h r e f=”ImpHCInfo . xml”/>
5

6 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
7 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#valSemant ics ”
8 x l i n k : h r e f=”ImpValSem . xml”/>
9

10 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
11 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#transSemant ics ”
12 x l i n k : h r e f=”ImpTransSem . xml”/>

Listing F.10: RDDL links to the Limp processing semantics

F.4.2 Handled constructs

Limp contains a single element, which is an SMC handled construct. Its handled con-
struct information is illustrated in Listing F.11.

1 <con f i g name=”ImpHC”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3 <con s t ru c t s ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/

import ”>

APPENDIX F. CASE STUDY SOURCES 323

4 <hc name=” import ” c l a s s=”smc” node=” e l ”/>
5 </const ruc t s>

6 </con f ig>

Listing F.11: Limp handled construct information: ImpHCInfo.xml

F.4.3 Validation semantics

The validation semantics of Limp consist of a schema specification that validates the
imp:import element and an atomic validation that associates the language namespace
with that schema. Listing F.12 illustrates the common XML Schema validator dec-
laration and the atomic validation declaration. Listing F.13 illustrates the referenced
XML Schema specification, which defines the syntax of the imp:import element.

1 <con f i g name=”ImpVal”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3

4 <va l i d a t o r s >

5 <va l i d a t o r
6 name=”XMLPipe Validators XMLSchema”
7 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . Va l idator s .

XMLSchema”
8 implSource=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe

/XMLPipe/ Val idator s /XMLSchema/XMLSchema . c l a s s ”/>
9 </va l i d a t o r s >

10

11 <va l i d a t i on
12 ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/ import ”>
13 <atomVal r e f=”XMLPipe Validators XMLSchema”
14 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/

import / xmlpipe/imp . xsd”/>
15 </va l idat ion >

16 </con f ig>

Listing F.12: Limp validation semantics: ImpValSem.xml

1 <xsd:schema xmlns:xsd=” h t tp : //www.w3 . org /2001/XMLSchema”
2 xmlns:ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/

import ”
3 targetNamespace=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling

/XPEx/ import ”
4 elementFormDefault=” qu a l i f i e d ”>
5 <xsd :e lement name=” import ”>
6 <xsd:complexType>

7 <x s d : a t t r i b u t e name=” r e f ” type=”xsd:anyURI”
8 use=” requ i r ed ”/>
9 <x s d : a t t r i b u t e name=” s e l e c t ”

10 type=” x sd : s t r i n g ”/>
11 </xsd:complexType>

12 </xsd :e lement>
13 </xsd:schema>

Listing F.13: Limp validation semantics: schema specification

F.4.4 Transformation semantics

Limp transformation semantics consist of an XSL-T stylesheet and handler declara-
tion, which associates the imp:import handled construct to a dynamic transformation

APPENDIX F. CASE STUDY SOURCES 324

pipeline. Listing F.14 illustrates the declaration of the handler and the two built-in
XSL-T transformers (since they must always be declared prior to their use). Listing
F.15 illustrates the XSL-T stylesheet used by the option atomic transformation. It
generates a stylesheet that statically contains the imported content XPath expression,
which is specified by the select attribute of the imp:import element.

1 <con f i g name=”ImpVal”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3

4 <t rans formers >

5 <t ran s fo rmer name=”XMLPipe DXSLT”
6 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe .

Transformers . XSLTTransformer ”
7 implSrc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XMLPipe/Transformers /XSLT. c l a s s ”
8 dynamic=” t rue”/>
9

10 <t ran s fo rmer name=”XMLPipe XSLT”
11 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe .

Transformers . XSLTTransformer ”
12 implSrc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XMLPipe/Transformers /XSLT. c l a s s ”
13 dynamic=” f a l s e ”/>
14 </transformers >

15

16 <handler name=”Generic Import Handler ”>
17 <hcL i s t ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/ import ”

>

18 <hcRef name=” import ”/>
19 </hcList>

20 <pipe>

21 <dynamic>
22 <normal/>
23 <option>

24 <t rans form r e f=”XMLPipe XSLT”
25 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XPEx/ import ing/XPEx/ import /xmlpipe/ import . x s l ”/>
26 </option>

27 <t rans form r e f=”XMLPipe DXSLT”
28 s r c=”XMLPipe:dynamic”/>
29 </dynamic>
30 </pipe>

31 </handler>

32 </con f ig>

Listing F.14: Limp transformation semantics: ImpTransSem.xml

1 <x s l : s t y l e s h e e t xmlns :x s l = ” h t tp : //www.w3 . org /1999/XSL/Transform ”
2 xmlns:n = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XPEx/ import ”
3 xmlns :x s lou t=” t h i s value i s not used”
4 version = ” 1.0 ”>
5

6 <!−− Al ias needed when genera t ing s t y l e s h e e t s −−>
7 <xsl :namespace−a l i a s s t y l e sh e e t−p r e f i x=” xs lou t ” r e su l t−p r e f i x=” x s l ”/>
8

9 <x s l : t emp la t e match=”n: import ”>
10 <x s l o u t : s t y l e s h e e t version=” 1.0 ”>
11 <x s l ou t : t emp la t e match=”n: import ”>

APPENDIX F. CASE STUDY SOURCES 325

12 <xs lou t : copy−o f s e l e c t=”document (@href) {@se lec t }”/>
13 </x s lou t : t emp lat e >

14 </x s l o u t : s t y l e s h e e t >

15 </x s l : t emp lat e >

16

17 </x s l : s t y l e s h e e t >

Listing F.15: Limp transformation semantics: XSL-T stylesheet specification
import.xsl

F.5 Lalt language language

Language Lalt allows the introduction of adaptation requirements dependent content.
It introduces the alt:alt element that can contain a sequence of alt:case elements,
which can be associated with a set of adequacy expressions. alt:alt semantics is to
substitute itself with the contents of the optimal alt:case element, according to the
input adaptation profile.

F.5.1 Top level binding

In a similar manner to Lalt , the binding of Lalt processing semantics uses the principal
RDDL-based location mechanism, because it is a case study specific language and we
have control over the associated URI. The Web page that corresponds to
http://www.cs.kent.ac.uk/projects/XMLhandling/XPEx/alt

is an XHTML document that contains the three RDDL links illustrated in Listing
F.16. The first, second and third RDDL links point to XML files that contain the han-
dled construct information, the validation semantics and the transformation semantics,
respectively.

1

2 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
3 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#intModelSemantics ”
4 x l i n k : h r e f=”AltHCInfo . xml”/>
5

6 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
7 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#valSemant ics ”
8 x l i n k : h r e f=”AltValSem . xml”/>
9

10 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
11 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#transSemant ics ”
12 x l i n k : h r e f=”AltTransSem . xml”/>

Listing F.16: RDDL links to the Limp processing semantics

F.5.2 Handled constructs

Lalt contains a single SMC handled construct. Its handled construct information is
illustrated in Listing F.17.

1 <con f i g name=”AltHC”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>

APPENDIX F. CASE STUDY SOURCES 326

3 <con s t ru c t s ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/ a l t ”>
4 <hc name=” a l t ” c l a s s=”smc” node=” e l ”/>
5 </const ruc t s>

6 </con f ig>

Listing F.17: Lalt handled construct information: AltHCInfo.xml

F.5.3 Validation semantics

The validation semantics of Lalt consist of a schema specification that validates the
alt:alt rooted subtrees and an atomic validation that associates the language names-
pace with that schema. Listing F.18 illustrates the common XML Schema validator
declaration and the atomic validation declaration. Listing F.19 illustrates the refer-
enced XML Schema specification, which defines the syntax of the Lalt constructs.

1 <con f i g name=”AltVal ”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3

4 <va l i d a t o r s >

5 <va l i d a t o r
6 name=”XMLPipe Validators XMLSchema”
7 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . Va l idator s .

XMLSchema”
8 implSource=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe

/XMLPipe/ Val idator s /XMLSchema/XMLSchema . c l a s s ”/>
9 </va l i d a t o r s >

10

11 <va l i d a t i on
12 ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/ a l t ”>
13 <atomVal r e f=”XMLPipe Validators XMLSchema”
14 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/ a l t /

xmlpipe/ a l t . xsd”/>
15 </va l idat ion >

16

17 </con f ig>

Listing F.18: Lalt validation semantics: AltValSem.xml

1 <?xml version=” 1.0 ”?>
2 <xsd:schema xmlns:xsd=” h t tp : //www.w3 . org /2001/XMLSchema”
3 xmlns:ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/

a l t ”
4 targetNamespace=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling

/XPEx/ a l t ”
5 elementFormDefault=” qu a l i f i e d ”>
6

7 <xsd :e lement name=” a l t ”>
8 <xsd:complexType>

9 <xsd :sequence>

10 <xsd :e lement name=” case ” type=”ns :Case ” maxOccurs=”unbounded”/>
11 </xsd :sequence>

12 </xsd:complexType>

13 </xsd :e lement>
14

15 <xsd:complexType name=”Case” mixed=” t rue ”>
16 <x sd : cho i c e minOccurs=”0” maxOccurs=”unbounded”>
17 <xsd:any processContents=” lax ”/>
18 </x sd : cho i ce >

APPENDIX F. CASE STUDY SOURCES 327

19 <x s d : a t t r i b u t e name=” t e s t ” type=” x sd : s t r i n g ”/>
20 </xsd:complexType>

21

22 </xsd:schema>

Listing F.19: Lalt validation semantics: schema specification

F.5.4 Transformation semantics

Lalt transformation semantics consist of a Java transformer and a handler declaration,
which associates the alt:alt handled construct to a transformation pipeline that con-
tains a single atomic transformation. Listing F.20 illustrates the declaration of the
hander. Listing F.21 illustrates the Java implementation of the atomic transformation.
It implements the atomic transformation interface and uses the adaptation require-
ments information to choose the optimal alt:case element.

1 <con f i g name=”AltVal ”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3

4 <t rans formers >

5 <t ran s fo rmer name=”XMLPipe XPEx ALT”
6 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XPEx .

Transformers . AltHandler”
7 implSrc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XPEx/ a l t /xmlpipe/AltHandler . c l a s s ”
8 dynamic=” f a l s e ”/>
9 </transformers >

10

11

12 <handler name=”Generic Alt Handler ”>
13 <hcL i s t ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/ a l t ”>
14 <hcRef name=” a l t ”/>
15 </hcList>

16 <pipe>

17 <t rans form r e f=”XMLPipe XPEx ALT”
18 s r c=””/>
19 </pipe>

20 </handler>

21 </con f ig>

Listing F.20: Lalt transformation semantics: AltTransSem.xml

1

2 package uk . ac . kent . cs . p r o j e c t s . XMLHandling .XPEx;
3

4 import uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . t rans form . ∗ ;
5 import uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . ∗ ;
6 import uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . terms . ∗ ;
7 import uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . par s ing . DOMUtil ;
8

9 import org . w3c .dom . ∗ ;
10

11

12 /∗ ∗ Checks the e xp r e s s i on s in the a l t e r n a t i v e s and cop i e s
13 the content o f the f i r s t one tha t matches .
14 namespace : h t t p ://www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/ a l t
15 Handled Construct : a l t
16 Cases : a l t : case t e s t =”. . . ”

APPENDIX F. CASE STUDY SOURCES 328

17

18 where the syntax i s : ns#name = s t r i n g
19

20 ∗/
21

22 public class AltHandler extends Transformer {
23

24 public static f ina l St r ing TEST ATT = ” t e s t ” ;
25

26 public AltHandler ()
27 {
28 super (fa lse , fa l se) ;
29 }
30

31

32 public boolean transformCustom (ComponentInterface c i ,
33 Node root ,
34 boolean i sAt t r ,
35 TransformationContext cnt)
36 throws XMLPipeTransformException ,
37 XMLPipeTransformTempException
38

39 {
40 //Get the a l t e lement
41 Element a l t = DOMUtil . g e tF i r s tE l (root) ;
42

43 //Loop through the ch i l d r en
44 Element caseEl = DOMUtil . g e tF i r s tE l (a l t) ;
45

46 while (null != caseEl) {
47 //Get the t e s t a t t r i b u t e
48 St r ing t e s t = caseEl . ge tAt t r ibu te (TEST ATT) ;
49

50 // I f d e f au l t , use t h i s one
51 i f (null == t e s t | | t e s t . l ength () == 0) break ;
52

53 //Get the term
54 t e s t = t e s t . tr im () ;
55 int idx = t e s t . indexOf (’#’) ;
56

57 i f (idx <= 0) {
58 throw new XMLPipeTransformException (ErrorHandler .ERROR,
59 ”Namespace expected in

: ” + tes t ,
60 caseEl) ;
61 }
62

63 St r ing ns = t e s t . s ub s t r i n g (0 , idx) ;
64

65 // Get the name : only r e cogn i z i n g = as operator , f o r now
66 int idx2 = t e s t . indexOf (’=’) ;
67 i f (idx2 <= idx) {
68 throw new XMLPipeTransformException (ErrorHandler .ERROR,
69 ”Expected operator =

in : ” + tes t ,
70 caseEl) ;
71 }
72

73

74 St r ing name = t e s t . s ub s t r i n g (idx + 1 , idx2) . tr im () ;

APPENDIX F. CASE STUDY SOURCES 329

75

76 //Get the va lue
77 St r ing value = t e s t . s ub s t r i n g (idx2 + 1) . tr im () ;
78

79 //Check i f the term e x i s t s
80

81 try {
82 i f (compareValue (ns , name , value , c i , cnt))
83 break ;
84 } catch (XMLPipeTransformTempException e) {
85 throw new XMLPipeTransformException (e . getType () ,
86 e . getMessage () ,
87 caseEl) ;
88 }
89

90 caseEl = DOMUtil . getNextEl (caseEl) ;
91 }
92

93 i f (null == caseEl) {
94 throw new XMLPipeTransformException (ErrorHandler .ERROR,
95 ”No case i s app l i c ab l e

and there i s no
d e f au l t ” ,

96 a l t) ;
97 }
98

99 NodeList l s = caseEl . getChildNodes () ;
100

101 for (int i = 0 ; i < l s . getLength () ; ++ i) {
102 Node n = caseEl . removeChild (l s . item (0)) ;
103 root . i n s e r tB e f o r e (n , a l t) ;
104 }
105

106 root . removeChild (a l t) ;
107

108 return true ;
109

110 }
111

112

113 public boolean transformCustom (ComponentInterface c i ,
114 Node root ,
115 boolean i sAt t r ,
116 TransformationContext cnt ,
117 Node par)
118 throws XMLPipeTransformException ,
119 XMLPipeTransformTempException
120 {
121 throw new XMLPipeTransformTempException (ErrorHandler .ERROR,
122 ”Cannot c a l l ALT handler with a parameter ”) ;
123 }
124

125 /∗ ∗ Compares the va lue o f the ns : name term wi th the va lue
126 assuming tha t i t i s o f the same type . I f the term has
127 not been dec lared , i t throws an excep t i on . I f i t has not
128 been de f ined i t re turns f a l s e .
129

130 ∗/
131 public boolean compareValue (S t r ing ns , S t r ing name ,
132 St r ing value ,

APPENDIX F. CASE STUDY SOURCES 330

133 ComponentInterface c i ,
134 ContextIn formation cnt)
135 throws XMLPipeTransformTempException
136 {
137 //Get the term
138

139 Term term = (Term) c i . getConf igTable () . getTerm(Term . getQName (ns ,
name)) ;

140

141 i f (null == term)
142 throw new XMLPipeTransformTempException (ErrorHandler .ERROR,
143 ”Term : ” + ns + ” : ” +

name + ” has not
been dec la r ed ”) ;

144

145 //Check i f there i s any statement
146 Statement s t = cnt . getStatement (term) ;
147

148 i f (null == st) return fa l se ;
149

150 //Assume a s t r i n g v a l u e
151

152 i f (! (s t . getValue () instanceof Str ingValue)) {
153 throw new XMLPipeTransformTempException (ErrorHandler .ERROR,
154 ”Expected a

s t r ingVa lue term”)
;

155 }
156

157 Str ingValue val = (Str ingValue) s t . getValue () ;
158

159 c i . getErrorHandler () . e r r o r (ErrorHandler . INFO,
160 ”ALT HANDLER: Comparing : ’ ” + val . getValue () + ” ’ to

’ ” + value + ” ’ ”) ;
161

162 return val . getValue () . equa l s (value) ;
163

164 }
165

166 }

Listing F.21: Lalt transformation semantics: Java atomic transformation
implementation

F.6 Ldoc language

The Ldoc language introduces the necessary constructs for defining the layout of a
document and contains constructs that introduce formated text and images. Its trans-
formation semantics are responsible for creating an adequate transformation layout for
the target device. Additionally, an image converter is used to convert the document im-
ages to the restricted WBMP representation, which is supported by the example mobile
device. The image converter handler uses a language specific adaptation term, in or-
der to avoid infinite transformation recursion. Consequently, Ldoc processing semantics
consists of its handled construct information, the language specific term declaration, an
atomic validation and the adaptation requirements dependent transformation pipelines.

APPENDIX F. CASE STUDY SOURCES 331

F.6.1 Top level binding

The binding of Ldoc are similar to the previously introduced bindings, but they also
include a link to the adaptation term semantics. The Web page that corresponds to
http://www.cs.kent.ac.uk/projects/XMLhandling/XPEx/doc

is an XHTML document that contains the four RDDL links illustrated in Listing F.22.

1

2 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
3 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#intModelSemantics ”
4 x l i n k : h r e f=”DocHCInfo . xml”/>
5

6 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
7 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#termSemantics ”
8 x l i n k : h r e f=”DocTermSem . xml”/>
9

10 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
11 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#valSemant ics ”
12 x l i n k : h r e f=”DocValSem . xml”/>
13

14 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
15 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#transSemant ics ”
16 x l i n k : h r e f=”DocTransSem . xml”/>

Listing F.22: RDDL links to the Ldoc processing semantics

F.6.2 Handled constructs

Ldoc contains four COC handled constructs. Its handled construct information is il-
lustrated in Listing F.23.

1 <con f i g name=”DocHC”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3 <con s t ru c t s ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/

document”>
4 <hc name=”document” c l a s s=” coc ” node=” e l ”/>
5 <hc name=”em” c l a s s=” coc ” node=” e l ”/>
6 <hc name=”img” c l a s s=” coc ” node=” e l ”/>
7 <hc name=”p” c l a s s=” coc ” node=” e l ”/>
8 </const ruc t s>

9 </con f ig>

Listing F.23: Ldoc handled construct information: DocHCInfo.xml

F.6.3 Validation semantics

The validation semantics of Ldoc are similar to the previously introduced validation
semantics, and they consist of a schema specification and an atomic validation that
associates the language namespace with that schema. Listing F.24 illustrates the com-
mon XML Schema validator declaration and the atomic validation declaration. Listing
F.25 illustrates the referenced XML Schema specification, which defines the syntax of
all Ldoc constructs.

APPENDIX F. CASE STUDY SOURCES 332

1 <con f i g name=”DocVal”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3

4 <va l i d a t o r s >

5 <va l i d a t o r
6 name=”XMLPipe Validators XMLSchema”
7 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . Va l idator s .

XMLSchema”
8 implSource=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe

/XMLPipe/ Val idator s /XMLSchema/XMLSchema . c l a s s ”/>
9 </va l i d a t o r s >

10

11 <!−− The atomic v a l i d a t i o n s −−>
12 <va l i d a t i on
13 ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/document”>
14 <atomVal r e f=”XMLPipe Validators XMLSchema”
15 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/

document/xmlpipe/doc . xsd”/>
16 </va l idat ion >

17 </con f ig>

Listing F.24: Ldoc validation semantics: DocValSem.xml

1

2 <?xml version=” 1.0 ”?>
3 <xsd:schema xmlns:xsd=” h t tp : //www.w3 . org /2001/XMLSchema”
4 xmlns:ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/

document”
5 targetNamespace=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling

/XPEx/document”
6 elementFormDefault=” q u a l i f i e d ”>
7

8 <xsd :e lement name=”document”>
9 <xsd:complexType>

10 <xsd :sequence>

11 <xsd :e lement r e f=” n s : t i t l e ”/>
12 <xsd :e lement r e f=” ns :au thor s ”/>
13 <xsd :e lement name=” se c t i on ” type=” ns : s ec t ionType ” minOccurs=”0”

maxOccurs=”unbounded”/>
14 </xsd :sequence>

15 </xsd:complexType>

16 </xsd :e lement>
17

18 <xsd :e lement name=” t i t l e ” type=” x sd : s t r i n g ”/>
19

20 <xsd :e lement name=” authors ”>
21 <xsd:complexType>

22 <xsd : cho i ce >

23 <xsd :e lement name=”author” maxOccurs=”unbounded”>
24 <xsd:complexType>

25 <x s d : a t t r i b u t e name=” f i r s t ” type=” x sd : s t r i n g ” use=” requ i r ed ”/>
26 <x s d : a t t r i b u t e name=” l a s t ” type=” x sd : s t r i n g ” use=” requ i r ed ”/>
27 <x s d : a t t r i b u t e name=”mail ” type=”xsd:anyURI” use=” requ i r ed ”/>
28 </xsd:complexType>

29 </xsd :e lement>
30 </x sd : cho i ce >

31 </xsd:complexType>

32 </xsd :e lement>
33

34 <xsd:complexType name=” sect ionType”>

APPENDIX F. CASE STUDY SOURCES 333

35 <xsd :sequence>

36 <xsd :e lement r e f=” n s : t i t l e ”/>
37 <xsd :e lement r e f=” ns :p ” minOccurs=”0” maxOccurs=”unbounded”/>
38 <xsd :e lement name=” se c t i on ” type=” ns : s ec t ionType ” minOccurs=”0”
39 maxOccurs=”unbounded”/>
40 </xsd :sequence>

41 </xsd:complexType>

42

43 <xsd :e lement name=”p” type=”ns:f lowType ”/>
44

45 <xsd :group name=” flowElement ”>
46 <xsd : cho i ce >

47 <xsd :e lement r e f=”ns:em”/>
48 <xsd :e lement r e f=”ns: img ”/>
49 </x sd : cho i ce >

50 </xsd:group>

51

52 <xsd:complexType name=”flowType ” mixed=” t rue”>
53 <x sd : cho i c e minOccurs=”0” maxOccurs=”unbounded”>
54 <xsd :group r e f=”ns : f lowElement ”/>
55 <xsd:any processContents=” lax ”/>
56 </x sd : cho i ce >

57 </xsd:complexType>

58

59 <xsd :e lement name=”em” type=”ns:f lowType ”/>
60

61 <xsd :e lement name=”img”>
62 <xsd:complexType>

63 <x s d : a t t r i b u t e name=” h r e f ” type=”xsd:anyURI” use=” requ i r ed ”/>
64 </xsd:complexType>

65 </xsd :e lement>
66

67 </xsd:schema>

Listing F.25: Ldoc validation semantics: schema specification

F.6.4 Langage specific term

The language specific term doNotRecurse is a boolean adaptation term and controls
the recursive execution of the image converter. After a doc:img construct has been
processed, the image converter pipeline sets the value of doNotRecurse to true, in order
to avoid the re-execution of the converter. Listing F.26 illustrates the doNotRecurse

term’s definition.

1 <con f i g name=”DocTerm”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3

4 <terms ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/document”>
5 <term name=”doNotRecurse ” type=”Boolean”>
6 <default> f a l s e</default>

7 </term>

8 </terms>
9 </con f ig>

Listing F.26: doNotRecurse adaptation term semantics: DocTermSem.xml

APPENDIX F. CASE STUDY SOURCES 334

F.6.5 Transformation semantics

Ldoc transformation semantics consist of four handlers that use four XSL-T stylesheets
and a Java-based image converter. Listing F.27 illustrates the declaration of the XSL-T
transformers, the image converter transformer and the four handlers. Listings F.28,
F.29, F.31 illustrate the XSL-T stylesheets that map the constructs of Ldoc to their
desktop, mobile and XSL-FO printer interpretations, respectively. Listing F.30 illus-
trates the Java implementation of the WBMP image converter. Finally, Listing F.32
illustrates a namespace removal stylesheet, which is used in the mobile pipelines, since
WML 1.1 mobiles do no necessarily support XML namespaces.

1 <con f i g name=”ImpVal”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3

4 <t rans formers >

5 <t ran s fo rmer name=”XMLPipe DXSLT”
6 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe .

Transformers . XSLTTransformer ”
7 implSrc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XMLPipe/Transformers /XSLT. c l a s s ”
8 dynamic=” t rue”/>
9

10 <t ran s fo rmer name=”XMLPipe XSLT”
11 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe .

Transformers . XSLTTransformer ”
12 implSrc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XMLPipe/Transformers /XSLT. c l a s s ”
13 dynamic=” f a l s e ”/>
14 </transformers >

15

16

17 <t rans formers >

18 <t ran s fo rmer name=”XMLPipe XPEx DOC imageConverter ”
19 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XPEx .

WBMPConverter”
20 implSrc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XPEx/document/xmlpipe/WBMPConverter . j a r ”
21 dynamic=” f a l s e ”/>
22 </transformers >

23

24 <handler name=”XHTML doc handler ”>
25 <hcL i s t ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/

document”>
26 <hcRef name=”document”/>
27 <hcRef name=”em”/>
28 <hcRef name=”img”/>
29 <hcRef name=”p”/>
30 </hcList>

31 <app l i c a b i l i t y >

32 <contains>

33 <termVal ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/
XMLPipe/XMLPipe/Terms”

34 name=” supported ”/>
35 <val type=” St r ing ”>h t tp : //www.w3 . org /1999/xhtml</val>
36

37 </contains >

38 </app l i c a b i l i t y >

39 <adequacy>

APPENDIX F. CASE STUDY SOURCES 335

40 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

41 name=” supported ”>
42 <contains >

43 <termVal/>
44 <val type=” St r ing ”>h t tp : //www.w3 . org /1999/ xhtml</val>
45 </contains >

46 </expr>
47 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/

XMLPipe/Terms”
48 name=”deviceType ”>
49 <equals>

50 <termVal/>
51 <val>desktop</val>
52 </equals>

53 </expr>
54 </adequacy>

55 <pipe>

56 <t rans form r e f=”XMLPipe XSLT”
57 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx

/document/xmlpipe/doc . x s l ”/>
58 </pipe>

59 </handler>

60

61 <handler name=”WML mobile doc handler ”>
62 <hcL i s t ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/

document”>
63 <hcRef name=”document”/>
64 <hcRef name=”em”/>
65 <hcRef name=”img”/>
66 <hcRef name=”p”/>
67 </hcList>

68 <app l i c a b i l i t y >

69 <contains>

70 <termVal ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/
XMLPipe/XMLPipe/Terms”

71 name=” supported ”/>
72 <val type=” St r ing ”>h t tp : //www. wapforum . org /DTD/wml 1 . 1 . xml</val

>

73 </contains >

74 </app l i c a b i l i t y >

75 <adequacy>

76 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

77 name=” supported ”>
78 <contains >

79 <termVal/>
80 <val type=” St r ing ”>h t tp : //www. wapforum . org /DTD/wml 1 . 1 . xml</

val>
81 </contains >

82 </expr>
83 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/

XMLPipe/Terms”
84 name=”deviceType ”>
85 <equals>

86 <termVal/>
87 <val>mobile</val>
88 </equals>

89 </expr>
90 </adequacy>

APPENDIX F. CASE STUDY SOURCES 336

91 <pipe>

92 <t rans form r e f=”XMLPipe XSLT”
93 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx

/document/xmlpipe/mobile . x s l ”/>
94 <t rans form r e f=”XMLPipe XSLT”
95 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx

/document/xmlpipe/removeNamespaces . x s l ”/>
96 </pipe>

97 </handler>

98

99 <handler name=”WBMP image conver t ion ”>
100 <hcL i s t ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/

document”>
101 <hcRef name=”img”/>
102 </hcList>

103 <app l i c a b i l i t y >

104 <and>

105 <and>

106 <not>
107 <termVal ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XPEx/document”
108 name=”doNotRecurse ”/>
109 </not>
110 <contains >

111 <termVal ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/
XMLPipe/XMLPipe/Terms”

112 name=” supports ”/>
113 <val type=” St r ing ”>h t tp : //www. i s i . edu/ in−notes / iana /

ass ignments/media−types / image/vnd .wap .wbmp</val>
114 </contains >

115 </and>

116 <not>
117 <contains >

118 <termVal ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/
XMLPipe/XMLPipe/Terms”

119 name=” supports ”/>
120 <val type=” St r ing ”>h t tp : //www. i s i . edu/ in−notes / iana /

ass ignments/media−types / image/ jpeg</val>
121 </contains >

122 </not>
123 </and>

124 </app l i c a b i l i t y >

125 <adequacy>

126 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

127 name=” supported ”>
128 <contains >

129 <termVal/>
130 <val type=” St r ing ”>h t tp : //www. i s i . edu/ in−notes / iana /

ass ignments/media−types / image/vnd .wap .wbmp</val>
131 </contains >

132 </expr>
133 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/

XMLPipe/Terms”
134 name=” supported ”>
135 <not>
136 <contains >

137 <termVal/>
138 <val type=” St r ing ”>h t tp : //www. i s i . edu/ in−notes / iana /

ass ignments/media−types/ image/ jpeg</val>

APPENDIX F. CASE STUDY SOURCES 337

139 </contains >

140 </not>
141 </expr>
142 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/

document”
143 name=”doNotRecurse ”>
144 <not>
145 <termVal/>
146 </not>
147 </expr>
148 </adequacy>

149 <context>

150 <statm ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/
document”

151 name=”doNotRecurse ”>t rue</statm>

152 </context>

153 <pipe>

154 <t rans form r e f=”XMLPipe XPEx DOC imageConverter ”
155 s r c=””/>
156 </pipe>

157 </handler>

158

159 <handler name=”XSL−FO pr in t e r doc handler ”>
160 <hcL i s t ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/

document”>
161 <hcRef name=”document”/>
162 <hcRef name=”em”/>
163 <hcRef name=”p”/>
164 <hcRef name=”img”/>
165 </hcList>

166 <app l i c a b i l i t y >

167 <contains>

168 <termVal ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/
XMLPipe/XMLPipe/Terms”

169 name=” supported ”/>
170 <val type=” St r ing ”>h t tp : //www.w3 . org /1999/XSL/Format</val>
171 </contains >

172 </app l i c a b i l i t y >

173 <adequacy>

174 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

175 name=” supported ”>
176 <contains >

177 <termVal/>
178 <val type=” St r ing ”>h t tp : //www.w3 . org /1999/XSL/Format</val>
179 </contains >

180 </expr>
181 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/

XMLPipe/Terms”
182 name=”deviceType ”>
183 <equals>

184 <termVal/>
185 <val>p r in t e r</val>
186 </equals>

187 </expr>
188 </adequacy>

189 <pipe>

190 <t rans form r e f=”XMLPipe XSLT”
191 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx

/document/xmlpipe/XSLFOprinter . x s l ”/>

APPENDIX F. CASE STUDY SOURCES 338

192 </pipe>

193 </handler>

194 </con f ig>

Listing F.27: Ldoc transformation semantics: DocTransSem.xml

1 <x s l : s t y l e s h e e t xmlns :x s l = ” h t tp : //www.w3 . org /1999/XSL/Transform ”
2 version = ” 1.0 ”
3 xmlns = ” h t tp : //www.w3 . org /1999/xhtml”
4 xmlns:n = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XPEx/document”
5 xmlns :xp ipe = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /

XMLhandling/XMLPipe/XMLPipe/ Representat ion / In t e rna l ”>
6

7 <x s l : s t r i p −space e lements=”∗”/>
8

9 <x s l : t emp la t e match=”n:document”>
10 <html>
11 <head><t i t l e ><x s l : v a l u e −o f s e l e c t=” n : t i t l e ”/></ t i t l e ></head>

12 <body>

13

14 <h1><x s l : v a l u e −o f s e l e c t=” n : t i t l e ”/></h1>
15

16 <!−− Authors information −−>
17 <x s l : f o r −each s e l e c t=” n :au thor s / n :author ”>
18 <div>

19 <a h r e f=” ma i l t o : {@mail}”>
20 <x s l : v a l u e −o f s e l e c t=” @ f i r s t ”/>
21 <x s l : t e x t > </x s l : t e x t >

22 <x s l : v a l u e −o f s e l e c t=”@last ”/>
23
24 </div>

25 </x s l : f o r −each>

26

27 <x s l : app l y−templates s e l e c t=” n : s e c t i o n ”/>
28 </body>

29 </html>
30 </x s l : t emp lat e >

31

32

33 <x s l : t emp la t e match=” n : s e c t i o n ”>
34 <x s l : v a r i a b l e name=” l e v e l ” s e l e c t=”count (ancestor−or−s e l f : : n : s e c t i o n) ”

/>
35 <x s l : v a r i a b l e name=”no”>
36 <xsl :number l e v e l=” mul t ip l e ” count=” n : s e c t i o n ” format=” 1 . 1 . 1 ”/>
37 </x s l : v a r i a b l e >

38 <x s l : e l emen t name=”h{$ l e v e l }”>
39 <x s l : v a l u e −o f s e l e c t=”$no”/><x s l : t e x t > </x s l : t e x t >

40 <x s l : v a l u e −o f s e l e c t=” n : t i t l e ”/>
41 </x s l : e l ement >

42

43 <x s l : app l y−templates s e l e c t=”n:p ”/>
44

45 <x s l : app l y−templates s e l e c t=” n : s e c t i o n ”/>
46

47

48 </x s l : t emp lat e >

49

50

51 <x s l : t emp la t e match=”n:p”>
52 <p>

APPENDIX F. CASE STUDY SOURCES 339

53 <x s l : app l y−templates s e l e c t=” ∗ | t ex t () ”/>
54 </p>

55 </x s l : t emp lat e >

56

57 <x s l : t emp la t e match=”n:em”>
58 <x s l : app l y−templates s e l e c t=”@∗ | ∗ | t ex t () ”/>

59 </x s l : t emp lat e >

60

61 <x s l : t emp la t e match=”n:img”>
62
63 </x s l : t emp lat e >

64

65

66 <x s l : t emp la t e match=”n:sp ”>
67 <x s l : t e x t > </x s l : t e x t >

68 </x s l : t emp lat e >

69

70 <x s l : t emp la t e match=”n :b r ”>
71

72 </x s l : t emp lat e >

73

74 <!−− Copy any unknown content −−>
75 <x s l : t emp la t e match=”∗”>
76 <xs l : copy >

77 <xs l : copy−o f s e l e c t=”@∗”/>
78 <x s l : app l y−templates s e l e c t=” ∗ | t ex t () ”/>
79 </x s l : copy >

80 </x s l : t emp lat e >

81

82 <x s l : t emp la t e match=”@∗”>
83 <xs l : copy−o f s e l e c t=” . ”/>
84 </x s l : t emp lat e >

85

86 </x s l : s t y l e s h e e t >

Listing F.28: Ldoc transformation semantics: Desktop XSL-T stylesheet specification
doc.xsl

1 <x s l : s t y l e s h e e t xmlns :x s l = ” h t tp : //www.w3 . org /1999/XSL/Transform ”
2 version = ” 1.0 ”
3 xmlns:n = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XPEx/document”
4 xmlns :xp ipe = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /

XMLhandling/XMLPipe/XMLPipe/ Representat ion / In t e rna l ”>
5 <x s l : s t r i p −space e lements=”∗”/>
6

7 <x s l : t emp la t e match=”n:document”>
8 <wml xp ip e : s y s I d=” h t tp : //www. wapforum . org /DTD/wml 1 . 1 . xml”
9 xpipe :pubId=”−//WAPFORUM//DTD WML 1.1//EN”>

10 <!−− Generic WML temp la te −−>
11 <template>

12 <do type=” r e s e t ” l a b e l=” s t a r t ”>
13 <go h r e f=”#{generate−id (.) }”/>
14 </do>
15 <do type=”prev ” l a b e l=”back”>
16 <prev/>
17 </do>
18 </template>

19

20 <!−− The roo t card −−>

APPENDIX F. CASE STUDY SOURCES 340

21 <card id=”{ generate−id (.) }”>
22 <x s l : a t t r i b u t e name=” t i t l e ”><x s l : v a l u e −o f s e l e c t=” n : t i t l e ”/>
23 </x s l : a t t r i b u t e >

24

25 <x s l : f o r −each s e l e c t=” n :au thor s / n :author ”>
26 <p>

27 <a h r e f=” ma i l t o : {@mail}”>
28 <x s l : v a l u e −o f s e l e c t=” @ f i r s t ”/>
29 <x s l : t e x t > </x s l : t e x t >

30 <x s l : v a l u e −o f s e l e c t=”@last ”/>
31
32 </p>

33 </x s l : f o r −each>

34

35 <x s l : c a l l −template name=” generateLoca l Index ”/>
36 </card>

37

38 <x s l : app l y−templates s e l e c t=” n : s e c t i o n ”/>
39 </wml>
40 </x s l : t emp lat e >

41

42 <x s l : t emp la t e match=” n : s e c t i o n ”>
43 <x s l : v a r i a b l e name=” l e v e l ” s e l e c t=”count (ancestor−or−s e l f : : n : s e c t i o n) ”

/>
44 <x s l : v a r i a b l e name=”no”>
45 <xsl :number l e v e l=” mul t ip l e ” count=” n : s e c t i o n ” format=” 1 . 1 . 1 ”/>
46 </x s l : v a r i a b l e >

47

48 <card id=”{ generate−id (.) }”>
49 <p>

50 <x s l : v a l u e −o f s e l e c t=”$no”/><x s l : t e x t > </x s l : t e x t >

51 <x s l : v a l u e −o f s e l e c t=” n : t i t l e ”/>
52 </p>

53

54 <x s l : c a l l −template name=” generateLoca l Index ”/>
55 </card>

56

57 <x s l : app l y−templates s e l e c t=”n:p ”/>
58

59 <x s l : app l y−templates s e l e c t=” n : s e c t i o n ”/>
60

61

62 </x s l : t emp lat e >

63

64

65 <x s l : t emp la t e match=”n:p”>
66 <card id=”{ generate−id (.) }”>
67 < x s l : i f t e s t=” fo l l owing −s i b l i n g : : n : p ”>
68 <do type=” accept ” l a b e l=”next ”>
69 <go h r e f=”#{generate−id (fo l l owing −s i b l i n g : : n : p [1]) }”/>
70 </do>
71 </ x s l : i f >

72 <p>

73 <x s l : app l y−templates s e l e c t=” ∗ | t ex t () ”/>
74 </p>

75 </card>

76 </x s l : t emp lat e >

77

78

79 <x s l : t emp la t e match=”n:em”>

APPENDIX F. CASE STUDY SOURCES 341

80 <x s l : t e x t > ∗</x s l : t e x t >

81 <x s l : app l y−templates s e l e c t=” ∗ | t ex t () ”/>
82 <x s l : t e x t >∗ </x s l : t e x t >

83 </x s l : t emp lat e >

84

85

86 <x s l : t emp la t e match=”img”>
87
88 </x s l : t emp lat e >

89

90 <x s l : t emp la t e match=”n :b r ”>
91

92 </x s l : t emp lat e >

93

94 <x s l : t emp la t e match=”n:sp ”>
95 <x s l : t e x t > </x s l : t e x t >

96 </x s l : t emp lat e >

97

98 <x s l : t emp la t e match=”n :b r ”>
99

100 </x s l : t emp lat e >

101

102

103 <!−− Copy any unknown content −−>
104 <x s l : t emp la t e match=”∗”>
105 <xs l : copy >

106 <xs l : copy−o f s e l e c t=”@∗”/>
107 <x s l : app l y−templates s e l e c t=” ∗ | t ex t () ”/>
108 </x s l : copy >

109 </x s l : t emp lat e >

110

111 <x s l : t emp la t e name=” generateLoca l Index ”>
112 <x s l : f o r −each s e l e c t=”n:p”>
113 <p>

114 <a h r e f=”#{generate−id (.) }”>
115 Text s e c t i on
116
117 </p>

118 </x s l : f o r −each>

119 <x s l : f o r −each s e l e c t=” n : s e c t i o n ”>
120 <p>

121 <a h r e f=”#{generate−id (.) }”>
122 <xsl :number count=” n : s e c t i o n ”/>
123 <x s l : t e x t > </x s l : t e x t >

124 <x s l : v a l u e −o f s e l e c t=” n : t i t l e ”/>
125
126 </p>

127 </x s l : f o r −each>

128 </x s l : t emp lat e >

129 </x s l : s t y l e s h e e t >

Listing F.29: Ldoc transformation semantics: Mobile XSL-T stylesheet specification
mobile.xsl

1 import uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . t rans form . ∗ ;
2 import uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . ∗ ;
3 import uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . terms . ∗ ;
4 import uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . par s ing . DOMUtil ;
5

6 import com . unwiredtec . wmcreator . SimpleImageFi le ;

APPENDIX F. CASE STUDY SOURCES 342

7 import com . unwiredtec . wmcreator . WBMPfile ;
8 import com . unwiredtec . wmcreator . WBMPFilter ;
9 import com . unwiredtec . wmcreator .WBMPConstants ;

10 import com . unwiredtec . wmcreator .WBMPDimension ;
11

12 import java . i o . ∗ ;
13

14 import java . net . ∗ ;
15

16 import org . w3c .dom . ∗ ;
17

18 /∗ ∗ A simple conver ter from common image f i l e s
19 to WBMP. I t uses the WBMPCreator l i b a r y .
20 ∗/
21

22

23 public class WBMPConverter extends Transformer {
24

25 static f ina l St r ing CAP NS = ”example . org / terms/ c a p a b i l i t i e s ” ;
26 static f ina l St r ing CAPMAXX = ”maxImageX” ;
27 static f ina l St r ing CAPMAXY = ”maxImageY” ;
28

29 public WBMPConverter()
30 {
31 super (fa lse , fa l se) ;
32 }
33

34 public boolean transformCustom (ComponentInterface c i ,
35 Node root ,
36 boolean i sAt t r ,
37 TransformationContext cnt)
38 throws XMLPipeTransformException ,
39 XMLPipeTransformTempException
40

41 {
42

43

44 //Get the handled con s t ru c t
45 Element img = DOMUtil . g e tF i r s tE l (root) ;
46

47 //Get the re f e renced image
48 St r ing imgURI = absoluteInputURI(img . ge tAt t r ibu te (” h r e f ”) , img) .

t oS t r i n g () ;
49

50 // Defau l t maximum image dimensions
51 int maxX = getIntValue (CAP NS, CAP MAXX,
52 c i , cnt) ;
53 i f (−1 == maxX) maxX = 100;
54

55

56 int maxY = getIntValue (CAP NS, CAP MAXY,
57 c i , cnt) ;
58 i f (−1 == maxY) maxY = 100;
59

60

61 //Check i f there i s any maximum image s p e c i f i c a t i o n
62 // in the con tex t
63 ErrorHandler e r r = c i . getErrorHandler () ;
64 try {
65

APPENDIX F. CASE STUDY SOURCES 343

66 e r r . e r r o r (ErrorHandler . INFO,
67 ”Convert ing image f i l e : ” + imgURI) ;
68

69 SimpleImageFi le s i f = new SimpleImageFi le (new URL(imgURI)) ;
70

71 WBMPFilter wf f=new WBMPFilter () ;
72

73 WBMPfile w = new WBMPfile (s i f , −1 , −1 , −1) ;
74

75 e r r . e r r o r (ErrorHandler . INFO,
76 ”Maximum image s i z e : (” + maxX + ” , ” + maxY + ”)”) ;
77

78 //Resi ze i f b i g g e r than the screen s i z e
79 i f (w. getWBMPLength () > maxX | | w.getWBMPWidth () > maxX) {
80 //Compute the r a t i o to mu l t i p l y
81 double r a t i o = computeRatio (w. getWBMPLength () , w.

getWBMPWidth () , maxX, maxY) ;
82

83 e r r . e r r o r (ErrorHandler . INFO,
84 ” Res i z ing image , r a t i o : ” + r a t i o) ;
85

86 w. r e s i z e ((int) (w. getWBMPLength () ∗ r a t i o) , (int) (w.
getWBMPWidth () ∗ r a t i o)) ;

87 }
88

89 //Create an output f i l e
90

91 St r ing relURI = ”generatedImg/” +
92 imgURI . hashCode () + ” .wbmp” ;
93

94

95 w. saveWBMPFile (”WBMP” , absoluteOutputURI (relURI) . getPath ()) ;
96

97 //Simply change the h r e f to po in t to the new f i l e
98 img . s e tA t t r i bu t e (” h r e f ” , relURI) ;
99

100 e r r . e r r o r (ErrorHandler . INFO,
101 ”Generated new image : ” + relURI) ;
102

103 return true ;
104

105

106 } catch (I l l ega lArgumentExcept ion e) {
107 throw new XMLPipeTransformException (ErrorHandler .ERROR,
108 ”Cannot const ruc t abso lu t e

from URI : ” + imgURI
+ ” : ” + e . getMessage

() ,
109 img) ;
110 } catch (MalformedURLException e) {
111 throw new XMLPipeTransformException (ErrorHandler .ERROR,
112 ”Cannot const ruc t URL from

URI : ” + imgURI + ” :
”+ e . getMessage () ,

113 img) ;
114 } catch (NoClassDefFoundError e) {
115 throw new XMLPipeTransformTempException (ErrorHandler .ERROR,

APPENDIX F. CASE STUDY SOURCES 344

116 ”The WBMP Creator
l i b r a r y doesnt
seem to be
a c c e s i b l e : ” + e .
getMessage ()) ;

117

118 } catch (Exception e) {
119 throw new XMLPipeTransformException (ErrorHandler .ERROR,
120 ”Cannot tranform image : ”

+ e . getMessage () ,
121 img) ;
122 }
123

124 }
125

126 public boolean transformCustom (ComponentInterface c i ,
127 Node root ,
128 boolean i sAt t r ,
129 TransformationContext cnt ,
130 Node par)
131 throws XMLPipeTransformException ,
132 XMLPipeTransformTempException
133

134

135 {
136 throw new XMLPipeTransformTempException (ErrorHandler .ERROR,
137 ”Cannot c a l l WBMPTransformer with a parameter ”) ;
138 }
139

140 /∗ ∗ Convenience methid to e x t r a c t con tex t s tatemeent
141 va l u e s . I t re turns −1 i f there i s no d e f i n i t i o n
142 ∗/
143 public int get IntValue (S t r ing ns , S t r ing name ,
144 ComponentInterface c i ,
145 ContextIn format ion cnt)
146 {
147 //Get the term
148

149 Term term = (Term) c i . getConf igTable () . getTerm(Term . getQName (ns ,
name)) ;

150

151 i f (null == term) return −1;
152

153 //Check i f there i s any statement
154 Statement s t = cnt . getStatement (term) ;
155

156 i f (null == st | |
157 ! (s t . getValue () instanceof NumericValue)) {
158 return −1;
159 }
160

161 NumericValue val = (NumericValue) s t . getValue () ;
162

163 return (int) val . getValue () ;
164

165 }
166

167 public double computeRatio (int x , int y , int maxX, int maxY)
168 {
169 //Which i s the worst ?

APPENDIX F. CASE STUDY SOURCES 345

170 boolean xIsWorst = ((double) x / maxX > (double) y / maxY) ;
171

172 i f (xIsWorst) {
173 return (double)maxX / x ;
174 } else {
175 return (double)maxY / y ;
176 }
177

178 }
179

180 }

Listing F.30: Ldoc transformation semantics: WBMP image converter

1 <x s l : s t y l e s h e e t xmlns :x s l = ” h t tp : //www.w3 . org /1999/XSL/Transform ”
2 version = ” 1.0 ”
3 xmlns = ” h t tp : //www.w3 . org /1999/XSL/Format”
4 xmlns:n = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XPEx/document”
5 xmlns :xp ipe = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /

XMLhandling/XMLPipe/XMLPipe/ Representat ion / In t e rna l ”>
6

7 <x s l : s t r i p −space e lements=”∗”/>
8

9 <x s l : t emp la t e match=”n:document”>
10 <root xmlns : fo=” h t tp : //www.w3 . org /1999/XSL/Format”>
11 <layout−master−set>

12 <simple−page−master master−name=”my−page”>
13 <reg ion−body margin=”1 in ”/>
14 <reg ion−be f o r e extent=” 1 .5 in ”
15 padding=”6pt 1 in ”
16 border−bottom=” 0 .5 pt s i l v e r s o l i d ”
17 disp lay−a l i gn=” a f t e r ”/>
18 </simple−page−master>
19 </layout−master−set>

20

21 <page−sequence master−r e f e r e n c e=”my−page”>
22 <s t a t i c−content f low−name=”xs l−reg ion−be f o r e ”>
23 <block text−a l i gn=”end”>Page <page−number/></block>

24 </s t a t i c−content>
25 <f low flow−name=”xs l−reg ion−body”>
26

27 <!−− The t i l e −−>
28 <block space−a f t e r=”1em” font−s i z e=”25pt” text−a l i gn=” cente r ”><

x s l : v a l u e −o f s e l e c t=” n : t i t l e ”/></block>

29

30 <!−− Authors information −−>
31 <x s l : f o r −each s e l e c t=” n :au thor s / n :author ”>
32 <block text−a l i gn=” cente r ”>
33 <x s l : v a l u e −o f s e l e c t=” @ f i r s t ”/>
34 <x s l : t e x t > </x s l : t e x t >

35 <x s l : v a l u e −o f s e l e c t=”@last ”/>
36 (<x s l : v a l u e −o f s e l e c t=”@mail”/>)
37 </block>

38 </x s l : f o r −each>

39

40 <x s l : app l y−templates s e l e c t=” n : s e c t i o n ”/>
41 </flow>

42 </page−sequence>

43 </root>

44

APPENDIX F. CASE STUDY SOURCES 346

45

46 </x s l : t emp lat e >

47

48 <x s l : t emp la t e match=” n : s e c t i o n ”>
49 <x s l : v a r i a b l e name=” l e v e l ” s e l e c t=”count (ancestor−or−s e l f : : n : s e c t i o n) ”

/>
50 <x s l : v a r i a b l e name=”no”>
51 <xsl :number l e v e l=” mul t ip l e ” count=” n : s e c t i o n ” format=” 1 . 1 . 1 ”/>
52 </x s l : v a r i a b l e >

53 <block font−s t y l e=”bold ” font−s i z e=”18 pt”>
54 <x s l : v a l u e −o f s e l e c t=”$no”/><x s l : t e x t > </x s l : t e x t >

55 <x s l : v a l u e −o f s e l e c t=” n : t i t l e ”/>
56 </block>

57

58 <x s l : app l y−templates s e l e c t=”n:p ”/>
59

60 <x s l : app l y−templates s e l e c t=” n : s e c t i o n ”/>
61

62 </x s l : t emp lat e >

63

64

65

66 <x s l : t emp la t e match=”n:p”>
67 <block text−a l i gn=” j u s t i f y ”>
68 <x s l : app l y−templates s e l e c t=” ∗ | t ex t () ”/>
69 </block>

70 </x s l : t emp lat e >

71

72 <x s l : t emp la t e match=”n:em”>
73 < i n l i n e font−s t y l e=” i t a l i c ”><x s l : app l y−templates s e l e c t=” ∗ | t ex t () ”/></

i n l i n e >

74 </x s l : t emp lat e >

75

76 <x s l : t emp la t e match=”n:img”>
77 <ex te rna l−graphic s r c=” u r l ({@href }) ”/>
78 </x s l : t emp lat e >

79

80 <x s l : t emp la t e match=”n:sp ”>
81 <x s l : t e x t > </x s l : t e x t >

82 </x s l : t emp lat e >

83

84 <x s l : t emp la t e match=”n :b r ”>
85 <block/>
86 </x s l : t emp lat e >

87

88

89 <!−− Copy any unknown content −−>
90 <x s l : t emp la t e match=”∗”>
91 <xs l : copy >

92 <xs l : copy−o f s e l e c t=”@∗”/>
93 <x s l : app l y−templates s e l e c t=” ∗ | t ex t () ”/>
94 </x s l : copy >

95 </x s l : t emp lat e >

96

97 </x s l : s t y l e s h e e t >

Listing F.31: Ldoc transformation semantics: XSL-FO printer XSL-T stylesheet
specification XSLFOPrinter.xsd

1

APPENDIX F. CASE STUDY SOURCES 347

2 <x s l : s t y l e s h e e t xmlns :x s l = ” h t tp : //www.w3 . org /1999/XSL/Transform ”
3 version = ” 1.0 ”>
4

5 <x s l : s t r i p −space e lements=”∗”/>
6

7 <x s l : t emp la t e match=”∗”>
8 <x s l : e l emen t name=”{ l o c a l−name () }”>
9 <x s l : f o r −each s e l e c t=” a t t r i b u t e : : ∗”>

10 <x s l : a t t r i b u t e name=”{ l o c a l−name (.) }”>
11 <x s l : v a l u e −o f s e l e c t=” . ”/>
12 </x s l : a t t r i b u t e >

13

14 </x s l : f o r −each>

15 <x s l : app l y−templates s e l e c t=” ∗ | t ex t () ”/>
16 </x s l : e l ement >

17 </x s l : t emp lat e >

18

19 </x s l : s t y l e s h e e t >

Listing F.32: Ldoc transformation semantics: Namespace declaration removal stylesheet
removeNamespaces.xsl

F.7 Lxl language

The Lxl language represents the simple XLink links, and it consists of two FOC at-
tributes. Its processing semantics consist of its handled construct information, an
atomic validation and three adaptation requirement dependent transformation pipelines.

F.7.1 Top level binding

The binding of Lxl processing semantics uses a secondary location mechanism, because
it is a W3C language and the corresponding Web page does not contain RDDL links
to XMLPipe processing semantics. For the case study processing, the Lxl semantics
were included within a local repository file, in a similar manner to all other semantics,
since the pilot XMLPipe implementation only supports a local file secondary location
mechanism.

F.7.2 Handled constructs

Lxl contains two FOC attributes. Its handled construct information is illustrated in
Listing F.33.

1 <con f i g name=”XLHC”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3 <!−− Handled con s t ru c t s d e c l a r a t i o n s −−>
4 <con s t ru c t s ns=” h t tp : //www.w3 . org /1999/ x l i n k /”>
5 <hc name=” h r e f ” c l a s s=” fo c ” node=”at ”/>
6 <hc name=” type” c l a s s=” fo c ” node=”at ”/>
7 </const ruc t s>

8 </con f ig>

Listing F.33: Lxl handled construct information: XLHCInfo.xml

APPENDIX F. CASE STUDY SOURCES 348

F.7.3 Validation semantics

The validation semantics of Lxl consist of a schema specification that validates the
xl:href and xl:type attributes, within the predefined foc element, and an atomic
validation that associates the language namespace with that schema. Listing F.34
illustrates the common XML Schema validator declaration and the atomic validation
declaration. Listing F.35 illustrates the referenced XML Schema specification.

1 <con f i g name=”XLVal”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3

4 <va l i d a t o r s >

5 <va l i d a t o r
6 name=”XMLPipe Validators XMLSchema”
7 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . Va l idator s .

XMLSchema”
8 implSource=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe

/XMLPipe/ Val idator s /XMLSchema/XMLSchema . c l a s s ”/>
9 </va l i d a t o r s >

10

11 <va l i d a t i on
12 ns=” h t tp : //www.w3 . org /1999/ x l i n k /”>
13 <atomVal r e f=”XMLPipe Validators XMLSchema”
14 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/ x l / x l

. xsd”/>
15 </va l idat ion >

16 </con f ig>

Listing F.34: Lxl validation semantics: XLValSem.xml

1 <?xml version=” 1.0 ”?>
2 <xsd:schema xmlns:xsd=” h t tp : //www.w3 . org /2001/XMLSchema”
3 xmlns:ns=” h t tp : //www.w3 . org /1999/ x l i n k /”
4 targetNamespace=” h t tp : //www.w3 . org /1999/ x l i n k /”
5 elementFormDefault=” q u a l i f i e d ”
6 xmlns :p ipe=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XMLPipe/XMLPipe”>
7 <x s d : a t t r i b u t e name=”type ” type=” x sd : s t r i n g ”
8 f i x ed=” simple ”/>
9 <x s d : a t t r i b u t e name=” h r e f ” type=” x sd : s t r i n g ”/>

10

11 <xsd :e lement name=” fo c ”>
12 <xsd:complexType>

13 <x s d : a t t r i b u t e r e f=” ns : type ” use=” requ i r ed ”/>
14 <x s d : a t t r i b u t e r e f=” n s : h r e f ” use=” requ i r ed ”/>
15 </xsd:complexType>

16 </xsd :e lement>
17 </xsd:schema>

Listing F.35: Lxl validation semantics: schema specification

F.7.4 Transformation semantics

Lxl transformation semantics consist of three handlers and three corresponding XSL-T
stylesheets. Listing F.36 declares the three handlers that correspond to the XHTML,
WML and non-interactive links interpretation. Listings F.37, F.38 and F.39 illustrate
the corresponding XSL-T stylesheets.

APPENDIX F. CASE STUDY SOURCES 349

1 <con f i g name=”XLTran”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3

4 <t rans formers >

5 <t ran s fo rmer name=”XMLPipe XSLT”
6 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe .

Transformers . XSLTTransformer ”
7 implSrc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XMLPipe/Transformers /XSLT. c l a s s ”
8 dynamic=” f a l s e ”/>
9 </transformers >

10

11 <handler name=”XLinks f o r XHTML”>
12 <hcL i s t ns=” h t tp : //www.w3 . org /1999/ x l i n k /”>
13 <hcRef name=” h r e f ”/>
14 </hcList>

15 <adequacy>

16 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

17 name=” supports ”>
18 <contains >

19 <termVal/>
20 <val>h t tp : //www.w3 . org /1999/ xhtml</val>
21 </contains >

22 </expr>
23 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/

XMLPipe/Terms”
24 name=” supports ”>
25 <not>
26 <contains >

27 <termVal/>
28 <val>h t tp : //www.w3 . org /1999/ x l i n k /</val>
29 </contains >

30 </not>
31 </expr>
32 </adequacy>

33 <pipe>

34 <t rans form r e f=”XMLPipe XSLT”
35 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx

/XL/xlinkXHTML . x s l ”/>
36 </pipe>

37

38 </handler>

39

40 <handler name=”XLinks f o r WML”>
41 <hcL i s t ns=” h t tp : //www.w3 . org /1999/ x l i n k /”>
42 <hcRef name=” h r e f ”/>
43 </hcList>

44 <adequacy>

45 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

46 name=” supports ”>
47 <contains >

48 <termVal/>
49 <val>h t tp : //www. wapforum . org /DTD/wml 1 . 1 . xml</val>
50 </contains >

51 </expr>
52 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/

XMLPipe/Terms”

APPENDIX F. CASE STUDY SOURCES 350

53 name=” supports ”>
54 <not>
55 <contains >

56 <termVal/>
57 <val>h t tp : //www.w3 . org /1999/ x l i n k /</val>
58 </contains >

59 </not>
60 </expr>
61 </adequacy>

62 <pipe>

63 <t rans form r e f=”XMLPipe XSLT”
64 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx

/XL/xlinkWML. x s l ”/>
65 </pipe>

66

67 <handler name=”XLinks f o r p r i n t e r s ”>
68 <hcL i s t ns=” h t tp : //www.w3 . org /1999/ x l i n k /”>
69 <hcRef name=” h r e f ”/>
70 </hcList>

71 <adequacy>

72 <expr ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XMLPipe/
XMLPipe/Terms”

73 name=”deviceType ”>
74 <equals>

75 <termVal/>
76 <val>p r in t e r</val>
77 </equals>

78 </expr>
79 </adequacy>

80 <pipe>

81 <t rans form r e f=”XMLPipe XSLT”
82 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx

/XL/ x l inkNonIn te rac t iv e . x s l ”/>
83 </pipe>

84 </handler>

Listing F.36: Lxl transformation semantics: XLTransSem.xml

1

2 <x s l : s t y l e s h e e t
3 xmlns :x s l = ” h t tp : //www.w3 . org /1999/XSL/Transform ”
4 version = ” 1.0 ”
5 xmlns = ” h t tp : //www.w3 . org /1999/xhtml”
6 xmlns :x l ink = ” h t tp : //www.w3 . org /1999/ x l i n k /”
7 xmlns :xp ipe = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe/ Representat ion / In t e rna l ”>
8

9 <x s l : s t r i p −space e lements=”∗”/>
10

11 <x s l : t emp la t e match=” ∗ [@x l i n k :h r e f] ”>
12 <a h r e f=”{@x l ink :h r e f }”>
13 <xs l : copy >

14 <x s l : app l y−templates s e l e c t=”@∗ | ∗ | t ex t () ”/>
15 </x s l : copy>

16
17 </x s l : t emp lat e >

18

19 <x s l : t emp la t e match=”@xl ink : ∗”/>
20

21 <x s l : t emp la t e match=”@∗”>
22 <xs l : copy−o f s e l e c t=” . ”/>

APPENDIX F. CASE STUDY SOURCES 351

23 </x s l : t emp lat e >

24

25 <x s l : t emp la t e match=”∗”>
26 <xs l : copy−o f s e l e c t=” . ”/>
27 </x s l : t emp lat e >

28

29 </x s l : s t y l e s h e e t >

Listing F.37: Lxl transformation semantics: XHTML XSL-T stylesheet specification
xlinkXHTML.xsl

1 <x s l : s t y l e s h e e t
2 xmlns :x s l = ” h t tp : //www.w3 . org /1999/XSL/Transform ”
3 version = ” 1.0 ”
4 xmlns :x l ink = ” h t tp : //www.w3 . org /1999/ x l i n k /”
5 xmlns :xp ipe = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe/ Representat ion / In t e rna l ”>
6

7 <x s l : s t r i p −space e lements=”∗”/>
8

9 <x s l : t emp la t e match=” ∗ [@x l i n k :h r e f] ”>
10 <a h r e f=”{@x l ink :h r e f }”>
11 <xs l : copy >

12 <x s l : app l y−templates s e l e c t=”@∗”/>
13 <xs l : copy−o f s e l e c t=” ∗ | t ex t () ”/>
14 </x s l : copy>

15
16 </x s l : t emp lat e >

17

18 <x s l : t emp la t e match=”@xl ink : ∗”/>
19

20 <x s l : t emp la t e match=”@∗”>
21 <xs l : copy−o f s e l e c t=” . ”/>
22 </x s l : t emp lat e >

23 </x s l : s t y l e s h e e t >

Listing F.38: Lxl transformation semantics: Mobile XSL-T stylesheet specification
xlinkWML.xsl

1

2 <x s l : s t y l e s h e e t
3 xmlns :x s l = ” h t tp : //www.w3 . org /1999/XSL/Transform ”
4 version = ” 1.0 ”
5 xmlns = ” h t tp : //www.w3 . org /1999/xhtml”
6 xmlns :x l ink = ” h t tp : //www.w3 . org /1999/ x l i n k /”
7 xmlns :xp ipe = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe/ Representat ion / In t e rna l ”>
8

9 <x s l : s t r i p −space e lements=”∗”/>
10

11 <x s l : t emp la t e match=” ∗ [@x l i n k :h r e f] ”>
12 <xs l : copy >

13 <x s l : app l y−templates s e l e c t=”@∗ | ∗ | t ex t () ”/>
14 (<x s l : v a l u e −o f s e l e c t=” @x l i n k :h r e f ”/>)
15 </x s l : copy >

16 </x s l : t emp lat e >

17

18 <x s l : t emp la t e match=”@xl ink : ∗”/>
19

20 <x s l : t emp la t e match=”@∗”>

APPENDIX F. CASE STUDY SOURCES 352

21 <xs l : copy−o f s e l e c t=” . ”/>
22 </x s l : t emp lat e >

23

24 <x s l : t emp la t e match=”∗”>
25 <xs l : copy >

26 <xs l : copy−o f s e l e c t=”@∗”/>
27 <x s l : app l y−templates s e l e c t=” ∗ | t ex t () ”/>
28 </x s l : copy >

29 </x s l : t emp lat e >

30 </x s l : s t y l e s h e e t >

Listing F.39: Lxl transformation semantics: Non interactive XSL-T stylesheet
specification xhtmlNonInteractive.xsl

F.8 Lcd language

The Lcd language introduces a single COC construct that introduced information about
a compact disk. The processing semantics of Lcd consist of its handled construct in-
formation, an atomic validation and an adaptation requirements independent transfor-
mation pipeline.

F.8.1 Top level binding

The binding of Lcd processing semantics uses the principal RDDL-based location mech-
anism, because it is a case study specific language and we have control over the asso-
ciated URI. The Web page that corresponds to
http://www.cs.kent.ac.uk/projects/XMLhandling/XPEx/cd

is an XHTML document that contains the three RDDL links illustrated in Listing
F.40. The first, second and third RDDL links point to XML files that contain the han-
dled construct information, the validation semantics and the transformation semantics,
respectively.

1

2 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
3 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#intModelSemantics ”
4 x l i n k : h r e f=”CDHCInfo . xml”/>
5

6 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
7 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#valSemant ics ”
8 x l i n k : h r e f=”CDValSem. xml”/>
9

10 <r d d l : r e s o u r c e x l i n k : t yp e=” s imple ”
11 x l i n k : r o l e=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe#transSemant ics ”
12 x l i n k : h r e f=”CDTransSem . xml”/>

Listing F.40: RDDL links to the Lcd processing semantics

F.8.2 Handled constructs

Lcd contains a handled construct, is a COC handled construct. Its handled construct
information is illustrated in Listing F.41.

APPENDIX F. CASE STUDY SOURCES 353

1 <con f i g name=”CDHC”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3 <con s t ru c t s ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/cd”>
4 <hc name=”cd” c l a s s=” coc ” node=” e l ”/>
5 </const ruc t s>

6 </con f ig>

Listing F.41: Lcd handled construct information: CDHCInfo.xml

F.8.3 Validation semantics

The validation semantics of Lcd consist of a schema specification and an atomic valida-
tion that associates the language namespace with that schema. Listing F.42 illustrates
the common XML Schema validator declaration and the atomic validation declaration.
Listing F.43 illustrates the referenced XML Schema specification.

1 <con f i g name=”CDVal”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3

4 <va l i d a t o r s >

5 <va l i d a t o r
6 name=”XMLPipe Validators XMLSchema”
7 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe . Va l idator s .

XMLSchema”
8 implSource=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe

/XMLPipe/ Val idator s /XMLSchema/XMLSchema . c l a s s ”/>
9 </va l i d a t o r s >

10

11 <va l i d a t i on
12 ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/cd”>
13 <atomVal r e f=”XMLPipe Validators XMLSchema”
14 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/

import / xmlpipe/cd . xsd”/>
15 </va l idat ion >

16 </con f ig>

Listing F.42: Lcd validation semantics: CDValSem.xml

1 <?xml version=” 1.0 ”?>
2 <xsd:schema xmlns:xsd=” h t tp : //www.w3 . org /2001/XMLSchema”
3 xmlns:ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/

cd”
4 targetNamespace=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling

/XPEx/cd”
5 elementFormDefault=” q u a l i f i e d ”>
6

7 <xsd :e lement name=”cd”>
8 <xsd:complexType>

9 <xsd :sequence>

10 <xsd :e lement name=” a r t i s t s ”>
11 <xsd:complexType>

12 <xsd :sequence>

13 <xsd :e lement name=” a r t i s t ” type=” x sd : s t r i n g ” maxOccurs=”
unbounded”/>

14 </xsd :sequence>

15 </xsd:complexType>

16 </xsd :e lement>

APPENDIX F. CASE STUDY SOURCES 354

17 <xsd :e lement name=” songs ”>
18 <xsd:complexType>

19 <xsd :sequence>

20 <xsd :e lement name=” song” type=” x sd : s t r i n g ” maxOccurs=”
unbounded”/>

21 </xsd :sequence>

22 </xsd:complexType>

23 </xsd :e lement>
24 </xsd :sequence>

25 <x s d : a t t r i b u t e name=” t i t l e ” type=” x sd : s t r i n g ” use=” requ i r ed ”/>
26 <x s d : a t t r i b u t e name=”coverImg” type=”xsd:anyURI”/>
27 <x s d : a t t r i b u t e name=” u r i ” type=”xsd:anyURI”/>
28 </xsd:complexType>

29 </xsd :e lement>
30 </xsd:schema>

Listing F.43: Lcd validation semantics: schema specification

F.8.4 Transformation semantics

Lcd transformation semantics consist of an XSL-T stylesheet and a handler declaration,
which associates the cd:cd handled construct to a transformation that reuses the other
case study languages. Listing F.44 illustrates the declaration of the handler and the
built-in XSL-T transformer, and Listing F.45 illustrates the XSL-T stylesheet.

1 <con f i g name=”CDVal”
2 xmlns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XMLPipe/

XMLPipe”>
3

4 <t rans formers >

5

6 <t ran s fo rmer name=”XMLPipe XSLT”
7 implClass=”uk . ac . kent . cs . p r o j e c t s . XMLHandling .XMLPipe .

Transformers . XSLTTransformer ”
8 implSrc=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XMLPipe/Transformers /XSLT. c l a s s ”
9 dynamic=” f a l s e ”/>

10 </transformers >

11

12 <handler name=”CD Handler”>
13 <hcL i s t ns=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling /XPEx/cd”>
14 <hcRef name=”cd”/>
15 </hcList>

16 <pipe>

17 <t rans form r e f=”XMLPipe XSLT”
18 s r c=” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/XPEx/

import ing/XPEx/cd/xmlpipe/cd . x s l ”/>
19 </pipe>

20 </handler>

21 </con f ig>

Listing F.44: Lcd transformation semantics: CDTransSem.xml

1 <x s l : s t y l e s h e e t xmlns :x s l = ” h t tp : //www.w3 . org /1999/XSL/Transform ”
2 version = ” 1.0 ”
3 xmlns = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XPEx/document”
4 xmlns:x = ” h t tp : //www.w3 . org /1999/ x l i n k /”
5 xmlns:n = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /XMLhandling/

XPEx/cd”

APPENDIX F. CASE STUDY SOURCES 355

6 xmlns :xp ipe = ” h t tp : //www. cs . kent . ac . uk/ p r o j e c t s /
XMLhandling/XMLPipe/XMLPipe/ Representat ion / In t e rna l ”>

7

8 <x s l : t emp la t e match=”n:cd ”>
9 <p>

10 <sp/><sp/>
11 <em x : type=” simple ” x : h r e f=”{@uri}”>
12 <x s l : v a l u e −o f s e l e c t=” n : t i t l e / t ex t () ”/>
13

14 </p>

15 <p>A r t i s t s :

16 <x s l : f o r −each s e l e c t=” n : a r t i s t s / n : a r t i s t /@name”>
17 <sp/><x s l : v a l u e −o f s e l e c t=” . ”/>

18 </x s l : f o r −each>

19 </p>

20 <p>Songs :

21 <x s l : f o r −each s e l e c t=” n : songs / n :song ”>
22 <sp/><x s l : v a l u e −o f s e l e c t=” p o s i t i o n () ”/>) <x s l : v a l u e −o f s e l e c t=” . ”

/>

23 </x s l : f o r −each>

24 </p>

25

26 </x s l : t emp lat e >

27

28 </x s l : s t y l e s h e e t >

Listing F.45: Lcd transformation semantics: XSL-T stylesheet specification cd.xsl

