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A B S T R A C T

Recovering unknown, missing, damaged, distorted, or lost information in DCT coefficients is a common task
in multiple applications of digital image processing, including image compression, selective image encryption,
and image communication. This paper investigates the recovery of sign bits in DCT coefficients of digital
images, by proposing two different approximation methods to solve a mixed integer linear programming
(MILP) problem, which is NP-hard in general. One method is a relaxation of the MILP problem to a linear
programming (LP) problem, and the other splits the original MILP problem into some smaller MILP problems
and an LP problem. We considered how the proposed methods can be applied to JPEG-encoded images and
conducted extensive experiments to validate their performances. The experimental results showed that the
proposed methods outperformed other existing methods by a substantial margin, both according to objective
quality metrics and our subjective evaluation.
1. Introduction

The discrete cosine transform (DCT) was first proposed by Nasir
Ahmed in 1972 [1]. As a signal analysis tool, DCT can be used to con-
vert a discrete input signal with 𝑛 samples into 𝑛 frequency components,
which are also called DCT coefficients. The first of all DCT coefficients
is normally called the DC (direct current) coefficient, representing the
zero-frequency component or the average amplitude of the input signal.
Other DCT coefficients all represent the amplitude of a specific non-zero
frequency component and are normally called AC (alternate current)
coefficients. Although DCT is not the optimal signal decorrelation
transform, it can approximate the optimal solution well under a wide
range of conditions and can be very easily implemented, therefore it
has been widely utilized in many signal processing applications [2–4].
Especially, 2-D blockwise DCT has been widely adopted in image and
video compression standards including JPEG [5], MPEG-1/2, MPEG-4,
AVC/H.264 [6], and HEVC [7]. Meanwhile, researchers have exten-
sively investigated characteristics of DCT in different applications [8–
13].

Sensitive multimedia data should be encrypted before transmission
to prevent unauthorized access and protect individual privacy. Due to

✩ This paper has been recommended for acceptance by Zicheng Liu.
∗ Corresponding author.

E-mail address: hooklee@gmail.com (S. Li).

the large volume of multimedia data and some other needs, such as
format-compliance and perceptual encryption [14], selectively encrypt-
ing a small part of important data becomes a natural choice among
researchers [15–18]. However, some special properties of multimedia
data, such as the strong correlation of neighboring pixels, and the
more stable distribution of DCT coefficients, make many proposed
selective encryption schemes of digital images and videos insecure
against various attacking methods in different settings [14]. Among
all the attacks, one group works under the ciphertext-only condition
and tries to recover an encrypted image/video to reveal more visual
information than simple error-concealment attacks can recover, where
‘‘error-concealment attacks’’ refer to attacks that simply replace en-
crypted information with some simple values (e.g., zeros). For instance,
in [19], Uehara et al. demonstrated that encrypted DC coefficients
can be approximately restored from known AC ones by exploiting
the strong correlation between adjacent pixels, resulting in recovered
images with satisfactory visual quality. This work was further improved
by Li et et al. by using an optimization-based approach to minimize the
so-called under/over-flow rate of pixel values caused by error propa-
gation [20]. Soon after, Li et al. proposed a more general method for
vailable online 30 December 2023
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restoring an arbitrary set of missing DCT coefficients from known ones,
and formulated the problem as a linear programming (LP) problem that
aims to minimize the sum of absolute differences between neighboring
pixels, which was shown to outperform all previously proposed meth-
ods significantly [21]. Note that the DCT coefficient recovery method
can be used not only for attacking selective encryption schemes but also
in other less security-related applications, such as image compression,
and image recovery.

As the most significant bit of a DCT coefficient, the sign bit plays an
important role in DCT-based image and video coding and encryption.
In many image and video coding standards, sign bits are separately en-
coded. Researchers have also looked at how to more efficiently encode
sign bits to reduce informational redundancies in the encoded image
and video bitstream [22–25]. Recently, Suzuki et al. predicted the sign
bits of DCT coefficients only from their magnitudes by using a DNN
to solve a convex optimization and encoded the difference between
the results and the original signs after the quantization process in the
standard JPEG pipeline, where the DNN was trained with numerous
images [26]. However, the average sign recovery accuracy is about
65%–70%, so the method is quite limited in the scenario that partial
signs are lost. When the ratio of unknown signs is less than the least
recovery accuracy, the method would incur even more sign loss.

In the context of image and video encryption, randomly flipping
sign bits has been widely adopted as a general component in selective
encryption schemes due to its capability to maintain format compli-
ance and also size-preservation while being very easy to implement
and highly efficient [17,18,27–31]. Despite the wide use of sign bits,
we rarely see research investigating advanced methods for recovering
unknown sign bits of DCT coefficients, where advanced methods refer
to those that are not based on simple error-concealment strategies. This
gap leads to a lack of understanding of the security of selective image
and video encryption schemes based on sign bit encryption and also on
more efficient sign bit prediction and compression methods for image
and video coding.

In this paper, we fill the above-mentioned research gap by formu-
lating the sign bit recovery problem as an optimization problem that
aims to minimize the sum of absolute differences between neighboring
pixels, following a similar vein of the DCT coefficient recovery model
reported in [21]. Different from and more challenging than the work
in [21], a sign bit is a binary value, so the optimization model is
a mixed integer linear programming (MILP) problem, which is NP-
hard in general. To solve the problem efficiently, we propose two
approximation methods that can obtain reasonably good visual quality
with a manageable time complexity. In the first method, we relax the
MILP problem to an LP problem by replacing the binary unknown
variables with continuous values and then estimate the sign bits based
on the solution of the relaxed LP problem. In the second method,
we divide the image into sufficiently small sub-images as [32], then
solve a MILP problem for each sub-image independently, and finally
refine the merged result by solving a global LP or MILP optimization
problem. We extended the proposed methods to handle JPEG images
used in real-world applications so that the methods can take special
encoding rules about sign bits and DCT coefficients. To demonstrate
the performance of the proposed sign bit methods and how they work
with different encoding parameters of the JPEG standard, we conducted
extensive experiments with a set of 30 standard test images. We also
compared the performance of the proposed methods with other native
ones and a simplified version based on a relaxed LP model alone.
The experimental results showed that the proposed methods were able
to achieve satisfying visual quality with a practical time complexity,
and remarkably outperformed other baseline methods. Our work can
not only provide more insights on designing and evaluating selective
multimedia encryption schemes but also guidance on how to design
more efficient image and video coding methods and how to recover
damaged, distorted, or lost sign bits in error-prone environments.

The rest of the paper is organized as follows. Section 2 reviews the
related work. Section 3 explains our two proposed sign bit recovery
methods with details. Experimental results are given in Section 4. The
2

last section concludes the paper. b
2. Related work

This section is organized to show closely related work in four
areas: image and video encryption schemes using sign bit encryption;
simple (not optimization-based) methods for recovering DCT coeffi-
cients; optimization-based methods for recovering DCT coefficients;
and known methods for recovering sign bits of DCT coefficients.1

2.1. Sign bit encryption for image and video encryption and privacy protec-
tion

As mentioned in Section 1, randomly flipping sign bits has been
widely used for image and video encryption [27–29,31]. Here, we
briefly introduce some representative work. Wang et al. designed a
tunable encryption scheme for H.264/AVC videos, in which the encryp-
tion strength is adjusted by selecting some encryption objects: intra
prediction modes, sign bits of non-zero coefficients and sign bits of
motion vectors [28]. Hofbauer et al. proposed an encryption scheme
for HEVC videos that solely encrypts some sign bits of AC coefficients
in the encoded bitstream to distort the visual information strongly
while maintaining full format-compliance and size-preservation [29],
but also acknowledged that encrypting AC coefficients’ sign bits alone
cannot guarantee full confidentiality based on some analysis [34].
Hofbauer et al. however, did not propose a method to recover the
encrypted sign bits to improve the visual quality of recovered images.
Some researchers also proposed to use sign bit encryption for video
surveillance systems for privacy protection purposes [17,18,30]. For
instance, Dufaux et al. designed a privacy protection algorithm that
encrypts only privacy-sensitive regions through randomly flipping sign
bit while keeping the surveilled scenes comprehensible [17].

2.2. Simple image and video recovery against transmission errors and
encryption

If errors occur during the transmission and storage of image data,
there may exist some incomprehensible or simply blank areas in the
decoded version [35]. To address this problem, some error-concealment
techniques were proposed to recover such corrupted areas via exploit-
ing the strong correlation between the target area and its surrounding
areas [36–38]. Bingabr and Varshney designed a recovery algorithm
that can accurately correct corrupted coefficients in one DCT block
with the assistance of reference information accurately received from
an extra channel [38]. Some researchers also proposed to use super-
vised machine learning methods to recover corrupted DCT coefficients,
e.g., using a trained neural network [36]. Park et al. proposed an
estimation algorithm for corrupted DCT coefficients based on projec-
tions onto convex sets, in which the surrounding undamaged blocks
are extracted to form a convex hull for Ref. [37]. For errors occur-
ring in video data, in addition to spatial information, the temporal
redundancy between frames also can be exploited to recover corrupted
DCT coefficients [39,40]. For example, Tsekeridou et al. devised an
error-concealment method for MPEG-2 videos based on spatio-temporal
video redundancy and block-matching principles [40].

In multimedia selective encryption, there are always components
that are excluded from encryption to avoid encrypting the whole bit-
stream. In this case, such unencrypted data can be potentially used to
estimate encrypted ones [14,16]. Some sketch attacking methods were
proposed to obtain an estimated image of low visual quality [41–44].
In [41], Li and Yuan highlighted that the number of zero coefficients
in each block is closely related to image texture and edge information,
which generally remains unchanged to preserve the compression ratio

1 This paper focuses more on recovery problems of DCT coefficients, so does
ot cover related work on other transforms, e.g., work in [33] on recovering
inary signals from a limited number of DFT coefficients.
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in existing JPEG encryption algorithms. Taking advantage of this ob-
servation, they proposed a nonzero count attack on encrypted JPEG
images, generating a rough sketch. Following a similar idea, Minemura
et al. proposed three improved sketch attacks that do not require
manual adjustment of thresholds and can generate images of higher
visual quality [42]. Subsequently, these attack methods were extended
to attack encryption schemes for H.264/AVC videos [43,44].

2.3. Optimization-based DCT coefficient recovery

Some DCT coefficients might be absent due to selective encryption,
transmission errors, multimedia coding, or malicious removal. When
only DC coefficients are missing, they can be estimated sequentially
from the known AC ones by exploiting the strong correlation in mul-
timedia data [19–21]. This is the so-called DC recovery problem.
In [19], Uehara et al. summarized two properties of most natural
images, which were the cornerstone of their recovery method. They
estimated the missing DC coefficients one by one by minimizing the
sum of the absolute difference of boundary pixels between the current
DCT block and its neighboring ones. Then, they adjusted the estimated
DC coefficients to keep pixel values within the valid range. The final
output image was the average of four images obtained by four different
scanning directions. Li et al. pointed out that there was a serious error
propagation effect in the estimation process of Uehara et al.’s method,
and suggested immediately making adjustments after estimating each
DC coefficient to alleviate such error propagation [20]. Moreover,
they proposed to minimize the so-called under/over-flow rate of pixel
values to improve the visual quality of recovered images. Qiu et al.
designed a similar method to improve the error resistance for JPEG
image transmission [45].

Generalizing the DC recovery problem, Li et al. defined a more gen-
eral problem of recovering an arbitrary set of missing DCT coefficients
from other known ones, which was formed as an optimization problem
that can be solved as an LP problem [21]. The optimization aims to
minimize the sum of the absolute differences of all neighboring pixels of
the recovered image. In addition to being much more general, the new
general method can also significantly surpass previous methods on the
DC recovery problem. Later, a partition strategy [46] was introduced
to reduce the time complexity of solving the optimization problem. The
image is divided into multiple groups by image segmentation, each
of which is separately recovered using LP, and then the brightness
of each group is adjusted to minimize the discontinuing artifacts. As
the special case of DCT recovery, the DC recovery problem can be
modeled as the dual of a min-cost flow problem and then be solved with
the corresponding algorithm, where the time complexity is drastically
reduced from 𝑂(𝑛2) to 𝑂(𝑛3∕2) [47].

The LP model in [21] was also extended to recover undecoded coef-
icients in distributed video coding scheme [48], in which an additional
emporal smoothness maximization is introduced into the optimization
rocess. In addition, Wang et al. modified the objective function of
he optimization model in [21] and added a regularization term to
estore part of the image from the structured side information [49].
n [50], Chen et al. proposed an optimization method to estimate DC
oefficients for further compression, which exploits directional texture
nformation of neighboring blocks and solves an optimal offset in a
losed form.

.4. Sign bit recovery of DCT coefficients

So far, sign bit recovery mainly exists in the decompression of image
nd video data [7,22–25,51,52]. In image and video compression stan-
ards based on the blockwise DCT, the redundancy among pixels within
ach DCT block is exploited to a large extent, while the redundancy
etween blocks especially between non-neighboring blocks is mostly
nexplored. More specifically, the high correlation among pixels at
he boundary between adjacent blocks is under-utilized, which can be
3

used to predict the signs of coefficients to further improve compression
performance. The reason for such under-exploration is the need for
the encoding process to be in real-time, so a more complicated global
optimization process is often considered too heavy.

In [22], Ponomarenko et al. proposed a sign bit prediction algorithm
for lossy image compression, in which some sign bits are selected for
compression in such a way that the border pixels reconstructed from
inverse DCT are closest to those estimated from the previously-decoded
blocks in spatial domain. To eliminate the expensive computational
costs of transforming between spatial and frequency domains, Rad et al.
proposed a sign bit recovery method that can operate in the frequency
domain solely [51]. They estimated the sign bits of five low-frequency
coefficients and categorized DCT blocks into five patterns, each of
which is treated with a different predictor. In [24], Lakhani integrated
the proposed sign bit prediction algorithms for some significant coeffi-
cients into a modified JPEG codec. Sign bit data hiding technique was
introduced in the HEVC standard, in which the sign bit of a non-zero
coefficient is omitted under some conditions [7].

Although recovery of DCT coefficients has been actively researched,
the possibility of recovering encrypted, unknown, missing, or damaged
sign bits from a digital image has been much less studied in the liter-
ature. This paper enriches the research by proposing the first sign bit
recovery methods by modeling the recovery problem as an optimization
problem, which can achieve a good recovery performance while having
a practically small computational complexity.

3. Proposed methods

In this section, we first introduce the primary optimization model
for the sign bit recovery problem. Then, two approximation methods,
one based on linear programming (LP) and the other on hierarchical
mixed integer linear programming (MILP), are presented to solve the
problem efficiently.

3.1. The model

To facilitate the description and establishment of the optimization
model, we first present two properties of pixel values of digital images,
first summarized in [19].

Property 1. The difference between any two neighboring pixel values of a
natural image is a Laplacian variate with a zero mean and a small variance.

Property 2. For each block, pixel values of AC coefficients constrain the
value of its DC coefficient.

Property 1 is well-known for natural images. Fig. 1 shows the
distribution of differences between neighboring pixel values of the test
image ‘‘Lenna’’ of size 512 × 512. With the real distribution (red), a
Laplacian distribution Laplace(𝜇, 𝑏) estimated from the real data is also
shown, where the parameter 𝜇 is set to 0 and the bandwidth parameter
𝑏 was obtained by the maximum likelihood estimation algorithm.

Property 2 is derived from the definition of the 2-D DCT. In the
rest of the paper, we use 𝒙 = 𝑨𝒚 to denote the relationship between
image pixel values {𝑥(𝑖, 𝑗) ∈ [𝑥min, 𝑥max]}0≤𝑖,𝑗≤𝑁−1 and DCT coefficients
{𝑦(𝑘, 𝑙)}0≤𝑘,𝑙≤𝑁−1 in block-wise 𝑁 × 𝑁 2-D DCT, which can be written
as

𝑥(𝑖, 𝑗) =
∑

0≤𝑘,𝑙≤𝑁−1
𝐴(𝑖, 𝑗, 𝑘, 𝑙) ⋅ 𝑦(𝑘, 𝑙)

= 1
𝑁

𝑦(0, 0) +
∑

0≤𝑘,𝑙≤𝑁−1
(𝑘,𝑙)≠(0,0)

𝐴(𝑖, 𝑗, 𝑘, 𝑙) ⋅ 𝑦(𝑘, 𝑙),
(1)

here

(𝑖, 𝑗, 𝑘, 𝑙) = 𝐶(𝑘)𝐶(𝑙) cos
(

(𝑖 + 0.5)𝑘𝜋
)

cos
(

(𝑗 + 0.5)𝑙𝜋
)

,

𝑁 𝑁
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Fig. 1. Distribution of the difference between neighboring pixel values of the standard
test image ‘‘Lenna’’ of size 512 × 512.

and 𝐶(𝑘) is
√

1∕𝑁 when 𝑘 = 0 and
√

2∕𝑁 when 𝑘 > 0. As shown in
Eq. (1), the DC coefficient 𝑦(0, 0) is constrained by the sum term without
DC value and interval [𝑥min, 𝑥max]. Note that Eq. (1) is a linear equation
and the indices are relative to each block.

In [21], a similar DCT coefficient recovery problem is addressed,
where missing DCT coefficients are estimated based on known ones.
The main difference between the DCT coefficient recovery problem and
the sign bit recovery problem is that the unknown variables in the latter
are binary (1 or −1), but they are continuous in the former. Following
the way how the DCT coefficient recovery problem is modeled, we can
model the sign bit recovery problem as follows:

minimize 𝑓 (𝑥)

subject to 𝒙 = 𝑨𝒚,

𝑥min ≤ 𝑥(𝑖, 𝑗) ≤ 𝑥max,

𝑦(𝑘, 𝑙) =

{

𝑦∗(𝑘, 𝑙) if the sign bit is known;
𝑠(𝑦, 𝑙)|𝑦(𝑘, 𝑙)| if the sign bit is unknown.

𝑠(𝑦, 𝑙) ∈ {1,−1},

(2)

where 𝑦∗(𝑘, 𝑙) is the known DCT coefficient, 𝑠(𝑦, 𝑙) is the sign bit of
the unknown DCT coefficient 𝑦(𝑘, 𝑙), and 𝑓 (𝑥) is the objective function
defined based on some properties of the image. We use the same
objective function defined for the DCT coefficient recovery problem
defined by Li et al. in [21]:

minimize
∑

ℎ𝑖,𝑗,𝑖′ ,𝑗′

subject to 𝑥(𝑖, 𝑗) − 𝑥(𝑖′, 𝑗′) ≤ ℎ𝑖,𝑗,𝑖′ ,𝑗′ ,

𝑥(𝑖′, 𝑗′) − 𝑥(𝑖, 𝑗) ≤ ℎ𝑖,𝑗,𝑖′ ,𝑗′ ,

(3)

where (𝑖, 𝑗) and (𝑖′, 𝑗′) are coordinates of neighboring pixels within the
domain of the whole image. The above objective function is based on
Property 1 and Fact 1, and its actual effect is to define the object
function as

𝑓 (𝑥) =
∑

𝑖,𝑗,𝑖′ ,𝑗′
|𝑥(𝑖, 𝑗) − 𝑥(𝑖′, 𝑗′)|.

Eq. (3) uses a set of auxiliary variables ℎ𝑖,𝑗,𝑖′ ,𝑗′ to linearize the above
nonlinear objective function.

Fact 1. Given 𝑁 observations {𝑍𝑖}𝑁𝑖=1 of a Laplacian distribution
Laplace(𝜇, 𝑏) with zero means 𝜇 = 0, the maximum likelihood estimator
(MLE) of the parameter 𝑏 of the Laplacian distribution is 1

𝑁
∑𝑁

𝑖=1 |𝑍𝑖|.

The fact that the unknown variables 𝑠(𝑦, 𝑙) are binary means that
4

he above model becomes a mixed integer linear programming (MILP) w
roblem,2 rather than an LP problem for the DCT coefficient recovery
roblem.

.2. Two approximation methods

It has been known that as a general problem, the MILP problem is
P-hard so cannot be solved using a polynomial time algorithm. This
eans that we have to seek more efficient approximation methods. We
ropose two such methods, described below.

.2.1. Method 1 — LP with relaxation
We apply a linear relaxation to the constraint 𝑦(𝑘, 𝑙) = 𝑠(𝑦, 𝑙)|𝑦(𝑘, 𝑙)|

o that the DCT coefficient 𝑦(𝑘, 𝑙) with unknown sign bit can be assigned
ny value between −|𝑦(𝑘, 𝑙)| and |𝑦(𝑘, 𝑙)|. In other words, the constraint
ecomes a normal LP problem’s linear condition with upper and lower
ounds:

|𝑦(𝑘, 𝑙)| ≤ 𝑦(𝑘, 𝑙) ≤ |𝑦(𝑘, 𝑙)|.

his change converts the MILP problem to a standard LP problem that
an be solved in polynomial time. After the estimated DCT coefficient
𝑦̂(𝑘, 𝑙) is obtained, we take its sign bit to determine the value of 𝑠(𝑦, 𝑙)
nd the final estimation of the coefficient as 𝑦̃(𝑘, 𝑙) = sign(𝑦̂(𝑘, 𝑙)) ⋅
𝑦(𝑘, 𝑙)|, where the function sign(⋅) extracts the sign of a real number
s a value 1 or −1. Note that if 𝑦̂(𝑘, 𝑙) = 0 its sign bit is undefined, so
e need a strategy to handle such a case. Four possible strategies are:

1) setting the coefficient to zero; (2) always assigning 1; (3) always
ssigning −1; (4) randomly assigning two possible sign bit values by
ollowing the Bernoulli distribution (i.e., assigning 1 with probability 𝑝
nd −1 with probability 𝑞 = 1 − 𝑝).

.2.2. Method 2 — hierarchical MILP or hybrid MILP and LP
In this method, we adopt a ‘‘divide-and-conquer’’ (DAC) strategy to

educe the time complexity of the overall MILP problem without signif-
cantly compromising the visual quality of recovered images. The main
dea is to reduce the MILP problem of the whole image into some MILP
roblems of smaller regions, and then to solve a smaller global MILP
roblem or a global LP problem to align the results of all the smaller
egion-wise MILP problems by refining DC coefficients (brightness) of
ll blocks in all regions. The regions need to be sufficiently small to
ake the smaller region-wise MILP problems solvable with practically

mall-time complexity. This DAC strategy could work because other
han pixels on the boundary of each region, the smaller MILP problem
hould still be able to accurately recover all inner pixel values. The less
ccurate pixel values on the boundary can then be partially fixed using
he final global optimization step.

The global LP step is done by fixing estimated AC coefficients and
ocusing only on adjusting the values of all blocks’ DC coefficients. In
ther words, this step aims to globally align the brightness of all blocks
n all regions such that the resulting image is as smooth as possible.

e have two strategies for this step: (1) allowing different blocks
ithin each region to have different DC coefficients; (2) assigning the

ame DC coefficient to all blocks in the same region, since the internal
moothness of each region should have been addressed by solving the
orresponding region-specific MILP problem. These two strategies are
alled ‘‘block LP’’ and ‘‘region LP’’, respectively.

Normally, MILP problems are solved using a branch-and-bound al-
orithm, whose worst-case complexity is simply the size of the solution
pace. Assuming we have 𝑢 unknown sign bits, the worst-case com-
lexity will be 𝑂(2𝑢). Now, assuming we divide an 𝐻 ×𝑊 image into
egions of fixed size 𝐻 ′×𝑊 ′ and the 𝑢 unknown sign bits are distributed
niformly across all regions, the 𝑚 = 𝐻𝑊

𝐻 ′𝑊 ′ smaller MILP problems

2 More specifically, our problem is a mixed binary integer linear program-
ing, but its complexity is generally the same as the MILP, so in this paper,
e just refer to it as a MILP problem.
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will have an overall worst-case complexity of 𝑂
(

2
𝑢
𝑚 𝑚

)

. The global
ILP problem will have a complexity of 𝑂(2𝐻𝑊 ∕𝑁2 ), and the global LP

roblem will have a polynomial-time complexity of 𝑂
(

(

𝐻𝑊 ∕𝑁2)1.5
)

block LP) or 𝑂
(

𝑚1.5) (region LP) if the most efficient known LP solving
algorithm is used. By fixing 𝐻 ′ × 𝑊 ′ to be a sufficiently small size,
e.g., 64 × 64 or 32 × 256, we can effectively control the overall
complexity of the whole process to be effectively polynomial time.

3.3. Extension to different image encoding methods and settings

In real-world applications, digital images are always encoded fol-
lowing a specific image encoding standard such as JPEG, PNG, and GIF.
Adopting JPEG, one of the most widely used image encoding standards,
as an example, we also considered the following four special encoding
settings of JPEG images in our approximation methods for solving the
optimization problem:

• DC level shifting: From Eq. (1), one can see that DC coefficients are
always non-negative since they represent the average brightness
of a block, which will be always non-negative. To more effectively
encode DC coefficients, in JPEG, pixel values are first subtracted
by half of the range (e.g., 128 for 8-bit images) before the 2-D
DCT is applied. In this case, the sign bit of a DC coefficient can
be positive or negative.

• Quantization of DCT coefficients: Each coefficient 𝑦(𝑘, 𝑙) is divided
by a quantized step and rounded to the nearest integer. Due to the
error caused by quantization, we may need to relax the variable
bounds further to make reasonable predictions. The relaxation for
coefficient 𝑦(𝑘, 𝑙) is

−𝑄(𝑘, 𝑙)∕2 ≤ 𝑌 (𝑘, 𝑙) ⋅𝑄(𝑘, 𝑙) − 𝑦(𝑘, 𝑙) ≤ 𝑄(𝑘, 𝑙)∕2, (4)

where 𝑌 (𝑘, 𝑙) is the quantized DCT coefficient and 𝑄(𝑘, 𝑙) denotes
the corresponding quantization step defined in the quantization
table. The quantization of DCT coefficients means the range of
pixel values calculated from such coefficients may go outside the
valid range (e.g., [0, 255] for 8-bit images), therefore, we need to
consider how to relax the lower and upper bounds of pixel values
by considering the effect of quantization errors. Considering the
extreme case that quantization errors of all DCT coefficients have
the same sign bit as the corresponding element in the 2-D DCT
matrix 𝑨, the maximum quantization error of the pixel at entry
(𝑖, 𝑗) can be defined as

𝜖(𝑖, 𝑗) =
∑

0≤𝑘,𝑙≤𝑁−1
|𝐴(𝑖, 𝑗, 𝑘, 𝑙)| ⋅𝑄(𝑘, 𝑙)∕2.

Considering the additional quantization errors that can be in-
troduced in the solving process of the LP and MILP algorithm,
we increase 𝜖(𝑖, 𝑗) by 1 to ensure such additional errors will still
be tolerated. As a whole, the consideration of such quantization
errors leads to a new condition for 𝑥(𝑖, 𝑗):

𝑥min − (𝜖(𝑖, 𝑗) + 1) ≤ 𝑥(𝑖, 𝑗) ≤ 𝑥max + (𝜖(𝑖, 𝑗) + 1).

• Two’s complement encoding of the DCT coefficients: Another coding
feature in JPEG is the encoding of DCT coefficients using a stan-
dard table similar to the two’s complement format. Accordingly,
in the LP with the relaxation method, the relaxed upper and
lower bounds of a coefficient with an unknown sign bit will be
asymmetric since the non-sign bits are encoded differently for
positive and negative values.

• Encoding of DC coefficients: Each DC coefficient is encoded follow-
ing the differential pulse code modulation method, i.e., what is
encoded is the difference between the current DC coefficient and
a previously encoded one. There are several ways to define the
previous DC coefficient3:

3 JPEG uses the first two, but some other image and video encoding
tandards use the third one as well, so in our paper, we consider all three.
5

– DC prediction mode 1: the previously coded block in the same
row;

– DC prediction mode 2: the previously coded block as scanned
in the raster order;

– DC prediction mode 3: the average of two previously coded
blocks immediately above and/or to the left, scanned in the
raster order.

To deal with the above encoding details on the DC differential, a
new variable 𝑧 is introduced to represent the result. Since we only
know the absolute value of an encoded difference 𝑧, the constraint on

is 𝑧 ∈ {−|𝑧|, |𝑧|}, and the corresponding linear relaxation is −|𝑧| ≤
≤ |𝑧|. The relationship between 𝑧 and the DC coefficient 𝑦(0, 0) is

efined according to the differential encoding scheme. For example,
f prediction mode 1 is adopted, one can deduce 𝑦(0, 0) − 𝑦′(0, 0) =
, where 𝑦′(0, 0) is the DC coefficient of the previous block in the
ame row. The DC coefficient 𝑦(0, 0) is determined by the variable 𝑧.
or comparison, we also define DC prediction mode 0 to be the case
here the original DC coefficients are encoded (i.e., without using the
ifferential encoding scheme). Moreover, the dependency introduced
y the differential encoding may cause error propagation to occur. This
an seriously downgrade the visual quality of restored images.

When the region-wise MILP method is used with DC differential
ncoding, some DC coefficients of the current region are dependent
n DC coefficients from one or more previous regions. We propose
he following three different strategies to solve such inter-regional
ependencies.

• Dependency mode 0 — Removing the dependency completely.
Then, the corresponding encoded difference is not exploited,
although the dependency within the region is still maintained.

• Dependency mode 1 — Solving all regions following the raster
order so that all previously encoded DC coefficients are available
for the current region. For DC prediction mode 2, the leftmost
block of each row relies on the rightmost block of the above row,
so if the region covers more than one block row, the region has
to be as wide as the whole image. Otherwise, some regions to the
left will have dependencies on some other regions to the right that
have not been previously solved. In other words, the valid region
size of this and the next modes can only be 𝑁 ×𝑘1𝑁 or 𝑘2𝑁 ×𝑊 ,
where 𝑘1 ≥ 1 and 𝑘2 > 1. In this mode, the MILP problem of
each region is limited to pixel values and DCT coefficients of the
current region.

• Dependency mode 2 — The same as dependency mode 1 except
for each MILP problem of a region we also consider pixel value
differences between the current region and the one or more
adjacent region(s) that have been previously solved. Since DCT
coefficients and pixel values of all previously solved regions are
already solved, they can be considered known so that the size of
the MILP problem remains the same in terms of the number of
unknown variables.

. Experimental results

In this section, we first give the results of the extensive experiments
onducted on 30 typical images (22 of size 256 × 256 and 8 of size
84 × 256) to verify the performance of the two recovery methods. The
bjective metrics PSNR and SSIM were used as the main quantitative
ndicators for evaluating the visual quality of reconstructed images.

e also conducted subjective quality evaluations of selected images to
nsure the objective quality indicators match the actual visual quality
erceived by us as expert observers. Then, we briefly compare our
ethods with some naive recovery methods. Note that all experiments
ere implemented in Matlab with IBM® ILOG® CPLEX®.4

4 https://www.ibm.com/products/ilog-cplex-optimization-studio

https://www.ibm.com/products/ilog-cplex-optimization-studio
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Fig. 2. Time consumption under different values of threshold.

.1. Performance of the relaxed LP method

In this subsection, we show our thorough analysis of the impact of
everal key parameters and different implementation strategies on the
ecovery performance of the relaxed LP method.

.1.1. Accelerating computation by ignoring small DCT coefficients
To speed up the computation by reducing the size of the solution

pace, we directly set an unknown DCT coefficient to zero if its absolute
alue is lower than a certain threshold 𝑇 . Since the coefficients close
o zero contribute less to pixel values, ignoring them may not affect
he visual quality of recovered results much. To find an appropriate
hreshold that balances the computational complexity and the recovery
uality, we evaluated the computational time and visual quality of
esults at various threshold values under different DC prediction modes.

When there are fewer missing coefficients, we found that the speed
cceleration effect is weak because only a few coefficients have closer-
o-zero values. Increasing the number of missing coefficients 𝑈 in
he ‘‘zigzag’’ order used in the JPEG standard, we found that the
peedup became more apparent and observed a sharp reduction in
he computation time at a specific threshold. As shown in Fig. 2, the
ime reduction happens at 𝑇 = 5 when 𝑈 = 6. The corresponding
ecovery quality at various threshold values is shown in Fig. 3. It can
e seen that the performance is not very sensitive to the change of
hreshold 𝑇 . According to the experimental results, we set 𝑇 = 5 for
ther experiments, which can provide speedup to some extent while
reserving almost the same recovery performance.

.1.2. How the DC encoding scheme affects the recovery result
The DC differential encoding can impact the recovery performance

ecause of the error propagation effect. Table 1 lists the recovery
erformance of the four different DC prediction modes with 𝑈 = 2.
bserving the results in Fig. 3, one can see that the best performance
as obtained in DC prediction mode 0, i.e., when the differential
ncoding is absent. This is consistent with our expectation since there
s no error propagation effect in mode 0. In other modes, if an error
ccurs for one block, then the following blocks depending on it for
C prediction will be affected. As the error propagates over the entire

mage in mode 2, the recovery performance is worst among the four
ases. Mode 1 is slightly better because the error propagates only within
ach row. Although the error also propagates globally in mode 3, the
isual quality of recovered images is superior to that of modes 1 and 2.
his may be attributed to the fact that the DC prediction is dependent
n the block just above and to the left of the current block. So the
6

rror propagation effect might be alleviated by taking the average of
Table 1
Performance comparison under different DC prediction modes (𝑈 = 2).

Prediction mode SSIM PSNR

mean median mean median

0 0.966288 0.973865 29.7510 29.3294
1 0.837763 0.853510 19.8658 20.0097
2 0.747883 0.745756 14.9363 14.0246
3 0.933148 0.950445 23.2667 23.0676

Table 2
Performance comparison using different sign bit recovery methods.

Recovery method SSIM PSNR

mean median mean median

1 0.966288 0.973865 29.7510 29.3294
2 0.966101 0.973961 29.7666 29.3284
3 0.966097 0.973337 29.7318 29.3284
4 0.966134 0.973667 29.7492 29.3287

Table 3
Performance comparison for bound relaxations.

Prediction
mode

Parameter SSIM PSNR

mean median mean median

1

𝑅𝑥 = 0, 𝑅𝑦 = 0 0.816792 0.832737 19.4089 19.0661
𝑅𝑥 = 0, 𝑅𝑦 = 1 0.808481 0.830511 19.0194 18.7751
𝑅𝑥 = 1, 𝑅𝑦 = 0 0.809730 0.832970 19.2732 18.9590
𝑅𝑥 = 1, 𝑅𝑦 = 1 0.803481 0.831153 18.8007 19.0441

2

𝑅𝑥 = 0, 𝑅𝑦 = 0 0.714905 0.724600 14.2486 14.2310
𝑅𝑥 = 0, 𝑅𝑦 = 1 0.703095 0.714658 14.0441 13.2331
𝑅𝑥 = 1, 𝑅𝑦 = 0 0.699856 0.709658 13.7694 13.7121
𝑅𝑥 = 1, 𝑅𝑦 = 1 0.692502 0.701389 13.6705 12.9393

the DC coefficients of the two blocks. To visualize the impact of the
aforementioned error propagation effect, we display four recovered
images under the four prediction modes in Fig. 4.

4.1.3. How the sign bit recovery method affects the recovery result
After solving the linear relaxation of the original problem, one needs

to convert the obtained coefficients to sign bits. A simple way is to
directly extract the sign bits of estimated coefficients. However, this
leads to ambiguity when the obtained coefficients happen to be zero.
In such cases, we adopt the following four methods: (1) setting the
coefficient to zero by ignoring the known absolute value of the DCT
coefficient; (2) setting the sign to 1; (3) setting the sign to −1; and (4)
assigning the sign randomly.

The recovery performances of the above four methods are listed in
Table 2 when 𝑈 = 2 and with the DC differential encoding disabled
(i.e., DC prediction mode 0). As shown in Table 2, the performances
of the first four methods are very similar, suggesting that different
mapping methods have little impact on the visual quality of the final
recovered images. The results are similar for different values of 𝑈 and
prediction modes of DC, too. Based on the results, we adopted method
1 for other experiments.

4.1.4. How the bound relaxation affects the recovery result
As mentioned before, due to the way that DCT coefficients of JPEG

images are encoded, we may need to further relax the ranges of pixels
and coefficients to cope with the quantization error. Let 𝑅𝑥 and 𝑅𝑦
denote whether relax 𝑥 and 𝑦, respectively. Table 3 exhibits the recov-
ery performance of four different combinations of bound relaxations,
when 𝑈 = 2 and the JPEG quality factor (QF) is set to 95. Here,
we only consider the DC prediction modes 1 and 2 used in the JPEG
coding. As shown in Table 3, adding extra relaxations does not improve
the performance, and even degrades the performance in some cases.
Therefore, the additional relaxation looks unnecessary.
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Fig. 3. Quality of the recovery result under different values of threshold 𝑇 : (a) PSNR; (b) SSIM.
Fig. 4. Recovered images under different DC prediction modes (𝑈 = 2): (a) mode 0; (b) mode 1; (c) mode 2; (d) mode 3.
Without the above relaxation, the coefficient 𝑦 and its quantized
version 𝑌 are linearly correlated since 𝑦(𝑘, 𝑙) = 𝑌 (𝑘, 𝑙) ⋅𝑞𝑡(𝑘, 𝑙). However,
this relationship does not exist when 𝑅𝑦 = 1 according to Eq. (4).
Then the number of variables to be determined and time consump-
tion increase considerably. Table 4 shows the time consumption in
the above-relaxed optimization. One can see that relaxing 𝑥 does not
affect the computation efficiency much, but relaxing 𝑦 increases the
computation time by nearly five times. The comparison results of time
consumption and performance for different 𝑈 are quite similar. Based
on the results, we set 𝑅𝑥 = 1 and 𝑅𝑦 = 0 for the subsequent experiments
on JPEG images.
7

4.1.5. How the JPEG quality factor affects the recovery result
When the JPEG quality factor decreases, DCT coefficients are di-

vided by larger quantized values in quantization, which causes more
known coefficients to be zero. Zero-value coefficients provide less use-
ful information for optimization, so the recovery performance becomes
worse. Tables 5 and 6 display the recovery performance on JPEG
images in DC prediction modes 1 and 2, respectively. In most cases,
the recovery performance only drops slightly as the JPEG quality factor
decreases. As the performance drop is relatively small, the optimization
method can still handle JPEG images well.
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Table 4
Speed comparison for bound relaxations.

Prediction mode Parameter Time (mean) (s)

1

𝑅𝑥 = 0, 𝑅𝑦 = 0 42.094
𝑅𝑥 = 1, 𝑅𝑦 = 0 40.338
𝑅𝑥 = 0, 𝑅𝑦 = 1 204.371
𝑅𝑥 = 1, 𝑅𝑦 = 1 181.869

2

𝑅𝑥 = 0, 𝑅𝑦 = 0 42.282
𝑅𝑥 = 1, 𝑅𝑦 = 0 41.649
𝑅𝑥 = 0, 𝑅𝑦 = 1 176.555
𝑅𝑥 = 1, 𝑅𝑦 = 1 208.734

Table 5
Performance comparison under different quality factors in DC prediction mode 1.
𝑈 QF SSIM PSNR

mean median mean median

1
75 0.867648 0.909504 21.6592 21.7493
85 0.883085 0.910543 23.1157 23.9398
95 0.889687 0.914645 22.2965 22.8775

2
75 0.778408 0.785937 17.9644 17.6650
85 0.801444 0.825158 18.6412 18.5521
95 0.808481 0.830511 19.0194 18.7751

4
75 0.658763 0.666987 15.6341 15.4466
85 0.679338 0.662292 15.7255 15.6664
95 0.698067 0.693938 15.8881 15.9850

8
75 0.526632 0.508482 13.8857 13.9358
85 0.568085 0.559700 14.2235 13.7504
95 0.569394 0.563065 14.2680 14.3125

Table 6
Performance comparison under different quality factors in DC prediction mode 2.
𝑈 QF SSIM PSNR

mean median mean median

1
75 0.819763 0.847841 17.4260 17.0793
85 0.820909 0.842643 17.6470 17.2557
95 0.816946 0.838111 17.4661 16.9942

2
75 0.672748 0.677340 13.6551 13.1976
85 0.693293 0.710507 13.9767 13.0946
95 0.703095 0.714658 14.0441 13.2331

4
75 0.543130 0.554039 11.3950 10.8837
85 0.579811 0.546006 12.3227 11.3719
95 0.602612 0.583554 12.8899 12.5304

8
75 0.436596 0.436948 10.9182 10.9728
85 0.455535 0.439074 11.0495 10.9998
95 0.481800 0.457175 11.5209 11.0480

4.1.6. How the number of missing sign bits affects the recovery result
When more sign bits are missing, the optimization becomes more

intractable and the recovery performance should degrade accordingly.
We conducted experiments based on the assumption that in each DCT
block, sign bits of the 𝑈 most significant DCT coefficients are missing.
To facilitate comparison, we increased the number of missing sign
bits in the ‘‘zigzag’’ order used in JPEG. Since higher-frequency DCT
coefficients have less energy statistically, we predicted that the reduc-
tion of recovery performance would get smaller as 𝑈 increases. Fig. 5
hows the mean visual quality of restored images given some missing
oefficients and a DC prediction mode. The PSNR values of recovered
mages drop rapidly when 𝑈 ≤ 10, and then decreases relatively slowly.
n terms of SSIM, the general trend is that the performance keeps
ecreasing at a moderate speed, and the slope gets smaller with larger
. We also conducted experiments on JPEG images with a QF of 95 and

he corresponding results are shown in Table 7. Similarly, the visual
uality drops rapidly when 𝑈 ≤ 8, and then the trend gradually flattens.

.1.7. Time consumption
Similar to [21], the time complexity of the resulting linear relax-

4 4
8

tion problem is 𝑂(𝑛 𝑚 𝑈 ), where 𝑛 ×𝑚 is the size of the input image.
Table 7
Performance comparison under the different number of missing coefficients.

Prediction mode U SSIM PSNR

mean median mean median

1

1 0.889687 0.914645 22.2965 22.8775
2 0.808481 0.830511 19.0194 18.7751
4 0.698067 0.693938 15.8881 15.9850
8 0.569394 0.563065 14.2680 14.3125
16 0.437425 0.398661 12.5036 12.4514

2

1 0.816946 0.838111 17.4661 16.9942
2 0.703095 0.714658 14.0441 13.2331
4 0.602612 0.583554 12.8899 12.5304
8 0.481800 0.457175 11.5209 11.0480
16 0.372325 0.320282 10.1647 9.9707

Table 8
Time consumption on JPEG images.
𝑈 QF Time (s)

mode 1 mode 2

1
75 23.241 23.407
85 23.404 23.320
95 23.539 24.463

2
75 43.089 41.257
85 36.189 36.599
95 38.426 38.316

4
75 52.266 53.773
85 41.273 43.012
95 38.626 37.239

8
75 78.752 72.742
85 57.214 49.458
95 40.130 50.978

Fig. 6 shows the average time consumption with respect to different
numbers of missing coefficients, and the increase is roughly in line with
the theoretical estimate. Besides, we found that the time consumption
across different images can vary by several times. The optimization is
particularly time-consuming for images with monotonous backgrounds.
In these backgrounds, most of the coefficients are equal to zero and
provide less useful information, which causes the optimization to be
more intractable and therefore consume more time. As the quality fac-
tor descends, the computational time rises remarkably, which may be
explained by the existence of more zero-value coefficients after quan-
tization (less available information) to find the optimal solution. The
time consumption on some JPEG images with various QF is reported in
Table 8.

4.2. Performance of the hierarchical MILP and the hybrid MILP and LP
methods

For the hierarchical MILP and the hybrid MILP and LP methods, we
mainly focused on the effect of the region size, the global alignment
method, and the DC encoding scheme on the recovery performance,
and also the run-time performance.

4.2.1. Time complexity
The time complexity of the regional MILP problems increases ex-

ponentially with the number of unknown coefficients. Similar to the
relaxed LP method, we attempted to accelerate computation by ig-
noring small coefficients. However, we found that the acceleration
effect varies dramatically across different images. Moreover, even for
different regions of the same image, the time consumption can vary by a
factor of tens. As a typical example, Table 9 shows the time consumed
when solving each of 16 regional MILP problems of a test image of
size 256 × 256, which is shown in Fig. 7(a), with different thresholds,
where region size is 64 × 64 and 𝑈 = 5. The threshold 𝑇 does not seem
o have a straightforward effect on how the time complexity can be
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Fig. 5. Performance comparison under the different number of missing coefficients: (a) PSNR; (b) SSIM.
Fig. 6. Time consumption with the different number of missing coefficients.

Table 9
Time consumed (in seconds) of solving each of 16 regional MILP problems of the test
image shown in Fig. 7(a).
𝑇 Row Column

1 2 3 4

0

1 202.1 13.6 22.9 600
2 123.0 18.1 33.0 498.2
3 231.4 241.0 278.6 493.6
4 38.9 14.5 232.0 12.7

5

1 171.8 5.5 4.2 600
2 32.9 13.5 15.5 270.1
3 159.5 174.6 238.6 232.7
4 23.4 8.5 30.3 6.2

10

1 177.5 4.2 3.9 600
2 23.0 9.5 7.1 222.8
3 22.2 132.9 52.5 158.7
4 15.3 3.9 17.3 4.1

reduced, therefore, we set 𝑇 = 0 in subsequent experiments. Besides, we
et a time-out value for each MILP problem depending on the problem
cale, which was empirically set to be 600 s. This time-out value helps
ssure that the optimization will always finish within a finite time and
xcludes unrealistic settings that require an excessive amount of time
pent for the optimization.
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Table 10
Performance comparison for various region sizes.
𝑈 Region size SSIM PSNR

mean median mean median

3

16 × 16 0.929371 0.930749 22.4803 22.9342
32 × 32 0.974381 0.979044 31.1263 31.0731
64 × 64 0.974166 0.985446 33.7680 32.9951
128 × 128 0.975698 0.987922 34.0427 33.2602

5

16 × 16 0.893620 0.895441 20.4611 20.6191
32 × 32 0.961334 0.961285 28.4843 29.2054
64 × 64 0.967327 0.972655 32.0484 30.5980
128 × 128 0.968027 0.975557 31.9509 30.1603

7

16 × 16 0.854239 0.849461 18.9215 19.0734
32 × 32 0.946571 0.948394 27.0813 27.0474
64 × 64 0.951336 0.958771 30.4335 29.5913
128 × 128 0.940849 0.949296 28.8089 28.0234

4.2.2. How the region size affects the recovery result
The region size is an essential parameter for the hierarchical MILP

and the hybrid MILP and LP methods. In theory, the larger the region
size, the better the recovery performance, at the cost of higher time
complexity. There should be an adequate large size to balance the
recovery performance and the computational complexity. Specifically,
increasing the size can only provide a slight improvement in recovery
performance, but places an unacceptable burden on computation.

To explore the effect of the region size, we conducted experiments
with various region sizes and different values of 𝑈 . Without loss of
generality, we divided images into some square regions. The visual
quality of recovered images in the first stage is shown in Table 10. The
performance gap between different sizes (from 16 × 16 to 64 × 64) is
consistent across different values of 𝑈 . We observed a big improvement
when expanding the size from 16 × 16 to 32 × 32. Keeping increasing
the size, we found that the improvement of the recovery performance
was not significant, while the time consumed increased substantially.
Although the time limit was already reached when solving the MILP
problem for a region of size 64 × 64 and 𝑈 = 7, we still tried a larger
size of 128 × 128 with a quadrupled time limit to test the potential
of the regional MILP problem-based methods. It was observed that the
visual quality instead declined when 𝑈 = 7 due to the time restriction.
As a whole, 32 × 32 seems to be a suitable region size, considering both

the time complexity and the recovery performance.
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Fig. 7. Recovered images with different methods (𝑈 = 5): (a) the original image; (b) naive (negative); (c) naive (positive); (d) naive (LP); (e) relaxed LP; (f) hierarchical MILP.
4.2.3. How the global brightness alignment strategy affects the recovery
result

In the second stage, the DC coefficients are further optimized to
align the global brightness. We adopted three global alignment strate-
gies including the global MILP, the block LP, and the region LP. The
global optimization can be effective for smaller region sizes used in the
first stage. In contrast, the additional optimization may be unnecessary
when the region size is large enough.

The mean visual quality results of recovered images are shown in
Tables 11 and 12. Note that we disabled the DC differential encoding
here to focus on the alignment effect solely. For comparison, the results
in the first stage are also given. There is a noticeable improvement
when the region size is 16 × 16. Increasing the region size further, the
global alignment has negligible effect and even causes a slight decrease
in visual quality. Besides, we observed that the global MILP strategies
10
can provide stable and better improvement compared to the other two
LP-based alignment strategies. This indicates that the hierarchical MILP
method is better than the hybrid MILP and LP methods.

4.2.4. How the DC encoding scheme and the dependency mode affect the
recovery result

The DC differential encoding causes dependency between divided
regions. We designed three DC dependency modes in Section 3.3 to
solve the dependency. Here, the global alignment is necessary for
dependency mode 0, since the dependency is simply removed, which
leads to severe brightness misalignment, as shown in Fig. 8. The global
MILP alignment strategy was adopted in the second stage.

Compared with the simple removal of dependency in mode 0, more
subtle strategies are developed in the other two modes to resolve the
dependency, in the hope of achieving a better performance. However,
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Fig. 8. Recovered images using dependency mode 0 in the first stage for different prediction modes: (a) mode 0; (b) mode 1.
Table 11
The mean visual quality of recovered images under various configurations (SSIM).
𝑈 Region size First stage Global MILP LP

block region

3
16 × 16 0.929371 0.951401 0.893120 0.903151
32 × 32 0.974381 0.965687 0.915242 0.948924
64 × 64 0.974166 0.965202 0.918519 0.970792

5
16 × 16 0.893620 0.925594 0.853869 0.859923
32 × 32 0.961334 0.954448 0.900525 0.934354
64 × 64 0.967327 0.958604 0.909761 0.963775

7
16 × 16 0.854239 0.891932 0.825837 0.826367
32 × 32 0.946571 0.934435 0.881744 0.916953
64 × 64 0.951336 0.941628 0.894671 0.946944

Table 12
The mean visual quality of recovered images under various configurations (PSNR).
𝑈 Region size First stage Global MILP LP

block region

3
16 × 16 22.4803 28.5883 23.4662 24.1287
32 × 32 31.1263 32.0510 24.6285 29.7521
64 × 64 33.7680 31.2680 25.2650 32.2096

5
16 × 16 20.4611 27.2269 21.6070 22.3115
32 × 32 28.4843 29.7011 24.1580 28.2956
64 × 64 32.0484 30.2606 25.1237 30.8900

7
16 × 16 18.9215 25.2569 20.5880 20.8274
32 × 32 27.0813 27.9677 22.9820 26.7920
64 × 64 30.4335 29.4926 24.2791 29.6749

the error propagation effect should also be considered when the DC
differential encoding is considered. Our experimental results showed
that the error propagation across different regions cannot be handled
well in mode 1, leading to inferior recovery performance compared
to mode 0 across different DC prediction modes. We also found that,
for mode 2, a slight improvement over mode 1 can be achieved by
considering pixel value differences between adjacent regions in the
first stage. For mode 0, there is no obvious difference in the recovery
performance among the three DC prediction modes. Table 13 lists the
recovery performance under different DC prediction modes and 𝑈 =
5 for 22 images of size 256 × 256.5 The region size 32 × 32 was
adopted in most cases as this is the size balancing the computational
complexity and the recovery performance well. For DC prediction mode
2, considering the special requirements on the region size, we chose

5 We focused on images of size 256 × 256 to ease comparison across
different dependency modes by limiting the number of different region sizes
for dependency modes 1 and 2.
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three representative values for the region sizes: 8 × 128, 16 × 256, and
32 × 256 for comparison, where the number of pixels of the first one
is the same as that of the size 32 × 32. It can be seen that the visual
quality is considerably degraded when the DC prediction is introduced.
For instance, compared with the case of 𝑈 = 7 in Tables 11 and 12, the
recovery performance under DC prediction mode 2 with 𝑈 = 5 is even
worse than the case of DC prediction mode 0 with 𝑈 = 7, although
in the former case, there are fewer sign bits missed per block. Such a
phenomenon implies that encrypting the sign bits with the differential
DC encoding may provide better security than encrypting more sign
bits without it.

4.3. Performance comparison

The two previous subsections show results about some key param-
eters and methods for identifying suitable settings for our recovery
methods. For the hierarchical MILP method, the region size 32 × 32
was selected to balance the recovery performance and the computation
complexity. To show the effectiveness of our methods, we present
three naive methods as benchmarks, since there are no other known
solutions based on more advanced techniques in the literature. The
naive recovery methods just attempt to restore the unknown parts
with simple error-concealment strategies. For instance, the introduced
method ‘‘naive (negative)’’ in Table 14 just sets the signs of missing
coefficients to negative, while ‘‘naive (positive)’’ is the converse. For
‘‘naive (LP)’’, the unknown coefficients are directly assigned by the
results obtained in the linear relaxation problem.

By exploiting the summarized properties and conducting an op-
timization process on the unknown coefficients, the two proposed
approximation methods remarkably outperform all the naive methods.
Table 14 shows the recovery performance of relaxed LP, MILP, and the
naive methods in DC prediction mode 0. We also show some restored
images using different recovery methods in Fig. 7. The recovered
results of the ‘‘naive (negative)’’ and ‘‘naive (positive)’’ methods do not
display any detailed visual information. For the ‘‘naive (LP)’’ method,
most of the edge information is lost in the recovered image due to
the smoothness maximization of the objective function. Comparing
Figs. 7(d) and (e), one can see that our relaxed LP method restores
the edge information much better by employing the sign extraction
function and that the hierarchical MILP method produced the best
result.

5. Further discussions, limitations, and future work

The experiments were conducted with 30 standard test images of
two standard image sizes (256 × 256 and 384 × 256). Since these im-
ages have been widely used in the image processing field and represent
a wide range of natural images, we are confident that our experimental
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Table 13
Performance comparison for DC dependency modes.

Prediction mode Dependency mode Region size SSIM PSNR

mean median mean median

1
0

32 × 32
0.910119 0.943161 25.6732 25.5816

1 0.893017 0.932397 24.9979 25.2866
2 0.917904 0.946864 24.4904 24.5651

2
0 32 × 32 0.904061 0.936648 24.2066 24.0686

1
8 × 128 0.877833 0.886896 21.5132 21.0065
16 × 256 0.927809 0.929456 24.5208 23.9448
32 × 256 0.874819 0.905813 22.6957 21.8742

2
8 × 128 0.840171 0.866169 19.5895 19.9287
16 × 256 0.929305 0.949870 23.9961 24.6377
32 × 256 0.884110 0.902786 22.9986 20.5920

3
0

32 × 32
0.924762 0.948330 25.5435 24.6833

1 0.892731 0.924572 23.0082 22.1380
2 0.930015 0.957233 24.6677 23.9453
t
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Table 14
Performance comparison for recovery methods.

U Method SSIM PSNR

mean median mean median

3

Naive (negative) 0.591160 0.586278 13.2847 13.7387
Naive (positive) 0.570384 0.560025 11.9694 12.0444
Naive (LP) 0.876770 0.897395 19.4387 19.0746
Relaxed LP 0.928892 0.933274 24.7634 24.3539
Hierarchical MILP 0.965687 0.981965 32.0510 31.2051

5

Naive (negative) 0.537465 0.537715 12.7910 12.4485
Naive (positive) 0.518649 0.491507 11.6627 11.6393
Naive (LP) 0.818258 0.835865 17.3487 17.0201
Relaxed LP 0.856900 0.858506 22.4608 22.4850
Hierarchical MILP 0.954448 0.964019 29.7011 29.7697

7

Naive (negative) 0.492325 0.482679 12.3514 12.1613
Naive (positive) 0.474957 0.449064 11.4660 11.3202
Naive (LP) 0.766469 0.787071 16.0110 15.6254
Relaxed LP 0.812352 0.811006 21.1414 20.5616
Hierarchical MILP 0.934435 0.941955 27.9677 28.4694

results are generalizable to other natural images. We did not attempt
to use a larger image dataset because of the time complexity of our
experiments. We call other researchers to validate our results using
more and larger test images. To facilitate further validation of our
work, we released the source code of our proposed methods and the
test images we used publicly at the following GitHub repository: https:
//github.com/ChengqingLi/DCT_SBR.

It deserves noting that Property 1, which is the theoretical foun-
dation of our optimization model, applies to natural images captured
using a real image-capturing device only. The Laplacian distribution
also holds only statistically across many pixel pairs with a diverse range
of pixel values, so for smaller images and some images with a smaller
range of pixel values (e.g., drawings and cartoons), the distribution
may not be correct or accurate. Therefore, the performance of the
optimization model for such less natural images may not be as good
as for the natural images we tested in our experiments. Adapting the
global model to such less natural or non-natural images will require
developing a different statistical model, so more future research is
needed.

Although the experiments we conducted were for gray-scale im-
ages only, the method can be easily applied to RGB color images
or multi-spectral images by treating each channel as an independent
gray-scale image. It is possible to explore the cross-channel correlation
to potentially improve the performance of the multiple independent
channel-specific models. Similarly, our sign bit recovery methods can
also be applied to recover digital video files by treating each frame
as an independent image, and there are possibilities to explore the
temporal (inter-frame) correlation to further improve the visual quality
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of each recovered video frame and of the whole video. Revising our r
proposed models and methods for such more complicated images and
videos and conducting new experiments will require a substantial
amount of new work, so is left as a future research direction.

For the hierarchical MILP and the hybrid MILP and LP methods, our
experimental results showed that there is a generally optimal region
size balancing the recovery performance and the run-time performance.
Theoretically speaking, increasing the region size to the maximum (the
image size itself) should give the best recovery performance as the
model is incrementally reduced to the original MILP model, however,
this will increase the run-time performance exponentially so does not
give the best balance. When only reasonable region sizes are con-
sidered, our experimental results showed that there could still be an
optimal choice in terms of visual quality. According to the SSIM and
PSNR values obtained from our experiments, this optimal region size
seems to be between 32 × 32 and 64 × 64. We do not expect that
his can be easily analyzed theoretically due to the complexity of
xisting methods for solving MILP problems, but leave such a potential
heoretical analysis as future work.

The benchmark methods we used are largely naive error-
oncealment attacks. This is because no other existing methods have
een proposed to recover sign bits beyond such naive attacks. We hope
hat our work will inspire other researchers to propose more advanced
ign bit recovery methods, which can then be compared with what we
resent in this paper.

In addition to the above limitations and future research directions,
here are other future research work to improve the performance of
ur proposed models and methods. For instance, more specialized
ptimization algorithms may be developed to overcome the general
ifficulties of solving MILP problems (e.g., the min-cost flow algorithm
pecially designed for recovering missing DC coefficients in digital
mages based on the blockwise DCT [47]), more than two layers can be
sed in the hierarchical MILP method to balance the visual quality and
he time complexity, location-varying region sizes depending on the
moothness of different regions can be considered, advanced machine
earning methods can be used to help construct more image-specific
ptimization models, and extend our models and methods to other
ransforms used in multimedia coding standards (e.g., DWT in JPEG
000).

. Conclusion

This paper reports our comprehensive study on the sign bit recovery
roblem of DCT coefficients in digital images. The problem is modeled
s a mixed integer linear programming (MILP) problem with the aid
f two special properties of natural images. The NP-hard optimization
roblem was practically addressed by two approximate methods, one
ased on relaxed LP and the other on hierarchical MILP, both yielding

easonably good recovery results. Special considerations are taken into

https://github.com/ChengqingLi/DCT_SBR
https://github.com/ChengqingLi/DCT_SBR
https://github.com/ChengqingLi/DCT_SBR
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account to apply the approximation methods to JPEG-encoded im-
ages. Extensive experiments were conducted under various conditions
to demonstrate the significantly better performance of the proposed
methods than other known native methods. The results indicate that the
proposed methods can be used in many real-world applications, such
as attacking selective encryption schemes based on sign-bit encryption
and the development of more efficient image compression and error
correction schemes. The optimization models and methods we proposed
and experiments we conducted can be further improved and general-
ized to handle different types of images and videos, so we call for more
researchers to conduct follow-up research.

CRediT authorship contribution statement

Ruiyuan Lin: Investigation, Software, Writing – review & editing,
Methodology, Visualization, Data curation. Sheng Liu: Investigation,
Software, Validation, Writing – review & editing, Visualization, Writing
– original draft. Jun Jiang: Investigation, Software, Validation, Writing
– review & editing, Visualization, Writing – original draft. Shujun
Li: Conceptualization, Data curation, Formal analysis, Investigation,
Methodology, Project administration, Resources, Software, Supervision,
Validation, Visualization, Writing – original draft, Writing – review &
editing. Chengqing Li: Conceptualization, Formal analysis, Funding
acquisition, Investigation, Methodology, Resources, Supervision, Val-
idation, Visualization, Writing – original draft, Writing – review &
editing. C.-C. Jay Kuo: Conceptualization, Investigation, Methodology,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We have released our source code and the test images used publicly
at the following GitHub repository: https://github.com/ChengqingLi/
DCT_SBR.

Acknowledgments

The work of Chengqing Li was partly supported by the National
Natural Science Foundation of China, under the reference numbers
92267102 and 61772447.

References

[1] N. Ahmed, How I came up with the discrete cosine transform, Digit. Signal
Process. 1 (1) (1991) 4–5, http://dx.doi.org/10.1016/1051-2004(91)90086-Z.

[2] G.C. Langelaar, R.L. Lagendijk, Optimal differential energy watermarking of DCT
encoded images and video, IEEE Trans. Image Process. 10 (1) (2001) 148–158,
http://dx.doi.org/10.1109/83.892451.

[3] T.K. Das, S. Maitra, J. Mitra, Cryptanalysis of optimal differential energy
watermarking (DEW) and a modified robust scheme, IEEE Trans. Signal Process.
53 (2) (2005) 768–775, http://dx.doi.org/10.1109/TSP.2004.839930.

[4] J. Wu, J. Wu, H. Cui, C. Luo, X. Sun, F. Wu, DAC-Mobi: Data-assisted communi-
cations of mobile images with cloud computing support, IEEE Trans. Multimed.
18 (5) (2016) 893–904, http://dx.doi.org/10.1109/TMM.2016.2535727.

[5] G.K. Wallace, The JPEG still picture compression standard, Commun. ACM 34
(4) (1991) 30–44, http://dx.doi.org/10.1145/103085.103089.

[6] K. Jack, Video Demystified: A Handbook for the Digital Engineer, Elsevier, 2011,
http://dx.doi.org/10.1016/B978-0-7506-8395-1.X5000-7.

[7] G.J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the High Efficiency
Video Coding (HEVC) standard, IEEE Trans. Circuits Syst. Video Technol. 22 (12)
(2012) 1649–1668, http://dx.doi.org/10.1109/TCSVT.2012.2221191.

[8] G. Lakhani, Distribution-based restoration of DCT coefficients, IEEE Trans.
Circuits Syst. Video Technol. 10 (5) (2000) 819–823, http://dx.doi.org/10.1109/
13

76.856460.
[9] E.Y. Lam, G.J. W., A mathematical analysis of the DCT coefficient distributions
for images, IEEE Trans. Image Process. 9 (10) (2000) 1661–1666, http://dx.doi.
org/10.1109/83.869177.

[10] J. Jiang, G. Feng, The spatial relationship of DCT coefficients between a block
and its sub-blocks, IEEE Trans. Signal Process. 50 (5) (2002) 1160–1169, http:
//dx.doi.org/10.1109/78.995072.

[11] L. Xu, Y. Wang, Y. Wang, Major coefficients recovery: A compressed data
gathering scheme for wireless sensor network, in: Proc. GLOBECOM 2011, 2011,
http://dx.doi.org/10.1109/GLOCOM.2011.6134276.

[12] K.-W. Hung, K. Wang, J. Jiang, Image up-sampling using deep cascaded neural
networks in dual domains for images down-sampled in DCT domain, J. Vis.
Commun. Image Represent. 56 (2018) 144–149, http://dx.doi.org/10.1016/j.
jvcir.2018.09.005.

[13] S.I. Young, A.T. Naman, D. Taubman, COGL: Coefficient graph Laplacians for
optimized JPEG image decoding, IEEE Trans. Image Process. 28 (1) (2019)
343–355, http://dx.doi.org/10.1109/TIP.2018.2867943.

[14] S. Li, Perceptual encryption of digital images and videos, in: Perceptual Digital
Imaging: Methods and Applications, CRC Press, LLC, 2012, pp. 431–468, http:
//dx.doi.org/10.1201/b13016-15.

[15] W. Zeng, S. Lei, Efficient frequency domain selective scrambling of digital video,
IEEE Trans. Multimed. 5 (1) (2003) 118–129, http://dx.doi.org/10.1109/TMM.
2003.808817.

[16] S. Li, G. Chen, A. Cheung, B. Bhargava, K.-T. Lo, On the design of perceptual
MPEG-video encryption algorithms, IEEE Trans. Circuits Syst. Video Technol. 17
(2) (2007) 214–223, http://dx.doi.org/10.1109/TCSVT.2006.888840.

[17] F. Dufaux, T. Ebrahimi, Scrambling for privacy protection in video surveillance
systems, IEEE Trans. Circuits Syst. Video Technol. 18 (8) (2008) 1168–1174,
http://dx.doi.org/10.1109/TCSVT.2008.928225.

[18] H. Sohn, W. De Neve, Y.M. Ro, Privacy protection in video surveillance systems:
Analysis of subband-adaptive scrambling in JPEG XR, IEEE Trans. Circuits Syst.
Video Technol. 21 (2) (2011) 170–177, http://dx.doi.org/10.1109/TCSVT.2011.
2106250.

[19] T. Uehara, R. Safavi-Naini, P. Ogunbona, Recovering DC coefficients in block-
based DCT, IEEE Trans. Image Process. 15 (11) (2006) 3592–3596, http://dx.
doi.org/10.1109/TIP.2006.881939.

[20] S. Li, J.J. Ahmad, D. Saupe, C.-C.J. Kuo, An improved DC recovery method
from AC coefficients of DCT-transformed images, in: Proc. ICIP 2010, 2010, pp.
2085–2088, http://dx.doi.org/10.1109/ICIP.2010.5653467.

[21] S. Li, A. Karrenbauer, D. Saupe, C.-C.J. Kuo, Recovering missing coefficients
in DCT-transformed images, in: Proc. ICIP 2011, 2011, pp. 1537–1540, http:
//dx.doi.org/10.1109/ICIP.2011.6115738.

[22] N.N. Ponomarenko, A.V. Bazhyna, K.O. Egiazarian, Prediction of signs of DCT
coefficients in block-based lossy image compression, in: Image Processing: Algo-
rithms and Systems V, in: Proceedings of SPIE, vol. 6497, 2007, pp. 191–198,
http://dx.doi.org/10.1117/12.713872.

[23] J. Koyama, A. Yamori, K. Kazui, S. Shimada, A. Nakagawa, Coefficient sign
bit compression in video coding, in: Proc. PCS 2012, 2012, pp. 385–388,
http://dx.doi.org/10.1109/PCS.2012.6213370.

[24] G. Lakhani, Modifying JPEG binary arithmetic codec for exploiting inter/untra-
block and DCT coefficient sign redundancies, IEEE Trans. Image Process. 22 (4)
(2013) 1326–1339, http://dx.doi.org/10.1109/TIP.2012.2228492.

[25] A. Filippov, V. Rufitskiy, A. Karabutov, J. Chen, Residual sign prediction in
transform domain for next-generation video coding, APSIPA Trans. Signal Inf.
Process. 8 (2019) e24, http://dx.doi.org/10.1017/ATSIP.2019.6.

[26] K. Suzuki, C. Tsutake, K. Takahashi, T. Fujii, Compressing sign information in
DCT-based image coding via deep sign retrieval, 2022, arXiv:2209.10712.

[27] C. Shi, B. Bhargava, A fast MPEG video encryption algorithm, in: Proc. ACM
MM 1998, 1998, pp. 81–88, http://dx.doi.org/10.1145/290747.290758.

[28] Y. Wang, M. O’Neill, F. Kurugollu, A tunable encryption scheme and analysis
of fast selective encryption for CAVLC and CABAC in H.264/AVC, IEEE Trans.
Circuits Syst. Video Technol. 23 (9) (2013) 1476–1490, http://dx.doi.org/10.
1109/TCSVT.2013.2248588.

[29] H. Hofbauer, A. Uhl, A. Unterweger, Transparent encryption for HEVC using bit-
stream-based selective coefficient sign encryption, in: Proc. IEEE ICASSP 2014,
2014, pp. 1986–1990, http://dx.doi.org/10.1109/ICASSP.2014.6853946.

[30] X. Ma, W. Zeng, L.T. Yang, D. Zou, H. Jin, Lossless ROI privacy protection of
H.264/AVC compressed surveillance videos, IEEE Trans. Emerg. Top. Comput. 4
(3) (2016) 349–362, http://dx.doi.org/10.1109/TETC.2015.2460462.

[31] F. Peng, X. Zhang, Z.-X. Lin, M. Long, A tunable selective encryption scheme
for H.265/HEVC based on chroma IPM and coefficient scrambling, IEEE Trans.
Circuits Syst. Video Technol. 30 (8) (2020) 2765–2780, http://dx.doi.org/10.
1109/TCSVT.2019.2924910.

[32] S. Zhou, Y. He, Y. Liu, C. Li, J. Zhang, Multi-channel deep networks for block-
based image compressive sensing, IEEE Trans. Multimed. 23 (2021) 2627–2640,
http://dx.doi.org/10.1109/TMM.2020.3014561.

[33] S.-C. Pei, K.-W. Chang, Binary signal perfect recovery from partial DFT coeffi-
cients, IEEE Trans. Signal Process. 70 (2022) 3848–3861, http://dx.doi.org/10.
1109/TSP.2022.3190615.

[34] H. Hofbauer, A. Unterweger, A. Uhl, Encrypting only AC coefficient signs
considered harmful, in: Proc. ICIP 2015, 2015, pp. 3740–3744, http://dx.doi.
org/10.1109/ICIP.2015.7351503.

https://github.com/ChengqingLi/DCT_SBR
https://github.com/ChengqingLi/DCT_SBR
https://github.com/ChengqingLi/DCT_SBR
http://dx.doi.org/10.1016/1051-2004(91)90086-Z
http://dx.doi.org/10.1109/83.892451
http://dx.doi.org/10.1109/TSP.2004.839930
http://dx.doi.org/10.1109/TMM.2016.2535727
http://dx.doi.org/10.1145/103085.103089
http://dx.doi.org/10.1016/B978-0-7506-8395-1.X5000-7
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1109/76.856460
http://dx.doi.org/10.1109/76.856460
http://dx.doi.org/10.1109/76.856460
http://dx.doi.org/10.1109/83.869177
http://dx.doi.org/10.1109/83.869177
http://dx.doi.org/10.1109/83.869177
http://dx.doi.org/10.1109/78.995072
http://dx.doi.org/10.1109/78.995072
http://dx.doi.org/10.1109/78.995072
http://dx.doi.org/10.1109/GLOCOM.2011.6134276
http://dx.doi.org/10.1016/j.jvcir.2018.09.005
http://dx.doi.org/10.1016/j.jvcir.2018.09.005
http://dx.doi.org/10.1016/j.jvcir.2018.09.005
http://dx.doi.org/10.1109/TIP.2018.2867943
http://dx.doi.org/10.1201/b13016-15
http://dx.doi.org/10.1201/b13016-15
http://dx.doi.org/10.1201/b13016-15
http://dx.doi.org/10.1109/TMM.2003.808817
http://dx.doi.org/10.1109/TMM.2003.808817
http://dx.doi.org/10.1109/TMM.2003.808817
http://dx.doi.org/10.1109/TCSVT.2006.888840
http://dx.doi.org/10.1109/TCSVT.2008.928225
http://dx.doi.org/10.1109/TCSVT.2011.2106250
http://dx.doi.org/10.1109/TCSVT.2011.2106250
http://dx.doi.org/10.1109/TCSVT.2011.2106250
http://dx.doi.org/10.1109/TIP.2006.881939
http://dx.doi.org/10.1109/TIP.2006.881939
http://dx.doi.org/10.1109/TIP.2006.881939
http://dx.doi.org/10.1109/ICIP.2010.5653467
http://dx.doi.org/10.1109/ICIP.2011.6115738
http://dx.doi.org/10.1109/ICIP.2011.6115738
http://dx.doi.org/10.1109/ICIP.2011.6115738
http://dx.doi.org/10.1117/12.713872
http://dx.doi.org/10.1109/PCS.2012.6213370
http://dx.doi.org/10.1109/TIP.2012.2228492
http://dx.doi.org/10.1017/ATSIP.2019.6
http://arxiv.org/abs/2209.10712
http://dx.doi.org/10.1145/290747.290758
http://dx.doi.org/10.1109/TCSVT.2013.2248588
http://dx.doi.org/10.1109/TCSVT.2013.2248588
http://dx.doi.org/10.1109/TCSVT.2013.2248588
http://dx.doi.org/10.1109/ICASSP.2014.6853946
http://dx.doi.org/10.1109/TETC.2015.2460462
http://dx.doi.org/10.1109/TCSVT.2019.2924910
http://dx.doi.org/10.1109/TCSVT.2019.2924910
http://dx.doi.org/10.1109/TCSVT.2019.2924910
http://dx.doi.org/10.1109/TMM.2020.3014561
http://dx.doi.org/10.1109/TSP.2022.3190615
http://dx.doi.org/10.1109/TSP.2022.3190615
http://dx.doi.org/10.1109/TSP.2022.3190615
http://dx.doi.org/10.1109/ICIP.2015.7351503
http://dx.doi.org/10.1109/ICIP.2015.7351503
http://dx.doi.org/10.1109/ICIP.2015.7351503


Journal of Visual Communication and Image Representation 98 (2024) 104045R. Lin et al.
[35] S. Zhou, X. Deng, C. Li, Y. Liu, H. Jiang, Recognition-oriented image compressive
sensing with deep learning, IEEE Trans. Multimed. 25 (2023) 2022–2032, http:
//dx.doi.org/10.1109/TMM.2022.3142952.

[36] F.G.B. De Natale, C. Perra, G. Vernazza, DCT information recovery of erroneous
image blocks by a neural predictor, IEEE J. Sel. Areas Commun. 18 (6) (2000)
1111–1121, http://dx.doi.org/10.1109/49.848260.

[37] J. Park, D.-C. Park, R.J. Marks, M.A. El-Sharkawi, Block loss recovery in DCT
image encoding using POCS, in: Proc. ISCAS 2002, vol. 5, 2002, pp. 245–248,
http://dx.doi.org/10.1109/ISCAS.2002.1010686.

[38] M. Bingabr, P.K. Varshney, Recovery of corrupted DCT coded images based on
reference information, IEEE Trans. Circuits Syst. Video Technol. 14 (4) (2004)
441–449, http://dx.doi.org/10.1109/TCSVT.2004.825545.

[39] J.W. Park, J.W. Kim, S.U. Lee, DCT coefficients recovery-based error concealment
technique and its application to the MPEG-2 bit stream error, IEEE Trans.
Circuits Syst. Video Technol. 7 (6) (1997) 845–854, http://dx.doi.org/10.1109/
76.644064.

[40] S. Tsekeridou, I. Pitas, MPEG-2 error concealment based on block-matching
principles, IEEE Trans. Circuits Syst. Video Technol. 10 (4) (2000) 646–658,
http://dx.doi.org/10.1109/76.845010.

[41] W. Li, Y. Yuan, A leak and its remedy in JPEG image encryption, Int. J. Comput.
Math. 84 (2007) 1367–1378, http://dx.doi.org/10.1080/00207160701294376.

[42] K. Minemura, Z. Moayed, K. Wong, X. Qi, K. Tanaka, JPEG image scrambling
without expansion in bitstream size, in: Proc. ICIP 2012, 2012, pp. 261–264,
http://dx.doi.org/10.1109/ICIP.2012.6466845.

[43] K. Minemura, K. Wong, Sketch attacks: A note on designing video encryption
method in H.264/AVC, in: Proc. APSIPA 2014, 2014, pp. 1–7, http://dx.doi.
org/10.1109/APSIPA.2014.7041768.
14
[44] K. Minemura, K. Wong, R.C.-W. Phan, K. Tanaka, A novel sketch attack for
H.264/AVC format-compliant encrypted video, IEEE Trans. Circuits Syst. Video
Technol. 27 (11) (2017) 2309–2321, http://dx.doi.org/10.1109/TCSVT.2016.
2589742.

[45] H. Qiu, G. Memmi, X. Chen, J. Xiong, DC coefficient recovery for JPEG images
in ubiquitous communication systems, Future Gener. Comput. Syst. 96 (2019)
23–31, http://dx.doi.org/10.1016/j.future.2019.01.037.

[46] S. Ong, S. Li, K. Wong, K. Tan, Fast recovery of unknown coefficients in DCT-
transformed images, Signal Process., Image Commun. 58 (2017) 1–13, http:
//dx.doi.org/10.1016/j.image.2017.06.002.

[47] S. Cornelsen, A. Karrenbauer, S. Li, Leveling the grid, in: Proc. ALENEX 2012,
2012, pp. 45–54, http://dx.doi.org/10.1137/1.9781611972924.4.

[48] M. Ali, M. Murshed, Undecoded coefficients recovery in distributed video coding
by exploiting spatio-temporal correlation: A linear programming approach, in:
Proc. DICTA 2013, 2013, http://dx.doi.org/10.1109/DICTA.2013.6691535.

[49] H. Wang, A.T.S. Ho, S. Li, A novel image restoration scheme based on structured
side information and its application to image watermarking, Signal Process.,
Image Commun. 29 (2014) 773–787, http://dx.doi.org/10.1016/j.image.2014.
05.001.

[50] C. Chen, Z. Miao, X. Meng, S. Zhu, B. Zeng, DC coefficient estimation of intra-
predicted residuals in HEVC, IEEE Trans. Circuits Syst. Video Technol. 28 (8)
(2018) 1906–1919, http://dx.doi.org/10.1109/TCSVT.2017.2694966.

[51] R.M. Rad, K. Wong, An efficient sign prediction method for DCT coefficients
and its application to reversible data embedding in scrambled JPEG image,
in: Proc. ICIP 2013, 2013, pp. 4442–4446, http://dx.doi.org/10.1109/ICIP.2013.
6738915.

[52] C. Tsutake, K. Takahashi, T. Fujii, An efficient compression method for sign
information of DCT coefficients via sign retrieval, in: Proc. ICIP 2021, 2021, pp.
2024–2028, http://dx.doi.org/10.1109/ICIP42928.2021.9506155.

http://dx.doi.org/10.1109/TMM.2022.3142952
http://dx.doi.org/10.1109/TMM.2022.3142952
http://dx.doi.org/10.1109/TMM.2022.3142952
http://dx.doi.org/10.1109/49.848260
http://dx.doi.org/10.1109/ISCAS.2002.1010686
http://dx.doi.org/10.1109/TCSVT.2004.825545
http://dx.doi.org/10.1109/76.644064
http://dx.doi.org/10.1109/76.644064
http://dx.doi.org/10.1109/76.644064
http://dx.doi.org/10.1109/76.845010
http://dx.doi.org/10.1080/00207160701294376
http://dx.doi.org/10.1109/ICIP.2012.6466845
http://dx.doi.org/10.1109/APSIPA.2014.7041768
http://dx.doi.org/10.1109/APSIPA.2014.7041768
http://dx.doi.org/10.1109/APSIPA.2014.7041768
http://dx.doi.org/10.1109/TCSVT.2016.2589742
http://dx.doi.org/10.1109/TCSVT.2016.2589742
http://dx.doi.org/10.1109/TCSVT.2016.2589742
http://dx.doi.org/10.1016/j.future.2019.01.037
http://dx.doi.org/10.1016/j.image.2017.06.002
http://dx.doi.org/10.1016/j.image.2017.06.002
http://dx.doi.org/10.1016/j.image.2017.06.002
http://dx.doi.org/10.1137/1.9781611972924.4
http://dx.doi.org/10.1109/DICTA.2013.6691535
http://dx.doi.org/10.1016/j.image.2014.05.001
http://dx.doi.org/10.1016/j.image.2014.05.001
http://dx.doi.org/10.1016/j.image.2014.05.001
http://dx.doi.org/10.1109/TCSVT.2017.2694966
http://dx.doi.org/10.1109/ICIP.2013.6738915
http://dx.doi.org/10.1109/ICIP.2013.6738915
http://dx.doi.org/10.1109/ICIP.2013.6738915
http://dx.doi.org/10.1109/ICIP42928.2021.9506155

