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Abstract
This paper aims to develop a method to construct an asymmetric copula, based on which a
closed form of the cumulative bivariate failure rate can be obtained. The construction method
differs from existing ones. This newmethod can facilitate the derivation of some results such
as the estimation of the expected number of occurrences for a systemwhose failure process is
modelled by a bivariate stochastic process or the expected cost in optimisation ofmaintenance
policies.

Keywords Dependence · Copula · Asymmetric copula · Bivariate failure rate

1 Introduction

1.1 Motivation

In reliability engineering, the concept of the failure rate plays a key role. For the one-
dimensional (1-D) scenarios, the calculation of the failure rate (or cumulative failure rate) is
straightforward and the failure rate normally has a simple expression. For the two-dimensional
(2-D) scenarios, however, the expression of the bivariate failure rate can be too complicated
to be used in applications such as estimation of the amount of warranty claims. It is noted
that the bivariate reliability and therefore bivariate failure rates are widely used in many real
applications. For example, in the automotive industry, vehicles are sold with 2-D warranty,
which defines that vehicle users can claim warranty within a time limit and a cumulative
usage limit. Researchers and practitioners need closed-forms of bivariate failure rates in
development of reliability estimation, warranty policy optimisation, or budget planning (Wu,
2012; Wang & Zhang, 2011; Dai et al., 2021; Shang et al., 2022).

As discussed inWu (2014, 2024), when considering two dimensions (i.e., age and cumula-
tive usage) in warranty claims analysis, a better approach for modelling the two dimensions is
to use an asymmetric copula as items with large age implies large cumulative usage whereas
items with large cumulative usage do not mean large age, which is due to the fact that some
items may not be used often.
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The expression of an asymmetric copula can become more complicated than that of a
symmetric copula. As a result, the cumulative bivariate failure rate of an asymmetric copula
maynot have a closed form,which can hinder its applications. This necessitates an exploration
of the way to select bivariate copulas and to construct asymmetric copulas with which the
corresponding bivariate failure rates can have closed forms. This paper serves for this purpose.

1.2 Prior work

In an attempt to show that there does not exist an absolutely continuous bivariate exponential
distribution with constant bivariate failure rate and with the marginals being dependently dis-
tributed, Basu (1971) proposed a definition of bivariate failure rates. Johnson andKotz (1975)
defined the bivariate failure rate as a vector, which is also referred to as the hazard gradient.
Navarro (2008) obtained a general procedure to characterize bivariate absolutely continuous
distributions by using the bivariate failure (hazard) rate function. Barbiero (2022a) proposed
two methods for deriving a bivariate discrete probability distribution from a continuous
one by retaining some specific features of the original stochastic model. Barbiero (2022b)
investigated (1) pseudo-random simulation, (2) attainable Pearson’s correlations, (3) stress-
strength reliability parameter, and (4) parameter estimation for a bivariate discrete probability
distribution, considering the associated failure rate function. Kayid (2022) derived two char-
acterizations of the weak bivariate failure rate order over the bivariate Laplace transform
order of two-dimensional residual lifetimes.

1.3 Challenges and our proposedmethods

The existing work has the following three drawbacks:

• Suppose there is a bivariate joint distribution F(x, y; θ)(= P(X < x, Y < y)) and
the marginal distributions of X and Y are FX (x; θ1) and FY (y; θ2), respectively. The
relationship between P(X < x, Y < y) and P(X ≥ x, Y ≥ y)(= F̄(x, y)) is F̄(x, y) =
1− FX (x; θ1)− FY (y; θ2)+ F(x, y; θ). Basu (1971) defined the bivariate failure rate as
r(x, y) = f (x,y;θ)

F̄(x,y)
, where f (x, y; θ) is the bivariate density function. Nevertheless, some

papers mistakenly derive bivariate failure rates based on the relationship F̄(x, y; θ) =
1 − F(x, y; θ) (see Jack et al. (2009), for example).

• Most research assumes a simple expression of a bivariate failure rate (see Navarro (2008),
for example). Nevertheless, in many other applications, an associated bivariate failure
rate function is derived from a bivariate joint probability distribution, which is estimated
basedon the time-to-occurrence data.As such, assuming a simple expressionof a bivariate
failure rate may result in a different bivariate joint probability distribution as the one
derived from the real observations.

• Many failure rate functions such as the power law function are used as the failure intensity
functions, with which maintenance policies are optimised. There is often a need to obtain
a closed form of the expression of the cumulative bivariate failure intensity functions.

A challenge in modelling 2-D failures is that the expression of a bivariate failure rate can
be very complex, whichmay confine its applications. This paper therefore proposes a method
to construct asymmetric copulas, which can facilitate the use of the bivariate failure rate in
applications.
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1.4 Overview

The structure of the remainder of this paper is as follows. Section2 introduces the challenges
that are identified and proposes a method to overcome the challenges. Section3 constructs an
asymmetric copula for a special case: the Gumbel Barnett copula. Section4 discusses another
approach to constructing an asymmetric copula and discusses a limitation of the proposed
approaches. Section5 concludes this paper.

2 Bivariate failure rates

This section introduces the definitions of the bivariate failure rate, proposed by Basu (1971);
Johnson and Kotz (1975), respectively.

2.1 Definitions of bivariate failure rates

Johnson and Kotz (1975) defined the bivariate failure rate as a vector, as shown below

rJK (x, y; θ) = (r1(x, y; θ), r2(x, y; θ)), (1)

which is also called a hazard gradient, where

r1(x, y; θ) = − ∂

∂x
log F̄(x, y), (2)

and

r2(x, y; θ) = − ∂

∂ y
log F̄(x, y). (3)

r1(x, y; θ) and r2(x, y; θ) defined above are referred to as JK’s bivariate failure rate in this
paper.

It is noted that for a bivariate probability distribution, the relationship between F̄(x, y)
and F(x, y; θ) is not the same as that in the univariate scenario, that is, P(X > x, Y > y) =
F̄(x, y) �= 1 − F(x, y; θ), instead, it is shown below

F̄(x, y) = 1 − F1(x) − F2(y) + F(x, y; θ). (4)

Given a bivariate cumulative distribution function F(x, y; θ) and its associated density func-
tion f (x, y; θ), Basu (1971) defined the corresponding bivariate hazard rate of F(x, y; θ)

as

r(x, y; θ) = lim
�1→0
�2→0

P{x ≤ X < x + �1, y ≤ Y < y + �2|x ≤ X , y ≤ Y }
�1�2

, (5)

or equivalently:

r(x, y; θ) = f (x, y; θ)

F̄(x, y)
, (6)

where F(x, y; θ) is the joint distribution function of randomvariables X andY , and f (x, y; θ)

is the joint probability density function of X and Y . θ is the set of parameters in the copula
and the bivariate function F(x, y; θ).

r(x, y; θ) defined in Eq. (6) is referred to as Basu’s bivariate failure rate in this paper.
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2.2 Copula-based bivariate failure rates

A copula is a tool for defining joint probability distributions and is defined as following.

Definition 1 Denote [0, 1] by I. A bivariate copula is a function C(ω1, ω2; θ): I2 → I with
the following properties:

(a) (Grounded) C(ω1, ω2; θ) = 0, if ωk = 0 where k = 1, 2.
(b) (Consistence with margins) C(ω1, 1; θ) = ω1 and C(1, ω2; θ) = ω2.
(c) (Rectangle inequality) C(u1, u2) − C(u1, ω2) − C(ω1, u2) + C(ω1, ω2) ≥ 0 for all

0 ≤ ω1 ≤ u1 ≤ 1 and 0 ≤ ω2 ≤ u2 ≤ 1.

Assume that ∂2C(ω1,ω2;θ)
∂ω1∂ω2

exists, then Condition (c) can also be expressed as following:

(c’) ∂2C(ω1,ω2;θ)
∂ω1∂ω2

> 0.

Hence, for a given copula C(ω1, ω2; θ), one can obtain its associated failure rate function
as follows.

Denote c(ω1, ω2; θ) = ∂2C(ω1,ω2;θ)
∂ω1∂ω2

, then

c(ω1, ω2; θ) = ∂2F(F−1
1 (ω1), F

−1
2 (ω2))

∂ω1∂ω2

= f (F−1
1 (ω1), F

−1
2 (ω2))

f1(F
−1
1 (ω1)) f2(F

−1
2 (ω2))

= f (x, y; θ)

f1(x) f2(y)
, (7)

where x = F−1
1 (ω1), y = F−1

2 (ω2), f (x, y; θ) = ∂2F(x, y; θ)/∂x∂ y, f1(x) =∫ ∞
0 f (x, y; θ)dy, and f2(y) = ∫ ∞

0 f (x, y; θ)dx .
Basu’s bivariate failure rate function can be defined with the copula as follows:

r(x, y; θ) = f (x, y; θ)

F̄(x, y)

=c(ω1, ω2; θ) f1(F
−1
1 (ω1)) f2(F

−1
2 (ω2))

1 − ω1 − ω2 + C(ω1, ω2; θ)
. (8)

For most copulas, the expression r(x, y; θ) is very complicated. When r(x, y; θ) is used
for further derivations, for instance, if �(x0, y0) = ∫ x0

0

∫ y0
0 r(x, y; θ)dxdy needs to be

calculated, a closed-form expression of �(x0, y0) may not be obtained. An intuitive idea is
to choose a copula with the following form,

C(ω1, ω2; θ) = ω1 + ω2 − 1 + g(ω1, ω2; θ), (9)

C(ω1, ω2; θ) in Eq. (9) is the bivariate survival copula of g(ω1, ω2; θ). With Eq. (9), one
hopes to eliminate the part 1−ω1−ω2 in the denominator of r(x, y; θ) so that the expression
of r(x, y; θ) can be simplified.

With Definition 1, we can obtain Lemma 1.

Lemma 1 g(ω1, ω2; θ) should satisfy the following conditions

• Condition A: g(ω1, 0; θ) = 1 − ω1 and g(0, ω2; θ) = 1 − ω2,
• Condition B: g(ω1, 1; θ) = g(1, ω2; θ) = 0,
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• Condition C: ∂2g(ω1,ω2;θ)
∂ω1∂ω2

> 0.

In addition to the three conditions in Lemma 1, we also hope that the bivariate failure
rate has a closed form. Nevertheless, in the literature, there does not exist a widely accepted
and rigorous definition of a “closed form”, although some definitions are given (see Chow
(1999); Borwein and Crandall (2013), for example). In our case, we hope that �(x0, y0) =∫ x0
0

∫ y0
0 r(x, y; θ)dxdy (with x0, y0 ∈ (0,+∞)), has a closed-form. To this end, we impose

that g(ω1, ω2; θ) should also satisfy the following condition:

• Condition D:
∫ F1(x0)
0

∫ F2(y0)
0

f1(F
−1
1 (ω1)) f2F

−1
2 (ω2))

∂2g(ω1,ω2;θ)
∂ω1∂ω2

g(ω1, ω2; θ)
dω1dω2 has a

closed-form expression.

In some practical applications, some probability distributions are not symmetric. For
example, the relationship between age and accumulated usage should be modelled by an
asymmetric copula (Wu, 2014).

We say a copula lacks permutation symmetry (Joe (2014), page 65) if

C(ω1, ω2; θ) �= C(ω2, ω1; θ).

Unfortunately, using existingmethods for constructing asymmetric copulas (see Liebscher
(2008); Wu (2014); Mukherjee et al. (2018)) do not provide a better method, with which an
elegant expression of r(x, y; θ) can be obtained. We therefore propose a new method to
construct asymmetric copulas, as shown in the following section.

It is noted that the bivariate failure rate r(x, y), in general, does not necessarily determine
its associated F̄(x, y) uniquely (Yang & Nachlas, 2001; Finkelstein, 2003), but it determines
F̄(x, y) under some reasonable assumptions (Navarro, 2008). As such, one normally deter-
mines the bivariate joint distribution, based on which the failure rate can be provided. This
requires one to develop new approaches to simplifying the expression of the failure rate,
which motivates the development of this paper.

Example 1 Assume C(ω1, ω2; θ) is the Clayton copula, which is a commonly used copula

in the reliability engineering. Let ω1 = 1 − e
−

(
x
α1

)β1

and ω2 = 1 − e
−

(
y

α2

)β2

, which
suggests that the marginal distribution is the Weibull distribution. Then, C(ω1, ω2; θ) =
[
ω−θ
1 + ω−θ

2 − 1
]−1/θ

. If we plug C(ω1, ω2; θ) into Eq. (8), then the denominator of Eq.

(8) becomes

1 − ω1 − ω2 + C(ω1, ω2; θ)

= e
−

(
x
α1

)β1

+ e
−

(
y

α2

)β2

− 1 +
⎧
⎨

⎩

[

1 − e
−

(
x
α1

)β1
]−θ

+
[

1 − e
−

(
y

α2

)β2
]−θ

− 1

⎫
⎬

⎭

− 1
θ

(10)

and

c(ω1, ω2; θ) =(θ + 1)(ω1ω2)
−(θ+1)(ω−θ

1 + ω−θ
2 − 1)

2θ+1
θ

=(θ + 1)

[(

1 − e
−

(
x
α1

)β1
) (

1 − e
−

(
y

α2

)β2
)]θ+1

×
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⎡

⎣

(

1 − e
−

(
x
α1

)β1
)−θ

+
(

1 − e
−

(
y

α2

)β2
)−θ

− 1

⎤

⎦

2θ+1
θ

. (11)

Then the Basu failure rate is given by

r(x, y; θ)

=

1
α1α2

(
x
α1

)β1−1 (
y
α2

)β2−1
e
−

(
x
α1

)β1−
(

y
α2

)β2

⎡

⎣

(

1 − e
−

(
x
α1

)β1
)−θ

+
(

1 − e
−

(
y

α2

)β2
)−θ

− 1

⎤

⎦

2θ+1
θ

e
−

(
x
α1

)β1

+ e
−

(
y

α2

)β2

− 1 +
⎧
⎨

⎩

[

1 − e
−

(
x
α1

)β1
]−θ

+
[

1 − e
−

(
y

α2

)β2
]−θ

− 1

⎫
⎬

⎭

− 1
θ

.

(12)

The above denominator cannot be eliminated in the bivariate failure rate after it is plugged
into Eq. (8). The numerator is more complex than the denominator. As a result, if the failure
rate r(x, y; θ) is used as the failure intensity function of a bivariate stochastic process, then
its cumulative failure intensity, which is calculated by 	(x0, y0) = ∫ x0

0

∫ y0
0 r(x, y; θ)dxdy,

does not have a closed-form.

Proposition 1 If C(ω1, ω2; θ) �= C(ω2, ω1; θ) for ω1 �= ω2, then r(x, y; θ) �= r(x, y; θ)

for ω1 �= ω2.

Proof It is noted that

C(ω1, ω2; θ) =P(X < x, Y < y)

=P(F1(X) < F1(x), F2(Y ) < F2(y))

=P(F1(X) < ω1, F2(Y ) < ω2), (13)

we therefore obtain

r(x, y; θ) = lim
�1→0
�2→0

P{x ≤ X < x + �1, y ≤ Y < y + �2|X ≥ x, Y ≤ y}
�1�2

�= lim
�1→0
�2→0

P{y ≤ Y < y + �2, x ≤ X < x + �1|X ≥ x, Y ≥ y}
�1�2

=r(u, x; θ). (14)

This completes the proof. �	

Proposition 1 suggests that the bivariate failure rate is asymmetric if its associated copula is
asymmetric. This is useful even when one constructs an asymmetric failure intensity function
for repairable systems.
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3 The case of the Gumbel-Barnett copula

Intuitively, one may suggest the Gumbel-Barnett copula due to Gumbel (1960) and Barnett
(1980), which is defined by

C(ω1, ω2; θ) = ω1 + ω2 − 1 + (1 − ω1)(1 − ω2) exp[−φ log(1 − ω1) log(1 − ω2)],
(15)

where φ ∈ (0, 1]. Based on the copula defined in Eq. (15), one can obtain

r(x, y; θ) = f (x, y; θ)

F̄(x, y)

= f1(F
−1
1 (ω1)) f2(F

−1
2 (ω2))×

[
1 − φ log(1 − ω2) − φ log(1 − ω1) + (1 − φ log(1 − ω1) log(1 − ω2)) φ

]
.

(16)

The expression in Eq. (16) is fairly elegant.

3.1 Amethod for constructing asymmetric copulas

To construct a new copula that is asymmetric and meets the conditions listed in Lemma 1,
we need to ensure that g(ω1, ω2; θ) �= g(ω2, ω1; θ).

Define a bivariate function as following

C̃(ω1, ω2; θ) = ω1 + ω2 − 1 + (1 − ω1)(1 − ω2)

exp[−φ(− log(1 − ω1))
θ1(− log(1 − ω2))

θ2 ]. (17)

When θ1 = θ2 = 1, the model in Eq. (17) reduces to the Gumbel-Barnett copula.

Proposition 2 C̃(ω1, ω2; θ) defined in Eq. (17) is a copula.

Proof Apparently, it is easy to prove that C̃(0, ω2) = C̃(ω1, 0) = 0, C̃(1, ω2) = ω2 and
C̃(ω1, 1) = ω1.

Now as long as we can prove that c̃(ω1, ω2; θ) = ∂2C̃(ω1,ω2;θ)
∂ω1∂ω2

> 0, we prove that

C̃(ω1, ω2; θ) is d-decreasing in ω1 and ω2.

∂C̃(ω1, ω2; θ)

∂ω1
=1 + [

ω2 − 1 − φθ1(1 − ω2)(− log(1 − ω1))
θ1−1(− log(1 − ω2))

θ2
]

exp[−φ(− log(1 − ω1))
θ1(− log(1 − ω2))

θ2 ] (18)

Using the inequality x
1+x ≤ log(1 + x) ≤ x for all x > −1 (Love, 1980), and considering

Eq. (18) and, we have

c̃(ω1, ω2; θ) = ∂2C̃(ω1, ω2; θ)

∂ω1∂ω2

= [
1 + φθ1(− log(1 − ω1))

θ1−1(− log(1 − ω2))
θ2 − φθ1θ2(− log(1 − ω1))

θ1−1(− log(1 − ω2))
θ2−1

+ φθ2
[
1 + φθ1(− log(1 − ω1))

θ1−1(− log(1 − ω2))
θ2

] [
(− log(1 − ω1))

θ1 (− log(1 − ω2))
θ2−1]]

exp[−φ(− log(1 − ω1))
θ1 (− log(1 − ω2))

θ2 ]
= [

(− log(1 − ω1))
1−θ1 (− log(1 − ω2))

1−θ2 − φθ1 log(1 − ω2) − φθ1θ2 − φθ2 log(1 − ω1)
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+φ2θ1θ2(− log(1 − ω1))
θ1 (− log(1 − ω2))

θ2
] [

(− log(1 − ω1))
θ1−1(− log(1 − ω2))

θ2−1]

exp[−φ(− log(1 − ω1))
θ1 (− log(1 − ω2))

θ2 ]
≥

[

ω
1−θ1
1 ω

1−θ2
2 + φθ1

ω2

1 − ω2
− φθ1θ2 + φθ2

ω1

1 − ω1

+φ2θ1θ2ω
θ1
1 ω

θ2
2

]
(− log(1 − ω1))

θ1−1(− log(1 − ω2))
θ2−1

exp[−φ(− log(1 − ω1))
θ1 (− log(1 − ω2))

θ2 ] (19)

≥
[

φθ1
ω2

1 − ω2
− φθ1θ2 + φθ2

ω1

1 − ω1
+ 2φ

√
θ1θ2

]

(− log(1 − ω1))
θ1−1(− log(1 − ω2))

θ2−1

exp[−φ(− log(1 − ω1))
θ1 (− log(1 − ω2))

θ2 ] (20)

≥
[

φθ1
ω2

1 − ω2
+ φθ2

ω1

1 − ω1

]

(− log(1 − ω1))
θ1−1(− log(1 − ω2))

θ2−1

exp[−φ(− log(1 − ω1))
θ1 (− log(1 − ω2))

θ2 ] (21)
≥0. (22)

The above inequality (19) was derived by using x
1+x ≤ log(1 + x) ≤ x ; inequality (20)

used the inequality a + b ≥ 2
√
ab for a, b > 0; inequality (21) was obtained because

2φ
√

θ1θ2 > φθ1θ2, and inequality (22) is obvious.
This completes the proof. �	
For the copula defined in Eq. (17), if θ1 �= θ2, it is easy to prove the following proposition.

Proposition 3 C̃(ω1, ω2; θ) �= C̃(ω2, ω1; θ) for θ1 �= θ2.

Proposition 3 can easily be established by using Eq. (17).
Proposition 3 shows that the proposed copula C̃(ω1, ω2; θ) is an asymmetric copula.
From the definition of the failure rate shown in Eq. (8), we can obtain

r(x, y; θ) = f (x, y; θ)

F̄(x, y)

= c̃(ω1, ω2; θ) f1(F
−1
1 (ω1)) f2(F

−1
2 (ω2))

1 − ω1 − ω2 + C̃(ω1, ω2; θ)

= f1(F
−1
1 (ω1)) f2(F

−1
2 (ω2))

(1 − ω1)(1 − ω2)[
(− log(1 − ω1))

1−θ1(− log(1 − ω2))
1−θ2 − φθ1 log(1 − ω2) − φθ1θ2 − φθ2 log(1 − ω1)

+φ2θ1θ2(− log(1 − ω1))
θ1(− log(1 − ω2))

θ2
] [

(− log(1 − ω1))
θ1−1(− log(1 − ω2))

θ2−1
]
.

(23)

Example 2 Suppose ω1 = 1 − e
−

(
x
α1

)β1

and ω2 = 1 − e
−

(
y

α2

)β2

. Then f1(F
−1
1 (ω1)) =

1
α1

(
x
α1

)β1−1
e
−

(
x
α1

)β1

, f2(F
−1
2 (ω2)) = 1

α2

(
y
α2

)β2−1
e
−

(
y

α2

)β2

, (− log(1 − ω1))
θ1 =

(
x
α1

)θ1β1
and (− log(1 − ω2))

θ2 =
(

y
α2

)θ2β2
. Then the failure rate is given by
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r(x, y; θ) = f1(F
−1
1 (ω1)) f2(F

−1
2 (ω2))

(1 − ω1)(1 − ω2)
[
(− log(1 − ω1))

1−θ1(− log(1 − ω2))
1−θ2

−φθ1 log(1 − ω2) − φθ1θ2 − φθ2 log(1 − ω1)

+φ2θ1θ2(− log(1 − ω1))
θ1(− log(1 − ω2))

θ2
]

[
(− log(1 − ω1))

θ1−1(− log(1 − ω2))
θ2−1]

= 1

α1α2

(
x

α1

)β1θ1−1 (
y

α2

)β2θ2−1
[(

x

α1

)β1(1−θ1)
(

y

α2

)β2(1−θ2)

+ φθ1

(
y

α2

)β2

− φθ1θ2 + φθ2

(
x

α1

)β1

+ φ2θ1θ2

(
x

α1

)θ1β1
(

y

α2

)θ2β2
]

. (24)

As can be seen from Eq. (24), the expression of r(x, y; θ) is simpler than the one in Eq. (12)
in Example 1 although different copulas are used. Furthermore, the Basu failure rate in Eq.
(24) is obtained based on an asymmetric copula.

With Eqs. (4) and (17), the corresponding copula C̄(ω1, ω2; θ) of F̄(x, y) is given by

F̄(x, y) =C̄(ω1, ω2; θ)

=1 − ω1 − ω2 + C̃(ω1, ω2; θ)

=(1 − ω1)(1 − ω2) exp[−φ(− log(1 − ω1))
θ1(− log(1 − ω2))

θ2 ]

= exp

[

−
(

x

α1

)β1

−
(

y

α2

)β2

− φ

(
x

α1

)β1θ1
(

y

α2

)β2θ2
]

. (25)

Hence, JK’s bivariate failure rate function can be defined with the copula as follows:

r1(x, y; θ) =
[

−β1

α1

(
x

α1

)β1−1

− φ
β1θ1

α1

(
x

α1

)β1θ1−1 (
y

α2

)β2θ2
]

C̄(ω1, ω2; θ), (26)

and

r2(x, y; θ) =
[

−β2

α2

(
y

α2

)β2−1

− φ
β2θ2

α2

(
x

α1

)β1θ1
(

y

α2

)β2θ2−1
]

C̄(ω1, ω2; θ). (27)

Copulas are a tool formodelling the dependencebetween randomvariables.BothKendall’s
tau and Spearman’s rho can be expressed by copulas. It seems difficult to obtain Spearman’s
rho or Kendall’s tau of copula C̃(ω1, ω2; θ). Nevertheless, we investigate the bounds of
Spearman’s ρ of C̃(ω1, ω2; θ) in the following Proposition.

Proposition 4 The Spearman’s rho, ρ, of C̃(ω1, ω2; θ) is

3e−φ − 3 ≤ ρ ≤ −12
e4/φ

φ
Ei[− 4

φ
] − 3, (28)

where Ei(.) is given by Ei(x) = ∫ x
−∞

et
x dt . The bounds are sharp.

Proof Since the relationship between Spearman’s rho and a copula is ρ = 12
∫ 1
0

∫ 1
0 (C̃(ω1,

ω2; θ) − ω1ω2)dω1dω2, we obtain
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ρ =12
∫ 1

0

∫ 1

0
(C̃(ω1, ω2; θ) − ω1ω2)dω1dω2

=12
∫ 1

0

∫ 1

0
(ω1 + ω2 − 1 + (1 − ω1)(1 − ω2) exp[−φ(− log(1 − ω1))

θ1(− log(1 − ω2))
θ2 ]

− ω1ω2)dω1dω2

=12
∫ 1

0

∫ 1

0
((1 − ω1)(1 − ω2) exp[−φ(− log(1 − ω1))

θ1(− log(1 − ω2))
θ2 ]dω1dω2 − 3

(29)

Let − log(1 − ωi ) = ui for i = 1, 2. That is, 1 − ωi = e−ui . Then,

ρ =12
∫ 1

0

∫ 1

0
e−u1−u2−φu

θ1
1 u

θ2
2 dω1dω2 − 3

=12
∫ +∞

0

∫ +∞

0
e−2u1−2u2−φu

θ1
1 u

θ2
2 du1du2 − 3. (30)

Since uθi
i ≤ 1, we obtain

ρ =12
∫ +∞

0

∫ +∞

0
e−2u1−2u2−φu

θ1
1 u

θ2
2 du1du2 − 3

≥12
∫ +∞

0

∫ +∞

0
e−2u1−2u2−φdu1du2 − 3

=3e−φ − 3, (31)

and with uθi
i ≥ ui , we obtain

ρ =12
∫ +∞

0

∫ +∞

0
e−2u1−2u2−φu

θ1
1 u

θ2
2 du1du2 − 3

≤12
∫ +∞

0

∫ +∞

0
e−2u1−2u2−φu1u2du1du2 − 3

=12
∫ +∞

0

e−2u2

2 + φu2
du2 − 3

=12
e4/φ

φ

∫ +∞

2

e− 2y
φ

y
dy − 3

=12
e4/φ

φ

∫ +∞
4
φ

e−z

z
dz − 3

= − 12
e4/φ

φ
Ei[− 4

φ
] − 3. (32)

Hence, we establish Proposition 4. �	

Since Spearman’s rho of the Gumbel-Barnett copula is ρ = −12 e4/φ
φ

Ei[− 4
φ
]−3, Proposi-

tion 4 suggests that Spearman’s rho of C̃(ω1, ω2; θ) is smaller than that of theGumbel-Barnett
copula.
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Definition 2 If a bivariate copula C is such that

lim
ω→0+

1 − C(1 − ω, 1 − ω)

ω
= λU (33)

exists, then C has upper tail dependence if λU ∈ (0, 1] and no upper tail dependence if
λU = 0. Similarly, if

lim
ω→0+

C(ω, ω)

ω
= λL (34)

exists, then C has lower tail dependence if λL ∈ (0, 1] and no upper tail dependence if
λL = 0.

It is easy to obtain the following lemma.

Proposition 5 If a bivariate copula C is such that the tail dependence coefficients of copula
C(ω1, ω2; θ) are given by λL = 0 and λU = 4.

Proof

λL = lim
ω→0+

C(ω, ω)

ω

= lim
ω→0+

2ω − 1 + (1 − ω)2 exp[−φ(− log(1 − ω))θ1+θ2 ]
ω

= 0, (35)

λU = lim
ω→0+

1 − C(1 − ω, 1 − ω)

ω

= 2 − lim
ω→0+

1 − 2ω + ω2 exp[−φ(− logω)θ1+θ2 ]
ω

= 2 − lim
ω→0+(−2 + 2ω exp[−φ(− logω)θ1+θ2 ]

+ ω(−φ(θ1 + θ2)(− logω)θ1+θ2−1 exp[−φ(− logω)θ1+θ2 ])
= 4. (36)

Hence, we establish Proposition 5. �	

Example 3 Given a repairable systemwhose reliability is measured by both its age and cumu-
lative usage intensity, denote its failure intensity by λ(x, y; θ). Let λ(x, y; θ) = r(x, y; θ),
where r(x, y) is given in Eq. (24). Assume that the repair upon failures between replace-
ments is minimal. That is, a repair restores the system to the status immediately before
its failure. Then, the total number of failures in the plane [0, t] × [0, u] is given by∫ x
0

∫ y
0 λ(x0, y0; θ)dx0dy0, from which an explicit expression can be easily obtained.

4 Discussion

Denote H1(x) = ∫ x
0 h1(u)du and H2(y) = ∫ y

0 h2(u)du, where h1(.) is the failure rate associ-
ated with the cumulative distribution function (cdf) F1(.) (i.e.,ω1 in the copula C̃1(ω1, ω2; θ)

and h2(.) is the failure rate associatedwith F2(.). That is, H1(x) and H2(y) are the cumulative
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hazard functions associated with F1(.) and F2(.), respectively. Then− log(1−ω
θ1
1 ) = H1(x)

and − log(1 − ω
θ2
2 ) = H2(y). We have

C̃(ω1, ω2; θ) =ω1 + ω2 − 1 + (1 − ω1)(1 − ω2) exp[−φ(− log(1 − ω1))
θ1(− log(1 − ω2))

θ2 ]
=F1(x) + F2(y) − 1 + F1(x)F2(y) exp[−φ(H1(x))

θ1(H2(y))
θ2 ], (37)

where θ1, θ2 ∈ (0, 1].
Another idea to extend the Gumbel-Barnett copula to be an asymmetric form is to define

a copula as following

C̃1(ω1, ω2; θ) = ω1 + ω2 − 1 + (1 − ω1)(1 − ω2) exp[−φ log(1 − ω
θ1
1 ) log(1 − ω

θ2
2 )].
(38)

where θ1 �= θ2. Nevertheless, the challenge in the copula C̃1(ω1, ω2; θ) shown in Eq. (38)
is that log(1 − ω

θi
i ) with i = 1, 2 may become very complex even for a simple probability

distribution like the Weibull distribution.
It is noted that the copula is selected based on some methods such as the maximum

likelihood and a performance criterion (or several criteria) such as the Akaike Information
Criterion. As such, the constructionmethod of asymmetric copulas proposed in this paper can
be used for the scenarios where the performance of the asymmetric Gumbel-Barnett copula
is similar to the other best performed copulas.

It is noted that the approach to constructing the asymmetric Gumbel-Barnett copula may
not be used for other copulas for forming closed-forms of cumulative failure rates, which is
a limitation of this paper.

5 Conclusion

This paper constructed an asymmetric copula from the Gumbel-Barnett copula. With the
proposed copula, the expression of the bivariate failure rate becomes elegant, which facilitates
its applications in the real world. That is, the main contribution of this paper is its proposal of
a method to construct an asymmetric copula for the ease in use of the bivariate failure rate.
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