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Abstract
Model predictive control (MPC) has been widely investigated as an advanced control
method for permanent magnet linear synchronous motors (PMLSMs). It is known that
the computational burden is usually heavy when multi-step MPC is considered. In this
paper, a computationally efficient multi-step continuous control set model predictive
control approach is proposed for the current control loop of a PMLSM. A non-singular
terminal sliding mode control is employed for the speed control loop to reduce the
influence caused by external disturbances. In order to further improve the closed-
loop control performance, a load observer is designed to estimate the load changes
in real time. Simulations and experiments reveal the effectiveness of the proposed
control method for PMLSMs, which facilitates practical applications.
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Introduction

Permanent magnet linear synchronous motors (PMLSMs), stemming from linear motor
category, possess many advantages e.g., fast speed response, accurate fast positioning,
and zero-transmission characteristics. Hence, they offer low mechanical loss, large
thrust density, and fast dynamic response (Yin et al. (2022); Wang et al. (2018)).
Likewise, they are widely employed in military equipments and industrial production,
e.g., electromagnetic catapult, computer numerical control machine tools, and maglev
train etc (Shi et al. (2016); Xu et al. (2019)).

A PMLSM control system behaves as a complex nonlinear system, which usually
requires sophisticated control strategies to achieve great control performance (Englert
and Graichen (2018); Kommuri et al. (2021); Wang et al. (2022)). A cascade control
structure is often adopted for PMLSMs control system, which includes an outer control
loop to track the reference speed and an inner control loop to track the reference current,
which usually has faster dynamics. The inner control loop plays an important role in
the entire control system, which requires advanced control strategies to achieve precise
control of PMLSMs. Nowadays, commonly used control methods for the inner loop
include proportional integral (PI) control, current hysteresis control, model predictive
control (MPC), and some other intelligent control methods (Chen and Liu (2017); Wang
and Tsai (2017); Jon et al. (2017)).

MPC originates from process industries in 1980s, which is able to deal with multi-
input multi-output control problems with constraints. Since then, it has been intensively
investigated and widely used in many other applications. Recently, MPC has been
considered as an effective control method in power electronics and electrical motor drives
(Ahmed et al. (2017); Huang et al. (2023); Abu-Ali et al. (2022); Nguyen et al. (2021b)),
due to its merits of fast responses and small ripples. According to the existence of a
modulation module, the relevant MPC strategies can be divided into two categories i.e.,
finite control set model predictive control (FCS-MPC) (Ahmed et al. (2017); Huang et al.
(2023)) and continuous control set model predictive control (CCS-MPC) (Abu-Ali et al.
(2022); Nguyen et al. (2021b)). FCS-MPC has a simpler structure and lower cost in
engineering applications. However, due to lack of a modulation module, the current total
harmonic distortion (THD) in FCS-MPC is relatively high.

Similar to FCS-MPC, CCS-MPC is also used for a wide range of applications (Guo
et al. (2021); Nguyen et al. (2021a)). For instance, a explicit model predictive speed
control approach for PMSM was proposed in one reported work (Guo et al. (2021)).
The proposed method combined with multi-point linearization can reduce the impact of
model mismatch, which includes two parts: offline calculation and online table lookup.
The former needs a special toolbox to complete, so the algorithm is more complicated
and the feasibility of the method is verified only by Simulink.

Likewise in Nguyen et al. (2021a), a combination of CCS-MPC algorithm and fuzzy
control algorithm was proposed and applied to a three-phase constant voltage constant
frequency inverter with an output LC filter. Corresponding results indicated that the
proposed method could obtain an acceptable output voltage with a better transient
response, lower THD , and smaller steady-state error. The single-step CCS-MPC only
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Smith and Wittkopf 3

considers in Nguyen et al. (2021a), which can achieve short-term optimal control effects,
and has the advantage of low computational burden. However, since the single-step
predictive control algorithm ignores the state error information for a period of time in
the future, it cannot guarantee that the control variables remain optimal for a period of
time.

Although both the two strategies have good dynamic responses, the current ripples
using CCS-MPC are usually smaller than that using FCS-MPC (Ahmed et al. (2018);
Koiwa et al. (2019); Jiang et al. (2022); Siami et al. (2017)). In a word, most of the
control algorithms for PMLSM are mainly based on the cascade control structure, which
mainly includes a speed outer loop and two current inner loops.For the outer speed loop,
the main consideration is how to reduce the impact of external disturbances. Although
the classical PI control algorithm has a simple structure, its anti-disturbance capability
sometimes can’t meet the requirements. Therefore, some scholars have introduced the
sliding mode control algorithm with strong anti-disturbance ability into the outer speed
loop to improve its robustness. However, the traditional sliding mode control algorithm
also has some inherent drawbacks, such as chattering and singularity, which may destroy
the operating conditions of the sliding mode of the system, resulting in excessive
overshoot, and even instability. To address the singular problems in general terminal
sliding mode control (TSMC), a robust model-free nonsingular terminal sliding-mode
control (NTSMC) method based on ultra-local model is proposed to reduce the influence
of motor parameter changes on control performance in Zhao et al. (2019). However,
the unknown terms in ultra-local model can only be observed by the observer, and its
control performance is constrained by the performance of the observer. In addition,
the author designed an ideal sliding mode surface, which contains Sign function terms
and requires the controller to have an infinite Switching frequency. However, the actual
control device is often not ideal and cannot achieve an infinite Switching frequency. Due
to this irrational condition, the actual sliding mode motion state cannot accurately reach
the pre-designed sliding mode surface, but instead travels back and forth on both sides
of the sliding mode surface, which may result in severe chattering. In another work,
NTSMC method was studied for PMLSM, and realized accurate position tracking (Xu
et al. (2022)). While avoiding the singularity, the reported position tracking response is
faster than traditional methods. during load changes.

Correspondingly, to overcome the above-mentioned problems, a novel multi-step
continuous control set model predictive control approach for PMLSMs with improved
speed control loop is proposed in this paper. The main contributions of this paper are
summarized as follows:

(i) Firstly, CCS-MPC algorithm is used to replace PI controller in the inner loop. It
not only avoids complicated parameter tuning of PI controller, but also obtains
better performance. Moreover, compared to traditional CCS-MPC approaches,
integration of the CCS-MPC algorithm with quadratic optimization algorithm
substantially reduces the computational burden without sacrificing the optimal
switch state. Although the system structure of CCS-MPC based on the quadratic
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optimization is more complicated, it has many advantages compared with the FCS-
MPC, i.e., less current harmonics and low computational burden.

(ii) Secondly, to mitigate the impact of disturbance, we design a controller through
NTSMC approach to replace the PI controller in outer loop. Additionally, to
reduce the chattering problem caused by SMC algorithm, this paper adopts a quasi
sliding mode, that is, a new type of piecewise function is utilized to replace the
sign function of ideal sliding mode. In addition, a nonlinear disturbance observer
(NDO) is designed in this paper to compensate the time-varying loads.

(iii) Finally, the effectiveness of the proposed algorithm is verified by both simulations
and experiments.

The remainder of this paper is organized as follows. Section II describes the
mathematical model of PMLSMs. Likewise. Section III describes the multi-step CCS-
MPC method based on the quadratic optimization method which is applied to the current
control loop. A novel NTSMC approach based controller for the speed control loop is
presented in Section IV. The block diagram of PMLSMs control system are shown in Fig.
1. Then, simulations and experimental results are provided in Section V to demonstrate
the effectiveness of the proposed approach. In Section VI, the paper ends with some
conclusions.

NTSMC
Optimizer

* 0di =

SVPWM VSI

Magnetic Grid 

Ruler

Calculate 

Angle

q

observer

gm

abc

dq

d( )

dt

)

ˆ
dF

iq idq

Constraints

Prediction 

Model

Ydq

Cost 

Function

iabc

v -

vref

sopt

+
*

qi

v

Figure 1. Block diagram of PMLSM control system using CCS-MPC strategy.

Mathematical modelling of PMLSMs
Some mild assumptions are made before presenting the PMLSM model:
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Smith and Wittkopf 5

(i) The saturation of motor core is ignored;
(ii) The eddy current and hysteresis losses in the motor are excluded;

(iii) The three-phase current waveform is an ideal sine wave.

Remark 1
The actual PMLSM model is a nonlinear system with strong coupling. Considering that
there are many difficulties in applying model predictive control to nonlinear systems,
such as large amount of computation, lack of effective solver, etc., the model is simplified
in this paper.

In order to facilitate the controller design, the mathematical model of PMLSMs is
established based on d− q axis (Candelo-Zuluaga et al. (2021)).The relevant voltage
equation is expressed as follows:[

ud
uq

]
= Rs

[
id
iq

]
+

[
ψ̇d
ψ̇q

]
+ ωe

[
−ψq
ψd

]
, (1)

where ud, uq are the stator voltages of d axis, and q axis, respectively, and id, iq are the
stator currents on d axis, and q axis, respectively. Similarly, ψ̇d and ψ̇q are differentials
for components of permanent magnet flux linkage corresponding to d axis and q axis
respectively. The term, Rs represents the stator resistance and ωe refers to electrical
angular speed.

The flux equation and electromagnetic thrust equation can be written as follows:[
ψd
ψq

]
=

[
Ld 0
0 Lq

] [
id
iq

]
+

[
ψf
0

]
, (2)

Fe = KT iq = Fd +Bvv+Mv̇, (3)

Fd = FL + Ff + Fr, (4)

where, Ld, Lq are components of inductance on d− q axis respectively, ψf is the
permanent magnet flux linkage and Fe is electromagnetic thrust. Moreover, KT =
3
2
π
τ nψf is the thrust coefficient, τ is polar distance, Bv is viscous friction coefficient,

v represent the speed for PMLSM, n is number of pole pairs, and M is mover mass. Fd
represents the disturbances, including load disturbances FL, friction between the motor
and the guide rail Ff and thrust fluctuations caused by end effects Fr. According to Eq.
(2), Eq. (1) can be rewritten as:{

ud = Rsid + Ld
did
dt − ωeLqiq,

uq = Rsiq + Lq
diq
dt + ωeLdid + ωeψf .

(5)

In this paper, a surface-mount PMLSM is selected, which has the same inductance
components under the d− q axis coordinate, that is, Ld = Lq = L. Moreover, to
facilitate decoupling, we set i∗d = 0, where i∗d is a reference current of d axis. The whole
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mathematical model of PMLSMs in d− q axis is summarized as follow:
ud = Rsid + Ldiddt − ωeLiq,

uq = Rsiq + L
diq
dt + ωeLid + ωeψf ,

Fe =
3
2
π
τ nψf iq = Fd +Bvv+Mv̇.

(6)

CCS-MPC Schemes for the current control loop
Before presenting the relevant results on the proposed MPC scheme, the state equation
of stator current is obtained first. Selecting id, iq as state variables and ud, uq as control
variables. According to Eq. (6), the state equation of stator current can be written as
follow:[

d
dt id
d
dt iq

]
=

[
−Rs

L ωe
−ωe −Rs

L

] [
id
iq

]
+

[
1
L 0
0 1

L

] [
ud
uq

]
−
[

0
ωeψf

L

]
. (7)

A three-phase two-level voltage source inverter (VSI) has been used in this paper. It
has eight switching states, including six non-zero switching states and two zero switching
states. Let s =

[
γa γb γc

]T
, where γa, γb, γc is conducting state of the upper bridge

arm of VSI, and γa, γb, γc ∈ {0, 1}. Values γa, γb, γc = 1, correspond the on-state for
upper bridge arm switching device, and cut-off state for lower bridge arm switching
device, and vice versa. From the principle of coordinate transformation, transformation
of three-phase voltage from natural coordinate system to synchronous rotating coordinate
system requires two coordinate transformations. The transformation formula is given as
follows: [

ud
uq

]
= UdcG2/2G3/2Gms, (8)

where

G2/2 =

[
cos θ − sin θ
sin θ cos θ

]
, (9)

G3/2 =
2

3

[
1 −1/2 −1/2

0
√
3/
2 −

√
3/
2

]
, (10)

Gm =
1

3

 2 −1 −1
−1 2 −1
−1 −1 2

 , (11)

s is the switching state, and Udc is the DC voltage and θ is the mover position angle.
Thus, the current prediction model is represented as[

d
dt id
d
dt iq

]
=

[
−Rs

L ωe
−ωe −Rs

L

] [
id
iq

]
+

[
Udc

L 0

0 Udc

L

]
G2/2G3/2Gms

−
[

0
ωeψf

L

]
.

(12)
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Single-step CCS-MPC
To introduce the concept of multi-step prediction, we first elaborate the principle of
single-step predictive control based on the discrete model. According to Euler’s formula,
the discrete differential form can be obtained as:{

did(k)
dt ≈ id(k+1)−id(k)

Ts
,

diq(k)
dt ≈ iq(k+1)−iq(k)

Ts
.

(13)

Define the system matrices as

A =

[
1− TsRs

L Tsωe
−Tsωe 1− TsRs

L

]
, (14)

B =

[
Ts

L 0
0 Ts

L

]
UdcG2/2G3/2Gm, (15)

F =

[
0

−Tsψf

L ωe

]
, (16)

where Ts is sampling time of control system. From Eqs. (12-16), the discretized model
can be obtained as follows:[

id(k + 1)
iq(k + 1)

]
=A

[
id(k)
iq(k)

]
+Bs(k)+F. (17)

Let xdq = [id, iq]
T as the state variable, ·(k + i|k) represents the term for time k + i

predicted based on time k. Thus, the one-step prediction model can be reformulated as:

xdq(k + 1|k) = Axdq(k) +Bs(k) + F. (18)

We further define the following variables

∆xdq(k + 1|k) = xdq(k + 1|k)− x∗dq(k), (19)

∆s(k|k) = s(k)− s(k − 1), (20)

where x∗dq(k|k) is the reference current at time k and ∆s(k|k) represents the switching
effort, which represent the change of switching state between the time k and k − 1.
s(k − 1) is the optimal control input at the last moment. Consequently, the cost function
can be designed with the following form.

J = ∥∆xdq(k + 1|k)∥22 + λ ∥∆s(k|k)∥22 . (21)

The parameter λ > 0 is a weighting factor used to adjust between the tracking accuracy of
current and switching losses. Since the time delay in control system degrades the overall
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performance, delay compensation need to be considered. In this paper , it is assumed
that the time delay Td is shorter than the sampling interval Ts, i.e., Td ≤ Ts. During the
implementation, the optimal switching state s(k) obtained at time k is employed at time
instant k + 1. To this end, two-step prediction of the current xdq(k + 2|k) is considered
based on xdq(k),

xdq(k + 2|k) =Axdq(k + 1|k) +Bs(k + 1) + F

=A(Axdq(k) +Bs(k − 1) + F ) +Bs(k + 1) + F

=A2xdq(k) +ABs(k − 1) +Bs(k + 1) + (A+ I)F.

(22)

Note that in the above predictions the system matrices are assumed to be constant for
simplicity. Correspondingly, the following cost function is optimized

J =
∥∥xdq(k + 2|k)− x∗dq(k|k)

∥∥2
2
+ λ ∥s(k + 1)− s(k − 1)∥22 . (23)

Multi-step CCS-MPC based on quadratic optimizations
The single-step CCS-MPC only considers the optimization problem in the next time
domain in the future, which can achieve short-term optimal control effects, and has
the advantage of low computational burden. However, Since the single-step predictive
control algorithm ignores the state error information for a period of time in the future,
it cannot guarantee that the control variables remain optimal in a period of time.
Compared with single-step CCS-MPC, multi-step CCS-MPC predicts state variables
for multiple control period, so that it can maintain a long-term optimal state under the
action of the optimal control variables. However, with the increase of predictive step, the
prediction times of traditional CCS-MPC increases geometrically, which causes a large
computational burden to the processor. In order to overcome the above problems, we
introduce the quadratic programming algorithm into multi-step CCS-MPC, which can
reduce computational burden greatly without sacrificing the optimal solution.

In this work, we implement a CCS-MPC strategy based on quadratic optimizations to
avoid heavy computations in multi-step problem solving.

Define a switching sequence as follows:

S = [s(k), ..., s(k +N − 1)]
T
, (24)

where 0 ≤ |s(l)(i)| ≤ 1, i = 1, 2, 3,∀l = k, ..., k +N − 1, and N is prediction horizon
length.

Assuming that the mover velocity is constant within the predictive horizon. In rolling
time domain, the predictive system state value can be expressed as:

xdq(k +N |k) = ANxdq(k) + [AN−1B...A0B]S

+ [AN−1F + ...+A0F ].
(25)

Let Ydq represent the predictive current output sequence within the prediction horizon
(from k + 1 to k +N ) and Y ∗

dq is the corresponding reference output.

Ydq = Γxdq(k) + ΥS +Π, (26)
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where:

Γ =
[
A,A2, . . . , AN

]T
, (27)

Υ =


B 0 ... 0
AB B ... 0

...
...

...
...

AN−1B AN−2B ... B

 , (28)

Π = [F,AF + F, ...,

N−1∑
j=0

AjF ]T. (29)

The calculation burden of multi-step MPC strategy is greater than that of single step
MPC, so delay compensation is very important. Therefore, it is necessary to make a
one-step prediction of the current in advance based on Eq. (30) to replace the current
measurement value xdq(k). It is worth noting that s(k − 1) is the optimal control input at
the last moment. That is use xdq(k + 1|k) to replace xdq(k).The predicted current output
sequence(Eq. (26)) after considering delay compensation can be expressed as follows.

xdq(k + 1|k) = Axdq(k) +Bs(k − 1) + F. (30)

Y pdq = Γxdq(k + 1|k) + ΥS +Π. (31)

Therefore, after considering delay compensation, the cost function the multi-step MPC
can be designed as follows:

J =
∥∥∥Y pdq − Y ∗

dq

∥∥∥2
2
+ λ ∥WS − Es(k − 1)∥22 , (32)

where:

W =


I 0 ... 0
−I I ... 0
0 −I ... 0
...

...
...

...
0 0 ... I

 , E =


I
0
0
...
0

 , (33)

Y ∗
dq =

 x∗dq x∗dq . . . x∗dq x∗dq︸ ︷︷ ︸
N

 . (34)

As evident from Eq. (32), the first part of the cost function is used to evaluate predictive
current tracking error, and the second part is used to evaluate the switching effort. In this
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paper, the quadratic programming solver in Matlab is used to obtain the optimal solution
of the cost function. This is a solver specially designed for solving quadratic objective
functions with linear constraints. Specific use methods and notes can be obtained in
Matlab help documentation.Before using the quadprog function in the solver to solve
the cost function(32), we need to convert the value function into the following quadratic
form.

J =
1

2
xTQx+ Ξ(k)Tx, (35)

where Q is the Hessian matrix and Ξ(k) is a vector. Defining the following variables:

Ω(k) = Ydq
∗ −Π, (36)

ξ(k)=∥Γxdq(k + 1|k)−Ω(k)∥22+λ ∥Es(k − 1)∥22 , (37)

Ξ(k) =((Γxdq(k + 1|k)− Ω(k|k))TΥ− λ(Es(k − 1))TW )T , (38)

Q = ΥTΥ+ λWTW. (39)

The cost function can be cast into the following quadratic form:

J = STQS + 2Ξ(k)S + c(k) (40)

where

c(k) = ξ(k)− Ξ(k)TQ−1Ξ(k). (41)

Note that c(k) is time varying, but is independent of the control variable S. The
optimization problem after ignoring the independent term can be expressed as

Sopt = arg min
S

1

2
STQS + Ξ(k)TS (42)

s.t. xdq(k + 1|k) = Axdq(k) +Bs(k) + F, (42a)
Sopt(i) ∈ [0, 1], i = 1, 2, · · · , 3N, (42b)∥∥Y ∗

dq

∥∥2 ≤ I2dqmax, (42c)

where Eq.(42a) represents the equation constraint of discrete model, inequality Eq.(42b)
represents control input constraint. Eq.(42c) is the inequality constraint of d− q

axis reference current with
∥∥∥Y ∗

dq

∥∥∥2 = Ydq
∗TYdq

∗ and Idqmax =
√
2Imax, where Imax

represents the maximum rms current of PMLSM. Note that the Sopt is a vector with 3N
elements, and contains the optimal solution from time k + 1 to time k +N , and Sopt(i)
represent the i-th element of Sopt. Usually we take the first three elements as the optimal
switching state, viz, (Abu-Ali et al. (2022))

sopt = [Sopt(1), Sopt(2), Sopt(3)]
T
. (43)

Prepared using sagej.cls



Smith and Wittkopf 11

NTSMC schemes for the speed control loop
In traditional motor control systems, outer-loop controllers usually adopts a proportional-
integral (PI) control algorithm. Although PI controller is widely used owing to its mature
technology and simple structure, its control performance can be questionable for the
cases with unknown disturbances. Therefore, we design a novel controller by using
NTSMC algorithm to replace the traditional PI controller. Additionally we designs a
load observer to compensate the output of the above controller.

Design of the NTSMC strategy
Define the speed error as

e = v∗ − v, (44)

where v∗ is reference speed. Based on Eq. (3), one has{
ė = v̇∗ − v̇ = − 1

M

(
3
2τ πnφf iq − Fd −Bvv

)
,

ë = v̈∗ − v̈ = − 1
M

(
3
2τ πnφf i̇q − Ḟd −Bv v̇

)
.

(45)

Generally, sampling frequency of a controller is much higher than the changing frequency
of disturbance, hence disturbance can be regarded as a constant within a single sampling
period (Lu et al. (2016, 2021)). Therefore, Eq. (45) can be modified as:{

ė = v̇∗ − v̇ = − 1
M

(
3
2τ πnφf iq − Fd −Bvv

)
,

ë = v̈∗ − v̈ = − 1
M

(
3
2τ πnφf

.
iq −Bv v̇

)
.

(46)

Let u = i̇q , D = 3
2τM πnφf , and the non-singular sliding surface can be selected as

follows:

ϖ = ke+ αeg/h + βėp/q, (47)

where k, α, β are all greater than zero, g, h, p, q are positive odd numbers; 1 < p/q < 2
and p/q < g/h. The differentiation of non-singular fast terminal sliding mode surface
can be obtained as follows:

ϖ̇ = kė+ a
g

h
eg/h−1ė+ β

p

q
ėp/q−1(−Du+

Bv
M
v̇)

= (k + a
g

h
eg/h−1)ė− β

p

q
ėp/q−1Du+

βBvp

qM
ėp/q−1v̇.

(48)

Subsequently, the controller is designed as:

u =
1

D
(
q

βp
ė2−p/q(k + α

g

h
ėg/h−1) +

Bv v̇

M
+

q

βp
ė1−p/q(ξsgn(ϖ) + γϖ)). (49)

The reference current, namely i∗q , generated by the sliding mode controller can be
obtained by

i∗q =
1

D

∫
(
q

βp
ė2−p/q(k + α

g

h
ėg/h−1) +

Bv v̇

M
+

q

βp
ė1−p/q(ξsgn(ϖ) + γϖ))dt,

(50)
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where ξ > 0, and γ > 0.
Due to the time delay and the spatial lag, there is usually a certain amount of chattering

around the sliding mode surface in practical applications. In order to suppress it, the
function f(ϖ) is defined as (Lu et al. (2016))

f(ϖ) =

{
sgn(ϖ), |ϖ| ≥ ∆
sin(δϖ), |ϖ| < ∆

, (51)

where δ = π/(2∆), and ∆ is a boundary layer thickness. Hence, Eq. (50) can be rewritten
as:

i∗q =
1

D

∫
(
q

βp
ė2−p/q(k + α

g

h
ėg/h−1) +

Bv v̇

M
+

q

βp
ė1−p/q(ξf(ϖ) + γϖ))dt. (52)

To verify the stability of designed controller, the following Lyapunov function is selected:

V =
1

2
ϖ2. (53)

Based on Eqs. (48-52), the differentiation of non-singular terminal sliding mode surface
can be expressed as:

ϖ̇ = kė+ a
g

h
eg/h−1ė+ β

p

q
ėp/q−1(−Du+

Bv
M
v̇) = −(ξf(ϖ) + γϖ). (54)

Differentiating V with respect to time, one has

V̇ = ϖϖ̇ = −(ϖξf(ϖ) + γϖ2). (55)

Since f(ϖ) is a piecewise function, it needs to be discussed in two cases. First, when
|ϖ| ≥ ∆, V̇ = ϖϖ̇ = −(ξ |ϖ|+ γϖ2). Due to ξ > 0 and γ > 0, it holds V̇ ≤ 0. In the
other case, i.e., |ϖ| < ∆, V̇ = ϖϖ̇ = −(ϖξ sin(δϖ) + γϖ2). Due to ξ > 0, γ > 0, it
can be derived that V̇ ≤ 0. Hence, it can be concluded that V̇ ≤ 0. Thus, the sliding
mode controller designed in this paper is stable.

Design of the observer
In practice, the load changes of a motor greatly affect the closed-loop control
performance. Hence, a NDO is considered to address this issue. It is assumed that the
load dominates the disturbance term. From (6), the mechanical dynamic equation can be
expressed as follow (Chen et al. (2015)):

ẋ = f(x) + g1(x) + g2(x)Fd, (56)

where x = v, f(x) = Bvv/M , g1 = D ∗ iq , g2 = −1/M . According to Chen et al.
(2015); Ding et al. (2020), the NDO can be designed as follow:{

ż = −l(x)g2(x)z − l(x) [f(x) + g1(x)u+ g2p(x)]

F̂d = z + p(x)
, (57)
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where z represent the internal state, F̂d is estimation of Fd and p(x) =
∫
l(x)ẋdt. l(x)

is a crutial parameter for NDO, which determines the tracking speed and convergence
accuracy of the observer. Let l(x) = c, which is a constant.

Define the observer error of NDO as follow:

ed = Fd − F̂d. (58)

Since the sampling frequency of the NDO is much larger than the changing frequency of
the load, we hold that the disturbance remains unchanged within a sampling period, that
is, Ḟd = 0. Combine (3) and (57), we can obtain that

ėd = Ḟd − ˙̂
Fd

= cxg2(x)z + c [f(x) + g1(x)u+ g2(x)cx]− cẋ

= −c [ẋ− g2(x)z − f(x)− g1(x)u− g2(x)cx]

= −c [f(x) + g1(x)u+ g2Fd − g2(x)z − f(x)− g1(x)u− g2(x)cx]

= −c
[
g2(x)Fd − g2(x)F̂d

]
= −cg2(x)ed

(59)

To verify the stability of designed observer, the following Lyapunov function is selected:

V2 =
1

2
e2d (60)

Combining Eq.(59), we can obtain differential expression of V2 is as follows

V̇2 = edėd = −cg2(x)e2d. (61)

Due to g2(x) = −1/M < 0, as long as c < 0, it can be guaranteed that V̇2 < 0.
According to the Lyapunov stability theory, the designed observer is stable. In the
observer design, faster tracking speed can be achieved by selecting a smaller value of
c. However, if c is too small, the observation curve will have large fluctuations, which is
not suitable for the starting period. On the other hand, if c is too large, the observer cannot
track the disturbance in time. Through repeated debugging in simulation and experiment,
it is found that when c = −200, the observation speed and observation accuracy of the
observer can meet the control requirements of the system.

After proving the stability of NTSMC and NDO respectively, we need to discuss
whether the stability of the entire control system can still be guaranteed after the
disturbance compensation is obtained. Define a global Lyapunov equation consisting of
a sliding mode surface function ϖ and a perturbation tracking error function ed.

V = V1 + V2 =
1

2
ϖ2 +

1

2
e2d. (62)

Differentiating V with respect to time, one has

V̇ = V̇1 + V̇2 = ϖ̇ϖ + ėded. (63)
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Based on Eq.(55) and Eq.(61), when c < 0, ξ > 0, and γ > 0, it can be ensure V̇ <= 0.
Thus, according to Lyapunov stability theory we can know the whole control system is
asymptotically stable.

Finally, the load observer is utilized to compensate the output of the sliding mode
controller designed for outer loop. The q-axis reference current is obtained as follows

i∗q =gmF̂d +
1

D

∫
(
q

βp
ė2−p/q(k + α

g

h
ėg/h−1)

+
Bv v̇

M
+

q

βp
ė1−p/q(ξf(ϖ) + γϖ))dt,

(64)

where gm = 1
DM is the feedforward gain.

Simulations and experiments

Simulations and comparative analysis
The simulations in this section are carried out in Matlab. In order to show the advantages
of the proposed algorithm, the calculation time Tc of the traditional traversal method and
the proposed one under different predictive horizons are demonstrated in Table 1. It is
shown that there is no much difference of the computing time when the predictive horizon
N = 1. However, when the predictive horizon N = 2, the computing time employing
the traditional multi-step predictive control algorithm is about twice that of the proposed
algorithm. It is worth mentioning that the traditional approach may not be applicable
when the predictive horizon length N ≥ 3, since the computing time approximates the
sampling period.

Table 1. Computing time comparisons of different multi-step MPC algorithms.

N
Tc/µs

traversal method quadratic optimization method

1 2.8 2.9
2 13.4 6.8
3 Tc > Ts 16.9

. . . . . . . . .

To validate the control performance of the proposed strategy, two sets of simulations
are conducted. In the following simulations and experiments, the predictive horizon N
is set as 3. Moreover, the parameters of PMLSMs are given in Table 2. The switching
devices in the inverter are insulted-gate bipolar transistors (IGBTs) with operational
frequency of 10 kHZ and dc-link voltage is adjusted at 400V. According to method
proposed in Ding et al. (2020), we designed the gains of PI controller to ensure its
rationality and scientificity. The PI’s control gain ksp and ksi in speed outer loop can be
designed as ksp = 2ξωs/D, ksi = ω2

s/D, where ksp and ksi represent the proportional
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gain and integral gain respectively, ωs is bandwidth and ξ is damping coefficient. In
the Simulink and experiment, ωs and ξ are 40 and 0.7 respectively, so the control
gain are ksp = 19, ksi = 184. The parameters of NTSMC in this paper are selected
as follows: k = 2, α = 1, β = 1, g = 5, h = 3, p = 7, q = 5, ξ = 100, and γ = 450.
The load profile is described as FL(k) = 40N in our simulations. In this paper, the
NDO’parameter c = −200.

Table 2. Parameters of the PMLSM in simulations.

Parameters Variable name Value

Stator resistance[Ω] Rs 9.7
Stator Inductance[mH] L 43.3
Mover mass[kg ] M 3.2
Friction coefficient[N·s/m] Bv 0.5
pole-pitch[mm] τ 27
permanent magnet flux linkage[Wb] flux 0.165
number of pole pairs n 2
nominal speed[m/s] v 1

To demonstrate the control performance of the proposed method in this paper, we
compare it with the method proposed (PI MPC) in Zhang et al. (2016) and SMC PI
based new sliding mode approach low proposed in Wang and Wei (2019) respectively.
From the Fig. 2, we can conclude that the simulation results of the method proposed in
this paper and the above two methods for comparison, including the speed curve, a-phase
current curve and thrust force curve. First, the following conclusions can be drawn from
Fig. 2(e). Even if the disturbance compensation brought by NDO is not considered, the
speed overshoot and absolute speed drop (ASD) of the proposed method in this paper,
are 7.1% and 0.018m/s respectively, which are smaller than other comparison method.
This shows that the speed outer loop controller ,NTSMC, designed in this paper has a
good dynamic performance.

In addition, it can be seen from the figure that the proposed method also outperforms
the proposed methods in Zhang et al. (2016) and Wang and Wei (2019) in terms of
current THD and thrust ripple. This is mainly attributed to the proposed multi-step CCS-
MPC algorithm for current inner loop. It is also worth noting that when the load changes
abruptly (t=0.5s), the access to NDO can reduce the ASD of the three methods mentioned
above, especially the PI MPC has the most obvious improvement, from 0.058m/s to
0.022m/s, after getting the disturbance compensation. As show in Fig. 2(e) and 2(f), it can
be seen that the ASD index of the NTSMC CCS-MPC method is reduced by about 27.8%
after considering the disturbance compensation. The above simulation results show that
NDO can improve the robustness of the system.

Furthermore, in order to reveal the advantages of the NTSMC CCS-MPC proposed
in this paper, the steady state performance indexes such as maximum error(ME),
mean absolute error(MAE), and root mean squared error(RMSE) are evaluated.The

Prepared using sagej.cls



16 Journal Title XX(X)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.1

0

0.1

0.2

0.3

S
p
ee

d
 (

m
/s

)
Actual speed

reference speed

0 0.5 1 1.5
-1

-0.5

0

0.5

1

C
u
rr

en
t 

(A
)

0 0.5 1 1.5

Time (s)

-20

0

20

40

60

80

100

120

T
h
ru

st
 f

o
rc

e 
(N

)

1 1.1 1.2

0.1995

0.2

0.2005
ASD=0.058m/s

Current THD=12.23%

Thrust ripple=8.49%

Overshoot=7.5%

(a) without NDO: PI MPC proposed in Zhang
et al. (2016).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.1

0

0.1

0.2

0.3

S
p
ee

d
 (

m
/s

)

Actual speed

reference speed

0 0.5 1 1.5
-1

-0.5

0

0.5

1

C
u
rr

en
t 

(A
)

0 0.5 1 1.5

Time (s)

-20

0

20

40

60

80

100

120

T
h
ru

st
 f

o
rc

e 
(N

)

1 1.1 1.2

0.1995

0.2

0.2005

Current THD=12.23%

Thrust ripple=8.60%

Overshoot=7.7%

ASD=0.022m/s

(b) with NDO: PI MPC proposed in Zhang et al.
(2016).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.1

0

0.1

0.2

0.3

S
p
ee

d
 (

m
/s

)

Actual speed

reference speed

0 0.5 1 1.5
-1

-0.5

0

0.5

1

C
u
rr

en
t 

(A
)

0 0.5 1 1.5

Time (s)

-20

0

20

40

60

80

100

120

T
h
ru

st
 f

o
rc

e 
(N

)

1 1.1 1.2
0.1996

0.1998

0.2

0.2002

0.2004

Overshoot=14%

ASD=0.023m/s

Current THD=12.19%

Thrust ripple=8.62%

(c) without NDO: SMC PI proposed in Wang and
Wei (2019).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.1

0

0.1

0.2

0.3

S
p
ee

d
 (

m
/s

)

Actual speed

reference speed

0 0.5 1 1.5
-1

-0.5

0

0.5

1

C
u
rr

en
t 

(A
)

0 0.5 1 1.5

Time (s)

-20

0

20

40

60

80

100

120

T
h
ru

st
 f

o
rc

e 
(N

)

1 1.1 1.2
0.1996

0.1998

0.2

0.2002

0.2004

ASD=0.013m/s

Overshoot=14%

Current THD=12.35%

Thrust ripple=8.90%

(d) with NDO: SMC PI proposed in Wang and
Wei (2019).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.1

0

0.1

0.2

0.3

S
p
ee

d
 (

m
/s

)

Actual speed

reference speed

0 0.5 1 1.5
-1

-0.5

0

0.5

1

C
u
rr

en
t 

(A
)

0 0.5 1 1.5

Time (s)

-20

0

20

40

60

80

100

120

T
h
ru

st
 f

o
rc

e 
(N

)

1 1.1 1.2

0.1998

0.2

0.2002

Overshoot=7.1%

ASD=0.018m/s

Current THD=9.80%

Thrust ripple=7.0%

(e) without NDO: NTSMC CCSMPC proposed in
this paper.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.1

0

0.1

0.2

0.3

S
p
ee

d
 (

m
/s

)

Actual speed

reference speed

0 0.5 1 1.5
-1

-0.5

0

0.5

1

C
u
rr

en
t 

(A
)

0 0.5 1 1.5

Time (s)

-20

0

20

40

60

80

100

120

T
h
ru

st
 f

o
rc

e 
(N

)

1 1.1 1.2

0.1998

0.2

0.2002

Overshoot=1.7%

ASD=0.013m/s

Current THD=9.87%

Thrust ripple=6.96%

(f) with NDO: NTSMC CCSMPC proposed in
this paper.

Figure 2. Simulation results of speed, phase current, thrust.
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relevant informations are given in Fig. 3. It can be summaried that the error indexes of
NTSMC CCS-MPC are better than comparative solutions. Therefore, it can be concluded
that the proposed scheme in the paper has better steady-state performance. In conclusion,
the simulation results show that the proposed algorithm has relatively satisfactory
dynamic and steady-state performance.
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Figure 3. The speed error index: (a) simulation results. (b) experimental results.

Remark 2
The simulation results show that NDO can reduce the speed drop caused by sudden load
changes and improve the robustness of the system. It is worth noting that when the load
remains constant, the steady-state performance improvement brought by NDO is limited.
Speed error, current THD, and thrust ripple have little change compared to before.

Figure 4. The PMLSM experimental platform.
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Experiments and comparative analysis
To verify the practical effectiveness of the proposed approach, experiments are further
conducted on a dSPACE-based platform as shown in Fig. 4. The experimental platform
consists of PMLSM, a driver board, an incremental encoder, and so on. Two Hall sensors
are provided on the driver board, which are used to detect the current information of
the PMLSM. In addition, the incremental encoder provides coded information through
which the position, speed, and angle information of the PMLSM can be obtained. These
feedback signals are indispensable in the controller design. It can be said that the accuracy
of above signal directly affects the control performance. The relevant parameters of the
PMLSM are still the ones listed in Table 2. Moreover, all controller parameters keep the
same with those used in simulations.

Fig. 5 shows the experimental results of the method proposed in this paper and the
above two methods for comparison, including the speed curve, a-phase current curve and
thrust force curve. The experimental results are demonstrated in Fig. 5 and Table. 3 ,
where Fig. 5(a) (c) (e) and Fig. 5(b) (d) (f) respectively show the experimental results of
the above approchs under the conditions of whether or not disturbance compensation is
considered. It is noticed that compared with the other two methods, the speed overshoot
of the method proposed in this paper is reduced by 16.8% and 18% respectively. When
the speed of PMLSM reaches a steady state, its speed fluctuation is relatively smaller
than the other two methods. It is worth emphasizing that the speed error of the method
proposed in this paper is minimal without considering disturbance compensation. The
specific error data can be obtain in Fig. 3(b). In addition, it can be seen from the Table 3
that the proposed method also outperforms the proposed methods in Zhang et al. (2016)
and Wang and Wei (2019) in terms of current THD and thrust ripple.

When both scenarios considers the load observation, due to the lack of relevant
experimental equipment, it is temporarily impossible to verify the scene of sudden load
changes in the experiment, similar to the simulation results, the steady-state performance
improvement brought by NDO is limited.

Remark 3
Through the comparison of simulation and experimental results, it can be seen that the
current and thrust fluctuations in the experiment are much larger than the results in the
simulation, which may be caused by the following reasons:

(i) The experimental platform is old, and the processing power of dSPACE1104 core
processor is limited. When the control algorithm is more complex, the sampling
frequency can only be set at 5kHz.

(ii) In order to protect the inverter, a dead time is usually set. The dead time set by
the three-phase two-level inverter used in this experiment platform is 5us, which
is greater than the dead time required by some high-performance inverters, which
may cause distortion of the three-phase current.
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(a) without NDO: PI MPC proposed in Zhang et al.
(2016).

(b) with NDO: PI MPC proposed in Zhang et al.
(2016).

(c) without NDO: SMC PI proposed in Wang and
Wei (2019).

(d) with NDO: SMC PI proposed in Wang and Wei
(2019).

(e) without NDO: NTSMC CCSMPC proposed in
this paper.

(f) with NDO: NTSMC CCSMPC proposed in this
paper.

Figure 5. Experimental results of speed, phase current, thrust.

Table 3. Experimental performance evaluation.

Overshoot(%) THD(%) Thrust ripple(%)

PI MPC 27.1 20.03 15.4
PI MPC+NDO 15.2 22.17 13.8

SMC PI 28.3 19.58 15.9
SMC PI+NDO 26.7 19.96 16.5

NTSMC CCSMPC 10.3 19.2 15.5
NTSMC CCSMPC +NDO 12.5 18.47 14.6
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Conclusion
This paper proposes an NTSMC-based CCS-MPC method to control a PMLSM.
Specifically, the NTSMC approach is employed in the controller design for the speed
control loop of the PMLSM. A load observer is further designed to improve the overall
control performance. The effectiveness of the proposed approach is verified through both
simulations and experiments. To demonstrate the control performance of the proposed
method in this paper, we compare it with the method proposed (PI MPC) in Zhang et al.
(2016) and SMC PI based new sliging mode approach low proposed in Wang and Wei
(2019) respectively. The simulation and experimental results show that the NTSMC-
based CCS-MPC approach offers smaller speed fluctuations, with great anti-disturbance
capability.
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