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Summary

Quantile regression methods are increasingly used to forecast tail risks and
uncertainties in macroeconomic outcomes. This paper reconsiders how to con-
struct predictive densities from quantile regressions. We compare a popular
two-step approach that fits a specific parametric density to the quantile forecasts
with a nonparametric alternative that lets the “data speak.” Simulation evidence
and an application revisiting GDP growth uncertainties in the United States
demonstrate the flexibility of the nonparametric approach when constructing
density forecasts from both frequentist and Bayesian quantile regressions. They
identify its ability to unmask deviations from symmetrical and unimodal densi-
ties. The dominant macroeconomic narrative becomes one of the evolution, over
the business cycle, of multimodalities rather than asymmetries in the predictive
distribution of GDP growth when conditioned on financial conditions.
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1 INTRODUCTION
Recent research has used quantile regression (QR) methods both to produce density nowcasts and forecasts of macroeco-
nomic and financial variables and to assess tail risks, emphasizing asymmetries in the distribution of (real) GDP growth
when conditioned on financial conditions.1 A commonly adopted approach in this literature, following Adrian et al. (2019)
[henceforth ABG], is to produce the density forecasts in two steps. As a first step, the QRs are estimated. This means that
the underlying conditional density is defined only at the chosen quantiles (typically four quantiles are chosen). As a result,
as a second step, the skewed-t density function of Azzalini and Capitanio (2003) is fitted to these quantile forecasts by
minimizing the distance (the 𝓁2 norm) between the (empirical) regression quantiles and the (theoretical) density-implied
quantiles. This second step both smooths the estimated quantile functions and provides a complete density forecast, albeit
one whose form is now controlled by the class of skewed-t density assumed. This second step, therefore, contrasts with
the nonparametric nature of the first-step quantile regressions. Policy institutions, such as the IMF, have also adopted this
two-step approach to monitor international macroeconomic risks, such as growth-at-risk (GaR); see Prasad et al. (2019).

1On the use of QR methods to produce density nowcasts and forecasts, see, for example, Gaglianone and Lima (2012), Manzan and Zerom (2013),
Gaglianone and Lima (2014), Manzan (2015), Korobilis (2017), Chen et al. (2021), Ferrara et al. (2022), and Mitchell et al. (2022). On the more specific
but connected issue of the assessment of tail risks using QRs, see, for example, Giglio et al. (2016), Ghysels et al. (2018), Adrian et al. (2019), Figueres
and Jarocinski (2020), Reichlin et al. (2020), Brownlees and Souza (2021), Carriero et al. (2022), and Carriero et al. (2023).
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2 MITCHELL ET AL.

This paper reconsiders the use of QRs when interest rests with the production and subsequent evaluation of density
forecasts, from which specific risk forecasts, such as GaR, can always be extracted. The attraction of producing density
forecasts rather than specific point, quantile, or interval forecasts is that, given the forecast user's loss function, one can
readily extract from the density forecast the features of specific interest to the user. Such a focus on the production of
density forecasts is rare in the quantile regression literature (with the notable exceptions listed above), despite consider-
able attention having been paid to the production and evaluation of the quantile forecasts themselves (for example, see
Komunjer, 2013).

Our paper proposes and then contrasts with the aforementioned two-step ABG method, which has become so estab-
lished, a simple nonparametric (strictly “semi-parametric”) approach to the production of density forecasts from QRs.
Unlike ABG's, this approach does not superimpose a global density on specific quantile forecasts. Instead, the conditional
quantile forecasts from the first-step QRs are mapped directly to a conditional density, assuming only local uniformity
between the quantile forecasts. In an application to US GDP growth, we find that use of this nonparametric approach
matches or slightly improves upon the accuracy of the ABG densities. It also supports the much-cited finding of ABG that
the left-tail of the conditional density of GDP growth moves with the tightness of financial conditions. But the nonpara-
metric approach delivers conditional forecast densities with very different features than those when, following ABG, a
skewed-t density is assumed globally. In particular, linking to Adrian et al. (2021), we find that the very same QRs used
by ABG do, in fact, deliver multimodal GDP growth density forecasts. This is notably so at times of recession, when con-
ditioning on a popular index of financial conditions. The evolution over the business cycle of multimodalities rather than
asymmetries then becomes the dominant macroeconomic narrative of the conditional predictive distribution of GDP
growth. But even though, especially when implemented as proposed in this paper, QRs can flexibly capture nonlineari-
ties when forecasting, as a nonparametric (reduced-form) model they cannot so readily discriminate between alternative
(more structural) explanations for the observed distributional properties of GDP growth. This would require stronger
parametric assumptions.

This paper focuses on the construction of density forecasts from QRs, given their growing use in macroeconomics and
finance since ABG. A large literature, of course, considers the production of density forecasts using other methods; see
Aastveit et al. (2019) for a review. A literature has also grown up, in response to ABG, on the production of GaR and
density forecasts using both parametric and nonparametric alternatives to QR; for example, see Caldara et al. (2021),
Plagborg-Moller et al. (2020), Adrian et al. (2021), Carriero et al. (2023), and Delle Monache et al. (2023). By contrast, we
deliberately stick to the QR models of ABG. In so doing, we emphasize the empirical importance of moving beyond their
skewed-t parametric assumption when fitting the density to these quantile forecasts.

The remainder of this paper is structured as follows. Section 2 considers the construction of density forecasts from
quantile regressions, estimated via frequentist or Bayesian methods. It contrasts parametric and nonparametric methods
for the production of the density forecast. Section 3 presents Monte Carlo evidence on the relative efficacy of the para-
metric and nonparametric approaches at fitting densities to distributions of various underlying shapes. Section 4 revisits
the GaR application of ABG and contrasts empirical results using the parametric and nonparametric approaches. Section
5 concludes. An online appendix contains the supporting information.

2 DENSITY FORECASTS FROM QUANTILE REGRESSIONS

Consider the QR relating the 𝜏th quantile of 𝑦t+h, the variable of interest (GDP growth in our application), to xt, a
d−dimensional vector of conditioning variables including an intercept:

Q𝜏(𝑦t+h|xt) = x′t𝛽𝜏 , 𝜏 ∼ U(0, 1), (1)

with t = 1, … ,T and where h is the forecast horizon and U(.) is the uniform density. Note that, following ABG, we focus
on QR models with time-invariant parameters.2

The QR slope, 𝛽𝜏 , is chosen to minimize the weighted absolute sum of errors:

𝛽𝜏 = argmin
𝛽𝜏

T−h∑
t=1

(
𝜏1(𝑦t+h≥x′t𝛽𝜏 )

||𝑦t+h − x′t𝛽𝜏 || + (1 − 𝜏)1(𝑦t+h≤x′t𝛽𝜏 )
||𝑦t+h − x′t𝛽𝜏 ||) , 𝜏 ∈ (0, 1), (2)

2Recent research in macroeconomics has moved on to consider QR models with time-varying parameters (e.g., see Korobilis et al., 2021). The same
issues, as discussed in this paper, arise when considering how to construct density forecasts from these QR models.

 10991255, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.3049 by T

est, W
iley O

nline L
ibrary on [29/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MITCHELL ET AL. 3

where 1(.) denotes an indicator function. A perceived attraction of QR is that the informational importance of xt for 𝑦t+h
can vary by quantile and thereby accommodate situations where conditioning variables have, for example, more or less
informational content in the tails of the density.

The quantile forecasts from (2), conditional on xt, are:

Q̂𝜏(𝑦t+h|xt) = x′t𝛽𝜏 . (3)

Bayesian estimation of QRs has also gained attention recently. Koenker and Machado (1999) established that
likelihood-based inference using independently distributed asymmetric Laplace densities (ALD) is directly related to (2).
Yu and Moyeed (2001) show how exact Bayesian inference using Markov chain Monte Carlo (MCMC) methods can pro-
ceed by forming the likelihood function using the ALD; they emphasize the utility of the ALD, irrespective of the original
distribution of the data. And Kozumi and Kobayashi (2011) propose a mixture representation of the ALD that renders the
model conditionally Gaussian, facilitating estimation using more efficient MCMC methods. Unlike classical estimation
methods, Bayesian methods naturally accommodate parameter uncertainty when forecasting. While a bootstrap-based
approach, for example, could in principle be used to construct quantile forecasts that acknowledge parameter estimation
error from QRs estimated via classical methods, in practice this is not undertaken, certainly in the ABG-inspired GaR
literature.

Quantile forecasts can be constructed from the Bayesian QR, as per (3), by sampling from the posterior parameter
distribution for 𝛽𝜏 . For the rth (r = 1, … ,R) MCMC draw, 𝛽r

𝜏 , these quantile forecasts are given as:

Q̂𝜏(𝑦t+h|xt)r = x′t𝛽r
𝜏 . (4)

In empirical applications, quantile regressions are estimated at a finite number of 𝜏, that is, [𝜏1, … , 𝜏k], where 0 <

𝜏1 < 𝜏2 < .... < 𝜏k < 1. ABG, in fact, consider just k = 4. This means that the underlying conditional density is defined
only at these k quantiles. To estimate the full conditional h−step-ahead predictive density, 𝑓 (𝑦t+h|xt), we therefore need
to establish a mapping from the k quantile forecasts, as in (3) or (4):{

Q̂𝜏1(𝑦t+h|xt), … , Q̂𝜏k (𝑦t+h|xt)
}
→ 𝑓 (𝑦t+h|xt),∀[x′t , 𝑦t+h]′ ∈ R

dim(x)+1, (5)

where, for notational ease, we denote these quantile forecasts Q̂𝜏𝑗 (𝑦t+h|xt) = x′t𝛽𝜏𝑗 ; that is, we suppress dependence on the
MCMC draw for the case when the QR is estimated via Bayesian methods.

Below we set out two ways of establishing this mapping. We start with the parametric approach of ABG. As discussed
in Section 1, this approach is used widely in macroeconomics, despite the contradiction with the nonparametric flavor of
the first-step QRs.

2.1 ABG's parametric quantile-matching approach

To estimate the full continuous conditional density forecast of 𝑦t+h, from the k quantile forecasts, ABG, in effect, combine
them by fitting the skewed-t density function of Azzalini and Capitanio (2003) to the quantile forecasts, (3). They mini-
mize the distance (the 𝓁2 norm) between the (empirical) regression quantiles and the (theoretical) distribution-implied
quantiles:

arg
𝜇,𝜎,𝛼,𝜐

min
∑
𝜏

(
Q̂𝜏(𝑦t+h|xt) − F̂−1(𝜏;𝜇, 𝜎, 𝛼, 𝜐)

)2
, (6)

where F is the CDF of the skewed-t PDF, f, given as:

𝑓 (𝑦;𝜇, 𝜎, 𝛼, 𝜐) = 2
𝜎

t
(𝑦 − 𝜇

𝜎
; 𝜐
)

T
⎛⎜⎜⎜⎝𝛼

𝑦 − 𝜇

𝜎

√√√√ 𝜐 + 1

𝜐 +
(

𝑦−𝜇
𝜎

)2 ; 𝜐 + 1
⎞⎟⎟⎟⎠ , (7)

where t and T(.) respectively denote the PDF and CDF of the Student t-distribution, where 𝜇 is a location parameter, 𝜎
is the scale, 𝜐 is the fatness, and 𝛼 is the shape. When 𝛼 = 0, the skewed-t reduces to the Student t. When, in addition,
𝜐 = ∞, (7) reduces to a Gaussian distribution, with mean 𝜇 and standard deviation 𝜎.
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4 MITCHELL ET AL.

ABG focus on the exactly identified case of matching the 0.05, 0.25, 0.75, and 0.95 quantiles. But, in principle, as ABG
discuss in a footnote but do not explore empirically, more quantiles could be used, allowing the four parameters of (7) to
be over-identified. Since the choice of these k = 4 quantiles is somewhat arbitrary and may affect the shape of the fitted
distribution, below we also consider fitting the skewed-t distribution to more quantiles.

While ABG used (6) on quantile forecasts, (3), produced from a frequentist QR, others have fitted the skewed-t distribu-
tion to forecasts produced from a Bayesian QR. Ferrara et al. (2022), for example, use (6) on the mean (across r = 1, … ,R
MCMC draws) quantile forecasts, (4).

2.2 Constructing the density forecast nonparametrically

Rather than assume a parametric function for 𝑓 (𝑦t+h|xt), following Parzen (1979) and Koenker (2005), one can back out
the conditional distribution directly from the conditional quantile function via the integral transforms:

F̂(𝑦t+h|xt) = ∫
1

0
1
{

x′t𝛽𝜏 ≤ 𝑦t+h
}

d𝜏. (8)

By considering all 𝜏 ∈ (0, 1), one can approximate the true conditional quantile function arbitrarily well, when the true
density is a smooth conditional density (Koenker, 2005, p. 53).

In practice, we follow Koenker and Zhao (1996) and adopt a simple simulation-based approach, instead of relying on
numerical integration. Random draws are taken from the h-step-ahead forecast distribution given by:

𝑦̂t+h = Q̂U(𝑦t+h|xt), (9)

where U is a uniformly distributed random variable on [0, 1] as in Koenker and Zhao (1996). Repeating across many
random draws approximates F̂(𝑦t+h|xt).

To operationalize, with a finite k, we smooth/interpolate across adjacent quantile forecasts by taking a first-order Taylor
expansion of the CDF, (8), for a value 𝑦t+h between the 𝑗th and ( 𝑗 + 1)th conditional quantiles for 𝑗 = 1, … , k − 1:

F̂k(𝑦t+h|xt) = 𝜏𝑗 +
𝜏𝑗+1 − 𝜏𝑗

x′t𝛽𝜏𝑗+1 − x′t𝛽𝜏𝑗

(
𝑦t+h − x′t𝛽𝜏𝑗

)
(10)

= 𝜏𝑗 + F′
(
𝑦∗t+h,𝑗|xt

) (
𝑦t+h − x′t𝛽𝜏𝑗

)
, (11)

for 𝑦∗t+h,𝑗 ∈
(

x′t𝛽𝜏𝑗 , 𝑦t+h
)
⊂

(
x′t𝛽𝜏𝑗 , x′t𝛽𝜏𝑗+1

)
. Assuming that the interval between adjacent quantiles is relatively small, the

implied distribution function is approximately linear within the interval.
Figure 1 provides an illustration, plotting the approximate CDF in yellow and the true CDF in blue. This illustration

intuitively points to higher values of k delivering better approximations. That is, the marginal benefits of the first-order
approximation decline as k increases, an issue we explore below in both the simulations and the application. Unlike ABG's,
this approach does not superimpose a global (parametric, such as a skewed-t) distribution on specific quantile forecasts.
Instead, it assumes local uniformity between the k quantile forecasts. Hence, it is best seen as a “semi-parametric” method,
although for convenience we continue to refer to the method as nonparametric.

Algorithm 1 summarizes the mechanics of how the density forecast is formed nonparametrically from the QRs.
Whether the QRs are estimated by frequentist or Bayesian methods, the empirical density forecast is constructed from
the NR-dimensional vector:[

y′
t+h,1, y′

t+h,2, … , y′
t+h,k, y′

t+h,k+1

]′
, where N is the number of draws taken from the conditional density forecast (via

Algorithm 1) and R (R = 1 for frequentist QR) is the number of MCMC draws used if the QR is estimated via Bayesian
methods. This vector can be used directly by the macroeconomist or a kernel could be fitted.3

3See Krüger et al. (2021) for a discussion of the pros and cons of alternative methods for estimating the distribution from the underlying simulation
output. Their analysis demonstrates that the empirical CDF-based approximation works well in many contexts.

 10991255, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.3049 by T

est, W
iley O

nline L
ibrary on [29/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MITCHELL ET AL. 5

We note four features of Algorithm 1:

1. Since
Prob(F−1(𝜏𝑗|xt) ≤ 𝑦t+h < F−1(𝜏𝑗+1|xt)) = 𝜏𝑗+1 − 𝜏𝑗 , (12)

to take a sample of length N from the conditional distribution F(·|X = xt) requires (𝜏𝑗+1 − 𝜏𝑗)N samples to be taken
between: (

x′t𝛽𝜏𝑗 , x′t𝛽𝜏𝑗+1

)
. (13)

2. The quantile forecasts are re-arranged as necessary (following Chernozhukov et al., 2010) to avoid quantile crossing.

(a) The density is fitted beyond the outer or “extreme” quantiles, defined by 𝜏1 and 𝜏k, by assuming that a specific
CDF applies in the tails.4 The researcher is free to assume that any parametric CDF of their choosing applies in
the tails. We focus on the following case:

Φ(x′t𝛽𝜏1 , 𝜇1, 𝜎1) = 𝜏1,Φ(x′t𝛽𝜏2 , 𝜇1, 𝜎1) = 𝜏2 (14)

Φ(x′t𝛽𝜏k−1 , 𝜇2, 𝜎2) = 𝜏k−1,Φ(x′t𝛽𝜏k , 𝜇2, 𝜎2) = 𝜏k, (15)

where Φ is the Gaussian CDF, and we solve for [𝜇1, 𝜎1] to satisfy (14) and [𝜇2, 𝜎2] to satisfy (15). In our application,
results are robust to this choice. This is understood by noting that this Gaussianity assumption affects only the
behavior of the extreme tails of the density forecasts constructed via Algorithm 1.5 In addition to the question of
how to fit the density beyond the outer quantiles defined by 𝜏1 and 𝜏k, it is well known that estimation of extreme
quantiles with small samples can lead to coefficient bias; see Chernozhukov (2005). In small sample applications,

4In our simulations and the application, we define “extreme” as those quantiles either beyond 0.05 and 0.95 or beyond 0.01 and 0.99.
5In Section A.2 of the online appendix we present results when, instead of the Gaussian distribution, we assume that the generalized extreme value (EV)
distribution of type 1 applies in the tails. The EV density is commonly used when undertaking inference of extremal QRs; see Chernozhukov (2005).
When repeating the main empirical exercises in the main paper using the EV rather than the Gaussian distribution in the tails, we find that the densities
both look and forecast similarly. We also experimented with the student-tCDF in the tails, to acknowledge that fatness in the extreme tails may be
helpful. Again we find that our empirical results are little different, although the t density does introduce some extra “wiggles” into the extreme tails.
Ultimately, the choice of what density to assume for the outer quantiles is an empirical question to be decided on an application-by-application basis.
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6 MITCHELL ET AL.

the researcher may therefore prefer to estimate the extreme quantiles using extremal methods or Bayesian QR with
shrinkage rather than frequentist QR. Alternatively, rather than estimate the extreme quantiles directly, increased
power in small samples could be gained by simultaneously estimating the QR across multiple 𝜏 including the
extreme quantiles. In the online appendix (Section A.2), to illustrate how our algorithm can be operationalized
in such situations, we present results where we adapt the composite QR method (Zou & Yuan, 2008), and when
k = 99 (𝜏 ∈ [0.01, 0.02, … , 0.99]) we estimate a pooled QR in the extreme left tail as follows:

arg min
b1,..bK ,𝛽

K∑
𝑗=1

{ T∑
t=1

𝜌𝜏𝑗
(
𝑦t+h − b𝑗 − x′t𝛽

)}

where b𝑗 denotes the quantile-specific intercept and 𝛽 denote the common (across quantiles) slope coefficients for
𝜏1, ...𝜏K ≤ 0.05, and similarly for the right tail quantiles ≥0.95. In this application, use of composite QR methods
does not improve forecast accuracy. Note that for the pooled QR we exclude the intercept from xt.

3. Algorithm 1 consistently estimates the true conditional distribution F(𝑦t+h|xt) as T, k → ∞. This is understood by
noting that there are two convergence aspects to consider in Algorithm 1: (a) statistical convergence, T → ∞, and (b)
convergence of the approximate distribution to the true distribution as the number of quantile levels, k → ∞:

(a) The consistency of the QR estimates 𝛽𝜏𝑗 as T → ∞ (see Chernozhukov et al., 2010, and Koenker, 2005), at the
chosen quantile levels, 𝑗, implies that the approximate distribution F̂k → Fk. That is, referring again to Figure 1, the
approximate distribution converges to the piecewise-linear function (the yellow line) approximating the true CDF
(the blue line) at the chosen quantile. For 𝜏 ∈ {𝜏1, … , 𝜏k}:

Fk(x′t𝛽𝜏 |xt) = F(x′t𝛽𝜏 |xt), (16)

that is, the vertex of the function equals the true density at the finite sequence of quantile levels (and the blue and
yellow lines equal each other).

(b) As k → ∞, the piecewise-linear CDF (the yellow line in Figure 1) will converge to the true distribution (the blue
line in Figure 1) between these quantile levels. This is seen as follows. Given a smoothness assumption for the true
density, by Taylor's theorem, rewrite the true distribution as:

F(𝑦t+h|xt) = 𝜏𝑗 + 𝑓 (𝑦∗t+h,1|xt)(𝑦t+h − x′t𝛽𝜏𝑗 ), (17)

for any 𝑦t+h ∈
(

x′t𝛽𝜏𝑗 , x′t𝛽𝜏𝑗+1

)
and some 𝑦∗t+h,1 ∈

(
x′t𝛽𝜏𝑗 , 𝑦t+h

)
. Then, by the mean value theorem, the approximate k

quantile level distribution is:

Fk(𝑦t+h|xt) = 𝜏𝑗 +
𝜏𝑗+1 − 𝜏𝑗

x′t𝛽𝜏𝑗+1 − x′t𝛽𝜏𝑗
(𝑦t+h − x′t𝛽𝜏𝑗 ) (18)

= 𝜏𝑗 + 𝑓 (𝑦∗t+h,2|xt)(𝑦t+h − x′t𝛽𝜏𝑗 ), (19)

for 𝑦∗t+h,2 ∈
(

x′t𝛽𝜏𝑗 , x′t𝛽𝜏𝑗+1

)
and 𝑗 = 1, … , k − 1. Comparing (17) and (19), the only difference is between 𝑦∗t+h,1 and

𝑦∗t+h,2. Yet, note that:

x′t𝛽𝜏𝑗 ≤ 𝑦∗t+h,2 ≤ x′t𝛽𝜏𝑗+1 (20)

x′t𝛽𝜏𝑗 ≤ 𝑦∗t+h,1 ≤ 𝑦t+h ≤ x′t𝛽𝜏𝑗+1 . (21)

Further assume that the conditional quantiles are linear in the regressors, uniformly across all 𝜏. Then, we can let
k → ∞. As k → ∞, 𝜏𝑗+1 − 𝜏𝑗 → 0, and the intervals in (20) and (21) converge by the sandwich theorem such that

𝑦∗t+h,1 = 𝑦∗t+h,2.
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MITCHELL ET AL. 7

FIGURE 1 Illustrative comparison of the true CDF against
Algorithm 1 (Fk) and the CDF assuming uniform (equal) weights
between adjacent quantiles: As k → ∞, 𝜏𝑗+1 − 𝜏𝑗 → 0.

true CDF
Equal weights CDF
F

k

x'
j+1

j+1

x'
j

j

Hence,

lim
k→∞

Fk(𝑦t+h|xt) = F(𝑦t+h|xt).

In the simulations and empirical application below, we consider how to choose k. We suggest, in effect, to choose k
empirically to maximize forecasting performance. In general, we find that intermediate values of k (such as k = 19)
tend to work best. These balance the need for a value large enough to accurately trace out the shape of the underlying
distribution, with the risk, especially in smaller samples, of introducing noise by estimating QRs in the tails of the
distribution with too few observations.

Algorithm 1, where the proposed distribution is:

F̂k(𝑦t+h|xt) = 𝜏𝑗 +
𝜏𝑗+1 − 𝜏𝑗

x′t𝛽𝜏𝑗+1 − x′t𝛽𝜏𝑗

(
𝑦t+h − x′t𝛽𝜏𝑗

)
, (22)

when 𝑦t+h ∈
(

x′t𝛽𝜏𝑗 , x′t𝛽𝜏𝑗+1

)
, can be contrasted with an alternative of using equal weights between adjacent quantiles:

F̂EW (𝑦t+h|xt) =
⎧⎪⎨⎪⎩
𝜏𝑗 𝑦t+h ∈

(
x′t𝛽𝜏𝑗 , x′t𝛽𝜏𝑗+1

)
0 𝑦t+h < x′t𝛽𝜏1

1 𝑦t+h ≥ x′t𝛽𝜏k

, (23)

which amounts to a zero-order approximation of the CDF between quantiles j and j+1. We emphasize that this is, in effect,
the approach used by Korobilis (2017) to produce density forecasts from Bayesian QRs. This approach involves collecting
together the r = 1, … ,R MCMC draws of the quantile forecast Q̂𝑦T+h(𝜏|xt)r across 𝜏 ∈ [0.05, 0.10, … , 0.90, 0.95] and then
constructing the full posterior density forecast from this stacked vector—using a kernel to smooth.

Figure 1 also illustrates how equal weights differ from Algorithm 1. It shows how equal weights intuitively provide a
worse approximation to the true CDF, although, as with Algorithm 1, the quality of its approximation will improve as
k increases. Indeed, as k → ∞ the difference between Algorithm 1 and equal weights disappears; of course in practice,
for finite T, the econometrician can only estimate a finite number of QRs. Note that, given the estimated quantile levels,
the straight lines that Algorithm 1 imposes between adjacent quantiles provide a piecewise-linear approximation to the
CDF. Unlike the piecewise-constant function implied by equal weights, the piecewise-linear approximation benefits from
smoothness in the estimated CDF. Statistics such as the conditional mean can be obtained via numerical integration of:

∫ xt𝑓k(𝑦t+h|xt)dxt, (24)
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8 MITCHELL ET AL.

where:

𝑓k(𝑦t+h|xt) =
⎧⎪⎨⎪⎩
Φ(𝑦t+h|𝜇1, 𝜎̂1) 𝑦t+h ≤ x′t𝛽𝜏1

𝜏𝑗+1−𝜏𝑗
x′t𝛽𝜏𝑗+1−x′t𝛽𝜏𝑗

x′t𝛽𝜏𝑗 < 𝑦t+h ≤ x′t𝛽𝜏𝑗+1

Φ(𝑦t+h|𝜇2, 𝜎̂2) 𝑦t+h > x′t𝛽𝜏k .

(25)

Algorithm 1, instead, relies on samples from the conditional density 𝑓k(𝑦t+h|xt), which lets us readily construct the
whole density.

3 SIMULATION RESULTS

To evaluate the performance of the nonparametric approach to construction of the predictive density from QRs, relative to
extant alternatives including the approach of ABG, we conduct a set of Monte Carlo experiments. These experiments let us
assess the ability of the different approaches to uncover a range of distributional forms. We consider five data-generating
processes (DGPs) that yield densities for {𝑦t}T

t=1 that are

1. (DGP1) Gaussian: N(0, 1).
2. (DGP2) Negatively skewed: 𝑓 (𝑦;𝜇 = 1, 𝜎 = 2, 𝛼 = − 0.5, 𝜐 = 10), where 𝑓 (.) is as defined in (7).
3. (DGP3) Skewness and high kurtosis: 𝑓 (𝑦;𝜇 = 1, 𝜎 = 1, 𝛼 = 1, 𝜐 = 5).
4. (DGP4) Bimodal (mixture of Gaussian) : 1∕3N(0, .04) + 2∕3N(1, .04).
5. (DGP5) Trimodal (mixture of Gaussian): 1∕6N(0, 0.2) + 1∕3N(1, 0.2) + 1∕2N(2, 0.2).

For {𝑦t}T
t=1 samples of size T = 100 and T = 1, 000 drawn from each of these five DGPs, we then estimate six alternative

densities and compare their fit against the (true) DGP density. In all cases, when estimating the QR, we set xt = 1, that is,
we consider an intercept only.

The six densities we fit to the {𝑦t}T
t=1 samples are:

1. NP(freq): estimate the QRs (where k = 19, such that 𝜏 ∈ [0.05, 0.10, … , 0.90, 0.95]) using frequentist methods, (2), and
then construct the density nonparametrically via Algorithm 1, setting N = 20,000. We also experiment, as summarized
below, with k = 4 where 𝜏 ∈ [0.05, 0.25, 0.75, 0.95] (as in ABG) and k = 99 where 𝜏 ∈ [0.01, 0.02, … , 0.99].

2. EW(freq): estimate the QRs (where k = 19, such that 𝜏 ∈ [0.05, 0.10, … , 0.90, 0.95]) using frequentist methods (as in
NP(freq)) but then construct the density using equal weights, (23).

3. NP(B): estimate the QRs (where k = 19, such that 𝜏 ∈ [0.05, 0.10, … , 0.90, 0.95]) using Bayesian methods and then
construct the density nonparametrically via Algorithm 1. At the first stage, the Bayesian QR is estimated using a
standard normal uninformative prior for the q−vector of 𝛽𝜏 coefficients, centered on a zero mean:

𝛽𝜏 ∼ N(0,V𝛽), (26)

where V𝛽 = 10Iq.
4. EW(B): estimate the QRs (where k = 19, such that 𝜏 ∈ [0.05, 0.10, … , 0.90, 0.95]) using Bayesian methods (as in

NP(B)) but then construct the density using equal weights, (23).
5. ABG: follow ABG (using their replication material) and estimate the QRs (where k = 4, such that 𝜏 ∈

[0.05, 0.25, 0.75, 0.95]) using frequentist methods and then construct the density parametrically via (7).6
6. ABG kernel: as a non-QR benchmark, follow ABG and nonparametrically estimate a kernel density.7

For all the Bayesian models, we estimate using 20,000 MCMC draws with a burn-in of 10,000 draws. Next, we then
input each MCMC draw (across k quantiles) into Algorithm 1 and set N = 100. This delivers a vector of 1,000,000 draws
from each predictive forecast density.

6We note that in ABG's Matlab replication materials (available at https://doi.org/10.3886/E113169V1), when matching the quantile forecasts to the
skewed-t density they approximate integrals with discrete sums. Specifically, looking at ABG's Step2match.m file (line 100), we see that they evaluate
the skewed-t density only over a grid from −15 to 10. Instead, we use an exact analytical solution. In the empirical section below we return to this issue,
showing its empirical importance.
7See Equation (8) of ABG for details of the specific kernel density estimator employed.
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MITCHELL ET AL. 9

Tables 1 and 2, for T = 100 and T = 1, 000, respectively, report the mean squared error (across 100 parallelized chains)
of the first four moments of the fitted densities relative to the true (DGP) density and the average Kullback–Leibler (KL)
distance between the fitted and true densities. KL is constructed as the expected difference in their logarithmic scores.
Looking at the KL distance first, as a measure of overall density fit, we see that the nonparametric (NP) estimators, whether
NP(freq) or NP(B), consistently deliver the better-fitting densities irrespective of the shape of the true density.8 As antic-
ipated, ABG's parametric approach is competitive only when the true density is unimodal. Instabilities in estimation of
the skewed-t density mean that ABG is not, however, always the best-fitting density even for DGP1 through DGP3, when
the true density is unimodal, and we might expect the parametric nature of ABG to deliver gains. But for the multimodal
densities (DGP4 and DGP5) use of Algorithm 1 is clearly preferable, whether deployed on a QR estimated by frequentist
or Bayesian methods: both NP(freq) and NP(B) are consistently the best performers in terms of delivering the lower KL
values. The NP algorithms also match ABG for the unimodal densities (DGP1 through DGP3). The equal-weighted (EW)
approaches, as expected, do not produce as low KL values as NP does, but they again outperform ABG for DGP4 and
DGP5. There is some evidence that EW(B), because of the extra parameter estimation uncertainty that is accommodated,
yields more volatile estimates than EW(freq). In contrast, the extra smoothing involved means this result does not hold
for NP. The benchmark ABG kernel density, like the NP estimators, can also accommodate multimodalities. However, the
kernel density does not deliver as good-fitting densities as the NP approaches, in particular for the smaller sample size of
T = 100.

Turning to the accuracy of the first four moments, as judged by the mean squared error (MSE) between the respective
moment of the fitted and true densities, we again see that the NP estimators tend to be more accurate than ABG and
kernel. The EW approach can also be competitive, although accuracy for the unimodal densities (DGP1 through DGP3)
can deteriorate, particularly when the QRs are estimated by Bayesian methods. We attribute this to the inability of EW
to provide as smooth a representation of the tails of the density as NP. We also note how explosive estimation, for some
Monte Carlo replications, pushes up the MSE estimates in some instances, especially for EW(B) and ABG. When estimates
of 𝜐 < 4, not all of the first four moments of the skewed-t density are defined.

In sum, the Monte Carlo evidence confirms that the choice of how to fit a density to quantile forecasts matters. While
ABG's parametric assumption may work well, unsurprisingly it will only do so for true densities that are unimodal.
Instead, it is relatively simple to let the “data speak,” as they do when estimating the QRs in the first place, and use non-
parametric approaches as detailed in Algorithm 1 to construct the forecast density from the quantile forecasts. While these
simulations are, of course, just illustrative, they do indicate how the nonparametric approach of Algorithm 1 can flexibly
accommodate a greater variety of distributional shapes than ABG, even for modest sample sizes. They also suggest that
when using Algorithm 1 intermediate values of k (such as k = 19) best approximate the underlying density.

In principle, we anticipate a trade-off when selecting what k to use in Algorithm 1. Too small a value does not give NP
sufficient flexibility to smoothly fit different distributional shapes. Too large a value for k, especially for smaller sample
sizes, T, increasingly forces the QR into the tails of the density, where there are fewer observations. This may induce noise
in the forecast density, and it raises the risk of introducing erroneous spikes or modes (undersmoothing) in the forecast
density when fitted using NP. To investigate this possible trade-off, in the online appendix, we report supplementary sim-
ulation results (see Table A2). These involve, for DGP1 through DGP5, using the calibrated unimodality test of Hartigan
and Hartigan (1985), as proposed by Cheng and Hall (1998), and reporting the proportion of rejections of unimodality.
Table A2 confirms that while increasing k, when using NP(freq), does increase the chance of identifying false peaks in
the unimodal densities of DGP1 through DGP3, this risk rapidly declines to zero for sample sizes of T > 50. This suggests
that increasing k does not inject false peaks into the fitted densities, except for very small samples (T = 25). In turn, for
the multimodal DGPs (DGP4 and DGP5), NP(freq) does a good job of rejecting unimodality, except for smaller values of k
(specifically, k = 4 and k = 9). As long as k is at least 19, we see rejection rates in Table A2 of over 90%, even when T = 25.

8To isolate the role of k in explaining this result, given k = 4 in ABG but k = 19 in NP(freq), we experimented with NP(freq) when k = 4 (𝜏 ∈
[0.05, 0.25, 0.75, 0.95]) and k = 99 (𝜏 ∈ [0.01, 0.02, … , 0.99]); and we experimented with ABG when k was increased from its maintained value of 4. As
Table A1 in the online appendix shows, decreasing k to k = 4 markedly lessens the accuracy of NP(freq) and increasing k to k = 99 also worsens accuracy.
While we might expect increases in k to improve accuracy for NP(freq), as the local uniformity assumption becomes weaker, parameter estimation errors
increase for more extreme quantiles. The objective function of the standard QR estimator is not smooth, and the QR estimates can experience jumps.
Future work might consider the benefits of producing the density forecasts having first smoothed the objective function, for example, as in Fernandes
et al. (2021). Increasing k for NP(freq), well into the 5% tails as is the case when k = 99, was therefore found to deliver noisier estimates of the underlying
conditional density, especially for the smaller T = 100. By contrast, due to its parametric assumption, increasing k did little to affect results for ABG.
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10 MITCHELL ET AL.

TABLE 1 Average Mean Squared Error and Kullback-Leibler
(KL) distance for T = 100.

Models Mean Variance Skewness Kurtosis KL
DGP1: Unimodal (Gaussian)
NP(freq) 0.01 0.03 0.12 0.40 0.02
EW(freq) 0.01 0.02 0.12 0.38 0.01
NP(B) 0.01 0.03 0.10 0.79 0.04
EW(B) 0.01 0.07 0.03 0.45 0.12
ABG 0.01 0.05 Inf Inf 0.02
ABG Kernel 0.01 0.07 0.04 0.10 0.02

DGP2: Unimodal (Negative Skewness)
NP(freq) 0.05 0.73 0.14 1.51 0.02
EW(freq) 0.04 0.68 0.13 1.48 0.01
NP(B) 0.05 0.67 0.13 1.00 0.05
EW(B) 0.04 1.81 0.05 2.67 0.10
ABG 0.05 Inf Inf Inf 0.03
ABG Kernel 0.05 1.32 0.10 0.82 0.04

DGP3: Unimodal (Skewness & High Kurtosis)
NP(freq) 0.01 0.12 1.11 80.41 0.02
EW(freq) 0.01 0.10 1.06 79.44 0.00
NP(B) 0.01 0.08 0.49 51.28 0.05
EW(B) 0.01 0.24 0.62 84.51 0.10
ABG 0.01 Inf Inf Inf 0.03
ABG Kernel 0.01 0.30 0.66 59.62 0.12

DGP4: Bimodal
NP(freq) 0.00 0.00 0.01 0.04 0.03
EW(freq) 0.00 0.00 0.01 0.03 0.11
NP(B) 0.00 0.00 0.01 0.05 0.04
EW(B) 0.00 0.00 0.01 0.01 0.13
ABG 0.00 0.00 0.30 6.14 0.30
ABG Kernel 0.00 0.00 0.01 0.11 0.11

DGP5: Trimodal
NP(freq) 0.00 0.00 0.01 0.04 0.05
EW(freq) 0.00 0.00 0.01 0.05 0.36
NP(B) 0.00 0.00 0.01 0.09 0.05
EW(B) 0.00 0.01 0.01 0.02 0.14
ABG 0.00 0.01 0.31 5.20 0.26
ABG Kernel 0.00 0.01 0.02 0.07 0.21

Note: Inf denotes infinity. NP(freq) uses k = 19. The six estimators and five
DGPs are defined in Section 3.

These rejection rates rise further as T increases. In short, these supplementary unimodality tests both support the use of
intermediate values of k when using Algorithm 1 and provide confidence that Algorithm 1 does not identify false modes
in the forecast density, unless T is especially small relative to k.

4 EMPIRICAL RESULTS: REVISITING THE GROWTH-AT-RISK
APPLICATION OF ABG

ABG established the empirical utility of quantile regressions for modeling and particularly forecasting the conditional
density of US GDP growth. They found that deteriorating financial conditions, as captured by the Chicago Fed's National
Financial Conditions Index (NFCI), have an asymmetric effect on GDP growth.9 In particular, they link GDP growth
tail risks to poor financial conditions. Recessions are associated with left-skewed conditional forecast densities. Carriero
et al. (2023) challenge this view, noting that ABG's empirical finding that downside risk varies more than upside risk
could equally well be explained by symmetric conditional forecast densities as by asymmetric unconditional forecast
densities. These could be produced, for example, by Bayesian VAR models with stochastic volatility. Caldara et al. (2021)
similarly suggest use of a parametric modeling framework that rationalizes the empirical findings of ABG but maintains
the use of symmetric conditional densities. They capture nonlinear effects with a Markov-switching model, in which the

9The NFCI aggregates a large set of variables capturing credit quality, risk, and leverage.
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MITCHELL ET AL. 11

TABLE 2 Average mean squared error and Kullback–Leibler
(KL) distance for T = 1000.

Models Mean Variance Skewness Kurtosis KL
DGP1: Unimodal (Gaussian)
NP(freq) 0.00 0.01 0.06 0.15 0.00
EW(freq) 0.00 0.01 0.05 0.17 0.00
NP(B) 0.00 0.00 0.01 0.08 0.01
EW(B) 0.00 0.06 0.00 0.53 0.06
ABG 0.00 0.00 0.02 0.21 0.00
ABG Kernel 0.00 0.01 0.01 0.02 0.01

DGP2: Unimodal (negative skewness)
NP(freq) 0.01 0.31 0.06 1.04 0.00
EW(freq) 0.01 0.33 0.06 1.09 0.00
NP(B) 0.00 0.08 0.02 0.42 0.01
EW(B) 0.00 1.94 0.02 2.74 0.12
ABG 0.00 0.15 0.04 Inf 0.00
ABG Kernel 0.00 0.18 0.02 0.30 0.01

DGP3: Unimodal (skewness & high kurtosis)
NP(freq) 0.00 0.10 0.99 82.64 0.00
EW(freq) 0.00 0.10 1.03 82.04 0.01
NP(B) 0.00 0.02 0.25 56.39 0.01
EW(B) 0.00 0.25 0.56 86.42 0.05
ABG 0.00 0.03 Inf Inf 0.00
ABG Kernel 0.00 0.03 0.60 142.25 0.05

DGP4: Bimodal
NP(freq) 0.00 0.00 0.00 0.00 0.00
EW(freq) 0.00 0.00 0.00 0.00 0.11
NP(B) 0.00 0.00 0.00 0.05 0.02
EW(B) 0.00 0.00 0.00 0.01 0.08
ABG 0.00 0.00 0.32 6.23 0.31
ABG Kernel 0.00 0.00 0.00 0.02 0.03

DGP5: Trimodal
NP(freq) 0.00 0.00 0.00 0.01 0.03
EW(freq) 0.00 0.00 0.00 0.01 0.36
NP(B) 0.00 0.00 0.00 0.03 0.03
EW(B) 0.00 0.00 0.00 0.00 0.06
ABG 0.00 0.01 0.30 5.09 0.25
ABG Kernel 0.00 0.00 0.00 0.01 0.09

transition probabilities depend, inter alia, on financial conditions. This fits with a long literature supportive of nonlinear
models of GDP growth, notably Hamilton (1989), that finds GDP growth is well characterized as regime-switching. Such
regime-switching models imply unconditional multimodality. But while they usually imply conditional (within a regime)
unimodality, if a QR were fitted to data generated from a regime-switching model the conditional densities from the QR
need not be unimodal.10 Adrian et al. (2021) also jettison the use of QR and instead use kernel-based estimators to support
their finding that the forecast density of GDP growth is approximately Gaussian and unimodal during normal periods, but
becomes multimodal during periods of tight financial conditions. They also make the theoretical case for multimodality,
explaining how it arises in macrofinancial intermediary models with occasionally binding financial constraints.

Given the degree to which ABG's empirical findings, based on their parametric quantile-matching approach, have influ-
enced the subsequent literature, as we have just selectively reviewed, we emphasize the importance of letting the “data
speak” about the nature of the conditional density forecast for GDP growth when mapping the quantile forecasts to the
density forecasts. Accordingly, we revisit ABG's application. But we compare their skewed-t conditional density forecasts,
which assume unimodality but allow for asymmetry, with those conditional density forecasts formed when we make no
such assumption and, via Algorithm 1, better let the data inform this mapping.

10More generally, we emphasize that observational equivalence in reduced-form relationships is consistent with rival structural explanations. As a
motivating example in another applied context, Benati and Surico (2009) show how rival structural explanations for the Great Moderation are consistent
with the (same) reduced-form evidence. So while ABG established that QRs evidence a nonlinear relationship between GDP growth and financial
conditions, as a nonparametric (reduced-form) tool QRs cannot discriminate between alternative more structural explanations for the drivers of GDP
growth.
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12 MITCHELL ET AL.

Specifically, to facilitate comparison with ABG's parametric approach to constructing forecast densities from QRs, we
use their data, sample periods, and preferred models. Specifically, we estimate QR models relating GDP growth to both
lagged GDP growth and the NFCI.11 This then lets us produce, via the aforementioned parametric and nonparametric
approaches, one-quarter-ahead and one-year-ahead forecast densities for GDP growth conditional first on both lagged
GDP growth and the NFCI and second on just lagged GDP growth. Thereby, we isolate the role that the NFCI plays in
driving results. We re-assess ABG's claim that financial conditions are critical when density forecasting GDP growth in the
United States. In common with much of the literature, we focus on assessing the in-sample fit of the conditional densities.
Thus we provide guidance on the importance of considering how to fit a density to the quantile forecasts. But we do
provide some out-of-sample evaluation evidence too, although the latter arguably tells us more about the instabilities faced
out-of-sample (see Rossi, 2021) than about the relative merits of different ways of constructing predictive densities from
QRs. Nevertheless, in anticipation of the known benefits of shrinkage when forecasting out-of-sample, we do consider
a variant of NP(B) that imposes a more informative prior. That is, we estimate Bayesian QRs with Minnesota priors. We
follow Carriero et al. (2022) and set Vi, the i-diagonal elements of V𝛽 , as follows:

Vi =
⎧⎪⎨⎪⎩

𝜆1𝜆2
𝜎GDP
𝜎𝑗

for the coefficients other than the lag l of GDP,
𝜆1
l𝜆3

for the coefficients on the lag l of GDP,
1000𝜎GDP for the intercept,

(27)

where 𝜎GDP and 𝜎𝑗 are the standard deviations from an AR(4) model for GDP growth and the 𝑗th regressor (other than
GDP growth), estimated with data available at the forecast origin. We follow Carriero et al. (2022) and set 𝜆1 = 𝜆2 =
0.2, and 𝜆3 = 1. In terms of the in-sample fit, the prior variance on the coefficient on the lag of GDP is 0.2 for both
the one-quarter- and one-year-ahead forecasts. On the other hand, the prior variance on the coefficient for the NFCI
differs. One-quarter-ahead, its prior variance is 0.25, while one-year-ahead it is 0.08. Let NP(BM) denote forecast densities
produced using this Minnesota prior and Algorithm 1.

Given this paper's emphasis on construction of the entire predictive density rather than just estimating GaR, we focus on
assessing the overall fit of the competing forecast densities using probability integral transforms (PITs), that is, the CDF of
the forecast evaluated at the subsequent realization of GDP growth. For correctly calibrated forecast densities (see Diebold
et al., 1998, and Mitchell & Wallis, 2011), these PITs, at the minimum, should be uniformly distributed. As shown by
Diebold et al. (1998), correctly calibrated forecast densities will be preferred by all users, irrespective of their loss function.
Specifically, we use the Rossi and Sekhposyan (2019) test and, following their recommendation, for multi-step-ahead
forecasts, given the serial correlation in the PITs, to construct the critical values we use a block bootstrap of length P1∕3,
where P is the sample size in the evaluation period. Nevertheless, to supplement these PITs-based tests of calibration and
to facilitate cross-model comparison, we also report two commonly used scoring rules for density evaluation: the average
logarithmic predictive score and the average continuous ranked probability score (CRPS). The CRPS is a popular density
forecast-based scoring rule that offers greater robustness to outliers than the logarithmic score used by ABG; see Gneiting
and Raftery (2007). We also looked at forecast accuracy in specific regions of the forecast density, using the PITs-based
test of Rossi and Sekhposyan (2019) and the quantile-weighted CRPS of Gneiting and Ranjan (2011); these results are
summarized below, drawing on the tables in the online appendix.

Figures 2 and 3 plot the cumulated PITs, respectively, for the one-quarter-ahead and one-year-ahead forecast densities
produced using the models of Section 3 plus NP(BM).12 These models consider both the NFCI and lagged GDP growth
as conditioning information, as favored by ABG. We also plot the PITs dropping the NFCI from the QR, to isolate the
importance of conditioning on financial conditions when density forecasting GDP growth.13 Looking at these cumulated

11A subsequent literature has also used QRs to model GaR and construct GDP growth density forecasts. But it has examined the benefits of disaggre-
gating the Chicago Fed's NFCI, using real-time NFCI vintages, and/or considered additional indicators; for example, see Plagborg-Moller et al. (2020),
Reichlin et al. (2020), Brownlees and Souza (2021), Kohns and Szendrei (2021), and Amburgey and McCracken (2023). Given the importance of the
original modeling strategy in shaping the ongoing research agenda, as summarized in our introduction, we return to ABG's model space and consider
(latest-vintage) NFCI alone. We expect that adding in extra variables and allowing for possible additional nonlinearities will further distinguish our
approach from ABG's. Given their skewed-t assumption, ABG's densities cannot accommodate the likely multimodalities associated with nonlinearity.
12We drop EW(freq) to make space for NP(BM), noting that results using EW(freq), as in the Monte Carlo, are in general slightly worse than those using
NP(freq).
13We emphasize how when constructing the ABG densities we use ABG's replication code. Therefore, as discussed in Section 3, we approximate integrals
with discrete sums. We return later to the empirical applications of this.
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FIGURE 2 CDF of the in-sample PITs (one-quarter-ahead forecasts, 1973Q1-2015Q4) from the six density forecasts with and without the
NFCI. Note: The five estimators (ABG, EW(B), NP(B), NP(freq), and ABG Kernel) are defined in Section 3. NP(BM) uses the nonparametric
Algorithm 1 and estimates a Bayesian QR with the Minnesota prior of Carriero et al. (2022). The figures show the empirical CDF of the PITs
(blue line) from the QR models with the NFCI (and lagged GDP), the empirical CDF of the PITs (dashed red line) from the QR models
without the NFCI, the CDF of the PITs under the null hypothesis of correct calibration (the 45-degree line), and the 5% critical value bands of
the Rossi and Sekhposyan (2019) PITs test.

PIT plots across these two figures, it is apparent that both of the new approaches (NP and EW), whether estimated by
frequentist or Bayesian methods, deliver better calibrated forecast densities than either ABG or ABG kernel. Their cumu-
lated PITs are closer to the 45-degree line. While based on the same frequentist QR as in ABG, this indicates that fitting
the skewed-t density to these same quantile forecasts is not as beneficial as using Algorithm 1 or indeed using EW. To
investigate whether it is the higher value of k = 19 in NP(freq), relative to ABG (where k = 4), that explains this result
rather than the use of Algorithm 1, we produced predictive densities from ABG assuming k = 19 (see Figure A5 in the
online appendix). As in the Monte Carlo experiments, these alternative ABG densities are found to perform similarly to
those when k = 4. Thus, we conclude that it is the use of Algorithm 1, rather than a different sized k, that yields the
forecasting gains. But the ABG densities are still well-calibrated, since while we do observe a few extra little deviations
from the 45-degree line, their cumulated PITs still remain well within the critical value bands. Interestingly, all densities
are well-calibrated at a 95% significance level, according to the PITs test of Rossi and Sekhposyan (2019), irrespective of
whether the NFCI is included in the QR.14

Figure 4 confirms that using one of our preferred densities, we take NP(freq), when conditioned on both the NFCI and
lagged GDP growth, does not change the central narrative of ABG: the left tail of the conditional density of GDP growth
moves with the tightness of financial conditions.15 And the right tail is relatively invariant. Figure 4 evidences this by
plotting, over time, the expected shortfall and longrise estimates from both ABG and NP(freq). Expected shortfall (SFt+h)

14Figure A6 in the online appendix again shows how the choice of k in NP(freq) matters. From the S-shaped nature of the cumulated PITs, we can infer
that the density forecast is too narrow at k = 4. Calibration is better at k = 99, but not obviously better than when k = 19 (as shown in Figures 2 and
3). This is consistent with the Monte Carlo evidence in Section 3 that a “medium-sized” value for k appears sufficient. The critical value bands of Rossi
and Sekhposyan (2019) should be taken as “general guidance,” to quote ABG, since they are derived assuming a rolling window of estimation, while,
like ABG, we use an expanding window.
15This “stylized fact” has been confirmed using alternative modeling approaches to QR, such as the parametric time-varying skewed-t model of Delle
Monache et al. (2023).
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FIGURE 3 CDF of the in-sample PITs (one-year-ahead forecasts, 1973Q4-2015Q4) from the six density forecasts with and without the
NFCI. Note: See notes to Figure 2.

and longrise (LRt+h) summarize downside and upside risk, respectively. They measure the total probability mass that the
conditional distribution assigns to the left and right tails of the distribution:

SFt+h = 1
𝜋 ∫

𝜋

0
F̂−1
𝑦t+h|xt

(𝜏|xt)d𝜏; (28)

LRt+h = 1
𝜋 ∫

1

1−𝜋
F̂−1
𝑦t+h|xt

(𝜏|xt)d𝜏. (29)

Figure 4 shows that the expected shortfall and longrise estimates from ABG and NP(freq) track each other very closely.
Expected shortfall is far more volatile than expected longrise, as the narrative of ABG emphasizes.

However, despite this similarity, when we look more deeply at the densities underlying these estimates we start to
appreciate that the choice of how to construct the density from the quantile forecasts does still matter. It can reveal
further features of economic interest. Figures 5 and 6 show this by plotting, over time, for the one-quarter-ahead and
one-year-ahead forecasts, respectively, the first 4 moments of the ABG and NP(freq) densities. While the first two moments
from ABG and NP(freq) are similar, the third and especially fourth moments differ, albeit they share some commonalities.
In particular, we note how the evidence for or against skewness in GDP growth varies over time. This is consistent with
Carriero et al. (2023), who find, using alternative tests, weak evidence for skewness. Figure 5, in particular, shows that
NP(freq) points to less negative skewness during the period of the global financial crisis.16 This disagreement between
ABG and NP(freq) is also consistent with the finding in Plagborg-Moller et al. (2020) that only the lower moments of the
GDP growth conditional density are well-estimated.17

Next we provide some illustrative in-sample plots of our predictive densities. In Figure 7 we zoom in on a relatively sta-
ble period: 2005. Then, in Figure 8, we look at 2008, during the global financial crisis, a period also emphasized in ABG

16This is consistent with modest falls in the degree of asymmetry when NP(freq) rather than ABG is used in Figure 4. That is, while following the same
general patterns, expected shortfall and longrise are more volatile, over time, when ABG rather than NP(freq) is consulted.
17Figures A7 and A8 in the online appendix indicate how ABG's coding choice to assess the skewed-t density over a finite grid is important. If, instead,
we assess the skewed-t density analytically, instead of relying on ABG's approximation, we observe far more extreme estimates for the higher moments.
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FIGURE 4 In-sample plots of the expected shortfall and expected longrise at 𝜏 = 0.05 using ABG and NP(freq), from QRs with the NFCI
and lagged GDP.
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FIGURE 5 In-sample plots of the four moments of the ABG and NP(freq) forecast densities (one-quarter-ahead), from QRs with the NFCI
and lagged GDP.

and Adrian et al. (2021). We focus on the one-quarter-ahead in-sample densities, with the analogous one-year-ahead and
out-of-sample plots in the online appendix.18 Confirming the findings of Adrian et al. (2021), who use kernel methods,
clear evidence of multimodality emerges at the time of the global financial crisis when we use Algorithm 1 to construct

18Figures A11 through A16 in the online appendix qualitatively confirm the impression from Figures 7 and 8.
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FIGURE 6 In-sample plots of the four moments of the ABG and NP(freq) forecast densities (one-year-ahead), from QRs with the NFCI and
lagged GDP.

the density forecast from the QR.19 If, as in ABG, we assume a skewed-t density we obscure this important macroeco-
nomic feature. Instead, we would simply infer more evidence for a skewed density. The evidence of multimodality during
the global financial crisis, gleaned from NP(freq), is somewhat more muted when we look at the out-of-sample density
forecasts as plotted in the online appendix. But, as shown by Figure 9, when the calibrated unimodality test of Hartigan
and Hartigan (1985) as proposed by Cheng and Hall (1998) is used, rejections of unimodality are far greater when we do
condition on the NFCI. These rejections are especially pronounced during NBER recessionary periods, again confirming
the finding of Adrian et al. (2021). We do also see evidence from these unimodality tests that the properties of the GDP
growth density change quite rapidly, even outside of recessionary periods, especially when conditioning on the NFCI. As
we go on to discuss next, this may be explained by the NFCI being a weak predictor, so that small movements in the NFCI
can lead to (larger) changes in the shape of the predictive densities for GDP.

We should emphasize, however, that these empirical features may well be a product of the predictors (the model space)
chosen to explain GDP growth. To facilitate direct comparison with ABG and draw out the empirical relevance of their
choice to assume a skewed-t density, our application uses their two predictors: lagged GDP growth and the NFCI. An
interpretation of our (and ABG's) results is that we see the longer left tails to the GDP growth density emerge during
recessions as the NFCI pushes the low conditional quantiles to the left while leaving the rest of the distribution relatively
unaffected. If additional—and importantly better—predictors of GDP growth were considered, one could imagine that
the center of the forecast density would also shift to the left during recessions. Thus, rather than see recessions associated
with longer left tails, we would simply observe the whole forecast density shift to the left. To begin to investigate this claim
empirically, we experimented with expanding our set of predictors to consider the global and financial factors suggested
by Plagborg-Moller et al. (2020). As summarized in the online appendix (Section A.6), this expanded set of predictors
delivers more accurate density forecasts. It also results in forecast densities that perhaps look a little more symmetric over
recessions, although clearly evidence of multimodality remains.

19There is also recent evidence that professional forecasters' density forecasts for GDP growth are best acknowledged, at certain points in time, as
multimodal. Ganics et al. (2023), who study the Survey of Professional Forecasters in the United States, find that multimodalities in their combined
GDP growth densities emerge around business cycle turning points, such as the Great Recession. Figures A21 and A22 in the online appendix (Section
A.5) illustrate that while decreasing k does, as anticipated, affect the look of the forecast densities, increasing k does not. This offers some reassurance,
further to the aforementioned simulation evidence in Table A2 in the online appendix, that our evidence for multimodality is not a direct consequence
of setting k = 19.
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FIGURE 7 GDP growth density forecasts conditional on the NFCI and lagged GDP for 2005 made one-quarter-ahead (in-sample).
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FIGURE 8 GDP growth density forecasts conditional on the NFCI and lagged GDP for 2008 made one-quarter-ahead (in-sample).

Finally, we turn to out-of-sample evaluation of the forecast densities over the sample period 1993Q1-2015Q4. Again this
is the same evaluation period as in ABG, and we follow ABG in recursively producing the predictive densities from QRs
estimated on expanding windows of data dating back to 1973Q1. Figures 10 and 11 show that the accuracy of the forecast
densities is, as expected, considerably worse out-of-sample. Comparison with the in-sample densities indicates that they
too deteriorate in accuracy when evaluated on the sub-sample from 1993.20 ABG does especially poorly, with the null

20See Figures A9 and A10 in the online appendix.
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18 MITCHELL ET AL.

FIGURE 9 p-values over time from the calibrated Hartigans' unimodality test. Note: Panel (a) reports the p-values from the Hartigans'
unimodality test (one-quarter-ahead) for the NP(freq) in-sample GDP growth density forecasts conditional on the NFCI and lagged GDP.
Panel (b) reports the p-values from the Hartigans' unimodality test over time (one-year-ahead) for the NP(freq) in-sample GDP growth
density forecasts conditional on the NFCI and lagged GDP. Panel (c) reports the p-values from the Hartigans' unimodality test over time
(one-quarter-ahead) for the NP(freq) in-sample GDP growth density forecasts conditional on only lagged GDP. Panel (d) reports the p-values
from the Hartigans' unimodality test over time (one-year-ahead) for the NP(freq) in-sample GDP growth density forecasts conditional only on
lagged GDP. NBER recessionary periods are shaded gray.

hypothesis of correct calibration rejected at a 95% significance level both one-quarter- and one-year-ahead. By contrast,
the cumulated PITs are closer to the 45-degree line when Algorithm 1 is used on a QR estimated by Bayesian methods
with the Minnesota prior: NP(BM). Figures 10 and 11 also show that across methods the PITs are closer to the 45-degree
line when not conditioning on financial conditions, reminding us that autoregressive models can be hard to beat when
forecasting out-of-sample.

Table 3 shows that out-of-sample the Bayesian QR methods with the Minnesota prior using Algorithm 1 (NP(BM))
deliver the highest average logarithmic predictive scores and the lowest CRPSs when conditioning on the NFCI. But
the average logarithmic score statistics, in particular, are dominated by the forecasting failures at the time of the
global financial crisis.21 So we prefer to emphasize the CRPS, given that it is more robust to large but rare forecasting

21Figures A19 and A20 in the online appendix demonstrate this by plotting the quarter-by-quarter log scores. EW(B) does especially poorly over the
recession.
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FIGURE 10 CDF of the out-of-sample PITs (one-quarter-ahead, 1993Q1-2015Q4) from the six density forecasts with the NFCI and lagged
GDP. Note: The figures show the empirical CDF of the PITs (red line), the CDF of the PITs under the null hypothesis of correct calibration
(the 45-degree line), and the 5% critical value bands of the Rossi and Sekhposyan (2019) PITs test. The five estimators (ABG, NP(freq), NP(B),
EW(B), and ABG Kernel) are defined in Section 3. NP(BM) uses the nonparametric Algorithm 1 and estimates a Bayesian QR with the
Minnesota prior of Carriero et al. (2022).
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FIGURE 11 CDF of the out-of-sample PITs (one-year-ahead, 1993q4-2015Q4) from the six density forecasts with the NFCI and lagged
GDP. Note: See notes to Figure 10.

 10991255, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.3049 by T

est, W
iley O

nline L
ibrary on [29/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



20 MITCHELL ET AL.

TABLE 3 Average log
predictive score (LPS) and
continuous ranked probability
score (CRPS) for the
one-quarter-ahead forecasts
(out-of-sample, 1993Q1-2015Q4)
and the one-year-ahead forecasts
(out-of-sample, 1993Q4-2015Q4).

With NFCI & GDP With lagged GDP only
One-quarter-ahead One-year-ahead One-quarter-ahead One-year-ahead
LPS CRPS LPS CRPS LPS CRPS LPS CRPS

ABG −2.24 1.27 −2.02 0.98 −2.31 1.32 −1.99 0.96
EW(B) −0.81 0.98 −1.27 0.99 −0.36 0.97 −1.06 0.98
NP(B) −0.01 0.98 0.02 0.99 0.00 0.98 −0.03 1.00
NP(BM) 0.01 0.98 0.01 0.98 0.00 0.98 −0.03 1.00
NP(freq) −0.23 0.99 −0.03 0.99 −0.02 0.98 −0.09 1.00
ABG Kernel −0.03 1.03 −0.09 1.04 −0.03 1.00 −0.11 1.03

Note: The LPS values are presented relative to (by subtraction of) the LPS from ABG. The CRPS values are presented
relative to (divided by) those from ABG. The five estimators (ABG, EW(B), NP(B), NP(freq), NP(B), and ABG Kernel)
are defined in Section 3. NP(BM) uses the nonparametric Algorithm 1 and estimates a Bayesian QR with the
Minnesota prior of Carriero et al. (2022).

errors.22 Conditioning the GDP density forecasts on the NFCI also tends to lead to improvements in the CRPS, especially
one-quarter-ahead. Importantly, in terms of this paper's focus on isolating the best means of constructing density forecasts
from the same quantile forecasts, Table 3 shows that NP at least matches the accuracy of ABG, at both forecast horizons.

Despite the fact that the accuracy of the ABG densities is often improved upon, both in-sample and out-of-sample, this
is not the key takeaway we wish to emphasize. Instead, the bottom line is that these alternative nonparametric ways of
constructing the predictive density from QRs on average match, and at times (albeit perhaps modestly) improve upon, the
statistical accuracy of the ABG densities.23 But in so doing they unmask deviations from unimodality lost by ABG. In turn,
they suggest that multimodalities, rather than deviations from symmetry, are the primary economic feature of GDP density
forecasts that should be emphasized, particularly when conditioning on financial conditions. But, as also emphasized by
Ganics et al. (2023) in their analysis of the density forecasts from the SPF, periods when multimodalities emerge tend to
be rare and short-lived. This means that accommodating them does not make a big difference when evaluating the average
statistical performance of the models. But it affects the economic narrative.

5 CONCLUSION

This paper reconsiders how to construct density forecasts from quantile regressions. While quantile regression methods
are finding increasing application in macroeconomics and finance, as one means of accommodating nonlinear relation-
ships, the specific issue of how to construct density forecasts from quantile regressions has received less attention. In the
macroeconomic and finance literature, following ABG, it has become popular to assume a specific parametric form when
matching the quantile forecasts to a density forecast. We reconsider nonparametric approaches to constructing predictive
densities from quantile regressions, estimated either by frequentist or by Bayesian methods, and compare these with the
parametric approach. We suggest a simple simulation-based algorithm. Unlike the parametric approach of ABG, we find
that it can flexibly accommodate various distributional shapes.

In an application revisiting ABG, our proposed nonparametric approach corroborates the finding of Adrian et al. (2021)
that the conditional density of GDP growth in the United States can exhibit multimodality, especially during recessionary
periods. These multimodalities in GDP growth are found to be increasingly prominent when the density forecasts, as
suggested by ABG, are conditioned on financial conditions. But while Adrian et al. (2021) are forced to move away from
the QR framework of ABG to document this novel empirical fact, we show that this finding is indeed shared by QR-based
density forecasts—as long as we let the “data speak.” However, we need to let the “data speak” not just when we model
GDP growth with respect to financial conditions, via the first-step quantile regressions, but also when we subsequently
construct the forecast densities from the quantile forecasts.

Accordingly, this paper supports the addition of QR methods to the toolkit of the macro modeler. But it suggests that,
when constructing density forecasts from quantile forecasts, it is better to respect the nonparametric flavor of QR by also

22When we use the Rossi and Sekhposyan (2019) test to assess the calibration of specific regions of the forecast distribution, we see even more clearly
how NP(BM) provides more accurate forecasts than ABG in the upper right half of the forecast density, with ABG also bettered in the left tail but less
strongly; see Table A5 in the online appendix. The cross-model differences in the quantile-weighted CRPS statistics reported in Table A6, however,
appear more modest, although ABG is still beaten.
23Giacomini and White (2006) tests confirm that the differences between the average scores seen in Table 3 are not statistically significant at traditional
significance levels.
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using nonparametric (or semiparametric) methods to construct the density. Importantly, these methods provide simi-
larly accurate, even improved (on some metrics) out-of-sample, density forecasts for US GDP growth. The methods are
also operational irrespective of whether the first-step QRs are estimated via frequentist or Bayesian methods. Relative
to ABG and their assumption that the forecast density is skewed-t, our nonparametric approach unmasks deviations
from unimodality in GDP growth forecast densities when conditioned on financial conditions. The evolution of multi-
modalities, rather than asymmetries, then becomes the central macroeconomic narrative for the conditional predictive
distribution of GDP growth. Following Adrian et al. (2021), this calls for structural macroeconomic models able to accom-
modate these new empirical features, such as, for example, the nonlinear dynamic stochastic general equilibrium model
of Rottner (2023) that allows for excessive leverage accumulation and endogenous financial crises. Ultimately, as a non-
parametric (reduced-form) modeling tool, QRs cannot discriminate between alternative structural explanations for the
drivers of movements in the GDP growth density. But QRs can provide, especially when, as we suggest in this paper, the
density is fitted to the quantile forecasts nonparametrically, a flexible way of modeling and forecasting this density.
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