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Abstract: Resistors with memory (memristors), inductors with memory (meminductors) and capaci-
tors with memory (memcapacitors) play different roles in novel computing architectures. We found
that a coil with a magnetic core is an inductor with memory (meminductor) in terms of its inductance
L(q) being a function of charge q. The history of the current passing through the coil is remembered
by the magnetization inside the magnetic core. Such a meminductor can play a unique role (that
cannot be played by a memristor) in neuromorphic computing, deep learning and brain-inspired
computers since the time constant (t0 =

√
LC) of a neuromorphic RLC circuit is jointly determined

by the inductance L and capacitance C, rather than the resistance R. As an experimental verifica-
tion, this newly invented meminductor was used to reproduce the observed biological behavior of
amoebae (the memorizing, timing and anticipating mechanisms). In conclusion, a beyond-memristor
computing paradigm is theoretically sensible and experimentally practical.

Keywords: memristor; meminductor; novel computing architectures; non-Turing machine;
neuromorphic computing; deep learning; brain-inspired computers

1. Introduction

A memristor is an ideal candidate for non-Turing machines due to its compact
processing-in-memory architecture. As a sister of the memristor (resistor-with-memory),
inductor-with-memory (meminductor) has a unique role to play in neuromorphic comput-
ing systems, novel computing architectures and dynamical neural networks.

An inductor, typically consisting of an insulated wire wound into a coil, stores energy
in a magnetic flux ϕ surrounding it when a current i flows through it. When the current
changes, the time-varying magnetic flux induces a voltage across the coil, described by
Faraday’s law [1]. Such an inductor is characterized by its inductance L = ϕ

i . In SI, the unit
of inductance is the henry (H). As shown in Figure 1, by adding a magnetic core made of
a ferromagnetic material, such as iron, inside the coil, the magnetizing flux from the coil
induces magnetization in the material, increasing the magnetic flux. The high permeability
of a ferromagnetic core can increase the inductance of a coil by a factor of several thousand
over what it would be without it [1].

Organisms such as amoebae exhibit primitive learning and the memorizing, timing
and anticipating mechanisms. Their adaptive behavior was emulated by a memristor-based
RLC circuit [2]. Motivated by this work, we will design a meminductor-based neuromorphic
architecture that self-adjusts its inherent resonant frequency in a natural way following
the external stimuli frequency. In contrast to the previous work, our innovation is that this
architecture uses a unique meminductor to increment its time constant and subsequently
decrement its resonant frequency to match the stimuli frequency. It is our intention to
use this architecture to help better investigate the cellular origins of primitive intelligence.
This is also the significance of this sort of research in terms of not only understanding the
primitive learning but also developing a novel computing architecture.
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Figure 1. In this study, we found that a coil with a magnetic core is, in fact, an inductor with memory 
(meminductor) in terms of its inductance being a function of the charge. The Oersted field generated 
by the current i rotates or switches the magnetization M inside the core and consequently the 
switched flux φ induces a voltage v across the conductor. The history of the current passing through 
the coil [ 𝑖(𝑡)𝑑𝑡 = 𝑞(𝑡)] is remembered by the magnetization inside the magnetic core. 

Organisms such as amoebae exhibit primitive learning and the memorizing, timing 
and anticipating mechanisms. Their adaptive behavior was emulated by a memristor-
based RLC circuit [2]. Motivated by this work, we will design a meminductor-based neu-
romorphic architecture that self-adjusts its inherent resonant frequency in a natural way 
following the external stimuli frequency. In contrast to the previous work, our innovation 
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intention to use this architecture to help better investigate the cellular origins of primitive 
intelligence. This is also the significance of this sort of research in terms of not only un-
derstanding the primitive learning but also developing a novel computing architecture. 

In this article, we first prove that a coil structure with a magnetic core is, in fact, a 
meminductor, since its inductance is no longer a constant, and then experimentally verify 
this new device in neuromorphic computing. 

2. LLG Model for the Coil Core Structure 
Next, we produce a theory to physically describe the current–flux interaction in a 

conducting coil with a magnetic core. For the sake of convenience, the magnetic core is 
assumed to be a single-domain cylinder with uniaxial anisotropy in the approximate 
sense: the magnetization is uniform and rotates in unison [3]. In an ideal case, there is a 
negligible amount of eddy current damping and parasitic “capacitor” effect.  

It was found that the rotational process dominates the fast reversal of square loop 
ferrites with a switching coefficient 𝑆௪ = 0.2 𝑂𝑒 ∙ μs [4]. The rotational model for the coil 
core structure is shown in Figure 2. 

Figure 1. In this study, we found that a coil with a magnetic core is, in fact, an inductor with memory
(meminductor) in terms of its inductance being a function of the charge. The Oersted field generated
by the current i rotates or switches the magnetization M inside the core and consequently the switched
flux ϕ induces a voltage v across the conductor. The history of the current passing through the coil
[
∫

i(t)dt = q(t)] is remembered by the magnetization inside the magnetic core.

In this article, we first prove that a coil structure with a magnetic core is, in fact, a
meminductor, since its inductance is no longer a constant, and then experimentally verify
this new device in neuromorphic computing.

2. LLG Model for the Coil Core Structure

Next, we produce a theory to physically describe the current–flux interaction in a
conducting coil with a magnetic core. For the sake of convenience, the magnetic core is
assumed to be a single-domain cylinder with uniaxial anisotropy in the approximate sense:
the magnetization is uniform and rotates in unison [3]. In an ideal case, there is a negligible
amount of eddy current damping and parasitic “capacitor” effect.

It was found that the rotational process dominates the fast reversal of square loop
ferrites with a switching coefficient Sw = 0.2 Oe·µs [4]. The rotational model for the coil
core structure is shown in Figure 2.
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its initial position (θ0≈π, m0≈−1) and the angle θ decreases with time continuously until (θ≈0, m≈1), 
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Figure 2. The rotational model used in the coil core structure. If the magnetic field H is applied in
the Z direction, the saturation magnetization vector MS(t) follows a precession trajectory (blue) from
its initial position (θ0 ≈ π, m0 ≈ −1) and the angle θ decreases with time continuously until (θ ≈ 0,
m ≈ 1), i.e., the magnetization MS(t) reverses itself and is eventually aligned with the magnetic
field H.
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The Landau–Lifshitz–Gilbert equation [5,6] is

(1 + g2)
d

⇀
MS(t)

dt
= −|γ|

[
⇀

MS(t)×
⇀
H
]
− g|γ|

MS

[
⇀

MS(t)× (
⇀

MS(t)×
⇀
H)

]
where g is the damping factor and γ is the gyromagnetic ratio.

The first term of the right-hand side can be rewritten as −|γ|
⇀

MS(t) ×
⇀
H =

−|γ|(MSsinθsinψH
→
i −MSsinθcosψH

→
j ). This term has no

→
k component (along Z) and

does not contribute to MZ.
The second term can be rewritten as

− g|γ|
MS

[
⇀

MS(t)×
(

⇀
MS(t)×

⇀
H
)]

= − g|γ|
MS

(MSsinθcosψ
⇀
i + MSsinθsinψ

⇀
j

+ MScosθ
⇀
k )×

[
MSsinθsinψH

→
i −MSsinθcosψH

→
j
]

= − g|γ|
MS

[−MSsinθcosψMSsinθcosψH −MSsinθsinψMSsinθsinψH]
⇀
k

= g|γ|MS H
[
sin2θcos2ψ + sin2θsin2ψ

]⇀
k = g|γ|MS Hsin2θ

⇀
k

= g|γ|MS H(1− cos2θ)
⇀
k = g|γ|MS H

[
1−

(
MZ
MS

)2
]
⇀
k

From the above, we can obtain the following equation:

(
1 + g2

)dMZ(t)
dt

= g|γ|MS H

[
1−

(
MZ
MS

)2
]

(1)

Assuming m(t) = MZ(t)
MS

, we can obtain

dm(t)
dt

=
g|γ|H
(1 + g2)

[
1−m2(t)

]
=

1
SW

i(t)
[
1−m2(t)

]
(2)

The threshold for magnetization switching is automatically taken into account because
the switching coefficient is defined based on the threshold field H0, which is one to two
times the coercive force HC [3,7,8].

The hyperbolic function tanh has d
dx tanhx = 1− tanh2x and the derivative of a function

of function has du
dx = du

dy
dy
dx ; therefore, it is reasonable to assume that

m(t) = tanh
[

q(t)
SW

+ C
]

, (3)

where d
dt q(t) = i(t) and C is a constant of integration, such that C = tanh−1m0 if q(t = 0) =

0 (assuming the charge does not accumulate at any point) and m0 is the initial value of m.
dMz/dt can be observed by the voltage v(t) induced:

µ0S
dMz

dt
= S

dBz

dt
=

dϕz

dt
= −v(t) (4)

where µ0 is the permeability and S is the cross-sectional area.
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Equation (4) results in

ϕ = µ0SM + C′ = µ0SMSm + C′ (5)

where C′ is another constant of integration.
Combining Equation (3) and Equation (5) and assuming ϕ(t = 0) = 0, we have

C′ = −µ0SMSm0, so

ϕ = µ0SMs

[
tanh

(
q

SW
+ tanh−1m0

)
−m0

]
. (6)

Beyond the first-order setting, a second-order circuit element, such as a meminductor,
requires double-time integrals of voltage and current, namely, σ =

∫
qdt =

s
idt and

ρ =
∫

ϕdt =
s

vdt. With the use of these additional variables [8,9], we accommodate a
meminductor, a memcapacitor and other second-order circuit elements with memory. By
integrating Equation (6), we have

ρ =
∫ t

τ=−∞
ϕdτ = µ0SMs

∫ t

τ=−∞

[
tanh

(
q

SW
+ tanh−1m0

)
−m0

]
dτ. (7)

Since
∫

tanhxdx = ln(cosh x) + C, we have

ρ = µ0SMs ln
{

cosh
[

tanh
(

q
SW

+ tanh−1m0

)
−m0

]}
+ C , ρ̂(q). (8)

Therefore, we have

L =
ϕ

i
=

µ0SMs

[
tanh

(
q

SW
+ tanh−1m0

)
−m0

]
dq
dt

, L(q) (9)

where the denominator is still a function of the charge q = q̂(t) since dq
dt = i(t) = i

[
q̂−1(q)

]
.

Based on Equation (8), a typical ρ− q curve is depicted in Figure 3 with m0 = −0.964
(this value reflects the intrinsic fluctuation; otherwise, M reverts to the stable equilibria
m0 = ±1).
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Figure 3. The constitutional ρ–q curve of the meminductor. It complies with the three criteria for the
ideality of an ideal circuit element with memory [10,11]: a. nonlinear; b. continuously differentiable;
and c. strictly monotonically increasing. With the accumulation of the charge, L(q) = dρ

dq decreases
like a staircase.
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3. Experimental Verification of the Rotational Model

To verify the validity/accuracy of the above rotational model, Equation (3) with
H(t) ∝ i(t) is used to reproduce various m–H loops in Figure 4.
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Figure 4. The m–H hysteresis loops simulated by the rotational model. The solid line in red represents
a gradual m(t) rotation (with a finite slope) under H(t) ∝ i(t) = I0 sin ωt, m0 = ±0.99. The dashed
line in blue represents a fast m(t) rotation (with an infinite slope) under a step-function H.

As a comparison, a typical m–H loop of real-world magnetic materials is displayed in
Figure 5. The above simulations clearly validate Cushman’s conclusion that “the rotational
model is applicable to the driving current of an arbitrary waveform” [3].

As another comparison, a simulated loop based on m = tan h(A ∗ (H ± HC))] is
displayed in Figure 6. The equivalence of formula m = tan h(A ∗ (H ± HC))] and formula
m(t) = tanh

[
1

SW

(
q(t)± SW tanh−1|m0|

)]
indicates that the rotational model is good enough

to reproduce a sine-wave response.
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with a sine-wave input current. Two tanh values are used, and a horizontal shift is applied to each
branch to obtain hysteresis.

4. Simulations and Experiments of a Coil Core Meminductor for
Neuromorphic Computing

Nature exhibits unconventional ways of processing information. Taking amoebae as
an example, they display memorizing, timing and anticipating mechanisms, which may
represent the origins of primitive learning. A circuit element with memory can be used to
mimic these behaviors in terms of being plastic according to the dynamic history [13–15].

As shown in Figure 7, a simple RLC neuromorphic circuit using a coil core meminduc-
tor, L(q), is designed. The temperature controlling the motion of an amoeba is analogous
to the input voltage, Vin, whereas the output voltage, Vout, is analogous to the locomotive
speed of the amoeba.

With the progress of time, the circuit’s resonance frequency automatically scans the
following frequency range:

f0 =
1

2π
√

L(q)C
=

1

2π
√

L(
∫

i(t)dt)C
(10)

When the ramping circuit resonance frequency, f 0, hits the (temperature) stimulus
frequency, fsti, at a time point, a resonance is triggered.

This neuromorphic circuit in Figure 7 using a coil core meminductor reasonably
reproduces a behavior that was observed on amoebae: in response to the input stimulus
pulses (representing the temperature drops), the circuit reduces the amplitude of its output
(representing the amoeba’s speed) at the corresponding time points. As demonstrated in
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Figure 8, long-lasting responses for spontaneous in-phase slow down (SPS) [13,14] are both
simulated and tested experimentally: the amoeba being exposed to the three temperature
drops slows down or even stops at the corresponding time points S1, S2 and S3. Remarkably,
the amoeba is found to slow down even if the temperature drops do not occur at C1, C2
and C3 (that are naturally anticipated by the amoeba after the three consecutive drops are
experienced at S1, S2 and S3).
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The experimental setup of the neuromorphic circuit in Figure 8 is as follows: L[q(t)] =
L[
∫

i(t)dt] starts at 2 H and then decreases by 20% after each stimulus pulse. The circuit’s
resonance frequency, determined by the staircased L(q) (Figure 3), increases itself with the in-
creased number of oncoming stimulus pulses. This simulation in Figure 8a agrees with our
experiment in Figure 8b on a hardware emulator built with a dsPIC30F2011 microcontroller,
an MCP4261 digital potentiometer and a differential 12-bit ADC converter [15].

This experiment vividly demonstrates amoebae’s three mechanisms: 1. the memo-
rizing mechanism (the amoeba remembers the three temperature drops at S1, S2 and S3);
2. the timing mechanism (the amoeba slows down at the correct time points C1, C2 and
C3 despite no temperature drops at these time points); and 3. the anticipating mechanism
(the reason the amoeba slows down actively is because it anticipates the future possible
drops at C1, C2 and C3 based on its memory of S1, S2 and S3 although these temperature
drops at C1, C2 and C3 do not occur). Remarkably, these memorizing/timing/anticipating
mechanisms are implemented by our newly invented coil core meminductor in terms of
using the magnetization to remember the current history, adapting automatically the time
constant determined by L(q) to the stimulus and triggering the resonance, respectively.

This neuromorphic circuit is a deep learning neural network [16] with multiple layers
between the input and output layers, as shown in Figure 9. The meminductor L(q) and
capacitor C store energy in the form of magnetic flux and electric field, respectively, whereas
resistor R only consumes energy. Energy can be transferred from one form to the other,
which is oscillatory with a resonance frequency (f0 = 1

2π
√

L(q)C
). The resistance R dampens

the oscillation, diminishing it with time. Not strictly speaking, such a damped oscillation
may be vividly approximated by e−αt sin 2πf0t, where α = R

2L(q) is the damping factor.
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Figure 8. Simulated and experimental responses of the neuromorphic circuit. L[q(t)] = L[
∫

i(t)dt]
starts at 2 H and then decreases by 20% after each stimulus pulse. The circuit’s resonance frequency,
determined by the staircased L(q) (Figure 3), increases itself with the increased number of oncoming
stimulus pulses. This simulation in (a) agrees with our experiment in (b) on a hardware emulator
built with a dsPIC30F2011 microcontroller, an MCP4261 digital potentiometer and a differential 12-bit
ADC converter.
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Figure 9. The neuromorphic RLC circuit in Figure 7 is a deep learning neural network with multiple
layers between the input and output layers. The complicated function e−αt sin 2πf0t is decomposed
into two simple functions: e−αt and sin 2πf0t, each of which can be implemented in one layer. The
former is determined by R and L(q), whereas the latter is determined by L(q) and C.

5. Discussion and Conclusions

Memristors (resistors with memory), meminductors (inductors with memory) and
memcapacitors (capacitors with memory) have different roles in neuromorphic computing
systems, novel computing architectures and dynamical neural networks. In this study, we
found that a coil with a magnetic core is, in fact, an inductor with memory (meminductor)
in terms of its inductance being a function of the charge. This meminductor can play a
unique role (that cannot be played by a memristor) in neuromorphic computing [17,18],
deep learning [16] and brain-inspired computing [19–21] since the time constant (t0 =

√
LC)

of a neuromorphic RLC circuit is jointly determined by the inductance L and capacitance
C, rather than the resistance R. As an experimental verification, this new meminductor
was used to reasonably reproduce the observed biological behavior of amoebae, in which
the resonance frequency tracks the stimulus frequency. In conclusion, a beyond-memristor
computing paradigm is theoretically sensible and experimentally practical.

Nature exhibits unconventional ways of storing and processing information, and
circuit elements with memory mimic the dynamical behaviors of some biological systems
in terms of being plastic according to the history of the systems. As a practical application,
the Pavlovian experiment on conditioned reflex is reproduced by a memristor neural
network with the aid of the so-called “delayed switching” effect [22,23]. In this application,
the total length of the stimuli sequence, the frequency of the stimuli sequence and the spike
width are carefully adjusted such that the time delay point of the memristor synapse should
not be exceeded while only one neuron fires. In many applications, it is not feasible and
possible to solve the problems with conventional computational models and methods (i.e.,
the Turing machine [24–27] and the von Neumann architecture [28–31]). As demonstrated
above, neuromorphic architectures may help.

Understanding the brain with non-linear dynamics and extreme complexity is still a
great challenge since the human brain has 1011 neurons and 1014 synapses (each neuron
is connected to up to 20,000 synapses) [32–36]. By coincidence, as one of the simplest
creatures or organisms existing on earth, unicellular amoebae display some mysterious
brain-like behaviors in terms of controlling their actions [37–41]. Their memorizing, timing
and anticipating mechanisms may represent the origins of primitive learning.

The evolution of life includes the process of evolving intelligence in charge of control-
ling and predicting their behavior. In 1952, Hodgkin and Huxley developed an equivalent
circuit to explain the initiation/propagation of action potentials and the underlying ionic
mechanisms in the squid giant axon [17,42–46]. They were awarded the Nobel Prize in
Physiology or Medicine for this work in 1963. In the so-called Hodgkin–Huxley model,
an electrical circuit representing each cell consists of a linear resistor, a capacitor, three
batteries, and two unconventional elements identified by Hodgkin and Huxley as time-
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varying resistors. In 2012, these two potassium and sodium time-varying resistors were
substituted by a potassium ion-channel memristor, and a sodium ion-channel memris-
tor, respectively [18,19]. This presents great progress in neural physiology and brain
science in over 70 years in terms of exploring the origins of primitive learning from an
evolutionary perspective.

In this work, we developed a meminductor-based neuromorphic architecture that
self-adjusts its inherent resonant frequency in a natural way following the external stimuli
frequency. In contrast to the previous work, our innovation is that this architecture uses
a unique meminductor to increment its time constant and subsequently decrement its
resonant frequency to match the stimuli frequency. This architecture may help better
investigate the cellular origins of primitive intelligence [47–49]. This sort of research is
significant in terms of not only understanding the primitive learning but also developing
a novel computing architecture, which will be much more integrated with our physical
and social environment, capable of self-learning, as well as processing and distributing
big data at an unprecedented scale [50,51]. This will require new designs, new theories,
new paradigms and close interactions with application experts in the sense that new bio-
inspired (neurosynaptic) and non-Turing-inspired computing platforms are moving away
from traditional computer architecture design [51].
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