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Improved Weighted Covariance-Based Detector for
Spectrum Sensing in Rayleigh Fading Channel

Huadong Lai , Mingxing Liu , Member, IEEEAQ1 , Jinqiang Xu, Peng Luo , Changrun Chen , and Weichao Xu

Abstract—In this letter, we propose an improved weighted1

covariance based detector (IWCD) for spatially correlated time-2

varying Rayleigh fading channel. The proposed method uses3

adaptive weights that are tailored to the dynamic nature of4

the channels. These weights can be chosen manually to meet5

practical requirements or derived theoretically by optimizing6

some performance index, such that the IWCD outperforms7

traditional weighted covariance-based detectors (WCDs), which8

rely heavily on data-aided weights determined by the sample9

covariance matrix (SCM). Performance merits in terms of the10

probabilities of false alarm and detection are analyzed in the11

low signal-to-noise-ratio (SNR) regime. Besides, the optimal12

weights are derived via maximizing the modified deflection13

coefficient (MDC). A reasonable estimator of the optimal weights14

is also constructed armed with the available samples at hand.15

Theoretical analyses and experimental results demonstrate the16

superiority of our proposed method over existing works in17

various scenarios.18

Index Terms—Spectrum sensing, weighted covariance based19

detector, rayleigh fading channel, modified deflection coefficient.20

I. INTRODUCTION21

COGNITIVE radio (CR), which allows the unlicensed sec-22

ondary users to utilize the idle spectrum bands originally23

allocated to but not occupied by the licensed primary users,24

is recognized as a promising network architecture to improve25

the spectrum utilization efficiency and alleviate the problem26

of spectrum scarcity [1], [2], [3]. Spectrum sensing, as one of27

the most important functionalities of CR, aims at seeking the28

idle frequency band via continuously monitoring the activity29

state of PUs [4].30

Traditional energy detection is widely utilized for spec-31

trum sensing owing to its low computational complexity32

and simplicity of implementation. However, the performance33
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of ED will degrade considerably in the presence of noise 34

uncertainty [5]. To overcome it, a variety of robust spectrum 35

sensing schemes have been addressed in the literature, such 36

as the correlation-based detector (covariance absolute value 37

(CAV) [6], volume based detection (VOL) [7], hadamard ratio 38

test (HDM) [8]) and the machine learning-based schemes 39

(CNN-LSTM [9] and CM-CNN [10]). By assuming the 40

quasi-static fading channels, these approaches are capable 41

of delivering desirable performance gain, but they may suf- 42

fer from performance deterioration when the transmission 43

channel is time-varying fading. To this end, several research 44

efforts in the aspect of weighted covariance are addressed 45

for time-varying fading channel, such as complex-valued 46

WCD (CWCD) [11], real-valued WCD (RWCD) [12], gen- 47

eralization RWCD (GRWCD) [13] and modified GRWCD 48

(MGRWCD) [13]. The pivotal idea is to construct the WCD- 49

based statistic by employing the SCM-based weights within 50

the principle of CAV. The performance of WCDs can be 51

significantly enhanced by employing the SCM-aided weights 52

to reduce the overlap between the distributions of test statistic 53

with and without primary signals. However, the weights arising 54

from the SCM are deterministic and fixed, and a heuristic 55

method for achieving remarkable performance gain is to find 56

the more flexible combined weights that are tailored to the 57

time-varying channel. 58

Inspired by it, in this letter, an improved weighted covari- 59

ance based detector (IWCD) is addressed for the time-varying 60

correlated channels. Compared to the traditional data-aided 61

WCDs, the proposed method exhibits the wider degree of 62

flexibility because the utilized weights can be determined 63

by manual selection for practical demands or by theoretical 64

deduction via the optimization of some performance index. 65

The analytic expressions of the false alarm probability and 66

detection probability are derived in the scenarios where the 67

SNR is low. Then, an optimization problem based on MDC 68

is formulated, armed with which the optimal weights can 69

be determined. In addition, the optimal weights are reason- 70

ably estimated after estimating the unknown parameters from 71

the available samples. Numerical examples reveal that the 72

proposed IWCD method is superior to other state-of-the-art 73

detectors available in the literature. 74

Notation: The operators tr(·), |·|, (·)∗, (·)T and (·)H denote 75

trace, modulus, conjugate, transpose and conjugate transpose, 76

respectively. The symbols of E(x ) and V(x ) are utilized to 77

represent the mean and variance of a random variable x. x ∼ 78

N (μ,Σ)(CN (μ,Σ)) means that x follows the real (complex) 79

Gaussian distribution with mean μ and covariance matrix Σ, 80

whereas ∼ signifies “distributed as”. The real and imaginary 81
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parts of x are denoted by Re(x) and Im(x), respectively. We82

utilize 0M and IM to represent the M × 1 zero vector83

and M × M identity matrix. Ψ(x ) and Γ(·) correspond to84

a special confluent hypergeometric function 1F1(−1/2, 1, x )85

and Gamma function [14], respectively. The diag{x} stands86

for a diagonal matrix with diagonal elements consisting of x.87

II. PRELIMINARIES88

A. Problem Formulation89

Herein we consider the detection of primary signal for a90

CR system that composes of one PU and one SU equipped91

with M sensing antennas through time-varying Rayleigh fading92

channel. Denote the absence and presence of primary signal in93

a specific frequency band by H0 and H1, respectively. Under94

the above binary hypothesis, the observation vector x(k) from95

M−antenna SU at time instant k can be expressed as [15]96 {H0 : x(k) = w(k)
H1 : x(k) = h(k)s(k) + w(k)

, k = 1, 2, . . . ,K , (1)97

where s(k) ∼ CN (0, σ2s (k)), denotes the transmitted PU98

signal which is deterministic but unknown with instantaneous99

power σ2s (k); h(k) ∼ CN (0M , σ2hΦ) represents the cor-100

related Rayleigh fading channel with σ2h and Φ being the101

channel power and normalized correlation matrix, respec-102

tively; w(k) ∼ CN (0M ,Rw ) is the additive background103

noise with unknown diagonal covariance matrix Rw =104

diag{σ21 , . . . , σ2M }. Generally, it is assumed that s(k), h(k)105

and w(k) are statistically independent with each other.106

B. Channel Model107

Due to its simplicity and excellent characterization of spatial108

correlation, the antenna correlation matrix Φ is typically109

described by exponential correlation model [15], i.e.,110

Φmn =

{
ρn−m , m ≤ n
Φ∗
nm , m > n

, m,n = 1, 2, . . . ,M , (2)111

where |ρ| ≤ 1 is the complex-valued correlation coefficient112

between two neighboring antennas.113

In such occasion, the channel vector h(k) is generated as114

h(k) = Φ
1
2 g(k), k = 1, 2, . . . ,N , (3)115

where g(k) ∼ CN (0M , IM ), denotes the standard complex116

Gaussian distributed random vector.117

III. TEST STATISTIC AND PERFORMANCE ANALYSIS118

This section first briefly reviews weighted covariance-119

based sensing algorithms framework, and then elaborates the120

proposed test statistic. Besides, performance measures for121

the probabilities of false alarm probability and detection are122

studied in the low SNR regime with the assistance of central123

limit theorem (CLT) [16]. Finally, the optimal weights are124

computed via the optimization problem based on MDC [17],125

an estimate of which is also obtained with the available126

samples.127

A. Improved Weighted Covariance Based Detection 128

It is stated in [11], [12], [13] that the test statistics 129

of WCDs are constructed by means of applying different 130

weights to the entries of normalized SCM, i.e., TWCD � 131∑M−1
i=1 ωi

∑
n−m=i |r ′mn | where r ′mn = rmn/σ̂

2 with σ̂2 = 132∑M
m=1 rmm/M and rmn being the (m, n) entries of SCM 133

defined as R = 1
K

∑K
i=1 x(k)xH (k), and ωi is the weight 134

obtained from the SCM. The data-aided weights can reduce the 135

overlap between the distributions of detection statistic with and 136

without the primary signal, thereby improving the detection 137

power. However, the weights from the SCM are deemed to 138

be fixed and unalterable, and a natural idea to achieve the 139

better performance is to adopt the more flexible strategy with 140

alterable weights, leading to our proposed method, as 141

TIWCD �
M−1∑
i=0

ωi
∑

n−m=i

|rmn |
H1

≷
H0

λ, (4) 142

where λ is the decision threshold for a given false alarm 143

probability, {ωi}M−1
i=0 are the weights, which play a pivotal 144

role in improving the performance of our detection scheme. 145

The weights can be manually prescribed according to practical 146

requirements or theoretically determined by optimizing some 147

performance index. Note that when ω0 = 0, IWCD reduces to 148

CAV for ωi = 1/M (i = 1, . . . ,M −1), or reduces to CWCD 149

for ωi = 4
∑

n−m=i Re(rmn )/σ̂
4 (i = 1, . . . ,M − 1). 150

B. False Alarm Probability 151

We first establish the closed-from expression for the 152

false alarm probability by following along the line in [18]. 153

Specifically, in the scenario of low SNR and large K, 154

{rmm}Mm=1 and {rmn}M−1
n−m=1 are statistically independent, 155

with PDFs: 156

rmm |H0 ∼ N
(
σ2m ,

1

K
σ4m

)
, (5) 157

rmn |H0 ∼ CN
(
0,

1

K
σ2mσ2n

)
, (6) 158

where σ2m and σ2n are m-th and n-th diagonal elements in Rw . 159

Denote Ti �
∑

n−m=i |rmn |, it is very easy to obtain 160

E(T0|H0) =

M∑
m=1

E[|rmm |] =
M∑

m=1

σ2m , (7) 161

V(T0|H0) =

M∑
m=1

V[|rmm |] = 1

K

M∑
m=1

σ4m . (8) 162

The amplitude |rmn | for n > m, follows the Rayleigh distri- 163

bution with scale parameter σ̃ = σmσn√
2K

, whose first few raw 164

moments are E(|rmn |j ) = σ̃j 2
j
2Γ(1 + j

2 ) [19]. 165

We then obtain Ti for i = 1, . . . ,M − 1, 166

E[Ti |H0] =
∑

n−m=i

E[|rmn |] =
√

π

4K

M−i∑
m=1

σmσm+i , (9) 167

V[Ti |H0] =
∑

n−m=i

V[|rmm |] = 4− π

4K

M−i∑
m=1

σ2mσ2m+i . (10) 168
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The mean (denoted by μ0) and variance (denoted by σ20) of169

TIWCD under H0 can be respectively computed as170

μ0 =
M−1∑
i=0

E[ωiTi |H0]171

= ω0

M∑
m=1

σ2m +

√
π

4K

M−1∑
i=1

ωi

M−i∑
m=1

σmσm+i , (11)172

σ20 =

M−1∑
i=0

V[ωiTi |H0]173

=
ω2
0

K

M∑
m=1

σ4m +
4− π

4K

M−1∑
i=1

ω2
i

M−i∑
m=1

σ2mσ2m+i . (12)174

Based on CLT, The distribution of IWCD can be computed as175

TIWCD|H0 ∼ N
(
μ0, σ

2
0

)
. (13)176

When the threshold λ is pre-given, the false alarm177

probability is computed as178

Pf = Pr(TIWCD > λ) = Q

(
λ− μ0
σ0

)
, (14)179

where Q(x ) � 1
2π

∫+∞
x e−

u2

2 d u is the Gaussian-Q function.180

Denote by Q−1(·) the inverse function of Q(·). The decision181

threshold can be evaluated with a prescribed Pf , as182

λ = σ0Q
−1(Pf

)
+ μ0. (15)183

C. Detection Probability184

The analytic form for the probability of detection are185

investigated in this subsection. To continue, the lemma below186

is required to establish the distribution of rmn under H1.187

Lemma 1: Let ρi � ρn−m for n ≥ m , σ2sh(k) � σ2s (k)σ
2
h ,188

σ2sh � 1
K

∑K
k=1 σ

2
sh(k), σ̃

2
m � σ2sh + σ2m and σ̃2n � σ2sh +189

σ2n . The SNR is defined as SNR = 10 log10

(
σ2
sh

1
M

tr(Rw )

)
.190

Then, when H1 holds, {rmm}Mm=1 and {rmn}M−1
n−m=1 are191

mutually independent in the low SNR regime, whose PDFs192

are respectively given by193

rmm |H1 ∼ N
[
σ̃2m ,

1

K
σ̃4m

]
, (16)194

rmn |H1 ∼ CN
[
ρiσ

2
sh ,

1

K
σ̃2m σ̃2n

]
. (17)195

Proof: Due to the space limitation, the proof is integrated196

in the supplementary material.
AQ3

197

According to (16), we have198

E[T0|H1] =

M∑
m=1

E[Tmm |H1] =

M∑
m=1

σ̃2m , (18)199

V[T0|H1] =

M∑
m=1

V[Tmm |H1] =
1

K

M∑
m=1

σ̃4m . (19)200

It is obvious that Re(rmn ) and Im(rmn ) is independent of201

each other when the SNR is low. Thus, the amplitude |rmn |202

follows the Rician distribution R(ν,V) with ν = |ρi |σ2sh and 203

V =
√

1
2K σ̃2m σ̃2n . We then have 204

E(|rmn |) = V
√

π

2
Ψ

(
− ν2

2V2

)
, (20) 205

E

(
|rmn |2

)
= 2V2 + ν2, (21) 206

which produces Ti for i = 1, . . . ,M − 1, 207

E[Ti |H1] =

M−i∑
m=1

√
π

4K
σ̃m σ̃m+iΨ

(
−Kσ4sh |ρi |2

σ̃2m σ̃2m+i

)
, (22) 208

V[Ti |H1] =

M−i∑
m=1

[
σ̃2m σ̃2m+i

K
+ |ρi |2σ4sh 209

− π

4K
σ̃2m σ̃2m+iΨ

2

(
−Kσ4sh |ρi |2

σ̃2m σ̃2m+i

)]
. (23) 210

Combining (18), (19), (22) and (23) yields the mean (denoted 211

by μ1) and variance (denoted by σ21) of TIWCD under H1, 212

respectively, as 213

μ1 =

M−1∑

i=0

E[ωiTi |H1] = ω0

M∑

m=1

σ̃2m 214

+

M−1∑

i=1

ωi

M−i∑

m=1

√
π

4K
σ̃m σ̃m+iΨ

(
−Kσ4sh |ρi |2

σ̃2m σ̃2m+i

)
, (24) 215

σ21 =

M−1∑

i=0

V[ωiTi |H1] =
ω2
0

K

M∑

m=1

σ̃4m +

M−1∑

i=1

ω2
i

M−i∑

m=1

[
σ̃2m σ̃2m+i

K
216

+ |ρi |2σ4sh − π

4K
σ̃2m σ̃2m+iΨ

2

(
−Kσ4sh |ρi |2

σ̃2m σ̃2m+i

)]
. (25) 217

In view of the CLT, the distribution of IWCD can then be 218

approximated as 219

TIWCD|H1 ∼ N
(
μ1, σ

2
1

)
. (26) 220

The detection probability can thus be obtained with the given 221

threshold λ, as 222

Pd = Q

(
λ− μ1
σ1

)
. (27) 223

D. Optimal Weights 224

Several possible performance indices, such as detec- 225

tion probability, receiver operating characteristic (ROC) 226

curve, asymptotic relative efficiency and deflection coefficient 227

(DC) [20], are available for performance optimization of 228

a detector, among which, the DC appeals interesting due 229

to its easy calculation and near-optimal manner. However, 230

it has been pointed out in [20] that the DC might not 231

be a good indicator of performance when the sample size 232

is very low. To circumvent this drawback, a heuristic but 233

efficient approach namely modified deflection coefficient is 234

proposed in [17], which measures the variance-normalized 235

distance between the centers of two PDFs under hypothe- 236

ses H0 and H1. The optimal weight vector is able to 237

be found with low computational complexity by optimiz- 238

ing the MDC. Let ω = [ω0, ω1, . . . , ωM−1]
T , μi = 239

[E(T0),E(T1), . . . ,E(TM−1)]
T |Hi , i = 0, 1, f = μ1 − μ0, 240
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and Λ = diag{V(T0|H1),V(T1|H1), . . . ,V(TM−1|H1)}.241

The optimization problem with respect to the maximization of242

MDC can be stated as [17]243

max
ω

d2m (ω) =
(μ1 − μ0)

2

ωTΛω
=

(
f Tω

)2
ωTΛω

, s. t. |ω| = 1. (28)244

Define ω′ � Λ−T
2 f . Then, the optimal wights ωo follows245

from [17], as246

ωo =
Λ− 1

2 ω′

|Λ− 1
2 ω′|

. (29)247

Noticing the diagonal stricture of Λ gives248

ωo
i−1 =

fi
Λii

[
M∑

m=1

f 2m
Λ2
mm

]−1/2

, i = 1, 2, . . . ,M . (30)249

Remark 1: For the sake of illustration, we define ςi �250

ρiσ
2
sh for i = 1, . . . ,M − 1. It is obvious from (30) that the251

acquisition of optimal weights involve the prior knowledge252

(σm , σ̃m , ςi ,m = 1, 2, . . . ,M , i = 1, . . . ,M − 1) of the253

observed data under both hypotheses, which is difficult to254

obtain in practice. Assume that there are M × K noise-255

only sample [x(0)(1), . . . , x(0)(K )] (the noise-only sample256

are available in possible [21]) and noise-bearing sample257

[x(1)(1), . . . , x(1)(K )], the relevant unknown parameters can258

thus be estimated, i.e.,259

σ̂2m =
1

K

K∑
k=1

x
(0)
m (k)

(
x
(0)
m (k)

)∗
, (31)260

ˆ̃σ2m =
1

K

K∑
k=1

x
(1)
m (k)

(
x
(1)
m (k)

)∗
, (32)261

ς̂i =
1

K (M − i)

K∑
k=1

M−i∑
m=1

x
(1)
m (k)

(
x
(1)
m+i (k)

)∗
. (33)262

In such case, the estimated optimal weights are263

computed as264

ω̂o
i−1 =

f̂i

Λ̂ii

[
M∑

m=1

f̂ 2m

Λ̂2
mm

]−1/2

, i = 1, 2, . . . ,M . (34)265

where266

f̂1 =

M∑
m=1

(
ˆ̃σ2m − σ̂2m

)
, Λ̂11 =

1

K

M∑
m=1

ˆ̃σ4m , (35)267

f̂i =

√
π

4K

M−i+1∑
m=1

[
ˆ̃σm ˆ̃σm+i−1Ψ

(
− K |ς̂i−1|2
ˆ̃σ2m ˆ̃σ2m+i−1

)
268

−σ̂m σ̂m+i−1

]
, i = 2, 3, . . . ,M , (36)269

Λ̂ii =
M−i+1∑
m=1

[
ˆ̃σ2m ˆ̃σ2m+i−1

4K

(
4− πΨ2

(
−K |ς̂i−1|2
ˆ̃σ2m ˆ̃σ2m+i−1

))
270

+|ς̂i−1|2
]
, i = 2, 3, . . . ,M . (37)271

Fig. 1. Verification of theoretical results. (a) uniform noise with K = 400,
M = 6 and ρ = 0.7 + 0.1ι; (b) K = 300, M = 4 and ρ = 0.6 + 0.2ι with
non-uniform noise variance [−1, 0, 1.5, −0.5] dB. AQ4

Fig. 2. Comparison of ROC curve with K = 500, M = 4 and SNR =
−14 dB. (a) uniform noise with ρ = 0.8 + 0.4ι; (b) non-uniform noise
variance [0.3, −0.4, −0.7, 0.8] dB with ρ = 0.7 + 0.3ι.

IV. NUMERICAL RESULTS 272

This section provides numerical examples to validate the 273

theoretical analyses and compare the performance of the 274

proposed IWCDs obtained by the optimal weights (30) 275

(IWCDO) and estimated weights (34) (IWCDE), to the four 276

WCDS, namely CWCD [11], RWCD [12], GRWCD (p = 277

1
4 ) [13], MGRWCD (p = 1

4 ) [13], as well as three popular 278

competitors, namely CAV [6], VOL [7], HDM [8]. In general, 279

the noise power is assumed to be one for uniform noise and 280

the average noise power is set to be one for non-uniform noise. 281

Fig. 1 validates the asymptotic expressions of Pf (14) and 282

Pd (27) obtained via the optimal weights (30), by comparing 283

the theoretical and simulated ROC curves. The parameter setup 284

is ρ = 0.7+ 0.1ι, K = 400 and M = 6 for uniform noise and 285

ρ = 0.6 + 0.2ι, K = 300 and M = 4 for non-uniform noise 286

with variance [−1, 0, 1.5, −0.5] dB, both with respect to four 287

values of SNR ∈{−14, −16, −18, −20} dB. As expected, the 288

theoretical values agree well with the simulation counterparts, 289

thus verifying the correctness of our derived results. 290

Fig. 2 depicts the ROC curve of our proposed IWCD 291

methods in comparison with other seven detectors for M = 4, 292

K = 500 and SNR = −14 dB. Two values of high antenna 293

correlation, ρ = 0.8 + 0.4ι with uniform noise variance and 294

ρ = 0.7 + 0.3ι with non-uniform noise variance [0.3, −0.4, 295

−0.7, 0.8] dB, are considered in Fig. 2 (a) and Fig. 2 (b), 296

respectively. It is clear that IWCDE of estimated weights 297

performs comparably with IWCDO of optimal weights, both 298

of which perform better than that of comparison approaches. 299
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Fig. 3. Comparison of ROC curve for all considered detectors with K = 300, M = 6 and SNR = −15 dB. (a) uniform noise; (b) uniform noise;
(c) non-uniform noise with variance [1, −0.5, 0.1, −1.2, 0.6,0] dB. (d) non-uniform noise with variance [1, −0.5, 0.1, −1.2, 0.6,0] dB.

Fig. 3 draws the detection performance with respect to300

ROC curve, of all considered detectors in the case where301

the correlation across the receiver antennas is low. Simulation302

parameters are set as K = 300, M = 6 and SNR = −15 dB.303

Four correlation coefficients in the forms of real value and304

complex value are considered for both the uniform and non-305

uniform background noise. Specifically, for the case where306

noise variance is identical, Fig. 3 (a) and Fig. 3 (b) shows307

the results corresponding to ρ = 0.35 and ρ = 0.4 + 0.05ι,308

respectively; whereas the results for ρ = 0.45 and ρ = 0.3 +309

0.1ι in the scenarios of non-uniform noise are plotted in Fig. 3310

(c) and Fig. 3 (d), respectively. We can deduce from Fig. 3 that311

our proposed IWCD detectors are superior to other considered312

methods due to its highest detection probability under a313

specific false alarm probability. In addition, by comparing314

Fig. 2 and Fig. 3, the superiority of our proposed detector over315

other considered detectors can be more evidently observed in316

the low correlation regime. Compared with optimal weight-317

aided detector, the estimated weight-aided detector suffers318

from evident performance loss in the case of low correlation.319

V. CONCLUSION320

This letter developed an IWCD detector for cognitive321

radios with correlated multiple antennas. The proposed method322

depending on the arbitrary volatile weights, possesses more323

freedom than the traditional WCDs. The analytic forms with324

respect to the probabilities of false alarm and detection were325

derived, facilitating us to determine the optimal weights by326

maximizing the MDC. Besides, a proper estimator for the327

optimal weights was devised with the available samples. The328

superiority of the proposed detector over other state-of-the-art329

methods was shown via extensive numerical examples.330
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