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Abstract 

Positive-Unlabelled (PU) learning is a field of machine learning that involves learning classifiers 

from data consisting of positive class and unlabelled instances. That is, instances that may be either 

positive or negative, but the label is unknown. PU learning differs from standard binary classification 

due to the absence of negative instances. This difference is non-trivial and requires differing 

classification frameworks and evaluation metrics. This thesis looks to address gaps in the PU learning 

literature and make PU learning more accessible to non-experts by introducing Automated Machine 

Learning (Auto-ML) systems specific to PU learning. Three such systems have been developed, GA-

Auto-PU, a Genetic Algorithm (GA)-based Auto-ML system, BO-Auto-PU, a Bayesian 

Optimisation (BO)-based Auto-ML system, and EBO-Auto-PU, an Evolutionary/Bayesian 

Optimisation (EBO) hybrid-based Auto-ML system.  

These three Auto-ML systems are three primary contributions of this work. EBO, the optimiser 

component of EBO-Auto-PU, is by itself a novel optimisation method developed in this work that 

has proved effective for the task of Auto-ML and represents another contribution. EBO was 

developed with the aim of acting as a trade-off between GA, which achieved high predictive 

performance but at high computational expense, and BO, which, when utilised by the Auto-PU 

system, did not perform as well as the GA-based system but did execute much faster. EBO achieved 

this aim, providing high predictive performance with a computational runtime much faster than the 

GA-based system, and not substantially slower than the BO-based system.  

The proposed Auto-ML systems for PU learning were evaluated on three versions of 40 datasets, 

thus evaluated on 120 learning tasks in total. The 40 datasets consist of 20 real-world biomedical 
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datasets and 20 synthetic datasets. The main evaluation measure was the F-measure, a popular 

measure in PU learning. Based on the F-measure results, the three proposed systems outperformed 

in general two baseline PU learning methods, usually with statistically significant results. Among 

the three proposed systems, there was no statistically significance difference between their results in 

general, whilst a version of the EBO-Auto-PU system performed overall slightly better than the other 

systems, in terms of F-measure. 

The two other main contributions of this work relate specifically to the field of PU learning. 

Firstly, in this work we present and utilise a robust evaluation approach. Evaluating PU learning 

classifiers is non-trivial and little guidance has been provided in the literature on how to do so. In 

this work, we present a clear framework for evaluation and use this framework to evaluate the 

proposed systems. Secondly, when evaluating the proposed systems, an analysis of the most 

frequently selected components of the optimised PU learning algorithm is presented. That is, the 

components that constitute the PU learning algorithms produced by the optimisers (for example, the 

choice of classifiers used in the algorithm, the number of iterations, etc.). This analysis is used to 

provide guidance on the construction of PU learning algorithms for specific dataset characteristics.      
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Chapter 1  

Introduction 

Classification is a type of supervised machine learning task where an algorithm essentially learns, 

from data, a model (classifier) to categorise objects (instances) based on the characteristics (features) 

of those objects [1][2]. Standard binary classification methods have proved an invaluable type of 

machine learning in recent years across a wide variety of application domains.  

However, certain learning tasks that do not fit the binary classification paradigm are often treated 

as though they do. When curating real-world datasets, obtaining fully labelled data may prove 

challenging. There are many scenarios where labelling data is expensive or impractical.  Consider 

data regarding the classification of genes (instances) into class labels representing gene functions. 

Genes either have evidence associating them with a certain function (class label), or they do not, 

characterizing a binary classification problem. If there is evidence that a gene has a certain function 

(as a result of a biological experiment), the instance representing that gene will be labelled with the 

positive class for that function. However, it is harder to find reliable instances of the negative class 

because a lack of evidence associating a gene with a specific function is not evidence for a lack of 

association. Biological experiments are expensive and time-consuming to conduct; hence, it is likely 

that a given gene has simply not had any experiments conducted on it to confirm whether it is 

associated with the particular function or not. If we were to train a standard binary classifier on such 

data with the given class labels, we would train the classifier to predict whether a gene is labelled as 

having a certain function, rather than whether a gene actually is associated with that function.  
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Consider another example where obtaining fully labelled data is impractical. Web scraping is 

commonly used to collect vast amounts of data from the internet, which is then used for various 

purposes such as sentiment analysis, market research, or predictive modelling. However, the 

enormous volume and diversity of this scraped data make it almost impossible to manually label 

every single instance. Instead, a sample of the instances to be considered may be labelled, whilst the 

rest of the instances are left unlabelled. In this case, the resulting dataset would consist of a set of 

labelled positive instances (web pages which belong to the class of interest) and a set of unlabelled 

instances, which may be positive or negative, but whose class is unknown.  

These examples characterise Positive-Unlabelled (PU) learning problems, which differ from 

standard binary classification due to the absence of a separately defined negative class in the dataset 

(that is, the concept of a negative class exists, but as the unlabelled instances may be either positive 

or negative, the negative class is not explicitly observed in the dataset) [3], a common scenario in 

domains such as bioinformatics [4], text classification [5], pharmacology [6], and others [3]. PU 

learning has not, however, been widely adopted in the literature. Many studies simply employ the 

closed world assumption (CWA) [7], assuming that unlabelled instances are negative instances. This 

work looks to address this issue.  

Automated Machine Learning, often referred to as Auto-ML, is a rapidly advancing subfield of 

machine learning, which aims to automate complex aspects of the machine learning process. It 

focuses on algorithm selection and hyperparameter tuning, effectively optimizing algorithm 

configurations to ensure the best performance with minimum manual intervention [8][9]. The goal 

of Auto-ML is to simplify the machine learning process for non-experts and increase efficiency in 

model development by automatically searching for the best machine learning algorithm or pipeline 

(a set of algorithms applied in order) and their best hyperparameter settings for a given task. For a 

more detailed discussion of Auto-ML, see Sections 1.2 and 2.4.  

In this work, we aim to make PU learning methods more accessible and robust with the 

introduction of new Auto-ML systems specific to PU learning. An Auto-ML system for PU learning 

will limit the need for expert involvement and make PU learning accessible to those with little 

knowledge of PU learning. Furthermore, we look to fill gaps in the current PU learning literature to 

allow for a more reliable and effective classification framework, aiming at producing an Auto-ML 
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system for PU learning that would achieve higher predictive performance than current PU learning 

methods. The proposed type of Auto-ML system, called Auto-PU, is developed as three separate 

Auto-ML systems utilising three types of optimisation methods: two well-known methods, a Genetic 

Algorithm (GA) and Bayesian optimisation (BO), and a new hybrid optimisation method named as 

evolutionary Bayesian optimisation (EBO). The three Auto-PU systems are novel contributions to 

the area of machine learning and particularly PU learning in general since they currently represent 

the only Auto-ML systems for PU learning in the literature. 

The rest of this chapter is structured as follows: Sections 1.1 and 1.2 give an overview of PU 

learning and Auto-ML, highlighting the motivation for this work. Section 1.3 outlines the objectives 

to be achieved. Section 1.4 outlines the contributions of this thesis. Section 1.5 gives the structure of 

this thesis. Finally, Section 1.6 details the three publications derived from this work. 

1.1     Positive-Unlabelled Learning (PU Learning) 

PU learning is a classification paradigm that involves learning a machine learning classifier (model) 

that can distinguish between positive and negative classes, given only positive and unlabelled data 

[3]. PU learning is discussed in detail in Section 2.5 but is briefly outlined here to explain the 

motivation of this work.  

Over the previous two decades, many PU learning algorithms have been developed with the aim 

of learning classifiers from positive and unlabelled data [3]. The need for these systems has grown 

with the vast amount of data that has become available in recent years. Labelling enough data to 

effectively learn machine learning models is a challenging and expensive task, making it impractical 

for many researchers. However, as a field, PU learning has not received as much attention as it is 

arguably warranted, given its applicability. There are many possible reasons for the oversight, 

including a lack of guidelines in the literature, and a lack of widely applicable PU learning tools. 

Most PU learning algorithms are developed for specific application domains, such as [10-19]. 

Therefore, the field could benefit from general purpose PU learning tools that can be easily applied 

to any application domain. Regarding the lack of guidelines, before this work there was relatively 

little guidance regarding evaluation of PU learning models. This is a non-trivial issue, as discussed 
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in Section 2.5, therefore established practices are essential to ensure that proposed PU learning 

methods can be effectively compared to those that already exist.  

This work looks to address these issues by, firstly, establishing guidelines for the evaluation of 

PU learning methods as published in [20], and, secondly, proposing novel Auto-ML systems specific 

to PU learning. The need for Auto-ML systems is discussed next. 

1.2     Automated Machine Learning (Auto-ML) 

Auto-ML is a growing area of machine learning that involves optimising a classification algorithm 

or pipeline for each specific input dataset [8][9]. The primary goals of Auto-ML are to increase the 

effectiveness of classification algorithms or pipelines for given learning tasks through optimisation 

of the components of the pipeline and their respective hyperparameter settings, as well as making 

machine learning more accessible for those without extensive domain knowledge [8][9].  

There are several approaches to Auto-ML, such as evolutionary computation and Bayesian 

optimisation, both of which are addressed in this work (see Sections 2.2-2.4). By using such 

optimisation methods, the aim is to remove the need for a trial-and-error approach to algorithm or 

pipeline optimisation¸ which is a time-consuming and laborious task that may not find an optimal or 

a near-optimal solution. Furthermore, machine learning algorithms are complex and often have many 

hyperparameters, each of which impacting the output of the classification model. Conducting a 

thorough and informed search of the available algorithms and their respective hyperparameters 

traditionally requires expert-level knowledge of, not just machine learning, but the classifiers 

themselves. This presents a barrier that Auto-ML looks to remove.  

Given the issues discussed in relation to the PU learning literature and the aims of Auto-ML, it 

follows that PU learning could benefit from Auto-ML systems specifically applied to the area. Auto-

ML systems for binary classification are not good in this area as applying the standard binary 

classification paradigm to PU learning datasets is sub-optimal, as discussed in Section 2.5. Therefore, 

Auto-ML systems that construct algorithms specifically designed for PU learning are required.  
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1.3     Objectives 

There are three primary objectives of this work. The first is to establish a framework for evaluation 

of PU learning algorithms. This objective is addressed in Section 2.5 and Chapter 3.  

The second objective is to investigate the use of Auto-ML systems and compare their 

performance to baseline PU learning methods. This objective involves contributing a new proposed 

Auto-PU learning framework (an Auto-ML framework specifically for PU learning), described in 

Chapter 3, as well as three new Auto-PU systems that were developed with the aims of high 

predictive performance and computational efficiency in mind, as follows.  

The first proposed Auto-ML system, GA-Auto-PU (described in Chapter 4), based on a Genetic 

Algorithm as the optimiser (see Section 2.2), was successful in outperforming some baseline PU 

learning methods with statistical significance, but its good predictive performance came at a large 

computational expense.  

The second system developed, BO-Auto-PU (described in Chapter 5), addressed this issue 

through the use of Bayesian optimisation (see Section 2.3). However, whilst addressing the large 

runtime issue (i.e., it was much faster than GA-Auto-PU), BO-Auto-PU achieved overall a predictive 

performance somewhat lower than the performance achieved by GA-Auto-PU.  

Finally, EBO-Auto-PU was developed (as described in Chapter 6), proposing a new hybrid 

optimisation approach between an evolutionary algorithm and Bayesian optimisation, and 

successfully acted as a trade-off between the two systems. That is, EBO-Auto-PU achieved overall 

somewhat better predictive performance than both GA-Auto-PU and BO-Auto-PU, whilst EBO-

Auto-PU was also much faster than GA-Auto-PU. 

The final objective is to identify guidelines for designing PU learning algorithms, in regard to 

recommending specific algorithmic components that should be used for specific learning scenarios, 

based on the experimental results reported in this thesis. This objective is addressed in Sections 4.4, 

5.4 and 6.4 of Chapters 4, 5 and 6 (for each of the three aforementioned types of Auto-PU systems).  
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1.4     Contributions  

This section lists the contributions of this work, as follows. Firstly, this work has proposed a PU 

learning evaluation framework. That is, through a literature review the primary evaluation metrics of 

PU learning (in terms of predictive accuracy) were identified and mapped to their appropriate PU 

learning goals. An evaluation methodology for utilising different types of datasets (both real-world 

and synthetic datasets) was identified, and datasets created specifically for PU learning evaluation 

were made publicly available for PU learning researchers1. This results of this contribution have been 

published in [20]. 

Second, this work has proposed an Auto-ML framework specific to PU learning. This framework 

will make it easier for other PU learning researchers to develop their own Auto-ML systems, with 

defined search spaces and an objective function to serve as a starting point. Parts of the proposed 

framework were published in [21][22]. 

Third, this work has proposed three new Auto-ML systems specific to PU learning, each of which 

a contribution in itself. The first system, GA-Auto-PU (Chapter 4), performed a global search in the 

defined space of PU learning algorithms using a Genetic Algorithm as the optimiser, which as 

mentioned earlier led to very long runtimes. The design of GA-Auto-PU and parts of its 

computational results reported in this thesis were published in [21][22]. The second system, BO-

Auto-PU (Chapter 5), performed a much more computationally efficient (faster) search using 

Bayesian optimisation, enabling the use of the Auto-PU framework for researchers without access to 

high performance computing systems. Finally, EBO-Auto-PU (Chapter 6) was built based on a new 

hybrid approach combining aspects of evolutionary computation and Bayesian optimisation.  

Out of these three systems, EBO-Auto-PU is the most novel contribution since it is based on a 

new hybrid evolutionary and Bayesian optimisation method. That is, EBO-Auto-PU can be deemed 

a novel contribution to both the area of PU learning and the area of Auto-ML. GA-Auto-PU and BO-

Auto-PU are using standard GA and BO methods. Hence, although arguably they are not new 

contributions to the area of Auto-ML (since they use standard optimisers), they can still be deemed 

 
1 https://github.com/jds39/Unlabelled-Datasets/ 
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novel contributions to the area of PU learning, since they were the first Auto-ML systems proposed 

specifically for PU learning.  

All the three systems were shown in the experiments to achieve statistically significantly better 

predictive accuracy than some baseline PU learning methods. Overall, regarding predictive 

performance, EBO-Auto-PU had somewhat higher performance than GA-Auto-PU and BO-Auto-

PU. In addition, EBO-Auto-PU was much faster than GA-Auto-PU and somewhat slower than BO-

Auto-PU.  

Finally, this work provides an analysis of the PU learning algorithm components most frequently 

selected by these systems, in order to provide guidance to researchers designing PU learning 

algorithms. Two major outcomes of this were a demonstration of the preference for simple linear 

classifiers used in the first step of the two-step procedure, and a preference against utilising the spy 

method.  

1.5     Thesis Structure  

Chapter 2 details the relevant background information needed to understand this thesis. This covers 

the fundamental concepts of classification (a type of supervised learning) and classifier evaluation, 

evolutionary algorithms, Bayesian optimisation, Auto-ML and positive-unlabelled learning.  

Chapter 3 proposes a novel framework for Auto-ML applied to PU learning, called Auto-PU. 

This chapter details the search spaces used by the optimisation methods, and how the PU learning 

algorithms produced by the proposed Auto-PU systems are evaluated. The evaluation is conducted 

on two types of datasets, engineered PU datasets and synthetic datasets. The engineered datasets are 

created from standard binary datasets, the procedure for which is described in Section 3.3. 

Chapter 4 details GA-Auto-PU [21][22], the first Auto-ML system for PU learning, utilising a 

Genetic Algorithm (GA) as the optimiser. This chapter details the GA procedure that the system 

follows and compares the system with a well-established binary classification Auto-ML system and 

two PU learning baseline methods, before discussing the PU learning algorithm components most 

frequently selected by the system. 

Chapter 5 details BO-Auto-PU, a Bayesian optimisation-based Auto-ML for PU learning. This 

chapter details the BO procedure and compares the system against GA-Auto-PU and the two PU 
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learning baselines, before discussing the PU learning algorithm components most frequently selected 

by the system. 

Chapter 6 details EBO-Auto-PU, utilising a new hybrid evolutionary/Bayesian optimisation 

method. This chapter details the hybrid optimiser as applied to the system, before comparing against 

GA-Auto-PU, BO-Auto-PU, and the two PU learning baselines, before discussing the PU learning 

algorithm components most frequently selected by the system.  

Chapter 7 concludes this work, summarising the main research contributions and suggesting 

research directions for future work. 

Appendix A reports the detailed results of precision and recall measures for each dataset for all 

the evaluated systems, since those results were presented only in summarised form across the main 

chapters with computational results (Chapters 4, 5 and 6). 

Appendix B briefly describes and reports the results for another type of Auto-ML system for PU 

learning, which optimises the hyperparameters of a multi-layer perceptron (neural network) 

algorithm, among other hyperparameters of PU learning algorithms. Hence, this system can be 

considered a type of neural architecture search system. This system’s brief description and its results 

are reported in this Appendix, rather than in the main body of the thesis, mainly because its predictive 

accuracy results were quite poor in general, clearly inferior to the other three Auto-ML systems 

proposed in this thesis (GA-Auto-ML, BO-Auto-ML and EBO-Auto-ML). 

1.6     Publications Derived from this Research 

This section provides the bibliographical details of the author’s three papers that were peer-reviewed 

and accepted for publication throughout the course of this work.  

 

Saunders, J.D. and Freitas, A.A., 2022. GA-auto-PU: a Genetic Algorithm-based Automated 

Machine Learning system for Positive-Unlabeled learning. In Proceedings of the 2022 Genetic 

and Evolutionary Computation Conference Companion (pp. 288-291). ACM Press, 2022. ISBN: 

978-1-4503-9268-6/22/07. DOI: https://doi.org/10.1145/3520304.3528932. 

This work  introduced GA-Auto-PU, the first Auto-ML system for PU learning. As detailed in 

Chapter 4, GA-Auto-PU utilised a simple genetic algorithm as the optimiser and, in this work, it 

outperformed a state-of-the-art PU learning algorithm.  
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Saunders, J.D and Freitas A. A., 2022. Evaluating a new Genetic Algorithm for Automated 

Machine Learning in Positive-Unlabelled learning. In Proceedings of the 15th International 

Conference on Artificial Evolution (EA 2022). Lecture Notes in Computer Science, Vol. 14091, 

42-57. Springer. 

This work presented an extension of the previous work by proposing a second version of GA-Auto-

PU, with an extended search space of candidate PU learning algorithms, and conducting a more in-

depth analysis of the system, comparing it with two (rather than just one) baseline PU learning 

methods. 

 

Saunders, J.D. and Freitas, A.A., 2022. Evaluating the Predictive Performance of Positive-

Unlabelled Classifiers: a brief critical review and practical recommendations for 

improvement. ACM SIGKDD Explorations Newsletter, 24(2), pp. 5-11.  

In this work, a literature review was conducted assessing the current PU learning literature and the 

evaluation methods utilised by work proposing new PU learning algorithms. In this work, guidelines 

for evaluation of PU learning methods were established.  
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Chapter 2  

Background 

This chapter details the relevant background information necessary for this thesis. Section 2.1 

outlines the fundamental concepts of supervised learning, detailing performance metrics and the 

classifiers used throughout this work. Section 2.2 and 2.3 detail evolutionary algorithms and 

Bayesian optimisation respectively, two optimisation methods used in this work. Section 2.4 outlines 

Automated Machine learning (Auto-ML). Section 2.5 explains Positive-Unlabelled (PU) learning. 

2.1     Supervised Learning 

2.1.1     Basic Concepts 

Supervised learning is a fundamental area of machine learning that involves training a model to make 

predictions based on a set of labelled examples (instances) [1][2]. These instances, known as the 

training set, consist of pairs of input and output data, where the input data represents the 

characteristics of an instance (also referred to as features or attributes), and the output (labelled) data 

represents the desired predictions for those instances (also known as the class variable for 

classification tasks, or output/target variable for regression tasks). The goal of supervised learning 

is to learn a generalisable model that can make accurate predictions or decisions for new instances 

(not observed in the training set), based on the patterns learned from the training set.  

This differs from unsupervised learning, a machine learning area that involves finding 

relationships among variables without distinguishing between input and output variables, i.e., from 
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data which is not labelled. A typical unsupervised learning task is clustering, where the goal is to 

divide the instances into clusters (groups) based on their similarities (i.e., maximising the similarities 

of instances within each cluster and minimising the similarities of instances between different 

clusters). The produced clusters can then be interpreted as “classes” for the subsequent application 

of a classification algorithm. 

There are two main types of supervised learning tasks: classification and regression. In 

classification, the goal is to predict a categorical class label for each instance, such as whether an 

email is spam or not. In this example, the features of the instance could be characteristics of the text 

included in the body of the email, like a set of binary variables indicating whether or not a given 

word occurs in the text of the email. The class variable of this instance would be a binary variable, 

indicating “spam” (often represented as 1) or “not spam” (often represented as 0). In regression, the 

goal is to predict a continuous value for each instance, such as the price of a house. In this example, 

the features of the instance are the characteristics of the property, such as its location, square footage, 

and architectural style. The output variable of this instance would be a real-valued number, 

representing the price of the property.  

Formally, the supervised learning task is defined as: 

  

Given a training set 𝑇, consisting of pairs of a feature vector and a scalar label [ (𝑥̅1, 𝑦1), (𝑥̅2, 𝑦2), 

…, (𝑥̅𝑛, 𝑦𝑛) ], where 𝑦 is related to 𝑥̅ by way of a function 𝑓 and n is the number of training instances, 

discover a function ℎ that approximates 𝑓 [23]. 

 

Training a supervised learning model generally involves splitting the data into training and test sets. 

The training set is a set of labelled instances used to train a predictive model. The learned model 

captures patterns and relationships between the features and the class labels. The test dataset is a 

separate set of labelled instances used to evaluate the performance of the trained model. The test set 

allows for an estimation of how well the learned model generalises to new, unseen data (i.e., not 

included in the training set) [1].  

It is important to note that the training and test sets must be independent and non-overlapping. 

Independent meaning that the data for the sets are selected in such a way that the characteristics of 

the data in the training set do not influence the selection of the test set. Non-overlapping meaning 
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that no data point appears in both the training and the test set, the test set should contain completely 

unseen data. That is, the test set should not be used during the model training process. Maintaining 

separation gives a more realistic indication of predictive performance on unseen data.  

For evaluating a predictive model, it is common to use a k-fold cross-validation procedure, where 

the data is divided into k folds of approximately equal size, and the model is trained on k-1 of the 

folds before being tested on the remaining fold. This process is repeated k times, with a different fold 

being used as the test set in each iteration. The predictive performance of the model is then averaged 

over all k iterations.  

Cross-validation is advantageous over using of a single test set, providing a more robust estimate 

of model performance, by evaluating it on multiple subsets of the data which are used as test sets 

(separated from the data subsets used as training sets). This helps to avoid reporting an overly 

optimistic measure of predictive performance that may result from overfitting the training set, if the 

model was learned from the full data (as a training set) and evaluated on the same full data. It also 

provides an indication of the generalisability of the model, as the performance is evaluated over 

multiple test sets. 

Overfitting is a common problem in machine learning that occurs when a model is too complex 

and becomes too specialised to the training data, making it unable to generalise to new, unseen data. 

This generally occurs as a result of over tuning a model to the input dataset [1].  

2.1.2     Predictive Performance Evaluation 

A key part of supervised learning is the evaluation of the learned predictive model. This is typically 

done by comparing the model’s predictions on a test set to the true labels of those instances and 

measuring the extent to which those predictions match the true labels. Popular evaluation metrics 

include accuracy, precision, recall, and F-measure for classification tasks [24] and mean squared 

error (MSE) and mean absolute error (MAE) for regression tasks [25].  

Before detailing the specifics of these metrics, the following definitions are required: 

• True Positives (TP): The number of instances that truly belong to the positive class and 

are correctly predicted as belonging to the positive class. 
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• True Negatives (TN): The number of instances that truly belong to the negative class and 

are correctly predicted as belonging to the negative class. 

• False Positives (FP): The number of instances that truly belong to the negative class but 

are falsely predicted as belonging to the positive class. 

• False Negatives (FN): The number of instances that truly belong to the positive class but 

are falsely predicted as belonging to the negative class.  

• 𝑦𝑖: The true (actual) value of the class/target variable in the 𝑖th instance of the dataset. 

• 𝑦̂𝑖: The predicted value of the class/target variable for the 𝑖th instance. 

• 𝑦̅: The arithmetic mean of the true values of the target variable over all instances of the 

dataset. 

• 𝑛: The number of instances in a given dataset. 

Note that TP, TN, FP, and FN are defined only for classification and 𝑦̅ is defined only for regression 

tasks, whilst 𝑦𝑖 and 𝑦̂𝑖 are defined for both classification and regression tasks. It is also worth 

emphasising that, although these statistics can be calculated for the training and test sets, in order to 

measure generalisation performance what matters are the values of these statistics in the test set.  

Accuracy 

Accuracy is defined as the ratio of the number of correct predictions to the total number of predictions 

[24][26] (Equation 2.1).  

Accuracy =
TP + TN

TP + FP + TN + FN
              (2.1) 

Accuracy is a popular metric due to its ease of interpretation as it provides a direct measure of the 

proportion of correct predictions made by the classifier, out of all predictions made [24]. 

Furthermore, it is a simple and intuitive measure that can be easily understood by a wide range of 

audiences and does not require the use of probability estimates or threshold settings, unlike 

performance metrics such as the Receiver Operating Characteristic curve metric [27].  

However, accuracy also has a number of limitations when used as the sole measure of 

performance. One of the most significant, particularly for the datasets used in the experiments 

reported later in this thesis, is that it can be misleading when applied to datasets with imbalanced 
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class distributions. That is, data where there is not an equal proportion of instances belonging to each 

class. In such scenarios, a classifier can achieve a high accuracy by simply predicting all instances 

as belonging to the majority class, despite not providing any useful information about the minority 

class. This can result in a misleadingly high representation of predictive performance as the classifier 

may not actually be capable of identifying instances of the minority class [24][26]. This is particularly 

problematic for supervised learning tasks that involve anomaly detection, as the instances that users 

are interested in identifying as anomalies will constitute a very small minority class, i.e., only a very 

small proportion of the full set of instances.  

Another important limitation of accuracy is that it does not account for false negatives (FN) and 

false positives (FP) separately [26]. As a result, it is incapable of capturing the trade-offs between 

these different types of errors. Obtaining values for these statistics separately is important for tuning 

a supervised learning model to a specific learning task where the cost of identifying a FN is 

substantially greater or smaller than the cost of identifying a FP. For example, in the case of medical 

diagnosis, a false negative may result in a missed diagnosis, which is potentially far more costly than 

a false positive, which may result in the patient undergoing some unnecessary treatment. In these 

cases, a high accuracy may not reflect the real-world predictive performance of the classifier.  

In summary, accuracy is a widely used and easily interpretable measure of classification 

performance. However, accuracy has limitations when used on datasets with imbalanced classes and 

does not consider false positives and false negatives separately, limitations which are addressed by 

the following metrics.  

Note that the metrics of Precision, Recall and F-measure, described next, are defined with respect 

to a given class of interest, out of all classes. Typically, the class of interest is the minority class, 

usually referred to as the “positive” class, whilst the other class(es) is(are) referred to as the 

“negative” class. Sometimes, however, these measures are calculated for each class separately and 

then its results are averaged over all the classes. Two common approaches for performing such 

average will be discussed later, after the description of these three measures considering only the 

minority (positive) class as the class of interest. 
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Precision 

Precision is defined as the proportion of true positive predictions out of all positive predictions, 

calculated as shown in Equation 2.2 [24]. Precision is a useful metric for evaluating the predictive 

performance of a classification model in situations where it is more important to avoid false positives 

than to identify all actual positive instances. Unlike accuracy, precision considers only the positive 

predictions made by the classifier, making it more informative when working with imbalanced-class 

datasets where the minority class is of interest.  

Precision =
TP

TP + FP
              (2.2) 

One advantage of precision as a metric is that is provides a way to measure how exact a classifier is 

in its positive predictions. That is, it provides information regarding precisely how many of the 

instances predicted as positive are actually positive. It is a particularly useful measure when the class 

of interest is rare and false positives are highly undesired, such as gene function prediction. 

Conducting experiments to verify gene function are very time consuming and expensive. Therefore, 

any classifier looking to identify gene function should minimise false positives to provide a list of 

genes that are promising.  

However, precision, when used in isolation, can be misleading, as classifiers that just identify a 

few positive instances correctly can have high precision even though they are not actually identifying 

the majority of the positive instances. Additionally, precision does not consider the false negatives, 

and therefore it does not give the full picture of the model’s performance [26].  

In summary, precision measures the proportion of true positive predictions out of all positive 

predictions. It is an especially useful metric in scenarios where false positive are highly undesirable, 

and it is informative in situations where there is a high cost of false positives. Due to the limitations 

identified, precision is not generally used a solitary evaluation metric. Generally, precision is 

reported in conjunction with recall. 

Recall 

Recall, also known as sensitivity or the true positive rate, is defined as the proportion of true positive 

predictions out of all actual positive instances, calculated as shown in Equation 2.3 [24]. Recall is a 
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useful metric for evaluating the performance of a classification model in situations where it is more 

important to identify all actual positive instances rather than avoiding false positives. Recall 

considers both the true positive predictions made by the classifier and the actual number of positive 

instances in the dataset, making it more informative when working with imbalanced-class datasets 

where the minority class is of interest.  

Recall =
TP

TP + FN
              (2.3) 

One advantage of recall as a metric is that it provides a way to evaluate how well a classifier is able 

to identify all of the positive instances within a dataset. That is, how many of the actual positive 

instances are identified by the classifier. This is particularly useful when the class of interest is rare 

and false negatives are highly undesired, such as in the medical diagnosis example given previously.  

However, when used in isolation, recall can be misleading, as a model that simply predicts the 

positive class for all instances would achieve the maximum recall score (100%), despite not 

providing any useful information about the negative class and having a high number of false positives 

(low precision) [26]. 

In summary, recall measures the proportion of true positive predictions out of all actual positive 

instances. It is especially useful in scenarios where false negatives are highly undesired. However, it 

has limitations and should be used in conjunction with other metrics such as precision.  

F-measure 

F-measure, also known as F1-score, is defined as the harmonic mean of precision and recall, 

calculated as shown in Equation 2.4 [24]. F-measure is a useful metric for evaluating the performance 

of a classification model in situations where both precision and recall are important, as it provides a 

balance between them. F-measure is high when both precision and recall are high, and low when 

either precision or recall are low. As such, it does not have the same drawbacks described for using 

either precision or recall as a solitary metric.  

F-measure = 2 ×
Precision × Recall

Precision + Recall
              (2.4) 
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One advantage of F-measure is that it provides a way to balance the trade-off between precision and 

recall. In many cases, precision and recall can be in conflict with each other, where an increase in 

one metric leads to a decrease in the other. In these cases, using F-measure can give a better 

understanding of the model’s performance than using precision and recall separately. 

Additionally, F-measure is not impacted by class imbalance in the way described for accuracy, 

as a model that overwhelmingly predicts the negative majority class with a few minority class 

predictions can still be shown to be performing poorly by utilising the F-measure.  

However, F-measure also has its limitations as precision and recall are combined into a single 

metric. As such, detailed performance of the classifier is not forthcoming and no description of the 

specific FP and FN errors is given. Therefore, it is often useful to report F-measure in conjunction 

with precision and recall in order to better understand the predictive performance of a model.  

In summary, F-measure combines precision and recall into a single metric, providing a balance 

between them. It is particularly useful in scenarios where precision and recall are both important and 

when the dataset’s class distribution is highly imbalanced. However, it has limitations and should 

often be reported in conjunction with other metrics, such as precision and recall. 

Micro/macro averaging 

The aforementioned metrics of precision, recall, and F-measure can be calculated with different 

degrees of granularity by using micro or macro averaging. Micro-average is a method of calculating 

precision, recall, and F-measure by considering the performance of the model over all the samples, 

regardless of the class. Micro-average is calculated by summing the TP, FP, and FN values for all 

the classes together, and then calculating precision, recall, and F-measure using these summed 

values. Note that the labels ‘True’ and ‘False’ in this case refer to the class under consideration. That 

is, to consider TP as an example, a TP instance is a True Positive in the context of a specific class. 

Thus, when calculating the metrics for the next class, TP will then refer to that new class of interest. 

As a more practical example, if the two classes are “A” and “B”, first the class “A” is considered as 

the positive class, and then TP is the number of examples annotated with class “A” in the dataset 

which were correctly predicted by the classifier as class “A”, and analogously for the calculation of 

FP and FN. Next, the class “B” is considered as the positive class, and then TP is the number of 
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examples annotated with class “B” in the dataset which were correctly predicted by the classifier as 

class “B”, and analogously for the calculation of FP and FN.  Macro-average is calculated by 

calculating precision, recall, and F-measure for each class, and then taking the average of these values 

[28]. 

Micro-average is useful when the samples are imbalanced across classes and the classification of 

each instance is considered equally important. In this case, since micro-average considers the 

performance of the model over all instances regardless of the class, micro-average will in practice 

assign greater importance to the classification of the majority class (with most instances). However, 

it is important to note that in certain situations, such as when the performance on a minority class is 

of particular importance, other measures like macro-average may be more suitable. Macro-average 

is useful when it is necessary to consider the performance of the model separately for each class. 

This is the case when the classes are of equal importance and the performance of the model on each 

class should be considered equally. Macro-average calculates precision, recall, and F-measure for 

each class and then takes the average of these values, providing a representation of the model's 

performance on each class. 

Mean squared error 

Mean Squared Error (MSE) is a metric used for evaluating the performance of regression models. It 

measures the average squared difference between the predicted values and the true values of the 

target variable, calculated as shown in Equation 2.5 [29]. MSE gives an indication of how far the 

predictions are from the true values. A low MSE indicates that the model is making accurate 

predictions and a high MSE indicates that the model’s predictions are far from the true values. For 

the metrics discussed previously, the goal is to maximise the metrics in order to increase model 

performance. For metrics which describe the error of a system, like MSE, the goal is to minimise the 

metric.  

MSE =
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛
              (2.5) 

One advantage of MSE as a metric is that it is differentiable, that is, the rate of change can be 

calculated at any point, which makes it a useful metric for optimising model parameters, enabling 
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the use of optimisation methods such as gradient descent. Additionally, it penalises large errors more 

than small errors, so it is particularly useful in cases where it is important to minimise large predicted 

errors [29].  

However, MSE has some limitations. Primarily, it is sensitive to outliers. That is, a single large 

error can significantly increase the overall value of the MSE. In addition, it does not provide 

information about the direction of the errors, i.e., whether they are overestimations or 

underestimations of the true value of the target variable. 

In summary, MSE is a widely used metric for evaluating the performance of regression models; 

it measures the average squared difference between the predicted values and the true values. It is 

particularly useful in cases where it is important to minimise large prediction errors, or for tuning 

model performance in the training process. However, it is limited by sensitivity to outliers, meaning 

that a single large error can decrease this interpretation of model performance; and it does not provide 

any information about the direction of the errors.  

Mean absolute error 

Mean Absolute Error (MAE) is a metric used for evaluating the performance of regression models. 

It measures the average absolute difference between the predicted values and the true values, 

calculated as shown in Equation 2.6 [30]. It gives an indication of the average magnitude of 

prediction errors. A low MAE indicates that the model is making accurate predictions and a high 

MAE indicates that the model’s predictions are far from the true values.  

MAE =  
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
              (2.6) 

One advantage of MAE as a metric is that it is robust to outliers, meaning that it is not affected by a 

small number of large errors, unlike MSE [30]. This can be particularly useful for data that contains 

outliers or extreme values that may not be representative of the majority of the data. Additionally, it 

also provides a more intuitive interpretation of the error since it reflects the magnitude of the errors.  

However, MAE is not without limitations. Like MSE, MAE does not give any information about 

the direction of the errors. That is, there is no information regarding whether an error is the result of 

an overestimation or underestimation of the true value of the target variable. 
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In summary, MAE is a widely used metric for evaluating the performance of regression models. 

It measures the average absolute difference between the predicted values and the true values. It is 

robust to outliers, providing an intuitive interpretation of the errors, but does not provide any specific 

details about the direction of the errors.  

2.1.3     Base Classification Algorithms  

Throughout this work, we utilise 18 base classification algorithms in the proposed Auto-ML systems 

(to be described in detail in Chapters 4, 5, 6). These are standard binary classification algorithms, all 

implemented with Sci-Kit Learn [31], with the exception of the deep forest algorithm which was 

implemented with the deep-forest library2. These classification algorithms were selected simply 

because they are popular and easily accessible through Sci-Kit Learn. Deep forest was selected for 

use as it is used by one of the baseline methods. Furthermore, their implementations each allow for 

the prediction of both a discrete class variable (1 or 0 in our case) and the (continuous) probability 

of an instance belonging to the positive class. Throughout this work, these classification algorithms 

are implemented with the default value of their hyperparameters as given in the Sci-Kit Learn 

documentation3. The remainder of this subsection gives a brief overview of each of these 18 

classification algorithms. 

Gaussian naïve Bayes 

Gaussian Naïve Bayes is an algorithm based on Bayes’ Theorem that makes the strong assumption 

that features are independent from each other given the class variable [32]. It is particularly useful 

for classification tasks that involve continuous features which are normally distributed. This 

algorithm is called “naïve” as its aforementioned assumption is often not the case in real-world data.  

Given a set of features 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and a target variable 𝑦, the Gaussian naïve Bayes 

algorithm estimates the probability of 𝑦 given 𝑋 as shown in Equation 2.7.  

P(𝑦|𝑋) =
P(𝑦) × P(𝑋|𝑦)

P(𝑋)
              (2.7) 

 
2 https://pypi.org/project/deep-forest/ 
3 https://scikit-learn.org/stable/user_guide.html 



21 

 

Where 𝑃(𝑦) is the prior probability of 𝑦, 𝑃(𝑋|𝑦) is the likelihood of the features given the class, and 

𝑃(𝑋) is the probability of the set of features 𝑋. 𝑃(𝑋|𝑦) is estimated as the product of the probability 

density functions of each feature, assuming a Gaussian distribution of each feature. The class that 

maximises 𝑃(𝑦|𝑋) is chosen as the predicted class. 

The Gaussian naïve Bayes algorithm is simple and computationally efficient, a distinct advantage 

over more complex classification algorithms when working with large datasets. However, it is 

important to emphasise that the class-conditional independence assumption between features is often 

violated, which can potentially lead to learn an ineffective classification model. Though, despite the 

assumption often not holding, the naïve Bayes algorithm still performs well in practice [33] 

Bernoulli naïve Bayes 

The Bernoulli naïve Bayes algorithm, like the Gaussian naïve Bayes algorithm, is based on Bayes’ 

Theorem, also assuming that the features are independent from each other given the class variable 

[32]. Unlike Gaussian naïve Bayes, Bernoulli naïve Bayes works best on datasets with binary 

features. The formula for determining a class is the same as for Gaussian naïve Bayes, shown in 

Equation 2.7. The difference lies in the estimation of 𝑃(𝑋|𝑦).  

𝑃(𝑋|𝑦) is estimated as the product of the Bernoulli probabilities of each feature. The Bernoulli 

probability of a feature conditioned on the class, P(𝑥𝑖|𝑦) is the probability that feature 𝑥𝑖 takes the 

value 1 given the class 𝑦. The class that maximises 𝑃(𝑦|𝑋) is chosen as the predicted class. 

The advantages and disadvantages are the same as those for Gaussian naïve Bayes.  

Logistic regression 

The logistic regression algorithm learns a type of generalised linear model that predicts the 

probability of an instance belonging to a specific class by calculating the function [33] shown in 

Equation 2.8.  

𝑃(𝑦 = 1|𝑋) =
1

1 + 𝑒−𝑧
              (2.8) 

Where 𝑃(𝑦 = 1|𝑋) is the probability of instance 𝑋 belonging to the positive class, and 𝑧 is the linear 

combination of the input features and the model’s parameters (the features coefficients, or weights). 
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Logistic regression is another fast and simple classification algorithm that is efficient on large 

datasets. However, Logistic Regression assumes linearity and, as such, is often unsuitable for 

complex datasets [32].  

Linear discriminant analysis 

Linear Discriminant Analysis (LDA) is a classification algorithm that generates a linear decision 

boundary by fitting class conditional densities to the data and using Bayes’ rule [33]. That is, the 

classes are linearly separated in the feature space by calculating the probability densities that describe 

the probability of an instance belonging to a particular class. Bayes’ rule (given in Equation 2.7) is 

then used to calculate the probability of new instances belonging to a given class.  

LDA suffers the same advantages and disadvantages as the previous classification algorithms, it 

is a simple and efficient algorithm, but assumes linearity. Furthermore, LDA is sensitive to outliers, 

making it a potentially poor choice for complex datasets [33].  

K-nearest neighbours 

K-Nearest Neighbours (kNN) is a simple classification algorithm that is based on measuring the 

distances between instances in the feature space. In essence, k training instances are found which are 

closest to the current test instance, and that test instance is assigned the majority class (or the mean 

value for regression tasks) of those k nearest training instances [32]. The distance between instances 

can be calculated using a variety of metrics, but a common choice is the well-known Euclidean 

distance. However, whilst the kNN algorithm is conceptually simple, the resulting model can be 

highly non-linear, and thus effective for complex datasets. 

The kNN algorithm is very simple but can be computationally expensive for large datasets with 

a large number of instances and features. However, it is generally robust to outliers in the data and 

is non-parametric, meaning that no assumptions are made about the distribution of the data [32].  

Support vector machine 

The Support Vector Machine (SVM) algorithm learns a decision boundary separating the classes in 

the feature space [34]. The decision boundary is chosen such that it maximizes the margin, the 

distance between the decision boundary and the closest training instances from each class (known as 
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the “support vectors”). SVMs can be used for both linear and non-linear classification, an advantage 

over some of the previously defined classifiers. For linearly separable data, the decision boundary is 

simply defined as the linear hyperplane separating the data. For non-linear data, the data is 

transformed into a higher dimension space, where a linear boundary can potentially be found. 

One major advantage of SVMs is their ability to handle high dimensional spaces and their 

versatility, allowing for a wide range of kernel functions for the decision function. However, this 

does entail some complexity as a suitable kernel needs to be found for a given task [32].  

Decision tree 

A decision tree algorithm is a versatile type of classification algorithm which learns decision trees 

from the data [35]. The basic idea behind decision trees is to divide the feature space into smaller 

regions, leaves, that correspond to a particular value of the class variable. The process of dividing 

the feature space is done by successfully splitting the data on one feature at a time, based on a 

condition that maximises the separation of the different classes. The result is a tree-like structure, 

where each internal node represents a test on a feature, each branch represents the outcome of that 

test, and each leaf node represents a predicted class [32].  

This process is based on a greedy search strategy that recursively selects the feature with the 

highest information gain [32]. The information gain is a measure of how much a feature helps to 

reduce the uncertainty of the class variable. Decision trees are usually pruned to prevent overfitting 

by removing branches that do not contribute much to the accuracy of the tree.  

Given a set of features 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and a class variable 𝑦, a decision tree classifier 

estimates the probability of 𝑦 given 𝑋 by traversing the tree from the root to a leaf node. The path 

followed depends on the values of the features and the conditions specified at each internal node.  

The primary advantage of decision trees is that they are often simple to understand and interpret, 

since they are graphical models. One can understand the decision making process simply by 

following the path taken through the tree. Furthermore, they are computationally efficient, making 

them an effective choice for large datasets in regard to speed. However, sometimes the decision trees 

learned from the data are too large to be interpreted by users (even after some tree pruning). Also, 
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they are sensitive to small variations in the data. A small variation can lead to a completely different 

decision tree, which is one of the reasons why they are sensitive to overfitting [35].    

Random forest 

The Random Forest algorithm produces an ensemble of decision trees, meaning that they utilise a 

large number of decision trees to perform their classification. The basic idea of a Random Forest 

algorithm is to combine (typically via voting) the predictions of multiple decision trees, each 

generated using a technique called bootstrap aggregating, or bagging [36]. Bagging consists of 

randomly sampling instances from the data, with replacement (a single instance can be sampled 

multiple times) and building a decision tree from those sampled instances [37].  

As previously discussed, a single decision tree is prone to overfitting. By averaging the 

predictions of many trees, each built on a different sample of the data, random forests can reduce 

overfitting and improve the generalisation of the model.  

Given a set of features 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and a target variable 𝑦, a random forest algorithm 

learns a large number of decision trees, each built with a randomly sampled subset of the data, and 

aggregates the predictions of the trees by assigning the class 𝑦 as the majority vote, in the case of 

classification, or the average predicted value, in the case of regression.  

Random forests are effective classifiers as they are less prone to overfitting than a single decision 

tree and can efficiently handle a large number of features and instances [37].  

Extra tree  

The extra tree algorithm, also referred to as the extremely randomised tree algorithm, learns a model 

similar to a decision tree in that a tree-like structure is built and traversed for calculating the class of 

an instance. The difference is that the extra tree algorithm does not use a greedy approach to calculate 

the split at a given node. Instead, a random value is used, hence “extremely randomised” [38].  

This results in a tree that is far less predictable than a standard decision tree, and as a result 

generally less effective when used in isolation. As such, the extra tree classifier is generally used as 

the ensemble extra trees classifier, described next. However, the extra tree classifier has still be 

included in this work as an option for our systems for completeness.  
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Extra trees  

The extra trees algorithm is a variation on the standard random forest, utilising an ensemble of extra 

trees, as opposed to standard decision trees [38]. The increased randomness can result in a learned 

model that is more robust to overfitting than a standard decision tree, but the model is generally less 

easily interpretable as the randomness of the splitting threshold can diminish the ease of inference 

regarding feature significance.   

Bagging  

Bagging, or bootstrap aggregating, is an ensemble learning technique used to improve the 

performance of machine learning models by training the base classification algorithm many times, 

each time on a different (randomly sampled) subset of the instances and aggregating their predictions 

[39]. The Sci-Kit Learn implementation used in this work uses a decision tree algorithm as the base 

algorithm. As such, when the base classification algorithm is a decision tree algorithm, the bagging 

technique is similar to the random forest algorithm. The primary difference is that the random forest 

algorithm uses a randomly sampled subset of the features for learning the decision trees, whilst all 

features are used with the bagging technique for learning the decision trees. As such, the trees learned 

by the bagging technique are less diverse (i.e., more similar) than the trees learned by the random 

forest algorithm. This is because bagging is trained using data subsets differing only by the training 

instances used, whilst random forest is trained using data subsets different by both the features and 

the training instances used. It is important to emphasise, though, that bagging is a generic ensemble 

method that can be used with any base classification algorithm, not just decision tree algorithms. 

Bagging shares the advantage of the random forest algorithm regarding preventing overfitting.  

AdaBoost 

AdaBoost, or adaptive boosting, is an ensemble learning technique that iteratively trains weak 

models and combines them to create a final, stronger model [32]. A weak model is defined as a model 

that performs only slightly better than random guessing. The algorithm chosen as the base 

classification algorithm for producing weak models in the Sci-Kit Learn implementation is the 

decision stump algorithm (which learns a decision tree with a single internal node).  
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In each iteration, AdaBoost adjusted the weight of the misclassified instances, so that the next 

model pays more attention to the instances that were misclassified in the previous iteration. By 

iteratively adjusting the weights, AdaBoost helps the model focus on areas of the search space which 

are more difficult to interpret. After many iterations, the final model is a weighted combination of 

the models, where the weights are proportional to the accuracy of each model.  

This implementation of AdaBoost shares the advantage of the random forest algorithm in terms 

of reducing overfitting but is slightly more prone to overfitting as it is sensitive to noise and outliers 

[33].  

Gradient boosting  

Gradient boosting is an ensemble learning technique that builds a model by iteratively building 

decision trees, with each tree used to correct the mistakes of the previous tree – like AdaBoost. This 

technique is called gradient boosting as it optimises a loss function using gradient descent [33] – 

unlike AdaBoost. The loss function calculates the rate of error of the classification models. In the 

Sci-Kit Learn implementation used in this work, the loss function is the log loss, also referred to as 

the cross-entropy loss, which compares the predicted probability with the true class label.  

The algorithm starts by fitting a simple base model (decision tree) to the data and then iteratively 

adds new decision trees. In each iteration, the algorithm uses the gradient of the loss function with 

respect to the predictions of the current ensemble of trees to fit the next tree. By iteratively fitting 

new trees, the algorithm is able to improve the accuracy of the model by reducing the residual errors.  

Gradient boosting can handle large datasets with high-dimensional feature spaces but requires a 

high computational cost and is sensitive to overfitting with too many iterations [33].  

Histogram-based gradient boosting classification tree 

The histogram-based gradient boosting classification tree (HGBoost) algorithm is an extension of 

the gradient boosting algorithm that improves the accuracy and scalability by using histograms to 

approximate the distributions of the feature values. Instead of using the traditional decision tree 

structure, the algorithm uses histograms to represent the feature values. This approach allows the 

algorithm to handle large datasets and high-dimensional feature spaces more efficiently by 

discretizing the feature values into bins and storing the bin frequencies, used by the histograms to 
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approximate the distribution of the features [40]. In each iteration, HGBoost fits a new histogram-

based decision tree to the residuals of the previous iteration, using the histograms to select the best 

split points for each feature and using gradient descent to find the optimal histograms.  

The primary advantage of HGBoost is that it is better able to handle large datasets and high-

dimensional feature spaces than the gradient boosting algorithm. However, it has several parameters 

to tune and as such an ineffective classification model can be built with poor parameter selection.  

Deep forest 

The deep forest algorithm was proposed as an attempted improvement upon some drawbacks of deep 

neural networks (particularly their very large computational time). Rather than using a layered 

network of neuron-like nodes, deep forest uses a layered network of forests of decision trees. As 

such, it is described as “an ensemble of ensembles” [41]. Each forest outputs an estimated class 

probability vector, with each component of the vector representing the class probability estimated by 

the random forest for the corresponding class label. The class probability vectors of each forest in 

the layer are concatenated and used, together with the original features in the dataset, as predictive 

features for the random forests to be trained in the next layer [41].  

The deep forest algorithm is much more recent and lesser known that several of the other 

algorithms included in the Auto-ML systems proposed in this thesis, and it does not have a Sci-Kit 

Learn implementation. However, it is the base classification algorithm for one of the baseline 

Positive-Unlabelled learning methods in this work (see Section 2.5), and as such it has been included. 

The deep forest algorithm has been implemented with the deep-forest python package4.  

Stochastic gradient descent  

Gradient descent is an optimisation algorithm used to minimize a function by iteratively moving in 

the direction of the steepest descent as defined by the negative of the gradient. It involves adjusting 

the parameters step-by-step, based on the learning rate and the gradient of the loss function at the 

current position. This process is repeated until the algorithm converges to a minimum (ideally the 

global minimum but it can become trapped in local minima) of the function. The stochastic gradient 

 
4 https://pypi.org/project/deep-forest/ 
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descent (SGD) algorithm is an extension of the basic gradient descent algorithm that updates the 

model’s parameters using random subsets, or mini-batches, of the data. The Sci-Kit Learn 

implementation utilises SVM as the base classifier that is optimised using the SGD algorithm. Firstly, 

the SVM is initialised with random parameter values, which, in each iteration, are updated to 

minimise the loss function using gradient descent [32].  

The SGD algorithm is relatively computationally efficient as it uses mini-batches of the data to 

update the parameters, meaning that it can handle large datasets [32]. However, there are many 

parameters for the algorithm, each of which can have a substantial impact on the output.  

Multilayer perceptron 

A multilayer perceptron (MLP) is a type of artificial neural network that consists of multiple layers 

of interconnected neurons, known as perceptrons [42]. The perceptron, originally proposed by 

Rosenblatt in 1958, is a linear classification device modelled on a neuron. Essentially, the perceptron 

assigns a weight to each feature value of an input instance and determines if the sum of the weighted 

feature values is greater than a given threshold. See Figure 2.1. 

 

 

 

Figure 2.1. Rosenblatt’s Perceptron. 𝒙𝒏 is input 𝒏, 𝒘𝒏 is the weight applied to input 𝒏, ∑ 𝒙𝒘 is the 

sum of the weighted feature values, and 𝒐𝒖𝒕𝒑𝒖𝒕 is the class assigned to the input instance. 

The limitations of a single perceptron were highlighted by Minsky and Papert in their seminal 1988 

book “Perceptron” [43]. However, many of these limitations are overcome when using a network of 

perceptrons, producing an MLP. The layers in the MLP are typically fully connected, meaning that 

each neuron in one layer is connected to every neuron in the next layer. The MLP consists of three 

different types of layers: an input layer, hidden layers, and an output layer. The input layer receives 

the input and will have a number of neurons equal to the number of features of the data. The hidden 

layers sit between the input and output layers and extract complex features from the input data. The 

output layer uses the processed data from the hidden layers to calculate an output class value.  
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MLPs are effective classifiers for complex datasets, able to learn both linear and non-linear 

relationships between inputs and outputs. However, they are computationally expensive (particularly 

when they have many hidden layers, which is the case in deep neural networks), and they can be 

prone to overfitting. They also have a number of hyperparameters that need to be tuned to achieve a 

high predictive accuracy. For a review of MLPs and their applications see [44]. 

 

Gaussian process  

The Gaussian Process Classifier (GPC) uses a probabilistic model that defines a distribution over 

functions, which can be used to make predictions about the target variable given new input features. 

In GPC, it is assumed that the target variable is a random variable distributed according to a Gaussian 

distribution, with the mean and the variance of the distribution being determined by the input 

features. Predictions are made about the target variable given new input by finding the mean and 

variance of the distribution at the new input values [32].  

GPC is generally accurate and robust, even for datasets with a limited number of instances. 

However, the classifier is computationally expensive as its run-time increases cubically with the 

number of instances [32].  

2.2     Evolutionary Algorithms (EAs) 

EAs are powerful methods for solving complex optimization and search problems across various 

domains [45]. Inspired by the principles of natural evolution, EAs simulate the processes of selection, 

variation, and adaptation to efficiently explore solution spaces. With their ability to handle high-

dimensional, non-linear, and multi-modal problem landscapes, EAs have gained significant attention 

from researchers [46][47][48][49][50][51]. In recent years, EAs have been extensively applied in 

diverse fields such as engineering [49], computer science [47], biology [52], economics [53], and 

social sciences [54]. In addition, EAs are frequently applied to machine learning tasks 

[55][56][57][58]. The inherent flexibility and adaptability of EAs allow them to tackle problems that 

are challenging for traditional optimization techniques, making them particularly useful in scenarios 

where analytical models or problem-specific algorithms are not readily available or feasible [59].  
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The core idea behind EAs is the concept of population-based search. Unlike traditional 

optimization methods that focus on generating and evaluating a single solution at a time, EAs 

maintain a population of candidate solutions and iteratively improve them over iterations 

(generations, in EA terminology). By employing mechanisms inspired by natural selection, such as 

selection, crossover, and mutation, EAs can explore a vast search space in parallel, effectively 

searching for promising regions that tend towards optimal or near-optimal solutions, although this is 

dependent on computational budget and hyperparameter settings. To that end, [59] defined six 

primary components of EAs, namely: 

• Individual representation 

• Fitness function 

• Population initialisation 

• Variation operators 

• Parent selection mechanism 

• Survivor selection mechanism 

The next subsections outline these components as well as termination criteria, primarily in reference 

to Genetic Algorithms (GAs) as GAs are the type of EAs that are the focus of this work. 

One of the key advantages of EAs is their ability to handle complex and dynamic problem 

environments. EAs possess inherent mechanisms for robustness and adaptability, as they can 

continuously explore the solution space, responding to changes in the problem landscape. This makes 

EAs particularly suitable for problems that involve uncertainty, noisy or incomplete information, and 

time-varying conditions [59]. 

This background section aims to provide an overview of EAs, their fundamental concepts and 

principles. Sections 2.2.1 – 2.2.7 detail the primary components of EAs described above. Section 

2.2.8 briefly discusses genetic programming, and 2.2.9 outlines practical considerations and 

challenges.  

2.2.1     Individual Representation 

In EAs, the individual representation defines how candidate solutions are encoded and therefore 

manipulated. Each element within the encoding is commonly referred to as a "gene". Different types 
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of individual representations have been developed to accommodate diverse problem domains and 

solution spaces. This section will explore several commonly used individual representations, 

including binary encoding, real-valued encoding, and categorical encoding, highlighting their 

characteristics and applications. 

Binary encoding is one of the most widely employed individual representations in EAs. It utilizes 

binary genes, where a value of 1 represents the presence or truth of a certain attribute or feature, 

while a value of 0 denotes its absence or falsehood. This encoding scheme is particularly suitable for 

problems that involve binary decision variables or binary-encoded features. For example, in a GA 

for feature selection, each gene can represent the inclusion or exclusion of a specific feature from a 

set of features. 

Real-valued encoding employs genes that are real numbers within a predefined range. This 

representation is suitable for optimization problems involving continuous variables, such as 

parameter tuning or function optimization. By allowing the genes to take on real values, the algorithm 

can search for optimal solutions in a continuous solution space. Real-valued encoding offers a more 

fine-grained representation, enabling the algorithm to explore and exploit the solution space with 

greater precision. Additionally, real-valued encoding facilitates the application of mathematical 

operators, such as arithmetic crossover and mutation, which can be used to generate offspring with 

intermediate values of features, as opposed to just binary feature values. 

In certain problem domains, categorical encoding is utilized to represent individuals. With 

categorical encoding, each gene takes on a value from a predefined set of categorical values. This 

representation is commonly used when the problem involves discrete or categorical variables that 

are not naturally represented by binary or real-valued encodings. For instance, in a classification 

problem, each gene may correspond to a specific category or class label. Categorical encoding allows 

EAs to effectively explore and select from a discrete set of options, making it suitable for problems 

with a finite number of possibilities.  

It is important to note that an individual need not be represented by a sole type of representation. 

That is, an individual can be composed of a combination of binary, real-valued, and categorical 

representations. This is the case for the GA that forms the basis of the GA-Auto-PU system proposed 

in Chapter 4. This hybrid representation approach enables the algorithm to effectively represent 
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various types of variables or features within the candidate solutions, accommodating the complexity 

and heterogeneity of the problem domain. 

In summary, individual representation is a crucial aspect of EAs as it defines how candidate 

solutions are encoded. Binary encoding is commonly used for problems with binary decision 

variables or binary-encoded features. Real-valued encoding is suitable for optimization problems 

involving continuous variables, facilitating fine-grained exploration of the solution space. 

Categorical encoding is employed when the problem involves discrete or categorical variables. The 

hybrid approach used in GA-Auto-PU (Chapter 4) combines multiple encoding schemes to handle 

the complexity and diversity of the problem domain, ensuring the algorithm's effectiveness and 

versatility, as will be discussed in greater detail later in this work.  

2.2.2     Fitness Function 

In EAs, the fitness function plays a pivotal role in evaluating the quality of candidate solutions within 

the population. It measures how well an individual performs in solving the target problem. The fitness 

function serves as a guide for the evolutionary process, allowing an EA to distinguish between better 

and poorer solutions and driving the search towards more promising regions of the solution space. 

The design of a fitness function is problem-dependent and requires careful consideration to 

ensure its effectiveness and relevance. The fitness function should capture the key performance 

criteria or objectives of the problem at hand. For instance, if the EA aims to optimize the 

hyperparameters of a predictive model, the fitness function might assess the model's performance 

using a specific metric, such as accuracy, F-measure, or mean squared error. By evaluating the 

candidate solutions based on their ability to achieve the desired outcome, the fitness function guides 

the algorithm towards finding solutions that exhibit desirable characteristics. 

It is essential to note that the fitness function is often the most computationally intensive 

component of an EA. Evaluating the fitness of each individual in the population can be very time-

consuming, especially for complex problems or when the evaluation requires resource-intensive 

computations, such as running simulations or training machine learning models. To mitigate the 

computational burden, it is crucial to evaluate fitness only when necessary. By minimising the 

number of fitness evaluations, the algorithm can allocate computational resources more efficiently. 
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Various techniques, such as surrogate modelling and adaptive fitness evaluation, can be employed to 

reduce the computational cost associated with fitness evaluations. These approaches aim to strike a 

balance between the accuracy of fitness assessment and the computational efficiency of the 

algorithm. See [60][51] for in-depth discussions of these methods. 

In summary, the fitness function plays a critical role in EAs by evaluating the quality of candidate 

solutions based on their ability to solve the target problem or achieve the desired objectives. It guides 

the EA's search by distinguishing between better and poorer solutions. Due to its computational 

intensity, it is important to evaluate fitness only when necessary, employing techniques to reduce the 

number of fitness evaluations.  

2.2.3     Population Initialisation 

The population in an EA represents a set of individuals, where each individual represents a potential 

solution to the problem at hand. The most basic and commonly used population constraint is size. 

That is, the number of individuals is specified by the user, and the system sticks to this number each 

generation. However, implementations do exist with variable population size and additional selection 

criteria to compensate (for examples see [53][61]). Population initialization is the process of creating 

the initial set of individuals that will form the starting point for the evolutionary search. This section 

explores different approaches to population initialization, namely: random, deterministic, and 

heuristic initializations. 

Random initialization is one of the most commonly used approaches in population initialization. 

In this method, individuals are generated randomly within the search space. Random initialization 

leads to high population diversity, as the individuals are distributed randomly across the solution 

space. This diversity is beneficial as it allows the algorithm to explore a wide range of potential 

solutions from the start. Random initialization is generally a good choice for most applications, 

particularly when the problem involves high-dimensional search spaces. However, it is important to 

note that random initialization does not guarantee the generation of high-quality solutions, as the 

initial population might contain individuals with poor fitness values. 

Deterministic initialization, on the other hand, generates a predefined set of individuals according 

to a specific rule or pattern. This approach is typically less desirable in high-dimensional search 
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spaces, as it may result in a less diverse population, unless diversity is explicitly enforced, which can 

involve substantially more implementation time. However, deterministic initialization can be useful 

in certain scenarios where prior knowledge or specific constraints guide the generation of individuals. 

Heuristic initialization utilizes a rule or principle to generate individuals. This approach aims to 

direct the search space towards potentially good solutions based on domain-specific knowledge or 

problem characteristics. Heuristic initialization can prevent computational "waste" by starting the 

search closer to promising regions of the solution space. However, one challenge of heuristic 

initialization is the risk of getting trapped in local optima, as the search may be biased towards a 

particular region and fail to explore other potentially better solutions. The selection of an appropriate 

heuristic for initialization is crucial, as it should strike a balance between computational efficiency 

and exploration capabilities. 

Experiments conducted by Surry and Radcliffe [62] provided insights into the impact of different 

initialization methods. They compared the effects of heuristic and random initializations on the 

fitness improvement of populations. The results showed that while the average fitness of a population 

increased more with heuristic initialization, random initialization resulted in better fitness 

improvement, especially for the best individuals. These findings were supported by subsequent 

studies in various domains, where "chaotic" approaches were found to generally enhance the 

performance of EAs [63]. 

In summary, population initialization is a critical step in EAs as it determines the starting point 

for the search. Random initialization is commonly used due to its ability to generate diverse 

populations. Deterministic initialization may be suitable in specific scenarios with prior knowledge 

or constraints. Heuristic initialization can guide the search space towards potentially good solutions, 

but careful consideration is required to prevent getting trapped in local optima. The choice of 

initialization method should be based on the problem characteristics and desired trade-offs between 

exploration and exploitation. The findings from previous studies highlight the advantages of random 

initialization in terms of fitness improvement and the potential benefits of "chaotic" approaches. 
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2.2.4     Variation Operators 

Variation operators are fundamental components of EAs that generate new candidate solutions from 

existing ones. The two main types of variation operators are crossover and mutation.  

Crossover  

Crossover is analogous to natural reproduction, where children inherit genetic material from their 

parents. In the context of EAs, parents are selected from the population based on their fitness, and 

children are generated by combining the genetic material of these parents. Each child inherits specific 

genes from each parent with a certain probability. Several mechanisms determine how genes are 

inherited, with single-point, multipoint, uniform, and arithmetic crossover being common approaches 

[64][65][66]. All types described below are in reference to two-parent crossover, where two parents 

are selected from a population and two children are generated from these two parents. Other multi-

parent crossover mechanisms are possible, but two-parent crossover is by far the most commonly 

used. 

In single-point crossover, the child inherits genes up to a specific point from one parent and genes 

after that point from the other parent. The crossover point is typically randomly determined. This 

process is illustrated in Figure 2.2. Single-point crossover is straightforward to implement but may 

result in a lack of diversity compared to other crossover mechanisms. One limitation of single-point 

crossover is its positional bias, meaning that adjacent genes are more likely to be swapped together. 

 

 

Figure 2.2. Example of single-point crossover. The red line indicates the crossover point. 

0 0 0 0 0 0 0 0

Parents:

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

Children:

1 1 1 1 0 0 0 0
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Multipoint crossover is a variation of crossover commonly used in EAs to generate offspring from 

parent individuals. Unlike single-point crossover that involves a single crossover point, multipoint 

crossover involves multiple crossover points along the chromosome. The crossover points are 

randomly selected or predetermined, and segments between these points are exchanged between the 

parents to create the offspring. This process leads to a more diverse recombination of genetic 

material, as multiple segments from each parent contribute to the offspring's genetic makeup. 

Multipoint crossover can facilitate the exploration of different regions of the solution space and 

promote the combination of favourable traits from both parents. By allowing for more intricate 

combinations of genetic information, multipoint crossover enhances the algorithm's ability to search 

for promising solutions and adapt to complex problem landscapes. However, multipoint crossover is 

not without positional bias. An example of multipoint crossover is shown in Figure 2.3. 

 

 
 

Figure 2.3. Example of multipoint crossover. The red lines indicate the crossover points. 

Uniform crossover overcomes the positional bias by treating each gene individually. Instead of 

specifying specific crossover points, each gene has a probability of being inherited from either parent. 

Figure 2.4 provides an example of uniform crossover. This mechanism allows for greater variance 

in the offspring compared to single-point crossover or multipoint crossover and is not victim to 

positional bias. However, it may not be suitable for all encoding schemes, especially when certain 

genes need to be grouped together based on the decoding procedure of a candidate solution. 

0 0 0 0 0 0 0 0

Parents:

1 1 1 1 1 1 1 1

0 0 0 1 1 0 0 0

Children:

1 1 1 0 0 1 1 1
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Figure 2.4. Example of uniform crossover. 

For individuals utilising real-valued encoding, arithmetic crossover is an option. In arithmetic 

crossover, the genetic material of two parents is combined by performing a weighted average of their 

corresponding gene values. Each gene in the offspring is computed as a linear combination of the 

corresponding genes from the parents, where the weights are determined by a crossover parameter. 

The crossover parameter controls the degree of influence each parent has on the gene values of the 

offspring. This parameter should be set depending on the relative importance of the parents, which 

is scenario dependent. For example, if one wishes for each parent to have the same influence on the 

genes of the offspring, the crossover parameter should assign equal weighting to each parent. 

However, if one wishes for parent 1 to have a greater influence on the genes of the offspring, the 

crossover parameter should assign as greater weighting to parent 1.  

Mutation  

Mutation is a critical operator in EAs that introduces additional variation into the population by 

modifying individual genes. The purpose of mutation is to explore new regions of the solution space 

and prevent the algorithm from converging prematurely to suboptimal solutions. 

For binary genes, the mutation process involves swapping the value of the gene for its opposite. 

If a gene has a value of 1, it is mutated to 0, and vice versa. This simple operation introduces 

variability into the population and allows for the exploration of different binary configurations. 

In the case of real-valued genes, mutation typically involves adding or subtracting a 

predetermined or randomly generated value to or from the gene's current value. This value, often 

referred to as the mutation step, is typically small to ensure that the mutation introduces only minor 

0 0 0 0 0 0 0 0

Parents:

1 1 1 1 1 1 1 1

0 1 0 0 1 1 0 1

Children:

1 0 1 1 0 0 1 0
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changes. By perturbing the gene's value, mutation allows the algorithm to explore the neighbourhood 

of the current solution and potentially discover better solutions. 

Mutation of categorical values can be more complex, particularly when there is a specified order 

among the candidate values. In such cases, the mutation process may involve setting the gene to the 

previous or next candidate value from its current assignment. This preserves the ordering and allows 

for controlled exploration within the categorical space. Alternatively, if no specific order is defined, 

a random candidate value can be selected for mutation. 

The probability of mutation determines how often the mutation operator is applied. Typically, 

the mutation probability is set to a low value, such as ranging from 0 to 0.1. This ensures that only a 

small proportion of genes undergo mutation in each generation. The low mutation probability strikes 

a balance between introducing variability into the population and maintaining the genetic information 

that contributes to good solutions. 

Figure 2.5 provides an illustrative example of mutation, showcasing how the mutation operator 

alters the gene values in a population. This example mutation shows how to make slight variations 

to the gene values. 

 

Figure 2.5. Example of mutation. 

By incorporating mutation into the evolutionary process, an EA can prevent stagnation, escape local 

optima, and explore diverse areas of the solution space. Mutation complements the crossover 

operator by introducing additional genetic diversity and facilitating the exploration of the search 

landscape. Together, these variation operators contribute to the algorithm's ability to adapt and 

improve over generations. 

Parent: 0 0 0 0 0 0 0 0

Child: 0 0 0 0 0 1 0 0
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2.2.5     Parent Selection Mechanism 

In EAs, selecting appropriate parents for crossover and/or mutation is crucial to ensure the overall 

improvement of the population's fitness over generations. Two commonly used parent selection 

mechanisms are tournament selection and roulette wheel selection, which are summarised next.  

Tournament selection  

Tournament selection is a widely employed parent selection mechanism in EAs. This method 

involves randomly sampling a subset of individuals, known as the tournament subset, from the 

population. The size of the tournament subset is typically much smaller than the total population size. 

The fitness values of the individuals within the subset are then compared, and the individual with the 

highest fitness is chosen as a parent for crossover and/or mutation. This process is repeated until the 

desired number of parents is obtained. 

Tournament selection strikes a balance between promoting variation and favouring individuals 

with higher fitness. By randomly sampling individuals for each tournament, all individuals in the 

population have a chance to participate in the selection process, ensuring diversity. At the same time, 

the selection of the fittest individual within the subset increases the probability of selecting 

individuals with superior fitness. This favours the propagation of favourable traits and improves the 

overall fitness of the population over time. 

The size of the tournament subset is an important parameter that needs to be carefully determined. 

It represents a trade-off between variation and short-term population fitness. A larger tournament 

size includes more individuals in each competition, increasing the likelihood of certain individuals 

being selected multiple times. This can lead to higher population fitness for a short term, due to the 

concentration of individuals with superior fitness. However, a larger tournament size also poses a 

risk of premature convergence, where the population may converge to a suboptimal solution due to 

a lack of diversity. On the other hand, a smaller tournament size reduces the competition among 

individuals, resulting in a lower chance for those with high fitness to be selected. This can temporarily 

decrease population fitness. However, a smaller tournament size can also benefit long-term diversity, 

as it allows a wider range of individuals to have opportunities for crossover. 
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A commonly used tournament size is 2 individuals. However, the optimal tournament size 

depends on the specific problem and population characteristics. It is recommended to consider the 

size of the entire population when determining the tournament size, as a larger population may 

require a larger tournament size to ensure sufficient competition.  

Roulette wheel selection  

Roulette wheel selection assigns the probability of an individual being selected directly proportional 

to its fitness value. This selection mechanism, resembling a roulette wheel, ensures that all 

individuals have a chance of being selected, but those with higher fitness have a higher probability 

of being selected. Roulette wheel selection promotes population diversity while still favouring 

individuals with better fitness. 

In roulette wheel selection, each individual is assigned a segment on the roulette wheel 

proportional to its fitness value. The size of the segment corresponds to the individual's probability 

of being selected. The hypothetical roulette wheel is then spun, and the selection process proceeds 

by landing on one of the segments, determining the selected individual. In practice, the individuals 

are generally assigned a value between 0 to 1, with the value of all individuals summing to equal 1. 

The size of the value assigned to the individual is directly proportional to their fitness, with a higher 

range between the value of the previous individual and the value of the current individual if the 

current individual has a high fitness. A random number is then generated, and if it falls within the 

range for a given individual, that individual is selected. For example, individual 1 may be assigned 

the value of 0.1, meaning that if the randomly generated number is between 0 and 0.1, individual 1 

will be selected. Individual 2 may be assigned the value of 0.15, meaning that if the randomly 

generated value is between 0.1 and 0.15, individual 2 is selected. It can thus be inferred that 

individual 1 has a higher fitness than individual 2, as the range for individual 1 is 0 to 0.1, whilst the 

range for individual 2 is half the size at 0.1 to 0.15 (thus a range of 0.05). Figure 2.6 provides an 

example illustrating the concept of roulette wheel selection. 
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Figure 2.6. Example of roulette wheel selection. Fitness values have been scaled to sum to 1 and 

are represented by the slices of the pie chart. 

Both tournament selection and roulette wheel selection offer advantages in terms of allowing all 

individuals to be considered for selection while still favouring individuals with higher fitness. The 

choice between these mechanisms depends on the specific problem, population characteristics, and 

the desired balance between variation and population fitness improvement. 

In summary, parent selection mechanisms play a crucial role in EAs by determining which 

individuals are chosen for crossover. Tournament selection and roulette wheel selection are widely 

used methods. Tournament selection ensures a balance between variation and short-term population 

fitness, while roulette wheel selection allows for diversity while favouring individuals with higher 

fitness. The selection mechanism should be carefully chosen based on the problem requirements and 

the desired trade-off between exploration and exploitation. 

2.2.6     Survivor Selection Mechanism 

The survivor selection mechanism plays a crucial role in determining which individuals from the 

current generation will be included in the next generation of the population. While the majority of 

the next generation typically consists of offspring generated through variation operators, survivor 

selection mechanisms allow for the survival of some individuals from the current generation. This 

mechanism ensures that the genetic material of high-performing individuals is preserved and carried 

forward in the evolutionary process. 
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One commonly used survivor selection mechanism is elitism, which is based on the fitness of the 

individuals. In elitism, the individual or individuals with the highest fitness in the current generation 

are directly carried over to the next generation without any changes. This strategy guarantees that the 

highest fitness observed in the population will not decrease over generations. By preserving the best 

individuals, elitism ensures that valuable genetic material is maintained, potentially leading to the 

preservation and propagation of desirable traits. Elitism serves as a form of exploitation, as it focuses 

on preserving the best solutions found so far and prevents their loss due to selection pressure. 

Alternatively, survivor selection mechanisms can be based on the age of the individuals. In such 

strategies, younger (i.e., more recently created) individuals are given a higher chance of survival into 

the next generation. This approach recognizes that younger individuals may not have had enough 

opportunities to contribute their genetic material to the population and allows them to persist for a 

longer period, increasing their potential impact on the evolutionary process. However, these 

strategies often require a variable population size or a low crossover rate to accommodate the 

inclusion of younger individuals without overwhelming the population. 

The choice of survivor selection mechanism depends on the problem requirements and the 

specific goals of the EA. Elitism is a popular choice when the aim is to maintain the best solutions 

over generations and promote convergence towards optimal or near-optimal solutions. Age-based 

strategies can be advantageous when there is a need to ensure sufficient exploration and diversity in 

the population, particularly in dynamic or changing environments. The appropriate survivor selection 

mechanism should be carefully selected to strike a balance between preserving high-performing 

individuals and promoting the exploration of new solutions. 

In summary, the survivor selection mechanism determines which individuals from the current 

generation are allowed to survive and be included in the next generation. Elitism, based on fitness, 

preserves the best individuals, preventing a decrease in the highest fitness observed. Age-based 

strategies prioritize younger individuals, providing them with a higher chance of survival. The choice 

of survivor selection mechanism depends on the desired goals of the algorithm and should be tailored 

to strike a balance between exploitation and exploration. 
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2.2.7     Termination Criteria 

While not explicitly listed as a key component of an EA by Eiben and Smith [59], the specification 

of termination criteria is essential for defining when the algorithm should stop. Jain et al. [67] 

categorize termination criteria into three types: direct termination criteria, derived termination 

criteria, and cluster-based termination criteria.  

Direct termination criteria are predefined. Common examples include a maximum generation 

count (most commonly used), a maximum run time threshold, and (less commonly) a specific fitness 

value. The primary issue with the first two criteria is that their specification is likely arbitrary with 

regard to algorithm performance. Whilst a maximum run time threshold may be necessary in terms 

of computational resources, there is no guarantee that the EA will reach a desired solution within that 

timeframe. This also applies for a maximum generation count. Specifying a specific fitness value to 

be reached has a separate but possibly greater issue: there is no guarantee that the system will reach 

this particular value. Thus, the user could end up with a system that would run indefinitely if left 

undisturbed. 

Derived termination criteria are calculated based on data regarding the current generation. 

Examples of derived termination criteria are: (a) the best-vs-average (referred to as the “running 

mean” by [67]), where the difference between the best fitness and the average fitness is calculated 

and execution is terminated if the difference is less than a specified threshold; (b) the standard 

deviation, where the execution is terminated if the standard deviation of the population fitness is less 

than a specified threshold; and (c) the best-vs-worst criteria, where the execution is terminated if the 

difference between the best fitness and the worst is less than a specified threshold. Other derived 

termination criteria exist (see [68] for a more extensive list), but the vast majority suffer from the 

same drawback: an arbitrary threshold value. Whilst criteria such as the best-vs-average may appear 

a less ad-hoc stopping criterion than a direct termination criterion, a value for which we consider the 

best fitness and the population fitness mean similar enough to justify terminating execution must be 

defined, a value which is also likely arbitrary. However, a derived termination criteria is potentially 

preferable as a more adaptive stopping criterion. Termination will be based on a reasonably 

justifiable quantity, rather than computational resource.  
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Cluster-based termination criteria employ clustering techniques to analyse the current fitness 

diversity. An example of such a method is ClusTerm [67] where clusters of high-fitness individuals 

(termed “elitist clusters”) are identified, and execution is terminated when the aggregated size of the 

elitist clusters reach a predetermined threshold. As this relies on a predetermined threshold, the same 

drawbacks described regarding derived termination criteria apply. In fact, as cluster-based techniques 

determine stopping criteria based on data regarding the current generation and very few examples of 

this type of stopping criteria exist, they can be considered a subset of derived termination criteria. 

In summary, termination criteria are crucial for determining when an EA should stop. Direct 

termination criteria, derived termination criteria, and cluster-based termination criteria offer different 

approaches to defining stopping conditions. However, most of these criteria rely on arbitrary 

threshold values, which can make termination decisions subjective and lacking a solid justification. 

While derived termination criteria and cluster-based termination criteria offer more adaptive stopping 

criteria, the choice of threshold values remains a challenge. Determining appropriate termination 

criteria should consider the problem at hand and strike a balance between computational resources, 

diversity, and the desired quality of the obtained solutions. 

2.2.8     Genetic Programming (GP) 

Discussion on EAs thus far has focussed on GAs with linearly encoded individuals. However, GP is 

an important topic to introduce before discussing Auto-ML. The primary difference between GP and 

previously discussed EAs is that GP methods evolve programs. That is, a GP method will evolve 

computer programs as a solution to a given task [69]. Despite the conceptual difference, GP follows 

a similar general procedure as GAs, including population initialization, fitness assessment, 

reproduction through variation operators, and survivor selection. However, the common approaches 

to individual representation in GP differ significantly from linear encoding employed in GAs. In GP, 

individuals are typically represented using a tree structure, making it tree-based GP (TGP) [70]. The 

tree structure represents the program's structure, with the tree nodes corresponding to functions or 

operators (e.g., +, -, ÷, ×), and the leaf nodes representing variables or constants [71]. The tree nodes 

serve as the building blocks for creating more complex programs, and the leaf nodes provide the 

necessary inputs or values for the program's execution. This tree-based representation allows for the 
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expression of complex program structures and facilitates the exploration of a wide range of program 

architectures. An extensive list of TGP systems across a variety of domains can be found in Table 2 

of [72].  

Another approach is grammar-based GP (GGP). GGP systems replace the set of terminals and 

functions by a grammar [73]. There are two types of GGP individual encoding, namely solution-

encoding and production-rule-sequence-encoding. In solution-encoding, an individual is represented 

by a tree. In production-rule-sequence-encoding, the individual is mapped from its original encoding 

to the desired output. Often, this is mapping from a linear encoding according to the grammar. Recent 

examples of GGP systems are [74][75][76].  

In addition to TGP and GGP, several other GP approaches exist, each with its own individual 

encoding and manipulation techniques. Stack-based GP, cartesian GP, and linear GP are among the 

notable variations. These different approaches provide flexibility in encoding programs and 

manipulating their structures, enabling a diverse range of applications. For a more extensive 

introduction to different GP frameworks, see [72]. 

In summary, GP is a powerful paradigm that allows for the evolution of programs as solutions to 

complex problems. Unlike linearly encoded GAs, GP employs a tree-based or grammar-based 

representation of individuals. This representation enables the evolution of program structures and 

facilitates the exploration of complex solution spaces. TGP and GGP are popular branches of GP, 

with TGP utilizing tree structures and GGP employing grammars. The variety of GP approaches 

provides a versatile framework for solving a wide range of problems that require the evolution of 

program-like structures. 

2.2.9     Practical Considerations and Challenges 

While EAs offer powerful problem-solving capabilities, there are several practical considerations 

and challenges that researchers and practitioners need to address when applying EAs in practice. 

These considerations can significantly impact the success and efficiency of the algorithm, and 

understanding these challenges is crucial for achieving optimal results. 
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Computational complexity 

Computational complexity is a crucial practical consideration when implementing and applying EAs. 

EAs are computationally expensive, since they need to evaluate the fitness of a large population of 

individuals for many generations, and fitness evaluation is usually a very expensive operation – 

particularly in machine learning, where fitness often involves running a supervised learning 

algorithm. As the population size, number of generations and problem complexity (affecting the 

fitness evaluation time) increase, the computational cost of these operations an EA can grow 

exponentially, posing challenges in terms of time and resource requirements. 

Efficient implementation plays a significant role in managing computational complexity. 

Researchers often strive to optimize the algorithm's performance by leveraging efficient data 

structures and algorithms. For example, when evaluating solutions against large datasets, employing 

algorithmic optimizations, such as caching or approximation techniques, can significantly reduce the 

computational burden and improve the efficiency of fitness evaluations [60]. 

Parallelization is another strategy to address computational complexity. EAs can benefit from 

parallel and distributed computing techniques to accelerate the execution time by performing 

multiple fitness evaluations or variation operations simultaneously. Parallelization can be achieved 

through multi-core processors, cluster computing, or even utilizing cloud computing resources. 

Distributing the computational load across multiple processing units allows for more efficient 

exploration of the search space and can help tackle larger and more complex optimization problems 

within a reasonable time frame [60]. 

Furthermore, efficient utilization of distributed computing resources can enable researchers to 

explore multiple regions of the search space concurrently, enhancing the diversity of the population 

and potentially improving the quality of solutions. Load balancing techniques and task scheduling 

strategies become crucial in distributed EAs to ensure optimal resource utilization and minimize 

communication overhead. 

However, it is important to note that parallelization introduces additional challenges, such as 

synchronization, load balancing, and scalability. Researchers need to carefully design parallel 

algorithms and address potential bottlenecks to fully exploit the computational power of parallel and 

distributed computing systems. 
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Additionally, advancements in hardware technologies, such as graphics processing units (GPUs) 

and field-programmable gate arrays (FPGAs), provide opportunities to accelerate the execution of 

EAs further. These specialized hardware platforms can be leveraged to perform parallel computations 

and accelerate fitness evaluations and variation operators. However, harnessing the potential of these 

hardware platforms requires specific expertise and tailored algorithm implementations. 

Parameter tuning 

Parameter tuning is a critical aspect of effectively applying EAs. EAs involve several parameters that 

directly influence the algorithm's behaviour and performance, such as population size, mutation 

probability, crossover probability, selection mechanisms, and termination criteria. Selecting 

appropriate parameter values is a challenging task because different parameter settings can lead to 

vastly different optimization outcomes [77]. 

One of the key goals in parameter tuning is to strike a balance between exploration and 

exploitation. Exploration aims to search a wide range of the solution space to discover diverse and 

potentially superior solutions, while exploitation focuses on refining promising solutions to converge 

towards the optimal or near-optimal regions. Finding the optimal balance is problem-specific and 

often requires a deep understanding of the problem domain. 

Empirical analysis is a common approach to parameter tuning. Researchers perform multiple 

runs of the EA with different parameter settings and analyse the impact on the algorithm's 

performance metrics, such as convergence speed, solution quality, and diversity. By systematically 

varying one or more parameters while keeping others fixed, researchers can gain insights into how 

changes in parameter values affect the optimization process. This analysis helps identify parameter 

configurations that yield desirable outcomes and informs the selection of appropriate values. 

Sensitivity studies are another valuable technique for parameter tuning. Sensitivity analysis 

involves systematically varying one parameter while keeping others constant and observing the 

corresponding changes in the algorithm's performance. This analysis helps determine which 

parameters have a significant impact on the optimization process and which have a minor effect. 

Sensitivity studies guide researchers in prioritizing parameters that require more attention during the 

tuning process [78]. 
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It is also possible to use adaptive techniques that utilize feedback mechanisms or statistical 

analyses to dynamically adjust parameter values based on the observed behaviour of the algorithm 

during runtime. Adaptive parameter control methods enable EAs to adapt to the problem's 

characteristics and the changing landscape of the solution space, enhancing the algorithm's 

robustness and convergence performance [77]. Self-adaptive frameworks allow the algorithm to 

autonomously adjust its internal parameters based on the feedback from the optimization process. 

Self-adaptive EAs use evolutionary principles to evolve the parameter values themselves, by 

encoding candidate parameter values into an individual together with the encoding of a candidate 

solution and letting both the parameter values and the candidate solution components be optimised 

by the evolutionary process [79]. 

It is worth noting that parameter tuning is an iterative process that often requires several iterations 

of experimentation, analysis, and refinement. Thus, this will increase the difficulties around 

computational expense discussed previously. Researchers should consider the problem's 

characteristics, domain knowledge, and insights gained from previous studies to guide the parameter 

tuning process effectively. 

Premature convergence  

Convergence is a fundamental goal in EAs, as they aim to reach optimal or near-optimal solutions. 

However, a common challenge in EAs is premature convergence, where the algorithm gets trapped 

in suboptimal regions of the search space and fails to explore potentially better solutions. Premature 

convergence hinders the algorithm's ability to fully exploit the search space and can lead to 

suboptimal or unsatisfactory results. The issue of premature convergence is closely tied with the 

issue of hyperparameter tuning, in the sense that successful hyperparameter tuning can mitigate 

premature convergence, as discussed next. 

To address the issue of premature convergence, a delicate balance between exploitation and 

exploration is essential. Exploitation involves intensifying the search around promising solutions, 

refining them to achieve higher quality solutions. On the other hand, exploration focuses on 

expanding the search to discover new regions of the search space that may contain better solutions. 
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Striking the right balance between exploitation and exploration allows EAs to escape local optima 

and explore the search space more effectively. 

One strategy to mitigate premature convergence is to employ diverse selection mechanisms. 

Traditional selection methods, such as roulette wheel selection, tend to favour individuals with higher 

fitness values. While this bias towards selecting fitter individuals helps exploit good solutions, it can 

also lead to a loss of diversity within the population. Employing selection mechanisms that explicitly 

promote diversity, such as rank-based selection or tournament selection with a small tournament size, 

can help maintain a diverse population and prevent premature convergence. These mechanisms 

ensure that individuals with lower fitness values have a chance to contribute to the next generation, 

preserving genetic diversity and exploration potential [79]. 

Introducing genetic diversity through mutation is another crucial approach to combat premature 

convergence. Mutation operators introduce random changes to individuals' genetic material, 

promoting exploration by generating novel solutions. By using a low mutation probability, the 

algorithm explores the search space beyond the immediate neighbourhood of the current solutions. 

Mutation enables the algorithm to escape local optima and encourages the discovery of new regions 

with potentially better solutions. However, it is important to strike a balance with the mutation 

probability, as an excessively high mutation probability may hinder convergence and impede the 

exploitation of promising solutions [80]. 

Interpretability and transparency 

Interpretability and transparency are crucial considerations when applying EAs in certain domains 

where understanding the evolved solutions is important. While EAs are powerful tools for 

discovering complex solutions, these solutions can often be difficult to interpret or explain, posing 

challenges in domains where interpretability is a requirement. Achieving transparency and 

interpretability in the evolved solutions is a complex task, particularly when using highly flexible 

representation schemes. 

One of the challenges in ensuring interpretability and transparency is the trade-off between 

complexity and performance. EAs can generate solutions that are highly complex and exhibit 

intricate interactions among variables or components. While these complex solutions may achieve 
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high performance on the optimization task, they can be challenging to interpret and understand, 

especially for domain experts who need to make informed decisions based on the solutions. In this 

case, a balance must be struck between complex solutions that achieve high performance and 

solutions that are comprehensible and interpretable to domain experts. 

To address this challenge, researchers can adopt specific strategies during the optimization 

process. One approach is to utilize representations that naturally lend themselves to interpretability. 

For example, in the area of automated machine learning, an EA can be designed such that it favours 

machine learning pipelines utilising interpretable classifiers, such as decision trees, over black box 

classifiers such as neural networks. 

Furthermore, post-processing techniques can be employed to enhance the interpretability of 

evolved solutions. These techniques involve extracting useful insights, visualizing the solutions, or 

summarizing their behaviour in a way that is more understandable to domain experts. For example, 

sensitivity analysis can help identify the most influential variables or components in the evolved 

solutions. Visualization techniques, such as heat maps, decision trees, or rule-based representations, 

can provide a visual understanding of the returned solution's behaviour and decision-making process. 

 

Addressing these practical considerations and challenges requires a combination of domain expertise, 

algorithmic knowledge, and careful experimentation. Researchers and practitioners need to 

understand the nuances of the problem at hand, select appropriate algorithmic techniques, and 

continuously refine and adapt the algorithm to achieve the best possible results in practical 

applications. By addressing these challenges, EAs can be effectively applied to a wide range of real-

world problems, offering valuable insights and solutions that would otherwise be difficult to obtain 

using traditional optimization methods. 

2.3     Bayesian Optimisation (BO) 

BO is a powerful meta-learning technique that involves learning a surrogate function to optimise an 

objective function [81][82]. That is, we optimise an objective function by calculating an estimation, 

where in general the estimation can be computed much faster than the evaluation of the objective 

function. The core idea behind BO is to iteratively select the next set of input parameters to evaluate 
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based on the previous evaluations. These previous evaluations are used to train a surrogate model 

that is then used to predict the score that would be assigned by the objective function, and thus 

identifies areas of the search space to be evaluated. By calculating (relatively fast) an estimation, 

rather than assessing all input parameters according to the computationally expensive objective 

function, BO efficiently identifies promising areas of the search space. This characteristic makes BO 

particularly well-suited for problems with limited resources or in situations where the cost of 

experimentation is high. 

Specifically, a set of instances are evaluated according to an objective function. The objective 

function will depend on the specific application domain but should reflect the purpose that the 

instances have been created for. Recall the concept of a fitness function in the context of an EA, the 

objective function is analogous. For example, in the context of machine learning, the input could be 

a decision tree algorithm’s configurations. That is, the hyperparameters that the candidate decision 

tree algorithm configuration should utilise. The objective score in this scenario could be the accuracy 

achieved by the decision tree learned by the algorithm on a specific dataset. A model, generally a 

Gaussian process regressor [83][84] or random forest [85], referred to as the surrogate model, is then 

trained using the characteristics of the input as features, and a performance metric obtained from the 

evaluation by the objective function as the target. To continue the decision tree example, the input to 

the surrogate model may have the maximum depth as one feature, the minimum samples required to 

split an internal node as another, etc., and the accuracy achieved by the learned decision tree as the 

target. This model is then used to estimate the performance of newly generated algorithm 

configurations, assigning a “surrogate score” to each. This process of performance estimation is 

generally much faster than calculating the performance of a configuration using the objective 

function when applied to an optimisation task that involves an expensive objective function.  

These new configurations are generated according to the defined search strategy, a process that 

guides exploration of the search space (consisting of all candidate algorithm configurations) by 

determining how new candidate solutions are generated. A very naive search strategy would generate 

individuals randomly, playing no role in “guiding” exploration, whereas a more intelligent approach 

would utilise heuristics, leveraging information from the surrogate model to determine promising 

areas within the search space.  



52 

 

Once the generated configurations have been evaluated by the fast surrogate model, the most 

promising configurations (i.e., the ones with the highest estimated score) are evaluated with the slow 

objective function (the real optimisation target), and their configuration details and scores are used 

to update the surrogate model. There are several approaches to selecting the most promising 

individuals, defined by the acquisition function, discussed later in this text. 

This section will discuss the main components of the BO algorithm in more detail, beginning 

with surrogate models in Section 2.3.1. Section 2.3.2 will focus on acquisition functions, whilst 

Section 2.3.3 will outline the specific algorithm steps, including a pseudocode of a basic 

implementation. Finally, Section 2.3.4 will describe practical considerations and challenges.  

2.3.1     Surrogate Models 

Surrogate models serve as approximations to the true objective function and are used to predict the 

performance of new candidate solutions in the search space. By utilizing the surrogate model, BO 

can efficiently explore the search space and identify promising areas for further evaluation, without 

needing to assess all configurations according to the objective function [81][82]. The choice of 

surrogate model in BO depends on various factors, including the problem domain, available data, 

and computational resources. Two commonly used surrogate models are Gaussian process regressors 

[83][84] and random forests [85]. 

Gaussian process regressors are flexible and powerful models that can capture complex 

relationships between input parameters and the objective function’s performance [32]. They are 

particularly well-suited for problems with relatively small datasets or when the underlying 

relationship is expected to be smooth and continuous. A Gaussian process defines a prior distribution 

over functions and updates this distribution based on observed data, providing a posterior distribution 

that represents the uncertainty in predictions. The posterior distribution can be used to estimate the 

objective function’s performance for unobserved configurations. 

Random forests, on the other hand, are an ensemble learning method that combines multiple 

decision trees to make predictions. Each tree is trained on a subset of the available data, and the final 

prediction is obtained by averaging the predictions of individual trees. Random forests are known 

for their ability to handle high-dimensional data and capture complex interactions between input 
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parameters [37]. They can be used as surrogate models in BO by training them on the evaluated 

configurations and their corresponding objective function values. 

To train the surrogate model, the input configurations are represented by their characteristics or 

features, which could include hyperparameters, design choices, or any other relevant attributes. The 

objective function's performance on these configurations serves as the target variable. For example, 

in the context of optimizing machine learning algorithms, the features could be the algorithm's 

hyperparameters, and the target variable could be the algorithm's accuracy on a specific dataset. The 

features will need to be encoded in such a way as to be interpreted by the surrogate model. For 

example, unordered categorical variables may be one-hot encoded.  

Once the surrogate model is trained, it can be used to predict the performance of new, unobserved 

configurations. These predictions provide an estimate of the objective function's value without the 

need for expensive function evaluations. BO utilizes these estimates to guide the search process 

towards regions of the search space that are likely to yield better performance. 

It is important to note that the surrogate model approximates the true objective function and 

carries some inherent uncertainty. The uncertainty captures the surrogate model's estimation error 

and plays a crucial role in the selection of candidate solutions for evaluation. Acquisition functions, 

as discussed in Section 2.3.2, leverage this uncertainty to balance exploration and exploitation and 

guide the search towards promising areas of the search space [84]. Unlike random forests, Gaussian 

process regressors return an uncertainty value with their predictions, making them a natural choice 

when working with acquisition functions such as probability of improvement and expected 

improvement. A random forest regressor would need to be modified in order to return these values. 

However, in general, a random forest regressor can be trained much faster than a Gaussian processor 

regressor. 

2.3.2     Acquisition Functions 

Acquisition functions play a crucial role in BO by guiding the selection of the most promising 

configurations to evaluate [84]. These functions determine the utility or potential of different 

candidate solutions within the search space. The choice of an appropriate acquisition function is 



54 

 

essential to balance exploration and exploitation, as it influences the trade-off between exploring new 

areas of the search space and exploiting regions that are likely to yield high performance. 

The acquisition function considers the surrogate model's predictions and its associated 

uncertainty or confidence. The uncertainty captures the model's estimation error, which is crucial for 

efficient exploration. There are several popular acquisition functions used in BO, each with its own 

characteristics and advantages. Three such acquisition functions are described next. 

Predicted value 

This is the simplest acquisition function as it takes only the value predicted by the surrogate model 

without alteration. That is, the promising areas of the search space are identified only as those which 

contain instances for which the surrogate model calculates high estimated values. The following 

acquisition functions attempt a trade-off between exploration and exploitation, whereas this simple 

approach looks only to exploit existing knowledge regarding the search space.  

Probability of improvement 

The Probability of Improvement (PI) acquisition function is a popular choice in BO. It aims to select 

the configuration that has the highest probability of improving upon the best-known performance 

observed thus far during the optimization process. The PI function focuses on exploiting regions 

within the search space that have a high probability of yielding better results [86]. 

The PI acquisition function calculates the probability that a new configuration will improve upon 

the current best-known performance. It does this by comparing the surrogate model's predictions 

with the current best performance. If the predicted value at a particular configuration exceeds the 

current best performance plus a certain threshold, that configuration is considered promising. PI is 

calculated as shown in Equation 2.9. 

PI(x) = Φ(f(x) > xbest + ε)                 (2.9) 

Where PI(x) is the probability of improvement at a particular configuration x in the search space, 

f(x) is the surrogate model’s prediction for configuration x, xbest is the best-known performance 

observed so far during the optimisation process, Φ is the cumulative distribution function of the 

standard normal distribution, and ε is the threshold parameter that determines the level of 
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improvement required for a configuration to be considered valuable. ε can be defined based on a 

user-specified parameter or adaptively adjusted during the optimization process. A higher threshold 

encourages more exploration, as it allows for the consideration of configurations that may have a 

lower probability of improvement but still offer a significant potential gain. On the other hand, a 

lower threshold favours exploitation, focusing on configurations that have a higher probability of 

surpassing the current best performance. 

By selecting configurations based on their probability of improvement, the PI acquisition 

function tends to direct the optimization process towards promising areas of the search space. It 

exploits regions that are likely to yield better results while gradually refining the estimate of the 

objective function. However, this behaviour leads to a system that is overly exploitative, rather than 

exploratory [86].  

Expected improvement  

The expected improvement (EI) acquisition function is another popular choice in the BO literature 

that quantifies the expected improvement over the current best performance. First proposed by 

Močkus et al. [87], it provides a balance between exploration and exploitation by considering both 

the probability of improvement and the potential magnitude of improvement. 

To calculate the expected improvement, the EI function utilizes the predictions of the surrogate 

model and its associated uncertainty. The surrogate model estimates the performance of different 

configurations within the search space based on the observed evaluations. The uncertainty captures 

the model's estimation error or lack of confidence in its predictions. EI is calculated as shown in 

Equation 2.10. 

EI(x) = E[max(f(x) – xbest, 0)]                (2.10) 

Where EI(x) is the probability of improvement at a particular configuration x in the search space, 

f(x) is the surrogate models prediction for configuration x, and xbest is the best-known performance 

observed so far during the optimisation process. E[…] is the expected value operator. This calculates 

the average value of improvement considering the uncertainty associated with the surrogate model’s 

predictions. It considers the probability distribution of f(x) and computes the weighted average of 

max(f(x) – xbest, 0) over the distribution [86]. 
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The EI function evaluates the potential improvement by comparing the surrogate model's 

predictions with the current best performance observed so far. It considers areas where the surrogate 

model predicts a higher improvement than the current best performance and weighs this improvement 

by the probability of its occurrence. In other words, EI encourages exploration by giving more 

importance to configurations with higher likelihood of improving upon the current best performance. 

One of the key advantages of the EI function is its ability to explore regions of the search space 

where the surrogate model is uncertain. By considering areas with high uncertainty, EI promotes 

exploration and helps to avoid premature convergence to suboptimal solutions. This exploration 

aspect is crucial, especially in the early stages of optimization when the surrogate model has limited 

information about the search space. 

The magnitude of improvement also plays a role in the calculation of the expected improvement. 

The EI function considers not only the probability of improvement but also the potential gain in 

performance. It prioritizes configurations that not only have a higher probability of improvement but 

also offer a larger expected gain in performance. This consideration ensures that the algorithm 

focuses on configurations that have the potential for significant improvements, rather than just minor 

incremental gains. Furthermore, it is non-parametric, unlike the PI acquisition function. 

2.3.3     Optimisation Algorithm 

The BO algorithm follows a systematic process to iteratively search for the optimal solution within 

the search space. This section outlines the key steps involved in the algorithm, including the 

evaluation of candidate configurations, updating the surrogate model, and selecting the most 

promising configurations for further evaluation. This description is outlined in ref [84]. 

The algorithm begins by initialising the surrogate model using an initial set of evaluated 

configurations. These configurations are typically selected based on random sampling or domain 

knowledge to cover a representative portion of the search space. The surrogate model is trained using 

the characteristics of these configurations as features and their corresponding objective function 

values as targets. Based on the surrogate model and a defined search strategy, new candidate 

configurations are generated for evaluation. The search strategy determines how the algorithm 

explores the search space to generate promising configurations. It can be as simple as random 
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sampling or incorporate more intelligent techniques that leverage information from the surrogate 

model to guide the exploration. 

The surrogate model is then used to estimate the performance of the newly generated 

configurations. Each configuration is assigned a "surrogate score" based on its predicted 

performance. The acquisition function plays a crucial role in selecting the most promising 

configurations for further evaluation. Depending on the acquisition function utilised, it can balance 

exploration and exploitation by considering the surrogate model's predictions and associated 

uncertainties. Different acquisition functions, such as Probability of Improvement or Expected 

Improvement, can be used to guide the selection process. 

The most promising configuration(s), as determined by the acquisition function, are selected for 

evaluation using the objective function. These configurations undergo the costly evaluation process 

to obtain their actual objective function values. The evaluations provide additional information to 

update the surrogate model in the following iteration and refine the estimation of the objective 

function's performance. 

The algorithm repeats the evaluation, surrogate model update, and selection steps for a predefined 

number of iterations or until a convergence criterion is met. The convergence criterion can be based 

on the improvement in the objective function value or the stability of the surrogate model's 

predictions. If the convergence criterion is met, the algorithm terminates, and the configuration with 

the highest observed objective function value is considered the optimal solution. Otherwise, the 

algorithm continues to iteratively refine the estimation and search for better solutions.  

Procedure 2.1 Outline of the Bayesian optimization procedure  

1. Candidate_solutions = randomly generate #Candidate_solutions configurations; 

2. Scores = run objective function for all configurations in Candidate_solutions; 

3. Fit Surr_model with Candidate_solutions as features, Scores as target; 

4. 𝑖 = 0; 

5. While 𝑖 < It_count: 

a. New_Candidate_solutions = randomly generate #Candidate_solutions configurations; 

b. 𝑌̂ = calculate a surrogate score for each new config with Surr_model; 

c. Best_config = config with highest score according to 𝑌̂; 

d. Score = run objective function for Best_config; 

e. Add Best_config to Candidate_solutions, add Score to Scores; 

f. Retrain Surr_model on Candidate_solutions and Scores; 

g. 𝑖 += 1; 

Output: Best configuration according to objective score; 
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An example of a basic implementation of BO is given in Procedure 2.1, which works as follows. 

First, #Candidate_solutions PU learning configurations are randomly generated (step 1) and 

evaluated, with their scores as calculated by the objective function saved as Scores (step 2). A 

Surr_model, is then trained, using Candidate_solutions as features, and Scores as the target variable 

(step 3). This involves processing the Candidate_solutions in such a way as to be suitable input for 

Surr_model. How they are processed will depend on the component types. The iteration index 𝑖 is 

set to 0 (step 4). A new set of #Candidate_solutions configurations, New_Candidate_solutions, are 

randomly generated (step 5.a) and a surrogate score for each is calculated by Surr_model and saved 

as 𝑌̂ (step 5.b). The best configuration, Best_config, with the highest score according to 𝑌̂ is evaluated 

using the objective function (steps 5.c,d), and added to Candidate_solutions, with the objective Score 

(F-measure) added to Scores (step 5.e). Surr_model is then retrained with Best_config added to 

Config (step 5.f). 𝑖 is incremented by 1 (step 5.g). This process (steps 5.a-g) is repeated It_count 

times. Finally, the best configuration, according to the objective score, is returned.  

This is an example of a basic implementation, using the predicted value as the acquisition 

function and random candidate solution initialisation. This procedure can be easily adapted to include 

more complex acquisition functions, candidate solution initialisation, and specific components of the 

given optimisation task.  

2.3.4     Practical Considerations and Challenges 

While BO offers a powerful framework for optimizing complex objective functions, there are, as 

with any optimisation approach, several practical considerations and challenges that need to be 

considered. 

Computational expense 

Training surrogate models, such as Gaussian process regressors or random forests, involves fitting 

the models to the evaluated configurations and their corresponding objective function values. The 

complexity of these models can vary depending on the problem domain and the amount of available 



59 

 

data. Training more complex models may require more computational resources and time. Therefore, 

it is essential to consider the trade-off between model complexity and computational expense. In 

some cases, simpler models may be preferred to reduce the computational burden, especially when 

the computational resources are limited. 

Evaluating candidate configurations using the surrogate model is generally computationally 

cheaper than evaluating the objective function directly. The surrogate model provides estimates of 

the objective function's performance without the need for time-consuming evaluations. However, the 

efficiency of this estimation process depends on the surrogate model's complexity and the number of 

candidate configurations to be evaluated. It is important to strike a balance between the number of 

evaluations performed by the surrogate model and the computational expense required for each 

evaluation. Techniques such as parallelization or efficient sampling strategies can be employed to 

mitigate the computational cost of evaluating candidate configurations. 

The choice of acquisition function also affects the computational expense. Some acquisition 

functions, such as the Probability of Improvement or Expected Improvement, require additional 

computations to determine the most promising configurations for evaluation. These computations 

may involve optimizing acquisition functions or estimating probability distributions. The complexity 

of these computations can impact the overall computational expense of the optimization process. 

However, given that the objective function is expensive enough to justify the use of a surrogate 

model, these extra computations may prove negligible.  

Note that the computational expense should be justified by the complexity of the objective 

function and the optimization problem. If the objective function is relatively simple and inexpensive 

to evaluate, the benefits of using a surrogate model and BO may be outweighed by the computational 

overhead. In such cases, alternative optimization methods that directly evaluate the objective 

function may be more suitable. 

Surrogate model selection 

The choice of the surrogate model depends on several factors, including the characteristics of the 

problem domain, the available data, and the computational resources at hand. Different surrogate 
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models have different strengths and limitations, and selecting the most appropriate one is essential 

for achieving accurate predictions and efficient optimization. 

Gaussian process regressors are commonly used surrogate models in Bayesian optimization 

[83][84]. They are flexible and powerful models that can capture complex relationships between 

input parameters and the objective function's performance. Gaussian process regressors define a prior 

distribution over functions and update this distribution based on observed data, resulting in a 

posterior distribution that represents the uncertainty in predictions. The posterior distribution can be 

used to estimate the objective function's performance for unobserved configurations [32]. Gaussian 

process regressors are particularly suitable when the underlying relationship between input 

parameters and the objective function is expected to be smooth and continuous. They are also 

advantageous when dealing with relatively small datasets, as they provide a probabilistic framework 

for incorporating uncertainty in predictions. 

Random forests are another popular choice for surrogate models in Bayesian optimization. They 

are ensemble learning models that combine multiple decision trees to make predictions. Each tree is 

trained on a subset of the available data, and the final prediction is obtained by averaging the 

predictions of individual trees [36]. Random Forests are known for their ability to handle high-

dimensional data and capture complex interactions between input parameters. They are especially 

effective when dealing with noisy or heterogeneous data [37]. Random forests can be used as 

surrogate models in BO by training them on the evaluated configurations and their corresponding 

objective function values. However, utilising a random forest classifier with an acquisition function 

such as EI or PI (see Section 2.3.2) requires a modification of the standard implementation to return 

uncertainty metrics. For example, the approach utilised by Thornton et al. [90] calculates the 

predictive variance for all the trees in the forest for each prediction and uses this as the uncertainty 

metric. The higher the variance, the higher the uncertainty.  

In addition to Gaussian process regressors and random forests, other surrogate models can also 

be considered based on the specific problem characteristics. Neural networks, for example, have 

shown success in various domains and can capture complex non-linear relationships. Support vector 

models can handle high-dimensional data and incorporate kernel functions to capture non-linearities.  
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When selecting a surrogate model, it is important to assess the strengths and limitations of each 

model and consider how well it aligns with the problem domain and available data. Factors to 

consider include the complexity of the model, the interpretability of the predictions, the ability to 

handle noisy or heterogeneous data, and the computational resources required for training and 

prediction. It may be necessary to experiment with different surrogate models and evaluate their 

performance using appropriate metrics. 

Hyperparameter tuning 

Surrogate models and acquisition functions often involve hyperparameters that control their 

behaviour and performance. These hyperparameters determine important aspects such as the 

flexibility of the surrogate model, the balance between exploration and exploitation, and the level of 

uncertainty considered in the optimization process. Properly tuning these hyperparameters is 

essential to ensure optimal performance and achieve meaningful results. The choice of 

hyperparameter values of a classifier can significantly impact the output of that classifier [88], thus 

it follows that it can drastically alter performance of the surrogate models and acquisition functions. 

Suboptimal hyperparameter settings may lead to poor predictive accuracy, inadequate exploration or 

exploitation, or inefficient use of computational resources. Therefore, it is important to carefully tune 

these hyperparameters to achieve the best possible performance. 

It is worth noting that hyperparameter tuning is an iterative and time-consuming process [88]. It 

may require multiple rounds of experimentation and evaluation to find the optimal hyperparameter 

settings. The computational expense involved in hyperparameter tuning should be considered 

alongside other practical considerations such as the computational cost of the optimization process 

and the available resources. 

Convergence  

Bayesian optimization aims to find the optimal solution within the search space. However, several 

challenges can hinder convergence, such as premature convergence to suboptimal solutions. Proper 

exploration of the search space is essential to overcome these challenges and improve the 

convergence of the optimization process. Exploration and exploitation are two key components in 

BO that address the trade-off between searching for new, unexplored regions and exploiting the 
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currently known promising areas of the search space. The choice of acquisition function significantly 

influences this balance [84]. 

It is important to note that achieving convergence in BO can be a complex task, and the optimal 

strategy for exploration and exploitation may vary depending on the problem domain and the specific 

optimization goals. Therefore, it is crucial to carefully select or design the acquisition functions and 

employ appropriate techniques that suit the characteristics of the problem at hand. 

2.4     Automated Machine Learning (Auto-ML) 

Auto-ML is a rapidly growing field of machine learning (ML) that looks to limit the human 

involvement in ML applications [8], reducing the demand for domain experts and allowing those 

without extensive ML knowledge to operate complex ML pipelines [9]. Algorithm performance is 

largely dependent on input data [89]. Auto-ML can assuage this issue by searching for the best model 

specific to the target ML task (e.g., the best model for a given classification dataset).  

Whilst [9] defines an Auto-ML system as developing a full ML pipeline, from data preparation 

to model evaluation, some researchers approach Auto-ML as a combined algorithm selection and 

hyperparameter optimisation (CASH) task, defined by [90] as automatically and simultaneously 

choosing a learning algorithm and corresponding hyperparameter settings to optimise empirical 

predictive performance on a given input dataset.  

Early approaches to Auto-ML involved grid search, in which a grid of configurations is 

developed, and each configuration is evaluated [91]. This has the benefit of completeness (in the 

context of the grid’s elements), as it evaluates all desired configurations for a pre-defined set of 

algorithms and hyper-parameter settings. Furthermore, implementation is trivial [92] in comparison 

to other optimisation frameworks. The primary drawback of grid search is the computational 

expense. The number of evaluations grows exponentially with the number of hyperparameters [93]. 

By evaluating all desired configurations, many low-quality configurations will be evaluated that 

would be overlooked by a more intelligent optimisation method. As the evaluation function is often 

the largest bottleneck in an Auto-ML system, an intelligent (heuristic) selection of promising 

configurations to be evaluated is a fundamental advantage that many more sophisticated systems 
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have over grid search. This drawback renders grid search infeasible for high-dimensional grids (with 

many hyperparameters having their candidate values as elements of the grid), see e.g., [94]. 

Random search alleviates the expense of grid search in high-dimensional search spaces to a 

degree by evaluating fewer configurations [91]. Random search draws hyperparameter 

configurations randomly from the configuration search space, independently from previously drawn 

configurations [92]. This has the benefit of a more exploratory search (since the latter evaluated only 

pre-defined configurations), but no guarantee of an optimal solution within the search space [95].  

Neither grid search nor random search exploits information gained from previous evaluations 

and thus are not, in their traditional form, considered intelligent optimisation approaches.  

Due to the computational expenses of grid and random searches, there is a strong need for 

approaches which utilise information from previously tested configurations. This section will focus 

on two of the most popular, namely EAs and BO. Other strategies exist, such as gradient descent-

based methods, which was used by [96] for neural architecture search, and reinforcement learning, 

which was used by [97]. However, these optimisation techniques are outside the scope of this work 

and will not be discussed further. For a relatively recent review of such topics see [9]. 

2.4.1     Evolutionary Algorithms (EAs) for Auto-ML 

As previously discussed, EAs are powerful optimisation tools and are well established within the 

literature. As such, they are a suitable choice for Auto-ML and much work has been done applying 

EAs to particular Auto-ML tasks. For a general review of EAs, the reader is referred to Section 2.2. 

In this current subsection the discussion is focused on EAs specifically for Auto-ML, where an 

individual represents a candidate algorithm or classification pipeline configuration, i.e., a 

combination of one or more classification algorithms or methods (e.g., data pre-processing methods) 

and their hyperparameters. In this context, EAs provide a flexible and robust framework for exploring 

the space of algorithms and hyperparameter settings.  

EAs offer several advantages for Auto-ML. They can handle high-dimensional search spaces and 

explore a wide range of algorithms and hyperparameter combinations. EAs perform a global, rather 

than a local, search [98][99], making them suitable for highly non-linear environments, such as those 

often present for Auto-ML tasks. Moreover, the population-based nature of EAs allows for parallel 
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evaluation of candidate configurations, making them suitable for distributed computing 

environments. However, even when parallelising the evaluation of candidate solutions, 

computational expense is a large drawback of EAs when applied to Auto-ML tasks. Unlike BO (see 

Section 2.3), EAs generally evaluate all candidate solutions in the population. The fitness function 

associated with evaluating candidate solutions is generally expensive, especially for classifiers that 

are already expensive, such as neural networks. This computational expense, however, has not 

deterred research into Auto-ML utilising EAs, as discussed next. 

Olson et al. [100] proposed the Tree-based Pipeline Optimisation Tool (TPOT), an Auto-ML 

system using Genetic Programming (GP). The GP uses tree-based encoding such that the individuals 

in the population are ML pipelines. Rather than mathematical operators as the functions (as shown 

in Section 2.2.8), the functions are pipeline operators and hyper-parameters, e.g., specifying the 

number of trees in a random forest or the number of features selected during feature selection. Each 

individual is evaluated by the classification accuracy of the pipeline produced. Experiments on 150 

benchmark datasets showed statistically significant improvement over random forest on 21 of the 

datasets, no statistically significant difference on 125 datasets, and statistically significantly worse 

results on 4 datasets by a metric of “balanced accuracy”, where accuracy is adjusted for class 

imbalance [101]. Whilst random forest is an excellent classification algorithm, as it is not an Auto-

ML system its usefulness as a comparison is limited. A major drawback of the original version of 

TPOT is that it can produce individuals that represent invalid pipelines, with a large computational 

cost in terms of evaluation and generation [74]. This issue has been addressed by other EA-based 

Auto-ML systems, such as the Resilient Classification Pipeline Evolution system (RECIPE).  

Like TPOT, RECIPE, proposed by [74], is an GP-based Auto-ML system that evolves ML 

pipelines. However, RECIPE uses a grammar to ensure that all generated individuals are valid, so 

that it does not waste resources on invalid individuals. Furthermore, RECIPE evaluates a larger 

search space than TPOT and Auto-Sklearn (see Section 2.4.2) which, whilst making for a more 

complex search space, allows for a greater variety of solutions [74]. Experiments [74] showed 

RECIPE outperforming TPOT and Auto-Sklearn with regards to F-measure with statistical 

significance 2 out of 20 times. 13 out of 20 experiments showed no statistically significant difference. 

Of the further 5 experiments, TPOT outperformed RECIPE and Auto-Sklearn 4 times, and Auto-
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Sklearn performed best 1 time. The authors suggest that the increased search space of RECIPE, whilst 

having the advantage of diverse solutions, may have hindered its performance in these experiments.  

A more recent version of TPOT named layered TPOT (LTPOT) looked to assuage the issue of 

wasted computational resource by evaluating individuals on a subset of the data before allowing them 

to be fully evaluated [102]. Whilst this does not eliminate the issue of invalid individuals as RECIPE 

does, it limits the computational resources used by them. Experimental results showed that LTPOT 

generally found a pipeline as good as that found by TPOT sooner than TPOT found it [102].  

Another very recent version of TPOT has been proposed utilising Bayesian optimisation. This 

will be discussed in Section 2.4.2. 

Zöller & Huber [91] provide a comparison between several Auto-ML frameworks that produce 

whole ML pipelines. The results showed that TPOT outperformed the other methods on the majority 

of the 137 classification tasks tested. Also, it is estimated that TPOT overfit the data less than all 

other techniques.  

Whilst TPOT is a broad Auto-ML system in that it generates whole pipelines for generic learning 

tasks, there are several specialist Auto-ML approaches. For example, [103] used an EA to develop 

an Auto-ML system that focuses on classifier ensembles. Ensemble classifiers, such as random 

forest, utilise multiple models of a single type of classifier (e.g., decision tree) to make a 

classification. Ensembles often outperform their base classifiers [104] and thus a specialised Auto-

ML system specific to ensembles may outperform a more generic Auto-ML system. The proposed 

method, named PBIL-Auto-Ens, uses an Estimation of Distribution Algorithm (EDA), a type of EA 

that differs from the genetic algorithm (GA) approach outlined in Section 2.2. EDAs generate a 

population of individuals by sampling from a probability distribution, and after sorting by fitness, a 

proportion of the individuals are selected, and the probability distribution is re-estimated. New 

solutions are generated according to this distribution, without using any crossover or mutation, and 

the process is repeated until a stopping criterion (like a fixed number of generations) is satisfied. The 

proposed system was compared against Auto-WEKA (see Section 2.4.2) over 15 datasets and 

outperformed it on 12 of the 15 according to the error rate.  

Another recent example of a specialised Auto-ML system is Auto-MEKAGGP, proposed by 

[74], which focusses on multilabel classification (MLC). An MLC task is one in which an instance 
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can be associated with more than one class label. Much like RECIPE, Auto-MEKAGGP uses 

Grammar-based Genetic Programming (GGP). Unlike RECIPE, Auto-MEKAGGP is a CASH 

system, rather than one that builds whole ML pipelines. As Auto-ML systems built for standard 

binary classification (single label classification) associate an instance with only one class, they are 

not (without extension) applicable to MLC. As such, systems specific to MLC are needed. Auto-

MEKAGGP searches the space of algorithms and configurations available in the MEKA tool (an 

open-source extension to the WEKA library (see Section 2.4.2) that provides access to multi-label 

classifiers). Compared to another EA-based Auto-ML system specific to MLC and two baseline 

approaches, Auto-WEKAGGP showed best performance on average [74].  

Whilst generic systems such as TPOT and RECIPE are good tools for a wide range of learning 

scenarios, often better results can be achieved by finding a system specific to the target problem, 

which could involve e.g., a given type of algorithm like ensembles or multilabel classification 

algorithms. As such, systems such as PBIL-Auto-Ens and Auto-MEKAGGP are invaluable. 

A recent Auto-ML system is AutoML-Zero [105] developed by researchers at Google. The 

primary idea behind AutoML-Zero is to evolve machine learning algorithms from scratch, without 

prior knowledge or human expertise. Instead of relying on predesigned algorithms or architectures, 

AutoML-Zero utilises an EA to evolve sequences of mathematical operations which are then used as 

classifiers. This is a relatively novel approach, primarily due to the computational expense involved 

in the search, prohibiting the development of such a system by many researchers without access to 

state-of-the-art high-performance computing systems, and achieved seemingly excellent results, 

developing, without human intervention, advanced ML techniques such as stochastic gradient 

descent, the ReLU activation function, and gradient normalisation. It was even applied to 

traditionally challenging machine learning scenarios, such as datasets with few training examples, 

and datasets with multiple classes. In the case of few training examples, a technique that has been 

established in the machine learning literature referred to as noisy ReLU [106][107] was discovered 

by the AutoML-Zero system. In the case of multiple classes, AutoML-Zero developed a technique 

that used the transformed mean of the weight matrix as the learning rate. It was unclear as to why, 

but it appeared to aid in the case of multiple classes.  
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However, a major drawback of the paper proposing AutoML-Zero is that the system was not 

compared with any other Auto-ML system. That said, it remains an exciting contribution to the Auto-

ML field, considering its high degree of novelty, and a promising tool for future work. Recently, 

AutoML-Zero has been extended in the work of Guha et al. [108] for multi-objective optimisation. 

This new version of AutoML-Zero considers computational efficiency as well as predictive 

performance. However, this new version is only compared against the old version of AutoML-Zero, 

and thus suffers the same limitations.  

In summary, EAs have emerged as powerful optimization tools, making them well-suited for 

Auto-ML tasks. These algorithms offer a flexible and robust framework for exploring the space of 

algorithms or pipelines and their hyperparameter settings. The process essentially involves 

initializing a population of candidate configurations representing algorithm/pipeline-hyperparameter 

combinations, evaluating their performance, selecting the fittest configurations, introducing variation 

through genetic operators, replacing individuals in the population, and terminating the process based 

on predefined criteria. EAs have several advantages for Auto-ML, including their ability to handle 

high-dimensional search spaces, explore a wide range of solutions, and perform global searches in 

highly non-linear environments. However, computational expense is a drawback, as EAs often 

evaluate all candidate solutions at each generation. Despite this, researchers have proposed both EA-

based generic Auto-ML systems such as TPOT, RECIPE AutoML-Zero, and EA-based Auto-ML 

systems tailored to specific learning scenarios such as PBIL-Auto-Ens and Auto-MEKAGGP, which 

complement more generic Auto-ML frameworks, In general, these EA-based Auto-ML systems have 

demonstrated promising results in experiments and comparisons with other non-EA-based 

techniques, highlighting the importance of finding solutions specific to the target problem for 

improved performance. 

2.4.2     Bayesian Optimisation (BO) for Auto-ML 

BO is a type of sequential model-based optimisation (SMBO) method. The configurations of 

previously tested solutions are assessed to inform where in the search space to consider the generation 

of new candidate solutions [91]. Once a new configuration is assessed, this is also used alongside the 
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previous configurations to inform the future generation of candidate configurations. As such, BO 

systems will exploit promising regions and often converge to a local minima in the search space [91].  

In the context of Auto-ML, an initial set of candidate configurations, representing classification 

pipelines, is sampled based on prior knowledge or randomly generated. Each candidate configuration 

is evaluated using a performance metric, typically through cross-validation, to estimate its quality. 

The performance metric provides a measure of how well the configuration performs on the given 

task, such as accuracy or F-measure. A probabilistic surrogate model, often a Gaussian process or 

random forest, is then fitted to the evaluated data, capturing the relationship between the 

configurations and their corresponding performance. The surrogate model serves as a proxy for the 

true performance landscape and allows for efficient exploration and exploitation of the design space. 

Using the surrogate model, an acquisition function is defined to determine the next configuration to 

evaluate. The acquisition function balances the exploration of unexplored regions and the 

exploitation of promising regions in the design space. Popular acquisition functions include Expected 

Improvement (EI) and Probability of Improvement (PI) (see Section 2.3.2). Once a new configuration 

is selected, it is evaluated, and its performance is added to the existing data. The surrogate model is 

retrained, incorporating the new information. This iterative process of evaluating, updating the 

model, and selecting new configurations continues until a termination criterion is met, such as 

reaching a maximum number of evaluations or convergence of the surrogate model. 

The primary advantage of BO is its ability to efficiently handle expensive-to-evaluate functions, 

which is particularly beneficial for Auto-ML tasks with computationally expensive algorithms or 

pipelines. BO focuses the evaluation efforts on promising configurations, exploiting the knowledge 

gained from previous evaluations to estimate the performance of a classification algorithm or 

pipeline, rather than calculating the actual value using the often expensive objective function. Zöller 

and Huber [91] explain that the trade-off between exploration and exploitation is determined by the 

use of an acquisition function such as Expected Improvement (EI). However, if an acquisition 

function that focusses only on exploitation is used, rather than exploration, this will lead to the 

optimisation procedure becoming susceptible to being trapped in local optima [86].  

BO is commonly used throughout the Auto-ML literature and is the basis for several well-known 

Auto-ML systems, such as Auto-WEKA and Auto-Sklearn. Auto-WEKA is a tool that approaches 
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Auto-ML using BO to search the classification and regression search-space of WEKA algorithms 

and hyperparameter configurations. WEKA is an open source machine learning library with tools for 

a variety of machine learning tasks [109]. Auto-WEKA was initially proposed by [90] as an Auto-

ML tool for classification, and later updated by [110] to handle regression tasks. Auto-WEKA was 

compared to 39 baseline classifiers with default parameter settings in WEKA and a random grid 

search (an approach where a grid of candidate solutions is specified, and a random search performed 

on that grid) on 21 datasets [90]. Auto-WEKA outperformed the baseline classifiers according to 

error rate on 14/21 datasets and performed equally on the remaining 7. In comparison to random grid 

search, Auto-WEKA outperformed on 20/21 datasets, and performed worse on 1. Whilst [90] did not 

compare to any other Auto-ML framework, it is worth noting that Auto-WEKA was generally 

outperformed by the PBIL-Auto-Ens method described in Section 2.4.1 [103]. It is also worth noting 

the performance of Auto-Sklearn, a sister package of Auto-WEKA specific to Scikit-Learn, in 

experiments by [91].  

Auto-Sklearn is largely similar to Auto-WEKA, also utilising BO, but specific to the Scikit-Learn 

python library [111]. Whilst results comparing Auto-Sklearn to other Auto-ML methods are not 

directly analogous to Auto-WEKA as Auto-Sklearn has a slightly reduced search space, the results 

are still indicative. Auto-Sklearn was generally outperformed by TPOT, but generally outperformed 

all other techniques [91]. However, it is estimated that Auto-Sklearn tended to overfit more than all 

other techniques except random search. This indicates that TPOT is a more desirable framework than 

Auto-Sklearn generally due to the increased performance and lack of overfitting. 

Two new versions of TPOT, TPOT-BO-S and TPOT-BO-ALT, were proposed by Kenny et al. 

[112]. These new versions loosely couple the standard TPOT, utilising GP, with BO. The first version 

TPOT-BO-S, switches to a BO procedure at a specified point in the procedure. TPOT-BO-ALT 

alternates between the standard TPOT and BO procedures throughout the run. Overall, these new 

variations did not add substantial improvement over the original TPOT system.  

In summary, BO is a sequential model-based optimization technique used in Auto-ML tasks. It 

leverages Bayesian inference to efficiently search the space of machine learning algorithms or 

pipelines and their hyperparameters. BO involves sampling an initial set of candidate configurations, 

evaluating their performance, fitting a surrogate model to capture the performance landscape, and 
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using an acquisition function to select new configurations for evaluation. The iterative process 

continues until a termination criterion is met. BO excels in handling expensive evaluations and 

focuses on promising configurations, exploiting knowledge gained from previous evaluations. 

However, it can become trapped in local optima due to a lack of population diversity. BO has been 

successfully employed in Auto-ML frameworks like Auto-WEKA and Auto-Sklearn, which utilize 

BO to search algorithm and hyperparameter spaces. These frameworks have shown competitive 

performance compared to baseline classifiers and other Auto-ML methods. Auto-WEKA and Auto-

Sklearn, however, have demonstrated some limitations, such as being outperformed by specific 

methods like PBIL-Auto-Ens and TPOT in certain scenarios. Overall, BO is a valuable approach in 

Auto-ML, but careful consideration of its limitations and appropriate framework selection is essential 

for achieving optimal results. 

2.4.3     Practical Considerations and Challenges 

While Auto-ML holds promise for automating the machine learning pipeline, there are practical 

considerations and challenges that need to be addressed to ensure its effective implementation and 

deployment, as follows. 

Computational expense 

Searching a large space of algorithms and hyperparameters requires substantial computational 

resources and can be time-consuming. The complexity of the dataset and the use of classifiers that 

are themselves expensive, such as deep learning classifiers, further exacerbate this challenge. To 

assuage this issue, efficient resource management techniques can be utilised. Optimizing the 

utilization of available computational resources, such as CPUs and GPUs, can significantly speed up 

the Auto-ML process. Techniques like parallel computing, where multiple computations are 

performed simultaneously, help distribute the workload and reduce time required for optimization. 

Another approach to mitigate computational expense is the use of approximation techniques, 

such as those used in BO. Instead of exhaustively evaluating all possible configurations, surrogate 

models can be used to estimate the performance of candidate configurations. These surrogate models 
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provide a fast and computationally inexpensive alternative to direct evaluation, allowing for more 

efficient exploration of the algorithm-hyperparameter space. 

Furthermore, embedding computational expense as a criterion to be minimised by the Auto-ML 

system can benefit the process by favouring pipelines that need fewer computational resources. 

However, it is important to strike a balance between computational expense and the quality of the 

Auto-ML results. While it is desirable to minimize the computational time and resources required, it 

is crucial to ensure that the optimization process explores a wide area of the algorithm-

hyperparameter space and finds high-performing configurations.  

Evaluation 

Another consideration is the selection of appropriate evaluation metrics and validation strategies. 

The performance of different algorithm-hyperparameter configurations needs to be evaluated to 

identify the best models for a given task. However, the choice of evaluation metrics can vary 

depending on the specific problem domain and the goals of the application. Using inappropriate 

metrics may lead to suboptimal results and misinterpretation of the model's performance. 

The selection of evaluation metrics should align with the objectives of the problem. For example, 

in classification tasks, metrics like accuracy, precision, recall, F-measure, or area under the receiver 

operating characteristic curve (AUC-ROC) are commonly used. These metrics measure different 

aspects of the model's performance, such as overall correctness, trade-offs between precision and 

recall, or the ability to distinguish between classes. It is important to carefully consider which metrics 

are most relevant and meaningful for the specific problem at hand. For example, for perfectly 

balanced datasets, accuracy may be the most appropriate metric. It is important to consider the 

limitations and potential biases of the chosen evaluation metrics and validation strategies. For 

example, in imbalanced datasets, accuracy alone may not provide a comprehensive understanding of 

the model's performance. Metrics like precision, recall, or F-measure are often more appropriate for 

evaluating the model's performance on minority classes. 

Generalisation  

Ensuring the generalization and transferability of Auto-ML models is a critical consideration in the 

development and deployment of machine learning systems. While Auto-ML aims to automate the 
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model selection and hyperparameter optimization process, it is important to ensure that the selected 

models can perform well on unseen data. 

One of the main challenges in generalization is the potential for overfitting. Overfitting occurs 

when a model becomes overly specialized to the training data and fails to generalize well to new, 

unseen data (test data). This is a concern in Auto-ML because the optimization procedure may 

inadvertently select models that perform well on the training data but fail to generalize to new 

instances. This problem also occurs in standard machine learning, but Auto-ML has been shown to 

be especially vulnerable to overfitting [113]. 

To mitigate the risk of overfitting and enhance generalization, robust validation techniques are 

crucial. Cross-validation is a commonly used approach that helps assess the model's performance on 

unseen data. By dividing the data into multiple subsets or folds, and iteratively training and 

evaluating the model on different combinations of these subsets, cross-validation provides a more 

reliable estimate of the model's generalization performance. Additionally, the selection of 

appropriate evaluation metrics can contribute to better generalization. Evaluation metrics that focus 

on the overall performance and robustness of the model, such as area under the precision-recall curve, 

can provide a more comprehensive assessment of the model's ability to generalize. 

2.5     Positive-Unlabelled (PU) Learning 

PU learning is a field of machine learning that focusses on learning models from datasets that consist 

of only positive-class and unlabelled instances [3]. PU learning shares the goal of binary 

classification – to accurately predict the class of an unseen example by learning to distinguish 

between two classes. However, since a standard binary classifier requires a training set with two class 

labels, a standard binary classifier built using a PU dataset would have to treat all unlabelled instances 

as a separate class, and so such classifiers will predict the probability of an instance being labelled 

(Pr (𝑠=1)) as opposed to the probability of an instance belonging to the positive class (Pr (𝑦=1)) [4] 

– where 𝑠 is a variable taking 1 or 0 to indicate whether or not an instance is labelled, and 𝑦 is the 

true label of an instance, taking values 1 or 0 to denote the positive or negative class, respectively. 

PU learning models, on the other hand, are trained to predict Pr(𝑦=1) using PU data and have been 
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shown theoretically to improve upon standard binary classification models when applied to PU 

datasets [114]. 

PU learning is an important area of machine learning as it naturally arises in many different 

domains, such as bioinformatics [115][116][117], text mining [118][119][120], and cyber security 

[121][122]. For example, reference [115] utilises PU learning for the prediction of genes associated 

with diseases. This is a PU learning task where disease-associated genes are positive instances, as 

confirmed by biomedical experiments. However, the vast majority of the genes not associated with 

diseases have not undergone such experiments, since these experiments are expensive. As such, the 

genes not associated with diseases are better thought of as unlabelled instances as there is no 

experimental evidence indicating either association or disassociation. An example from the domain 

of text mining is found in [118], which proposed a text classification system utilising PU learning 

for web page classification. This is another learning task where PU learning is appropriate. Scraping 

web pages is an easy and quick task, so assembling a large dataset is a simple process. However, the 

majority of the instances (webpages) will be unlabelled as manually labelling each instance is an 

expensive task. As illustrated by these examples, PU learning is appropriate when the dataset consists 

of a small sample of reliable positives and a larger remaining sample of unknown-label instances.  

PU learning is related to semi-supervised learning [123] in the sense that it specialises the semi-

supervised scenario [3]. In both semi-supervised and PU learning, typically the large majority of 

training instances is unlabelled; but a semi-supervised learning’s training set includes small 

proportions of both positive and negative instances, whilst a PU learning’s training set does not 

include any negative instance.  

Over the past two decades, many PU learning algorithms have been developed for a wide array 

of applications [3][124]. However, little has been written on the subject of evaluation metrics for PU 

learning, which is a challenging task. To address this shortcoming, Saunders & Freitas [20] reviewed 

evaluation approaches for PU learning and provided practical recommendations for improvement. 

The evaluation approaches will be discussed in Section 2.5.3.  

The next three subsections detail common assumptions made to enable PU learning, the three 

most popular PU learning frameworks, and practical considerations.  
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2.5.1     PU Learning Assumptions 

To enable PU learning, assumptions are commonly made about the data. The most common 

assumptions are negativity, separability and smoothness, selected completely at random, and selected 

at random [3]. 

Negativity 

The most basic assumption to enable learning from PU data is the assumption of negativity. That is, 

it is assumed that all unlabelled data is simply negative [3]. This is the most naïve of the four 

assumptions discussed in this section, as the unlabelled set can contain a substantial amount of 

unlabelled positive instances, depending on the dataset. However, despite the naivety of this 

assumption, it can be effective if utilising a classification algorithm that produces a model that is 

robust to noise within the data.  

Despite the assumption of negativity not holding in practice, it is still widely used [3]. The 

popularity of this assumption is due to the fact that it allows for the use of standard machine learning 

methods, without any modification to the classification algorithm or processing pipeline. In other 

words, making the negativity assumption means transforming the original PU learning problem into 

a standard classification problem, denying the true unlabelled nature of the original data. Conversely, 

treating the original data as a PU learning problem and using a PU learning algorithm means rejecting 

this naïve negativity assumption, which is the approach followed in this thesis. 

Separability and smoothness 

The assumption of separability states that the positive and negative instances are separable in the 

feature space. That is, it is assumed that a classifier hypothetically exists that can perfectly separate 

the positive and negative instances [3]. The assumption of smoothness states that instances which 

are close to each other in the feature space are likely to belong to the same class [3].  

These assumptions are foundational to the two-step approach (see Section 2.5.2), arguably the 

most popular approach to PU learning.  
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Selected completely at random (SCAR) 

The SCAR assumption, formalised by [4], states that the positive instances are labelled irrespective 

of their features, and thus the labelled set is an independent and identically distributed sample from 

the positive distribution. That is, for the given data, Pr(s=1) = Pr(s=1|x), where Pr(s=1) 

represents the probability of an instance being labelled and x is an instance’s feature vector. Or, put 

simply, the sample of positive instances in the labelled positive set is representative of the entire set 

of positive instances, both labelled and unlabelled. Making the SCAR assumption allows us to 

assume that the instances in the labelled positive set are representative of the instances within the 

positive unlabelled set, and thus, if a classifier can accurately predict the labelled positive instances, 

it should, in theory, be able to predict the unlabelled positive instances also. For this reason, the 

SCAR assumption is foundational to some PU learning approaches. 

Elkan & Noto [4] show that an implication of the SCAR assumption is Equation 2.11. 

𝑓(𝑥) =
𝑔(𝑥)

𝑐
                 (2.11) 

In other words, 𝑔(𝑥) differs from 𝑓(𝑥) by a constant factor, where 𝑔(𝑥) is a probabilistic classifier 

trained to distinguish the labelled set and the unlabelled set and thus predicts Pr(𝑠=1|𝑥) (referred to 

as a non-traditional classifier by [4]), and 𝑓(𝑥) is a probabilistic classifier trained to distinguish a 

positive and negative set and thus predicts Pr(𝑦=1|𝑥) (referred to as a traditional classifier). 

One major implication of this formula is that if we are simply looking to rank instances by their 

predicted probability of belonging to the positive class, e.g., in target prioritisation, we can simply 

use 𝑔(𝑥), as the instances predicted as having the highest probability of belonging to the positive 

class will be the same for both 𝑔(𝑥) and 𝑓(𝑥). This approach alone is satisfactory for simple PU 

problems, such as a scenario where we have a reasonably balanced set of positive and unlabelled 

instances. However, PU problems are rarely this simple. The majority of PU datasets will consist of 

a small number of positive instances and a large number of unlabelled instances. As such, the 

standard approach to model training will yield poor results with the positive class being overwhelmed 

by the unlabelled class, resulting in poor recall of labelled instances. It is for this reason that the 

instances predicted as having the highest probability of belonging to the positive class by 𝑔(𝑥) cannot 

be trusted without further model evaluation, 𝑔(𝑥) may simply be an inaccurate classifier. As such, 
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PU learning methods that produce more reliable classifiers are needed. PU learning model evaluation 

is discussed in Section 2.5.3. 

Selected at random (SAR) 

The SAR assumption states that an instance is labelled depending on its features. That is, the labelling 

mechanism depends on the features of an instance [125]. It is thought that many PU learning datasets 

suffer from a labelling bias [3], thus the motivation for this assumption. Formalised, this assumption 

states that e(x) = Pr(s=1|x, y=1). Where e is the propensity score (the probability of a selected 

instance being labelled). In order to enable use of the SAR assumption, one must know the labelling 

mechanism. If the labelling mechanism is known, a standard classifier can be trained with the output 

values processed to incorporate it. However, if it is unknown, the SAR assumption cannot be used.  

2.5.2     Approaches to PU Learning 

In this section, the three major approaches to PU learning are discussed. Namely, the two-step 

framework, biased learning, and incorporation of the class prior.  

Two-step framework 

The most common PU learning framework is the “two-step” approach. The first step of this approach 

consists of identifying a set of reliable negative instances among the unlabelled set. That is, a set of 

instances that are substantially different from the labelled positive instances and are likely not 

unlabelled positive instances. The second step consists of building a classifier to distinguish the 

labelled positive instances from the reliable negative set. These two steps use only the training set. 

The resulting classifier is then used to classify the remaining unlabelled instances in the testing set 

[126]. Providing that the reliable negative set is an accurate representation of the negative class, this 

model will predict Pr(𝑦=1) rather than Pr(𝑠=1). This approach assumes separability and smoothness 

of the data. That is, it is assumed that there is a natural separation between the positive and negative 

classes (separability), and it is assumed that instances that are similar to each other have a similar 

probability of belonging to the positive class (smoothness) (see Section 2.5.1) [3]. 
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Arguably the most well-known two-step technique in the PU literature is the “S-EM” method 

[120]. This technique selects a subset of positive instances (known as “spies”) to be added to the 

unlabelled set. All instances in the unlabelled set (spies included) are then assigned the negative class 

label, and a naïve Bayes classifier is built to distinguish between the positive and the unlabelled set. 

The resulting classifier is then used to classify the unlabelled set (spies included) and the Pr(𝑦=1) of 

each of the spy instances is used to determine a threshold under which an unlabelled instance’s 

Pr(𝑦=1) must fall to be considered a “reliable negative” instance. Several variations on this technique 

have been proposed, including that by [127] which utilises the multilayer perceptron classifier and 

an altered threshold calculation. Other well-known two-step techniques include the “Roc-SVM” 

method specific to PU text classification proposed in [5] which utilises the Rocchio classifier and an 

iterative SVM approach, and the “Positive Example Based Learning” (PEBL) method for web page 

classification, as proposed in [128]. 

Whilst the literature generally refers to two individual steps (Step 1, Step 2) when discussing 

two-step methods, this thesis uses a slightly different terminology. Instead, we reference the steps as 

phases, and recognise that “Step 1” actually often consists of two distinct phases. As such, when 

discussing two-step techniques, this work will reference Phase 1A, used to extract an initial reliable 

negative set, Phase 1B, an optional step that several methods take to use the initial reliable negative 

to further extract reliable negative instances from the unlabelled set, and Phase 2, “Step 2” in the 

usual description, which builds a classifier using the positive and reliable negative set and classifies 

the remaining unlabelled instances.  

This notation is advantageous as it recognises that “Step 1” often consists of two distinct phases, 

and the use of “phase” rather than “step” allows us to reference the individual steps of the algorithms 

in each phase without confusion. 

A generic implementation of Phase 1A of a two-step PU learning algorithm is given in Procedure 

2.2 for the reader’s reference.  

In Procedure 2.2, U is the set of unlabelled instances, P is the set of labelled positive instances, 

Classifier is the classifier used in the implementation, RN is the set of reliable negative instances, 

y(x) is the class predicted for instance x by the classifier, and threshold is a predefined threshold for 

classing an instance as reliably negative. 
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Procedure 2.2 Basic Phase 1A implementation of a two-step PU learning algorithm 

1. RN ← { }; 

2. Split 𝑈 into multiple subsets; 

3. For each subset:: 

a. 𝑁 = subset; 

b. Build Classifier(P, N); 

c. Classify(U); 

d. For every instance x in U: 
i. If y(x) < threshold then RN ← RN ∪ x 

ii. U ← U – x; 

Output: U, RN; 

Several Phase 1A methods follow the generic procedure shown in Procedure 2.2 with minor 

alterations. One variation on this procedure is the method proposed by [129]. The difference is that 

Phase 1A iterates a set number of times (5) and then only the top 1% of the instances predicted by 

the classifier to most likely be negative are added to RN. Also, the classifier used is the deep forest 

classifier (see Section 2.1). The [129] method will henceforth be referenced as “DF-PU” and is shown 

in Procedure 2.5. 

To complement Procedure 2.2, Procedure 2.3 gives a basic implementation of Phase 1B. 

Procedure 2.3 Basic Phase 1B implementation of a two-step PU learning algorithm 

1. RN ← predefined reliable negative set, determined in Phase 1A; 

2. While loop condition: 

a. Build Classifier(P, RN); 

b. Classify(U); 

c. For every instance x in U: 
i. If y(x) < threshold then RN ← RN ∪ x 

ii. U ← U – x; 

Output: RN; 

In Procedure 2.3, RN is the set of reliable negative instances output by Phase 1A, P is the set of 

labelled positive instances, Classifier is the classifier used in the implementation, U is the set of 

unlabelled instances returned by Phase 1A, with the reliable negative instances removed, and y(x) is 

the class predicted for instance x by the classifier. Phase 1B is more akin to a standard semi-

supervised machine learning algorithm. Phase 1B is an optional step, not always employed by two-

step PU learning algorithms. Furthermore, the while loop in both Phase 1A and Phase 1B is optional, 

as a single iteration is a valid approach. The while loop generally involves splitting the unlabelled 
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set into multiple sets in order to handle the class imbalance often present in PU learning datasets. 

This is illustrated in the pseudocode by splitting the unlabelled set (𝑈) into multiple subsets. 

However, should no class imbalance be present, a single iteration is valid. In fact, the systems 

proposed in this thesis do not utilise a while loop condition in Phase 1B at all. The reasons for this 

are two-fold. Firstly, class imbalance is often not present in the Phase 1B ( when discriminating 

between the positive and the reliable negative sets), since the parameter that determines whether to 

classify an instance as reliably negative is often conservative. Secondly, inclusion of this parameter 

increases the size of the search space and offered no improvements in performance in preliminary 

experiments. As such, it can be argued that a while loop condition in Phase 1B is not necessary.  

No procedure is given for Phase 2 as this phase simply consists of building a classifier to 

distinguish the positive and the reliable negative set and using that classifier to predict the class of 

the unlabelled instances. 

A variation on the standard implementation that is used as a baseline approach in this work is the 

S-EM method, proposed by Liu et al. [120]. As previously mentioned, S-EM (also referred to as the 

“Spy” method) is one of the most well-known PU learning methods in the literature and, despite 

having been proposed two decades ago, remains a popular choice of baseline given its impressive 

performance [130-136]. S-EM primarily differs from the standard implementation due to the use of 

hidden positive instances to determine which instances to classify as reliably negative. That is, a set 

of the labelled positive instances are hidden in the unlabelled set and, when classified, their predicted 

probability of belonging to the positive class is used to determine the predicted probability under 

which genuine unlabelled instances should fall to be considered reliably negative. A pseudocode of 

this implementation is given in Procedure 2.4.  

In Procedure 2.4, U is the set of unlabelled instances, P is the set of labelled positive instances, 

S is the spy set, sample size% is the percentage of labelled positive instances to be hidden in the 

unlabelled set, Classifier is the classifier used in the implementation, RN is the set of reliable negative 

instances, Pr(y=1) is the probability of belonging to the positive class, noise level is the level of noise 

to account for in the positive set, and |S| is the number of instances in the spy set. Naïve Bayes is 

used as the classifier in both Phase 1A and Phase 2 of the S-EM method.  
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 Procedure 2.4 S-EM (“Spy” method) 

1. N ← U; 

2. S ← sample(P, sample size%), P  ← P  − S; 

3. N + S ← N ∪ S; 
4. Run EM(Classifier, P, N + S); 

5. Sort instances by their Pr(y=1); 

6. ϴ ← Pr(y=1) of the instance in position (noise level × |S|) in sorted S; 

7. RN ← { }; # initialised empty set  

8. For every instance x in N: # i.e., instances in N + S that are not spies 

a. If  Pr(y=1|𝑥) < ϴ then RN ← RN ∪ x; 

b. U ← U – x; 

9. Build Classifier(P, RN); 

Output: Classifier 

First, the data sets are initialised (steps 1-3). The Expectation Maximisation (EM) algorithm is run 

using classifier, computing Pr(y=1) for each instance in N+S, and rebuilding classifier with the 

updated Pr(y=1) values as an additional feature (step 4). The process iterates until the values of 

Pr(y=1) no longer change. A full explanation of how the EM procedure is applied can be found in 

[120]. After sorting the instances in S in decreasing order of their Pr(y=1) values (step 5), the 

probability threshold 𝜃 is set (step 6) and used to determine which instances in N+S that are not spies 

are added to the RN set and removed from U (step 8). The classifier is then built on P and RN (step 

9). Steps 1-8 are Phase 1A, Phase 1B is skipped in this method, and step 9 is Phase 2. This method 

differs from the generic procedure of Phase 1A (Procedure 2.2) with the addition of the “spy” 

component as well as the inclusion of the Expectation Maximisation (EM) algorithm in step 4. So, 

the convergence criterion of the EM algorithm is analogous to the for loop of Procedure 2.2.  

Several variations on this method have been proposed, but the original implementation remains 

a popular choice for comparison of newly proposed PU learning algorithms. Preliminary experiments 

showed S-EM outperforming a more recently proposed modified version, so the original 

implementation was selected as a baseline method for the experiments reported later in this thesis.  

Procedure 2.5 outlines the DF-PU procedure. First, RN is initialised as an empty set, and U is 

split into 5 sets, each with 20% of the data, randomly sampled. For each Set, a deep forest classifier 

is trained to distinguish the positive instances and the instances in Set, treated as the negative 

instances. All instances in U are then classified, and the 1% of instances with the lowest Pr(y=1) are 

added to RN. Finally, a deep forest classifier is trained on P and RN.  
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Procedure 2.5 DF-PU 

1. RN ← { }; # initialised empty set  

2. Sets = U randomly split into 5 sets, each with 20% of the data; 

3. For Set in Sets: 

a. Train deep forest classifier on P and Set;  

b. Classify U and sort instances by their Pr(y=1);  

c. RN ← RN ∪ 1% of instances with lowest Pr(y=1); 

4. Build deep forest classifier on P and RN; 

Output: Classifier 

Implementations of both versions of the baselines can be found on GitHub5.  

Biased learning 

Whilst biased learning is not utilised in this work, it is a prominent PU learning framework and as 

such will be briefly described in this section.  

Biased learning is a PU learning framework that treats the unlabelled set as negative class 

instances and applies a higher penalty to the misclassification of positive instances. The unlabelled 

set is, as such, treated as a negative set with noise [3]. Deciding exactly how much more to penalise 

the misclassification of positive instances is non-trivial. Some papers, e.g., [137][138] tune their 

models according to an evaluation metric proposed by [139], shown in Equation 2.12.  

𝑝 × 𝑟

Pr(𝑦 = 1)
                  (2.12) 

Where 𝑝 is the precision, 𝑟 is the recall, and Pr(𝑦 = 1) is the probability of an instance belonging to 

the positive class. This metric, however, is a weighted formula that considers both precision and 

recall equally. This approach is potentially inefficient as, depending on the goal of the PU learning 

classifier (PU learning goals are discussed in Section 2.5.3), it may be that either precision or recall 

should be considered more than the other. This metric has not been widely adopted in the literature, 

and there is no commonly used evaluation or tuning criteria specific to PU learning. 

Many biased learning methods for PU learning are based on the support vector machine (SVM) 

classifier (see Section 2.1), mostly stemming from the biased SVM classifier proposed by Liu et al. 

[126]. This is, essentially, a standard SVM that applies a higher penalty to misclassification of the 

 
5 https://github.com/jds39/GA-Auto-PU 
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positive class, thus increasing the number of identified true positive instances, whilst also increasing 

the number of false positives. However, it is worth noting that these may not be truly false positives 

as their labels are unknown. Several extensions to the biased SVM approach have been proposed 

[15,119,138,140]. 

Incorporation of the class prior 

As with biased learning, class-prior based learning is not utilised in this work but will be briefly 

described in this section. Class-prior based PU learning techniques use the known or estimated class-

prior at various stages in the classification pipeline. Those that utilise it in the preprocessing stage 

seek to change the dataset before training the classifier [3]. One approach is to weight the instances 

in the dataset. I.e., assign a weight to the instances of each class that reflects the class prior [141]. 

Another approach is to consider unlabelled instances as both positive and negative when training the 

model. This can be done by duplicating the unlabelled instances and assigning a weight equivalent 

to the class-prior for the specific class [4]. 

Some studies look to alter standard binary classification methods to utilise the true class prior. 

The positive naïve Bayes algorithm, proposed by [142] and extended by [143], is a naïve Bayes 

classifier specific to PU learning. Rather than calculating the class probability as described in Section 

2.1, another formula that calculates a higher prior probability for the positive class is used. This has 

a benefit over the preprocessing techniques discussed above as the prior probability does not need to 

be known, it can be estimated. 

Finally, some studies use post-processing techniques that alter the class probabilities assigned to 

instances after classification. As discussed earlier, the SCAR assumption implies that the predictions 

of a model trained on a PU dataset differ from the predictions of a model trained on positive and 

negative data by a constant factor. If this constant factor is calculated or estimated, a standard binary 

classifier could be trained on the PU data and the assigned probabilities can be altered [3]. However, 

as previously discussed, a classifier trained on PU data may be inaccurate.  
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2.5.3     Practical Considerations and Challenges 

This section details practical considerations and challenges of PU learning. Several of these have 

been highlighted in this chapter already but will now be discussed in detail.  

Model evaluation 

The absence of negative instances presents an issue to the evaluation of PU learning models as 

predictive accuracy metrics usually rely on knowledge of the true class labels of each instance. 

However, in PU learning we have only knowledge of the true class label of a sample of positive 

instances. The remaining positive instances, and all negative instances, are unlabelled. Due to these 

unlabelled instances, popular metrics such as true positive and false negative rates, precision, recall, 

and the F-measure [144], cannot be correctly calculated. 

Under the SCAR assumption, given that the sample of positive instances in the labelled positive 

set is representative of the entire set of positive instances, both labelled and unlabelled, we can 

estimate several performance metrics for models tested on genuine PU data. That is, PU data that has 

not been engineered from a standard positive-negative (PN) dataset (with positive and negative 

labels). However, as these metrics represent performance estimates, they are not entirely robust. 

Arguably, a more robust approach is to evaluate a PU learning method on an engineered PU dataset 

before applying that method to a genuine PU learning task.  

As identified in [20], the approach most frequently taken in the literature is to evaluate proposed 

methods on engineered PU data created from a standard PN dataset by hiding a certain percentage of 

positive instances in the negative set, thus creating an unlabelled set (i.e., all negatives and the hidden 

positives will be indistinguishably treated as ‘unlabelled’). This is done for the training set, whilst 

leaving the test set untouched. That is, the test set will contain positive and negative instances as in 

the original dataset. Hence, the model is trained on PU data but evaluated on fully labelled data. 

Therefore, we can accurately calculate standard PN metrics. This is arguably a more robust approach 

as the performance is not estimated based on the SCAR assumption (i.e., that assumption is not 

required) for the test set, as the test set is left untouched (i.e., positive instances are only hidden in 

the negative set in the training set, not the test set); we can rely on values of performance metrics that 

are accurately calculated based on the known class labels of the instances in the test set. However, 
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this approach assumes that a method that demonstrates good performance on an engineered PU 

dataset will also perform well on a genuine PU dataset. A table demonstrating the approach taken 

(either using genuine PU data or engineered) and the evaluation metrics used was given in [20] and 

repeated here as Table 2.1 for the readers reference.  

Regarding metrics used to evaluate PU learning models, F-measure, precision, and recall should 

be reported, with an emphasis on the metric that most closely matches the goal of the learning task 

[20]. As shown by Table 2.1, F-measure was the most reported metric, reported in 37 of the 51 

reviewed papers. There are two primary goals of PU learning – prioritisation and anomaly detection. 

Depending on the goal, either precision or recall may be more important than the other. As explained 

in [138], if the goal of the learning task is prioritisation, precision is the most important metric. If the 

goal is anomaly detection, recall is the most important metric, as follows.  

In the task of prioritisation, one wishes to identify highly ranked targets. That is, instances that 

have the highest predicted probability of belonging to the positive class. As we are interested in 

prioritising instances, it is important that our model identify few unlabelled positives. Prioritisation 

is required when we need to identify a few top-ranked (most likely positive) instances for performing 

expensive or time-consuming future experiments on those few high-priority instances, and so 

minimising the number of false positives (maximising precision) is particularly important, to avoid 

doing experiments that produce negative results. Maximising recall is not so crucial because it would 

be too expensive or too time-consuming to perform future experiments to validate a large number of 

instances predicted as positives. An example is gene prioritization, where each gene is an instance 

and the positive class represents a biological function (or associated disease) of the gene, since 

biological experiments to verify gene functions tend to be expensive and time-consuming. 

In the task of anomaly detection, one wishes to accurately identify positive class instances, which 

are usually a very small minority (“anomalies”). In anomaly detection, usually the cost of a false 

negative is usually much higher than the cost of a false positive. Therefore, maximising recall 

(minimising false negatives) is usually more important than maximising precision (minimising false 

positives). For example, when classifying a bank’s transactions into fraud (anomaly) vs non-fraud 

(normal), the cost of misclassifying a fraud transaction as a non-fraud transaction is usually much 

higher than vice-versa.   
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Table 2.2, also given in [20] but repeated here for the reader’s reference, shows, for the 12 papers 

from Table 2.1 using real-world datasets for PU learning (i.e., genuine PU datasets, rather than 

engineered PU datasets), whether their goal is anomaly detection or prioritisation and whether they 

reported precision or recall. Unfortunately, out of the 3 papers addressing anomaly detection in Table 

2.2, only one is reporting recall, and out of the 9 papers addressing prioritisation, only 4 are reporting 

precision. Without these results, the suitability of the proposed method for the given target 

application cannot be determined. This shows that the importance of reporting precision and recall 

separately (particularly in prioritisation or anomaly detection tasks) is still not well appreciated in 

the PU learning area. 

Whilst precision and recall may be important metrics for a given learning task, considering either 

precision or recall in isolation is flawed, since it is well-known that it is relatively easy to maximise 

one of these measures at the expenses of obtaining a poor value for the other. Hence, it is important 

to report the F-measure, precision, and recall. This will allow researchers looking to utilise a PU 

learning method to make an informed decision on which algorithm is most appropriate for their use 

case, favouring those with a high F-measure and precision for prioritisation tasks, and those with a 

high F-measure and recall for anomaly detection. To further analyse the performance of a PU learning 

algorithm, it is important, when feasible, to assess the performance of its learned model on multiple 

distributions of unlabelled instances. That is, testing on different versions of the same dataset with 

differing percentages of the positive instances hidden in the unlabelled set in the training set, when 

doing experiments with engineered PU datasets. Due to the nature of PU learning, it is often hard to 

know the distribution of positive instances, and what proportion of them remain unlabelled. 

However, there are scenarios in which the distribution is known, or can be estimated [145][146]. In 

such scenarios, by providing results of experiments conducted on multiple distributions, we can 

provide a more comprehensive analysis of PU methods and inform on their appropriate use case. 

To summarise, the evaluation of PU learning models poses challenges due to the absence of 

negative instances. Traditional metrics that rely on true class labels cannot be accurately calculated. 

The SCAR assumption allows for estimating performance metrics on genuine PU data, but they are 

not entirely robust. Alternatively, models can be evaluated on engineered PU datasets, where a 

percentage of positive instances is hidden in the negative set. This approach relies on accurately 
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calculated standard metrics but assumes the method will perform well on genuine PU datasets. 

Assessing the model's performance on multiple distributions of unlabelled instances provides a more 

comprehensive analysis. The choice of evaluation metrics depends on the goal of the learning task: 

prioritization or anomaly detection. Precision is crucial for prioritization, while recall is more 

important for anomaly detection. The importance of these metrics is determined by the cost 

associated with false positives and false negatives in each task, respectively. 
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Table 2.1. Evaluation approaches used by papers proposing PU learning algorithms. 

Reference 

Engineered or Genuine 

PU Data F-measure Accuracy Precision Recall AUROC 

[147] E ✓     

[148] E ✓     

[143] E ✓ ✓    

[149] E  ✓    

[150] E ✓     

[138] E      

[151] E  ✓    

[146] E  ✓    

[4] E ✓    ✓ 

[152] E ✓     

[153] E ✓     

[154] E  ✓    

[155] E ✓ ✓    

[156] E  ✓    

[157] E ✓     

[158] E  ✓ ✓ ✓  

[140] E ✓ ✓    

[119] E ✓     

[132] E  ✓     

[159] G     ✓ 

[142] E ✓ ✓    

[139] E ✓     

[160] G  ✓    

[5] E ✓ ✓    

[161] E ✓     

[162] E ✓     

[163] E ✓     

[11] E&G ✓ ✓   ✓ 

[164] E ✓ ✓    

[126] E ✓     

[120] E ✓     

[118] E  ✓   ✓ 

[122] G ✓ ✓  ✓  

[165] E&G     ✓ 

[166] E ✓     

[115] G ✓  ✓ ✓  

[167] E ✓     

[168] E ✓ ✓    

[116] G ✓  ✓ ✓ ✓ 

[169] E ✓ ✓    

[117] G ✓     

[170] E&G ✓   ✓  

[171] E ✓     

[129] G   ✓ ✓  

[172] E ✓     

[173] E ✓     

[121] G  ✓    

[174] E ✓     

[6] G ✓  ✓ ✓ ✓ 

[175] E ✓     

[176] E     ✓ 

Totals E:42 G:12 37 19 5 7 8 
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Table 2.2. PU learning goals in reviewed papers using genuine PU data. 

Reference Anomaly detection Prioritisation Precision Recall 

[35]  ✓   

[38] ✓    

[43]  ✓   

[10] ✓   ✓ 

[46]  ✓   

[3]  ✓ ✓ ✓ 

[4]  ✓ ✓ ✓ 

[5]  ✓   

[50]  ✓  ✓ 

[52]  ✓ ✓ ✓ 

[9] ✓    

[56]  ✓ ✓ ✓ 

Total 3 9 4 6 

Imbalanced data 

As previously stated, class imbalance is often present in PU learning datasets, given the expense or 

difficulty associated with identifying positive instances. Therefore, PU learning datasets commonly 

consist of a large number of unlabelled instances and a very small number of labelled positive 

instances. Handling the imbalanced data presents a challenge [177][178], but each of the three 

previously discussed PU learning frameworks employ strategies to do so. If utilising the two-step 

framework, the unlabelled set can be split into multiple subsets that create a more even distribution 

with the positive set. This is often referred to as undersampling in machine learning literature. In the 

biased learning approach, class imbalance is handled by modifying the error or loss function in the 

learning algorithm. This modification, often called cost-sensitive learning, adjusts the penalties 

associated with misclassification of instances from different classes. Specifically, it increases the 

penalty for misclassifying instances from the minority class (positive instances in this case). By doing 

so, the algorithm is pushed a higher rate of classification of the positive class, hence countering the 

effects of class imbalance. When incorporating the class prior, the approach directly incorporates the 

prior probability of the classes into the learning algorithm. This prior probability can be estimated 

from the dataset itself or provided based on domain knowledge. When class priors are incorporated 

correctly, the learning algorithm should be able to naturally handle the class imbalance. The decision 

threshold is adjusted based on these priors, thus compensating for the imbalance in the class 

distribution. 
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In summary, class imbalance is a significant challenge in PU learning, but it can be effectively 

handled using various strategies, depending on the specific learning approach adopted. These 

methods aim to adjust the learning process in a way that ensures the algorithm does not overlook the 

minority class, leading to more accurate and robust models. 

Assumption violation 

As previously discussed, PU learning is underpinned by various assumptions, such as negativity, 

separability, smoothness, Selected Completely at Random (SCAR), and Selected at Random (SAR). 

These assumptions guide the learning process and form the basis of the algorithm's “understanding” 

of the data. However, when the actual data does not conform to these assumptions, the performance 

of the PU learning method may be significantly impacted. 

In practice, it is unlikely that the data used will adhere completely to the assumptions made. 

However, PU learning methods still show good predictive performance when applied. Therefore, so 

long as the data adheres to the assumptions made somewhat, it can be argued that the impact of areas 

of the data that do not adhere is relatively small. 
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Chapter 3  

The Proposed Auto-ML Framework for 

Positive-Unlabelled Learning  

This chapter details the proposed Automated Machine Learning (Auto-ML) framework used for 

Positive-Unlabelled (PU) learning throughout this work.  

Recall that there are three main approaches to PU learning (outlined in Chapter 2.5), namely the 

two-step framework, biased learning, and methods that incorporate the class prior. The Auto-ML 

systems proposed in this thesis focus only on the development of two-step PU learning methods, 

given that this is the most popular approach.   

This chapter is organised as follows. Section 3.1 presents a summary of the two-step approach 

for PU learning – for details, see Section 2.5. Section 3.2 specifies the search spaces and the objective 

function used by all Auto-ML systems proposed in this thesis. This section also gives pseudocodes 

with specific implementation details of Phases 1A, 1B, and 2. Section 3.2 is the core of the proposed 

Auto-ML framework for positive-unlabelled learning, and the search spaces and objective function 

specified in this section will be used by all three types of Auto-ML systems proposed in Chapters 4, 

5 and 6. Section 3.3 describes the classification datasets used in this thesis’ experiments, which 

includes both synthetic datasets and real-world biomedical datasets which were engineered for PU 

learning. Section 3.4 details the experimental methodology used throughout this work.  
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3.1     A Summary of the Two-Step Approach for PU 

Learning 

Recall that a two-step PU learning algorithm consists of three main components, namely: Phase 1A, 

Phase 1B, and Phase 2 [21][22]. Phase 1A and IB curate a set of reliable negative instances from the 

unlabelled set, and Phase 2 builds a classifier to distinguish the labelled positive and reliable negative 

instances. In Phase 1A, a probabilistic classifier is trained using the labelled positive instances as the 

positive set and a subset of the unlabelled instances as the negative set. Typically, the unlabelled set 

is divided into multiple subsets, and each is used in turn as the negative set in this Phase 1A, so that 

this phase typically involves multiple iterations of classifier training. The number of such subsets, 

which is also the number of iterations training a classifier, is a user-specified parameter. In each 

iteration, the learned model classifies the instances in the current unlabelled subset and those 

instances that have a probability of belonging to the positive class of less than a given threshold are 

added to the set of reliable negative instances and removed from the unlabelled set. This process is 

then repeated for each unlabelled subset. Note that this subset count parameter can simply be 1, 

meaning that the entire unlabelled set would be used to learn the classifier, and only one iteration 

would be performed in Phase 1A. The result of Phase 1A is the initial reliable negative set, sometimes 

referred to as the reliable negative seed set in methods that opt to use Phase 1B.  

Phase 1B is an optional phase that some methods choose to undertake to further expand the 

reliable negative set [5][167][179]. This phase is more akin to traditional semi-supervised 

classification, expanding the reliable negative set using the initial reliable negative instances as a 

seed set. A classifier is built to distinguish the positive and reliable negative instances, and the 

resulting model is used to classify the unlabelled set. Those instances classified by the model as 

having a predicted probability of belonging to the positive class of less than a given threshold are 

then added to the reliable negative set. 

The final Phase 2 simply involves learning a classifier to distinguish the positive and the reliable 

negative set.  

Each of the phases described here involve their own set of hyperparameters. These 

hyperparameters and the values they can take in the Auto-ML systems are defined in Section 3.2.  
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3.2     Search Spaces and Objective Function 

In Auto-ML in general, a search space is defined as the set of all possible candidate solutions that 

can be found by the search algorithm, consisting of a pre-defined set of algorithms with their 

hyperparameters and their respective values. For our Auto-ML systems for PU learning, the search 

space is defined by the two-step PU learning framework. That is, a candidate solution is a two-step 

PU learning method, consisting of Phases 1A, 1B, and 2, as defined in Section 3.1 and discussed in 

detail in Section 2.5.2. Each phase has a distinct set of hyperparameters and values that these 

hyperparameters can take. It is these hyperparameters and values that define the search space of the 

proposed Auto-ML systems. 

Throughout our experiments we have utilised two variations of the search space. The first, 

referred to as the base search space, is detailed in Section 3.2.1. The second, referred to as the 

extended search space, is detailed in Section 3.2.2. 

3.2.1     Base Search Space 

The base search space, proposed in previous work [21], allows the system to build simple two-step 

PU learning methods that do not utilise any heuristics for determining the values of the 

hyperparameters. Specifically, the search space is defined by the following 7 hyperparameters and 

their corresponding candidate values: 

• Iteration_count_1A: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } 

• Threshold_1A: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 } 

• Classifier_1A: { Candidate_classifiers } 

• Threshold_1B: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 } 

• Classifier_1B: { Candidate_classifiers } 

• Flag_1B: { True, False } 

• Classifier_2: { Candidate_classifiers } 

Where Candidate_classifiers represents 18 different candidate classification algorithms, namely: 

Gaussian naïve Bayes, Bernoulli naïve Bayes, random forest, decision tree, multilayer perceptron, 

support vector machine, stochastic gradient descent classifier, logistic regression, k-nearest 
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neighbour, deep forest, AdaBoost, gradient boosting classifier, linear discriminant analysis, extra tree 

classifier, extra trees classifier (an ensemble of extra trees), bagging classifier, Gaussian process 

classifier, and histogram-based gradient boosting classification tree. For an overview of these 

classification algorithms, see Section 2.1.  

 

Figure 3.1. Representation of a candidate solution, with a linear encoding. 

Together, these hyperparameters constitute Phase 1A, Phase 1B, and Phase 2 of the two-step PU 

learning framework described in Section 2.5.2 and outlined in Section 3.1. Figure 3.1 shows how 

these hyperparameters form these phases.  

Phase 1A consists of the hyperparameters Iteration_count_1A, Threshold_1A, and 

Classifiers_1A. The iteration count determines the number of subsets to split the unlabelled set into 

when learning a classifier to distinguish between the positive and the unlabelled set, and also the 

number of iterations that a classification algorithm is run in Phase 1A. E.g., if the iteration count is 

5, the unlabelled set will be split into 5 subsets, each with 20% of the unlabelled data, and the 

classification algorithm will be run 5 times, each using a different subset of unlabelled instances in 

the training set. This helps to handle the class imbalance present in many PU learning datasets. The 

Threshold_1A hyperparameter determines the predicted probability of belonging to the positive class 

that an instance must fall under to be considered a reliable negative instance. The Classifier_1A is 

simply the classifier used to predict the reliable negative instances.  

Phase 1B consists of the hyperparameters Threshold_1B, Classifier_1B, and Flag_1B. 

Threshold_1B and Classifier_1B are analogous to those used in Phase 1A. The Flag_1B 

hyperparameter indicates whether to skip Phase 1B or not. Phase 1B is not always utilised in PU 

learning techniques, and therefore the Auto-ML system can generate individuals that are able to skip 

this phase. Given the similarities between Phase 1A and Phase 1B, a natural question arises as to 

why we exclude an iteration count parameter from Phase 1B. There are two main reasons for this 

exception. Firstly, the iteration count parameter was introduced in order to handle the class imbalance 

inherent to PU learning datasets. However, this is not generally an issue once an initial reliable 

negative set has been created as this set is simply a small subset of the unlabelled set. Furthermore, 

class imbalance is indirectly handled by the Threshold_1A parameter, which will evolve to be a 

Phase 2

Iteration_count_1A Threshold_1A Classifier_1A Threshold_1B Classifier_1B Flag_1B Classifier_2

Phase 1A Phase 1B



94 

 

smaller value (and thus fewer instances will be added to the reliable negative set) if the reliable 

negative set becomes large enough to detriment predictive accuracy. Secondly, this hyperparameter 

increases the size of the search space and, in preliminary experiments, did not improve predictive 

performance. 

Phase 2 simply consists of the hyperparameter Classifier_2. This classifier will be trained to 

distinguish the positive set and the reliable negative set extracted from the unlabelled set in phases 

1A and potentially 1B. The size of the original search space is thus calculated as follows: 

10 × 10 × 18 × 10 × 18 × 2 × 18 = 11,664,000 possible candidate solutions. 

However, this calculation is an upper bound calculation of the number of candidate solutions, 

given the dependencies between the Phase 1B hyperparameters. That is, given that whether or not 

the hyperparameters Threshold_1B, and Classifier_1B have an impact on the candidate solution is 

determined by the Flag_1B hyperparameter.  

Figure 3.2 shows an example candidate solution. 

 

Figure 3.2. Example candidate solution for the base search space. 

So, in Phase 1A of the example candidate solution shown in Figure 3.2, the unlabelled set would be 

split into 3 subsets (defined by the Iteration_count_1A hyperparameter). Each of these subsets in 

turn, along with the labelled positive set, would be used to train a random forest classifier 

(Classifier_1A) which would then predict the probability of the unlabelled instances in the current 

subset belonging to the positive class. Those instances with a predicted probability of less than 0.4 

(the Threshold_1A parameter) would be added to the reliable negative set and removed from the 

unlabelled set. Then, as the Flag_1B parameter is set to True, a linear discriminant analysis classifier 

(Classifier_1B) would be built using the labelled positive instances as the positive set and the reliable 

negative instances identified in Phase 1A as the negative set. It would then be used to classify the 

remaining unlabelled instances, and those with a predicted probability of belonging to the positive 

class of less than 0.25 (the Threshold_1B hyperparameter) would be added to the reliable negative 

set. Finally, a Bernoulli naïve Bayes classifier (Classifier_2) would be trained on the labelled positive 

and the reliable negative sets.  

Phase 2

3 0.4 Random forest 0.25 Linear Discriminant Analysis TRUE Bernoulli Naïve Bayes

Phase 1A Phase 1B
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3.2.2     Extended Search Space (Based on the Spy Technique) 

The second search space, proposed in previous work [22] and referred to as the extended search 

space, introduces three new hyperparameters based on the spy technique for PU learning. Essentially, 

spy-based approaches are used to heuristically determine the Threshold_1A parameter. A percentage 

of labelled positive instances (determined by Spy_rate) are hidden in the unlabelled set. A classifier 

(Classifier_1A) is built, using the labelled positive instances as the positive set and the unlabelled 

instances with the spy instances as the negative set. The spy instances are then classified, and 

Threshold_1A is determined such that a percentage of spy instances (determined by Spy_tolerance) 

have a predicted probability of belonging to the positive class of less than Threshold_1A (e.g., if 

Spy_tolerance is set to 0.05, 5% of the spy instances can have a predicted probability of belonging 

to the positive class of less than Threshold_1A). Note that the Threshold_1A parameter defined by 

the candidate solution is thus redundant and its value is not used when building the PU learning 

model for candidate solutions with a value of True for Spy_flag. However, Threshold_1A  is still 

needed as a component of a candidate solution during the search performed by the Auto-ML system, 

since some candidate solutions generated along the search will not use the spy technique (depending 

on the value of the Flag_1B hyperparameter).  

Hence, the three new hyperparameters introduced into the extended search space are as follows: 

• Spy_flag: { True, False } 

• Spy_rate: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 } 

• Spy_tolerance: { 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 } 

Spy_flag is a Boolean value used to indicate whether or not to use a spy-based method in Phase 1A. 

Spy_rate determines the percentage of positive instances to use as spies. Spy_tolerance determines 

what percentage of spies can remain in the unlabelled set when the threshold is calculated.  The 

inclusion of these three new hyperparameters increases the size of the size space to: 

10 × 10 × 18 × 10 × 18 × 2 × 18 × 2 × 7 × 11 = 1,796,256,000 candidate solutions. 

The extended search space is thus 154 times larger than the original search space. Note, however, 

that this is also an upper bound, given that the spy hyperparameters have the same dependency 

considerations as the Phase 1B hyperparameters.  
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The motivation for expanding the search space was to attempt to increase predictive performance 

of the system by utilising spy-based methods, as initially proposed by [120]. This approach has been 

used frequently in the PU learning literature with success [180][127][163][181][182].  

 

Figure 3.3. Example candidate solution for extended search space. 

Figure 3.3 shows an example candidate solution for the extended search space. As Spy_flag is set to 

True, 15% of the labelled positive instances (determined by Spy_rate) are hidden in the unlabelled 

set in Phase 1A. The RN threshold is determined as the value at which only 2% of spy instances have 

a predicted probability of belonging to the positive class of less than the determined value. 

Spies are utilised in Phase 1A, but not in Phase 1B. This decision was made as preliminary 

experiments showed no increase in predictive performance when the system allowed spies in Phase 

1B. Also, the search space would be greatly expanded if spies were used in Phase 1B, as the three 

new hyperparameters introduced in this expanded search space would all need to be repeated for 

Phase 1B. Thus, if spies were used in Phase 1B, the size of the search space would be:  

10 × 10 × 18 × 10 × 18 × 2 × 18 × 2 × 7 × 11 × 2 × 7 × 11 = 276,623,424,000 

Therefore, given that no increase in performance was shown in our preliminary experiments using 

spies in Phase 1B and the system had a much larger search space to explore (154 times larger than 

the extended search space, 23,716 times larger than the base search space), we opted simply for 

inclusion of the spy-based heuristic method in Phase 1A only.  

3.2.3     Objective Function 

The objective function assesses the quality of a given configuration of PU learning hyperparameter 

settings for a specific PU learning task, i.e., a specific input dataset. This is done by applying the PU 

method configuration defined by the candidate solution to the training set. To describe the process 

of obtaining the objective score of a candidate solution, we use the following notation: 

RN: The set of reliable negative instances. 

P: The set of labelled positive instances.  

U: The set of unlabelled instances. 

Phase 2

3 0.4 Random forest TRUE 0.15 0.02 0.25 Linear Discriminant Analysis TRUE Bernoulli Naïve Bayes

Phase 1A Phase 1B
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P(y=1): The probability of an instance belonging to the positive class, as calculated by the 

classifier. 

Procedure 3.1 Objective function (Candidate solution, Training set)  

1. Split Training set into 5 Learning and Validation sets; 

2. For each Learning set and corresponding Validation set: 

a. P = all labelled positive instances in Learning set; 

b. U = all unlabelled instances in Learning set; 

c. If Spy_flag then RN, U = Phase 1A-Spies(P, U) // call Procedure 3.2  

                    else RN, U = Phase 1A(P, U);  // call Procedure 3.3 

d. If Flag_1B then RN, U = Phase 1B(P, RN, U);  // call Procedure 3.4 

e. Train Classifier_2 (using the Learning set) to distinguish P and RN;  

f. Classify Validation set;  

Output Candidate solution’s objective score = average F-measure over the 5 Validation sets; 

The objective score of each candidate solution is computed as specified in Procedure 3.1. The 

Training set is split into 5 folds for internal cross-validation, creating 5 pairs of Learning and 

Validation sets (step 1). For each pair of Learning and Validation sets, all labelled positive instances 

are added to P (step 2.a) and all unlabelled instances are added to U (step 2.b). The RN set is 

determined with either the Phase 1A-Spies(P, U) or Phase 1A(P, U) algorithm, depending on the 

Spy_flag parameter, which returns a refined U set (step 2.c, executing Procedure 3.2 or 3.3). If the 

flag for running Phase 1B is set to true, RN and U sets are further refined with the Phase 1B(P, RN, 

U) algorithm (step 2.d, executing Procedure 3.4). Classifier_2 is then trained to distinguish P and RN 

(step 2.e), and then used to classify the Validation set (step 2.f). The objective score of the Individual 

is assigned as the F-measure over the 5 Validation set classifications (output). The F-measure is 

calculated by evaluating the individuals on a validation set considering all unlabelled instances as 

negative. That is, whilst in the test set there are positive and negative instances (i.e., no unlabelled 

set), in the validation set there is a positive and an unlabelled set, with the unlabelled set considered 

as the negative set. An alternative approach would be to have the validation set reflect the true class 

labels of the instances (i.e., a positive and a negative set, rather than a positive and an unlabelled set) 

so that the F-measure can be accurately calculated. That is, in the procedure for creating a PU dataset 

from a PN dataset, rather than simply changing the training set to a PU dataset, and leaving the test 

set as a PN dataset, we could have gone a step further and, for the learning and validation sets, 

converted the learning set into a PU dataset, but leave the validation set as a PN dataset, rather than 

having both the learning and validation sets as PU datasets, as they are created from the training set, 
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which is also a PU dataset. However, by evaluating the candidate solution on positive and unlabelled 

data, it is a truer reflection of how the individual would perform when given genuine PU data. This 

procedure, and the subsequent procedures 3.2-3.4, have also been presented in [22].  

Procedure 3.2 Phase 1A-Spies(P, U) 

1. RN = { }; 

2. Sets = split U into Iteration_count_1A subsets; 

3. For every Set in Sets: 

a. Spies = Spy_rate% instances, randomly selected from P;  P = P – Spies;  

b. Set_with_spies = Set ∪ Spies 

c. Train Classifier_1A on P and Set_with_spies; 

d. Classify all instances in Set_with_spies; 

e. Set threshold to a value such that Spy_tolerance% spies have Pr(y=1) less than threshold; 

f. For each unlabelled Instance in Set_with_spies: 

i. If Pr(y=1) < threshold then RN = RN ∪ Instance, U = U – Instance; 

Output RN, U; 

Procedure 3.2 describes Phase 1A of the two-phase PU learning method, executed when Spy_flag is 

True. The RN set is initialised empty (step 1). The set U of unlabelled instances is split into 

Iteration_count_1A subsets (step 2). For each Set in the list of subsets, Spies is initialised with 

Spy_rate% of instances of P, randomly selected and removed from P (step 3.a), and Set and Spies 

are combined to form Set_with_spies (step 3.b). Next, Classifier_1A is trained on P and 

Set_with_spies (step 3.c) and all instances in Set_with_spies are classified and the threshold is set so 

that Spy_tolerance% of spies have Pr(y=1) less than threshold (step 3.d-e). For each unlabelled 

Instance in Set_with_spies (excluding the spies), if Pr(y=1) is less than threshold, they are added to 

RN and removed from U (step 3.f). The resulting RN and U sets are then returned. 

Procedure 3.3 Phase 1A(P, U) 

1. RN = { }; 

2. Sets = split U into Iteration_count_1A subsets; 

3. For every Set in Sets: 

a. Train Classifier_1A on P and Set; 

b. Classify all unlabelled instances in Set; 

c. For each unlabelled Instance in Set: 

i. If P(y=1) < Threshold_1A then RN = RN ∪ Instance, U = U – Instance; 

Output RN, U; 

Phase 1A of the two-phase PU learning method, executed when Spy_flag is False, is described in 

Procedure 3.3. The RN set is initialised as an empty set (step 1). The set U of unlabelled instances is 
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split into Iteration_count_1A subsets (step 2). For each Set in the list of subsets, Classifier_1A is 

trained to distinguish P and Set (step 3.a) and used to classify all unlabelled instances in Set (instances 

previously treated as the negative set during training) (step 3.b). For each unlabelled Instance, if the 

instance’s calculated P(y=1) is less than Threshold_1A then Instance is added to RN and removed 

from U (step 3.c.i). The resulting RN and U sets are then returned.  

Procedure 3.4 Phase 1B(P, RN, U) 

1. Train Classifier_1B on P, RN; 

2. Classify U; 

3. For each Instance in U: 

a. If P(y=1) < Threshold_1B then RN = RN ∪ Instance,  U = U – Instance; 

Output RN, U; 

Phase 1B of the two-phase learning method is described in Procedure 3.4. Classifier_1B is trained to 

distinguish the positive and reliable negative instances in P, RN (step 1) and the resulting classifier 

is then used to classify U (step 2). For each Instance in U, if the Instance’s calculated P(y=1) is less 

than Threshold_1B, Instance is added to RN and removed from U (step 3). The resulting RN and U 

sets are returned (step 4). 

As Phase 2 simply consists of building Classifier_2 from P and RN, no pseudocode is needed.  

This objective-function evaluation process is used for all Auto-PU systems described in this 

work, which includes systems based on evolutionary algorithms, Bayesian optimisation, and a hybrid 

evolutionary Bayesian optimisation system. For those experiments that utilise the base search space, 

rather than the extended search space, Procedure 3.2 is not used as there are no spy parameters, and 

therefore the step 2.c of Procedure 3.1 is simplified, as follows: “RN, U = Phase 1A(P, U);  // call 

Procedure 3.3”.  

3.3     Classification Datasets  

To assess the proposed Auto-PU systems, experiments were conducted on two types of datasets, 

namely real-world biomedical datasets and synthetic datasets. Both types of datasets are originally 

binary classification datasets and therefore need to be adapted for PU learning, as discussed in 

Section 2.5. To do so, we have hidden 𝛿% of the positive instances in the negative set (where 𝛿 is a 
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user-specified parameter), thus creating an unlabelled set. This process of engineering a PU dataset 

from a binary dataset is common throughout the PU learning literature [120][155][183][20]. 𝛿 takes 

the values 20%, 40%, and 60% throughout this work, meaning that each dataset is engineered into 

three datasets, thus creating 120 datasets total (20 original real-world datasets, 20 original synthetic 

datasets, with each original dataset being used to produce three datasets, using the aforementioned 

three different values of 𝛿).  

3.3.1     Real-World Biomedical Datasets 

The experiments reported in this thesis used 20 publicly available biomedical datasets, including 13 

classical benchmark classification datasets from the well-known UCI dataset repository [184], and 7 

datasets introduced in [185-191]. These datasets all involve real-world learning scenarios in the task 

of disease or health-risk prediction. The main characteristics of these datasets are shown in Table 

3.1. All these 20 datasets are originally binary-class datasets (with positive and negative instances), 

and they were engineered for PU learning as described earlier. 

Table 3.1. Main characteristics of the biomedical datasets used in the experiments. 

Dataset No. instances No. features %Pos 

Alzheimer’s [185] 354 9 10.73 

Autism [184] 288 15 48.26 

Breast cancer Coimbra [184] 116 9 55.17 

Breast cancer Wisconsin [184] 569 30 37.26 

Breast cancer mutations [186]   1416 53 32.42 

Cervical cancer [184] 668 30 2.54 

Cirrhosis [187] 277 17 25.72 

Dermatology [184] 359 34 13.41 

Pima Indians Diabetes [184] 769 8 34.90 

Early Stage Diabetes [188] 521 17 61.54 

Heart Disease [184] 304 13 54.46 

Heart Failure [189] 300 12 32.11 

Hepatitis C [184] 590 13 9.51 

Kidney Disease [184] 159 24 27.22 

Liver Disease [184] 580 11 71.50 

Maternal Risk [184] 1014 6 26.82 

Parkinsons [184] 196 22 75.38 

Parkinsons Biomarkers [190] 131 29 23.08 

Spine [184] 311 6 48.39 

Stroke [191] 3427 15 5.25 

 

Biomedical datasets are good candidates for PU learning given the inherent uncertainty involved in 

labelling biomedical data. For example, consider a learning task that involves assessing a person’s 
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risk of developing a given disease (as is the scenario for many of these datasets). A classifier may 

learn to distinguish between a positive set, consisting of data from patients who have been diagnosed 

with a specific disease, and a negative set, consisting of data from patients who have not been 

diagnosed with a specific disease. From this data, we wish to identify whether an unseen patient has 

a specific disease. However, consider the wording of this scenario. We are looking to identify 

whether a patient has a disease, by learning from data consisting of patients who have or have not 

been diagnosed with a disease. In other words, we are looking to identify true positives by learning 

only from labelled positives. The negative set, in this scenario, can be more precisely considered an 

unlabelled set, given that “not diagnosed” does not mean that a patient does not have a disease. It 

might simply be that this patient has not undergone any tests to determine whether the disease is 

present. Or, this patient may have undergone some tests, but the tests may not be wholly accurate, or 

the disease may be undetectable with the given test. For examples of studies detailing the reliability 

of specific diagnostic tests see [192-197]. Furthermore, biomedical tests are expensive, and thus the 

presence of unlabelled data may simply be a practicality to minimise the cost of data curation. Thus, 

we have used biomedical datasets in our experiments as they are appropriate for PU learning and 

have been referred to as “one of the most significant usage areas in PU learning” [198]. For examples 

of PU learning applications to biomedical datasets, see [3,115,199,200,201].  

3.3.2     Synthetic Datasets 

The second type of dataset used in the experiments reported in this thesis were synthetic datasets, 

which have been computationally generated using sklearn’s make_classification method [31]. 20 

datasets were created, using the following parameter settings of the make_classification method: 

• Number of samples: 500 to 2,000 

• Number of features: 50 to 200 

• Number of informative features: 2 to (number of features / 2) 

• Number of redundant features: 0 to (number of features – number of informative 

features) 

• Number of clusters per class: 1 to 10 

• Percentage of instances belonging to positive class: 1 – 50% 
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All other parameters were kept at their default. The exact characteristics of each dataset can be found 

in Table 3.2. Samples is the number of instances in the dataset, features is the number of features (or 

attributes) of an instance, informative is the number of informative (relevant) features, redundant is 

the number of redundant features, clusters is the number of clusters per class, and Pos is the 

percentage of instances in the dataset that are positive. Note that the %Pos columns in both Tables 

3.1 and 3.2 show the percentage of positive instances before 𝛿% are hidden in the unlabelled set. 

Testing on synthetic datasets is also used in the PU learning literature [154,156] and allows us to 

evaluate our systems on datasets with a variety of characteristics.   

Table 3.2. Main characteristics of the synthetic datasets used in the experiments. 

Dataset Samples Features Informative Redundant Clusters %Pos 

1 1209 167 12 74 5 15.76 

2 1366 147 7 57 7 29.31 

3 944 192 83 65 2 12.78 

4 1799 97 29 10 3 21.57 

5 1156 148 56 59 5 19.27 

6 1489 113 54 1 2 25.30 

7 1365 95 8 76 1 12.98 

8 761 169 16 67 4 32.02 

9 1258 100 17 2 3 11.56 

10 1428 79 12 36 3 26.83 

11 1903 58 27 25 5 38.02 

12 1969 56 10 38 9 23.93 

13 1502 73 7 15 4 24.45 

14 1342 78 35 31 3 1.64 

15 898 98 41 42 5 43.48 

16 1132 75 25 8 1 35.64 

17 976 82 39 24 8 6.45 

18 640 116 15 55 8 23.35 

19 1271 56 8 7 9 32.04 

20 516 72 19 47 8 22.45 

 

3.4     Experimental Methodology 

3.4.1     Cross-Validation 

Throughout this work, the experiments use a nested cross-validation procedure, with an external 

cross-validation used to measure predictive performance (generalisation ability) and an internal 

cross-validation used to evaluate candidate solutions during a run of an Auto-PU system.  
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For the external cross-validation, the experiments use the well-known stratified 5-fold cross-

validation procedure. This involves randomly splitting the data into 5 folds and using those folds as 

training and test sets. Training sets are created by combining 4 of the 5 folds, and the test set is the 

remaining fold. This process is repeated for all folds, so each is used as the test set exactly once. The 

cross-validation is stratified in the sense that in each of the 5 folds the distribution of class labels is 

approximately the same as the distribution in the full dataset. We chose 5 folds, rather than the more 

popular 10 folds, as the number of positive instances in some of our classification datasets are small. 

Thus, in some datasets 10 folds would split the positive set into folds that are so small as to be 

practically unsuitable. As we utilise the stratified cross-validation procedure, the folds each have 

roughly the same number of positive instances.  

Inside the 5-fold external cross-validation, the Auto-PU system runs a 5-fold internal cross-

validation procedure. This involves splitting the training set into 5 pairs of learning and validation 

sets. The model is then built using the learning set and tested on the validation set. This process is 

repeated for each pair of learning and validation sets, with the performance of the model averaged 

over the 5 sets. Performing this internal cross-validation procedure helps to prevent overfitting, by 

having the model performance generalised over multiple subsets of the training data.  

For each version of the Auto-PU system, for each training set, we run the system to evolve the 

best candidate solution that it is able to find within the search space. During the search performed by 

the Auto-PU system, each candidate solution is assessed on the 5 pairs of learning and validation 

sets, and the performance of the candidate solution is determined by the average F-measure value 

achieved over the 5 validation sets. When the Auto-PU system’s search ends, the best candidate 

solution returned by the system is thus the one with the highest average F-measure calculated over 

the 5 validation sets inside the training set. Then, a PU learning classifier is built from the training 

set with the configuration defined by that best candidate solution. The classifier is then used to predict 

the class of all instances in the test set. This process is repeated for the 5 pairs of training and test 

sets in the 5-fold cross-validation.  

We report precision, recall, and F-measure as the evaluation metrics for comparison. F-measure 

is the most relevant measure in the experiments reported in this thesis, since it is the measure being 

optimised by the Auto-PU systems, but the separate values of precision and recall are also important 
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metrics for determining the suitability of a PU learning method for a given learning task [20]. For 

details of precision, recall, and F-measure, see Section 2.1. When comparing a version of the Auto-

PU system against another version or method, all systems/methods tested use the same 5-fold cross-

validation procedure, with the same folds, to ensure a fair comparison.  

3.4.2     Statistical Significance Analysis 

Regarding statistical analysis of the computational results, for each performance measure (F-

measure, recall, and precision), we compare the performance of the system tested against the 

performance of the other methods using the non-parametric Wilcoxon Signed-Rank test [202]. Since 

this involved testing multiple null hypotheses, we use the well-known Holm correction [203] for 

multiple hypothesis testing. This procedure involves comparing the best method against each of the 

other methods,  ranking the p-values from the smallest to largest (i.e., from most to least significant), 

and adjusting the significance level 𝛼 according to the p-values’ ranking. We set 𝛼 = 0.05 as usual 

before adjusting it according to the position of the p-value in the ranked list. 𝑝1 (the smallest p-value) 

is deemed significant if less than 
𝛼

𝑛
, where 𝑛 is the number of hypotheses tested, which is the number 

of methods tested minus 1. For example, 𝑛 = 2 for 3 methods, since the best method is compared 

against each of the other two methods, and so 2 hypothesis are tested. If this condition is not satisfied, 

the procedure stops and all 𝑝 values are deemed non-significant. If 𝑝1 is deemed significant, 𝑝2 is 

deemed significant if less than 
𝛼

𝑛−1
, etc. 

3.4.3     Correlation Coefficient Analysis 

In this work, the correlation between a hyperparameter’s values and a dataset’s characteristic is 

analysed using the Pearson’s linear correlation coefficient. This correlation coefficient, denoted as 𝑟 

in Equation 3.1, measures the strength and direction of the linear relationship between two variables. 

It can have a value between -1 and 1, where -1 indicates a perfectly negative linear correlation, 1 

indicates a perfectly positive linear correlation, and 0 signifies no linear correlation. The closer the 

coefficient is to either -1 or 1, the stronger the correlation between the variables. The formula for the 

correlation coefficient is given in Equation 3.1, as defined in [204]. 
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𝑟 =  
∑ 𝑧𝑥𝑧𝑦

𝑛 − 1
              (3.1) 

Where 𝑧𝑥 and 𝑧𝑦 are the z-scores of the two variables being analysed for their correlation, and 𝑛 is 

the number of observed instances. For an explanation of z-scores, see [204]. 

For the purposes of this work, we use the categorisation of correlation coefficient values as 

defined in [205]. The converse of these values apply with the same categorisations for the negative 

correlations. The categorisations are as follows: 

• 0.00 – 0.09: Negligible correlation 

• 0.10 – 0.39: Weak correlation 

• 0.40 – 0.69: Moderate correlation 

• 0.70 – 0.89: Strong correlation 

• 0.9 – 1.00: Very strong correlation 
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Chapter 4    

A Genetic Algorithm-based Auto-ML 

System for Positive Unlabelled 

Learning (GA-Auto-PU) 

GA-Auto-PU is a Genetic Algorithm (GA)-based Automated Machine Learning (Auto-ML) system 

for Positive-Unlabelled (PU) learning. Before proposing this system in previous work [21], no Auto-

ML system for PU learning existed in the literature. The value of Auto-ML systems was discussed 

in Section 2.4, but to briefly summarise, the performance of any machine learning algorithm is largely 

dependent on the input data. Thus, constructing an algorithm customised to the input data, from a set 

of algorithmic components, is a valuable approach for any machine learning research area; and it is 

particularly important in PU learning, given the lack of Auto-ML systems in this area.  

In this chapter we evaluate the performance of the GA-Auto-PU system against TPOT (see 

Section 2.4), an Auto-ML system for standard binary classification, and against two baseline PU 

learning methods (see Section 2.5). For evaluation we test on two types of datasets, real-world 

biomedical datasets, and synthetic datasets, each with three different values of 𝛿 (20%, 40%, 60%), 

indicating the percentage of positive instances hidden in the negative class to create an unlabelled 

dataset. For details of both types of datasets, see Section 3.3.  

This chapter first gives a detailed description of the GA-Auto-PU system (Section 4.1), including 

details of its main procedure and its hyperparameters. Then, the experimental setup is detailed in 

Section 4.2, with a description of the experimental datasets, the nested cross-validation procedure, 
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the statistical significance testing, and the structure of the results sections. Next, the results are 

presented (Section 4.3), firstly the GA-Auto-PU with the base search space, and then for the GA-

Auto-PU version with the extended search space. For details of the difference between the base and 

search spaces, see Section 3.2. For each of these two GA-Auto-PU versions, the reported results 

compare GA-Auto-PU against TPOT and two baseline PU learning methods. Next, the algorithmic 

components most frequently selected by GA-Auto-PU in the experiments are discussed and analysed 

(Section 4.4), before summarising this chapter (Section 4.5). 

4.1     Description of GA-Auto-PU 

As mentioned in the previously, GA-Auto-PU is a Genetic Algorithm (GA)-based Automated 

Machine Learning (Auto-ML) system specific to PU learning. This section describes the 

pseudocodes detailing the procedure followed by the GA-Auto-PU system. Recall that a GA 

iteratively evolves a population of individuals, where each individual represents a candidate solution, 

and the quality of an individual is evaluated by a fitness (objective) function. In GA-Auto-PU, in 

essence, an individual represents a PU learning algorithm configuration. This is encoded as a list of 

genes, where each gene represents the value chosen for a hyperparameter of a PU learning algorithm. 

Details of the individual representation (encoding), as well the fitness (objective) function used by 

GA-Auto-PU can be found in Chapter 3. Details of evolutionary computing concepts such as 

selection, crossover, mutation, and elitism can be found in Section 2.2.  

4.1.1     The GA Procedure 

Procedure 4.1 outlines the procedure that the GA follows to evolve a PU learning algorithm 

configuration. Initially, a Population of Pop_size individuals (candidate solutions) is randomly 

generated (step 1). This random generation involves, for each gene, randomly selecting a value from 

the list of candidate values of that specific gene. The probability of a specific gene value being 

ramdomly selected is proportional to the number of candidate solutions. For example, for the 

hyperparameter (gene) Iteration_count_1A there are 10 candidate values, being 1 to 10. The chance 

of the number 1 being randomly selected as the value for Iteration_count_1A is 10%.  
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Figure 4.1. Example of a randomly generated individual in GA-Auto-PU. 

An example of a randomly generated individual could have the values shown in Figure 4.1. As 

described in Section 3.2, the 7 gene values in Figure 4.1 represent the values of the following PU 

learning algorithm hyperparameters, respectively: (a) Phase_1A_Iteration_Count, (b) 

Phase_1A_RN_Threshold, (c) Phase_1A_Classifier, (d) Phase_1B_RN_Threshold, (e) 

Phase_1B_Classifier, (f) Phase_1B_Flag, (g) Phase_2_Classifier. 

Procedure 4.1 Outline of the GA Procedure 

1. Population = Generate population(); 

2. Repeat #generations times:  

a. For each Individual in Population: 

i. If Individual configuration has not already been assessed, then assess fitness(Individual, 

Training set); // see Procedures 3.1-3.4, Chapter 3. 

ii. Else Individual’s Fitness values are assigned as the output of the previous assessment; 

b. Fittest_individual = Get fittest individual(Population);  

c. New_pop = Select individuals from Population using tournament selection; 

d. New_pop’s individuals undergo crossover with probability cross_prob; 

e. New_pop’s individuals undergo mutation with probability mutat_prob; 

f. Population = New_Pop ∪ Fittest_individual;  

Return Best Individual in Population 

At each generation, for each Individual, its configuration (genome) is checked against a list of 

previously assessed configurations, and if it has not already been assessed, the Fitness of Individual 

is calculated (step 2.a.i), as described in detail in Section 3.2.3, including Procedures 3.1-3.4. To 

recap briefly, this fitness calculation is conducted by running 5-fold cross-validation over the training 

set (without using the test set). That is, the two-step PU learning procedure is executed with the 

hyperparameter values encoded in the individual 5 times, each time with 4/5 of the training set used 

as a “learning set” (to learn a PU model) and with 1/5 of the training set used as a “validation set” 

(to measure the predictive performance of the learned model);  and then the individual’s fitness value 

is set as the average F-measure achieved over these 5 validation sets.  

If the configuration has already been assessed, the fitness values of the previous assessment are 

assigned to Individual (step 2.a.ii). This saves unnecessary execution time, meaning that whilst, 

hypothetically, the system could be assessing 100 unique PU learning algorithm configurations at 

Phase 2

2 0.45 Random forest 0.25 Gaussian NB FALSE Logistic regression

Phase 1A Phase 1B
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each generation, this is a worst-case scenario in regard to computational efficiency, and in practice 

the system is likely assessing fewer configurations, simply because some configurations have already 

been assessed. 

Once all individuals have been evaluated, the fittest Individual is saved for the following 

generation (step 2.b). This is elitism, which was covered in Section 2.2; but to explain briefly, the 

best individual of each generation is passed without any modification (i.e., without undergoing 

crossover or mutation) to the next generation. This is to ensure that the potentially highest quality 

individual is not lost as the generations progress, and to help maintain a high quality population. 

Population then undergoes tournament selection (step 2.c), uniform crossover (step 2.d), and 

mutation (step 2.e). These three steps are evolutionary operations that were described in detail in 

Section 2.2 but will be briefly described here for the reader’s reference. In tournament selection, a 

fixed number of individuals, determined by the tournament size, are randomly sampled from the 

population, and the individual with the highest fitness among the sampled ones is selected for 

potentially undergoing uniform crossover. In GA-Auto-PU, a tournament size of 2 is used. 

Uniform crossover is a process whereby new (child) individuals are created by swapping genes 

from selected (parent) individuals. For each pair of individuals selected by tournament selection 

(where selected individuals are randomly assigned to pairs), the chance of that pair of individuals 

undergoing uniform crossover is determined by the crossover probability (90% in GA-Auto-PU). If 

the two individuals do not undergo uniform crossover, they skip this evolutionary stage. GA-Auto-

PU uses 2 selected parents to produce 2 children. The 2 children begin as clones (copies) of the 

parents, with child 1 as a clone of parent 1 and child 2 as a clone of parent 2. Then, for each gene, a 

random number is generated which, if lower than a predefined value referred to as the gene crossover 

probability (0.5 in GA-Auto-PU), the values of that gene for the two children are swapped. An 

example of uniform crossover in GA-Auto-PU is given in Figure 4.2.  
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Figure 4.2. Example of uniform crossover in GA-Auto-PU. 

After potentially undergoing crossover, individuals can potentially undergo mutation. This involves 

altering a gene in order to introduce further genetic diversity to the population. Mutation works as 

follows for each gene. For the Iteration_count_1A hyperparameter, as this gene takes an integer 

value, its value is mutated by adding or subtracting 1 from the current value, within the bounds 

specified by the candidate values (1 – 10). Whether the value is added or subtracted is a random 

choice, with both actions having a 50% probability of occurring. For the two threshold 

hyperparameters (Phase_1A_RN_Threshold and Phase_1B_Threshold), as these can take values 

from 0.05 to 0.5 in increments of 0.05, a value of 0.05 is added or subtracted to the current value, 

within the specified bounds. For the Flag_1B hyperparameter, the mutation is a simple bit flip, 

changing to false if the value is true, and vice versa. For the three Classifier hyperparameters 

(Classifier_1A, Classifier_1B, Classifier_2), as these are categorical, a new value is randomly 

selected from the candidate classifier names. For each gene, the probability of undergoing mutation 

is determined by the mutation probability, set to 10% in GA-Auto-PU. An example of the effect of 

the mutation operator is shown in Figure 4.3, where the gene encoding the Flag_1B hyperparameter 

has undergone mutation. 

 

 

Figure 4.3. Example of mutation in GA-Auto-PU. 

2 0.45 Random forest 0.25 Gaussian NB FALSE Logistic regression

Parents:

4 0.25 Decision tree 0.5 SVM TRUE Deep forest

2 0.25 Random forest 0.25 SVM TRUE Logistic regression

Children:

4 0.45 Decision tree 0.5 Gaussian NB FALSE Deep forest

Parent: 2 0.45 Random forest 0.25 Gaussian NB FALSE Logistic regression

Child: 2 0.45 Random forest 0.25 Gaussian NB TRUE Logistic regression
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After undergoing the operations of selection, crossover and mutation, the evolved individuals are 

added to Population (step 2.f in Procedure 4.1). 

Finally, the fittest Individual is re-added to Population (elitism) (also in step 2.f). This process 

of fitness calculation, selection, crossover, mutation, and elitism is repeated #generations times. The 

fitness of an individual is assigned as the F-measure achieved over the 5 folds of the cross-validation 

procedure applied to the training set (see Section 3.2.3).  

4.1.2     The GA’s Hyperparameters 

Table 4.1 shows the default hyperparameter settings of the GA underlying GA-Auto-PU. The 

#generations parameter determines the number of generations to evolve the population. Pop_size 

determines the number of individuals in the population. Cross_prob is the probability that two 

individuals will undergo uniform crossover. Gene_cross_prob is the probability that each specific 

gene will be swapped when two individuals undergo uniform crossover. Mutat_prob is the 

probability that each gene of an individual will undergo mutation. Tournament_size is the number of 

individuals randomly sampled for tournament selection.  

Table 4.1. Hyperparameters of the GA-Auto-PU system, with their values used in this thesis’ 

experiments. 

Hyperparameter Value 

#generations 50 

Pop_size 101 

Cross_prob 0.9 

Gene_cross_prob 0.5 

Mutation_prob 0.1 

Tournament_size 2 

4.2     Experimental Setup 

The experimental procedure is explained in detail in Chapter 3. However, to briefly recap, two types 

of datasets are used in these experiments (biomedical and synthetic), each with 3 versions (varying 

the % of positive instances hidden in the unlabelled set), thus creating 120 datasets total.  

A nested cross-validation procedure is used, with a simple 5-fold cross-validation procedure as 

the external layer. The internal layer splits the training set into 5 learning and validation sets, which 

is used to evaluate the candidate solutions. 
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To compare the performance of the methods, we use the Wilcoxon signed rank test [202], with 

Holm correction for testing multiple hypotheses [203].. 

4.2.1     Structure of the Results’ Sections  

In the next section, we present experimental results evaluating two versions of the GA-Auto-PU 

system, implemented with the two search spaces described in Chapter 3. Firstly, GA-Auto-PU is 

compared against TPOT. Secondly, GA-Auto-PU is compared against the two PU learning baselines. 

Experiments were conducted on both the real-world biomedical datasets and the synthetic datasets, 

for three values of 𝛿 (the percentage of positives hidden in the unlabelled set): 20%, 40%, and 60%. 

Each section will report the F-measure results in full and will provide a summary of the precision 

and recall results. The full precision and recall results (for each dataset) can be found in the Appendix. 

For the sake of brevity, the GA-Auto-PU system utilising the base search space will be referred to as 

GA-1, whilst the system utilising the extended search space (which includes the Spy technique of 

PU learning) will be referred to as GA-2. 

4.3     Results for GA-Auto-PU 

4.3.1     Results comparing GA-Auto-PU with TPOT 

In this section, results for GA-Auto-PU are given and compared to TPOT, beginning with a 

comparison of GA-1 (using the base search space) and TPOT on the biomedical datasets, as shown 

in Table 4.2. Recall that TPOT was designed for standard classification, rather than PU learning, so 

this comparison is unnatural, but it is still justifiable, given that PU learning datasets are often treated 

as standard binary datasets as discussed in Section 2.5, and that no Auto-ML system for PU learning 

existed before GA-Auto-PU. By comparing with a state-of-the-art Auto-ML system for standard 

binary classification, if GA-Auto-PU substantially outperforms TPOT, it can be argued that this 

shows the benefits of using an Auto-ML system for PU learning, rather than a standard binary 

classification Auto-ML system, and thus show the limits of the assumption of negativity (see Section 

2.5).  
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Although TPOT was not designed for PU learning, it can still be applied to a PU learning dataset 

by simply treating all unlabelled instances as negative instances, and then learning a model to 

discriminate between positive and ‘negative’ (in reality unlabelled) instances. In this case TPOT will 

make no attempt to identify ‘reliable negatives’, it will implicitly consider all unlabelled instances as 

‘reliable negatives’. As a result, intuitively, TPOT is expected to achieve a smaller predictive 

accuracy than a proper Auto-ML system for PU learning, which first learns to identify the reliable 

negatives among the unlabelled instances and then uses only the reliable negatives for learning the 

final classification model. Therefore, the comparison of GA-Auto-PU with TPOT is, of course, unfair 

for TPOT, as it is not designed for PU learning. However, this comparison serves a purpose by 

showing the improvement on predictive performance that can be achieved by using an Auto-ML 

specific to PU learning for PU learning datasets, rather than using the naïve approach of treating such 

datasets as standard binary-classification (positive-negative) datasets and simply applying a standard 

Auto-ML system to such datasets. In addition, note that the truly positive instances hidden in the 

unlabelled instance set will be effectively acting as ‘noisy data’ for TPOT (since TPOT will treat all 

unlabelled instances as negative instances), and TPOT has been shown to outperform other Auto-

ML systems on datasets with noise [206], further suiting it for comparison with the GA-Auto-PU 

system.     

For a fair comparison, TPOT is evaluated using the same nested cross-validation procedure used 

to evaluate GA-Auto-PU. In addition, GA-Auto-PU uses the default hyper-parameter settings – 

reported in Table 4.1, whilst TPOT uses the default settings (reported in [100]) with the exception of 

number of candidate solutions and number of generations, which are set to 101 and 50 respectively 

to match those of the GA systems. Also, TPOT tunes for accuracy as default, but we have changed 

this to F-measure for a fair comparison with GA-Auto-PU.  
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Table 4.2. F-measure results of GA-1 and TPOT on real-world biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

GA-1  TPOT GA-1 TPOT GA-1 TPOT 

Alzheimer’s  0.529 0.531 0.551 0.400 0.456 0.313 

Autism  0.960 0.964 0.927 0.956 0.910 0.896 

Breast cancer Coi.  0.705 0.559 0.687 0.586 0.510 0.466 

Breast cancer Wis.  0.954 0.946 0.932 0.915 0.906 0.673 

Breast cancer mut.    0.893 0.891 0.868 0.890 0.854 0.833 

Cervical cancer  0.828 0.733 0.903 0.000 0.714 0.000 

Cirrhosis  0.573 0.494 0.464 0.466 0.443 0.356 

Dermatology  0.860 0.776 0.780 0.761 0.828 0.698 

PI Diabetes  0.677 0.661 0.649 0.548 0.606 0.575 

ES Diabetes  0.958 0.950 0.895 0.850 0.930 0.821 

Heart Disease  0.843 0.818 0.801 0.806 0.785 0.784 

Heart Failure  0.770 0.660 0.652 0.615 0.674 0.563 

Hepatitis C  0.953 0.865 0.771 0.804 0.588 0.458 

Kidney Disease  0.976 0.988 0.988 0.687 0.754 0.667 

Liver Disease  0.834 0.726 0.803 0.446 0.804 0.628 

Maternal Risk  0.476 0.838 0.812 0.766 0.735 0.649 

Parkinsons  0.860 0.906 0.836 0.664 0.818 0.628 

Parkinsons Biom.  0.476 0.237 0.265 0.192 0.233 0.111 

Spine  0.652 0.963 0.907 0.877 0.818 0.728 

Stroke  0.474 0.218 0.255 0.203 0.255 0.164 

Table 4.3 summarises the statistical significance of the results from Table 4.2 (for biomedical 

datasets), as well as the results for precision and recall. In Table 4.3, for each combination of a 

performance measure (F-measure, precision, recall) and a δ value (δ= 20%, 40%, 60%), the table 

reports the average (Avg.) rank of GA-1 vs TPOT (GA-1 is the left rank, TPOT is the right one) and 

the corresponding p-value. The better (lower) avg. rank in each cell is shown in boldface, and 

significant p-values (smaller than α) are also shown in boldface. For example, in the cell for F-

measure, δ = 20%, the average ranks for GA-1 is 1.3 and TPOT is 1.7. Hence, GA-1 was the winner, 

but the p-value (0.09) was greater than the significant level α (0.05), so this result was not statistically 

significant. The following discussion of results will focus mainly on the F-measure, the most 

important measure in Table 4.3, whilst precision and recall results are reported for completeness. 

Table 4.3. Results of Wilcoxon signed-rank tests when comparing GA-1 against TPOT regarding F-measure, 

Precision and Recall, for the 3 δ values on the biomedical datasets.  

δ (%) F-measure Precision Recall 

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value 

20% 1.3 vs 1.7 0.09 1.6 vs 1.4 0.913 1.1 vs 1.9 0.0002 

40% 1.25 vs 1.75 0.001 1.4 vs 1.6 0.202 1.2 vs 1.8 0.0007 

60% 1.0 vs 2.0 0.00002 1.02 vs 1.98 0.0001 1.22 vs 1.78 0.003 

The results in Table 4.3 show GA-1 outperforming TPOT for F-measure and recall, with statistical 

significance in 5 out of the 6 cases. For precision, TPOT performs best for δ=20% but does not 
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achieve statistical significance. GA-1 performs best for δ = 40% and 60%, achieving statistical 

significance for 60%. Regarding recall, GA-1 outperforms TPOT in all cases, achieving statistically 

significantly better performance for all values of δ.  

In summary, on the biomedical datasets, GA-1 consistently outperforms TPOT for F-measure 

and recall, whilst TPOT performs slightly better for precision.  

Moving next to a comparison of GA-2 (with the extended search space) and TPOT on the 

biomedical datasets, Table 4.4 presents the results of both systems. Note that the TPOT results in 

these tables are the same as those given in Table 4.2 showing results for GA-1 (with the base search 

space), but these results are included in Tables 4.4 for the reader’s reference. 

Table 4.4. F-measure results of GA-2 and TPOT on real-world biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

GA-2 TPOT GA-2 TPOT GA-2 TPOT 

Alzheimer’s  0.548 0.531 0.576 0.400 0.529 0.313 

Autism  0.982 0.964 0.940 0.956 0.927 0.896 

Breast cancer Coi.  0.711 0.559 0.671 0.586 0.553 0.466 

Breast cancer Wis.  0.956 0.946 0.936 0.915 0.866 0.673 

Breast cancer mut.    0.896 0.891 0.739 0.890 0.872 0.833 

Cervical cancer  0.867 0.733 0.839 0.000 0.350 0.000 

Cirrhosis  0.446 0.494 0.397 0.466 0.204 0.356 

Dermatology  0.901 0.776 0.896 0.761 0.692 0.698 

PI Diabetes  0.642 0.661 0.646 0.548 0.634 0.575 

ES Diabetes  0.978 0.950 0.887 0.850 0.894 0.821 

Heart Disease  0.836 0.818 0.780 0.806 0.786 0.784 

Heart Failure  0.751 0.660 0.670 0.615 0.671 0.563 

Hepatitis C  0.944 0.865 0.863 0.804 0.610 0.458 

Kidney Disease  0.925 0.988 0.951 0.687 0.806 0.667 

Liver Disease  0.831 0.726 0.817 0.446 0.748 0.628 

Maternal Risk  0.862 0.838 0.813 0.766 0.738 0.649 

Parkinsons  0.935 0.906 0.843 0.664 0.792 0.628 

Parkinsons Biom.  0.282 0.237 0.259 0.192 0.280 0.111 

Spine  0.923 0.963 0.917 0.877 0.761 0.728 

Stroke  0.241 0.218 0.239 0.203 0.243 0.164 

 

Table 4.5 details the statistical significance of the F-measure results shown in Table 4.4 and 

summarises the results for precision and recall. These results are an improvement on the results for 

GA-1 (shown in Table 4.3), with GA-2 performing best for all metrics across all values of δ and 

achieving statistical significance in 7 out of the 9 cases.  
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Table 4.5. Results of Wilcoxon signed-rank tests when comparing GA-2 against TPOT regarding F-measure, 

Precision and Recall, for the 3 δ values on the biomedical datasets.  

δ (%) F-measure Precision Recall 

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value 

20% 1.2 vs 1.8 0.021 1.45 vs 1.55 0.396 1.25 vs 1.75 0.015 

40% 1.2 vs 1.8 0.004 1.4 vs 1.6 0.154 1.2 vs 1.8 0.0005 

60% 1.1 vs 1.9 0.0004 1.0 vs 2.0 0.000002 1.25 vs 1.75 0.033 

Looking now to a comparison of the systems on the synthetic datasets, Table 4.6 compares GA-1 

and TPOT.  

Table 4.6. F-measure results of GA-1 and TPOT on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

GA-1 TPOT GA-1 TPOT GA-1 TPOT 

1 0.661 0.524 0.718 0.419 0.603 0.369 

2 0.136 0.065 0.044 0.033 0.065 0.017 

3 0.788 0.760 0.693 0.585 0.637 0.576 

4 0.831 0.781 0.818 0.571 0.674 0.449 

5 0.618 0.563 0.616 0.446 0.609 0.365 

6 0.759 0.804 0.769 0.681 0.684 0.619 

7 0.520 0.536 0.515 0.315 0.478 0.309 

8 0.525 0.436 0.477 0.509 0.381 0.308 

9 0.111 0.037 0.080 0.000 0.146 0.000 

10 0.903 0.843 0.872 0.643 0.742 0.637 

11 0.604 0.525 0.567 0.450 0.531 0.436 

12 0.674 0.700 0.666 0.642 0.609 0.626 

13 0.644 0.596 0.623 0.565 0.516 0.508 

14 0.975 0.936 0.962 0.903 0.925 0.806 

15 0.601 0.411 0.593 0.329 0.519 0.324 

16 0.477 0.505 0.388 0.356 0.301 0.145 

17 0.347 0.267 0.496 0.231 0.412 0.270 

18 0.559 0.242 0.389 0.186 0.326 0.163 

19 0.472 0.412 0.468 0.279 0.381 0.230 

20 0.705 0.613 0.692 0.551 0.625 0.502 

The results in Table 4.7 show the superiority of GA-1 over TPOT for F-measure and recall, achieving 

statistically significantly better performance than TPOT across all values of δ. For precision, TPOT 

performs best and achieves statistical significance when δ=20%, whilst GA-1 achieves best 

performance (although not with statistical significance) when δ = 40% and 60%.  

Table 4.7. Results of Wilcoxon signed-rank tests when comparing GA-1 against TPOT regarding F-measure, 

Precision and Recall, for the 3 δ values on the synthetic datasets.  

δ (%) F-measure Precision Recall 

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value 

20% 1.2 vs 1.8 0.0002 1.7 vs 1.3 0.007 1.1 vs 1.9 0.0002 

40% 1.05 vs 1.95 0.00001 1.45 vs 1.55 0.841 1.1 vs 1.9 0.0002 

60% 1.05 vs 1.95 0.00001 1.45 vs 1.55 0.368 1.2 vs 1.8 0.0003 
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Table 4.8. F-measure results of GA-2 and TPOT on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

GA-2 TPOT GA-2 TPOT GA-2 TPOT 

1 0.640 0.524 0.709 0.419 0.545 0.369 

2 0.176 0.065 0.105 0.033 0.111 0.017 

3 0.759 0.760 0.702 0.585 0.612 0.576 

4 0.824 0.781 0.809 0.571 0.692 0.449 

5 0.612 0.563 0.571 0.446 0.559 0.365 

6 0.762 0.804 0.751 0.681 0.672 0.619 

7 0.528 0.536 0.496 0.315 0.448 0.309 

8 0.571 0.436 0.484 0.509 0.390 0.308 

9 0.098 0.037 0.000 0.000 0.143 0.000 

10 0.896 0.843 0.850 0.643 0.716 0.637 

11 0.574 0.525 0.579 0.450 0.525 0.436 

12 0.681 0.700 0.692 0.642 0.599 0.626 

13 0.648 0.596 0.612 0.565 0.576 0.508 

14 0.977 0.936 0.966 0.903 0.934 0.806 

15 0.595 0.411 0.575 0.329 0.565 0.324 

16 0.431 0.505 0.402 0.356 0.299 0.145 

17 0.384 0.267 0.470 0.231 0.382 0.270 

18 0.576 0.242 0.408 0.186 0.373 0.163 

19 0.462 0.412 0.483 0.279 0.385 0.230 

20 0.701 0.613 0.664 0.551 0.594 0.502 

Table 4.8 details the results of GA-2 and TPOT on the synthetic datasets; whilst Table 4.9 details the 

statistical significance of the F-measure results shown in Table 4.8 and summarises the results for 

precision and recall. These results largely reflect the results for GA-1 when compared with TPOT 

(shown in Table 4.7). However, GA-2 performs slightly worse in regard to the average ranks for 

precision and fails to achieve statistical significance in any case regarding precision. However, 

statistically significantly better performance against TPOT is achieved by GA-2 for F-measure and 

recall for all values of δ. 

Table 4.9. Results of Wilcoxon signed-rank tests when comparing GA-2 against TPOT regarding F-measure, 

Precision and Recall, for the 3 δ values on the synthetic datasets.  

δ (%) F-measure Precision Recall 

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value 

20% 1.25 vs 1.75 0.001 1.7 vs 1.3 0.021 1.15 vs 1.85 0.0004 

40% 1.05 vs 1.95 0.000004 1.3 vs 1.7 0.475 1.1 vs 1.9 0.00005 

60% 1.05 vs 1.95 0.000004 1.5 vs 1.5 0.756 1.15 vs 1.85 0.0003 

Figure 4.4 shows graphically how the average F-measure of each of the Auto-ML systems changes 

over the different values of δ, for the biomedical datasets. In order to reduce the number of figures 

across this chapter, this Figure shows the results for all Auto-ML systems (GA-1, GA-2 and TPOT) 

and all baseline PU learning methods  (DF-PU and S-EM) investigated in this chapter, but in this 
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current part of the text the analysis is focussed on the results for TPOT, GA-1 and GA-2 only – the 

results for DF-PU and S-EM will be discussed later.  

 

 
Figure 4.4. Average F-measure results comparison for TPOT, GA-1, GA-2, DF-PU and S-EM, 

across the three values of δ for the biomedical datasets. 

Focusing on the results of GA-1 and GA-2 vs. TPOT, it is evident that as the value of δ increases, 

the performance of TPOT rapidly declines. The performance of GA-1 and GA-2 also decline, though 

at a smaller rate than that of TPOT. In fact, the average F-measure of TPOT for all values of δ does 

not exceed the average F-measure of GA-1 or GA-2 at δ=40%, with the average F-measure of TPOT 

at δ=40% below even the average F-measure of GA-2 at δ=60%. This chart shows that, whilst the 

average F-measure for TPOT at δ=20% is somewhat comparable to GA-1 and GA-2 for δ=20%, as 

the percentage of positive instances available in the labelled positive set decreases, the performance 

decline is very substantial, making TPOT no longer comparable for more challenging PU learning 

tasks.  

 

Figure 4.5. Average F-measure results comparison for TPOT, GA-1, GA-2, DF-PU and S-EM, 

across the three values of δ for the synthetic datasets. 
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Figure 4.5 shows graphically how the average F-measure of each of the systems changes over the 

different values of δ, for the synthetic datasets. The results in this figure largely reflect the results 

shown in Figure 4.4. As with the biomedical datasets, this chart shows that, whilst the average F-

measure for TPOT at δ=20% is somewhat comparable to GA-1 and GA-2 for δ=20%, as the 

percentage of positive instances available in the labelled positive set decreases, the performance 

decline is significant, making TPOT no longer comparable for more challenging PU learning tasks.  

In order to further analyse the results, Table 4.10 shows the values of Pearson’s linear correlation 

coefficient between the F-measure values achieved by GA-1, GA-2, TPOT, DF-PU, and S-EM and 

percentages of positive examples in the original dataset, for each δ value, for the biomedical datasets. 

Again, in order to reduce the number of tables across this chapter, the results for all the 

aforementioned systems or methods are reported in Table 4.10, but in this current part of the text the 

analysis is focused on the results for GA-1, GA-2 and TPOT only – the results for the baselines will 

be discussed later. The purpose of this analysis is to understand how reliant the performance of each 

method is on the percentage of positive examples in the original dataset.   

Table 4.10. Linear (Pearson’s) correlation coefficient value between the F-measure and the 

percentage of positive examples in the original dataset (before hiding some positive examples in 

the unlabelled set) for each combination of a method and a δ value, for the biomedical datasets, for 

all methods. 

Method δ = 20% δ = 40% δ = 60% 

GA-1 0.333 0.385 0.504 

GA-2 0.340 0.357 0.580 

TPOT 0.406 0.432 0.606 

DF-PU 0.988 0.988 0.988 

S-EM 0.646 0.558 0.652 

Table 4.10 shows the same trends of positive correlations as Figure 4.4. For δ=20% and 40%, GA-1 

and GA-2 exhibit a weak correlation between percentage of positive instances and F-measure, whilst 

for δ=60% the correlation is moderate, with correlation categorisation defined as outlined in Section 

3.4.3. Whereas, for TPOT, the correlation is moderate for all values of delta. In other words, the 

performance of TPOT is more closely tied to the percentage of positive instances than the 

performance of GA-Auto-PU.  
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Table 4.11. Linear (Pearson’s) correlation coefficient value between the F-measure and the 

percentage of positive examples in the original dataset (before hiding some positive examples in 

the unlabelled set) for each combination of a method and a δ value, for the synthetic datasets, forall 

methods.  

Method δ = 20% δ = 40% δ = 60% 

GA-1 0.712 0.682 0.687 

GA-2 0.700 0.702 0.696 

TPOT 0.624 0.667 0.674 

DF-PU 0.990 0.990 0.990 

S-EM 0.794 0.793 0.776 

Table 4.11 shows the values of Pearson’s linear correlation coefficient between the F-measure values 

achieved by GA-1, GA-2, TPOT, DF-PU, and S-EM and the percentages of positive examples in the 

original dataset, for each δ value for the synthetic datasets. Table 4.11 shows much stronger trends 

than those shown in Table 4.10 for the biomedical datasets. For now, we focus on the results of GA-

1, GA-2 and TPOT, with the other results discussed in their appropriate sections. GA-1, GA-2 and 

TPOT show moderate correlations for δ=40% and 60%, but GA-1 and GA-2 show a strong 

correlation for δ=20%. This is in contrast to the results of Table 4.10, which showed TPOT exhibiting 

a stronger trend than GA-1 and GA-2. This helps to highlight the importance of examining methods 

on multiple types of datasets to gain a fuller understanding of the performance of that system. Due 

to the differing results of Tables 4.10 and 4.11, it is hard to draw conclusions on this analysis. The 

purpose was to investigate which methods are more reliant on a high number of positive instances, 

but limited distinctions between GA-Auto-PU and TPOT are shown. These distinctions are more 

pronounced for the baseline methods, as discussed later. 

4.3.2     Results comparing GA-Auto-PU with two baseline PU 

learning methods  

This section details the results achieved by GA-Auto-PU and two baseline PU learning methods (DF-

PU and S-EM, see Section 2.5) when applied to 20 real-world biomedical datasets and 20 synthetic 

datasets. Note that the results in the GA-1 and GA-2 columns in the tables reported in this section 

are the same as those reported in the previous section, but they are repeated in this section for the 

reader’s convenience.  

Table 4.13 summarises the statistical significance of the F-measure results from Table 4.12, as well 

as the results for precision and recall.  
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Table 4.12. F-measure results of GA-Auto-PU with base search space and baseline PU learning 

methods on real-world biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

GA-1  DF-PU S-EM GA-1 DF-PU S-EM GA-1 DF-PU S-EM 

Alzheimer’s  0.529 0.195 0.321 0.551 0.194 0.370 0.456 0.171 0.373 

Autism  0.960 0.648 0.820 0.927 0.648 0.841 0.910 0.645 0.835 

Breast cancer Coi.  0.705 0.697 0.711 0.687 0.711 0.704 0.510 0.697 0.699 

Breast cancer Wis.  0.954 0.543 0.898 0.932 0.543 0.903 0.906 0.539 0.904 

Breast cancer mut.    0.893 0.489 0.892 0.868 0.489 0.893 0.854 0.485 0.892 

Cervical cancer  0.828 0.061 0.054 0.903 0.042 0.053 0.714 0.044 0.046 

Cirrhosis  0.573 0.405 0.436 0.464 0.401 0.442 0.443 0.405 0.459 

Dermatology  0.860 0.228 0.718 0.780 0.229 0.718 0.828 0.219 0.719 

PI Diabetes  0.677 0.516 0.534 0.649 0.516 0.525 0.606 0.515 0.544 

ES Diabetes  0.958 0.762 0.792 0.895 0.756 0.859 0.930 0.759 0.793 

Heart Disease  0.843 0.705 0.811 0.801 0.705 0.828 0.785 0.702 0.829 

Heart Failure  0.770 0.487 0.529 0.652 0.486 0.508 0.674 0.481 0.557 

Hepatitis C  0.953 0.176 0.695 0.771 0.171 0.708 0.588 0.160 0.609 

Kidney Disease  0.976 0.428 1.000 0.988 0.428 1.000 0.754 0.428 0.951 

Liver Disease  0.834 0.834 0.816 0.803 0.832 0.587 0.804 0.834 0.788 

Maternal Risk  0.476 0.403 0.454 0.812 0.395 0.433 0.735 0.390 0.438 

Parkinsons  0.860 0.856 0.815 0.836 0.860 0.748 0.818 0.860 0.762 

Parkinsons Biom.  0.476 0.354 0.333 0.265 0.354 0.261 0.233 0.367 0.331 

Spine  0.652 0.652 0.820 0.907 0.652 0.839 0.818 0.652 0.830 

Stroke  0.474 0.086 0.102 0.255 0.094 0.102 0.255 0.094 0.102 

The results in Table 4.13 show GA-1 largely outperforming the baseline PU learning methods in 

regard to F-measure and precision, but the baseline methods largely outperforming GA-1 in regard 

to recall. Regarding F-measure, GA-1 outperforms the baseline method in regard to average rank for 

every value of δ. All of these results are statistically significant, with the exception of against S-EM 

when δ = 60%. Regarding precision, the results for GA-1 are even better, achieving statistical 

significance in all cases. Regarding recall, the results are the opposite, with GA-1 outperformed by 

the baseline methods with statistical significance in almost all cases. However, the performance 

regarding recall by the baseline methods was largely due to their overprediction of the positive class, 

coming at a substantial cost to precision. It is for this reason that, even though the recall of the 

baseline methods is such that they outperform GA-1 in most cases with statistical significance, they 

are themselves outperformed with statistical significance by GA-1 regarding F-measure as their 

precision is lacking so much as to largely reduce their F-measure. DF-PU performed best in regard 

to recall, but worst for both precision and F-measure. This was likely due to the default 

hyperparameter settings of DF-PU, which selected a subset of 20% of the unlabelled instances as the 

negative set and only the bottom 1% of instances with the lowest probability of belonging to the 

positive class as the reliable negative set in Phase 1A of the PU learning algorithm. These parameters 

may work well for large and highly imbalanced datasets, but they are not suitable as a general use 
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case as they may identify very few reliable negative instances, resulting in a classifier that greatly 

over-predicts the positive class. 

These results highlight the importance of the iteration count and the reliable negative threshold 

hyperparameters of GA-Auto-PU and the need for a system that can tune these parameters for a 

specific dataset. 

Table 4.13. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when 

comparing GA-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for 

the biomedical datasets.  

δ 

(%) 

Methods 

compared  

F-measure Precision Recall 

Avg. 

ranks 

p-

value 

α Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α 

20% GA-1 vs 

DF-PU 

1.05 vs 1.95 0.0002 0.025 1.05 vs 

1.95 

0.0002 0.025 1.75 vs 

1.25 

0.013 0.025 

GA-1 vs   

S-EM 

1.15 vs 1.85 0.001 0.05 1.18 vs 

1.82 

0.003 0.05 1.58 vs 

1.42 

0.523 0.05 

40% GA-1 vs 

DF-PU 

1.2 vs 1.8 0.0001 0.025 1.0 vs 

2.0 

0.000002 0.025 1.98 vs 

1.02 

0.0001 0.025 

GA-1 vs   

S-EM 

1.2 vs 1.8 0.0003 0.05 1.08 vs 

1.92 

0.0003 0.05 1.8 vs 

1.2 

0.008 0.05 

60% GA-1 vs 

DF-PU 

1.2 vs 1.8 0.0007 0.025 1.0 vs 

2.0 

0.000002 0.025 2.0 vs 

1.0 

0.000002 0.025 

GA-1 vs   

S-EM 

1.4 vs 1.6 0.216 0.05 1.02 vs 

1.98 

0.0001 0.05 1.85 vs 

1.15 

0.0004 0.05 

 

Next, the performance of GA-2 is compared with the baseline methods on the biomedical datasets. 

Table 4.14. F-measure results of GA-Auto-PU with extended search space and two baseline PU 

learning methods on real-world biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

GA-2 DF-PU S-EM GA-2 DF-PU S-EM GA-2 DF-PU S-EM 

Alzheimer’s  0.548 0.195 0.321 0.576 0.194 0.370 0.529 0.171 0.373 

Autism  0.982 0.648 0.820 0.940 0.648 0.841 0.927 0.645 0.835 

Breast cancer Coi.  0.711 0.697 0.711 0.672 0.711 0.704 0.553 0.697 0.699 

Breast cancer Wis.  0.956 0.543 0.898 0.936 0.543 0.903 0.866 0.539 0.904 

Breast cancer mut.    0.895 0.489 0.892 0.739 0.489 0.893 0.872 0.485 0.892 

Cervical cancer  0.867 0.061 0.054 0.839 0.042 0.053 0.350 0.044 0.046 

Cirrhosis  0.446 0.405 0.436 0.397 0.401 0.442 0.204 0.405 0.459 

Dermatology  0.901 0.228 0.718 0.896 0.229 0.718 0.692 0.219 0.719 

PI Diabetes  0.642 0.516 0.534 0.645 0.516 0.525 0.634 0.515 0.544 

ES Diabetes  0.978 0.762 0.792 0.887 0.756 0.859 0.894 0.759 0.793 

Heart Disease  0.836 0.705 0.811 0.780 0.705 0.828 0.786 0.702 0.829 

Heart Failure  0.751 0.487 0.529 0.670 0.486 0.508 0.671 0.481 0.557 

Hepatitis C  0.944 0.176 0.695 0.863 0.171 0.708 0.610 0.160 0.609 

Kidney Disease  0.925 0.428 1.000 0.951 0.428 1.000 0.806 0.428 0.951 

Liver Disease  0.831 0.834 0.816 0.817 0.832 0.587 0.748 0.834 0.788 

Maternal Risk  0.862 0.403 0.454 0.813 0.395 0.433 0.737 0.390 0.438 

Parkinsons  0.935 0.856 0.815 0.842 0.860 0.748 0.792 0.860 0.762 

Parkinsons Biom.  0.282 0.354 0.333 0.259 0.354 0.261 0.280 0.367 0.331 

Spine  0.923 0.652 0.820 0.917 0.652 0.839 0.761 0.652 0.830 

Stroke  0.241 0.086 0.102 0.241 0.094 0.102 0.247 0.094 0.102 
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Table 4.15. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when 

comparing GA-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for 

the biomedical datasets.  

δ 

(%) 

Methods 

compared  

F-measure Precision Recall 

Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α 

20% GA-2 vs 

DF-PU 

1.1 vs 

1.9 

0.00002 0.025 1.0 vs 

2.0 

0.000002 0.025 2.0 vs 

1.0 

0.000002 0.025 

GA-2 vs    

S-EM 

1.12 vs 

1.88 

0.0008 0.05 1.12 vs 

1.88 

0.0003 0.05 1.72 vs 

1.28 

0.053 0.05 

40% GA-2 vs 

DF-PU 

1.25 vs 

1.75 

0.0003 0.025 1.05 vs 

1.95 

0.00001 0.025 2.0 vs 

1.0 

0.000002 0.025 

GA-2 vs    

S-EM 

1.3 vs 

1.7 

0.007 0.05 1.12 vs 

1.88 

0.001 0.05 1.75 vs 

1.25 

0.014 0.05 

60% GA-2 vs 

DF-PU 

1.25 vs 

1.75 

0.002 0.025 1.0 vs 

2.0 

0.000002 0.025 2.0 vs 

1.0 

0.000002 0.025 

GA-2 vs    

S-EM 

1.5 vs 

1.5 

0.546 0.05 1.02 vs 

1.98 

0.0001 0.05 1.9 vs 

1.1 

0.00001 0.05 

Table 4.15 details the statistical significance of the F-measure results shown in Table 4.14 and 

summarises the results for precision and recall. Overall, GA-2 outperforms the baseline PU learning 

methods for F-measure and precision across all values of δ in all 12 cases, and the results are 

statistically significant in nearly 11 cases. As was the case for GA-1, the baseline methods outperform 

GA-2 for recall for all values of δ and with statistical significance in 5 out of the 6 cases. The reasons 

for this are the same as those given when discussing the comparison between the baseline methods 

and GA-1, namely the large overprediction of the positive class by the baseline methods.  

Looking now to the synthetic datasets, Table 4.16 presents the results for GA-1 and the baseline 

methods.  

Table 4.17 summarises the statistical significance of the F-measure results from Table 4.16, as 

well as the results for precision and recall for the synthetic datasets. The results follow a largely 

similar trend to those reported in Table 4.13, with GA-1 outperforming the baseline methods with 

statistical significance in all but one case for F-measure and precision, failing to achieve statistical 

significance when δ = 60%, whilst being outperformed with statistical significance in 2 cases for 

recall, both by DF-PU when δ = 20% and 60% respectively. The performance of the baseline methods 

in regard to recall is due to the same reasons discussed previously, i.e., the massive overprediction 

of the positive class instances.  

 

 



124 

 

Table 4.16. F-measure results of GA-Auto-PU with base search space and baseline PU learning 

methods on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

GA-1 DF-PU S-EM GA-1 DF-PU S-EM GA-1 DF-PU S-EM 

1 0.661 0.484 0.616 0.718 0.484 0.602 0.603 0.483 0.613 

2 0.136 0.125 0.194 0.044 0.120 0.130 0.065 0.112 0.120 

3 0.788 0.552 0.589 0.693 0.552 0.587 0.637 0.552 0.600 

4 0.831 0.454 0.644 0.818 0.416 0.633 0.674 0.417 0.630 

5 0.618 0.357 0.402 0.616 0.356 0.436 0.609 0.357 0.465 

6 0.759 0.403 0.477 0.769 0.402 0.525 0.684 0.402 0.582 

7 0.520 0.285 0.433 0.515 0.283 0.462 0.478 0.282 0.451 

8 0.525 0.326 0.468 0.477 0.326 0.457 0.381 0.326 0.439 

9 0.111 0.035 0.099 0.080 0.000 0.044 0.146 0.000 0.120 

10 0.903 0.233 0.612 0.872 0.234 0.627 0.742 0.233 0.663 

11 0.604 0.491 0.505 0.567 0.491 0.520 0.531 0.490 0.517 

12 0.674 0.397 0.550 0.666 0.397 0.567 0.609 0.394 0.586 

13 0.644 0.500 0.551 0.623 0.460 0.556 0.516 0.456 0.549 

14 0.975 0.529 0.817 0.962 0.529 0.840 0.925 0.529 0.873 

15 0.601 0.387 0.423 0.593 0.387 0.425 0.519 0.385 0.422 

16 0.477 0.239 0.414 0.388 0.239 0.401 0.301 0.240 0.299 

17 0.347 0.214 0.262 0.496 0.214 0.281 0.412 0.214 0.267 

18 0.559 0.372 0.444 0.389 0.373 0.433 0.326 0.373 0.422 

19 0.472 0.378 0.426 0.468 0.378 0.429 0.381 0.376 0.413 

20 0.705 0.610 0.615 0.692 0.610 0.620 0.625 0.610 0.613 

Table 4.17. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when 

comparing GA-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for 

the synthetic datasets.  

δ 

(%) 

Methods 

compared  

F-measure Precision Recall 

Avg. 

ranks 

p-

value 

α Avg. 

ranks 

p-value α Avg. 

ranks 

p-

value 

α 

20% GA-1 vs 

DF-PU 

1.1 vs 1.9 0.00002 0.025 1.0 vs 2.0 0.000002 0.025 1.82 vs 

1.18 

0.006 0.025 

GA-1 vs   

S-EM 

1.12 vs 

1.88 

0.0008 0.05 1.1 vs 1.9 0.000002 0.05 1.55 vs 

1.45 

0.701 0.05 

40% GA-1 vs 

DF-PU 

1.25 vs 

1.75 

0.0003 0.025 1.05 vs 

1.95 

0.000004 0.025 1.75 vs 

1.25 

0.026 0.025 

GA-1 vs   

S-EM 

1.3 vs 1.7 0.007 0.05 1.1 vs 1.9 0.0001 0.05 1.55 vs 

1.45 

0.430 0.05 

60% GA-1 vs 

DF-PU 

1.25 vs 

1.75 

0.002 0.025 1.15 vs 

1.85 

0.00004 0.025 1.78 vs 

1.22 

0.020 0.025 

GA-1 vs   

S-EM 

1.5 vs 1.5 0.546 0.05 1.35 vs 

1.65 

0.245 0.05 1.58 vs 

1.42 

0.573 0.05 

Table 4.18 details the results of GA-2 and the baseline methods on the synthetic datasets. 

Table 4.19 details the statistical significance of the F-measure results shown in Table 4.18 and 

summarises the results for precision and recall. GA-2 largely outperforms the baseline methods 

regarding F-measure and precision for all values of δ, with the results being statistically significant 

in 10 out of the 12 cases. For recall, as expected based on the results previously reported in this 

chapter, the baseline methods outperform GA-2 for all values of δ with statistical significance in 2 

out of the 6 cases.  
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Table 4.18. F-measure results of GA-Auto-PU with extended search space and two baseline PU 

learning methods on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

GA-2 DF-PU S-EM GA-2 DF-PU S-EM GA-2 DF-PU S-EM 

1 0.640 0.484 0.616 0.709 0.484 0.602 0.545 0.483 0.613 

2 0.176 0.125 0.194 0.105 0.120 0.130 0.111 0.112 0.120 

3 0.759 0.552 0.589 0.702 0.552 0.587 0.612 0.552 0.600 

4 0.824 0.454 0.644 0.809 0.416 0.633 0.692 0.417 0.630 

5 0.612 0.357 0.402 0.571 0.356 0.436 0.559 0.357 0.465 

6 0.762 0.403 0.477 0.751 0.402 0.525 0.672 0.402 0.582 

7 0.528 0.285 0.433 0.496 0.283 0.462 0.448 0.282 0.451 

8 0.571 0.326 0.468 0.484 0.326 0.457 0.390 0.326 0.439 

9 0.098 0.035 0.099 0.000 0.000 0.044 0.143 0.000 0.120 

10 0.896 0.233 0.612 0.850 0.234 0.627 0.716 0.233 0.663 

11 0.574 0.491 0.505 0.579 0.491 0.520 0.525 0.490 0.517 

12 0.681 0.397 0.550 0.692 0.397 0.567 0.599 0.394 0.586 

13 0.648 0.500 0.551 0.612 0.460 0.556 0.576 0.456 0.549 

14 0.977 0.529 0.817 0.966 0.529 0.840 0.934 0.529 0.873 

15 0.595 0.387 0.423 0.575 0.387 0.425 0.565 0.385 0.422 

16 0.431 0.239 0.414 0.402 0.239 0.401 0.299 0.240 0.299 

17 0.384 0.214 0.262 0.470 0.214 0.281 0.382 0.214 0.267 

18 0.576 0.372 0.444 0.408 0.373 0.433 0.373 0.373 0.422 

19 0.462 0.378 0.426 0.483 0.378 0.429 0.385 0.376 0.413 

20 0.701 0.610 0.615 0.664 0.610 0.620 0.594 0.610 0.613 

Table 4.19. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when 

comparing GA-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for 

the synthetic datasets.  

δ 

(%) 

Methods 

compared  

F-measure Precision Recall 

Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α 

20 GA-2 vs 

DF-PU 

1.05 vs 

1.95 

0.0002 0.05 1.0 vs 

2.0 

0.000002 0.02

5 

1.88 vs 

1.12 

0.007 0.02

5 

GA-2 vs   S-

EM 

1.15 vs 

1.85 

0.0001 0.025 1.15 vs 

1.85 

0.0004 0.05 1.65 vs 

1.35 

0.277 0.05 

40 GA-2 vs 

DF-PU 

1.2 vs 

1.8 

0.0001 0.025 1.1 vs 

1.9 

0.00001 0.02

5 

1.75 vs 

1.25 

0.053 0.02

5 

GA-2 vs   S-

EM 

1.2 vs 

1.8 

0.0003 0.05 1.15 vs 

1.85 

0.0001 0.05 1.55 vs 

1.45 

0.784 0.05 

60 GA-2 vs 

DF-PU 

1.2 vs 

1.8 

0.0007 0.025 1.02 vs 

1.98 

0.0001 0.02

5 

1.75 vs 

1.25 

0.017 0.02

5 

GA-2 vs   S-

EM 

1.4 vs 

1.6 

0.216 0.05 1.4 vs 

1.6 

0.154 0.05 1.35 vs 

1.65 

0.522 0.05 

Referring back to Figures 4.4 and 4.5, the trend in the average performance for both DF-PU and S-

EM is interesting. Whilst the Auto-PU systems have a decline in performance as the δ value 

increases, the performance of both DF-PU and S-EM remains relatively stable. This is, again, likely 

due to the massive overprediction of the positive class instances. That is, if we predict almost all 

instances to be positive for all datasets, the performance is going to be about the same regardless of 

the value of δ, since the percentage of positive instances in the test set has not been altered. This poor 
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performance is likely due to the use of the default hyperparameter settings for the algorithms. That 

is, the hyperparameter settings used in the papers proposing the original methods were used, rather 

than tuning the parameters to fit the learning task for which we are using the methods. Recent work 

[207] showed that tuning the hyperparameter settings improved the performance of these methods.  

Referring back to Tables 4.10 and 4.11, analysing the correlation coefficient between percentage 

of instances that belong to the positive set and F-measure, S-EM exhibits moderate to strong 

correlations, whilst DF-PU exhibits a near perfect correlation. This latter result can also be explained 

by the fact that DF-PU massively overpredicts the positive class, since in this case an increase in the 

percentage of positive-class instances tends to lead to an increase in precision without substantially 

reducing recall, therefore leading to an increased F-measure. These results indicate that the 

performance of the baseline methods is more reliant on a high proportion of positive instances in the 

dataset than GA-Auto-PU. Thus, indicating that GA-Auto-PU may perform more favourably in 

learning scenarios where there are fewer positive instances to learn from.  

4.4     The Most Frequently Selected Hyperparameter 

Values of the Optimised PU Learning Algorithm 

This section reports the PU learning hyperparameter values most frequently selected by GA-Auto-

PU utilising the base search space (GA-1) and the extended search space (GA-2). It reports the 

selection frequency, baseline frequency, and their difference. The selection frequency of a 

hyperparameter value is calculated as the ratio of the number of GA-Auto-PU runs where value was 

used in the optimised PU learning algorithm returned by GA-Auto-PU over the total number of GA-

Auto-PU runs, which is 300 for each type of search space (base or extended spaces) and each type 

of dataset (biomedical or synthetic), considering 20 datasets times 3 values of δ,  times 5 runs of a 

GA-Auto-PU version per dataset, due to the use of 5-fold cross-validation. For each type of search 

space (i.e., base and extended search spaces), two separate tables are reported, firstly for the 

biomedical datasets and secondly for the synthetic datasets. In these tables, the baseline frequency is 

the expected selection frequency of a hyperparameter value if all values of that hyperparameter were 

randomly selected for use in a PU learning algorithm. I.e., it is calculated by simply dividing 1 (one) 
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by the number of candidate values for that hyperparameter. The difference between these two 

frequencies is simply the selection frequency minus the baseline frequency.  

Little has been written on the topic of suitable algorithm configuration for PU learning, and no 

guidelines exist in the literature. By analysing the most frequently selected hyperparameter values in 

this thesis’ experiments, we can begin to understand which PU learning algorithm configurations 

perform well and under what circumstances. This information could prove useful for future research 

into improving the performance of PU learning algorithms.  

Throughout this section, the term “classifier” is used to refer to a classification algorithm (rather 

than a classification model learned by an algorithm), unless explicitly mentioned otherwise. 

4.4.1     The Hyperparameter Values Most Frequently Selected 

by GA-1 (with Base Search Space) 

Tables 4.20 and 4.21 report the most frequently selected values of the hyperparameters of the 

optimised PU learning algorithms returned by all runs of GA-1 on the biomedical datasets and on the 

synthetic datasets, respectively. Considering first the Phase_1A_Classifier and Phase_2_Classifier 

hyperparameters, it is noteworthy that Linear Discriminant Analysis (LDA) and Gaussian Naïve 

Bayes (NB) were most frequently selected for both types of datasets, albeit as classifiers for different 

phases of the optimised PU learning algorithm depending on the type of dataset. More precisely, 

Gaussian NB and LDA were most frequently selected as Phase 1A and Phase 2 classifiers, 

respectively, for the biomedical datasets (Table 4.20); whilst the preference for these two classifiers 

was reversed in these two phases for the synthetic datasets (Table 4.21). Recall from Section 2.5 two 

assumptions of the two-step PU learning framework, separability and smoothness. Separability refers 

to a natural separation between the two classes, and smoothness states that instances which are close 

in the feature space are more likely to belong to the same class. Both LDA and Gaussian NB are 

linear classifiers, making them suitable classifiers for data that adheres to both of these assumptions. 

The most frequently selected Phase 1B classifier for the biomedical datasets was Deep forest, 

whilst for the synthetic datasets it was k-nearest neighbour (kNN). These classifiers were selected 

with relatively low frequency (in relation to difference between the baseline frequency and selection 

frequency) and thus the conclusions about their preferences in that phase are not strong. Considering 



128 

 

the Phase 1B Flag hyperparameter, its two candidate values (True and False) have almost exactly 

the same selection frequency for both types of datasets, implying that whether to utilise Phase 1B 

strongly depends on the specifics of the individual dataset. 

Table 4.20. Selection frequency of hyperparameter values by GA-1 for the biomedical datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration Count 1 19.67 10.00 9.67 

Phase 1A RN Threshold 0.3 15.00 10.00 5.00 

Phase 1A Classifier Gaussian NB 14.00 5.56 8.44 

Phase 1B Flag False 52.33 50.00 2.33 

Phase 1 B RN Threshold 0.15 19.00 10.00 9.00 

Phase 1B Classifier Deep forest 11.00 5.56 5.44 

Phase 2 Classifier LDA 21.00 5.56 15.44 

Table 4.21. Selection frequency of hyperparameter values by GA-1 for the synthetic datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration Count 4 19.00 10.00 9.00 

Phase 1A RN Threshold 0.35 21.33 10.00 11.33 

Phase 1A Classifier LDA 14.00 5.56 8.44 

Phase 1B Flag True 52.00 50.00 2.00 

Phase 1 B RN Threshold 0.2 15.17 10.00 5.17 

Phase 1B Classifier kNN 10.33 5.56 4.77 

Phase 2 Classifier Gaussian NB 22.33 5.56 16.77 

The hyperparameter Phase_1A_Iteration_Count is utilised to handle the class imbalance that is often 

present in PU learning datasets. It handles the class imbalance by splitting the unlabelled set into a 

given number of sets in Phase 1A of the two-step procedure. Therefore, it intuitively follows that 

when the percentage of positive instances is low, the iteration count should be high, and vice versa. 

To check if this is really the case, a more detailed analysis of this hyperparameter’s optimisation was 

conducted, as described next. 

For each dataset, for each value of δ, the average value of the Phase_1A_Iteration_Count 

hyperparameter over the cross-validation procedure was calculated. Then, the Pearson’s correlation 

coefficient between those average iteration counts and the percentage of instances which are positive 

in the original datasets (i.e., the full datasets before hiding the positive instances in the negative set 

or splitting into training and test sets) was calculated, over the 20 datasets for each type of dataset 

(biomedical and synthetic datasets), for each of the three. For the biomedical datasets, the correlation 

coefficient values were -0.646, -0.655, and -0.689 for δ = 20%, 40%, and 60% respectively. For the 
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synthetic datasets, the coefficient values were -0.653, -0.685 and -0.696 for δ = 20%, 40%, and 60% 

respectively. All of these represent a moderate negative correlation (categorised as described in 

Section 3.4.3), indicating that when the percentage of positive instances is low, the average iteration 

count value selected by GA-1 tends to be high, and vice versa. This supports the idea that the iteration 

count parameter is handling class imbalance. If these results hold for the analyses later in this work, 

this can help to provide general guidance on what the iteration count parameter should be set to for 

a dataset with a given class distribution, when using the two-step framework.  

The other hyperparameters listed in Table 4.20 offer no clear patterns or conclusions to be drawn, 

and as such will not be discussed further.  

4.4.2     The Hyperparameter Values Most Frequently Selected 

by GA-2 (with Extended Search Space) 

Tables 4.22 and 4.23 report the most frequently selected values of the hyperparameters of the 

optimised PU learning algorithms returned by all runs of GA-2 on the biomedical datasets and the 

synthetic datasets, respectively. Interestingly, these results for GA-2 differ from the results for GA-

1 in the previous section. That is, whilst GA-1 showed a clear preference for simple classifiers 

(predominantly LDA and Gaussian NB) in Phase 1A and Phase 2, the story is somewhat more mixed 

for GA-2. Phase 1A Classifier was most frequently Logistic regression for the synthetic datasets, 

which is a relatively simple classifier; and Random forest for the biomedical datasets. As random 

forest is an ensemble classifier, it cannot be said that it is simple. For Phase 1B Classifier, the most 

frequently selected classifier for the biomedical datasets was SVM, and for the synthetic datasets was 

random forest. Finally, for Phase 2 classifier, the most frequently selected classifier was Deep forest 

for the biomedical datasets and Multilayer perceptron for the synthetic datasets. Deep forest and 

Multilayer perceptron cannot be considered simple classifiers, perhaps implying that the reliable 

negative sets created when utilising the spy method are somewhat more complex than those created 

when utilising the base search space. However, the use of a complex classifier does not necessarily 

imply complex data, given that a complex classifier may work effectively on a simple dataset, and 

there were no criteria set for favouring computational simplicity when evaluating candidate solutions 

during the GA-2’s search. 
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Table 4.22. Selection frequency of hyperparameter values by GA-2 for the biomedical datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration Count 1 26.67 10.00 16.67 

Phase 1A RN Threshold 0.3 20.33 10.00 10.33 

Phase 1A Classifier Random forest 12.67 5.56 7.11 

Phase 1B Flag False 66.00 50.00 16.00 

Phase 1 B RN Threshold 0.25 15.33 10.00 5.33 

Phase 1B Classifier SVM 10.67 5.56 5.11 

Spy rate 0.1 18.67 14.29 4.38 

Spy tolerance 0.06 18.47 9.09 9.38 

Spy flag FALSE 73.33 50.00 23.33 

Phase 2 Classifier Deep forest 10.00 5.56 4.44 

Table 4.23. Selection frequency of hyperparameter values by GA-2 for the synthetic datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration Count 4 24.33 10.00 14.33 

Phase 1A RN Threshold 0.35 23.33 10.00 13.33 

Phase 1A Classifier Logistic reg. 10.67 5.56 5.11 

Phase 1B Flag FALSE 67.00 50.00 17.00 

Phase 1 B RN Threshold 0.15 15.33 10.00 5.33 

Phase 1B Classifier Random forest 11.33 5.56 5.77 

Spy rate 0.3 18.00 14.29 3.71 

Spy tolerance 0.05 13.94 9.09 4.85 

Spy flag FALSE 79.33 50.00 29.33 

Phase 2 Classifier MLP 15.67 5.56 10.11 

The Phase_1B_Flag parameter has been set to False more frequently than it was for GA-1, 73.33% 

for biomedical datasets and 67% for synthetic datasets. This may be due to a more accurate reliable 

negative set being assembled in Phase 1A, through the use of the spy method. However, considering 

the spy method, the Spy flag was set to False far more frequently than it was set to True, at 73.33% 

for the biomedical and 79.33% for the synthetic datasets. This means that only 26.67% and 20.67% 

of optimised candidate solutions did utilise the spy method. It is too early to draw conclusions about 

the efficacy of including the spy-based methods in the search space, given that so far this thesis has 

reported only the results of GA-Auto-PU. However, if this trend continues for other Auto-PU systems 

(whose results will be reported in later chapters), it could indicate that the inclusion of spy-based 

methods in the search space is not efficient, given that it increases the search space from 11,664,000 

possible candidate solutions to 1,796,256,000 possible candidate solutions (see Section 3.2), thus 
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creating a much more complex search landscape and a higher computational cost of finding an 

optimal solution.  

As in the previous section, a more detailed analysis of the Phase_1A_Iteration_Count 

hyperparameter’s optimisation is reported next. As with the previous section, there is a 

predominantly moderate negative correlation between the iteration count and the percentage of 

instances in the dataset that belong to the positive class, indicating that the hyperparameter is utilised 

to handle class imbalance. GA-2 actually displays a strong correlation when δ = 60% for the 

biomedical datasets, further supporting this hypothesis.  For the biomedical datasets, the correlation 

coefficient values are -0.631, -0.687, and -0.723 for δ = 20%, 40%, and 60% respectively. For the 

synthetic datasets, the values are -0.689, -0.698, and -0.695 for δ = 20%, 40%, and 60% respectively.  

The other parameters listed in Table 4.22 offer no clear patterns or conclusions to be drawn, and 

as such will not be discussed further.  

4.5     Summary 

This Chapter has introduced GA-Auto-PU, a Genetic Algorithm-based Automated-Machine 

Learning system for Positive-Unlabelled learning. We evaluated the predictive performance of two 

versions of GA-Auto-PU, utilising two search spaces (distinguished by whether or not they allow for 

the generation of spy-based PU learning methods). Each version of GA-Auto-PU was compared 

firstly against an Auto-ML baseline (TPOT), and secondly against two baseline PU learning methods. 

Whilst TPOT was built for standard classification rather than for PU learning, at the time of 

proposing GA-Auto-PU, no other Auto-ML system for PU learning existed. As such, a direct 

comparison could not be made. However, comparing GA-Auto-PU with TPOT has shown the 

predictive performance that can be gained from utilising a PU learning system, rather than an Auto-

ML system for standard binary classification.  

In general, the two versions of GA-Auto-PU (named GA-1 and GA-2) outperformed TPOT and 

the two baseline PU learning methods with regard to F-measure with statistical significance. The 

analysis of the algorithmic components most frequently selected by GA-Auto-PU showed a 

preference for non-spy-based methods for both biomedical and synthetic datasets. This could indicate 

that the spy-based method is an unnecessary or not cost-effective expansion of the search space, 
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considering that the inclusion of spy-based methods in the search space greatly increases the size of 

that space. However, this conclusion may be premature, given the limited number of results reported 

so far in this thesis. Therefore, this will be explored further in later chapters when more results are 

available.  

Overall, the performance of GA-1 and GA-2 across the datasets, and the varied selected values 

for the algorithmic components discussed in Section 4.4, confirm the need for an Auto-ML system 

such as GA-Auto-PU, which can configure and tune the hyper-parameters of a PU learning algorithm 

in order to maximise predictive performance for a specific input dataset.  
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Chapter 5  

A Bayesian Optimisation-based Auto-

ML System for Positive-Unlabelled 

Learning (BO-Auto-PU) 

In this chapter we introduce BO-Auto-PU, a Bayesian Optimisation (BO)-based Automated Machine 

Learning (Auto-ML) system for Positive-Unlabelled (PU) learning. GA-Auto-PU, detailed in 

Chapter 4, was the first Auto-ML system specific to PU learning, and showed statistically significant 

improvements in predictive performance over two baseline PU learning methods and an Auto-ML 

system for standard binary classification. However, the GA-Auto-PU system is computationally 

expensive, with GA-1 averaging 226.3 minutes to run 5-fold cross-validation per dataset and GA-2 

averaging 223.2 minutes to run 5-fold cross-validation per dataset. 

BO is generally a much more computationally efficient procedure than a standard Genetic 

Algorithm, given that it assesses most of the generated individuals (candidate solutions) with a fast 

executed surrogate model as opposed to the slowly executed objective function (see Section 2.3 for 

details of the BO procedure). As such, BO-Auto-PU has been developed in an attempt to reduce the 

computational expense of GA-Auto-PU without sacrificing predictive performance. Therefore, there 

are two primary research questions to explore in this chapter: firstly, whether BO-Auto-PU improves 

on the performance of GA-Auto-PU in regard to computational efficiency, and secondly whether 

BO-Auto-PU improves on the performance of GA-Auto-PU in regard to predictive performance. 
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These research questions will be addressed through the experiments and the discussion of their results 

in this chapter, and these questions will be directly answered in Section 5.5 (Summary).  

Whilst the question of improvement in predictive accuracy is generally considered to be the 

primary concern of researchers when proposing a new machine learning method, the primary 

contribution of BO-Auto-PU is the increase in computational efficiency. That is, a decrease in 

runtime. One of the primary goals of Auto-ML is to allow the field of machine learning to be more 

accessible for a wider array of researchers and practitioners (see Section 2.4). A system with a very 

high computational runtime is not a generally accessible system to those with limited computational 

resources. Thus, strides must be made to develop systems which can be utilised by all researchers 

and practitioners, not just those with access to high powered resources. So, to restate, the primary 

contribution of BO-Auto-PU is the improvement in computational efficiency. As repeated 

throughout this work, PU learning is a growing field of machine learning. Whilst GA-Auto-PU 

performed well with regard to predictive performance, it was computationally inefficient. In order 

for the field of PU learning to continue growing, the systems that enable it must be accessible to all. 

Thus, the motivation for the development of BO-Auto-PU. 

The structure of this chapter is as follows: Section 5.1 gives a detailed description of the BO-

Auto-PU system, presenting the pseudocode and hyperparameters of the system. Section 5.2 outlines 

the experimental setup, detailing the datasets used, the cross-validation procedure, and the statistical 

significance tests. Section 5.3 presents the results comparing BO-Auto-PU against GA-Auto-PU, 

before presenting the results comparing BO-Auto-PU with two baseline PU learning methods. Note 

that BO-Auto-PU utilises the same two search spaces as GA-Auto-PU (both the base search space 

and the extended search space with the Spy method); and the reporting and analyses of the 

computational results in Section 5.3 will also be performed separately for each search space. Section 

5.4 discusses the hyperparameter values of the optimised PU learning methods most frequently 

selected by BO-Auto-PU, before Section 5.5 (Summary) concludes this chapter. 

5.1     Description of BO-Auto-PU 

As outlined in the Introduction of this chapter, BO-Auto-PU is a Bayesian Optimisation (BO)-based 

Automated Machine Learning (Auto-ML) system specific to PU learning. This section describes the 
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pseudocodes detailing the procedure followed by the BO-Auto-PU system. Details of the individual 

(candidate solution) encoding, as well the fitness (objective) function can be found in Chapter 3. 

Recall that the reason why individual encoding and fitness function are discussed separately in 

Chapter 3 (rather than in the current chapter) is because these Auto-ML system components are the 

same for both GA-Auto-PU and BO-Auto-PU. A generic version of BO is discussed in detail in 

Section 2.3. 

5.1.1     The BO Procedure for PU learning 

Procedure 5.1 outlines the procedure that the BO follows to evolve a PU learning algorithm. Initially, 

#Configs PU learning algorithm configurations are randomly generated (step 1) and evaluated, with 

their F-measures saved as Scores (step 2). The random generation procedure is the same as that 

described for GA-Auto-PU in Chapter 4, but to reiterate briefly, the random generation of a candidate 

solution involves, for each gene, randomly selecting a value from the list of candidate values of that 

specific gene. E.g., for the hyperparameter Iteration_Count_1A, the options for the value of that 

hyperparameter are 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; and each of these values can be selected with equal 

probability (10% in this case).  

Procedure 5.1 Outline of the Bayesian optimization procedure for Positive-Unlabelled Learning 

1. Configs = randomly generate #Configs PU learning configurations; 

2. Scores = run objective function for all configurations in Configs; // see Procedures 3.1-3.4 

3. Fit Surr_model with Configs as features, Scores as target; 

4. 𝑖 = 0; 

5. While 𝑖 < It_count: 

a. New_configs = randomly generate #Configs configurations; 

b. 𝑌̂ = calculate a surrogate score for each new config with Surr_model; 

c. Best_config = config with highest surrogate score 𝑌̂; 

d. Score = run objective function for Best_config; // see Procedures 3.1-3.4 

e. Add Best_config to Configs, add Score to Scores; 

f. Retrain Surr_model on Configs and Scores; 

g. 𝑖 += 1; 

Output: Best configuration according to objective score; 

A random forest regressor, Surr_model (surrogate model), is then trained, using Configs as predictive 

features, and Scores as the target variable (step 3). Common choices for Surr_model are random 

forest and Gaussian process regressor (see Sections 2.1 and 2.3). Preliminary experiments conducted 
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to compare utilisation of Gaussian process vs random forest showed that random forest produced the 

best results for this use case, in addition to random forests being much faster than Gaussian process 

in general, and as such random forest has been used to learn the surrogate models in BO-Auto-PU.  

Configs are processed as follows for training Surr_model: for the base search space (without the 

Spy method), the numeric components of each configuration (Threshold_1A, Iteration_Count_1A, 

Threshold_1B) are treated as numeric features, the Boolean component (Flag_1B) is treated as a 

binary feature, and the nominal components (Classifier_1A, Classifier_1B, Classifier_2) are one-hot 

encoded, with a binary value for each potential value of the component, indicating whether or not 

that value is used. The resulting instance for the regression algorithm (which will be used to learn 

Surr_model) consists of 58 features. For the extended search space (with the Spy method), all the 

previously mentioned components are treated as they are in the base search space. However, we also 

have the additional Spy method’s components, with Spy_rate and Spy_tolerance treated as numeric 

features, and the Boolean component “Spy_flag” treated as a binary feature – indicating whether or 

not the Spy method is used. This results in an instance consisting of 61 features for the regression 

algorithm.  A truncated example of the dataset used as input for learning Surr_model is shown in 

Figure 5.1.  

 

Figure 5.1. Example input dataset for learning Surr_model in BO-Auto-PU with the base search 

space. 

Note that for Figure 5.1, the feature headings have been replaced with the values F1, F2, etc. to save 

space. However, they are (in order) as follows:  

F1 is Iteration_count_1A. 

F2 is RN_threshold_1A. 

F3...F20 represent the one-hot encoded values for Classifier_1A, namely: Gaussian naïve Bayes 

(F3), Bernoulli naïve Bayes (F4), random forest (F5), etc, with the other 15 candidate classifiers 

truncated as F6 … 20 to save space. For example, in the second row of the dataset shown in Figure 

F1 F2 F3 F4 F5 F6 … 20 F21 F22 F23 F24 F25 … 39 F40 F41 F42 F43 F44 … 58 Score

6 0.3 1 0 0 … 0.15 1 0 0 … 0 0 0 0 … 0.545

2 0.45 0 0 1 … 0.25 0 1 0 … 1 0 1 0 … 0.632

2 0.5 0 0 0 … 0.5 1 0 0 … 0 0 0 0 … 0.123

2 0.2 0 0 0 … 0.35 0 0 0 … 0 1 0 0 … 0.958

2 0.15 0 1 0 … 0.1 0 0 1 … 1 0 0 0 … 0.342
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5.1, the value F5 = 1 means that random forest was selected as the classifier for phase 1A in that 

candidate configuration. 

F21 is RN_threshold_1B. 

F22…F39 represent the one-hot encoded values for Classifier_1B, namely: Gaussian naïve 

Bayes (F22), Bernoulli naïve Bayes (F23), random forest (F24), etc. 

F40 is Flag_1B with 1 representing a value of True and 0 representing a value of False. 

F41…F58 represent the one-hot encoded values for Classifier_2, namely: Gaussian naïve Bayes 

(F41), Bernoulli naïve Bayes (F42), random forest (F43), etc.. 

 The iteration index 𝑖 is set to 0 (step 4), and the while loop in step 5 is started, proceeding 

It_count times. In each iteration of this loop, a new set of #Configs configurations, New_configs, are 

randomly generated (step 5.a) and a surrogate score for each is calculated by Surr_model and saved 

as 𝑌̂ (step 5.b). Note that this random population generation is the same procedure as the initial 

random population generation in step 1 of Procedure 5.1 (which is also the same procedure used by 

GA-Auto-PU to generate an initial population, as described in Chapter 4). That is, at each iteration, 

a new population is created just as it was at the start of the execution of BO-Auto-PU.  

The best configuration, Best_config, with the highest surrogate score 𝑌̂ is evaluated using the 

objective function (steps 5.c,d), and added to Configs, with the objective Score (F-measure) added 

to Scores (step 5.e). This is the key step in the Bayesian optimization procedure. The reason this 

optimization procedure is so much more computationally efficient than a standard genetic algorithm 

(GA) is that only a single candidate solution is evaluated by the computationally expensive objective 

at each iteration; unlike a GA, which evaluates the whole population using the objective function. 

Selection of the candidate solution to evaluate is performed by the acquisition function. There are 

many varieties of acquisition function, with options such as Expected Improvement (EI) and 

Probability of Improvement (see Section 2.3.2), as well as the simple approach of using the score 

predicted by Surr_model. Preliminary experiments comparing this simple approach and EI showed 

that the simple approach of selecting the candidate solution with the best score predicted by 

Surr_model gave the best results. That is, the predictive performance of this simple approach was 

higher than when EI was used. Hence, this approach has been taken for BO-Auto-PU.   
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Surr_model is then retrained with Best_config added to Configs (step 5.f). That is, Surr_model is 

updated to include the new candidate solution that was selected from the population, thus updating 

Surr_model’s knowledge of the search space. This increases the size of Configs by 1 at each iteration, 

providing more information to Surr_model. The iteration index 𝑖 is incremented by 1 (step 5.g). This 

process (steps 5.a-g) is repeated It_count times. Finally, the best configuration, according to the 

objective score (F-measure), is returned. Note that it is the objective score, not the surrogate score, 

that determines the best candidate solution to be returned. The surrogate score is an estimation that 

can be computed relatively fast, whereas the objective score, which is takes much longer to be 

computed, is the predictive performance measure that the system really has to optimise. Therefore, 

the best candidate solution is selected from the population of candidate solutions for which the 

objective score has been calculated, to return an accurate best candidate solution. Best, that is, relative 

to the population.    

The objective function cited in steps 2 and 5.d is defined in Section 3.2.3. 

5.1.2     The BO’s Hyperparameters 

Table 5.1 shows the hyperparameter settings of the BO underlying BO-Auto-PU. The It_count 

parameter determines the number of iterations to perform the optimisation. #Configs determines the 

number of individuals in the population. Surr_model is the surrogate model used to calculate the 

surrogate score. The acquisition function is the method for selecting which candidate solution to 

assess with the objective function. For this, we simply use the predicted value from Surr_model. In 

preliminary experiments, we varied the acquisition function to use the Expected Improvement (EI) 

algorithm (see Section 2.3) but found that just using Surr_model predicted value gave better results. 

Table 5.1. Hyperparameters of the BO-Auto-PU system, with their default values. 

Hyperparameter Value 

It_count 50 

#Configs 101 

Surr_model Random Forest Regressor 

Acquisition function Surr_model predicted value 

The It_count and #Configs parameters were set to match the #generations and Pop_size parameters 

for GA-Auto-PU (see Section 4.1.2), in order to perform a controlled comparison between BO-Auto-

PU and GA-Auto-PU in the experiments reported later in this chapter.  
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5.1.3     Computational Efficiency 

In both the GA-based and the BO-based Auto-ML systems for PU learning, the running time is by 

far dominated by the time to evaluate the candidate solutions along the iterations of the search, i.e., 

the time to learn a PU model on part of the training set and evaluate the learned model’s F-measure 

on the remaining part of the training set, for each candidate PU learning method. GA and the BO-

based methods perform the same number of iterations (50) in our experiments. However, in each 

generation (iteration) of GA-Auto-PU the GA must learn and evaluate 𝑛 PU models, where 𝑛 is the 

number of individuals (candidate solutions) in the population, whilst each iteration of BO-Auto-PU 

needs to learn and evaluate a single PU model. Learning a PU model can be very computationally 

expensive, depending not only on the size of the dataset but also on the time complexity of the 3 

classification algorithms chosen for Phases 1A, 1B and 2 of the 2-step method, and the number of 

iterations the classifier is applied in Phase 1A. 

GA-Auto-PU and BO-Auto-PU also must perform other steps for generating candidate solutions 

to be evaluated, but these take in general much less time than the time to evaluate candidate solutions 

using the objective function (F-measure) as described above. More precisely, at each iteration the 

GA must perform tournament selection, crossover and mutation, but these are all simple operations, 

which are much faster than computing the fitness function (learning a PU model for each individual). 

Unlike the GA, at each iteration BO learns a surrogate model, but again, the time for this is much 

shorter than the time taken to learn a PU model in each iteration of BO. This is because the surrogate 

model is learned by a relatively fast random forest algorithm using a small dataset of PU algorithm 

configurations, whilst learning a PU model involves running multiple classifiers (one of them for 

several iterations in Phase 1A), each classifier can be much slower than a random forest. In addition, 

each classifier is learned using the training data of the current dataset, which is typically much larger 

in number of instances than the small dataset of PU method configurations. Regarding the number 

of features, the training set for learning a PU model has in general more features than the training set 

for learning the surrogate model in the case of the synthetic datasets; whilst the converse is true in 

the case of the biomedical datasets – but even for this latter group of datasets, the overall time taken 

to learn a surrogate model is still much faster than the time to learn a PU model, making BO-Auto-

PU much faster than GA-Auto-PU, as will be reported later in this thesis. 
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5.2     Experimental Setup 

The experimental procedure is explained in detail in Chapter 3. However, to briefly recap, two types 

of datasets are used in these experiments (biomedical and synthetic), each with 3 versions (varying 

the % of positive instances hidden in the unlabelled set), thus creating 120 datasets total.  

A nested cross-validation procedure is used, with a simple 5-fold cross-validation procedure as 

the external layer. The internal layer splits the training set into 5 learning and validation sets, which 

is used to evaluate the candidate solutions. 

To compare the performance of the methods, we use the Wilcoxon signed rank test [202], with 

Holm correction for testing multiple hypotheses [203]. 

5.2.1     Structure of the Results’ Sections  

In the next sections, we present experimental results comparing the BO-Auto-PU system with both 

search spaces (without and with the Spy method). Firstly, BO-Auto-PU is compared against GA-

Auto-PU. Secondly, BO-Auto-PU is compared against the two PU learning baselines.  Experiments 

were conducted on both the real-world biomedical datasets and the synthetic datasets, for three values 

of 𝛿 (the percentage of positives hidden in the unlabelled set): 20%, 40%, and 60%. Each section 

will report the F-measure results in full and will provide a summary of the precision and recall results. 

The full precision and recall results can be found in the Appendix.  

For the sake of brevity, the BO-Auto-PU and the GA-Auto-PU systems utilising the base search 

space (without the Spy method) will be referred to as BO-1 and GA-1 respectively, whilst the systems 

using the extended search space will be referred to as BO-2 and GA-2 respectively.  

5.3     Results for BO-Auto-PU 

5.3.1     Results comparing BO-Auto-PU with GA-Auto-PU 

In this section, results for BO-Auto-PU are given and compared to GA-Auto-PU, beginning with a 

comparison of BO-1 and GA-1 (using the base search space) on the biomedical datasets, as shown 

in Table 5.2.  
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Table 5.2. F-measure results of BO-1 and GA-1 on real-world biomedical datasets. 

 

Dataset  

δ = 20% δ = 40% δ = 60% 

GA-1 BO-1 GA-1 BO-1 GA-1 BO-1 

Alzheimer’s  0.529 0.615 0.551 0.600 0.456 0.436 

Autism  0.960 0.967 0.927 0.956 0.910 0.863 

Breast cancer Coi.  0.705 0.694 0.687 0.701 0.510 0.586 

Breast cancer Wis.  0.954 0.949 0.932 0.969 0.906 0.895 

Breast cancer mut.    0.893 0.893 0.868 0.873 0.854 0.841 

Cervical cancer  0.828 0.839 0.903 0.903 0.714 0.645 

Cirrhosis  0.573 0.545 0.464 0.529 0.443 0.489 

Dermatology  0.860 0.872 0.780 0.905 0.828 0.725 

PI Diabetes  0.677 0.647 0.649 0.645 0.606 0.594 

ES Diabetes  0.958 0.983 0.895 0.877 0.930 0.902 

Heart Disease  0.843 0.844 0.801 0.830 0.785 0.777 

Heart Failure  0.770 0.753 0.652 0.605 0.674 0.704 

Hepatitis C  0.953 0.907 0.771 0.838 0.588 0.708 

Kidney Disease  0.976 0.988 0.988 0.964 0.754 0.806 

Liver Disease  0.834 0.820 0.803 0.817 0.804 0.795 

Maternal Risk  0.476 0.837 0.812 0.780 0.735 0.689 

Parkinsons  0.860 0.935 0.836 0.875 0.818 0.732 

Parkinsons Biom.  0.476 0.167 0.265 0.192 0.233 0.182 

Spine  0.652 0.954 0.907 0.926 0.818 0.742 

Stroke  0.474 0.244 0.255 0.153 0.255 0.208 

Table 5.3 summarises the statistical significance of the F-measure results from Table 5.2 (for 

biomedical datasets), as well as the results for precision and recall. In Table 5.3, for each combination 

of a performance measure (F-measure, precision, recall) and a δ value (δ= 20%, 40%, 60%), the table 

reports the average (Avg.) rank of BO-1 vs GA-1 (BO-1 is the left rank, GA-1 is the right one) and 

the corresponding p-value. The better (lower) avg. rank in each cell is shown in boldface. For 

example, in the cell for F-measure, δ = 20%, the average rank for BO-1 is 1.48 and for GA-1 is 1.52. 

Hence, BO-1 was the winner, but the p-value (0.952) was greater than the significance level α (0.05), 

so this result was not statistically significant. The following discussion of results will focus mainly 

on the F-measure, the most important measure in Table 5.3, whilst precision and recall results are 

reported for completeness. 

The results in Table 5.3 show BO-1 performing best in general for δ=20% and 40%, whilst GA-

1 performs best for δ=60%. Perhaps, given that PU learning when δ=60% is a harder task than δ=20% 

and 40% due to the limited labelled data, a more diverse population is beneficial to find more 

complex solutions. GA-1 naturally introduces diversity through its population of candidate solutions 

and its evolutionary operations, and thus may be more adept for a more complex PU learning task 

associated with a larger δ value. However, no results in Table 5.3 were statistically significant.  
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Table 5.3. Results of Wilcoxon signed-rank tests when comparing BO-1 against GA-1 regarding F-

measure, Precision and Recall, for the 3 δ values on the biomedical datasets.  

δ (%) F-measure Precision Recall 

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value 

20% 1.48 vs 1.52 0.952 1.45 vs 1.55 0.983 1.6 vs 1.4 0.114 

40% 1.38 vs 1.62 0.334 1.45 vs 1.55 0.601 1.42 vs 1.58 0.398 

60% 1.75 vs 1.25 0.177 1.52 vs 1.48 0.513 1.75 vs 1.25 0.064 

The results comparing BO-2 and GA-2 (using the extended search space) on the biomedical datasets 

are given in Table 5.4. 

Table 5.4. F-measure results of BO-2 and GA-2 on real-world biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

BO-2 GA-2 BO-2 GA-2 BO-2 GA-2 

Alzheimer’s  0.580 0.548 0.603 0.576 0.492 0.529 

Autism  0.963 0.982 0.937 0.940 0.914 0.927 

Breast cancer Coi.  0.667 0.711 0.618 0.671 0.000 0.553 

Breast cancer Wis.  0.959 0.956 0.942 0.936 0.889 0.866 

Breast cancer mut.    0.890 0.896 0.853 0.739 0.845 0.872 

Cervical cancer  0.867 0.867 0.867 0.839 0.839 0.350 

Cirrhosis  0.497 0.446 0.515 0.397 0.472 0.204 

Dermatology  0.876 0.901 0.841 0.896 0.795 0.692 

PI Diabetes  0.653 0.642 0.648 0.646 0.615 0.634 

ES Diabetes  0.954 0.978 0.891 0.887 0.912 0.894 

Heart Disease  0.844 0.836 0.817 0.780 0.805 0.786 

Heart Failure  0.757 0.751 0.652 0.670 0.600 0.671 

Hepatitis C  0.964 0.944 0.761 0.863 0.612 0.610 

Kidney Disease  0.976 0.925 0.976 0.951 0.789 0.806 

Liver Disease  0.822 0.831 0.815 0.817 0.722 0.748 

Maternal Risk  0.847 0.862 0.786 0.813 0.729 0.738 

Parkinsons  0.936 0.935 0.837 0.843 0.800 0.792 

Parkinsons Biom.  0.286 0.282 0.000 0.259 0.000 0.280 

Spine  0.941 0.923 0.936 0.917 0.700 0.761 

Stroke  0.256 0.241 0.255 0.239 0.233 0.243 

Table 5.5 details the statistical significance of the F-measure results shown in Table 5.4 and 

summarises the results for precision and recall. These results show BO-2 and GA-2 performing very 

similarly, with not more than a difference of 0.2 in any of the rankings and no statistically significant 

differences in performance observed.  

Table 5.5. Results of Wilcoxon signed-rank tests when comparing BO-2 against GA-2 regarding F-

measure, Precision and Recall, for the 3 δ values on the biomedical datasets. 

δ (%) F-measure Precision Recall 

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value 

20% 1.5 vs 1.5  0.514 1.48 vs 1.52 0.394 1.35 vs 1.65 0.760 

40% 1.45 vs 1.55 0.729 1.48 vs 1.52 0.387 1.62 vs 1.38 0.519 

60% 1.6 vs 1.4 0.388 1.58 vs 1.42 0.387 1.55 vs 1.45 0.784 
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Looking now to a comparison of the systems on the synthetic datasets, Table 5.6 shows the results 

comparing BO-1 and GA-1.  

Table 5.6. F-measure results of BO-1 and GA-1 on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

GA-1 BO-1 GA-1 BO-1 GA-1 BO-1 

1 0.661 0.663 0.718 0.619 0.603 0.554 

2 0.136 0.128 0.044 0.046 0.065 0.061 

3 0.788 0.761 0.693 0.671 0.637 0.555 

4 0.831 0.811 0.818 0.785 0.674 0.627 

5 0.618 0.651 0.616 0.496 0.609 0.514 

6 0.759 0.763 0.769 0.676 0.684 0.600 

7 0.520 0.598 0.515 0.478 0.478 0.465 

8 0.525 0.512 0.477 0.473 0.381 0.391 

9 0.111 0.043 0.080 0.051 0.146 0.087 

10 0.903 0.918 0.872 0.868 0.742 0.756 

11 0.604 0.568 0.567 0.575 0.531 0.531 

12 0.674 0.671 0.666 0.683 0.609 0.574 

13 0.644 0.662 0.623 0.603 0.516 0.511 

14 0.975 0.978 0.962 0.969 0.925 0.900 

15 0.601 0.635 0.593 0.588 0.519 0.493 

16 0.477 0.432 0.388 0.333 0.301 0.282 

17 0.347 0.389 0.496 0.302 0.412 0.218 

18 0.559 0.502 0.389 0.436 0.326 0.245 

19 0.472 0.423 0.468 0.426 0.381 0.406 

20 0.705 0.696 0.692 0.670 0.625 0.622 

Table 5.7 summarises the statistical significance of the results from Table 5.6 (for synthetic datasets), 

as well as the results for precision and recall. Table 5.7 is structured in the same manner as Table 

5.3. The results from Table 5.7 rather conclusively show GA-1 outperforming BO-1, overall. Whilst 

BO-1 performs best for precision across all values of δ, GA-1 performs best for both F-measure and 

recall across all values of δ, with statistical significance in 5 of the 6 cases (the significant p-values 

are shown in boldface in the table).  

Table 5.7. Results of Wilcoxon signed-rank tests when comparing BO-1 against GA-1 regarding F-measure, 

Precision and Recall, for the 3 δ values on the synthetic datasets.  

δ (%) F-measure Precision Recall 

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value 

20% 1.55 vs 1.45 0.475 1.45 vs 1.55 0.216 1.65 vs 1.35 0.009 

40% 1.75 vs 1.25 0.006 1.2 vs 1.8 0.007 1.75 vs 1.25 0.007 

60% 1.8 vs 1.2 0.001 1.3 vs 1.7 0.058 1.85 vs 1.15 0.002 

Next, Table 5.8 details the performance of BO-2 and GA-2 on the synthetic datasets and Table 5.9 

summarises the statistical significance test results. These results differ from the results of Table 5.5, 

detailing the results of BO-2 and GA-2 applied to the biomedical datasets, with GA-2 largely 
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outperforming BO-2 for F-measure and recall on the synthetic datasets. The results for precision are 

more favourable for BO-2, performing best in 2/3 cases and achieving statistical significance in 1.  

Table 5.8. F-measure results of BO-2 and GA-2 on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

BO-2 GA-2 BO-2 GA-2 BO-2 GA-2 

1 0.649 0.640 0.586 0.709 0.578 0.545 

2 0.203 0.176 0.022 0.105 0.094 0.111 

3 0.770 0.759 0.676 0.702 0.537 0.612 

4 0.831 0.824 0.795 0.809 0.622 0.692 

5 0.603 0.612 0.614 0.571 0.499 0.559 

6 0.746 0.762 0.672 0.751 0.652 0.672 

7 0.495 0.528 0.456 0.496 0.416 0.448 

8 0.531 0.571 0.480 0.484 0.341 0.390 

9 0.019 0.098 0.039 0.000 0.105 0.143 

10 0.900 0.896 0.854 0.850 0.756 0.716 

11 0.573 0.574 0.554 0.579 0.474 0.525 

12 0.713 0.681 0.647 0.692 0.586 0.599 

13 0.667 0.648 0.578 0.612 0.533 0.576 

14 0.974 0.977 0.948 0.966 0.908 0.934 

15 0.589 0.595 0.545 0.575 0.415 0.565 

16 0.507 0.431 0.298 0.402 0.320 0.299 

17 0.289 0.384 0.304 0.470 0.070 0.382 

18 0.529 0.576 0.459 0.408 0.297 0.373 

19 0.444 0.462 0.405 0.483 0.361 0.385 

20 0.710 0.701 0.632 0.664 0.554 0.594 

Table 5.9. Results of Wilcoxon signed-rank tests when comparing BO-2 against GA-2 regarding F-measure, 

Precision and Recall, for the 3 δ values on the synthetic datasets.  

δ (%) F-measure Precision Recall 

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value 

20% 1.65 vs 1.35 0.08 1.2 vs 1.8 0.001 1.95 vs 1.05 0.00003 

40% 1.85 vs 1.15 0.002 1.5 vs 1.5 0.812 1.75 vs 1.25 0.002 

60% 1.85 vs 1.15 0.001 1.25 vs 1.75 0.177 1.85 vs 1.15 0.0001 

 

 

 

Figure 5.2. Average F-measure results comparison for BO-1, BO-2, GA-1, GA-2, DF-PU and      

S-EM, across the three values of δ for the biomedical datasets. 
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Figure 5.2 shows graphically how the average F-measure of each of the Auto-PU systems and the 

baseline methods changes over the different values of δ for the biomedical datasets. In order to reduce 

the number of figures across this chapter, this figure shows the results for all Auto-PU systems (BO-

1, BO-2, GA-1, GA-2) and all baseline PU learning methods  (DF-PU and S-EM) investigated in this 

chapter, but in this current part of the text the analysis is focussed on the results for BO-1, BO-2, 

GA-1, and GA-2 only – the results for DF-PU and S-EM were discussed in Chapter 4. Note that the 

charted data for GA-1, GA-2, DF-PU, and S-EM were also shown in Chapter, 4 but have been 

included here for the reader’s reference. 

As with the results for GA-1 and GA-2, discussed in Section 4.3, the performance of BO-1 and 

BO-2 does also decline monotonically with the increase in the value of δ. The decline for δ=60% for 

BO-1 and BO-2 is sharper than that of GA-1, which was reflected in the results shown in Tables 5.2 

and 5.4. 

 

Figure 5.3. Average F-measure results comparison for BO-1, BO-2, GA-1, GA-2, DF-PU and S-

EM, across the three values of δ for the synthetic datasets. 

Figure 5.3 shows graphically how the average F-measure of each of the systems changes over the 

different values of δ, for the synthetic datasets. It is evident that GA-1 performs better across the 

values of δ, given the overall lower average value of F-measure for BO-1 and BO-2 and the sharper 

decline in performance as δ increases.  
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Table 5.10. Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of 

positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each 

combination of a method and a δ value, for the biomedical datasets, for all methods. 

Method δ = 20% δ = 40% δ = 60% 

BO-1 0.398 0.360 0.498 

BO-2 0.339 0.348 0.225 

GA-1 0.333 0.385 0.504 

GA-2 0.340 0.357 0.580 

DF-PU 0.988 0.988 0.988 

S-EM 0.646 0.558 0.652 

In order to further analyse the results, Table 5.10 shows the values of Pearson’s linear correlation 

coefficient between the F-measure values achieved by BO-1, BO-2, GA-1, GA-2, DF-PU, and S-EM 

and percentages of positive examples in the original dataset, for each δ value, for the biomedical 

datasets. Again, in order to reduce the number of tables across this chapter, the results for all the 

aforementioned systems or methods are reported in Table 5.10, but in this current part of the text the 

analysis is focused on the results for BO-1, BO-2, GA-1 and GA-2 – the results for the baseline 

methods were discussed in Chapter 4. 

Table 5.10 shows the same trends of positive correlations as Figure 5.2. For δ=20% and 40%, 

BO-1 and BO-2 exhibit a weak correlation between percentage of positive instances and F-measure, 

whilst for δ=60% the correlation is moderate, with correlation categorisation defined as outlined in 

Section 3.4.3. These correlation values are reflective of the results for GA-1 and GA-2, which follow 

a similar trend.   

Table 5.11. Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of 

positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each 

combination of a method and a δ value, for the synthetic datasets, for all methods. 

Method δ = 20% δ = 40% δ = 60% 

BO-1 0.682 0.710 0.700 

BO-2 0.706 0.695 0.659 

GA-1 0.712 0.682 0.687 

GA-2 0.700 0.702 0.696 

DF-PU 0.990 0.990 0.990 

S-EM 0.794 0.793 0.776 

Table 5.11 shows the values of Pearson’s linear correlation coefficient between the F-measure values 

achieved by BO-1, BO-2, GA-1, GA-2, DF-PU, and S-EM and the percentages of positive examples 

in the original dataset, for each δ value for the synthetic datasets. Comparing the BO-1 and BO-2 

results in Tables 5.10 and 5.11, the correlation between percentage of positive instances and F-

measure for both is substantially higher for the synthetic datasets than it was for the biomedical 
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datasets. (A similar trend was also observed for GA-1 and GA-2 in Chapter 4.) For δ=20%, the 

correlation for BO-1 was moderate in Table 5.7. However, for δ=40% and 60%, BO-1 displayed a 

high correlation. This was the opposite of GA-1 and BO-2, which displayed high correlations for 

δ=20% and moderate correlations for δ=40% and 60%. GA-2 displayed high correlations for δ=20% 

and 40%. However, the real differences in the correlation values were very small. 

Considering the overall results in this section, it is hard to draw a clear conclusion regarding the 

best system. Regarding predictive performance, the results are somewhat in favour of GA-1. GA-1 

was outperformed by BO-1 by most of the results shown in Table 5.3, but without statistical 

significance. Whereas GA-1 performed best by the results shown in Table 5.8 with statistical 

significance. Comparing BO-2 and GA-2, the results in Table 5.5 show very similar performance 

between the two systems, whilst the results in Table 5.9 show GA-2 largely outperforming BO-2, 

with statistical significance in many cases. However, the BO-Auto-PU systems offer a key advantage 

over GA-Auto-PU in regard to computational runtime. GA-1 took 226.3 minutes on average to run 

a 5-fold cross-validation procedure per dataset, averaged over the two types of dataset, whilst BO-1 

took only 8.4 minutes. GA-2 took 223.2 minutes on average whilst BO-2 took 9.8 minutes. The 

learning curves of the systems are reported in Section 6.5. Thus, BO-Auto-PU performed 

approximately 23-27 times faster than GA-Auto-PU. It is important to note that one of the primary 

aims of Auto-ML is to make machine learning more accessible to users or data analysis without 

expertise on machine learning. GA-Auto-PU makes machine learning more accessible by removing 

the need for trial-and-error approaches to PU learning parameter tuning. However, it falls short in 

that the computational expense needed may make the system impractical for some users or data 

analysts. This is the primary contribution of BO-Auto-PU; BO-Auto-PU still achieves high predictive 

performance, but at a much lower computational expense than GA-Auto-PU, thus making it more 

accessible.  

5.3.2     Results comparing BO-Auto-PU with two baseline PU 

learning methods 

This section details the results achieved by BO-Auto-PU and two baseline PU learning methods (DF-

PU and S-EM, see Section 2.5) when applied to 20 real-world biomedical datasets and 20 synthetic 
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datasets. Note that the results in the BO-1 and BO-2 columns in the tables of results reported in this 

section are the same as those reported in the previous section, but they are repeated in this section 

for the reader’s convenience.  

Table 5.12. F-measure results of BO-1 and baseline PU learning methods on real-world biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

BO-1 DF-PU S-EM BO-1 DF-PU S-EM BO-1 DF-PU S-EM 

Alzheimer’s  0.615 0.195 0.321 0.600 0.194 0.370 0.436 0.171 0.373 

Autism  0.967 0.648 0.820 0.956 0.648 0.841 0.863 0.645 0.835 

Breast cancer Coi.  0.694 0.697 0.711 0.701 0.711 0.704 0.586 0.697 0.699 

Breast cancer Wis.  0.949 0.543 0.898 0.969 0.543 0.903 0.895 0.539 0.904 

Breast cancer mut.    0.893 0.489 0.892 0.873 0.489 0.893 0.841 0.485 0.892 

Cervical cancer  0.839 0.061 0.054 0.903 0.042 0.053 0.645 0.044 0.046 

Cirrhosis  0.545 0.405 0.436 0.529 0.401 0.442 0.489 0.405 0.459 

Dermatology  0.872 0.228 0.718 0.905 0.229 0.718 0.725 0.219 0.719 

PI Diabetes  0.647 0.516 0.534 0.645 0.516 0.525 0.594 0.515 0.544 

ES Diabetes  0.983 0.762 0.792 0.877 0.756 0.859 0.902 0.759 0.793 

Heart Disease  0.844 0.705 0.811 0.830 0.705 0.828 0.777 0.702 0.829 

Heart Failure  0.753 0.487 0.529 0.605 0.486 0.508 0.704 0.481 0.557 

Hepatitis C  0.907 0.176 0.695 0.838 0.171 0.708 0.708 0.160 0.609 

Kidney Disease  0.988 0.428 1.000 0.964 0.428 1.000 0.806 0.428 0.951 

Liver Disease  0.820 0.834 0.816 0.817 0.832 0.587 0.795 0.834 0.788 

Maternal Risk  0.837 0.403 0.454 0.780 0.395 0.433 0.689 0.390 0.438 

Parkinsons  0.935 0.856 0.815 0.875 0.860 0.748 0.732 0.860 0.762 

Parkinsons Biom.  0.167 0.354 0.333 0.192 0.354 0.261 0.182 0.367 0.331 

Spine  0.954 0.652 0.820 0.926 0.652 0.839 0.742 0.652 0.830 

Stroke  0.244 0.086 0.102 0.153 0.094 0.102 0.208 0.094 0.102 

Table 5.13. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when 

comparing BO-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for 

the biomedical datasets.  

δ 

(%) 

Methods 

compared 

F-measure Precision Recall 

Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α 

20% BO-1 vs DF-

PU 

1.15 vs 

1.85 

0.0001 0.025 1.05 vs 

1.95 

0.00001 0.025 2.0 vs 

1.0 

0.000002 0.025 

BO-1 vs S-

EM 

1.15 vs  

1.85 

0.0009 0.05 1.12 vs 

1.88 

0.0005 0.05 1.7 vs 

1.3 

0.0266 0.05 

40% BO-1 vs DF-

PU 

1.15 vs 

1.85 

0.0002 0.025 1.0 vs 2.0 0.000002 0.025 1.98 vs 

1.02 

0.0001 0.025 

BO-1 vs S-

EM 

1.2 vs 

1.8 

0.0006 0.05 1.08 vs 

1.92 

0.0003 0.05 1.75 vs 

1.25 

0.021 0.05 

60% BO-1 vs DF-

PU 

1.2 vs 

1.8 

0.002 0.025 1.05 vs 

1.95 

0.000004 0.025 2.0 vs 

1.0 

0.000002 0.025 

BO-1 vs S-

EM 

1.4 vs 

1.6 

0.498 0.05 1.12 vs 

1.88 

0.0002 0.05 1.98 vs 

1.02 

0.0001 0.05 

Table 5.13 summarises the statistical significance of the F-measure results from Table 5.12, as well 

as the results for precision and recall. In Table 5.13, for each combination of a performance measure 

(F-measure, precision, recall) and a δ value (δ= 20%, 40%, 60%), the table reports the average (Avg.) 

rank of BO-1 vs a baseline method (BO-1 is the left rank, the baseline is the right one), as well as the 

corresponding p-value and adjusted α value (significance level). The better (lower) avg. rank in each 
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cell is shown in boldface; and significant p-values (smaller than the adjusted α) are also shown in 

boldface. The following discussion of results will focus mainly on the F-measure, the most important 

measure in Table 5.13, whilst precision and recall results are reported for completeness. 

Table 5.13 shows BO-1 largely outperforming DF-PU and S-EM across all values of δ for F-

measure and precision with statistical significance in 11 out of 12 cases. As was the case for GA-1, 

the baseline methods substantially outperform BO-1 for recall, with statistical significance in all 6 

cases. However, the reasons for this are the same as those outlined in Section 4.3, namely that the 

baseline methods massively overpredict the positive class, thus resulting in high recall but low 

precision.  

Next, Table 5.14 reports the results of BO-2 against the baseline methods on the biomedical 

datasets and Table 5.15 summarises the statistical significance test results. As has been the case with 

the previously discussed methods, BO-2 largely outperforms the baselines for F-measure and 

precision across all values of δ, with statistical significance in 11 out of 12 cases. As has been 

previously discussed, the baseline methods overpredict the positive class, achieving significantly 

higher recall than BO-2 in all 6 cases, but at a substantial loss to precision. 

Table 5.14. F-measure results of BO-2 and two baseline PU learning methods on real-world biomedical 

datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

BO-2 DF-PU S-EM BO-2 DF-PU S-EM BO-2 DF-PU S-EM 

Alzheimer’s  0.580 0.195 0.321 0.603 0.194 0.370 0.492 0.171 0.373 

Autism  0.963 0.648 0.820 0.937 0.648 0.841 0.914 0.645 0.835 

Breast cancer Coi.  0.667 0.697 0.711 0.618 0.711 0.704 0.000 0.697 0.699 

Breast cancer Wis.  0.959 0.543 0.898 0.942 0.543 0.903 0.889 0.539 0.904 

Breast cancer mut.    0.890 0.489 0.892 0.853 0.489 0.893 0.845 0.485 0.892 

Cervical cancer  0.867 0.061 0.054 0.867 0.042 0.053 0.839 0.044 0.046 

Cirrhosis  0.497 0.405 0.436 0.515 0.401 0.442 0.472 0.405 0.459 

Dermatology  0.876 0.228 0.718 0.841 0.229 0.718 0.795 0.219 0.719 

PI Diabetes  0.653 0.516 0.534 0.648 0.516 0.525 0.615 0.515 0.544 

ES Diabetes  0.954 0.762 0.792 0.891 0.756 0.859 0.912 0.759 0.793 

Heart Disease  0.844 0.705 0.811 0.817 0.705 0.828 0.805 0.702 0.829 

Heart Failure  0.757 0.487 0.529 0.652 0.486 0.508 0.600 0.481 0.557 

Hepatitis C  0.964 0.176 0.695 0.761 0.171 0.708 0.612 0.160 0.609 

Kidney Disease  0.976 0.428 1.000 0.976 0.428 1.000 0.789 0.428 0.951 

Liver Disease  0.822 0.834 0.816 0.815 0.832 0.587 0.722 0.834 0.788 

Maternal Risk  0.847 0.403 0.454 0.786 0.395 0.433 0.729 0.390 0.438 

Parkinsons  0.936 0.856 0.815 0.837 0.860 0.748 0.800 0.860 0.762 

Parkinsons Biom.  0.286 0.354 0.333 0.000 0.354 0.261 0.000 0.367 0.331 

Spine  0.941 0.652 0.820 0.936 0.652 0.839 0.700 0.652 0.830 

Stroke  0.256 0.086 0.102 0.255 0.094 0.102 0.233 0.094 0.102 
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Table 5.15. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when 

comparing BO-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for 

the biomedical datasets.  

δ 

(%) 

Methods 

compared 

F-measure Precision Recall 

Avg. 

ranks 

p-

value 

α Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α 

20% BO-2 vs 

DF-PU 

1.1 vs 

1.9 

0.000

2 

0.025 1.0 vs 

2.0 

0.000002 0.025 2.0 vs 

1.0 

0.000002 0.025 

BO-2 vs   

S-EM 

1.15 vs 

1.85 

0.001 0.05 1.08 vs 

1.92 

0.0001 0.05 1.75 vs 

1.25 

0.024 0.05 

40% BO-2 vs 

DF-PU 

1.2 vs 

1.8 

0.001 0.025 1.05 vs 

1.95 

0.00004 0.025 2.0 vs 

1.0 

0.000002 0.025 

BO-2 vs   

S-EM 

1.25 vs 

1.75 

0.006 0.05 1.12 vs 

1.88 

0.001 0.05 1.8 vs 

1.2 

0.006 0.05 

60% BO-2 vs 

DF-PU 

1.2 vs 

1.8 

0.019 0.025 1.1 vs 

1.9 

0.0004 0.025 1.95 vs 

1.05 

0.000004 0.025 

BO-2 vs   

S-EM 

1.4 vs 

1.6 

0.571 0.05 1.12 vs 

1.88 

0.0006 0.05 1.85 vs 

1.15 

0.0001 0.5 

Moving on to the synthetic datasets, Table 5.16 details the results comparing BO-1 vs the baseline 

methods and Table 5.17 summarises the statistical significance tests. Table 5.16 shows BO-1 largely 

outperforming DF-PU and S-EM across all values of δ for F-measure and precision, with statistical 

significance in 11 out of 12 cases. As was the case for GA-1, the baseline methods substantially 

outperform BO-1 for recall, with statistical significance in all 6 cases. However, the reasons for this 

are the same as those outlined in Section 4.3, namely that the baseline methods massively overpredict 

the positive class, thus resulting in high recall but low precision.  

Table 5.16. F-measure results of BO-1 and baseline PU learning methods on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

BO-1 DF-PU S-EM BO-1 DF-PU S-EM BO-1 DF-PU S-EM 

1 0.663 0.484 0.616 0.619 0.484 0.602 0.554 0.483 0.613 

2 0.128 0.125 0.194 0.046 0.120 0.130 0.061 0.112 0.120 

3 0.761 0.552 0.589 0.671 0.552 0.587 0.555 0.552 0.600 

4 0.811 0.454 0.644 0.785 0.416 0.633 0.627 0.417 0.630 

5 0.651 0.357 0.402 0.496 0.356 0.436 0.514 0.357 0.465 

6 0.763 0.403 0.477 0.676 0.402 0.525 0.600 0.402 0.582 

7 0.598 0.285 0.433 0.478 0.283 0.462 0.465 0.282 0.451 

8 0.512 0.326 0.468 0.473 0.326 0.457 0.391 0.326 0.439 

9 0.043 0.035 0.099 0.051 0.000 0.044 0.087 0.000 0.120 

10 0.918 0.233 0.612 0.868 0.234 0.627 0.756 0.233 0.663 

11 0.568 0.491 0.505 0.575 0.491 0.520 0.531 0.490 0.517 

12 0.671 0.397 0.550 0.683 0.397 0.567 0.574 0.394 0.586 

13 0.662 0.500 0.551 0.603 0.460 0.556 0.511 0.456 0.549 

14 0.978 0.529 0.817 0.969 0.529 0.840 0.900 0.529 0.873 

15 0.635 0.387 0.423 0.588 0.387 0.425 0.493 0.385 0.422 

16 0.432 0.239 0.414 0.333 0.239 0.401 0.282 0.240 0.299 

17 0.389 0.214 0.262 0.302 0.214 0.281 0.218 0.214 0.267 

18 0.502 0.372 0.444 0.436 0.373 0.433 0.245 0.373 0.422 

19 0.423 0.378 0.426 0.426 0.378 0.429 0.406 0.376 0.413 

20 0.696 0.610 0.615 0.670 0.610 0.620 0.622 0.610 0.613 
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Table 5.17. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis 

when comparing BO-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for 

the 3 δ values for the synthetic datasets.  

δ 

(%) 

Methods 

compared 

F-measure Precision Recall 

Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α 

20% BO-1 vs 

DF-PU 

1.0 vs 

2.0 

0.000002 0.025 1.0 vs 

2.0 

0.000002 0.025 1.95 vs 

1.05 

0.00001 0.025 

BO-1 vs 

S-EM 

1.15 vs 

1.85 

0.0002 0.05 1.1 vs 

1.9 

0.00003 0.05 1.75 vs 

1.25 

0.002 0.05 

40% BO-1 vs 

DF-PU 

1.05 vs 

1.95 

0.00002 0.025 1.0 vs 

2.0 

0.000002 0.025 1.95 vs 

1.05 

0.000004 0.05 

BO-1 vs 

S-EM 

1.15 vs 

1.85 

0.002 0.05 1.1 vs 

1.9 

0.00001 0.05 2.0 vs 

1.0 

0.000002 0.025 

60% BO-1 vs 

DF-PU 

1.1 vs 

1.9 

0.0007 0.025 1.0 vs 

2.0 

0.000002 0.025 1.95 vs 

1.05 

0.000004 0.05 

BO-1 vs 

S-EM 

1.6 vs 

1.4 

0.410 0.05 1.15 vs 

1.85 

0.0001 0.05 2.0 vs 

1.0 

0.000002 0.025 

Table 5.19 details the statistical significance of the F-measure results shown in Table 5.18 and 

summarises the results for precision and recall. BO-2 again largely outperforms the baseline methods 

regarding F-measure and precision for all values of δ, with the exception of S-EM for F-measure 

when δ=60%. The difference in F-measure and precision values is statistically significant in all cases 

when BO-2 outperforms the baseline methods (i.e., in 11 out of 12 cases). For recall, as expected 

based on previous results, the baselines outperform BO-2 for all δ values with statistical significance.  

Table 5.18. F-measure results of BO-2 and two baseline PU learning methods on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

BO-2 DF-PU S-EM BO-2 DF-PU S-EM BO-2 DF-PU S-EM 

1 0.649 0.484 0.616 0.586 0.484 0.602 0.578 0.483 0.613 

2 0.203 0.125 0.194 0.022 0.120 0.130 0.094 0.112 0.120 

3 0.770 0.552 0.589 0.676 0.552 0.587 0.537 0.552 0.600 

4 0.831 0.454 0.644 0.795 0.416 0.633 0.622 0.417 0.630 

5 0.603 0.357 0.402 0.614 0.356 0.436 0.499 0.357 0.465 

6 0.746 0.403 0.477 0.672 0.402 0.525 0.652 0.402 0.582 

7 0.495 0.285 0.433 0.456 0.283 0.462 0.416 0.282 0.451 

8 0.531 0.326 0.468 0.480 0.326 0.457 0.341 0.326 0.439 

9 0.019 0.035 0.099 0.039 0.000 0.044 0.105 0.000 0.120 

10 0.900 0.233 0.612 0.854 0.234 0.627 0.756 0.233 0.663 

11 0.573 0.491 0.505 0.554 0.491 0.520 0.474 0.490 0.517 

12 0.713 0.397 0.550 0.647 0.397 0.567 0.586 0.394 0.586 

13 0.667 0.500 0.551 0.578 0.460 0.556 0.533 0.456 0.549 

14 0.974 0.529 0.817 0.948 0.529 0.840 0.908 0.529 0.873 

15 0.589 0.387 0.423 0.545 0.387 0.425 0.415 0.385 0.422 

16 0.507 0.239 0.414 0.298 0.239 0.401 0.320 0.240 0.299 

17 0.289 0.214 0.262 0.304 0.214 0.281 0.070 0.214 0.267 

18 0.529 0.372 0.444 0.459 0.373 0.433 0.297 0.373 0.422 

19 0.444 0.378 0.426 0.405 0.378 0.429 0.361 0.376 0.413 

20 0.710 0.610 0.615 0.632 0.610 0.620 0.554 0.610 0.613 
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Table 5.19. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when 

comparing BO-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for 

the synthetic datasets.  

δ 

(%) 

Methods 

compared 

F-measure Precision Recall 

Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α 

20% BO-2 vs 

DF-PU 

1.05 

vs 

1.95 

0.00001 0.025 1.0 vs 

2.0 

0.000002 0.025 1.95 vs 

1.05 

0.00001 0.05 

BO-2 vs 

S-EM 

1.1 vs 

1.9 

0.0005 0.05 1.05 vs 

1.95 

0.000004 0.05 2.0 vs 

1.0 

0.000002 0.025 

40% BO-2 vs 

DF-PU 

1.05 

vs 

1.95 

0.00004 0.025 1.05 vs 

1.95 

0.000004 0.025 1.9 vs 

1.1 

0.00001 0.05 

BO-2 vs 

S-EM 

1.3 vs 

1.7 

0.017 0.05 1.08 vs 

1.92 

0.00002 0.05 2.0 vs 

1.0 

0.000002 0.025 

60% BO-2 vs 

DF-PU 

1.35 

vs 

1.65 

0.019 0.025 1.0 vs 

2.0 

0.000002 0.025 1.95 vs 

1.05 

0.000004 0.025 

BO-2 vs 

S-EM 

1.75 

vs 

1.25 

0.083 0.05 1.15 vs 

1.85 

0.0003 0.05 1.92 vs 

1.08 

0.00001 0.05 

5.4     The PU Learning Algorithm’s Hyperparameter 

Values Most Frequently Selected by BO-Auto-PU 

This section reports the optimised PU learning algorithm’s hyperparameter values which were most 

frequently selected by BO-Auto-PU utilising the base search space (BO-1) and the extended search 

space (BO-2). It reports the selection frequency, baseline frequency, and their difference. The 

selection frequency of a PU learning algorithm’s hyperparameter value is calculated as the ratio of 

the number of times that value was used in the optimised PU learning algorithm returned by BO-

Auto-PU over the total number of BO-Auto-PU runs, which is 300 per type of dataset (biomedical 

or synthetic), considering 20 datasets times 3 values of 𝛿 times 5 runs of a BO-Auto-PU version per 

dataset, due to the use of 5-fold cross-validation. The baseline frequency is the expected selection 

frequency of a hyperparameter value if all values of that hyperparameter were randomly selected for 

use in a PU learning algorithm. I.e., it is calculated by simply dividing 1 (one) by the number of 

candidate values for that hyperparameter. The difference between these two frequencies is simply 

the selection frequency minus the baseline frequency.  

As mentioned in Section 4.4, little has been written on the topic of suitable algorithm 

configuration for PU learning, and no guidelines exist in the literature. Hence, the information about 
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the most frequently selected hyperparameter values in our experiments can give some insights about 

how to improve the performance of PU learning algorithms.  

Throughout this section, the term “classifier” is used to refer to a classification algorithm (rather 

than a classification model learned by an algorithm), unless explicitly mentioned otherwise. 

5.4.1     The Hyperparameter Values Most Frequently Selected 

by BO-1  

Tables 5.20 and 5.21 report the most frequently selected values of the hyperparameters of the 

optimised PU learning algorithms returned by all runs of BO-1 on the biomedical datasets and 

synthetic datasets, respectively. The most frequently selected Phase 1A Classifiers were naïve Bayes 

classifiers in both Table 5.20 and Table 5.21, i.e., Bernoulli for the biomedical datasets and Gaussian 

for the synthetic datasets. This reinforces the hypothesis from the previous chapter that the Auto-PU 

system favours simple classifiers in the early phase.  

The values most frequently selected for Phase 1B Classifiers (histogram-based boosting 

classifier (HGBoost) and support vector machine (SVM)) give little in the way of obvious 

conclusions to be drawn, as with the results in Chapter 4. Perhaps this is an indication that, whilst 

there is a trend emerging for Phase 1A Classifiers, the choice of Phase 1B Classifier is somewhat 

less determined.  

Table 5.20. Selection frequency of hyperparameter values by BO-1 for the biomedical datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration count 2 19.00 10.00 9.00 

Phase 1A RN Threshold 0.05 14.33 10.00 4.33 

Phase 1A Classifier Bernoulli NB 8.67 5.56 3.11 

Phase 1B Flag TRUE 52.67 50.00 2.67 

Phase 1 B RN Threshold 0.2 14.00 10.00 4.00 

Phase 1B Classifier HGBoost 8.00 5.56 2.44 

Phase 2 Classifier LDA 32.67 5.56 27.11 

The most frequently selected values for Phase 2 Classifier  are linear discriminant analysis (LDA) 

for the biomedical datasets and deep forest for the synthetic datasets, which are two classifiers which 

also came up frequently when analysing the results for GA-Auto-PU. LDA is a linear classifier, and 
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thus fits with the previously discussed assumptions of separability and smoothness. Deep forest is a 

powerful classifier (see Section 2.1) so it is little surprise that it performs well.  

Table 5.21. Selection frequency of hyperparameter values by BO-1 for the synthetic datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration count 4 14.67 10.00 4.67 

Phase 1A RN Threshold 0.45 13.00 10.00 3.00 

Phase 1A Classifier Gaussian NB 16.00 5.56 10.44 

Phase 1B Flag FALSE 52.00 50.00 2.00 

Phase 1 B RN Threshold 0.45 14.67 10.00 4.67 

Phase 1B Classifier SVM 10.33 5.56 4.77 

Phase 2 Classifier Deep Forest 23.67 5.56 18.11 

The Phase 1B Flag¸ as with the results of for GA-Auto-PU in Chapter 4, is almost exactly a 50/50 

split for both biomedical and synthetic datasets.  

Interestingly, the Phase 1A RN Threshold hyperparameter for the biomedical datasets has the 

lowest value, 0.05, but the second highest value for synthetic datasets, 0.45. However, these values 

were selected by such a small margin from the baseline frequency that no conclusions can be drawn 

from this. 

As in Chapter 4 analysing the results of GA-Auto-PU, a more detailed analysis of the Phase 1A 

Iteration Count hyperparameter’s optimisation is reported next. As was the case for GA-Auto-PU, 

there is a moderate correlation between iteration count and the percentage of instances in the dataset 

that belong to the positive class, indicating that the hyperparameter is utilised to handle class 

imbalance. For the biomedical datasets, the correlation coefficient values are -0.677, -0.700, and -

0.700 for δ = 20%, 40%, and 60% respectively. For the synthetic datasets, the values are -0.656, -

0.692, and -0.683 for δ = 20%, 40%, and 60% respectively. The correlations for the biomedical 

datasets when δ = 40% and 60% are classified as strong, but only just at the 0.7 threshold from 

moderate to strong.  

5.4.2     The Hyperparameter Values Most Frequently Selected 

by BO-2 

Tables 5.22 and 5.23 report the most frequently selected values of the hyperparameters of the 

optimised PU learning algorithms returned by all runs of BO-2 on the biomedical datasets and 
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synthetic datasets, respectively. The most frequently selected values for Phase 1A Classifier were 

logistic regression for the biomedical datasets and Gaussian naïve Bayes (NB) for the synthetic 

datasets, which are two classifiers that have also come up frequently throughout this work in the 

previous hyperparameter analysis for Phase 1A Classifier. This further reinforces the hypothesis 

regarding the assumptions of separability and smoothness.  

Table 5.22. Selection frequency of hyperparameter values by BO-2 for the biomedical datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration count 2 21.00 10.00 11.00 

Phase 1A RN Threshold 0.25 13.00 10.00 3.00 

Phase 1A Classifier Logistic reg. 8.67 5.56 3.11 

Phase 1B Flag TRUE 50.67 50.00 0.67 

Phase 1 B RN Threshold 0.2 14.67 10.00 4.67 

Phase 1B Classifier Bagging clas. 7.67 5.56 2.11 

Spy rate 0.3 18.00 14.29 3.71 

Spy tolerance 0.08 12.18 9.09 3.09 

Spy flag FALSE 74.00 50.00 24.00 

Phase 2 Classifier LDA 51.67 5.56 46.11 

Table 5.23. Selection frequency of hyperparameter values by BO-2 for the synthetic datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration count 2 16.67 10.00 6.67 

Phase 1A RN Threshold 0.3 17.59 10.00 7.59 

Phase 1A Classifier Gaussian NB 17.00 5.56 11.44 

Phase 1B Flag FALSE 55.33 50.00 5.33 

Phase 1 B RN Threshold 0.45 17.33 10.00 7.33 

Phase 1B Classifier Deep Forest 11.00 5.56 5.44 

Spy rate 0.2 29.00 14.29 14.71 

Spy tolerance 0.03 14.05 9.09 4.96 

Spy flag FALSE 88.00 50.00 38.00 

Phase 2 Classifier Deep Forest 20.67 5.56 15.11 

For Phase 1B Classifier, the bagging classifier was most frequently selected for the biomedical 

datasets. This is a classifier that has not yet come up in the hyperparameter analysis. By contrast, 

deep forest was most frequently selected for the synthetic datasets. This is a classifier which, like 

logistic regression and Gaussian NB, is appearing frequently in the analysis of most frequently 

selected classifiers.  

The Phase 2 Classifier presents some interesting results – deep forest was selected most 

frequently for the synthetic datasets, which is unsurprising given the previous results, and linear 
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discriminant analysis (LDA) is selected most frequently for the biomedical datasets. The selection of 

LDA is not, itself, surprising, given the frequency at which has been selected in the previous analysis. 

However, it was selected for over half of all optimised candidate solutions, which is very substantial, 

considering that there are 18 candidate classifiers. For the acquisition function of BO-Auto-PU, we 

used simply the value predicted by the random forest regressor, as opposed to a more exploratory 

approach, such as Expected Improvement (see Section 2.3.2). This means that rather than focusing 

on exploring the search space, BO-Auto-PU focuses on exploiting known well-performing areas of 

the search space. This approach has served relatively well, given the predictive performance results, 

but could be the reason as to why the LDA classifier occurs so frequently for Phase 2 Classifier for 

the biomedical datasets. That is, it could be that candidate solutions utilising LDA for Phase 2 

Classifier performed well in the search space, and as such BO-Auto-PU selected those candidate 

solutions more frequently for objective function assessment.  

Spy-based methods were, again, not preferred in most cases, with a value of “False” selected for 

the Spy flag hyperparameter in 74% of cases for the biomedical datasets, and 88% of cases for the 

synthetic datasets. These results, along with those from Section 4.4, are beginning to show an 

emerging lack of favour towards the spy methods.  

Looking now towards a more in depth analysis of the Phase 1A Iteration Count hyperparameter, 

BO-2 displayed moderate to strong correlations between the average value of Phase 1A Iteration 

Count and the percentage of positive instances in the original, unaltered datasets, with observed 

correlation coefficient values of -0.641, -0.706, and -0.736 for the biomedical datasets when δ = 20%, 

40%, and 60%, respectively; and -0.772, -0.667, and -0.674 for the synthetic datasets when δ = 20%, 

40%, and 60%, respectively. 

5.5     Summary   

Overall, considering a comparison between the two BO-based systems and the two baseline PU 

learning methods, both BO-1 and BO-2 outperformed the baseline methods in general, with statistical 

significance regarding F-measure and precision in several cases. S-EM did, however, show a large 

increase in performance for the 𝛿 = 60% datasets, outperforming both BO-1 and BO-2 in terms of F-
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measure for 𝛿 = 60% on the synthetic datasets. Whilst the F-measures of BO-1, BO-2, and DF-PU 

declined by 0.121, 0.131, and 0.007 respectively from 𝛿 = 20% to 60%, the performance of S-EM 

made a marginal increase of 0.005.  

The results when comparing the BO-based systems against the GA-based systems, in terms of 

predictive performance, were mixed. Regarding predictive performance, for the biomedical datasets 

there was very little difference between the two systems, with no statistical significance observed. 

However, for the synthetic datasets, GA-1 arguably outperformed BO-1.  

However, the BO-based methods do have a very distinct advantage over the GA-based methods 

with regard to computational runtime. The BO-based methods were developed in an attempt to 

improve upon the long runtime required by the GA-based methods, ideally simultaneously increasing 

(or at least not decreasing) predictive performance. Whilst predictive performance was not increased, 

there was no practical loss in the real-world biomedical datasets, arguably the most important of the 

two types of datasets.  

The considerations regarding computational efficiency noted in Section 5.1.3 are supported by 

the empirical runtimes observed in the experiments, namely: GA-1 took 226.3 minutes, GA-2 took 

223.2 minutes, while BO-1 took 8.4 minutes and BO-2 took 9.8 minutes on average to run a 5-fold 

cross-validation per dataset (so, BO was about 23-27 times faster than GA). All experiments were 

run on a 48-core GPU with 256GB of memory.  

At the beginning of this chapter, two research questions were posed. Firstly, does BO-Auto-PU 

improve on the performance of GA-Auto-PU in regard to computational efficiency? The response to 

this question is overwhelmingly yes, BO-Auto-PU runs much faster than GA-Auto-PU. The second 

research question was: does BO-Auto-PU improve on the performance of GA-Auto-PU in regard to 

predictive accuracy? The response to this question is less positive. BO-Auto-PU failed to improve 

upon GA-Auto-PU in regard to predictive accuracy, performing similarly for the biomedical datasets 

and somewhat poorly in regard to GA-Auto-PU for the synthetic datasets. Thus, the answer to the 

second question is no, BO-Auto-PU failed to improve upon the predictive accuracy of GA-Auto-PU 

and actually exhibited a small decline in performance overall. 

To conclude, whilst the BO-based systems have greatly improved upon the GA-based systems 

with regard to computational runtime, the former do so at a loss to predictive performance when 
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utilizing the extended search space. Thus, finding a finer balance between the BO-based and the GA-

based systems, looking to combine the speed of the BO with the population diversity of the GA, may 

improve upon both types of systems. It is this that has motivated the development of the EBO-Auto-

PU system, proposed next in Chapter 6.  
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Chapter 6  

A Hybrid Evolutionary/Bayesian 

Optimisation-based Auto-ML System 

for Positive-Unlabelled Learning (EBO-

Auto-PU) 

This chapter introduces EBO-Auto-PU, a hybrid Evolutionary/Bayesian Optimisation (EBO)-based 

Automated Machine Learning (Auto-ML) system for Positive-Unlabelled (PU) learning. GA-Auto-

PU, detailed in Chapter 4, was the first Auto-ML system specific to PU learning, and showed 

statistically significant improvements in predictive performance over two baseline PU learning 

methods and an Auto-ML system for standard binary classification. However, the GA-Auto-PU 

system is computationally expensive, with GA-1 and GA-2 averaging 226.3 and 223.2 minutes, 

respectively, to run a 5-fold cross-validation per dataset. In an effort to reduce the computational 

expense of GA-Auto-PU, BO-Auto-PU was introduced in Chapter 5. BO-Auto-PU proved much 

more computationally efficient than GA-Auto-PU, with BO-1 and BO-2 averaging 8.4 and 9.8 

minutes, respectively, to run a 5-fold cross-validation per dataset.  

The improvement in computational efficiency, however, was gained at a small cost to predictive 

performance. Of the four systems tested (GA vs BO, both with two search spaces), GA-1 (with the 

base search space) was arguably the best performing system in terms of predictive accuracy, whilst 

BO-2 (with the extended search space) was undoubtably the worst performing system. It seems that 

the BO-based system was unable to cope with the expanded search space. It can be hypothesised that 
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the disparity in predictive performance was due to the differing levels of population diversity 

between the two systems. That is, GA-Auto-PU has large population diversity as it assesses many 

PU learning configurations in each iteration according to the objective (fitness) function and creates 

diversity through crossover and mutation applied to configurations selected based on their fitness 

(predictive accuracy, more precisely F-measure). Whereas BO-Auto-PU assesses only a single 

configuration at each iteration, selected according to the predictive accuracy value predicted by the 

random forest regressor. At each iteration, a population is randomly generated to be evaluated by the 

faster surrogate model, rather than evolved to be evaluated by the slower objective (fitness) function 

as in the case of GA-Auto-PU. So, whilst diversity may occur in the BO search, there is no guarantee 

that it will benefit the system as the diverse configurations may not be selected for assessment by the 

objective function.  

EBO-Auto-PU was developed in an attempt to bridge this gap between the GA- and the BO-

based systems, introducing diversity into BO by evolving a population rather than random population 

generation, whilst using a surrogate model to reduce computational expense and prioritise candidate 

solutions for assessment according to the objective function. To assess whether EBO-Auto-PU has 

been successful in this aim, two research questions are presented. Firstly, does EBO-Auto-PU present 

a good trade-off, regarding computational efficiency, between GA-Auto-PU and BO-Auto-PU? And, 

secondly, does EBO-Auto-PU achieve good predictive performance compared with GA-Auto-PU?  

To clarify the first question, a ‘good’ trade-off can be considered as EBO-Auto-PU performing 

with a run time faster that of GA-Auto-PU. Given that EBO-Auto-PU evaluates more candidate 

solutions according to the objective function at each iteration than BO-Auto-PU (as will be explained 

later), it is extremely unlikely that EBO-Auto-PU will perform better than or on par with BO-Auto-

PU in regard to computational runtime. Thus, setting an aim of improving upon the runtime of BO-

Auto-PU would be an act of folly. To clarify the second question, EBO-Auto-PU should achieve 

good predictive performance compared with GA-Auto-PU, rather than BO-Auto-PU, as GA-Auto-

PU outperformed BO-Auto-PU in regard to predictive performance. To this end, ‘good’ predictive 

performance can be considered predictive performance that exceeds that of GA-Auto-PU. These 

research questions will be address in the conclusions of this chapter.  
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The remainder of this chapter is structured as follows. Section 6.1 details EBO-Auto-PU. Section 

6.2 describes the experimental setup. Section 6.3 compares EBO-Auto-PU against GA-Auto-PU and 

BO-Auto-PU, and compares EBO-Auto-PU against the two baseline PU learning methods used in 

Chapters 4 and 5. Section 6.4 analyses the most frequently selected hyperparameters of the EBO-

Auto-PU system, and Section 6.5 summarises this chapter. 

6.1     Description of EBO-Auto-PU 

As outlined previously, EBO-Auto-PU is a hybrid Evolutionary/Bayesian Optimisation (EBO)-based 

Auto-ML system specific to PU learning. This section describes the pseudocodes detailing the 

procedure followed by the EBO-Auto-PU system. Details of the individual encoding of a candidate 

solution, as well the fitness (objective) function can be found in Chapter 3. Note that this section 

refers to standard GA procedures such as crossover, mutation, and tournament selection. These 

procedures are described in detail in Section 2.2. 

6.1.1     The EBO Procedure for PU Learning 

Procedure 6.1 outlines the procedure that the EBO component of EBO-Auto-PU follows to evolve a 

PU learning algorithm. #Configs PU learning configurations are randomly generated (step 1) and 

evaluated, with their F-measures saved as Scores (step 2). Note that this random population 

generation is the same procedure as described in Chapters 4 and 5 for GA-Auto-PU and BO-Auto-

PU respectively. However, to briefly restate, for each candidate solution, for each component 

(hyperparameter) of that candidate solution, there are a fixed set of values that may be set. Each of 

these values has an equal probability of being assigned to that component. For example, the 

hyperparameter Phase 1A iteration count may take the values {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. As there 

are ten potential values, each of these have a 10% probability of being assigned. Regarding candidate 

solution evaluation, this is evaluation according to the objective function described in Section 3.2.3. 

Briefly described, this evaluation is 5-fold cross-validation on the training set, splitting the training 

set into 5 learning and validation sets, for which the average F-measure achieved by the PU learning 
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algorithm is calculated and saved as the candidate solutions score. The test set is untouched in this 

procedure.  

Procedure 6.1 Outline of the Evolutionary Bayesian Optimization procedure for Positive-Unlabelled 

Learning 

1. Configs = randomly generate #Configs PU learning configurations; 

2. Scores = run objective function for all configurations in Configs; // see Procedures 3.1-3.4 

3. Learn Surr_model with Configs as features, Scores as target; 

4. For #It_count times: 

a. Temp_Configs = Configs after undergoing crossover and mutation; 

b. 𝑌̂ = calculate a surrogate score for each new config in Temp_Configs with Surr_model; 

c. Best_config = config with highest score according to 𝑌̂; 

d. k_pop = [ ],;  

e. For k times: 

i. k_cand_sol = select from Temp_Configs using tournament selection based on 

surrogate scores; 

ii. k_pop = k_pop ∪ k_cand_sol; 

f. k_pop = configurations in k_pop undergo crossover and mutation; 

g. Assess Best_config and each configuration from k_pop with objective function to obtain 

objective scores; // see Procedures 3.1-3.4, Chapter 3 

h. Configs = Configs ∪ Best_config ∪ k_pop; 

i. Retrain Surr_model on Configs; 

Output: Best configuration according to objective score; 

A random forest Regressor, Surr_model, is then trained, using Configs as features, and Scores as the 

target variable (step 3). The Configs are processed as they are for the BO-Auto-PU system, as 

described in Section 5.1. The configurations in Configs are copied to a temporary store 

Temp_Configs to undergo uniform crossover (with candidate solutions selected via tournament 

selection) and mutation to produce an evolved population of configurations (step 4.a). This process 

of tournament selection, uniform crossover and mutation is the same as that undertaken by GA-Auto-

PU and described in Section 4.1. To briefly restate, tournament selection selects a specified number 

of candidate solutions (2, in this implementation) from the pool of available candidate solutions and 

progresses the candidate solution with the highest score value to the next stage of evolution. The 

process of uniform crossover involves swapping the component (hyperparameter) values of two 

selected candidate solutions (selected via tournament selection), with a given probability. Mutation 

involves slightly altering the values of the candidate solution hyperparameters.  

The surrogate scores of each just-produced configuration in Configs is calculated by Surr_model 

and saved as 𝑌̂ (step 4.b), with the configuration with the highest surrogate score saved as Best_config 
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(step 4.c). This selection of the best configuration is inspired by elitism, but note that it is not exactly 

elitism, as the selection is based on the surrogate score, not the objective score. This surrogate score 

is, essentially, an estimation of the objective score that would be produced by assessing the candidate 

solution according to the objective function. Recall from the background information on Bayesian 

optimisation (see Section 2.3) that this estimation is conducted in order to minimise computational 

runtime. Creating a probabilistic model allows for an estimation to be calculated based on the 

previously calculated objective scores of other candidate solutions, thus allowing for a somewhat 

informed exploration of the search space.  

Tournament selection is utilised to select k candidate solutions according to their surrogate score 

(F-measure), which are then added to a population k_pop (step 4.d-e). The procedure for tournament 

selection in this step is the same as the procedure previously described. k_pop then undergoes 

uniform crossover and mutation to produce a newly evolved population (step 4.f). The uniform 

crossover and mutation procedures are the same as those previously described, with parents selected 

via tournament selection. Best_config and the configurations from k_pop are assessed according to 

the objective function to calculate their objective scores, before the configurations are added to 

Configs and used to update the surr_model (steps 4.g-i). The result of this is that Configs is ever-

growing, meaning that there is no selection pressure on the population. However, an ever-growing 

population is beneficial in this scenario, as it provides more data for the surrogate model to learn 

from. The objective function cited in step 4.g is defined in Section 3.2.3. This process (step 5 in 

Procedure 6.1) is repeated It_count times. Finally, the best configuration, according to the objective 

score, is returned.  

Recall that (as in BO in general) the computation of the objective score is much more expensive 

than the computation of the surrogate score, and hence, at each iteration, just k + 1 configurations 

(Best_config and the k configurations in k_pop) in the current population have their objective score 

computed. 

Configs are processed as follows for training Surr_model: for the base search space, the numeric 

components of each configuration (Threshold_1A, Iteration_Count_1A, Threshold_1_B) are treated 

as numeric features, the Boolean component (Flag_1B) is treated as a binary feature, and the nominal 

components (Classifier_1A, Classifier_1B, Classifier_2) are one-hot encoded, with a binary value 
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for each potential value of the component, indicating whether or not that value is used by the PU 

learning method. The resulting instances used as input by the regression algorithm consist of 58 

features. For the extended search space, all the previously mentioned components are treated as they 

are in the base search space. However, we also have the additional spy components, with Spy_rate 

and Spy_tolerance treated as numeric features, and the Boolean component “Spy_flag” treated as a 

binary feature. This results in instances consisting of 61 features.   

Figure 6.1 shows the hybridisation of EA and BO to create EBO. The figure shows the key 

components of EA and BO relevant to the EBO system. The EA utilises evolutionary operators 

(crossover, mutation & elitism), which are incorporated into the EBO system. At each iteration, the 

EA evaluates the whole population with the expensive objective function, whilst the BO evaluates 

all candidate solutions with the fast surrogate model to select a single candidate solution to evaluate 

with the objective function. The EBO, like the BO, uses a surrogate model to assess all individuals 

at each iteration. However, instead of selecting only a single candidate solution, at each iteration the 

EBO selects multiple promising candidate solutions which undergo evolutionary operations before 

being assessed by the objective function. Whilst the EA uses selection based on fitness, the EBO 

utilises the BO approach of selection based on surrogate score.  

 

Figure 6.1. EA/BO hybridisation.   
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6.1.2     The EBO Procedure’s Hyperparameters 

Table 6.1 shows the hyperparameter settings of the EBO procedure underlying EBO-Auto-PU.  

Table 6.1. Hyperparameters of the EBO-Auto-PU system, with their default values. 

Hyperparameter Value 

#Configs 101 

It_count 50 

Surr_model Random Forest Regressor 

Crossover probability 0.9 

Component crossover probability 0.5 

Mutation probability 0.1 

Tournament size 2 

k 10 

Note that the hyperparameters #Configs, It_count and Surr_model in Table 6.1 are essentially the 

same as the corresponding hyperparameters in Table 5.1 for the BO procedure, and these 

hyperparameters take the same settings in both tables (i.e. for both the EBO and the BO procedures), 

in order to make the comparison between EBO-Auto-PU and BO-Auto-PU as fair as possible. In 

addition, the hyperparameters “Crossover probability”, “Component crossover probability”, 

“Mutation probability”, and “Tournament size” in Table 6.1 are also essentially the same as the 

hyperparameters “Cross_prob”, “Gene_cross_prob”, “Mutation_prob”, and “Tournament_size” 

from Table 4.1 in Chapter 4, respectively; and again, these hyperparameters take the same settings 

in both tables for a fair comparison between EBO-Auto-PU and GA-Auto-PU. The only parameter 

unique to EBO-Auto-PU is the k parameter, used to determine the number of candidate solutions to 

be selected with tournament selection to assess according to their objective score. 

6.1.3     Computational Efficiency 

In the GA-based, BO-based, and the EBO-based Auto-ML systems for PU learning, the running time 

is by far dominated by the time to evaluate the candidate solutions along the iterations of the search, 

i.e., the time to learn a PU model and evaluate its F-measure on the training set, for each candidate 

PU learning method. GA, BO, and the EBO-based methods perform the same number of iterations 

(50) in our experiments. However, in each generation (iteration) of GA-Auto-PU the GA must learn 

𝑛 PU models, where 𝑛 is the number of individuals (candidate solutions) in the population, each 

iteration of BO-Auto-PU needs to learn a single PU model, whilst each iteration of EBO-Auto-PU 
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needs to learn k+1 candidate solutions, where k is the number of candidate solutions selected via 

tournament selection to assess according to the objective function (see Section 3.2.3 for full details 

of this procedure). Learning a PU model can be very computationally expensive, depending not only 

on the size of the dataset but also on the time complexity of the 3 classification algorithms chosen 

for Phases 1A, 1B and 2 of the 2-step method, and the number of iterations the classifier is applied 

in Phase 1A. 

All three Auto-ML systems also must perform other steps for generating candidate solutions to 

be evaluated, but these take in general much less time than the time to evaluate candidate solutions 

using the objective function (F-measure) as described above. More precisely, at each iteration, the 

GA and the EBO must perform tournament selection, crossover and mutation, but these are all simple 

operations, which are much faster than computing the fitness function (learning one PU model for 

each individual). 

Unlike the GA, at each iteration BO and EBO learn a surrogate model, but again, the time for 

this is much shorter than the time taken to learn a PU model in each iteration of BO. This is because 

the surrogate model is learned by a relatively fast random forest algorithm using a small dataset of 

PU algorithm configurations, whilst learning a PU model involves running multiple classifiers (one 

of them for several iterations in Phase 1A), each classifier can be much slower than a random forest. 

In addition, each classifier is learned using the training data of the current dataset, which is typically 

much larger in number of instances than the small dataset of PU method configurations. Regarding 

the number of features, the training set for learning a PU model has in general more features than the 

training set for learning the surrogate model in the case of the synthetic datasets; whilst the converse 

is true in the case of the biomedical datasets – but even for this latter group of datasets, the overall 

time taken to learn a surrogate model is still much faster than the time to learn a PU model, making 

BO-Auto-PU much faster than GA-Auto-PU, as discussed in Chapter 5. As EBO-Auto-PU assesses 

(using the expensive objective function) fewer candidate solutions than GA-Auto-PU, but more than 

BO-Auto-PU, the EBO-Auto-PU system sits between the GA-Auto-PU and the BO-Auto-PU 

systems in regard to computational runtime, as is discussed in Section 6.3.  
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6.2     Experimental Setup 

The experimental procedure is explained in detail in Chapter 3. However, to briefly recap, two types 

of datasets are used in these experiments (biomedical and synthetic), each with 3 versions (varying 

the % of positive instances hidden in the unlabelled set), thus creating 120 datasets total.  

A nested cross-validation procedure is used, with a simple 5-fold cross-validation procedure as 

the external layer. The internal layer splits the training set into 5 learning and validation sets, which 

is used to evaluate the candidate solutions. 

To compare the performance of the methods, we use the Wilcoxon signed rank test [202], with 

Holm correction for testing multiple hypotheses [203]. 

6.2.1     Structure of the Results Section  

In the next section, we present experimental results comparing the EBO-Auto-PU system with both 

search spaces (without and with the Spy method). Firstly, EBO-Auto-PU is compared against GA-

Auto-PU, BO-Auto-PU. Secondly, EBO-Auto-PU is compared against the two PU learning 

baselines.  Experiments were conducted on both the real-world biomedical datasets and the synthetic 

datasets, for three values of 𝛿 (the percentage of positives hidden in the unlabelled set): 20%, 40%, 

and 60%. Each section will report the F-measure results in full and will provide a summary of the 

precision and recall results. The full precision and recall results (for each dataset) can be found in the 

Appendix.  

For the sake of brevity, the EBO-Auto-PU, BO-Auto-PU, and the GA-Auto-PU systems utilising 

the base search space (without the Spy method) will be referred to as EBO-1, BO-1 and GA-1 

respectively; whilst the systems utilising the extended search space (with the Spy method) will be 

referred to as EBO-2, BO-2, and GA-2 respectively.  
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6.3     Results for EBO-Auto-PU 

6.3.1     Results comparing EBO-Auto-PU with GA-Auto-PU and 

BO-Auto-PU PU 

In the next section, results comparing the EBO-Auto-PU system with GA-Auto-PU and BO-Auto-

PU are presented, beginning with a comparison of EBO-1 with GA-1 and BO-1 (Auto-PU systems 

with the base search space) on the biomedical datasets in Table 6.2. 

Table 6.2. F-measure results of EBO-1 against BO-1 and GA-1 on real-world biomedical datasets. 

Dataset 

20% δ = 40% δ = 60% 

EBO-1 GA-1 BO-1 EBO-1 GA-1 BO-1 EBO-1 GA-1 BO-1 

Alzheimer’s  0.629 0.529 0.615 0.587 0.551 0.600 0.540 0.456 0.436 

Autism  0.986 0.960 0.967 0.926 0.927 0.956 0.927 0.910 0.863 

Breast cancer Coi.  0.966 0.705 0.694 0.952 0.687 0.701 0.615 0.510 0.586 

Breast cancer Wis.  0.893 0.954 0.949 0.872 0.932 0.969 0.927 0.906 0.895 

Breast cancer mut.    0.672 0.893 0.893 0.667 0.868 0.873 0.862 0.854 0.841 

Cervical cancer  0.839 0.828 0.839 0.904 0.903 0.903 0.667 0.714 0.645 

Cirrhosis  0.532 0.573 0.545 0.453 0.464 0.529 0.507 0.443 0.489 

Dermatology  0.899 0.860 0.872 0.813 0.780 0.905 0.716 0.828 0.725 

PI Diabetes  0.654 0.677 0.647 0.661 0.649 0.645 0.634 0.606 0.594 

ES Diabetes  0.973 0.958 0.983 0.913 0.895 0.877 0.909 0.930 0.902 

Heart Disease  0.833 0.843 0.844 0.800 0.801 0.830 0.774 0.785 0.777 

Heart Failure  0.732 0.770 0.753 0.666 0.652 0.605 0.640 0.674 0.704 

Hepatitis C  0.925 0.953 0.907 0.835 0.771 0.838 0.667 0.588 0.708 

Kidney Disease  1.000 0.976 0.988 0.938 0.988 0.964 0.646 0.754 0.806 

Liver Disease  0.827 0.834 0.820 0.819 0.803 0.817 0.717 0.804 0.795 

Maternal Risk  0.855 0.476 0.837 0.803 0.812 0.780 0.739 0.735 0.689 

Parkinsons  0.929 0.860 0.935 0.894 0.836 0.875 0.707 0.818 0.732 

Parkinsons Biom.  0.203 0.476 0.167 0.337 0.265 0.192 0.133 0.233 0.182 

Spine  0.933 0.652 0.954 0.932 0.907 0.926 0.775 0.818 0.742 

Stroke  0.239 0.474 0.244 0.225 0.255 0.153 0.229 0.255 0.208 

 

Table 6.3 summarises the statistical significance of the results from Table 6.2, as well as the results 

for precision and recall. In Table 6.3, for each combination of a performance measure (F-measure, 

precision, recall) and a δ value (δ= 20%, 40%, 60%), the table reports the average (Avg.) rank of 

EBO-1 vs GA-1 (EBO-1 is the left rank, GA-1 is the right one) and EBO-1 vs BO-1, with the 

corresponding p-value. The better (lower) avg. rank in each cell is shown in boldface, and significant 

p-values (smaller than α) are also shown in boldface. For example, in the cell for F-measure, δ = 

20%, the average ranks for EBO-1 is 1.48 and BO-1 is 1.52. Hence, EBO-1 was the winner, but the 

p-value (0.658) was greater than the significant level α (0.05), so this result was not statistically 

significant.  
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Table 6.3. Results of Wilcoxon signed-rank tests when comparing EBO-1 against GA-1 and BO-1 regarding 

F-measure, Precision and Recall, for the 3 δ values.  

δ 

(%) 

Compared 

systems 

F-measure Precision Recall 

Avg 

ranks 

p-value α Avg 

ranks 

p-value α Avg 

ranks 

p-value α 

20% EBO-1 vs 

GA-1 

1.5 vs 

1.5 

0.784 0.025 1.48 vs 

1.52 

0.446 0.017 1.62 vs 

1.38 

0.178 0.025 

EBO-1 vs 

BO-1 

1.48 vs 

1.52 

0.658 0.017 1.45 vs 

1.55 

0.968 0.025 1.45 vs 

1.55 

0.983 0.05 

40% EBO-1 vs 

GA-1 

1.4 vs 

1.6 

0.245 0.017 1.55 vs 

1.45 

0.828 0.05 1.42 vs 

1.58 

0.381 0.017 

EBO-1 vs 

BO-1 

1.45 vs 

1.55 

1.000 0.05 1.55 vs 

1.45 

0.387 0.017 1.5 vs 

1.5 

0.557 0.05 

60% EBO-1 vs 

GA-1 

1.55 vs 

1.45 

0.312 0.025 1.5 vs 

1.5 

0.812 0.05 1.55 vs 

1.45 

0.388 0.025 

EBO-1 vs 

BO-1 

1.4 vs 

1.6 

0.674 0.05 1.62 vs 

1.38 

0.184 0.017 1.38 vs 

1.62 

0.629 0.05 

 

The results for Table 6.3 show EBO-1 performing best overall, though no results are statistically 

significant. For F-measure, EBO-1 is outperformed only 1 time, against GA-1 when δ=60%.  This 

was also the case for BO-1, shown in Table 5.3 in Chapter 5, although BO-1 was outperformed by a 

much larger margin than EBO-1 has been. For precision, EBO-1 performed best for δ=20%, but was 

outperformed for 40% and 60%, albeit only slightly. For recall, EBO-1 performed best in 3 of 6 cases 

and drew with BO-1 in 1 case. Thus, EBO-1 was outperformed in only 2 of 6 cases.  

Table 6.4. F-measure results of EBO-2 against BO-2 and GA-2 on real-world biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 

Alzheimer’s  0.559 0.580 0.548 0.597 0.603 0.576 0.581 0.492 0.529 

Autism  0.964 0.963 0.982 0.938 0.937 0.940 0.887 0.914 0.927 

Breast cancer Coi.  0.967 0.667 0.711 0.952 0.618 0.671 0.923 0.000 0.553 

Breast cancer Wis.  0.882 0.959 0.956 0.863 0.942 0.936 0.839 0.889 0.866 

Breast cancer mut.    0.666 0.890 0.896 0.655 0.853 0.739 0.587 0.845 0.872 

Cervical cancer  0.867 0.867 0.867 0.904 0.867 0.839 0.516 0.839 0.350 

Cirrhosis  0.506 0.497 0.446 0.493 0.515 0.397 0.322 0.472 0.204 

Dermatology  0.857 0.876 0.901 0.891 0.841 0.896 0.750 0.795 0.692 

PI Diabetes  0.668 0.653 0.642 0.665 0.648 0.646 0.607 0.615 0.634 

ES Diabetes  0.957 0.954 0.978 0.905 0.891 0.887 0.915 0.912 0.894 

Heart Disease  0.826 0.844 0.836 0.804 0.817 0.780 0.747 0.805 0.786 

Heart Failure  0.741 0.757 0.751 0.656 0.652 0.670 0.514 0.600 0.671 

Hepatitis C  0.907 0.964 0.944 0.907 0.761 0.863 0.689 0.612 0.610 

Kidney Disease  0.911 0.976 0.925 0.897 0.976 0.951 0.656 0.789 0.806 

Liver Disease  0.832 0.822 0.831 0.800 0.815 0.817 0.748 0.722 0.748 

Maternal Risk  0.854 0.847 0.862 0.810 0.786 0.813 0.731 0.729 0.738 

Parkinsons  0.914 0.936 0.935 0.850 0.837 0.843 0.720 0.800 0.792 

Parkinsons Biom.  0.259 0.286 0.282 0.276 0.000 0.259 0.203 0.000 0.280 

Spine  0.942 0.941 0.923 0.920 0.936 0.917 0.802 0.700 0.761 

Stroke  0.232 0.256 0.241 0.225 0.255 0.239 0.201 0.233 0.243 
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Moving on next to a comparison of EBO-2 with GA-2 and BO-2, Table 6.4 presents these results for 

the biomedical datasets.  

Table 6.5 details the statistical significance of the F-measure results shown in Table 6.4 and 

summarises the results for precision and recall. These results show EBO-2 performing similarly to 

BO-2 and GA-2, with no statistically significant differences in results, with the exception of precision 

when δ=60%, with GA-2 and BO-2 outperforming EBO-2 with statistical significance.  

Table 6.5. Results of Wilcoxon signed-rank tests when comparing EBO-2 against BO-2 and GA-2 regarding 

F-measure, Precision and Recall, for the 3 δ values on the biomedical datasets.  

δ 

(%) 

Compared 

systems 

F-measure Precision Recall 

Avg 

ranks 

p-

value 

adj. 

α 

Avg 

ranks 

p-

value 

adj. 

α 

Avg 

ranks 

p-

value 

adj. 

α 

20% EBO-2 vs 

GA-2 

1.62 vs 

1.38 

0.658 0.025 1.68 vs 

1.32 

0.268 0.05 1.68 vs 

1.32 

0.286 0.025 

EBO-2 vs 

BO-2 

1.38 vs 

1.62 

0.825 0.05 1.65 vs 

1.35 

0.061 0.025 1.5 vs 

1.5 

0.329 0.05 

40% EBO-2 vs 

GA-2 

1.35 vs 

1.65 

0.039 0.025 1.55 vs 

1.45 

0.927 0.05 1.42 vs 

1.58 

0.260 0.05 

EBO-2 vs 

BO-2 

1.48 vs 

1.52 

0.220 0.05 1.68 vs 

1.32 

0.268 0.025 1.35 vs 

1.65 

0.177 0.025 

60% EBO-2 vs 

GA-2 

1.5 vs 1.5 0.756 0.025 1.82 vs 

1.18 

0.005 0.025 1.32 vs 

1.68 

0.07 0.025 

EBO-2 vs 

BO-2 

1.6 vs 1.4 0.956 0.05 1.78 vs 

1.22 

0.049 0.05 1.32 vs 

1.68 

0.107 0.05 

Table 6.6. F-measure results of EBO-1 against BO-1 and GA-1 on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-1 GA-1 BO-1 EBO-1 GA-1 BO-1 EBO-1 GA-1 BO-1 

1 0.678 0.661 0.663 0.644 0.718 0.619 0.581 0.603 0.554 

2 0.194 0.136 0.128 0.043 0.044 0.046 0.040 0.065 0.061 

3 0.770 0.788 0.761 0.685 0.693 0.671 0.594 0.637 0.555 

4 0.809 0.831 0.811 0.795 0.818 0.785 0.675 0.674 0.627 

5 0.439 0.618 0.651 0.420 0.616 0.496 0.292 0.609 0.514 

6 0.714 0.759 0.763 0.677 0.769 0.676 0.605 0.684 0.600 

7 0.565 0.520 0.598 0.545 0.515 0.478 0.487 0.478 0.465 

8 0.508 0.525 0.512 0.400 0.477 0.473 0.332 0.381 0.391 

9 0.023 0.111 0.043 0.076 0.080 0.051 0.133 0.146 0.087 

10 0.973 0.903 0.918 0.959 0.872 0.868 0.907 0.742 0.756 

11 0.635 0.604 0.568 0.576 0.567 0.575 0.535 0.531 0.531 

12 0.752 0.674 0.671 0.673 0.666 0.683 0.607 0.609 0.574 

13 0.665 0.644 0.662 0.610 0.623 0.603 0.539 0.516 0.511 

14 0.909 0.975 0.978 0.878 0.962 0.969 0.790 0.925 0.900 

15 0.580 0.601 0.635 0.558 0.593 0.588 0.462 0.519 0.493 

16 0.546 0.477 0.432 0.451 0.388 0.333 0.372 0.301 0.282 

17 0.372 0.347 0.389 0.297 0.496 0.302 0.129 0.412 0.218 

18 0.532 0.559 0.502 0.469 0.389 0.436 0.413 0.326 0.245 

19 0.500 0.472 0.423 0.324 0.468 0.426 0.273 0.381 0.406 

20 0.661 0.705 0.696 0.633 0.692 0.670 0.532 0.625 0.622 

Moving now to the synthetic datasets, Table 6.6 presents the results for the three systems, with the 

statistical significance test results presented in Table 6.7.  
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Table 6.7. Results of Wilcoxon signed-rank tests when comparing EBO-1 against GA-1 and BO-1 regarding 

F-measure, Precision and Recall, for the 3 δ values on the synthetic datasets.  

δ 

(%) 

Compared 

systems 

F-measure Precision Recall 

Avg 

ranks 

p-value α Avg 

ranks 

p-value α Avg 

ranks 

p-value α 

20% EBO-1 vs 

GA-1 

1.5 vs 

1.5 

0.869 0.05 1.5 vs 

1.5 

0.898 0.05 1.5 vs 

1.5 

0.729 0.05 

EBO-1 vs 

BO-1 

1.5 vs 

1.5 

0.784 0.025 1.55 vs 

1.45 

0.216 0.025 1.25 vs 

1.75 

0.053 0.025 

40% EBO-1 vs 

GA-1 

1.7 vs 

1.3 

0.076 0.025 1.35 vs 

1.65 

0.076 0.025 1.8 vs 

1.2 

0.001 0.025 

EBO-1 vs 

BO-1 

1.45 vs 

1.55 

0.985 0.05 1.55 vs 

1.45 

0.349 0.05 1.45 vs 

1.55 

0.845 0.05 

60% EBO-1 vs 

GA-1 

1.65 vs 

1.35 

0.083 0.025 1.5 vs 

1.5 

0.898 0.05 1.85 vs 

1.15 

0.001 0.025 

EBO-1 vs 

BO-1 

1.4 vs 

1.6 

0.927 0.05 1.85 vs 

1.15 

0.002 0.025 1.32 vs 

1.68 

0.126 0.05 

Table 6.7 summarises the statistical significance of the results from Table 6.6, as well as the results 

for precision and recall. The results shown in this table are mixed. For F-measure, EBO-1 performed 

well, winning in 2/6 cases and drawing in 2/6, thus losing in only 2/6. However, none of these 

differences were statistically significant. For precision, EBO-1 is outperformed by BO-1 with 

statistical significance when δ=60%, and for recall, EBO-1 is outperformed by GA-1 when δ=40% 

and 60%. Despite this, as previously mentioned, no statistically significant difference was observed 

for F-measure. Thus, whilst those loses for precision and recall were statistically significant, they 

were not significant enough to tip the balance for F-measure.   

Considering the results of both Table 6.3 and 6.7, regarding predictive performance, EBO-1 

performed well against GA-1 and BO-1, achieving a higher rank than the compared system in more 

cases than it achieved an inferior rank for F-measure. Considering computational efficiency, recall 

from the previous chapter that GA-1 took 226.3 minutes on average to run a 5-fold cross-validation 

procedure per dataset, whilst BO-1 took only 8.4 minutes. EBO-1 took 18.1 minutes, thus performing 

2.15 times slower than BO-1, but 12.5 times faster than GA-1. Considering both these factors, it can 

be argued that EBO-1 is the best performing system when compared against GA-1 and BO-1, 

achieving high predictive performance and representing a trade-off between GA-1 and BO-1 in 

regard to computational efficiency. 
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Table 6.8. F-measure results of EBO-2 against BO-2 and GA-2 on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 

1 0.670 0.649 0.640 0.654 0.586 0.709 0.570 0.578 0.545 

2 0.204 0.203 0.176 0.024 0.022 0.105 0.050 0.094 0.111 

3 0.766 0.770 0.759 0.707 0.676 0.702 0.582 0.537 0.612 

4 0.809 0.831 0.824 0.793 0.795 0.809 0.710 0.622 0.692 

5 0.452 0.603 0.612 0.389 0.614 0.571 0.411 0.499 0.559 

6 0.709 0.746 0.762 0.652 0.672 0.751 0.622 0.652 0.672 

7 0.585 0.495 0.528 0.537 0.456 0.496 0.509 0.416 0.448 

8 0.559 0.531 0.571 0.386 0.480 0.484 0.385 0.341 0.390 

9 0.068 0.019 0.098 0.041 0.039 0.000 0.114 0.105 0.143 

10 0.975 0.900 0.896 0.960 0.854 0.850 0.879 0.756 0.716 

11 0.622 0.573 0.574 0.563 0.554 0.579 0.498 0.474 0.525 

12 0.734 0.713 0.681 0.676 0.647 0.692 0.609 0.586 0.599 

13 0.628 0.667 0.648 0.605 0.578 0.612 0.510 0.533 0.576 

14 0.905 0.974 0.977 0.854 0.948 0.966 0.702 0.908 0.934 

15 0.602 0.589 0.595 0.536 0.545 0.575 0.486 0.415 0.565 

16 0.544 0.507 0.431 0.442 0.298 0.402 0.364 0.320 0.299 

17 0.323 0.289 0.384 0.207 0.304 0.470 0.211 0.070 0.382 

18 0.517 0.529 0.576 0.467 0.459 0.408 0.397 0.297 0.373 

19 0.427 0.444 0.462 0.351 0.405 0.483 0.275 0.361 0.385 

20 0.651 0.710 0.701 0.621 0.632 0.664 0.539 0.554 0.594 

 

Table 6.9 details the statistical significance of the F-measure results shown in Table 6.8 and 

summarises the results for precision and recall. These results differ from the results of Table 6.5, 

with GA-2 largely outperforming EBO-2 for F-measure and recall, achieving statistical significance 

in one instance for F-measure, and all instances for recall. The results for precision are more 

favourable for EBO-2, with EBO-2 performing best in 2/6 cases and achieving equal performance in 

2/6 cases. 

Table 6.9. Results of Wilcoxon signed-rank tests when comparing EBO-2 against BO-2 and GA-2 regarding 

F-measure, Precision and Recall, for the 3 δ values on the synthetic datasets.  

δ 

(%) 

Compared 

systems 

F-measure Precision Recall 

Avg 

ranks 

p-value α Avg 

ranks 

p-value α Avg 

ranks 

p-value α 

20% EBO-2 vs 

GA-2 

1.55 vs 

1.45 

0.600 0.05 1.25 vs 

1.75 

0.006 0.025 1.85 vs 

1.15 

0.00005 0.025 

EBO-2 vs 

BO-2 

1.45 vs 

1.55 

0.409 0.025 1.5 vs 

1.5 

0.729 0.05 1.45 vs 

1.55 

0.368 0.05 

40% EBO-2 vs 

GA-2 

1.75 vs 

1.25 

0.017 0.025 1.5 vs 

1.5 

0.729 0.05 1.8 vs 

1.2 

0.0004 0.025 

EBO-2 vs 

BO-2 

1.45 vs 

1.55 

0.990 0.05 1.55 vs 

1.45 

0.622 0.025 1.38 vs 

1.62 

0.968 0.05 

60% EBO-2 vs 

GA-2 

1.65 vs 

1.35 

0.070 0.025 1.4 vs 

1.6 

0.498 0.05 1.75 vs 

1.25 

0.0007 0.025 

EBO-2 vs 

BO-2 

1.4 vs 

1.6 

0.261 0.05 1.7 vs 

1.3 

0.083 0.025 1.2 vs 

1.8 

0.004 0.05 
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Figure 6.2 shows graphically how the average F-measure of each of the Auto-PU systems and the 

baselines changes over the different values of δ for the biomedical datasets. In order to reduce the 

number of figures across this chapter, this Figure shows the results for all Auto-ML systems (EBO-

1, EBO-2, BO-1, BO-2, GA-1, GA-2) and all baseline PU learning methods  (DF-PU and S-EM) 

investigated in this chapter, but in this current part of the text the analysis is focussed on the results 

for EBO-Auto-PU, BO-Auto-PU and GA-Auto-PU only. Note that the charted data for BO-1, BO-2, 

GA-1, GA-2, DF-PU, and S-EM were shown in Chapters 4 and 5 but have been included here for 

the reader’s reference. 

 

Figure 6.2. Average F-measure results comparison for EBO-1, EBO-2, BO-1, BO-2, GA-1, GA-2, 

DF-PU and S-EM, across the three values of δ for the biomedical datasets.  

As with the results for GA-Auto-PU, discussed in Section 4.3, and the results for BO-Auto-PU 

discussed in Section 5.3, the performance of EBO-Auto-PU does also decline monotonically with 

the increase in the value of δ. The decline for δ=60% is sharper than that of GA-Auto-PU and BO-

Auto-PU.  

Figure 6.3 shows graphically how the average F-measure of each of the systems changes over 

the different values of δ, for the synthetic datasets. GA-1 appears best performing in regard to average 

F-measure as it maintains relatively high F-measure values across the values of δ. Whereas, the F-

measure values of EBO-1, EBO-2, BO-1, and BO-2 drop sharply as the value of δ increases.   
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Figure 6.3. Average F-measure results comparison for EBO-1, EBO-2, BO-1, BO-2, GA-1, GA-2, 

DF-PU and S-EM, across the three values of δ for the synthetic datasets.  

In order to further analyse the results, Table 6.10 shows the values of Pearson’s linear correlation 

coefficient between the F-measure values achieved by EBO-1, EBO-2, BO-1, BO-2, GA-1, GA-2, 

DF-PU, and S-EM and percentages of positive examples in the original dataset, for each δ value, for 

the biomedical datasets. Again, in order to reduce the number of tables across this chapter, the results 

for all the aforementioned systems or methods are reported in Table 6.6. 

Table 6.10. Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of 

positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each 

combination of a method and a δ value, for the biomedical datasets, for all methods. 

Method δ = 20% δ = 40% δ = 60% 

EBO-1 0.440 0.469 0.460 

EBO-2 0.363 0.361 0.447 

BO-1 0.398 0.360 0.498 

BO-2 0.339 0.348 0.225 

GA-1 0.333 0.385 0.504 

GA-2 0.340 0.357 0.580 

DF-PU 0.988 0.988 0.988 

S-EM 0.646 0.558 0.652 

Table 6.10 shows a relatively stable correlation for EBO-1, with a moderate correlation observed for 

all three δ values, as defined by the categorisation of coefficient values outlined in Section 3.4.3. The 

values for δ=20% and 40% are somewhat higher than those observed for BO-1 and GA-1, indicating 

that, even at lower values of δ, of the three systems, the performance of EBO-1 is most closely linked 

to the percentage of positive instances hidden in the unlabelled set for the biomedical datasets. EBO-

2 displays weak correlations for 20% and 40%, but increases to a moderate correlation for 60%, 

following a similar trend to GA-2.   
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Table 6.11. Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of 

positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each 

combination of a method and a δ value, for the synthetic datasets, for all methods. 

Method δ = 20% δ = 40% δ = 60% 

EBO-1 0.651 0.624 0.578 

EBO-2 0.627 0.639 0.569 

BO-1 0.682 0.710 0.700 

BO-2 0.706 0.695 0.659 

GA-1 0.712 0.682 0.687 

GA-2 0.700 0.702 0.696 

DF-PU 0.990 0.990 0.990 

S-EM 0.794 0.793 0.776 

Table 6.11 shows the values of Pearson’s linear correlation coefficient between the F-measure values 

achieved by the systems and the percentages of positive examples in the original dataset, for each δ 

value for the synthetic datasets. As was the case for GA-Auto-PU (Section 4.3) and BO-Auto-PU 

(Section 5.3), the correlation between percentage of positive instances and F-measure is substantially 

higher for EBO-Auto-PU for the synthetic datasets than it was for the biomedical datasets. However, 

the correlations are all still moderate, making EBO-1 and EBO-2 the only systems of the six 

discussed that do not exhibit a high correlation for any of the values of δ. This is at odds with the 

results of Table 6.10, which showed that EBO-1 had the highest correlation of the three systems. 

This underscores the importance of considering dataset characteristics and system performance in 

tandem to gain a comprehensive understanding of the correlation between these factors. 

Considering computational efficiency, recall from the previous chapter that GA-1 took 226.3 

minutes on average to run a 5-fold cross-validation procedure per dataset, GA-2 took 223.2 minutes, 

whilst BO-1 took only 8.4 minutes and BO-2 took only 9.8 minutes. EBO-1 took 18.1 minutes, thus 

performing 2.15 times slower than BO-1, but 12.5 times faster than GA-1. EBO-2 took 20.2 minutes, 

thus performing 2.06 times slower than BO-2, but 11.05 times faster than GA-2. Considering these 

factors, it can be argued that EBO-1 is the best performing system when compared against GA-Auto-

PU and BO-Auto-PU, achieving high predictive performance and representing a trade-off between 

GA-Auto-PU and BO-Auto-PU in regard to computational efficiency. 

6.3.2     Results comparing EBO-Auto-PU with two baseline PU 

learning methods 

This section details the results achieved by EBO-Auto-PU and two baseline PU learning methods 

(DF-PU and S-EM, see Section 2.5) when applied to 20 real-world biomedical datasets and 20 
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synthetic datasets. Note that the results in the EBO-1 and EBO-2 columns in the tables reported in 

this section are the same as those reported in the previous section, but they are repeated in this section 

for the reader’s convenience.  

Table 6.12. F-measure results of EBO-1 and baseline PU learning methods on real-world 

biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-1 DF-PU S-EM EBO-1 DF-PU S-EM EBO-1 DF-PU S-EM 

Alzheimer’s  0.629 0.195 0.321 0.587 0.194 0.370 0.540 0.171 0.373 

Autism  0.986 0.648 0.820 0.926 0.648 0.841 0.927 0.645 0.835 

Breast cancer Coi.  0.966 0.697 0.711 0.952 0.711 0.704 0.615 0.697 0.699 

Breast cancer Wis.  0.893 0.543 0.898 0.872 0.543 0.903 0.927 0.539 0.904 

Breast cancer mut.    0.672 0.489 0.892 0.667 0.489 0.893 0.862 0.485 0.892 

Cervical cancer  0.839 0.061 0.054 0.904 0.042 0.053 0.667 0.044 0.046 

Cirrhosis  0.532 0.405 0.436 0.453 0.401 0.442 0.507 0.405 0.459 

Dermatology  0.899 0.228 0.718 0.813 0.229 0.718 0.716 0.219 0.719 

PI Diabetes  0.654 0.516 0.534 0.661 0.516 0.525 0.634 0.515 0.544 

ES Diabetes  0.973 0.762 0.792 0.913 0.756 0.859 0.909 0.759 0.793 

Heart Disease  0.833 0.705 0.811 0.800 0.705 0.828 0.774 0.702 0.829 

Heart Failure  0.732 0.487 0.529 0.666 0.486 0.508 0.640 0.481 0.557 

Hepatitis C  0.925 0.176 0.695 0.835 0.171 0.708 0.667 0.160 0.609 

Kidney Disease  1.000 0.428 1.000 0.938 0.428 1.000 0.646 0.428 0.951 

Liver Disease  0.827 0.834 0.816 0.819 0.832 0.587 0.717 0.834 0.788 

Maternal Risk  0.855 0.403 0.454 0.803 0.395 0.433 0.739 0.390 0.438 

Parkinsons  0.929 0.856 0.815 0.894 0.860 0.748 0.707 0.860 0.762 

Parkinsons Biom.  0.203 0.354 0.333 0.337 0.354 0.261 0.133 0.367 0.331 

Spine  0.933 0.652 0.820 0.932 0.652 0.839 0.775 0.652 0.830 

Stroke  0.239 0.086 0.102 0.225 0.094 0.102 0.229 0.094 0.102 

 

Table 6.13 summarises the statistical significance of the F-measure results from Table 6.12, as well 

as the results for precision and recall. 

Table 6.13. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis 

when comparing EBO-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for 

the 3 δ values for the biomedical datasets.  

δ 

(%) 

Methods 

compared 

F-measure Precision Recall 

Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α 

20% EBO-1 vs 

DF-PU 

1.1 vs 

1.9 

0.00004 0.025 1.05 vs 

1.95 

0.00001 0.025 1.98 vs 

1.02 

0.0001 0.025 

EBO-1 vs 

S-EM 

1.18 vs 

1.82 

0.004 0.05 1.22 vs 

1.78 

0.002 0.05 1.72 vs 

1.28 

0.030 0.05 

40% EBO-1 vs 

DF-PU 

1.1 vs 

1.9 

0.00001 0.025 1.0 vs 2.0 0.000002 0.025 1.98 vs 

1.02 

0.0001 0.025 

EBO-1 vs 

S-EM 

1.2 vs 

1.8 

0.002 0.05 1.18 vs 

1.82 

0.001 0.05 1.7 vs 

1.3 

0.048 0.05 

60% EBO-1 vs 

DF-PU 

1.1 vs 

1.9 

0.00001 0.025 1.0 vs 2.0 0.000002 0.025 1.95 vs 

1.05 

0.0001 0.025 

EBO-1 vs 

S-EM 

1.25 vs 

1.75 

0.004 0.05 1.18 vs 

1.82 

0.001 0.05 1.65 vs 

1.35 

0.076 0.05 
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Table 6.13 shows EBO-1 substantially outperforming DF-PU and S-EM across all values of δ for F-

measure and precision with statistical significance. As was the case for GA-1 (Section 4.3) and BO-

1 (Section 5.3), the baseline methods substantially outperform EBO-1 for recall, with DF-PU 

outperforming EBO-1 in all cases with statistical significance. S-EM achieved statistically significant 

superiority in all but 1 case for recall. However, the reasons for this are the same as those outlined in 

Section 4.3, namely that the baselines massively overpredict the positive class, thus resulting in high 

recall but low precision.  

Table 6.14. F-measure results of EBO-2 and two baseline PU learning methods on real-world 

biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-2 DF-PU S-EM EBO-2 DF-PU S-EM EBO-2 DF-PU S-EM 

Alzheimer’s  0.559 0.195 0.321 0.597 0.194 0.370 0.581 0.171 0.373 

Autism  0.964 0.648 0.820 0.938 0.648 0.841 0.887 0.645 0.835 

Breast cancer Coi.  0.967 0.697 0.711 0.952 0.711 0.704 0.923 0.697 0.699 

Breast cancer Wis.  0.882 0.543 0.898 0.863 0.543 0.903 0.839 0.539 0.904 

Breast cancer mut.    0.666 0.489 0.892 0.655 0.489 0.893 0.587 0.485 0.892 

Cervical cancer  0.867 0.061 0.054 0.904 0.042 0.053 0.516 0.044 0.046 

Cirrhosis  0.506 0.405 0.436 0.493 0.401 0.442 0.322 0.405 0.459 

Dermatology  0.857 0.228 0.718 0.891 0.229 0.718 0.750 0.219 0.719 

PI Diabetes  0.668 0.516 0.534 0.665 0.516 0.525 0.607 0.515 0.544 

ES Diabetes  0.957 0.762 0.792 0.905 0.756 0.859 0.915 0.759 0.793 

Heart Disease  0.826 0.705 0.811 0.804 0.705 0.828 0.747 0.702 0.829 

Heart Failure  0.741 0.487 0.529 0.656 0.486 0.508 0.514 0.481 0.557 

Hepatitis C  0.907 0.176 0.695 0.907 0.171 0.708 0.689 0.160 0.609 

Kidney Disease  0.911 0.428 1.000 0.897 0.428 1.000 0.656 0.428 0.951 

Liver Disease  0.832 0.834 0.816 0.800 0.832 0.587 0.748 0.834 0.788 

Maternal Risk  0.854 0.403 0.454 0.810 0.395 0.433 0.731 0.390 0.438 

Parkinsons  0.914 0.856 0.815 0.850 0.860 0.748 0.720 0.860 0.762 

Parkinsons Biom.  0.259 0.354 0.333 0.276 0.354 0.261 0.203 0.367 0.331 

Spine  0.942 0.652 0.820 0.920 0.652 0.839 0.802 0.652 0.830 

Stroke  0.232 0.086 0.102 0.225 0.094 0.102 0.201 0.094 0.102 

Table 6.14 reports the results of EBO-2 compared with the baseline methods on the synthetic 

datasets, whilst Table 6.15 summarises the statistical significance test results. As has been the case 

with the previously discussed methods, EBO-2 largely outperforms the baselines for F-measure and 

precision across all values of δ, with statistical significance in all but one case. As has been previously 

discussed, the baselines overpredict the positive class, achieving high recall but at a substantial loss 

to precision. 
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Table 6.15. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis 

when comparing EBO-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for 

the 3 δ values for the biomedical datasets.  

δ 

(%) 

Methods 

compared 

F-measure Precision Recall 

Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α 

20% EBO-2 vs 

DF-PU 

1.15 vs 

1.85 

0.0001 0.025 1.0 vs 

2.0 

0.000002 0.025 2.0 vs 

1.0 

0.000002 0.025 

EBO-2 vs   

S-EM 

1.175 vs 

1.825 

0.003 0.05 1.2 vs 

1.8 

0.0001 0.05 1.75 vs 

1.25 

0.009 0.05 

40% EBO-2 vs 

DF-PU 

1.15 vs 

1.85 

0.00004 0.025 1.05 vs 

1.95 

0.0000004 0.025 1.98 vs 

1.02 

0.0001 0.025 

EBO-2 vs   

S-EM 

1.15 vs 

1.85 

0.0001 0.05 1.25 vs 

1.75 

0.0002 0.05 1.75 vs 

1.25 

0.036 0.05 

60% EBO-2 vs 

DF-PU 

1.25 vs 

1.75 

0.002 0.025 1.15 vs 

1.85 

0.000003 0.025 1.95 vs 

1.05 

0.00001 0.025 

EBO-2 vs   

S-EM 

1.5 vs 

1.5 

0.546 0.05 1.32 vs 

1.68 

0.033 0.05 1.8 vs 

1.2 

0.002 0.05 

Moving next to the synthetic datasets, Table 6.16 reports the results of EBO-1 compared with the 

baseline methods.  

Table 6.16. F-measure results of EBO-Auto-PU with base search space and baseline PU learning 

methods on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-1 DF-PU S-EM EBO-1 DF-PU S-EM EBO-1 DF-PU S-EM 

1 0.678 0.484 0.616 0.644 0.484 0.602 0.581 0.483 0.613 

2 0.194 0.125 0.194 0.043 0.120 0.130 0.040 0.112 0.120 

3 0.770 0.552 0.589 0.685 0.552 0.587 0.594 0.552 0.600 

4 0.809 0.454 0.644 0.795 0.416 0.633 0.675 0.417 0.630 

5 0.439 0.357 0.402 0.420 0.356 0.436 0.292 0.357 0.465 

6 0.714 0.403 0.477 0.677 0.402 0.525 0.605 0.402 0.582 

7 0.565 0.285 0.433 0.545 0.283 0.462 0.487 0.282 0.451 

8 0.508 0.326 0.468 0.400 0.326 0.457 0.332 0.326 0.439 

9 0.023 0.035 0.099 0.076 0.000 0.044 0.133 0.000 0.120 

10 0.973 0.233 0.612 0.959 0.234 0.627 0.907 0.233 0.663 

11 0.635 0.491 0.505 0.576 0.491 0.520 0.535 0.490 0.517 

12 0.752 0.397 0.550 0.673 0.397 0.567 0.607 0.394 0.586 

13 0.665 0.500 0.551 0.610 0.460 0.556 0.539 0.456 0.549 

14 0.909 0.529 0.817 0.878 0.529 0.840 0.790 0.529 0.873 

15 0.580 0.387 0.423 0.558 0.387 0.425 0.462 0.385 0.422 

16 0.546 0.239 0.414 0.451 0.239 0.401 0.372 0.240 0.299 

17 0.372 0.214 0.262 0.297 0.214 0.281 0.129 0.214 0.267 

18 0.532 0.372 0.444 0.469 0.373 0.433 0.413 0.373 0.422 

19 0.500 0.378 0.426 0.324 0.378 0.429 0.273 0.376 0.413 

20 0.661 0.610 0.615 0.633 0.610 0.620 0.532 0.610 0.613 
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Table 6.17. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis 

when comparing EBO-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for 

the 3 δ values for the synthetic datasets.  

δ 

(%) 

Methods 

compared 

F-measure Precision Recall 

Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α 

20% EBO-1 vs 

DF-PU 

1.05 vs 

1.95 

0.000004 0.025 1.05 vs 

1.95 

0.000004 0.025 1.8 vs 

1.2 

0.005 0.025 

EBO-1 vs 

S-EM 

1.1 vs 

1.9 

0.00005 0.05 1.1 vs 

1.9 

0.00002 0.05 1.52 vs 

1.48 

0.520 0.05 

40% EBO-1 vs 

DF-PU 

1.1 vs 

1.9 

0.00005 0.025 1.05 vs 

1.95 

0.00001 0.025 1.9 vs 

1.1 

0.00001 0.025 

EBO-1 vs 

S-EM 

1.2 vs 

1.8 

0.017 0.05 1.1 vs 

1.9 

0.00001 0.05 1.9 vs 

1.1 

0.00001 0.05 

60% EBO-1 vs 

DF-PU 

1.25 vs 

1.75 

0.015 0.025 1.15 vs 

1.85 

0.000004 0.025 1.9 vs 

1.1  

0.00001 0.025 

EBO-1 vs 

S-EM 

1.55 vs 

1.45 

0.452 0.05 1.35 vs 

1.65 

0.033 0.05 1.9 vs 

1.1 

0.0001 0.05 

Table 6.17 summarises the statistical significance of the F-measure results from Table 6.16, as well 

as the results for precision and recall. The results follow a largely similar trend to those reported in 

Table 6.13, with EBO-1 outperforming the baseline methods for F-measure and precision across all 

values of δ with statistical significance, except in the case of EBO-1 vs S-EM when δ=60%, where 

S-EM outperformed EBO-1 for F-measure. Recall that this was also the case for BO-1 when 

compared with S-EM on the synthetic datasets. The performance of the baseline methods in regard 

to recall follow the same trend as the results of the previous sections, with the baseline methods 

outperforming BO-1 with statistical significance. However, this is due to the large overprediction of 

the positive class as previously discussed.  

Moving on to EBO-2, Table 6.18 reports the results of EBO-2 compared with the baseline 

methods on the synthetic datasets, whilst Table 6.19 summarises the results of the statistical 

significance tests. EBO-2 again largely outperforms the baseline methods regarding F-measure and 

precision for all values of δ, with the exception of S-EM for F-measure when δ=60%. The difference 

in performance is statistically significant in all cases when EBO-2 outperforms the baselines, with 

the exception of S-EM when δ=40% for F-measure. For recall, as expected based on previous results, 

the baseline methods outperform EBO-2 for all values of δ with statistical significance.  
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Table 6.18. F-measure results of EBO-Auto-PU with extended search space and two baseline PU 

learning methods on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-2 DF-PU S-EM EBO-2 DF-PU S-EM EBO-2 DF-PU S-EM 

1 0.670 0.484 0.616 0.654 0.484 0.602 0.570 0.483 0.613 

2 0.204 0.125 0.194 0.024 0.120 0.130 0.050 0.112 0.120 

3 0.766 0.552 0.589 0.707 0.552 0.587 0.582 0.552 0.600 

4 0.809 0.454 0.644 0.793 0.416 0.633 0.710 0.417 0.630 

5 0.452 0.357 0.402 0.389 0.356 0.436 0.411 0.357 0.465 

6 0.709 0.403 0.477 0.652 0.402 0.525 0.622 0.402 0.582 

7 0.585 0.285 0.433 0.537 0.283 0.462 0.509 0.282 0.451 

8 0.559 0.326 0.468 0.386 0.326 0.457 0.385 0.326 0.439 

9 0.068 0.035 0.099 0.041 0.000 0.044 0.114 0.000 0.120 

10 0.975 0.233 0.612 0.960 0.234 0.627 0.879 0.233 0.663 

11 0.622 0.491 0.505 0.563 0.491 0.520 0.498 0.490 0.517 

12 0.734 0.397 0.550 0.676 0.397 0.567 0.609 0.394 0.586 

13 0.628 0.500 0.551 0.605 0.460 0.556 0.510 0.456 0.549 

14 0.905 0.529 0.817 0.854 0.529 0.840 0.702 0.529 0.873 

15 0.602 0.387 0.423 0.536 0.387 0.425 0.486 0.385 0.422 

16 0.544 0.239 0.414 0.442 0.239 0.401 0.364 0.240 0.299 

17 0.323 0.214 0.262 0.207 0.214 0.281 0.211 0.214 0.267 

18 0.517 0.372 0.444 0.467 0.373 0.433 0.397 0.373 0.422 

19 0.427 0.378 0.426 0.351 0.378 0.429 0.275 0.376 0.413 

20 0.651 0.610 0.615 0.621 0.610 0.620 0.539 0.610 0.613 

Table 6.19. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis 

when comparing EBO-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for 

the 3 δ values for the synthetic datasets.  

δ 

(%) 

Methods 

compared 

F-measure Precision Recall 

Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α Avg. 

ranks 

p-value α 

20% EBO-2 vs 

DF-PU 

1.0 vs 

2.0 

0.000002 0.025 1.0 vs 

2.0 

0.000002 0.025 1.95 vs 

1.05 

0.00001 0.05 

EBO-2 vs   

S-EM 

1.05 vs 

1.95 

0.00001 0.05 1.05 vs 

1.95 

0.000004 0.05 1.95 vs 

1.05 

0.000004 0.025 

40% EBO-2 vs 

DF-PU 

1.15 vs 

1.85 

0.0002 0.025 1.05 vs 

1.95 

0.000004 0.025 1.9 vs 

1.1 

0.00001 0.05 

EBO-2 vs   

S-EM 

1.3 vs 

1.7 

0.083 0.05 1.1 vs 

1.9 

0.00001 0.05 1.98 vs 

1.02 

0.0001 0.025 

60% EBO-2 vs 

DF-PU 

1.2 vs 

1.8 

0.004 0.025 1.05 vs 

1.95 

0.000004 0.025 1.95 vs 

1.05 

0.00001 0.025 

EBO-2 vs   

S-EM 

1.65 vs 

1.35 

0.522 0.05 1.2 vs 

1.8 

0.006 0.05 1.9 vs 

1.1 

0.00005 0.05 

6.4     The PU Learning Algorithm’s Hyperparameter 

Values Most Frequently Selected by EBO-Auto-PU 

In this section we report the optimised PU learning algorithm’s hyperparameter values which were 

most frequently selected by EBO-Auto-PU utilising the base search space (EBO-1) and the extended 

search space (EBO-2). We report the selection frequency, baseline frequency, and their difference. 

The selection frequency of a PU learning algorithm’s hyperparameter value is calculated as the ratio 
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of the number of times that value was used in the optimised PU learning algorithm returned by EBO-

Auto-PU over the total number of EBO-Auto-PU runs, which is 300 per type of dataset (biomedical 

or synthetic), considering 20 datasets times 3 values of 𝛿 times 5 runs of an EBO-Auto-PU version 

per dataset, due to the use of 5-fold cross-validation. The baseline frequency is the expected selection 

frequency of a hyperparameter value if all values of that hyperparameter were randomly selected for 

use in a PU learning algorithm. I.e., it is calculated by simply dividing 1 (one) by the number of 

candidate values for that hyperparameter. The difference between these two frequencies is simply 

the selection frequency minus the baseline frequency.  

As mentioned in previous chapters, little has been written on the topic of suitable algorithm 

configuration for PU learning, and no guidelines exist in the literature. By analysing the most 

frequently selected hyperparameter values in our experiments, we can begin to understand which PU 

learning algorithm configurations perform well. This information could prove useful for future 

research into improving the performance of PU learning algorithms.  

Throughout this section, the term “classifier” is used to refer to a classification algorithm (rather 

than a classification model learned by an algorithm), unless explicitly mentioned otherwise. 

6.4.1     The Hyperparameter Values Most Frequently Selected 

by EBO-1 

Table 6.20. Selection frequency of hyperparameter values by EBO-1 for the biomedical datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration count 2 19.67 10.00 9.67 

Phase 1A RN Threshold 0.4 13.67 10.00 3.67 

Phase 1A Classifier Logistic reg. 14.00 5.56 8.44 

Phase 1B Flag TRUE 59.67 50.00 9.67 

Phase 1 B RN Threshold 0.4 18.00 10.00 8.00 

Phase 1B Classifier SVM 11.67 5.56 6.11 

Phase 2 Classifier Random forest 9.33 5.5% 3.77 

Table 6.20 reports the most frequently selected values of the hyperparameters of the optimised PU 

learning algorithms returned by all runs of EBO-1 on the biomedical datasets. Table 6.21 reports the 

most frequently selected values of the hyperparameters of the optimised PU learning algorithms 

returned by all runs of EBO-1 on the synthetic datasets. Starting with the classifiers, Logistic 

Regression was selected as the most frequent value for Phase 1A classifier for both the biomedical 
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and the synthetic datasets. This is unsurprising, given the results of the previous two chapters looking 

at the most frequently selected hyperparameters by GA-Auto-PU and BO-Auto-PU, as logistic 

regression has occurred frequently as the most selected value for the classifier parameters. As per the 

discussion of the previous chapters, this supports the hypothesis that the Phase 1A Classifier most 

frequently selected values are adhering to the assumptions of separability and smoothness (see 

Section 2.5). Logistic regression was also selected most frequently as Phase 1B Classifier for the 

synthetic datasets, whilst support vector machine (SVM) was selected most frequently for the 

biomedical datasets. SVM has also occurred with relative frequency in the previous results sections, 

being the most frequently selected Phase 1B Classifier for GA-2 on the biomedical datasets, and BO-

1 for the synthetic datasets. Several proposed PU learning methods have been based on the SVM 

classifier [6,15,126,140,172,208,209,210], and these results support SVM as a good choice for a 

component of a two-step PU learning algorithm. Regarding Phase 2 Classifier, the most frequently 

selected value by EBO-1 for the biomedical datasets was random forest, and for the synthetic datasets 

was deep forest. Both of these are powerful classifiers that have, like logistic regression, appeared 

frequently as the most selected classifiers.  

Table 6.21. Selection frequency of hyperparameter values by EBO-1 for the synthetic datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration count 2 17.00 10.00 7.00 

Phase 1A RN Threshold 0.1 15.67 10.00 5.67 

Phase 1A Classifier Logistic reg. 11.00 5.56 5.44 

Phase 1B Flag TRUE 55.48 50.00 5.48 

Phase 1 B RN Threshold 0.25 13.00 10.00 3.00 

Phase 1B Classifier Logistic reg. 8.67 5.56 3.11 

Phase 2 Classifier Deep forest 12.67 5.56 7.11 

As with the previous chapters, a more in-depth discussion of the Phase 1A Iteration Count parameter 

has been conducted which has, again, shown moderate to strong correlations between the average 

most frequently selected value of the Phase 1A Iteration Count parameter and the percentage of 

positive instances in the full unaltered dataset. The Pearson’s correlation coefficient values for the 

biomedical datasets are -0.656, -0.688, and -0.696 when δ = 20%, 40%, and 60% respectively. The 

Pearson’s correlation coefficient values for the synthetic datasets are -0.640, -0.708, and -0.684 when 

δ = 20%, 40%, and 60% respectively.  
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6.4.2     The Hyperparameter Values Most Frequently Selected 

by EBO-2 

Table 6.22. Selection frequency of hyperparameter values by EBO-2 for the biomedical datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration count 2 22.33 10.00 12.33 

Phase 1A RN Threshold 0.15 18.33 10.00 8.33 

Phase 1A Classifier LDA 10.33 5.56 4.77 

Phase 1B Flag TRUE 56.67 50.00 6.67 

Phase 1 B RN Threshold 0.2 14.67 10.00 4.67 

Phase 1B Classifier Logistic reg. 9.00 5.56 3.44 

Spy rate 0.1 24.00 5.56 18.44 

Spy tolerance 0.01 13.88 10.00 3.88 

Spy flag False 65.67 50.00 15.67 

Phase 2 Classifier Deep forest 10.67 5.56 5.11 

Table 6.22 reports the most frequently selected values of the hyperparameters of the optimised PU 

learning algorithms returned by all runs of EBO-2 on the synthetic datasets. Starting with the 

classifiers, the Phase 1A Classifier most frequently selected values were linear discriminant analysis 

(LDA) and Gaussian naïve Bayes (NB) for the biomedical and synthetic datasets respectively. 

Throughout this work, a trend has emerged of favouring linear classifiers for the Phase 1A Classifier 

hyperparameter, with the classifiers LDA, Gaussian NB, Bernoulli NB, and logistic regression being 

selected in almost every case, with the exception that random forest was selected most frequently by 

GA-2 on the biomedical datasets. From these results, it can be argued that the best choice of a 

classifier for the Phase 1A Classifier parameter is a linear classifier, adhering to the assumptions of 

separability and smoothness noted in Section 2.5. Such cannot be argued for the Phase 1B Classifier, 

as little cohesion has emerged regarding the most suitable classifier for this hyperparameter. 

However, for Phase 2 Classifier, a favourite has emerged with the deep forest classifier occurring 

6/12 times. Deep forest is a powerful classifier utilised in our baseline method, DF-PU [129]. 

However, as it is a relatively recently proposed classifier, it has not yet been widely used in the 

machine learning field. These results indicate that, at least in the area of PU learning, the deep forest 

classifier is a promising candidate tool.   
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Table 6.23. Selection frequency of hyperparameter values by EBO-2 for the synthetic datasets. 

Hyperparameter Most selected  

value 

Selection  

Freq. (%) 

Baseline  

Freq. (%) 

Diff. 

(%) 

Phase 1A Iteration count 2 19.00 10.00 9.00 

Phase 1A RN Threshold 0.1 20.00 10.00 10.00 

Phase 1A Classifier Gaussian NB 17.67 5.56 12.11 

Phase 1B Flag TRUE 53.67 50.00 3.67 

Phase 1 B RN Threshold 0.3 12.67 10.00 2.67 

Phase 1B Classifier Logistic reg. 12.67 5.56 7.11 

Spy rate 0.15 18.33 5.56 12.77 

Spy tolerance 0.07 16.07 10.00 6.07 

Spy flag False 52.67 50.00 2.67 

Phase 2 Classifier Deep forest 20.33 5.56 14.77 

Regarding spy results, Spy flag was, again, set to False in the majority of cases, albeit with a much 

smaller margin than all previous results. The trend seen throughout this work is of candidate solutions 

that do not utilise the spy method have been heavily favoured over those that do. The spy method is 

common throughout the PU learning literature, and many extensions and modifications of the method 

have been proposed [126,163,211,212,213]. However, these results indicate that it may not be as 

effective as the frequency of its use would suggest. This further justifies the need for Auto-ML 

systems such as those proposed throughout this work as, simply based on a literature review of the 

PU learning literature, one would be forgiven for assuming that spy-based methods are the most 

effective PU learning systems, given the frequency of their use. However, based on these results, it 

is clear that this is not the case.  

Moving on to the discussion of the Phase 1A Iteration Count hyperparameter, 2 was the most 

frequently selected value for both the biomedical and synthetic datasets by EBO-2. This was also the 

case for both types of datasets for EBO-1, and BO-2. Interestingly, 2, 4, and 1 are the only values to 

appear as the most frequently selected throughout this work. This is interesting, given that they are 

relatively low values (in the context of the other available values {1 … 10}. PU learning datasets 

often exhibit large degrees of class imbalance, and the datasets used in this work are no exception. 

However, it has been shown throughout this work that the average selected value of this parameter 

exhibits a moderate to strong correlation to the percentage of positive instances in the full, unaltered 

datasets. The Pearson’s correlation coefficient values for the biomedical datasets for EBO-2 follow 

this same trend, -0.680, -0.710, and -0.687 when δ = 20%, 40%, and 60% respectively. For the 

synthetic datasets, -0.721, -0.705, and -0.646 when δ = 20%, 40%, and 60% respectively. It could be 
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argued that this is shown somewhat in the most frequently selected values. Recalling the dataset 

characteristics, the biomedical datasets have a much higher percentage of positive instances in the 

full, unaltered dataset than the synthetic datasets, as the synthetic datasets were constrained to 

keeping the distribution at 50% positive instances at most. No such constraint was applied to the 

biomedical datasets as they are real-world datasets, and the dataset with the highest percentage of 

positive instances has a percentage of 75.38%. GA-1 and GA-2 both selected 1 most frequently for 

the biomedical datasets, whilst GA-1, GA-2, and EBO-1 selected 4 most frequently for the synthetic 

datasets. Based on these results, and the correlations shown throughout this work, it can be argued 

that when assembling a two-step PU learning algorithm, one should consider the class imbalance 

present when deciding upon the iteration count to apply.      

6.5     Comparing the Auto-PU Systems’ Learning Rates 

In this section, the learning rates of the three Auto-ML systems are compared. That is, Figures 6.4 to 

6.6 display the fitness value of each individual (candidate solution) whose fitness is evaluated by the 

objective function, for GA-1, BO-1, and EBO-1 for three datasets. First, the ‘Kidney Disease’ 

dataset, as it was on this dataset that most methods achieved the highest F-measure. Second, the 

‘Parkinsons Biom.’ dataset, as it was on this dataset that most methods achieved the lowest F-

measure. Finally, the ‘PI Diabetes’ dataset, as this dataset generally elicited mid-level performance 

for all methods. These datasets’ main characteristics are shown in Table 3.1. 

This analysis focusses only on this sample of three biomedical datasets. Given the large number 

of datasets used in this work, providing graphs and analysis for all would be impractical. As the 

biomedical datasets are arguably more important than the synthetic datasets due to their real-world 

applications, we sampled only the biomedical datasets for this analysis. Furthermore, we have 

selected only the base-search space implementations for this analysis, given that the distinction 

between base vs extended search space is not critical.  

The x axis on the graphs shows the number of fitness evaluations, whilst the y axis shows the 

best fitness observed at that point in the optimisation procedure. The number of fitness evaluations 

is being used as a proxy for the ‘cost’ of each Auto-PU system, so that a direct comparison can be 

made between the systems. This is more accurate than simply using the number of iterations as an 
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iteration for the GA-based system would be much slower to complete than an iteration for the BO-

based system. The fitness evaluation procedure is by far the biggest bottleneck in the three Auto-PU 

systems, so whilst each system does perform additional steps (such as the evolution procedures of 

the GA, or the surrogate model training of the BO), the time taken for these steps is relatively small 

in the context of the fitness evaluation. This is discussed in more detail in Section 5.1.3. GA-Auto-

PU performs by far the most fitness evaluations (101 individuals × 50 generations = 5050), whilst 

BO-Auto-PU performs the least (101 candidate solutions in the first iteration, then 1 × 49 iterations 

= 150). EBO-Auto-PU sits between the two (101 candidate solutions in the first iterations, then 11 × 

49 iterations = 640). 

 

(a). δ = 20%. 

 
 

(b). δ = 40%. 

 

 
 

(c). δ = 60%. 

Figure 6.4. Learning rates of the Auto-PU systems on Kidney Disease dataset, varying the δ value.  
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 (a). δ = 20%. 

 

 (b). δ = 40%.                        

 

(c). δ = 60%. 

Figure 6.5. Learning rates of the Auto-PU systems on Parkinson’s Biom. dataset, varying the δ 

value.  
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(a). δ = 20%. 

  

(b). δ = 40%.                     

 

(c). δ = 60%. 

Figure 6.6. Learning rates of the Auto-PU systems on PI Diabetes dataset, varying the δ value.  

 

While GA-1 demonstrates a conventional learning rate pattern for genetic algorithms, characterized 

by initial large jumps in performance and subsequent convergence, BO-1 deviates from this trend by 

exhibiting early convergence with only 1 or 2 substantial performance jumps. It could be argued that 

this early convergence is likely due to BO-1 converging to a local optima. However, in 6 out of the 
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9 cases it achieves a higher fitness than GA-1 at its final fitness evaluation, which is much sooner 

than the final fitness evaluation of GA-1 (which performs a much greater number of fitness 

evaluations). This supports claims in Chapter 5 that BO-1 was generally a more efficient optimiser 

than GA-1.  

EBO-1 sits somewhere between GA-1 and BO-1 regarding their learning rate trend, with fewer 

jumps in performance than GA-1 but more than BO-1.  

Overall, GA-1 achieves the highest fitness at the final fitness evaluation in 1 out of the 9 analysed 

cases, BO-1 in 2 out of 9 cases, and EBO-1 in 6 out of 9 cases; and in general GA-1 needs a much 

larger number of fitness evaluations in order to achieve fitness values competitive with BO-1 and 

EBO-1.  

6.6     Summary   

Overall, considering the comparison between the EBO-based systems and the PU learning baselines, 

both EBO-1 and EBO-2 outperformed the baselines in general, with statistical significance regarding 

F-measure and precision in several cases. S-EM did, however, show a large increase in predictive 

performance for δ=60%, as has been shown and discussed in the previous chapters.  

Regarding the comparison with the GA-based and BO-based systems, the experimental results 

indicate that EBO-1 performs favourably in terms of predictive performance when compared to GA-

1, and BO-1. Although statistical significance is not observed in most cases, EBO-1 consistently 

outperforms or performs on par with the compared systems for F-measure, precision, and recall. 

EBO-2 performs similarly to BO-2 and GA-2 in terms of F-measure, precision, and recall, with some 

exceptions. EBO-2 achieves the best average rank in the majority of cases, outperforming GA-2 in 

precision at δ=40% with statistical significance. However, the results indicate that GA-2 generally 

outperforms EBO-2 in terms of F-measure and recall, with statistical significance observed in 

multiple instances. Conversely, EBO-2 exhibits better precision performance in some cases. 

Regarding computational efficiency, the EBO-based systems strike a balance between the GA and 

BO-based systems in terms of computational efficiency. Overall, considering both predictive 

performance and computational efficiency, EBO-1 emerges as the preferred system compared to the 

other methods evaluated in this research. 
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To summarise the data regarding the most frequently selected hyperparameter values, the results 

indicate that linear classifiers, such as Logistic Regression, LDA, and Gaussian NB, are favoured as 

Phase 1A Classifiers in PU learning algorithms, supporting the hypothesis that the selection of this 

hyperparameter adheres to the assumptions of separability and smoothness that are fundamental to 

the two-step PU learning framework. The Phase 1B Classifier does not exhibit a clear preferred 

choice across datasets, indicating that the selection of this hyperparameter is highly dataset specific. 

For Phase 2 Classifier, the deep forest classifier shows promise in both biomedical and synthetic 

datasets, suggesting that this relatively recently proposed classifier is a powerful tool in the context 

of PU learning. The results also show that low values of the Phase 1A Iteration Count hyperparameter 

are commonly selected and exhibit a correlation with the percentage of positive instances in the 

datasets. Thus, when designing a two-step PU learning algorithm, one should consider the class 

distribution when setting this value. Additionally, the Spy method is, surprisingly, not frequently 

utilized, despite its prevalence in PU learning literature. These findings emphasize the importance of 

automated systems, like the proposed Auto-ML systems, in selecting suitable hyperparameters for 

PU learning algorithms based on dataset characteristics and performance correlations. 

At the start of this chapter 2 research questions were posed to evaluate EBO-Auto-PU. Firstly, 

does EBO-Auto-PU present a good trade-off, in regard to computational efficiency, between GA-

Auto-PU and BO-Auto-PU? And, secondly, does EBO-Auto-PU achieve good predictive 

performance compared with GA-Auto-PU? To answer the first question, EBO-Auto-PU does present 

a good trade-off in regard to computational efficiency, performing 2.06 - 2.15 times slower than BO-

Auto-PU, but 11.05-12.5 times faster than GA-Auto-PU. It can be argued that this is a good trade-

off, given that 11.05-12.5 is, arguably, a substantial improvement upon GA-Auto-PU, whilst 2.06-

2.15 is not a substantial decline in performance compared with BO-Auto-PU. In response to the 

second question, considering EBO-1 and EBO-2 separately, the answers are yes and no respectively. 

The aim was to improve upon the performance of GA-Auto-PU, which, despite lacking statistical 

significance, EBO-1 did against GA-1. EBO-1 achieved a superior rank against both GA-1 and BO-

1, thus representing an improvement in performance. Whilst these results are not statistically 

significant, they are an improvement. Statistical significance is not the sole indicator of improvement, 

it is a commonly used measure to determine whether observed differences are likely due to chance 
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or a genuine effect. However, it does not discount the possibility of meaningful trends or 

improvements that fall short of statistical significance. In this context, the results of EBO-1, even 

without statistical significance, demonstrate a consistent trend of outperforming both GA-1 and BO-

1. Considering EBO-2, it cannot be argued that this system improved upon GA-2 in regard to 

predictive performance. So, to evaluate both EBO-1 and EBO-2 in regard to the research questions 

posed, it can be said that both achieve the goal of the first question, whilst EBO-1 achieves the goal 

set by the second. Thus, to conclude, EBO-1 has obtained overall the best predictive performance of 

the Auto-PU systems evaluated in this work. 
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Chapter 7  

Conclusions 

Positive-Unlabelled (PU) learning is an under-explored area of machine learning that has potential 

to aid challenging learning tasks, where fully labelled data is impractical or impossible to obtain. 

This learning paradigm occurs frequently, as discussed in Chapters 1 and 2, and naturally occurs in 

areas of great importance such as medical diagnosis, gene function prediction, and cyber security.  

However, the field is challenging. Until recently, guidance regarding specifically how to evaluate 

PU learning classifiers was limited. Standard evaluation metrics cannot be calculated when using 

genuine PU data, and the right metric to use for evaluation depends heavily on the learning task. 

Furthermore, many PU learning methods have been proposed in the literature, with little guidance 

regarding algorithm construction.  

In this work, these issues have been approached. Whilst there are limitations to the solutions 

presented, it is hoped that the contributions aid the literature of PU learning and provide guidance to 

future researchers. This chapter outlines the contributions made (Section 7.1) and future research 

directions (Section 7.2).  

7.1     Summary of Contributions 

In the Introduction chapter of this thesis, its primary contributions were briefly outlined. In this 

section, these contributions will be discussed in more detail.  



193 

 

7.1.1     A Framework for Evaluating the Predictive Performance 

of PU Learning Algorithms 

Evaluation of PU learning algorithms is non-trivial, as was discussed in Section 2.5, given that the 

true class labels of all instances are not defined. Thus, metrics such as the true positive, false positive, 

true negative, and false negative counts cannot be accuracy calculated. These values are the 

foundation of most of the popular evaluation metrics in the field of standard classification, thus a 

challenge is presented.  

In our previous work [20], a literature review was conducted to establish the most frequently 

used evaluation metrics and the most frequently used type of dataset. By type of dataset, we refer to 

either genuine PU data, or PN (Positive-Negative) data that has been engineered to a PU dataset. 

Guidelines for evaluation were established, determining that newly proposed PU learning algorithms 

should be evaluated on engineered PU datasets with varying percentages of positive instances hidden 

in the unlabelled set. F-measure, precision, and recall should all be reported, given that either 

precision or recall may be important depending on the application. When evaluating on genuine PU 

data, if using standard evaluation metrics, it should be noted that these metrics are simply an 

estimation, rather than accurate calculations. However, before evaluating on genuine PU data, it is 

important to first gain an understanding of the models’ performance by evaluating on engineered PU 

data as discussed. In addition, to aid in the evaluation of PU learning algorithms, benchmarking 

datasets have been made publicly available6.  

7.1.2     An Auto-ML Framework for PU Learning 

Chapter 3 of this thesis details the Auto-ML framework used for developing the Auto-PU systems 

presented in this work. This was provided in detail so that other researchers can utilise it for 

development of Auto-ML systems specific to PU learning.  

The framework features a flexible search space structure, allowing researchers to incorporate 

various algorithmic components of PU learning, such as different classifiers and more discrete values 

for the numeric hyperparameters. Furthermore, the search spaces could be adapted to consider 

 
6 https://github.com/jds39/Unlabelled-Datasets/ 
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continuous values, rather than the discrete values currently used. However, the discrete values allow 

for a more controlled analysis of the correlation between some of the most frequently selected 

hyperparameter values and the predictive performance of the Auto-PU systems, such as was 

conducted in this work. The framework also presents a clearly defined objective function that can be 

used for the evaluation of two-step PU learning methods.  

7.1.3     The Proposed Auto-PU Systems 

The Auto-PU systems proposed were the primary contributions of this work. All three of these 

systems utilise the Auto-ML framework outlined in Section 7.1.2. Each of the Auto-PU systems had 

two versions, with a base or extended search space, and each version was evaluated in two separate 

experiments involving 20 biomedical datasets and 20 synthetic datasets. 

GA-Auto-PU was the first Auto-ML system specific to PU learning. It achieved statistically 

significant better performance against TPOT, a state-of-the-art Auto-ML system for binary 

classification, and against two strong baseline PU learning methods. However, regarding efficiency, 

GA-Auto-PU is expensive to run, averaging 226.3 and 223.2 minutes to run a 5-fold cross-validation 

procedure per dataset, when utilising the base search space and the extended search space 

respectively. To improve upon the computational efficiency, BO-Auto-PU was proposed. 

BO-Auto-PU is a Bayesian optimisation (BO)-based Auto-ML system that achieved the goal of 

improving the computational efficiency of GA-Auto-PU, averaging 8.4 and 9.8 minutes to run a 5-

fold cross-validation procedure per dataset, when using the base search space and the extended search 

space respectively, being 23-27 times faster than GA-Auto-PU. However, this was achieved at a 

small loss to predictive performance. It was hypothesised that this loss in predictive performance 

could be due to a lack of population diversity by the BO-based system in comparison to the GA. GA-

Auto-PU introduces diversity through the use of evolutionary operators, but no such diversity is 

introduced by BO-Auto-PU. Therefore, it follows that an improved approach could strike a trade-off 

between the two systems in regard to computational efficiency and population diversity.  

EBO-Auto-PU was proposed based on a new hybrid approach between BO and evolutionary 

computation. This optimisation procedure is a contribution in itself and is discussed in Section 7.1.5.  

EBO-Auto-PU achieved the aim of striking a trade-off between GA-Auto-PU and BO-Auto-PU in 
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regard to computational efficiency, performing 2.06–2.15 times slower than BO-Auto-PU, but 

11.05–12.50 times faster than GA-Auto-PU. This is a substantial improvement on GA-Auto-PU’s 

runtime, arguably without being a substantial increase on BO-Auto-PU’s runtime.  

Regarding predictive performance, EBO-Auto-PU utilising the base search space consistently 

outperformed or performed on par with GA-Auto-PU and BO-Auto-PU. Whilst statistical 

significance was not achieved, the system still exhibited superior performance and a good trade-off 

in computational efficiency, and thus EBO-Auto-PU emerged as the preferred of the three Auto-PU 

systems proposed in this work. The results for EBO-Auto-PU utilising the extended search space 

were not as good, with GA-Auto-PU performing best overall when utilising the extended search 

space. A possible reason as to why is due to the much larger number of possible candidate solutions 

in the extended search space, compared with the base search space. GA-Auto-PU performs a global 

search and evaluates many candidate solutions throughout the run. As BO-Auto-PU and EBO-Auto-

PU employ a surrogate model, they are susceptible to becoming trapped in local optima, as discussed 

in Section 2.3. It is possible that the extended search space requires a more extensive search, as 

conducted by GA-Auto-PU.    

It is worth noting that all three proposed Auto-PU systems achieved statistically significantly 

better F-measure results than two baseline PU learning methods (the S-EM (“Spy”) method and deep 

forest for PU learning), and as such they are useful contributions to the PU learning area. The only 

situation where the Auto-PU systems struggled against the baselines in regard to F-measure was 

when the percentage of positive examples hidden in the unlabelled set (as described in Section 3.3) 

was set to δ = 60%. Specifically, S-EM outperformed BO-1, BO-2, EBO-1, and EBO-2 on the 

synthetic datasets when δ = 60%, although these results were not statistically significant. GA-1 and 

GA-2 both outperformed S-EM in this scenario. It can, therefore, be argued that when presented with 

a challenging PU learning task where the majority of positive instances are included in the unlabelled 

set, the GA-based systems are most suitable.    

Given the analysis of the results of the Auto-PU systems, certain conclusions can be drawn 

regarding which system to use in which scenario. For challenging learning tasks, the GA-based 

systems are arguably the best choice of the three systems due to the robust global search and its 

ability to perform well when a high number of positive instances are hidden in the unlabelled set. If 
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fast execution time is an important criterion, the BO-based systems are the best choice given that 

they are the best system in regard to computational runtime, and predictive performance is not 

significantly decreased in comparison to the other two systems. The EBO-based systems are a good 

trade-off between the two other systems, and it achieves the best predictive performance overall 

when utilising the base search space. Thus, EBO-Auto-PU with the base search space can be 

considered overall the best Auto-ML system among the six versions of Auto-PU systems in this 

thesis (two versions for each of the three types of Auto-PU systems).  

Regarding the base versus the extended search space, the results throughout this thesis have 

frequently shown a preference for not utilising the “Spy” approach to PU learning. As discussed, this 

is somewhat surprising given the prevalence of the Spy approach in the PU learning literature. 

However, the results arguably lead to the conclusion that, for the Auto-PU systems, the base search 

space is superior given that the only addition of the extended search space is the Spy components, 

and these are not frequently selected by the Auto-PU systems.  

7.1.4     Analysis of Frequently Selected PU Learning Algorithm 

Components 

In Chapters 4, 5, and 6 of this work, an analysis of the PU learning algorithm components most 

frequently selected by the Auto-PU systems was conducted. From this analysis, guidelines can be 

established regarding PU learning algorithm design for datasets with specific characteristics.  

To summarise this analysis, starting with classifiers, linear classifiers were favoured as the Phase 

1A Classifier, which adheres to the assumptions of separability and smoothness that underly the two-

step PU learning framework. The most popular selection for the Phase 2 Classifier was the deep 

forest classifier, a relatively recently proposed classifier that serves as the classifier used in a baseline 

method, DF-PU.  

Extra analysis was conducted on the Phase 1A Iteration Count hyperparameter, analysing the 

correlation between the values selected and the class distributions of the datasets. This analysis 

revealed a reasonable degree of correlation between the iteration count hyperparameter and the class 

distribution. Thus, when designing a two-step PU learning algorithm, one should consider the class 

distribution when setting this value. 
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Regarding the “Spy” approach to PU learning (see Section 2.5), determined by the Spy Flag 

hyperparameter, as mentioned earlier, it was, surprisingly, frequently not utilised in the optimised 

PU learning algorithms. Considering that the use of this Spy approach greatly increases the size of 

the search space of the proposed Auto-PU systems, the use of this approach is not recommended for 

these systems. 

7.1.5     Evolutionary Bayesian Optimisation (EBO) 

Due to the observed results of the GA-based and the BO-based systems in regard to predictive 

performance and computational efficiency, a hybrid approach between the two was developed. The 

GA-based system exhibited high predictive performance but low computational efficiency, whereas 

the BO-based system did not perform as well in regard to predictive performance but was much more 

computationally efficient. As mentioned earlier, it was hypothesised that the decline in predictive 

performance by the BO-based system was due to a lack of population diversity, and that if population 

diversity could be increased, predictive performance would improve. However, the aim was for this 

to be done such that computational efficiency did not substantially suffer.  

This hybrid was achieved through the development of EBO, utilising evolutionary operators and 

a population to introduce diversity, whilst employing a surrogate model to ensure computational 

efficiency. Full details of this approach can be found in Section 6.2 and results utilising EBO in the 

EBO-Auto-PU system are found in Section 6.3. The development of EBO is a contribution not just 

to the PU learning literature through EBO-Auto-PU, but the field of Auto-ML optimisers as a whole.  

7.2     Future Research Directions 

In this section, future research directions are outlined to develop upon the contributions made in this 

work. 

7.2.1     Experiments with More Datasets 

Although each of the Auto-PU systems proposed in this work achieved their specified goals, the 

difference in performance between the systems was in general not statistically significant. To 
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improve the analysis, further experiments can be done with more datasets to increase the sample size 

and conduct a more rigorous experimentation. Furthermore, this work focussed on datasets in the 

biomedical domain, but other domains relevant to PU learning can be explored.  

7.2.2     Further Comparisons Against Other Baseline PU 

Learning Methods 

In this work, the proposed Auto-PU systems were compared against two strong baseline PU learning 

methods. However, for a more rigorous evaluation of the systems, comparisons against other baseline 

PU learning methods could be conducted. As PU learning is a growing field, there is little doubt that 

many new strong methods will be developed in the future. It is encouraged that the Auto-PU systems 

should be compared against these proposed new methods to continue to establish their 

competitiveness in the expanding environment of PU learning algorithms. 

7.2.3     Alternative Search Spaces 

Chapter 3 of this thesis proposed two search spaces to be explored with the Auto-PU systems, named 

as the base search space and the extended search space. The base search space defines the PU learning 

landscape as a discrete subset of algorithm components that constitute a two-step PU learning 

method. The extended search space adds spy components into the base search space, allowing the 

development of two-step PU learning methods that utilise the spy approach. However, other search 

spaces could be defined, either as an extension to the existing search spaces, such as allowing 

continuous rather than discrete values or additional discrete values to those already defined, or 

entirely new search spaces, such as explorations of the biased approach to PU learning.  

7.2.4     Optimising the Hyperparameters of the Auto-ML 

Systems 

Throughout this thesis, the Auto-PU systems have used their default hyperparameter settings, based 

on settings often used in the EA or BO literature. That is, although each Auto-ML system optimised 

the hyperparameter settings of a two-step PU learning method, there was no attempt to optimise the 

hyperparameter settings of the Auto-ML systems themselves, which would be a new (meta)-level of 
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optimisation. Hence, a natural but challenging approach for future research would be to optimise the 

hyperparameter settings of the Auto-ML systems themselves. This can be achieved e.g., through 

adaption or self-adaptation of hyperparameter settings during the evolutionary search, in the case of 

EAs [79], or an equivalent approach in the case of BO. 

7.2.5     Developing New Multi-Objective Auto-ML Systems 

The Auto-PU systems proposed in this thesis focus on predictive performance (more specifically the 

F-measure) as their single optimisation objective. However, a growing area of interest within Auto-

ML is the computational efficiency of optimised classification pipelines. As such, a future research 

direction could be to introduce a new version of the Auto-PU systems that optimise for both 

predictive performance and computational efficiency of the produced PU learning algorithms. Such 

a system could to some extent favour PU learning algorithms that utilise efficient, fast classifiers 

(e.g., naïve Bayes) over complex, slow classifiers (e.g., multilayer perceptron); if this preference 

would have little or no impact on the predictive performance of the produced PU learning algorithms.  
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Appendix A 

Precision & Recall Results 

Chapters 4 – 6 of this thesis present tables of results showing the detailed F-measure values and a 

summary of the precision and recall for each method. This section gives the detailed precision and 

recall values to complement these results, starting with precision (Tables A.1 through A.6), followed 

by the recall results (Tables A.7 through A.12).  

Table A.1. Precision results of the Auto-PU systems with base search space on real-world 

biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 

Alzheimer’s  0.688 0.600 0.600 0.595 0.656 0.613 0.680 0.706 0.684 

Autism  0.986 0.978 0.971 0.954 0.985 0.941 0.941 0.948 0.946 

Breast cancer Coi.  0.990 0.625 0.653 0.962 0.658 0.672 0.800 0.829 0.684 

Breast cancer Wis.  0.815 0.985 0.975 0.833 0.990 0.930 0.960 0.983 0.953 

Breast cancer mut.    0.608 0.819 0.813 0.714 0.824 0.813 0.851 0.826 0.830 

Cervical cancer  0.929 0.929 1.000 1.000 1.000 1.000 0.688 0.714 0.909 

Cirrhosis  0.451 0.479 0.490 0.409 0.447 0.402 0.522 0.516 0.423 

Dermatology  0.976 0.891 0.889 0.860 0.915 0.750 0.879 0.906 0.923 

PI Diabetes  0.586 0.580 0.594 0.559 0.557 0.541 0.625 0.629 0.583 

ES Diabetes  0.978 0.984 0.962 0.975 0.981 0.978 0.962 0.964 0.969 

Heart Disease  0.792 0.782 0.796 0.800 0.830 0.822 0.828 0.805 0.808 

Heart Failure  0.770 0.778 0.740 0.701 0.629 0.670 0.724 0.759 0.763 

Hepatitis C  0.980 0.942 1.000 0.915 0.898 0.925 0.714 0.850 0.862 

Kidney Disease  1.000 1.000 1.000 1.000 1.000 1.000 0.955 1.000 1.000 

Liver Disease  0.720 0.718 0.715 0.726 0.718 0.727 0.751 0.742 0.735 

Maternal Risk  0.840 0.852 0.312 0.820 0.821 0.870 0.743 0.818 0.816 

Parkinsons  0.920 0.899 0.754 0.848 0.872 0.857 0.965 0.909 0.923 

Parkinsons Biom.  0.207 0.167 0.313 0.246 0.227 0.237 0.200 0.200 0.233 

Spine  0.939 0.947 0.484 0.951 0.938 0.942 0.951 0.939 0.924 

Stroke  0.167 0.173 0.310 0.189 0.156 0.200 0.192 0.150 0.185 
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Table A.2. Precision results of the Auto-PU systems with base search space on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 

1 0.648 0.633 0.641 0.729 0.711 0.631 0.63 0.714 0.433 

2 0.111 0.071 0.075 0.069 0.083 0.024 0.056 0.086 0.036 

3 0.731 0.793 0.739 0.709 0.698 0.614 0.618 0.680 0.612 

4 0.857 0.824 0.871 0.842 0.831 0.705 0.734 0.839 0.631 

5 0.373 0.595 0.581 0.476 0.583 0.519 0.332 0.433 0.586 

6 0.697 0.845 0.734 0.845 0.841 0.738 0.746 0.869 0.923 

7 0.426 0.653 0.381 0.516 0.448 0.375 0.464 0.449 0.650 

8 0.347 0.724 0.361 0.450 0.537 0.374 0.368 0.395 0.403 

9 0.013 0.024 0.067 0.060 0.100 0.045 0.109 0.118 0.080 

10 0.962 0.981 0.846 0.919 0.931 0.973 0.877 0.908 0.933 

11 0.511 0.497 0.479 0.549 0.548 0.553 0.512 0.586 0.448 

12 0.697 0.578 0.616 0.671 0.680 0.624 0.610 0.795 0.914 

13 0.561 0.572 0.548 0.652 0.643 0.614 0.582 0.532 0.359 

14 0.962 0.958 1.000 0.899 0.985 0.927 0.804 0.958 0.906 

15 0.749 0.552 0.767 0.535 0.564 0.440 0.441 0.514 0.368 

16 0.382 0.792 0.332 0.474 0.347 0.244 0.395 0.510 0.178 

17 0.240 0.369 0.224 0.240 0.244 0.980 0.104 0.295 0.270 

18 0.375 0.361 0.393 0.526 0.495 0.429 0.463 0.308 0.227 

19 0.375 0.324 0.353 0.255 0.333 0.330 0.219 0.357 0.243 

20 0.520 0.642 0.554 0.562 0.593 0.656 0.468 0.570 0.510 

 

Table A.3. Precision results of the Auto-PU systems with extended search space on real-world 

biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 

Alzheimer’s  0.633 0.645 0.571 0.690 0.629 0.679 0.750 0.593 0.600 

Autism  0.978 0.985 0.986 0.949 0.962 0.930 0.874 0.953 0.941 

Breast cancer Coi.  0.981 0.678 0.624 0.966 0.644 0.657 0.937 0.000 0.867 

Breast cancer Wis.  0.840 0.923 0.990 0.824 0.961 0.938 0.799 0.957 0.955 

Breast cancer mut.    0.590 0.845 0.818 0.692 0.822 0.619 0.597 0.836 0.867 

Cervical cancer  1.000 1.000 1.000 1.000 1.000 0.929 0.356 0.929 0.304 

Cirrhosis  0.421 0.415 0.456 0.468 0.440 0.375 0.319 0.536 0.370 

Dermatology  0.907 0.951 0.953 0.932 0.925 0.896 0.825 0.943 0.900 

PI Diabetes  0.597 0.586 0.614 0.629 0.546 0.585 0.564 0.586 0.641 

ES Diabetes  0.968 0.965 0.990 0.917 0.978 0.985 0.924 0.937 0.967 

Heart Disease  0.793 0.807 0.783 0.746 0.822 0.824 0.710 0.810 0.804 

Heart Failure  0.753 0.787 0.763 0.678 0.694 0.697 0.570 0.689 0.831 

Hepatitis C  0.942 0.981 0.981 0.942 0.972 0.957 0.912 0.897 0.962 

Kidney Disease  0.872 1.000 1.000 0.886 1.000 1.000 1.000 1.000 1.000 

Liver Disease  0.726 0.716 0.721 0.701 0.730 0.728 0.679 0.790 0.757 

Maternal Risk  0.830 0.830 0.853 0.777 0.853 0.864 0.700 0.802 0.811 

Parkinsons  0.890 0.927 0.899 0.831 0.874 0.848 0.706 0.920 0.935 

Parkinsons Biom.  0.292 0.273 0.244 0.286 0.000 0.200 0.207 0.000 0.350 

Spine  0.972 0.978 0.926 0.920 0.946 0.957 0.747 0.954 0.924 

Stroke  0.161 0.178 0.166 0.156 0.191 0.166 0.139 0.171 0.185 
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Table A.4. Precision results of the Auto-PU systems with extended search space on synthetic 

datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 

1 0.710 0.685 0.604 0.700 0.738 0.620 0.621 0.704 0.446 

2 0.189 0.187 0.102 0.045 0.036 0.057 0.118 0.182 0.060 

3 0.777 0.780 0.730 0.719 0.695 0.840 0.592 0.701 0.457 

4 0.812 0.883 0.743 0.796 0.875 0.772 0.724 0.782 0.767 

5 0.468 0.625 0.471 0.401 0.612 0.708 0.423 0.524 0.777 

6 0.767 0.830 0.703 0.695 0.763 0.655 0.663 0.860 0.558 

7 0.556 0.467 0.397 0.514 0.471 0.548 0.480 0.396 0.300 

8 0.588 0.562 0.651 0.405 0.442 0.347 0.401 0.407 0.272 

9 0.051 0.011 0.052 0.029 0.045 0.347 0.079 0.107 0.085 

10 0.989 0.940 0.851 0.988 0.892 0.740 0.902 0.877 0.712 

11 0.601 0.561 0.432 0.545 0.579 0.470 0.470 0.505 0.360 

12 0.804 0.772 0.526 0.713 0.738 0.785 0.647 0.778 0.481 

13 0.615 0.650 0.719 0.589 0.591 0.468 0.492 0.577 0.475 

14 0.906 0.975 0.978 0.853 0.948 1.000 0.706 0.972 0.938 

15 0.700 0.672 0.554 0.621 0.531 0.921 0.568 0.453 0.431 

16 0.718 0.675 0.275 0.620 0.388 0.324 0.514 0.470 0.178 

17 0.352 0.317 0.268 0.233 0.228 0.311 0.243 0.143 0.300 

18 0.593 0.550 0.532 0.533 0.54 0.261 0.404 0.306 0.480 

19 0.383 0.402 0.324 0.316 0.31 0.426 0.253 0.410 0.792 

20 0.615 0.686 0.610 0.590 0.579 0.555 0.513 0.579 0.721 

 

Table A.5. Precision results of the baseline methods on real-world biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

DF-PU S-EM TPOT DF-PU S-EM TPOT DF-PU S-EM TPOT 

Alzheimer’s  0.108 0.195 0.654 0.108 0.237 0.647 0.096 0.244 0.219 

Autism  0.481 0.858 0.971 0.481 0.808 0.985 0.479 0.815 0.930 

Breast cancer Coi.  0.544 0.552 0.611 0.552 0.548 0.539 0.544 0.569 0.615 

Breast cancer Wis.  0.373 0.904 0.990 0.373 0.905 0.869 0.370 0.922 0.941 

Breast cancer mut.    0.324 0.812 0.822 0.324 0.811 0.809 0.322 0.811 0.829 

Cervical cancer  0.032 0.028 0.846 0.021 0.027 0.000 0.023 0.024 0.000 

Cirrhosis  0.255 0.286 0.458 0.253 0.291 0.500 0.255 0.303 0.283 

Dermatology  0.130 0.566 0.892 0.130 0.566 0.795 0.125 0.575 0.638 

PI Diabetes  0.348 0.364 0.628 0.348 0.356 0.540 0.347 0.398 0.582 

ES Diabetes  0.617 0.658 0.974 0.612 0.770 0.733 0.614 0.658 0.962 

Heart Disease  0.545 0.732 0.806 0.545 0.752 0.831 0.543 0.794 0.787 

Heart Failure  0.322 0.367 0.653 0.321 0.344 0.712 0.323 0.424 0.527 

Hepatitis C  0.096 0.661 0.938 0.094 0.702 0.843 0.087 0.593 0.704 

Kidney Disease  0.272 1.000 1.000 0.272 1.000 0.607 0.272 1.000 0.957 

Liver Disease  0.715 0.729 0.726 0.715 0.695 0.574 0.715 0.708 0.735 

Maternal Risk  0.257 0.293 0.895 0.252 0.277 0.808 0.248 0.280 0.804 

Parkinsons  0.753 0.875 0.842 0.754 0.929 0.717 0.754 0.914 0.921 

Parkinsons Biom.  0.219 0.250 0.241 0.219 0.194 0.227 0.227 0.209 0.125 

Spine  0.484 0.694 0.966 0.484 0.758 0.992 0.484 0.731 0.910 

Stroke  0.045 0.054 0.163 0.050 0.054 0.778 0.050 0.054 0.181 
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Table A.6. Precision results of the baseline methods on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

DF-PU S-EM TPOT DF-PU S-EM TPOT DF-PU S-EM TPOT 

1 0.320 0.512 0.574 0.320 0.518 0.426 0.319 0.601 0.374 

2 0.068 0.121 0.700 0.065 0.095 0.318 0.060 0.162 0.080 

3 0.382 0.421 0.988 0.382 0.425 0.779 0.382 0.451 0.766 

4 0.294 0.511 0.670 0.263 0.503 0.485 0.264 0.538 0.381 

5 0.218 0.253 0.797 0.218 0.287 0.612 0.219 0.320 0.508 

6 0.255 0.317 0.847 0.263 0.367 0.742 0.263 0.473 0.669 

7 0.167 0.301 0.438 0.167 0.347 0.253 0.166 0.351 0.249 

8 0.198 0.337 0.855 0.246 0.338 0.731 0.246 0.375 0.580 

9 0.018 0.069 0.300 0.000 0.032 0.000 0.000 0.143 0.000 

10 0.133 0.450 0.953 0.134 0.466 0.730 0.134 0.509 0.727 

11 0.334 0.339 0.782 0.329 0.359 0.661 0.329 0.363 0.642 

12 0.248 0.418 0.738 0.248 0.444 0.674 0.246 0.488 0.657 

13 0.334 0.436 0.443 0.299 0.449 0.419 0.297 0.452 0.376 

14 0.363 0.700 0.931 0.360 0.747 0.848 0.360 0.811 0.711 

15 0.240 0.278 1.000 0.241 0.283 0.818 0.239 0.285 0.800 

16 0.193 0.318 0.993 0.144 0.351 0.664 0.145 0.439 0.274 

17 0.122 0.155 0.444 0.120 0.175 0.600 0.120 0.231 0.462 

18 0.230 0.314 0.243 0.280 0.324 0.179 0.280 0.327 0.159 

19 0.233 0.299 0.482 0.259 0.310 0.329 0.257 0.336 0.273 

20 0.439 0.453 0.456 0.439 0.460 0.391 0.439 0.464 0.356 

 

Table A.7. Recall results of the Auto-PU systems with base search space on real-world biomedical 

datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 

Alzheimer’s  0.579 0.632 0.474 0.579 0.553 0.500 0.447 0.316 0.342 

Autism  0.986 0.957 0.950 0.899 0.928 0.914 0.914 0.791 0.878 

Breast cancer Coi.  0.943 0.781 0.766 0.943 0.750 0.703 0.500 0.453 0.406 

Breast cancer Wis.  0.987 0.915 0.934 0.915 0.948 0.934 0.896 0.821 0.863 

Breast cancer mut.    0.750 0.983 0.991 0.625 0.928 0.930 0.874 0.856 0.880 

Cervical cancer  0.765 0.765 0.706 0.824 0.824 0.824 0.647 0.588 0.588 

Cirrhosis  0.648 0.634 0.690 0.507 0.648 0.549 0.493 0.465 0.465 

Dermatology  0.833 0.854 0.833 0.771 0.896 0.813 0.604 0.604 0.750 

PI Diabetes  0.739 0.731 0.787 0.810 0.765 0.810 0.642 0.563 0.631 

ES Diabetes  0.969 0.981 0.953 0.859 0.794 0.825 0.863 0.847 0.894 

Heart Disease  0.879 0.915 0.897 0.800 0.830 0.782 0.727 0.752 0.764 

Heart Failure  0.698 0.729 0.802 0.635 0.583 0.635 0.573 0.656 0.604 

Hepatitis C  0.875 0.875 0.911 0.768 0.786 0.661 0.625 0.607 0.446 

Kidney Disease  1.000 0.977 0.953 0.884 0.930 0.977 0.488 0.674 0.605 

Liver Disease  0.971 0.954 1.000 0.940 0.947 0.896 0.686 0.855 0.889 

Maternal Risk  0.871 0.824 1.000 0.787 0.743 0.761 0.735 0.596 0.669 

Parkinsons  0.939 0.973 1.000 0.946 0.878 0.816 0.558 0.612 0.735 

Parkinsons Biom.  0.200 0.167 1.000 0.533 0.167 0.300 0.100 0.167 0.233 

Spine  0.927 0.960 1.000 0.913 0.913 0.873 0.653 0.613 0.733 

Stroke  0.422 0.411 1.000 0.278 0.150 0.350 0.283 0.339 0.411 
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Table A.8. Recall results of the Auto-PU systems with base search space on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 

1 0.712 0.695 0.683 0.576 0.547 0.831 0.539 0.453 0.996 

2 0.794 0.635 0.746 0.032 0.032 0.349 0.032 0.048 0.444 

3 0.814 0.731 0.844 0.663 0.646 0.793 0.572 0.468 0.664 

4 0.766 0.798 0.793 0.753 0.745 0.973 0.625 0.500 0.723 

5 0.532 0.719 0.66 0.376 0.432 0.754 0.261 0.632 0.634 

6 0.731 0.696 0.787 0.565 0.565 0.803 0.509 0.459 0.544 

7 0.836 0.552 0.816 0.577 0.512 0.821 0.512 0.483 0.378 

8 0.947 0.396 0.956 0.360 0.422 0.658 0.302 0.387 0.360 

9 0.103 0.207 0.345 0.103 0.034 0.414 0.172 0.069 0.862 

10 0.984 0.863 0.967 1.000 0.813 0.791 0.940 0.648 0.615 

11 0.838 0.662 0.816 0.606 0.604 0.582 0.560 0.486 0.650 

12 0.817 0.801 0.742 0.675 0.685 0.715 0.605 0.449 0.457 

13 0.816 0.787 0.782 0.574 0.569 0.632 0.502 0.493 0.924 

14 0.862 0.998 0.951 0.857 0.953 1.000 0.776 0.848 0.946 

15 0.474 0.746 0.495 0.584 0.613 0.907 0.486 0.474 0.884 

16 0.953 0.297 0.844 0.430 0.320 0.938 0.352 0.195 0.992 

17 0.828 0.411 0.768 0.391 0.397 0.331 0.172 0.172 0.868 

18 0.915 0.822 0.966 0.424 0.390 0.356 0.373 0.203 0.576 

19 0.752 0.611 0.711 0.443 0.591 0.805 0.362 0.470 0.872 

20 0.909 0.759 0.972 0.726 0.769 0.731 0.617 0.685 0.805 

 

Table A.9. Recall results of the Auto-PU systems with extended search space on real-world 

biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 

Alzheimer’s  0.500 0.526 0.526 0.526 0.579 0.500 0.474 0.421 0.474 

Autism  0.950 0.942 0.978 0.928 0.914 0.950 0.899 0.878 0.914 

Breast cancer Coi.  0.953 0.656 0.828 0.939 0.594 0.688 0.910 0.000 0.406 

Breast cancer Wis.  0.928 0.998 0.925 0.906 0.925 0.934 0.882 0.830 0.792 

Breast cancer mut.    0.766 0.938 0.989 0.563 0.887 0.917 0.578 0.854 0.878 

Cervical cancer  0.765 0.765 0.765 0.824 0.765 0.765 0.941 0.765 0.412 

Cirrhosis  0.634 0.620 0.437 0.521 0.620 0.423 0.324 0.423 0.141 

Dermatology  0.813 0.813 0.854 0.854 0.771 0.896 0.688 0.688 0.563 

PI Diabetes  0.757 0.739 0.672 0.709 0.799 0.720 0.657 0.646 0.627 

ES Diabetes  0.947 0.944 0.966 0.894 0.819 0.806 0.906 0.888 0.831 

Heart Disease  0.861 0.885 0.897 0.873 0.812 0.739 0.788 0.800 0.770 

Heart Failure  0.729 0.729 0.740 0.635 0.615 0.646 0.469 0.531 0.563 

Hepatitis C  0.875 0.946 0.911 0.875 0.625 0.786 0.554 0.464 0.446 

Kidney Disease  0.953 0.953 0.860 0.907 0.953 0.907 0.488 0.651 0.674 

Liver Disease  0.973 0.964 0.981 0.932 0.923 0.930 0.833 0.664 0.739 

Maternal Risk  0.879 0.864 0.871 0.846 0.728 0.768 0.765 0.669 0.676 

Parkinsons  0.939 0.946 0.973 0.871 0.803 0.837 0.735 0.707 0.687 

Parkinsons Biom.  0.233 0.300 0.333 0.267 0.000 0.367 0.200 0.000 0.233 

Spine  0.913 0.907 0.920 0.920 0.927 0.880 0.867 0.553 0.647 

Stroke  0.417 0.456 0.439 0.406 0.383 0.439 0.361 0.367 0.372 
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Table A.10. Recall results of the Auto-PU systems with extended search space on synthetic 

datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 

1 0.634 0.601 0.679 0.613 0.486 0.827 0.527 0.490 0.700 

2 0.222 0.222 0.619 0.016 0.016 0.603 0.032 0.063 0.825 

3 0.755 0.759 0.789 0.696 0.657 0.602 0.572 0.435 0.928 

4 0.806 0.785 0.923 0.790 0.729 0.848 0.697 0.516 0.630 

5 0.437 0.583 0.875 0.379 0.616 0.478 0.399 0.476 0.437 

6 0.659 0.677 0.832 0.613 0.600 0.880 0.587 0.525 0.843 

7 0.617 0.527 0.791 0.562 0.443 0.453 0.542 0.438 0.891 

8 0.533 0.502 0.507 0.369 0.524 0.800 0.369 0.293 0.684 

9 0.103 0.069 0.759 0.069 0.034 0.800 0.207 0.103 0.448 

10 0.962 0.863 0.945 0.934 0.819 1.000 0.857 0.665 0.720 

11 0.645 0.585 0.857 0.582 0.531 0.751 0.529 0.447 0.971 

12 0.675 0.664 0.968 0.626 0.575 0.618 0.575 0.470 0.796 

13 0.642 0.686 0.591 0.623 0.566 0.882 0.529 0.495 0.730 

14 0.904 0.973 0.975 0.855 0.948 0.934 0.698 0.853 0.929 

15 0.529 0.524 0.643 0.471 0.560 0.419 0.425 0.383 0.822 

16 0.438 0.406 1.000 0.344 0.242 0.531 0.281 0.242 0.914 

17 0.298 0.265 0.675 0.185 0.457 0.954 0.185 0.046 0.523 

18 0.458 0.508 0.627 0.415 0.398 0.941 0.390 0.288 0.305 

19 0.483 0.497 0.812 0.396 0.584 0.557 0.302 0.322 0.255 

20 0.690 0.736 0.822 0.655 0.695 0.825 0.569 0.530 0.505 

 

Table A.11. Recall results of the baseline methods on real-world biomedical datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

DF-PU S-EM TPOT DF-PU S-EM TPOT DF-PU S-EM TPOT 

Alzheimer’s  1.000 0.895 0.447 0.974 0.842 0.289 0.763 0.789 0.553 

Autism  0.993 0.784 0.957 0.993 0.878 0.928 0.986 0.856 0.863 

Breast cancer Coi.  0.969 1.000 0.516 1.000 0.984 0.641 0.969 0.906 0.375 

Breast cancer Wis.  1.000 0.892 0.906 1.000 0.901 0.967 0.991 0.887 0.524 

Breast cancer mut.    0.998 0.989 0.974 0.998 0.993 0.989 0.987 0.991 0.837 

Cervical cancer  0.882 0.882 0.647 0.824 0.941 0.000 0.706 0.588 0.000 

Cirrhosis  0.986 0.915 0.535 0.972 0.915 0.437 0.986 0.944 0.479 

Dermatology  0.958 0.979 0.688 0.938 0.979 0.729 0.896 0.958 0.771 

PI Diabetes  0.996 1.000 0.698 0.996 1.000 0.556 0.993 0.862 0.567 

ES Diabetes  0.994 0.994 0.928 0.988 0.972 0.438 0.994 0.997 0.716 

Heart Disease  1.000 0.909 0.830 1.000 0.921 0.776 0.994 0.867 0.782 

Heart Failure  1.000 0.948 0.667 1.000 0.969 0.542 0.948 0.813 0.604 

Hepatitis C  0.982 0.732 0.804 0.982 0.714 0.768 0.911 0.625 0.339 

Kidney Disease  1.000 1.000 0.977 1.000 1.000 0.791 1.000 0.907 0.512 

Liver Disease  1.000 0.928 0.725 0.995 0.507 0.365 1.000 0.889 0.548 

Maternal Risk  0.941 1.000 0.787 0.915 1.000 0.728 0.901 1.000 0.544 

Parkinsons  0.993 0.762 0.980 1.000 0.626 0.619 1.000 0.653 0.476 

Parkinsons Biom.  0.933 0.500 0.233 0.933 0.400 0.167 0.967 0.800 0.100 

Spine  1.000 1.000 0.960 1.000 0.940 0.787 1.000 0.960 0.607 

Stroke  0.811 1.000 0.328 0.811 1.000 0.117 0.756 1.000 0.150 
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Table A.12. Recall results of the baseline methods on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

DF-PU S-EM TPOT DF-PU S-EM TPOT DF-PU S-EM TPOT 

1 0.996 0.774 0.483 0.996 0.720 0.393 0.996 0.626 0.363 

2 0.667 0.492 0.034 0.794 0.206 0.017 0.794 0.095 0.010 

3 0.994 0.978 0.617 0.996 0.953 0.469 0.996 0.895 0.461 

4 0.987 0.872 0.936 0.989 0.854 0.696 0.992 0.761 0.547 

5 0.992 0.969 0.436 0.964 0.913 0.351 0.967 0.854 0.284 

6 0.955 0.960 0.765 0.859 0.925 0.629 0.859 0.755 0.576 

7 0.990 0.766 0.692 0.940 0.692 0.418 0.940 0.632 0.407 

8 0.938 0.764 0.292 0.484 0.707 0.391 0.484 0.529 0.210 

9 0.586 0.172 0.020 0.000 0.069 0.000 0.000 0.103 0.000 

10 0.967 0.956 0.755 0.918 0.956 0.574 0.918 0.951 0.566 

11 0.928 0.983 0.395 0.966 0.942 0.342 0.966 0.899 0.331 

12 0.987 0.804 0.666 0.997 0.782 0.613 0.992 0.734 0.598 

13 1.000 0.748 0.911 1.000 0.730 0.868 0.990 0.699 0.782 

14 0.975 0.980 0.931 0.998 0.958 0.966 0.998 0.946 0.931 

15 0.996 0.877 0.259 0.977 0.858 0.206 0.977 0.812 0.203 

16 0.313 0.594 0.339 0.703 0.469 0.243 0.711 0.227 0.098 

17 0.841 0.828 0.190 0.993 0.709 0.143 0.993 0.318 0.190 

18 0.975 0.763 0.242 0.559 0.653 0.195 0.559 0.593 0.168 

19 0.993 0.738 0.360 0.698 0.698 0.242 0.698 0.537 0.198 

20 1.000 0.957 0.932 1.000 0.949 0.932 1.000 0.904 0.856 

As discussed in the main text of the thesis, regarding precision and recall, the DF-PU method 

generally achieved the best recall overall, however this was due to a large overpredicition of the 

positive class and came at a great detriment to precision, thus achieving a low F-measure overall. S-

EM also achieved good recall, often outperforming the Auto-PU systems, but this, again, came at a 

high cost to precision in several cases. The results for TPOT were not comparable to GA-1, being 

largely outperformed by GA-Auto-PU with statistical significance in most cases for both precision 

and recall.  

The Auto-PU systems generally performed best in regard to precision, often outperforming the 

baseline methods with statistical significance. Statistical significance was rarely observed between 

the different versions of the Auto-PU systems themselves.   

A detailed analysis of the precision and recall results, including details of statistical significance 

testing and the best method for each comparison, can be found in the main text of this thesis in 

Chapters 4-6.  
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Appendix B 

Auto-PU-NAS (Neural Architecture 

Search) 

An additional approach to those presented in this thesis that was investigated was an Auto-PU system 

that performed a neural architecture search for two-step PU learning algorithms. That is, the classifier 

parameters of the Auto-PU system were replaced with multilayer perceptrons (MLPs), with the 

hyperparameters of the MLP included in the search space.  

More precisely, recall that in the proposed Auto-PU systems, a candidate solution includes 

(among other PU learning algorithm hyperparameters) three “classifier” hyperparameters, namely 

Classifier_1A, Classifier_1B and Classifier_2; and each of these three hyperparameters takes as a 

value the name of one out of a list of 18 predefined candidate classification algorithms. In the Auto-

PU-NAS system described in this Appendix, each of those 3 classifier hyperparameters was replaced 

by a list of 12 hyperparameters of a multilayer perceptron (MLP) algorithm, where each of those 12 

hyperparameters takes a value among a predefined list of candidate values (shown next). All the 

other hyperparameters (i.e., other than the “classifier” hyperparameters) in the solution encoding 

used by GA-Auto-PU, BO-Auto-PU and EBO-Auto-PU were kept without modification in Auto-

PU-NAS. Hence, the total number of PU learning algorithm hyperparameters being optimised by the 

Auto-PU-NAS, for the base search space, is: 4 + (12 × 3) = 40, i.e., the four “non-classifier” 

hyperparameters of GA-Auto-PU, BO-Auto-PU and EBO-Auto-PU plus 3 times the 12 

hyperparameters of the MLP algorithm.  
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The parameters of the MLP that were tuned were as follows: 

• Hidden layer count: { 1, 2, 3, 4, 5 } 

• Hidden layer formula: { 5 candidate formulas (see below) } 

• Activation function: { identity, logistic, tanh, ReLU } 

• L2 regularisation: { True, False } 

• Alpha: { 0.00001, 0.0001, 0.001, 0.01, 0.1 }  

• Learning rate init: { 0.00001, 0.0001, 0.001, 0.01, 0.1 } 

• Early stopping: { True, False } 

• Number of iterations no change (early stopping tolerance): { 10, 15, 20, 25, 30 } 

• Batch size: { 32, 64, 128, 256 } 

• Epochs : { 50, 250, 500, 750, 1000 } 

• Tolerance: { 0.0001, 0.0005, 0.001 } 

• Validation fraction: { 0.1, 0.15, 0.2 } 

These hyperparmeters (with the exception of hidden layer formula) correlate to those of the same 

name given in the Sklearn documentation [31] for the MLP classifier7. The hidden layer formula is 

used to determine the number of neurons in each hidden layer. As this is highly dependent on the 

number of input features, using a formula seems a better approach than simply setting a fixed value. 

The candidate formulas are described next.  

Terms 

#𝑁ℎ: The number of hidden neurons for a given layer ℎ. 

𝑚: The number of attributes of the data 

𝑛: The number of inputs for the layer. 

𝑙𝑖: The value of 𝑖 for the 𝑖th hidden layer. E.g., 2 for the second hidden layer. 

𝑜: The number of outputs (1 for binary classification).  

 

 

 
7 https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html# 

sklearn.neural_network.MLPClassifier 
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Formula 1 for number of neurons in a hidden layer (Equation B.1) 

#𝑁ℎ = (
𝑚

2
) + 3          (B. 1) 

This formula was developed by Tamura & Tateishi [214] for 4-layer networks to reduce number of 

parameters to learn in comparison to a formula previously given by Sartori & Antsaklis [215] when 

𝑛 is large. 

Formula 2 for number of neurons in a hidden layer (Equation B.2) 

 

#𝑁ℎ =
𝑚 + √𝑛

𝑙𝑖
          (B. 2) 

This formula was determined by manually tuning networks on several use cases and generalising for 

the best performing networks [216].  

Formula 3 for number of neurons in a hidden layer (Equation B.3) 

#𝑁ℎ =
𝑛 + 𝑜 − 1

2
          (B. 3) 

For this work, this simplifies just to 
𝑛

2
. So, each layer has half the neurons of the previous layer.  

Formula 4 for number of neurons in a hidden layer (Equation B.4) 

#𝑁ℎ =  𝑛 × (
2

3
) + 𝑜          (B. 4) 

Formula 5 for number of neurons in a hidden layer (Equation B.5) 

#𝑁ℎ = √𝑛 × 𝑜          (B. 5) 

For the applications in this work, this simplifies just to √𝑚𝑖.  

The size of the search space for just the MLP hyperparameters is thus: 

5 × 5 × 4 × 2 × 5 × 5 × 2 × 5 × 4 × 5 × 3 × 3 = 9,000,000 
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Evolutionary Bayesian optimisation was used as the optimiser for the Auto-PU-NAS system, as it 

was arguably the best performing of the three approaches used throughout this thesis. Due to the 

computational expense of the MLP classifier, experiments were conducted utilising the base search 

space only. With the extra hyperparameters included, the size of the search space is thus:  

10 × 10 × 9,000,000 × 10 × 9,000,000 × 2 × 9,000,000

= 1,458,000,000,000,000,000,000,000 (1.458E24) 

which is 1.25E17 times larger than the original search space, where the value of 9,000,000 is the 

size of the search space of just the MLP hyperparameters. 

The results are given in Tables B.1 to B.6 for both the biomedical and synthetic datasets. The full 

comparison with all three Auto-PU systems makes the table too large to display here, so only the 

results for EBO-1 have been included for reference.  

Table B.1. F-measure results of Auto-PU-NAS compared with EBO-1 on real-world biomedical 

datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

NAS EBO-1 NAS EBO-1 NAS EBO-1 

Alzheimer’s  0.120 0.629 0.093 0.587 0.080 0.540 

Autism  0.343 0.986 0.311 0.926 0.281 0.927 

Breast cancer Coi.  0.436 0.966 0.404 0.952 0.338 0.615 

Breast cancer Wis.  0.722 0.893 0.698 0.872 0.668 0.927 

Breast cancer mut.    0.385 0.672 0.269 0.667 0.238 0.862 

Cervical cancer  0.000 0.839 0.000 0.904 0.000 0.667 

Cirrhosis  0.282 0.532 0.190 0.453 0.121 0.507 

Dermatology  0.179 0.899 0.073 0.813 0.000 0.716 

PI Diabetes  0.129 0.654 0.110 0.661 0.091 0.634 

ES Diabetes  0.751 0.973 0.663 0.913 0.611 0.909 

Heart Disease  0.355 0.833 0.297 0.800 0.188 0.774 

Heart Failure  0.306 0.732 0.246 0.666 0.211 0.640 

Hepatitis C  0.487 0.925 0.462 0.835 0.456 0.667 

Kidney Disease  0.400 1.000 0.364 0.938 0.295 0.646 

Liver Disease  0.394 0.827 0.344 0.819 0.268 0.717 

Maternal Risk  0.453 0.855 0.405 0.803 0.380 0.739 

Parkinsons  0.532 0.929 0.406 0.894 0.392 0.707 

Parkinsons Biom.  0.123 0.203 0.091 0.337 0.000 0.133 

Spine  0.611 0.933 0.480 0.932 0.437 0.775 

Stroke  0.020 0.239 0.010 0.225 0.010 0.229 
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Table B.2. F-measure results of Auto-PU-NAS compared with EBO-1 on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

NAS EBO-1 NAS EBO-1 NAS EBO-1 

1 0.434 0.678 0.402 0.644 0.370 0.581 

2 0.084 0.194 0.063 0.043 0.034 0.040 

3 0.565 0.770 0.549 0.685 0.532 0.594 

4 0.565 0.809 0.536 0.795 0.527 0.675 

5 0.234 0.439 0.216 0.420 0.191 0.292 

6 0.369 0.714 0.339 0.677 0.312 0.605 

7 0.338 0.565 0.297 0.545 0.242 0.487 

8 0.541 0.508 0.535 0.400 0.483 0.332 

9 0.031 0.023 0.000 0.076 0.000 0.133 

10 0.649 0.973 0.620 0.959 0.587 0.907 

11 0.453 0.635 0.437 0.576 0.412 0.535 

12 0.577 0.752 0.558 0.673 0.507 0.607 

13 0.447 0.665 0.416 0.610 0.392 0.539 

14 0.624 0.909 0.576 0.878 0.555 0.790 

15 0.367 0.580 0.359 0.558 0.340 0.462 

16 0.271 0.546 0.222 0.451 0.187 0.372 

17 0.290 0.372 0.278 0.297 0.258 0.129 

18 0.459 0.532 0.371 0.469 0.330 0.413 

19 0.399 0.500 0.355 0.324 0.324 0.273 

20 0.521 0.661 0.466 0.633 0.425 0.532 

 

Table B.3. Precision results of Auto-PU-NAS compared with EBO-1 on real-world biomedical 

datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

NAS EBO-1 NAS EBO-1 NAS EBO-1 

Alzheimer’s  0.080 0.688 0.063 0.595 0.054 0.680 

Autism  0.410 0.986 0.362 0.954 0.330 0.941 

Breast cancer Coi.  0.333 0.990 0.308 0.962 0.262 0.800 

Breast cancer Wis.  0.775 0.815 0.764 0.833 0.755 0.960 

Breast cancer mut.    0.467 0.608 0.350 0.714 0.324 0.851 

Cervical cancer  0.000 0.929 0.000 1.000 0.000 0.688 

Cirrhosis  0.282 0.451 0.184 0.409 0.115 0.522 

Dermatology  0.625 0.976 0.286 0.860 0.000 0.879 

PI Diabetes  0.488 0.586 0.415 0.559 0.350 0.625 

ES Diabetes  0.856 0.978 0.834 0.975 0.802 0.962 

Heart Disease  0.621 0.792 0.579 0.800 0.417 0.828 

Heart Failure  0.679 0.770 0.577 0.701 0.481 0.724 

Hepatitis C  0.864 0.980 0.818 0.915 0.783 0.714 

Kidney Disease  0.519 1.000 0.522 1.000 0.500 0.955 

Liver Disease  0.676 0.720 0.628 0.726 0.517 0.751 

Maternal Risk  0.580 0.840 0.551 0.820 0.503 0.743 

Parkinsons  0.817 0.920 0.745 0.848 0.750 0.965 

Parkinsons Biom.  0.114 0.207 0.083 0.246 0.000 0.200 

Spine  0.615 0.939 0.528 0.951 0.492 0.951 

Stroke  0.118 0.167 0.056 0.189 0.050 0.192 
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Table B.4. Precision results of Auto-PU-NAS compared with EBO-1 on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

NAS EBO-1 NAS EBO-1 NAS EBO-1 

1 0.551 0.648 0.516 0.729 0.493 0.630 

2 0.089 0.111 0.063 0.069 0.038 0.056 

3 0.677 0.731 0.661 0.709 0.642 0.618 

4 0.645 0.857 0.632 0.842 0.621 0.734 

5 0.269 0.373 0.248 0.476 0.225 0.332 

6 0.550 0.697 0.551 0.845 0.515 0.746 

7 0.399 0.426 0.359 0.516 0.288 0.464 

8 0.600 0.347 0.603 0.450 0.523 0.368 

9 0.020 0.013 0.000 0.060 0.000 0.109 

10 0.590 0.962 0.551 0.919 0.529 0.877 

11 0.496 0.511 0.495 0.549 0.461 0.512 

12 0.692 0.697 0.663 0.671 0.636 0.610 

13 0.463 0.561 0.438 0.652 0.407 0.582 

14 0.842 0.962 0.819 0.899 0.781 0.804 

15 0.443 0.749 0.425 0.535 0.403 0.441 

16 0.380 0.382 0.344 0.474 0.315 0.395 

17 0.311 0.240 0.278 0.240 0.258 0.104 

18 0.540 0.375 0.424 0.526 0.372 0.463 

19 0.367 0.375 0.326 0.255 0.302 0.219 

20 0.532 0.520 0.500 0.562 0.467 0.468 

 

Table B.5. Recall results of Auto-PU-NAS compared with EBO-1 on real-world biomedical 

datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

NAS EBO-1 NAS EBO-1 NAS EBO-1 

Alzheimer’s  0.237 0.579 0.184 0.579 0.158 0.447 

Autism  0.295 0.986 0.273 0.899 0.245 0.914 

Breast cancer Coi.  0.632 0.943 0.585 0.943 0.476 0.5 

Breast cancer Wis.  0.675 0.987 0.643 0.915 0.599 0.896 

Breast cancer mut.    0.328 0.750 0.219 0.625 0.188 0.874 

Cervical cancer  0.000 0.765 0.000 0.824 0.000 0.647 

Cirrhosis  0.282 0.648 0.197 0.507 0.127 0.493 

Dermatology  0.104 0.833 0.042 0.771 0.000 0.604 

PI Diabetes  0.075 0.739 0.063 0.810 0.052 0.642 

ES Diabetes  0.669 0.969 0.550 0.859 0.494 0.863 

Heart Disease  0.248 0.879 0.200 0.800 0.121 0.727 

Heart Failure  0.198 0.698 0.156 0.635 0.135 0.573 

Hepatitis C  0.339 0.875 0.321 0.768 0.321 0.625 

Kidney Disease  0.326 1.000 0.279 0.884 0.209 0.488 

Liver Disease  0.278 0.971 0.237 0.940 0.181 0.686 

Maternal Risk  0.371 0.871 0.320 0.787 0.305 0.735 

Parkinsons  0.395 0.939 0.279 0.946 0.265 0.558 

Parkinsons Biom.  0.133 0.200 0.100 0.533 0.000 0.1 

Spine  0.607 0.927 0.440 0.913 0.393 0.653 

Stroke  0.011 0.422 0.006 0.278 0.006 0.283 
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Table B.6. Recall results of Auto-PU-NAS compared with EBO-1 on synthetic datasets. 

Dataset 

δ = 20% δ = 40% δ = 60% 

NAS EBO-1 NAS EBO-1 NAS EBO-1 

1 0.358 0.712 0.329 0.576 0.296 0.539 

2 0.079 0.794 0.063 0.032 0.032 0.032 

3 0.485 0.814 0.470 0.663 0.455 0.572 

4 0.503 0.766 0.465 0.753 0.457 0.625 

5 0.207 0.532 0.192 0.376 0.166 0.261 

6 0.277 0.731 0.245 0.565 0.224 0.509 

7 0.294 0.836 0.254 0.577 0.209 0.512 

8 0.493 0.947 0.480 0.360 0.449 0.302 

9 0.069 0.103 0.000 0.103 0.000 0.172 

10 0.720 0.984 0.709 1.000 0.659 0.94 

11 0.418 0.838 0.391 0.606 0.372 0.56 

12 0.495 0.817 0.481 0.675 0.422 0.605 

13 0.431 0.816 0.397 0.574 0.377 0.502 

14 0.496 0.862 0.445 0.857 0.430 0.776 

15 0.313 0.474 0.311 0.584 0.294 0.486 

16 0.211 0.953 0.164 0.430 0.133 0.352 

17 0.272 0.828 0.278 0.391 0.258 0.172 

18 0.398 0.915 0.331 0.424 0.297 0.373 

19 0.436 0.752 0.389 0.443 0.349 0.362 

20 0.510 0.909 0.437 0.726 0.391 0.617 

 As is evident from these results, the Auto-PU-NAS system performed very poorly, and thus the 

decision was made not to utilise the system for further experimentation. The primary hypothesis for 

the reasons as to why the NAS system performed so poorly is the size of the search space. The search 

space grew extraordinarily large with the addition of the NAS hyperparameters, it is likely that the 

optimiser was simply not able to cope with the vast number of candidate solutions and thus was 

unable to find solutions close to those found by the other Auto-PU systems.  

 

 

 

 

 


