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Abstract: A new data-driven continuum model based on an artificial neural network is developed in
this study for a new three-dimensional lattice-structured material design. The model has the capability
to capture and predict the nonlinear elastic behaviour of the specific lattice-structured material in
the three-dimensional continuum description after being trained through the appropriate dataset.
The essential data as the input ingredients of the data-driven model are provided through a hybrid
method including experimental and unit-cell level finite element simulations under comprehensive
loading scenarios including uniaxial, biaxial, volumetric, and pure shear loading. Furthermore, the
lattice-structured samples are also fabricated using SLA additive manufacturing technology and
the experimental measurements are performed and used for validation of the model. This then
illustrates that the current model/methodology is a robust and powerful numerical tool to conduct
the homogenization in complex simulation cases and could be used to accelerate the analysis and
optimization during the design process of new lattice-structured materials. The model could also
easily be used for other engineered materials by updating the dataset and re-training the ANN model
with new data.

Keywords: lattice-structured material; artificial neural network (ANN); data-driven constitutive
model; finite element analysis (FEA); additive manufacturing

1. Introduction

A lattice-structured material is purposely designed to have a repeating, interconnected
network of struts or beams arranged in either two-dimensional (2D) or three-dimensional
(3D) space. This combination of struts and beams are linked at nodes, forming unit
cells that describe the overall geometry and mechanical behaviour of the material. Such
materials have properties that depend on (i) the configuration of the unit cell, (ii) the
way unit cells are interlinked together, and (iii) the parent materials. Depending on the
manufacturing techniques, the parent material could be any thermoplastic/thermoset
polymers, metals, ceramics, and composites. As a result, lattice-structured materials
provide a diverse combination of tailorable thermos-mechanical properties that make
them an attractive case of research in recent years. These outstanding properties include
tailorable mechanical strength and stiffness [1,2], a lightweight property [3,4], excellent
energy absorption ability [5,6] and impact absorption [7,8]. Therefore, lattice-structured
materials have been nominated for several potential industrial applications within the
aerospace, personal protective equipment, sports equipment, packaging, military and
defence, and medical equipment sectors [9–12]. This makes lattice-structured material an
interesting and promising area of research for material scientists and engineers, as well as
product designers.

Despite the interesting aspects of lattice-structured materials, there are specific chal-
lenges that have postponed the integration of these materials in real-world industrial
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applications. Some of these challenging aspects are related to (i) the complex design pro-
cess, (ii) limited manufacturing techniques, (iii) a lack of understanding of the mechanical
behaviour, and (iv) the lack of an appropriate analytical framework to perform cost-effective
simulations with these materials. Whilst the recent progress in additive manufacturing
technologies facilitates the fabrication of novel lattice-structured materials and exploration
of their behaviour through changing their geometric structure, there is still an essential
demand for a robust analytical tool that could incorporate the effect of structural change to
the macroscale performance of the material. This computational framework is also a crucial
step in the product design process with engineered materials as the classical experimentally
based trial-and-error methods are usually expensive and slow to operate. Furthermore, this
desired computational framework could be used to tune and/or optimize the performance
of the design before proceeding with the fabrication and advertising of the product.

Presenting an appropriate constitutive material model for any specific material plays a
key role in developing an accurate and robust computational framework, which is essential
for the product design process with novel materials. The classical approach to driving a
continuum model for a material is to develop a phenomenological model to represent the
physical behaviour of the material. Then, the material parameters in the phenomenological
model are fitted according to the experimental data. A data-driven material model, on the
other hand, is a recent approach of developing the continuum model of materials which
is directly based on analysis of data. Therefore, a data-driven material model presents
the relationships between the deformation and loads of a material without specifying one
phenomenological equation. There are many advantages of using data-driven material
models in comparison to classical approaches. For example, the data-driven approach
eliminates the need to drive a phenomenological model for the physical behaviour of
material and therefore, this could increase the accuracy of the model. Secondly, this
approach is suitable for the material design and optimization process as it accelerates
the computational trial-and-error design approach. Thirdly, it is possible to consider the
probability distribution of the input data in this approach.

There are different methodologies presented in the literature to develop a data-driven
material model for different types of problems. Kirchdoerfer and Ortiz [13] and Stainier
et al. [14] developed a constitutive model-free approach that considers the conservation
laws. Therefore, the minimization process assigns the solution to each material point
that satisfies the conservation law and is the closest to the experimental dataset. On
the other hand, Ibanez et al. present a new manifold learning methodology to develop
correction to the current popular constitutive models (e.g., linear elasticity, nonlinear elasticity
and plasticity) by minimizing the error [15,16]. Furthermore, there are multiple efforts to employ
neural network algorithms and machine learning approaches to train a relationship between
prescribed deformation and three-dimensional stress. For example, Huang et al. developed
a machine learning approach for hyperelastic and plastic materials based on a Feedforward
Neural network and training the model offline. They then differentiated the stress–strain trained
model and calculated the tangent matrix for finite element implementation [17]. Bessa et al.
also developed a Bayesian machine learning method to explore a material design approach
for a specific three-dimensional metamaterial. The design space data was generated by finite
element simulations and the trained machine learning model was used to choose the appropriate
geometry, based material, and manufacturing method to achieve a target property [18].

Constitutive models that are based on artificial neural networks (ANNs) are among
the most extensively used ML algorithms in exploring the mechanical behaviour of mate-
rials due to their exceptional prediction performance [19]. Nevertheless, the model was
trained using a limited dataset that may not adequately capture the range of diversity and
complexity in the behaviour of the material. To design the metamaterial structure with
high-energy observation capability, an ANN constitutive model with a genetic algorithm
is proposed to predict the mechanical behaviour of materials [20]. Although the ANN
model demonstrates superior performance on the training data, the accuracy performance
is not great on validation data. Moreover, the ANN constitutive model used in [21] accu-
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rately predicted the effective behaviour of the triangular lattice structures. However, it
is important to note that the training data lack representation of diverse 3D loading case
studies. In [22,23], a neural network-based constitutive model was designed that accurately
represents the mechanical behaviour of lattice-structured over different loading tests such
as uniaxial, biaxial, volumetric, and shear. A similar NN-based constitutive model was
designed to study the behaviour of hyperelastic material over different loading tests [24].
However, in all the above-mentioned works the full dataset was developed through purely
micro-scale simulation, with no experimental validation or hybrid data generation.

Considering the recent progress in this field and the new data-driven material models
for mechanical metamaterials, we could conclude that to the best of our knowledge, various
models work well under different situations. However, there are still significant gaps in (i)
the data generation process, (ii) the predictability of the model beyond the training data,
(iii) stability, and (iv) the ability to generalise the model to the wider lattice-structured
material design. Therefore, in the current study, we focus on developing a new robust
ANN-based material model to accurately predict and represent the three-dimensional
mechanical behaviour of a specifically designed lattice-structured material, with the ability
to be generalised into a wider group of lattice designs. The training dataset is prepared by
a hybrid method, including employing 3D finite element simulations on the unit cell level
for general loading scenarios, as well as physical experiments for uniaxial conditions. The
proposed constitutive model undergoes experimental validation by conducting uniaxial
compression tests, and finite element simulation on a full lattice structure model and the
results were found to be in excellent agreement under various loading scenarios. Finally,
to demonstrate the generalizability of the model or our model’s capability to be extended
beyond the original training context to effectively model other lattice-structured materials,
a case study is performed by changing the parent material into a compliant hyperelastic
material and relevant experimental measurements, unit cell and full level finite element
simulations, and validations are provided in this study to support the context.

The current work is organised as follows: The methodology of lattice-structure material
design, data collection process, and experimental set-up is presented in Section 2. In
Section 3, the proposed ANN-based constitutive model for the lattice-structured material
is described. The validation results and the specific case study are presented in Section 4.
Finally, Section 5 contains the concluding remarks.

2. Data Collection Method

The data collection methodology is an important systematic aspect of our research
process to collect data for our designed lattice-structured material. Our designed unit cells,
which integrate two distinct unit cells, were carefully modelled to make a novel lattice-
structured material. Furthermore, extensive numerical investigations were undertaken
by employing FEA to collect data on the unit cells subjected to various loading scenarios.
In addition, the lattice-structured material was fabricated using additive manufacturing
technology for experimental analysis and validation steps. Hence, the strategy adopted
to collect data in this study is a hybrid as it involved the validation of the finite element
model using experimental data.

2.1. Unit Cell Design of the Lattice-Structured Material

The lattice-structured material is composed of a three-dimensional network of the
smallest repeating units, beams, or struts in a regular pattern that carries and distributes
load through the network of beams and offers superior strength, lightweight, and energy
absorption properties. Many different types of lattice-structured materials have been
designed to acquire desired mechanical properties. Figure 1 depicts the combination of two
unit cells to create a new structure unit cell for the purpose of our research. The unit cell
depicted in Figure 1a, referred to as a grid [25], tri-axis cubic (TAC) [26], or centred-cubic
(CC) unit cell [27,28], is merged with the body centred-cubic (BCC) unit cell, which is
illustrated in Figure 1b, resulting in the formation of a new unit cell, shown in Figure 1c.
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Figure 1. Design of unit and lattice-structured material, (a) a grid unit cell, (b) BCC unit cell,
(c) merged unit cell of the grid and BCC unit cells, and (d) complete lattice-structured.

The motivation behind the concept of integrating two unit-cells into a single structure
was the intent to combine the distinct mechanical benefits and behaviour of each unit cell
into a novel unit cell. This method can be used to tailor the mechanical material properties
to fulfil specific engineering applications and requirements. For example, the grid unit cell,
which is defined by beams aligned particularly in two mutually perpendicular orientations,
exhibited orthotropic features. Moreover, grid structures exhibit the greatest initial local
force peaks and the greatest linear range stiffness [25]. Similarly, the BCC unit cell has
received substantial attention in material studies due to its remarkable mechanical and energy-
absorbing capabilities, high strength-to-weight ratio, and isotropic properties [29,30].

The unit cell’s dimensions are given as x1, x2, x3 which represents the width, length
and height of the unit cell, respectively. Due to the symmetrical nature of the unit cell’s
design, all three dimensions, width, length, and height, were identical. The diameter of
the strut was 2 mm and the diagonal length x of the strut and the angle θ, as illustrated

in Figure 1, could be calculated by x =
√

x2
1 + x2

2 + x2
3 and x3 =

√
x2

1 + x2
2tanθ for the

following unit cell. These design parameters are of the utmost importance for tailoring the
mechanical properties of this lattice-structured material. By adjusting design parameters
such as cell sizes, angle and strut length, and diameter of struts, we could generate gradient
properties within the structure. Gradient properties offer the advantage of attaining diverse
functionalities and optimising mechanical properties as discussed in detail in [31,32].

To perform experimental investigations in the next steps, the 3D lattice-structured
specimen was made of 5 × 5 × 5 arrays unit cells, having dimensions 50 mm × 50 mm ×
50 mm, as illustrated in Figure 1d. The unit cells and lattice-structured material were
designed by using the CAD module in ABAQUS 2022.

2.2. Data Acquisition through Unit Cell-Level Simulation

A robust data-driven method, as discussed in previous sections, needs a compre-
hensive dataset to capture all the physical behaviour of material under various loadings.
Whilst collecting such a comprehensive dataset through purely experimental analysis is
impossible, we used a hybrid method including both unit cell-level finite element simu-
lation as well as physical experiments. Using the finite element method, and specifically
the ABAQUS package in this study, it is possible to quantitate the behaviour of a unit
cell of lattice-structured material under different loading scenarios such as uniaxial, shear,
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biaxial, and volumetric loading, etc. Although numerical simulations may provide valuable
insights about material behaviour, experiment tests are performed to validate the accuracy
of numerical simulations in real-world material modelling. Hence, numerical simulations
enrich experimental data but cannot replace it.

In order to carry out the numerical simulations, a commercially available solver called
Abaqus 2022 [33] was utilised. The FEA was performed for both unit cells and the lattice-
structured with a parent material of draft resin from Formlabs which is (Meth)acrylate resin
blend. The isotropic elastic modulus of the draft resin was E = 1.7 GPa with a Poisson’s
ratio of ν = 0.33 according to the ASTM D638-14 standard [34]. Additionally, the other
physicochemical properties included a relative density of 1.02 g/cm3, boiling point > 100 ◦C,
and flashpoint > 93.5 ◦C. We then modelled a unit cell of the lattice-structured material with
33,684 quadratic tetrahedral elements (C3D10 in Abaqus) and 51,937 numbers of a node in
the three-dimensional domain, and for the full-size lattice-structured sample, which was
5 repetitions of the unit cell in each direction, we employed quadratic tetrahedral elements
of 811,526 and 1,307,971 numbers of the node in the 3D domain. For all the simulations,
we utilised a standard static solver for simulation under various boundary conditions for
different loading scenarios. Figure 2 presents the meshed model of a unit cell and full
lattice-structured sample for finite element simulations.
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Figure 2. Meshed model of (a) unit cell level, and (b) full lattice-structured sample model for finite
element simulations.

To apply the various boundary conditions on the unit cell model for different loading
scenarios, we utilised the idea of coupling the surface of each side face of the unit cell with
a reference point in each side face, as illustrated in Figure 3, and then implemented each
boundary condition through constraint equations into each of the reference points through
x, y, and z coordinates.

All the boundary conditions were then implemented into these reference points
through constraint equations presented in Figure 3 for different loading conditions, includ-
ing uniaxial, biaxial, shear, and volumetric boundary conditions in 3D. Each loading condi-
tion has its constraint equation, with some used to apply the displacement and others used
to fix it in various directions with respect to the degree of freedom (DOF). The six faces of the
displacement of the unit cell are denoted by Sn where
n ∈ {right, left, top, bottom, front and back} and the displacement of the unit cell with
respect to boundary conditions for different loading conditions are denoted by URP(m)

DOF ,
where RP(m) ∈ {1, . . . , 6} represent the reference point number and DOF ∈ {1, . . . , 6} rep-
resent the relevant degree of freedom that the constraint equation is applied to. Moreover,
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the displacement boundary condition denoted by δ can be used to calculate the deformation
gradient F, as provided in Equation (1).
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Upon completion of all sets of simulations, the stress–strain data was extracted for
various loading conditions and then assembled to make the full comprehensive training data
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for the ANN model, which is developed in the next section. These simulations included the
uniaxial loading in the x, y, and z direction, with both tensile and compression cases and
biaxial loading on the x-y, y-z, and z-x axis, with both tensile, both compression and one
tensile and one compression state, volumetric loading in expansion and contraction style, and
finally pure shear loading in all xy, yz, and xz directions. Figure 4 represents the results of data
collected from the numerical simulations along the stress contour plot for various loading
scenarios, with the visual representation of the deformed unit cell under the (a) uniaxial and
(b) biaxial loading test and (c) volumetric loading test; (d) illustrates the pure shear loading.
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2.3. Additive Manufacturing of Lattice-Structured Specimens

The 5× 5× 5 cell arrangement of the 3D lattice-structured material was prepared and
additively manufactured for experimental study using Formlab3 Stereolithography (SLA)
3D-printing technology [35]. SLA 3D printing is a highly accurate technique of additive
manufacturing that creates 3D models in a vat of ultraviolet (UV)-curable photopolymer. To
obtain better surface finishes for our lattice model, we used SLA printers with XY resolution
25 microns (0.025 mm), with the smallest step size, and a 85-micron (0.085 mm) laser spot size.
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2.4. Experimental Analysis

To validate the proposed constitutive model as well as finite element modelling
to generate the data, an experimental compression test was conducted. The lattice-
structured material specimen had an arrangement of 5 × 5 × 5 cells and each cell was
10 mm × 10 mm × 10 mm, and the radius of the beam was 1 mm. The tests were per-
formed at room temperature by using a 50 kN Zwick Roell universal testing machine, as
shown in Figure 5. The lattice-structured of the draft resin specimen was positioned in the
middle of support plates (Figure 5a), and the compression load was applied at the loading
rate of 10 mm/min until the specimen failed (Figure 5b). The numerical simulation of the
3D lattice-structured material is shown in Figure 5c. Overall, as shown in Figure 5e, a good
agreement in the stress–strain response was reached between the experimental results and
simulated results for lattice-structured and unit cells under uniaxial compression load.
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3. An ANN-Based Data-Driven Constitutive Model for Lattice-Structured Materials

A data-driven constitutive model based on ANN was employed to represent the
complex mechanical behaviour between a material’s input and output. ANN-based con-
stitutive models are one the most extensively used ML algorithms in the research field
of the mechanical behaviour of materials due to their exceptional prediction accuracy as
well as being an extract of insightful information. Figure 6 illustrates the framework of the
proposed ANN-based data-driven constitutive model for lattice-structured materials. The
framework covers two important phases. The first phase is the implementation of the FEA
simulation of unit cells under various loading scenarios such as uniaxial, biaxial, pure shear,
and volumetric for data generation purposes. The data was exported from the simulations
in the form of the deformation gradient and the first Piola–Kirchhoff stress, respectively.
In the field of continuum mechanics, the relationship between the initial configuration X
and the current configuration x is represented by the deformation gradient F, as given in
Equation (1).

F =
∂x
∂X

= I +
∂u
∂X

(1)

where ∂u
∂X is the displacement vector u gradient with respect to the initial coordinates and I

is the identity tensor. Similarly, the first Piola–Kirchhoff stress P is defined as the forces
acting in the current configuration to the area in the reference configuration.
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We then converted the deformation gradient F and the first Piola–Kirchhoff stress P,
into the symmetrical Green–Lagrange strain tensor E, and the second Piola–Kirchhoff (PK2)
stress tensor S following Equations (2) and (3):

E =
1
2

(
FTF − I

)
=

1
2
(C − I) (2)

S = F−1P (3)

The second phase of the proposed framework is to use the ANN constitutive model to
train the characterised data. The inputs for this constitutive model consisted of six indepen-
dent components of the Green–Lagrange strain tensor E, while the outputs comprised six
independent components of the second Piola–Kirchhoff stress tensor S. The ANN constitu-
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tive model would be trained based on these data for the three-dimensional behaviour of the
lattice-structured material until the model converges and achieves a minimum mean-square
error (MSE) and mean absolute error (MAE). Moreover, the constitutive model will be
validated over different loading scenarios during the final stage of the framework.

3.1. ANN Model Architecture and Training

The right selection of prediction models depends on the specific problem and data at
hand; however, each model has its strengths and weaknesses. Considering the purpose of
the work (which is to develop the ANN model which could be employed for a wide range
of lattice materials by only updating the dataset), an ANN outperformed other models in
capturing such nonlinear and complex relationships between inputs and outputs. Also,
decision trees can capture such behaviours but might not generalize to new datasets as
the ANN works. Similarly, an ANN exhibits proficiency in feature extraction, scalability
to large datasets, robustness to outliers and generalization to new data; for example, our
ANN model performed well and effectively. Based on the relationship between design
parameters and input parameters ANN offers diverse architecture and configuration op-
tions, providing control over multiple hyperparameters such as the number of layers,
neurons, and activation functions. Furthermore, multiple regularization techniques can be
incorporated into ANN to improve its overall performance [36–38].

An ANN constitutive model for a lattice-structured material was developed by train-
ing the model through the stress–strain dataset, which was gathered through the validated
finite element simulations of the unit cell level under comprehensive loading scenarios. To
identify the most accurate model and achieve the best predictability by the ANN model
based on the available dataset, we tuned the hyperparameters of the ANN model, which
have a substantial effect on the model’s accuracy and performance. Tuning hyperparame-
ters is a vital phase in improving the accuracy and performance of any machine learning
models, especially those used to predict material mechanical behaviour. Moreover, the over-
all performance of the constitutive model and its ability to capture complex relationships
and generalize effectively to newly collected data can be fine-tuned by modifying these
hyperparameters. The proposed constitutive model is the extended version of our previous
work [39], with a new dataset for the novel design of the lattice-structured material. The
proposed constitutive ANN model is shown in Figure 7.
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The basic theoretical equation of the ANN model implementation can be expressed in
Equation (4) as

y = σ
(
∑n

i=1 (w ixi

)
+ b

)
(4)

where y is the output of the ANN model with n total number of inputs, xi features,
σ is the activation function and b is the bias term of the model. The proposed ANN
constitutive model architecture has six layers. The input layer has six components of
the Green–Lagrange strain tensor E. The first hidden layer has 24 neurons, the second
hidden layer has 16 neurons and the third and fourth hidden layers have 10 and 8 neurons,
respectively. Moreover, the output layer of the model is designed to have six components
of the second Piola–Kirchhoff stress tensor S. Several important hyperparameters were
tailored in our model to improve model generalization, accuracy, and validation for various
loading scenarios. The proposed ANN constitutive model had N [n1, n2, . . . , nH ] where ni,
i ∈ {1, 2, . . . , H} is the number of neurons in the hidden layer H. The activation function
is a key hyperparameter that determines the behaviour of each layer in the model. It
specifies how the model learns and reflects the intricate relationship between input data
and output. The right selection of activation function depends on the nature of the data and
the intended outcomes of the model. The nature of the dataset used in this study exhibits a
wide range of values including negative values, which vary from minimum to maximum
under different loading scenarios. We used the exponential linear unit (ELU) activation
function in the proposed model for the first three hidden layers and the linear activation
function for the fourth hidden layer. The ELU function has the advantage of not allowing
negative values to generate zero gradients and allowing the model to learn despite negative
inputs. Therefore, it helps to avoid the problems of dying neurons. In addition, we set the
batch size to 32 in order to achieve better accuracy and generalization. However, it has
been observed that the convergence speed is slightly reduced as compared to other batch
sizes that have been studied. The accuracy performance of the model is measured by two
common metrics, namely, the mean-squared error (MSE), shown in Equation (5), and mean
absolute error (MAE), shown in Equation (6). Furthermore, the nature of the model was
sequential, and the number of trainable parameters was 846.

MSE=
1
n∑n

i=1 (Si − S∼
i )

2
(5)

MAE =
∑n

i=1|Si − S∼
i |

n
(6)

In the given training dataset, Si denotes the actual components of the second Piola–
Kirchhoff stress tensor from the training data, S∼

i represents the predicted values of the
second Piola–Kirchhoff stress tensor, and n indicates the number of training data samples.

3.2. Performance of Trained ANN Model

The performance of the trained ANN model holds significant importance in evaluating
how effectively and consistently the model performs for the task it designed. In this work,
the performance of the ANN model was compared to relevant hyperparameters for its
efficiency. This comparative analysis helps in determining the network’s effectiveness,
reliability, and ability to generalize. Hence, the model was analysed by incorporating
various activation functions and the batch size of the training data. The performance of the
model was evaluated using MSE and MAE error values, which are shown in Table 1 for the
LeakyReLU and the ELU activation functions. Moreover, the linear activation function was
used in the last hidden layer of each configuration. We performed this comparison as these
activation functions had the least MSE and MAE errors as compared to the other activation
functions used during the training.
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Table 1. Various configurations of the ANN model.

Activation Function Layers with Neurons MSE MAE Batch Size Epochs Params

LeakyReLU, linear [6,24,16,10,8,6] 1.43 × 10−5 2.93 × 10−2 32 2500 880

LeakyReLU, linear [6,24,16,10,8,6] 4.47 × 10−6 2.86 × 10−2 32 3000 880

ELU, linear [6,24,16,10,8,6] 4.90 × 10−6 0.13 × 10−2 32 2500 880

ELU, linear [6,24,16,10,8,6] 1.16 × 10−2 0.11 × 10−2 32 3000 880

As it is observed in Table 1, the MSE and MAE values were lower for the tailored
configuration, with a batch size of 32, and the ELU activation function when compared to
other configurations. Furthermore, Figure 8 depicts the training and validation loss curves,
commonly known as the learning curve for the final configuration. It was observed the
learning curve for this configuration had epochs of 3000 and displayed better convergence
in comparison to the learning curve of the other configuration that has been tried during
training.
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4. Results and Discussion

Upon completion of training of an ANN-based material model for the lattice-structured
material in the previous section, we performed a comprehensive validation process using
data which were not included in the training phase. Furthermore, the investigation of
the generalization of the model for a wider group of material types was presented in this
section.

4.1. Validation of the ANN Model under Various Loading Scenarios

The ANN constitutive model was rigorously tested to evaluate its performance and
accuracy over different loading scenarios, including uniaxial, biaxial, volumetric, and
pure shear scenarios. The comprehensive analysis included the model’s performance and
accuracy being evaluated to provide a robust conclusion that the model effectively captured
the three-dimensional mechanical behaviour of the lattice-structured material. Furthermore,
the validation process on specific loading conditions would be the first step prior to the
integration of the model into wider three-dimensional practical applications. Therefore,
several loading conditions were chosen in this step, including, uniaxial, pure shear, biaxial,
and volumetric loads, and the results predicted by the training model were compared
with results from the validated finite element method. In each case, all six independent
components of the second Piola-Kirshoff stress were investigated even if in specific cases
the value was zero, and the results of these comparisons are presented in Figures 9–12.
Please note the data used in the validation process were completely separated from the
training dataset and the ANN model had not seen them before.
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Figure 9. Comparison of the stress components of (a) S11, (b) S12, (c) S13, (d) S22, (e) S23, and (f)
S33 with respect to strain E11, between the predicted values and true test values under uniaxial
compression and tensile loading conditions along the x direction.

To evaluate the performance of the proposed ANN constitutive model under uniaxial
loading, the true stress–strain values obtained from FEA simulation data were compared to
the corresponding values predicted by the proposed model under uniaxial loading along the
x direction. All six independent components of the stress tensor (S11, S12, S13, S22, S23, and
S33) are presented in Figure 9 and they show the excellent agreement between the predicted
values and real value from the full-scale simulation, which was previously validated with
the experiment. It is worth mentioning that although several stress components were zero
in the specific studies here, the prediction of zeros with acceptable error is an important
factor for a trained ANN model.
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Figure 10. Comparison of the stress components of (a) S11, (b) S12, (c) S13, (d) S22, (e) S23, and (f) S33
with respect to strain E11 and E22, between the predicted values and true test values under uniform
compressive and tensile biaxial loading conditions along the x and y directions.

Similar comparisons for all the six independent stress components along loading
strains are presented for Biaxial and volumetric loads in Figures 10 and 11, respectively.
In both figures, the y axis demonstrates the measuring stress component while the x axis
represents the strain in the loading direction. For example, the stress is plotted with respect
to E11 and E22 in Figure 10a–f where the loading for this case is in uniform biaxial load
in the x and y directions, with both loads compressive or both loads tensile. Similarly,
the independent stress components are plotted with respect to E11 and E22, and E33 in
Figure 11a–f, where volumetric loading is applied uniformly as compression and tension in
the x, y, and z directions. Furthermore, as can be seen in Figures 10 and 11, the predicted
values from the proposed ANN model were in great agreement with the test data where
these data were not met by the ANN model in the training step. Please also note the
comparisons still showed a 0.32% error in some cases which we assume might be in the
order of round-off error of our data generation and simulations.
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Figure 11. Comparison of the stress components of (a) S11, (b) S12, (c) S13, (d) S22, (e) S23, and (f)
S33 with respect to strain E11, E22, and E33, between the predicted values and true test values under
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Finally, to ensure the performance of the developed ANN model under shear-type
loadings, the model was tested under pure shear loading in different directions. Figure 11
represents the comparison of all stress components predicted by the trained model and
true test values for pure shear loading on the xy plane. The shear tests were also carried
out for other directions (e.g., yz and zx planes) but due to the symmetry of the structure,
we did not repeat the results here. It is also worth mentioning that although five out of the
six components under pure shear case had zero values, this could be a challenging case for
an ANN structure to predict all zero values accurately and it is only achieved when the
appropriate hyperparameters are chosen for the ANN model.

The developed ANN constitutive model in this study demonstrated remarkable predic-
tion potential across all possible loading scenarios, including uniaxial, biaxial, volumetric,
or pure shear and effectively represented the mechanical behaviour of the material. Such a
robust performance reflects the accuracy and efficiency of our proposed ANN constitutive
model in capturing and predicting the mechanical behaviour of the material. In the next
part, we continue to test the performance of the model on different cases of parent material.
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4.2. Generalization of the Model to the Wider Group of Materials

To demonstrate the robustness of the developed model to be utilised for a wider
range of material types, we performed further case studies on lattice-structured materi-
als with hyperelastic parent materials. We employed the Neo–Hookean model for the
hyperelastic materials, with the parameters D1 = 0.191621338, C10 = 0.539857810 and
C01 = 0.0. The physicochemical properties included a relative density of 1.02 g/cm3,
boiling point > 100 ◦C, and flashpoint > 93.5 ◦C. We then followed the same data collection
process which was described in Section 2 with accompanying unit cell-level simulations
and experimental validation to update the dataset. The material used as the parent material
of the lattice-structured sample in this case study was flexible in a Formlab 3D-printer, il-
lustrating hyperelastic behaviour. The stress–strain relationships were then obtained under
various loading scenarios such as compression, tensile, pure shear, biaxial, and volumetric
loadings. Figure 13a presents the lattice-structured sample made of a rubber-like material
positioned for compression test. The experiment was performed at room temperature by
using a Zwick/Roell universal testing machine with a loading speed of 10 mm/min and
an applied load of 500 N. The unit cell-level and sample-level simulations, which were
used for completing the data generation process, were then validated by experimental data
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under compression load. The deformed contour plot of the unit cell-level and full-scale
model of the flexible lattice-structured material is shown in Figure 13b,c. Furthermore,
the stress–strain response for the experimental results and FEA-simulated results of the
lattice-structured and the unit cell of the lattice-structured are compared in Figure 13d for
the purpose of validation of the data collection model.
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In addition, Figure 13a presents the lattice-structured made of a rubber-like material
positioned for the compression test. The experiment was performed at room temperature
by using a Zwick/Roell universal testing machine, with a loading speed of 10 mm/min
and an applied load of 500 N. The lattice-structured material displayed a large level of
deformation while having relatively small values of stress. The numerical simulation of the
lattice-structured flexible material is shown in Figure 13b. Furthermore, the stress–strain
response for the experimental results and finite element simulations of the lattice-structured
material and the unit cell of the lattice-structured model were also in good agreement with
the flexible material, as shown in Figure 13c. Although there was an initial variation
because of the free load, it was not significant. In general, the constitutive model was
experimentally validated with the FEA simulations model for flexible materials.

We then trained our ANN constitutive model using a dataset obtained from FEA
simulations of the rubber-like lattice-structured material under various loading scenar-
ios, as discussed earlier. We updated the hyperparameters of our model that effectively
trained for the draft material dataset. Moreover, the aim was to optimize the model’s
performance by changing the hyperparameters, particularly for the complex mechanical
behaviour of the flexible material dataset. As a result, the optimum model configuration
for the rubber-like material dataset had an input and output layer and four hidden layers.
The layer sequence included a particular number of neurons in each layer as follows:
(6−→16−→12−→10−→8−→6). The input layer had six independent components of E,
and the four hidden layers had 16, 10 and 8 neurons, while the outputs comprised six
independent components of S. Furthermore, the scaled exponential linear units (SELU)
served as the activation function in each layer, and the model was trained through 250
epochs with a batch size of 14. The inherent self-normalization property of the SELU
activation function enabled it to effectively mitigate the vanishing gradient issue during
training. Thus, this configuration showed the best performance for predicting the accurate
mechanical behaviour of the flexible material [40]. The performance of the trained model
was then evaluated by the MSE and MAE metrics. For the current configuration, the lowest
MSE and MAE values achieved were 5.33 × 10−6 and 3.92 × 10−3, respectively, consisting
of 588 total trainable parameters.

Finally, we performed various tests on the newly trained ANN model for a hyperelastic
lattice-structured material, similar to the validation tests described in Section 4.1 for the main
model. For these purposes, a group of test datasets including uniaxial, biaxial, volumetric, and
pure shear loading scenarios were considered. These datasets were not used during training
steps and are dedicated to validation tests only. The predicted results of our trained ANN
constitutive model for hyperelastic lattice-structured material compared with the true test
values under various loading are presented in Figure 14. For the sake of brevity, we presented
only the non-zero stress components from various loading scenarios.

In addition, the model was validated over different loading scenarios for the flexible
material dataset obtained from FEA simulations. The predicted results of our trained ANN
constitutive model for flexible materials displayed excellent agreement with the true values
under various loading scenarios, as shown in Figure 14. As can be seen in Figure 14a–d, the
developed ANN constitutive model demonstrated a high level of efficiency and robustness
to represent and capture the mechanical behaviour of the hyperelastic lattice-structured
material under three-dimensional loadings.
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Figure 14. Comparison of the stress components between the predicted values and true test values
under (a) uniaxial loading in the x direction, (b) biaxial loading in the x and y directions, (c) volumetric
loading, and (d) pure shear on the xy plane.

5. Conclusions

In the present study, we developed a supervised machine learning algorithm by
employing the ANN model constitutive model to predict the mechanical behaviour of a
new lattice-structured material efficiently and accurately. In particular, our ANN consti-
tutive model demonstrated excellent convergence and accuracy in predicting mechanical
behaviour under various one-, two- and three-dimensional loading scenarios, including
uniaxial, biaxial, volumetric, and pure shear. The comprehensive training dataset for
our constitutive model was obtained by conducting a hybrid method, including unit
cell-level finite element simulations and experimental validations. We then proposed
an ANN structure to be trained between three-dimensional strain as input and second
Piola–Kirshhoff stress components as output. Furthermore, the proposed ANN-based
constitutive model perfectively converged and was validated for various loading scenarios
in the three-dimensional domain.

To investigate the ability of generalization of the model to the wider group of material
types, we studied adapting the same ANN model structure to the hyperelastic lattice-
structured material, which had the same lattice geometry, but replacing the parent material
with hyperelastic material. The new lattice could be loaded under large deformation and
the dataset updated by following the same data generation methodology. The same ANN
structured the retrained using the new dataset and the hyperparameters updated. We
then observed that the new model could perfectly predict the mechanical behaviour of
the hyperelastic lattice-structured material under various loadings in a three-dimensional
domain. Thus, it could be concluded that the proposed model has the potential to effectively
capture and predict the mechanical behaviour of some other types of materials with relevant
physical behaviour only updating the input dataset.

Our proposed ANN constitutive model efficiently represents the isotropic mechanical
behaviour of lattice-structured material over different loading scenarios. However, the
horizon of the developed model could be extended beyond its current state, for example,
into anisotropic material behaviour. Moreover, future studies will involve the integration of
our proposed model with the FEA modelling for various 3D complex case study simulations,
which will open avenues for broader applications and advancements in this area of research.
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