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A B S T R A C T

Supervised learning in deep neural networks is commonly performed using error backpropagation. However,
the sequential propagation of errors during the backward pass limits its scalability and applicability to
low-powered neuromorphic hardware. Therefore, there is growing interest in finding local alternatives to
backpropagation. Recently proposed methods based on forward-mode automatic differentiation suffer from
high variance in large deep neural networks, which affects convergence. In this paper, we propose the
Forward Direct Feedback Alignment algorithm that combines Activity-Perturbed Forward Gradients with Direct
Feedback Alignment and momentum. We provide both theoretical proofs and empirical evidence that our
proposed method achieves lower variance than forward gradient techniques. In this way, our approach enables
faster convergence and better performance when compared to other local alternatives to backpropagation and
opens a new perspective for the development of online learning algorithms compatible with neuromorphic
systems.
1. Introduction

Over the past decades, the Backpropagation (BP) algorithm (Rumel-
hart et al., 1986) has emerged as a crucial technique for training
Deep Neural Networks (DNNs). However, despite its success, BP has
limitations that restrict its efficiency and scalability.

By sequentially propagating errors through multiple layers, BP lim-
its the ability to parallelize the backward pass; this is often referred to
as Backward Locking (Huo et al., 2018; Launay et al., 2020; Nøkland,
2016) and leads to time-consuming gradient computations. Secondly,
BP relies on the transport of symmetric weights during the back-
ward pass. Known as the weight transport problem (Akrout et al., 2019;
Lillicrap et al., 2016; Nøkland, 2016), it is a source of significant
power consumption on dedicated neural processors (Crafton et al.,
2019; Han et al., 2019; Han & Yoo, 2019; Launay et al., 2020) and
represents a major obstacle to the implementation of BP on low-
powered continuous-time neuromorphic hardware (Neftci et al., 2017).
Therefore, there is a growing need for alternatives to BP that can
parallelize gradient computations without requiring global knowledge
of the entire network.

In this context, several alternatives to BP have been proposed (Am-
ato et al., 2019; Baydin et al., 2022; Belilovsky et al., 2019; Crafton
et al., 2019; Han & jun Yoo, 2019; Hinton, 2022; Hjelm et al., 2019;
Jabri & Flower, 1992; Jaderberg et al., 2017; Le Cun et al., 1988;
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Lillicrap et al., 2016; Löwe et al., 2019; Mostafa et al., 2018; Nøk-
land, 2016; Nøkland & Eidnes, 2019; Ren et al., 2023; Silver et al.,
2021; Webster et al., 2021; Wen et al., 2018). For example, greedy
learning can be used to sequentially learn complex representations
of inputs (Belilovsky et al., 2019; Hinton, 2022; Löwe et al., 2019)
or decoupled neural interfaces can be constructed to predict future
gradients in an asynchronous manner (Jaderberg et al., 2017). Some
approaches also introduce biologically inspired phenomenas such as
Self-Backpropagation (SBP) that alternates between local unsupervised
sleep phases and non-local supervised wake phases which reduces the
computational cost of training (Zhang et al., 2022). Another example of
BP alternative is the Random Feedback Alignment (FA) algorithm (Lilli-
crap et al., 2016). FA overcomes the weight transport problem by using
random feedback weights for error backpropagation. Alternatively, the
Random Direct Feedback Alignment (DFA) algorithm (Nøkland, 2016)
directly projects output errors onto hidden neurons using fixed linear
random feedback connections, removing the need for sequential prop-
agation of errors and allowing parallel gradient computation. Other
approaches such as Direct Random Target Propagation (DRTP) directly
projects targets instead of output errors onto hidden layers to decrease
the computational cost of DFA (Frenkel et al., 2021; Zhang et al., 2022).
However, while FA, DFA and DRTP keep the feedback connections
fixed, feedback learning mechanisms can be introduced to improve the
vailable online 4 November 2023
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performance, as in the recently proposed Direct Kolen–Pollack (DKP)
algorithm (Webster et al., 2021).

Methods based on Forward-Mode Automatic Differentiation have
recently gained attention (Margossian, 2019). Referred to as Forward
Gradients (Baydin et al., 2022; Ren et al., 2023; Silver et al., 2021),
these techniques evaluate directional derivatives in random directions
during the forward pass to compute unbiased gradient estimates with-
out backpropagation. However, in large DNNs, forward gradients suffer
from high variance which has a detrimental effect on convergence (Ren
et al., 2023; Silver et al., 2021). While stochastic gradient descent
(SGD) is guaranteed to converge for unbiased gradients estimators with
sufficiently small learning rates (Robbins & Monro, 1951), theoretical
analyses have shown that the convergence rate of SGD depends on
the variance of the estimates (Bottou et al., 2018; Bubeck, 2015; Chee
& Toulis, 2018; Faghri et al., 2020; Gower et al., 2019; Moulines &
Bach, 2011; Murata, 1999; Needell et al., 2016). Estimators with low
variance have less variability and are more consistent, leading to better
convergence than those with high variance.

One approach for reducing the variance of Forward Gradients is
to perturb neuron activations instead of weights (Ren et al., 2023).
Because DNNs typically have fewer neurons than weights, perturb-
ing neurons results in estimating fewer derivatives through forward
gradients, leading to lower variance. Additionally, local greedy loss
functions can be used to further reduce the variance, where each loss
function trains only a small portion of the network. As demonstrated
by Ren et al. (2023), this approach improves the convergence of Local
MLP Mixers over the original FG algorithm. However, the method
circumvents large gradient variance by ensuring that each local loss
function only trains a small number of neurons. In the case where layers
contain large numbers of neurons, the method would still suffer from
high variance. Therefore, alternative solutions should be found to better
reduce the variance of forward gradients in DNNs.

In this work, we propose the Forward Direct Feedback Alignment
(FDFA) algorithm, a method that combines Activity-Perturbed Forward
Gradients (Ren et al., 2023) with Direct Feedback Alignment (Nøkland,
2016) and momentum to computing low-variance gradient estimates.
Our method addresses the limitations of BP by avoiding sequential
error propagation and the transport of weights. We present theoretical
and empirical results that demonstrate the effectiveness of FDFA in
reducing the variance of gradient estimates, enabling fast convergence
with DNNs. Compared to other Forward Gradient and Direct Feedback
Alignment methods, FDFA achieves better performance with both fully-
connected and convolutional neural networks, making it a promising
alternative for scalable and energy-efficient training of DNNs.

2. Background

We start by reviewing the Forward Gradient algorithm (Baydin
et al., 2022) and its DNN applications (Ren et al., 2023; Silver et al.,
2021) as well as Direct Feedback Alignment (Nøkland, 2016), which
form the technical foundation of the FDFA algorithm.

2.1. Forward Gradient (FG)

The Forward Gradient (FG) algorithm (Baydin et al., 2022; Sil-
ver et al., 2021) is a recent weight perturbation technique that uses
Forward-Mode Automatic Differentiation (AD) (Margossian, 2019) to
estimate gradients without backpropagation. Consider a differentiable
function 𝒇 ∶ R𝑚 ↦ R𝑛 and a vector 𝒗 ∈ R𝑚, Forward-Mode AD
evaluates the directional gradient 𝒅 = 𝑱 ⋅ 𝒗 of 𝒇 in the direction
𝒗. Here, 𝑱 ∈ R𝑛×𝑚 is the Jacobian matrix of 𝑓 , and 𝒅 is obtained
by computing the matrix–vector product between 𝑱 and 𝒗 during the
function evaluation.

By sampling each element of the direction vector 𝑣𝑖 ∼  (0, 1) from
a standard normal distribution and multiplying back each computed
573
Fig. 1. Fig. 1(a): Projection of the Jacobian 𝐽 at 𝒘 onto a given direction 𝒗. The vector
𝑑 ⋅ 𝒗 is obtained by scaling the direction 𝒗 by the directional derivative 𝑑 evaluated at
𝒘 in the direction of 𝒗. Fig. 1(b): The expected directional derivative (green arrow),
computed by averaging directional gradients (red arrows) over many random directions
(black arrows), is an unbiased estimate of the true gradient (blue arrow).

directional derivatives by 𝒗, an unbiased estimate of the Jacobian is
computed:

E [𝒅 ⊗ 𝒗] = E [(𝑱 ⋅ 𝒗)⊗ 𝒗] = 𝑱 (1)

Here, ⊗ is the outer product. See Baydin et al. (2022) or Theorem 3
in Appendix for the proof of unbiasedness and Fig. 1 for a visual
representation of forward gradients.

2.2. Weight-Perturbed Forward Gradient (FG-w)

When the FG algorithm is applied to DNNs, a random perturbation
matrix 𝑽 (𝑙) ∈ R𝑛𝑙×𝑛𝑙−1 is drawn from a standard normal distribution for
each weight matrix 𝑾 ∈ R𝑛𝑙×𝑛𝑙−1 of each layer 𝑙 ≤ 𝐿. Forward-Mode AD
thus computes the directional derivative 𝑑FG−W of the loss  (𝒙) along
the drawn perturbation, such as:

𝑑FG−W =
𝐿
∑

𝑙=1

𝑛𝑙
∑

𝑖=1

𝑛𝑙−1
∑

𝑗=1

𝜕 (𝒙)
𝜕𝑤(𝑙)

𝑖,𝑗

𝑣(𝑙)𝑖,𝑗 (2)

where 𝑣(𝑙)𝑖,𝑗 is the element of the perturbation matrix 𝑉 (𝑙) in row 𝑖 and
column 𝑗, associated with the weight 𝑤(𝑙)

𝑖,𝑗 .
Thus referred to as Weight-Perturbed Forward Gradient (FG-W) (Ren

et al., 2023), the gradient estimate 𝑔FG−W(𝑾 (𝑙)) for the weights of the
layer 𝑙 is obtained by scaling its perturbation 𝑽 (𝑙) matrix with the
directional derivative 𝑑FG−W:

𝑔FG−W
(

𝑾 (𝑙)) ∶= 𝑑FG−W𝑽 (𝑙) (3)

See Algorithm 2 in Appendix for the full algorithm applied to a fully-
connected DNN.

It is essential to understand that the directional derivative 𝑑FG−W,
takes the form of a scalar. This scalar is defined as the result of the
vector product between the true gradient and the given direction that is
implicitly evaluated with Forward-Mode AD. Unlike Reverse-Mode AD,
where the individual explicit derivatives constituting the gradient are
accessible, Forward-Mode AD does not provide them directly. There-
fore, multiplying the directional derivative by the given direction is an
essential step for computing an unbiased approximation of the gradient.
For more details, refer to Baydin et al. (2022).

However, it has been previously shown that the variance of FG-W
scales poorly with the number of parameters in DNNs which impacts
the convergence of SGD (Ren et al., 2023).

2.3. Activity-Perturbed Forward Gradient (FG-a)

To address the variance issues of FG-W, Ren et al. proposed the
Activity-Perturbed FG (FG-A) algorithm that perturbs neurons activations
instead of weights. A perturbation vector 𝒖(𝑙) ∈ R𝑛𝑙 is drawn from
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Fig. 2. Illustrations of the error backpropagation (Fig. 2(a)) and Direct Feedback Alignment (Fig. 2(b)). Solid arrows represent forward paths and dotted arrows represent
backpropagation paths.
a multivariate standard normal distribution for each layer 𝑙 ≤ 𝐿.
Forward-Mode AD thus computes the following directional derivative:

𝑑FG−A =
𝐿
∑

𝑙=1

𝑛𝑙
∑

𝑖=1

𝜕 (𝒙)
𝜕𝑦(𝑙)𝑖

𝑢(𝑙)𝑖 (4)

where 𝒚(𝑙) are the activations of the 𝑙th layer. Note that directional
derivatives computed in the FG-A algorithm are defined as the sum
over all neurons rather than all weights. The activity-perturbed forward
gradient 𝑔FG−A

(

𝑾 (𝑙)) is then:

𝑔FG−A
(

𝑾 (𝑙)) ∶=
(

𝑑FG−A𝒖(𝑙)
) 𝜕𝒚(𝑙)

𝜕𝑾 (𝑙)
(5)

where 𝜕𝒚(𝑙)∕𝜕𝑾 (𝑙) are local gradients computed by neurons with locally-
available information. See Algorithm 3 in Appendix for the full algo-
rithm applied to a fully-connected DNN.

This method reduces the number of derivatives to estimate since the
number of neurons is considerably lower than the number of weights
(see Table B.5 in Appendix for some examples). Consequently, the
method leads to lower variance than FG-W (Ren et al., 2023).

Activity-Perturbed FG demonstrated improvements over Weight-
Perturbed FG on several benchmark datasets (Ren et al., 2023) but
still suffers from high variance as the number of neurons in DNNs
remains large. To avoid this issue, Ren et al. proposed the Local Greedy
Activity-Perturbed Forward Gradient (LG-FG-A) method, which uses
local loss functions to partition the gradient computation and decrease
the number of derivatives to estimate. By adopting this local greedy
strategy, LG-FG-A greatly improved the performance of Local MLP
Mixers, a specific architecture that uses shallow multi-layer perceptrons
to perform vision without having to use convolution. However, no
results were reported for conventional fully-connected or convolutional
neural networks, where the number of neurons per layer is larger than
in MLP Mixers.

2.4. Direct Feedback Alignment

While BP relies on symmetric weights to propagate errors to hidden
layers, it has been shown that weight symmetry is not mandatory to
achieve learning (Lillicrap et al., 2016). For example, FA has proven
that random fixed weights can also be used for backpropagating errors
and still achieve learning (Lillicrap et al., 2016).

DFA takes the idea of FA one step further by directly projecting
output errors to hidden layers using fixed linear feedback connec-
tions (Nøkland, 2016) (see Fig. 2). Feedback matrices 𝐵(𝑙) ∈ R𝑛𝐿×𝑛𝑙

replace the derivatives 𝜕𝒚(𝐿)∕𝜕𝒚(𝑙) of output neurons with respect to
hidden neurons. The approximate gradient 𝑔DFA

(

𝑾 (𝑙)) for the weights
of the hidden layer 𝑙 is then computed as follows:

𝑔DFA
(

𝑾 (𝑙)) ∶=
𝜕 (𝒙)
𝜕𝒚(𝐿)

𝑩(𝑙) 𝜕𝒚(𝑙)

𝜕𝑾 (𝑙)
(6)

In DFA, feedback matrices for hidden layers are chosen to be random
and kept fixed during training. For the output layer, the identity matrix
is used as no propagation of errors is required.
574
The success of DFA depends on the alignment between the forward
and feedback weights, which results in the alignment between the
approximate and true gradient (Lillicrap et al., 2016; Nøkland, 2016;
Refinetti et al., 2021). When the angle between these gradients is within
90 degrees, the direction of the update is descending (Lillicrap et al.,
2016; Nøkland, 2016).

DFA can scale to modern deep learning architectures such as Trans-
formers (Launay et al., 2020) but is unable to train deep convolution
layers (Launay et al., 2019) and fails to learn challenging datasets
such as CIFAR-100 or ImageNet without the use of transfer learn-
ing (Bartunov et al., 2018; Crafton et al., 2019). However, recent
methods to learn symmetric feedbacks such as the Direct Kolen–Pollack
(DKP) algorithm (Webster et al., 2021) showed promising results with
convolutional neural networks due to improved gradient alignments.

3. Method

Algorithm 1 Forward Direct Feedback Alignment algorithm with a
fully-connected DNN.
1: Input: Training data 
2: Randomly initialize 𝑤(𝑙)

𝑖𝑗 for all 𝑙, 𝑖 and 𝑗.
3: Initialize 𝑩(𝑙) = 𝟎 for all 𝑙.
4: repeat
5: {Inference (sequential)}
6: for all 𝒙 in  do
7: 𝒚(0) ← 𝒙𝑠
8: 𝒅(0) ← 𝟎
9: for 𝑙 = 1 to 𝐿 do

10: Sample 𝒗(𝑙) ∼  (𝟎, 𝑰)
11: 𝒂(𝑙) ← 𝑾 (𝑙)𝒚(𝑙−1)
12: 𝒚(𝑙) ← 𝜎

(

𝒂(𝑙)
)

13: 𝒅(𝑙) ←
(

𝑾 (𝑙)𝒅(𝑙−1))⊙ 𝜎′
(

𝒂(𝑙)
)

14: if 𝑙 < 𝐿 then
15: 𝒅(𝑙) ← 𝒅(𝑙) + 𝒗(𝑙)
16: end if
17: end for
18: 𝒆 ← 𝜕(𝒙)

𝜕𝒚(𝐿)
19: {Weights updates (parallel)}
20: 𝑾 (𝐿) ← 𝑾 (𝐿) − 𝜆 𝒆⊗ 𝒚(𝐿−1)
21: for 𝑙 = 1 to 𝐿 − 1 do
22: 𝑩(𝑙) ← (1 − 𝛼)𝑩(𝑙) − 𝛼

(

𝒅(𝐿) ⊗ 𝒗(𝑙)
)

23: 𝑾 (𝑙) ← 𝑾 (𝑙) − 𝜆
(

𝒆𝑩(𝑙) ⊙ 𝜎′
(

𝒂(𝑙)
))

⊗ 𝒚(𝑙−1)
24: end for
25: end for
26: until E [(𝒙)] < 𝜖

In this section, we describe our proposed Forward Direct Feedback
Alignment (FDFA) algorithm which uses forward gradients to estimate
derivatives between output and hidden neurons as direct feedback
connections.
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Similarly to FG-A, we sample perturbation vectors 𝒖(𝑙) ∈ R𝑛𝑙 for
each layer 𝑙 ≤ 𝐿 from a multivariate standard normal distribution.
However, in contrast to FG-A, we use the directional derivatives that
are computed at the output layer rather than at the loss function, such
as:

𝒅FDFA =
𝐿−1
∑

𝑙=1

𝑛𝑙
∑

𝑖=1

𝜕𝒚(𝐿)

𝜕𝑦(𝑙)𝑖
𝑢(𝑙)𝑖 (7)

hich produces a vector of directional derivatives. Note that only par-
ial derivatives of the network outputs with respect to the activations of
idden neurons are considered, as represented by feedback connections
n DFA. Output neurons are updated using a fixed identity feedback
atrix as no error backpropagation is required.

Rather than relying solely on the most recent forward gradient, as
n FG-W and FG-A, it is possible to obtain a more accurate estimate of
𝜕𝒚(𝐿)
𝜕𝒚(𝑙) by averaging the forward gradient over the past training steps.

Formally, we define an update rule for the direct feedback connec-
ions of DFA that performs an exponential average of the estimates,
uch as:
(𝑙) ← (1 − 𝛼)𝑩(𝑙) + 𝛼 𝒅FDFA ⊗ 𝒖(𝑙) (8)

here 0 < 𝛼 < 1 is the feedback learning rate. Eq. (8) can also be
e-written in a form compatible with the stochastic gradient descent
lgorithm:
(𝑙) ← 𝑩(𝑙) − 𝛼∇𝑩(𝑙) (9)

here

𝑩(𝑙) = 𝑩(𝑙) − 𝒅FDFA ⊗ 𝒖(𝑙) (10)

n essence, Eq. (9) minimizes the following Mean Squared Error (MSE)
unction:

𝐵 (𝒙) = E

[𝐿−1
∑

𝑙=1

𝑛𝐿
∑

𝑜=1

𝑛𝑙
∑

𝑖=1

(

𝐵(𝑙)
𝑜,𝑗 − 𝑑FDFA𝑜 𝑢(𝑙)𝑖

)2
]

(11)

here 𝑑FDFA𝑜 𝑢(𝑙)𝑖 is the target value for the optimized feedback connec-
ion 𝐵(𝑙)

𝑜,𝑗 . The global minimum of this loss function occurs at the point
here all feedback connections are equal to the expected derivative
etween output and hidden neurons, such as:

(𝑙)
𝑜,𝑖 = E

[

𝑑FDFA𝑜 𝑢(𝑙)𝑖
]

= E

[

𝜕𝑦(𝐿)𝑜

𝜕𝑦(𝑙)𝑖

]

(12)

or all output 𝑜 and all hidden neuron 𝑖 of all hidden layers 𝑙 < 𝐿.
herefore, the FDFA algorithm is a dual optimization procedure where
oth loss functions (𝒙) and 𝐵(𝒙) are minimized concurrently: weights
re updated with direct feedbacks to minimize prediction errors and
eedbacks connections converge towards the derivatives between out-
ut and hidden neurons. In the case where output neurons are linear,
he penultimate feedback matrix becomes symmetric with the output
eight matrix:
[

𝑩(𝐿−1)] = E
[

𝜕𝒚(𝐿)

𝜕𝒚(𝐿−1)

]

= 𝑾 (𝐿) (13)

In this particular case, gradient estimates become mathematically
equivalent to BP. For lower hidden layers, feedback matrices linearly
approximate the non-linear derivatives between output and hidden
neurons, which introduce a bias in the gradient estimates. This is be-
cause the feedback learning rule introduced in FDFA acts as momentum
for these derivatives (see Eq. (8)), which is known to mitigate the
effect of gradient variance on convergence at the cost of increased
bias (Defazio, 2020).

Finally, the FDFA gradient estimate 𝑔FDFA
(

𝑾 (𝑙)) for the weights
𝑾 (𝑙) of the hidden layer 𝑙 is computed as in DFA. Formally, output
errors are linearly projected onto hidden neurons using the feedback
matrix 𝐵(𝑙), such as:

FDFA (

𝑾 (𝑙)) ∶=
𝜕 (𝒙)𝑩(𝑙) 𝜕𝒚(𝑙) (14)
575

𝜕𝒚(𝐿) 𝜕𝑾 (𝑙) g
Table 1
Performance of 4-layers fully connected DNNs trained on the MNIST, Fashion MNIST
and CIFAR10 dataset.

Method Local MNIST Fashion MNIST CIFAR10

BP ✗ 98.46 ± 0.05% 89.99 ± 0.15% 56.92 ± 0.19%

FG-W

✓

80.03 ± 0.62% 71.72 ± 0.63% 25.17 ± 0.32%
FG-A 83.40 ± 1.33% 77.62 ± 0.25% 35.53 ± 0.21%
LG-FG-A 86.89 ± 0.90% 77.98 ± 0.21% 34.56 ± 0.34%
DFA 98.15 ± 0.05% 89.15 ± 0.09% 53.61 ± 0.16%
DKP 98.27 ± 0.05% 89.48 ± 0.09% 54.35 ± 0.21%
FDFA 98.32 ± 0.05% 89.56 ± 0.11% 54.97 ± 0.19%

Table 2
Performance of a shallow CNN (15C5-P2-40C5-P2-128-10 where 15C5 represents 15
5 × 5 convolutional layers and P2 represents a 2 × 2 max pooling layer) on the
MNIST, Fashion MNIST and CIFAR10 datasets.

Method Local MNIST Fashion MNIST CIFAR10

BP ✗ 99.32 ± 0.03% 92.10 ± 0.16% 68.11 ± 0.57%

FG-W

✓

87.63 ± 1.20% 74.93 ± 0.55% 33.10 ± 0.37%
FG-A 96.63 ± 0.31% 82.71 ± 0.89% 42.51 ± 0.32%
LG-FG-A 95.42 ± 0.72% 79.96 ± 0.94% 37.74 ± 2.41%
DFA 98.80 ± 0.08% 89.69 ± 0.22% 58.14 ± 0.94%
DKP 99.08 ± 0.03% 90.39 ± 0.25% 60.30 ± 0.34%
FDFA 99.16 ± 0.03% 91.54 ± 0.11% 66.96 ± 0.70%

The FDFA gradient estimate is then used to update the weights of the
network with stochastic gradient descent, such as:

𝑾 (𝑙) ← 𝑾 (𝑙) − 𝜆 𝑔FDFA
(

𝑾 (𝑙)) (15)

here 𝜆 > 0 is a learning rate. Note that other gradient-based opti-
ization techniques can also be applied for both feedback and forward
eight updates in place of SGD, such as Adam (Kingma & Ba, 2017).

The full algorithm applied to a fully connected DNN is given in
lgorithm 1.

. Results

We now present detailed theoretical and empirical results with our
roposed FDFA algorithm and other local alternatives to BP. Details
bout our experimental settings are given in Appendix A.

.1. Performance

We compared the performance of the proposed FDFA method with
arious local alternatives to BP related to our algorithm, including
eight-Perturbed Forward Gradient (FG-W), activity-perturbed For-
ard Gradient (FG-A), Local-Greedy activity-perturbed Forward Gra-
ient (LG-FG-A), Random Direct Feedback Alignment (DFA) and the
irect Kolen–Pollack (DKP) algorithm. We evaluated each approach
sing fully-connected DNNs and Convolutional Neural Networks, in-
luding the AlexNet architecture (Krizhevsky et al., 2012). We used
everal datasets widely adopted as standard benchmarks for training
lgorithm comparisons and presenting increasing levels of difficulty,
amely MNIST, Fashion MNIST, CIFAR10, CIFAR100, and Tiny Ima-
eNet 200. For each method, average test performance over 10 training
uns is reported in Tables 1, 2, and 3. Additional results with fully-
onnected DNNs of different depths are also given in Table B.6 in
ppendix B.

Overall, the FG-W algorithm achieves poor generalization compared
o BP. More importantly, its performance significantly decreases with
he size of the network and the complexity of the task. For example,
he method is unable to converge with AlexNet on the CIFAR100
r Tiny ImageNet 200 datasets with 3.43% and 0.70% test accuracy
espectively. The FG-A method slightly improves the generalization of
orward gradients but still fails to match the performance of BP. The

reedy approach used in LG-FG-A further improves performance when
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Fig. 3. Training loss and test accuracy of a 2-layer fully-connected network (Figs. 3(a) and 3(c)) and a CNN (Figs. 3(b) and 3(d)) trained on the CIFAR10 dataset. FDFA has a
similar convergence rate as BP on fully-connected networks. With CNNs, FDFA is not able to overfit the training data. However, our method has the highest convergence rate
compared to FG-W, FG-A, and DFA.
Table 3
Performance of AlexNet (Krizhevsky et al., 2012) trained on the CIFAR100 and Tiny
ImageNet 200 datasets.

Method Local CIFAR100 Tiny ImageNet

BP ✗ 60.43 ± 0.35% 40.55 ± 0.31%

FG-W

✓

3.43 ± 0.43% 0.70 ± 0.09%
FG-A 15.84 ± 0.32% 3.52 ± 0.32%
LG-FG-A 15.27 ± 0.29% 2.90 ± 0.14%
DFA 35.75 ± 0.58% 17.47 ± 0.34%
DKP 49.15 ± 0.34% 25.36 ± 0.82%
FDFA 57.27 ± 0.11% 36.47 ± 0.40%

the number of neurons per layer is relatively low, as in fully-connected
networks for MNIST and Fashion MNIST. However, the method does
not perform as well as FG-A on networks that contain large layers such
as convolution. This suggests, that LG-FG-A is most suitable for specific
architectures where each local loss function sends error signals to a
small number of neurons.

DFA achieves performance closer to BP than forward gradient meth-
ods. However, it fails to scale to AlexNet on CIFAR100 and Tiny
ImageNet 200, as observed in previous work (Bartunov et al., 2018;
Crafton et al., 2019; Launay et al., 2019). The performance of DFA is
increased by the DKP algorithm but a gap still exists with BP, especially
on difficult tasks such as CIFAR100 ad Tiny ImageNet 200. In contrast,
our proposed FDFA method performs closer to BP than DFA and DKP
on all benchmarked networks and datasets. For example, our method
doubles the test accuracy of DFA and improves by at least 10% the
performance of DKP on Tiny ImageNet 200.

4.2. Convergence

To evaluate the convergence improvements of our method, we
measured the evolution of the training loss and test accuracy during
the training process. As shown in Fig. 3, the FG-W algorithm converges
576

slowly compared to both DFA and BP. Although FG-A slightly improves
the convergence of FG-W, it was still unable to converge as quickly
as BP and DFA. Both the DKP and FDFA algorithms showed better
convergence rates than FG-W, FG-A, and DFA. However, DKP seems
to be unable to reduce the loss as low as BP with convolutional layers.
Finally, our proposed FDFA algorithm achieved a similar convergence
rate as BP with fully connected networks and substantially improved
the convergence rate of DFA and DKP with CNNs.

To also assess the rate of convergence in relation to the computa-
tional cost of each method, we measured the evolution of the training
loss and test accuracy as a function of each algorithms’ runtime. Fig. 4
shows the evolution of these metrics over time during the training a
CNN on the CIFAR10 dataset, using an Intel Core i7 6700 CPU and
NVIDIA GeForce RTX 3060 GPU. The proposed FDFA algorithm appears
to converge more slowly on CPUs than on GPUs when compared the
other alternatives to BP. Nevertheless, it is noteworthy that, on both
CPUs and GPUs, FDFA outperforms all other methods in terms of
convergence rate.

4.3. Variance of gradient estimates

To gain a deeper understanding of the reasons for the improvements
observed in FDFA compared to FG-W and FG-A, we compare the
theoretical variances of each method and empirically demonstrate the
impact of gradient variance in the convergence of SDG.

Following Wen et al. (2018) and Ren et al. (2023), it can be shown
that the variance of unbiased gradient estimates can be decomposed
into two terms.

Proposition 1 (Ren et al., 2023; Wen et al., 2018). Let 𝑾 (1) ∈ R𝑛1 ,𝑛0

be the hidden weights of a two-layers fully-connected neural network. We
denote by 𝒙 the independent input samples and by 𝒗(1) the independent
random perturbations used to estimate the gradients of the hidden layer.
The variance of a gradient estimate 𝑔

(

𝑤(1)
𝑖,𝑗

)

for the hidden weight 𝑤(1)
𝑖,𝑗 can

be decomposed into two parts:

Var
[

𝑔
(

𝑤(1)
)]

= 𝑧 + 𝑧 (16)
𝑖,𝑗 1 2
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Fig. 4. Training loss and test accuracy of a CNN trained on CIFAR-10 as a function of runtime on both an Intel Core i7 6700 CPU (Figs. 4(a) and 4(c)) and a NVIDIA GeForce
RTX 3060 GPU (Figs. 4(b) and 4(d)). Figs. 4(a) and 4(c) show the impact of the higher computational cost of FDFA when gradient estimates are sequentially computed on a CPU.
In contrast, Figs. 4(b) and 4(d) demonstrate that the parallel aspect of FDFA on GPUs mitigates the impact of this computational cost on convergence.
V

where

𝑧1 ∶= Var
𝒙

[

E
𝒗(1)

[

𝑔
(

𝑤(1)
𝑖,𝑗

)

∣ 𝒙
]

]

(17)

nd

2 ∶= E
𝒙

[

Var
𝒗(1)

[

𝑔
(

𝑤(1)
𝑖,𝑗

)

∣ 𝒙
]

]

(18)

The first term 𝑧1 defined in Proposition 1 corresponds to the gra-
ient variance from data sampling. This term vanishes with the size
f the batch in the case of mini-batch learning (Ren et al., 2023; Wen
t al., 2018). The second term 𝑧2 corresponds to the expected additional
ariance produced by the stochastic estimation of the gradient, which
cales differently for each algorithm. In the case of BP and DFA, this
erm equals zero as both algorithms are deterministic. In Ren et al.
2023), a third term 𝑧3 was considered, which corresponds to the
orrelation between gradient estimates. However, this term is zero in
he case where perturbations are independent (Ren et al., 2023).

Next, we prove that the gradient estimation variance 𝑧2 for the
roposed FDFA algorithm vanishes as 𝛼 tends towards zero.

roposition 2. Let 𝑾 (1) ∈ R𝑛1 ,𝑛0 be the hidden weights of a two-layers
ully-connected neural network evaluated with an input sample 𝒙 ∈ R𝑛0 .

e denote by 𝑔FDFA
(

𝑤(1)
𝑖,𝑗

)

the FDFA gradient estimate for the weight 𝑤(𝑙)
𝑖,𝑗

nd assume that all the elements of the perturbation vector 𝒖(2) for the
activations of the output layer are 0. We also assume that all derivatives
(

𝜕(𝒙)∕𝜕𝑤(𝑙)
𝑖,𝑗

)2 ≤ 𝛽 are bounded and that the feedback matrix 𝑩(1) converged
to 𝜕𝒚(2)∕𝜕𝒚(1) = 𝑾 (1), making the gradient estimates unbiased. If each element
𝑢(1)𝑖 ∼  (0, 1) of 𝒖(1) follows a standard normal distribution, then:

ar
𝒗(1)

[

𝑔FDFA
(

𝑤(1)
𝑖,𝑗

)

∣ 𝒙
]

= 𝛼2 Var
𝒗(1)

[ 𝑛1
∑

𝑘=1

𝜕𝑦(1)𝑜

𝜕𝑦(1)𝑘

𝑢(1)𝑘 𝑢(1)𝑖

]

⎛

⎜

⎜

⎝

𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

⎞

⎟

⎟

⎠

2

(19)

and

lim Var
[

𝑔FDFA
(

𝑤(1)
)

∣ 𝒙
]

= 0 (20)
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𝛼→0 𝒗(1) 𝑖,𝑗
Proof. Starting from the gradient estimate 𝑔FG−A
(

𝑤(1)
𝑖,𝑗

)

, we have:

𝑔FDFA
(

𝑤(1)
𝑖,𝑗

)

=
𝑛2
∑

𝑜=1

𝜕(𝒙)
𝜕𝑦(2)𝑜

𝑏(1)𝑜,𝑖

𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

=
𝑛2
∑

𝑜=1

𝜕(𝒙)
𝜕𝑦(2)𝑜

(

𝛼
𝑛1
∑

𝑘=1

𝜕𝑦(1)𝑜

𝜕𝑦(1)𝑘

𝑢(1)𝑘 𝑢(1)𝑖 + (1 − 𝛼)
𝜕𝑦(2)𝑜

𝜕𝑦(1)𝑖

)

𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

= (1 − 𝛼)
𝜕(𝒙)
𝜕𝑤(1)

𝑖,𝑗

+ 𝛼
𝑛1
∑

𝑘=1

𝜕𝑦(1)𝑜

𝜕𝑦(1)𝑘

𝑢(1)𝑘 𝑢(1)𝑖

𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

(21)

Because both 𝜕(𝒙)∕𝜕𝑤(1)
𝑖,𝑗 and 𝜕𝑦(1)𝑖 ∕𝜕𝑤(1)

𝑖,𝑗 are constants, the variance of
𝑔FDFA

(

𝑤(1)
𝑖,𝑗

)

given an input sample 𝒙 reduces to:

ar
𝒗(1)

[

𝑔FDFA
(

𝑤(1)
𝑖,𝑗

)

∣ 𝒙
]

=Var
𝒗(1)

⎡

⎢

⎢

⎣

(1 − 𝛼)
𝜕(𝒙)
𝜕𝑤(1)

𝑖,𝑗

+ 𝛼
𝑛1
∑

𝑘=1

𝜕𝑦(1)𝑜

𝜕𝑦(1)𝑘

𝑢(1)𝑘 𝑢(1)𝑖

𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

∣ 𝒙
⎤

⎥

⎥

⎦

=Var
𝒗(1)

⎡

⎢

⎢

⎣

(1 − 𝛼)
𝜕(𝒙)
𝜕𝑤(1)

𝑖,𝑗

∣ 𝒙
⎤

⎥

⎥

⎦

+ Var
𝒗(1)

⎡

⎢

⎢

⎣

𝛼
𝑛1
∑

𝑘=1

𝜕𝑦(1)𝑜

𝜕𝑦(1)𝑘

𝑢(1)𝑘 𝑢(1)𝑖

𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

∣ 𝒙
⎤

⎥

⎥

⎦

=𝛼2 Var
𝒗(1)

[ 𝑛1
∑

𝑘=1

𝜕𝑦(1)𝑜

𝜕𝑦(1)𝑘

𝑢(1)𝑘 𝑢(1)𝑖 ∣ 𝒙

]

⎛

⎜

⎜

⎝

𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

⎞

⎟

⎟

⎠

2

(22)

Therefore:

lim
𝛼→0

Var
𝒗(1)

[

𝑔FDFA
(

𝑤(1)
𝑖,𝑗

)

∣ 𝒙
]

= lim
𝛼→0

𝛼2 Var
𝒗(1)

[ 𝑛1
∑

𝑘=1

𝜕𝑦(1)𝑜

𝜕𝑦(1)𝑘

𝑢(1)𝑘 𝑢(1)𝑖 ∣ 𝒙

]

⎛

⎜

⎜

⎝

𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

⎞

⎟

⎟

⎠

2

=0

(23)
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Fig. 5. The variance of FDFA gradient estimates as a function of the feedback learning
rate 𝛼 in a two-layer fully connected network. Each point was produced by computing
the variance of gradient estimates over 10 iterations of the MNIST dataset. The blue line
was fitted using linear regression. The slope 𝑎 and the asymptotic standard error is given

ith the same color. This figure shows that the variance of FDFA scales quadratically
ith 𝛼. Note that both axes have a logarithmic scale. Therefore, the slope of the straight

ine on a logarithmic scale gives the power of the relationship on a linear scale.

Table 4
Theoretical gradient estimation variance produced by the FG-W, FG-A
and FDFA algorithm given a single input sample.

Algorithm Local Estimation variance

BP ✗ 0

FG-W

✓

𝑂
(

𝑛1𝑛0
)

FG-A 𝑂
(

𝑛1
)

DFA 0
FDFA (𝛼 → 0) 0

which concludes the proof.

We also derived the gradient estimation variance for the FG-W
(Proposition 5) and FG-A (Proposition 6) algorithms in Appendices G
and H respectively. Numerical verifications are provided in Figs. 5 and
6. Table 4 shows the comparison of these theoretical results.

Proposition 2 analytically shows that the gradient estimation vari-
ance of FDFA estimates quadratically vanishes as 𝛼 tends towards zero
(see Fig. 5 for numerical verifications). Therefore, by choosing values of
𝛼 close to zero, the variance of FDFA estimates approaches the variance
of the true gradient.

In contrast, Propositions 5 and 6 show that the variance of FG-W
and FG-A have different scaling with respect to the number of neurons
and parameters in the network. FG-W scales linearly with the number
of parameters and FG-A scales linearly with the number of neurons.
This indicates that, in large DNNs, gradient estimates provided by the
FG-W algorithm have a larger variance than FG-A estimates. However,
as DNNs also contain large numbers of neurons, the variance of FG-A
remains high.

To understand the impact of gradient variance on the convergence
of SGD, we conducted an experiment where we measured the training
loss of DNNs after one epoch as a function of variance. We simulated
the variance of forward gradients by injecting Gaussian noise into the
gradient computed with BP. By increasing the standard deviation of the
injected noise, we artificially generated gradients with varying levels of
variance. We then trained a two-layer DNN with these noisy gradients
and measured the loss after one epoch of training on the MNIST dataset.

Fig. 7 illustrates that the variance strongly influences the train-
ing loss achieved after one epoch, as low-variance gradients tend to
converge towards lower loss values compared to high-variance gra-
dients. Hence, in this context, variance is the determining factor for
convergence. Additionally, Fig. 7 shows the variance and loss values
associated with the FG-W, FG-A, and FDFA algorithms. Notably, all
data points align with the line formed by the noisy BP. This shows
that the differences in gradient variance are solely responsible for
the differences in convergence among the FG-W, FG-A, and FDFA
algorithms.
578
4.4. Gradient alignment in feedback methods

In our experiments, we observed that the proposed FDFA algorithm
exhibits better convergence compared to DFA, despite having similar
variance. This suggests that their gradient estimation variance alone
does not fully explain the difference in convergence between these two
algorithms.

Both FDFA and DFA exhibit different degrees of biasedness. On the
one hand, the FDFA algorithm introduces bias through its feedback
learning rule, which acts as momentum for the derivatives between
output and hidden neurons. On the other hand, DFA uses random
feedback connections, resulting in strongly biased gradient estimates.
Therefore, we conjecture that the disparity in convergence between
DFA and the proposed FDFA algorithm can be attributed to their
respective bias.

To test this, we measured the bias of each method during training
by recording the angle between the true gradient and the averaged
gradient estimates produced by DFA, FDFA, and the DKP algorithm.
This measure, often referred to as gradient alignment (Refinetti et al.,
2021; Webster et al., 2021), indicates the extent to which the expected
gradient estimate deviates from the true gradient.

Fig. 8 shows the evolution of the layer-wise gradients alignment of
each algorithm in a 5-layer fully connected DNN trained on the MNIST
dataset during 100 epochs. This figure shows that the proposed FDFA
method achieves faster alignment with the true gradient compared to
DFA and DKP, which suggests earlier descending updates. Remarkably,
the alignment of the gradient in FDFA is globally enhanced by 30
degrees in comparison to DFA and DKP. This significant improvement
suggests that our method provides less biased gradient estimates. Thus,
these findings strongly support the fact that the differences in con-
vergence between DFA, DKP, and FDFA can be attributed to their
respective levels of biasedness.

5. Discussion

The increasing size of DNNs, coupled with the emergence of low-
powered neuromorphic hardware, has highlighted the need to explore
alternative training methods that can overcome the limitations as-
sociated with BP. As a result, the exploration of local and parallel
alternatives to BP has gained significant importance.

In this work, we proposed the FDFA algorithm that combines the
FG-A algorithm with DFA and momentum to train DNNs without
relying on BP. The algorithm involves a dual optimization process
where weights are updated with direct feedback connections to min-
imize classification errors, and derivatives are estimated as feedback
using activity-perturbed forward gradients. Our experiments showed
that the FDFA gradient estimate closely aligns with the true gradient,
particularly in the last layers. However, the sole difference between
the FDFA estimate and the true gradient are the feedback connections
replacing the derivatives between outputs and hidden neurons. Hence,
the convergence of feedback connections toward these derivatives is
the only factor responsible for this gradients alignment. We can thus
conclude that the proposed feedback learning rule is capable of learning
the relevant derivatives to approximate BP. Moreover, the averaging
process introduced in our feedback learning rule acts as momentum for
the derivatives estimates between output and hidden neurons. Our re-
sults demonstrated that the introduce momentum significantly reduces
the gradient estimation variance compared to other forward gradient
methods. Consequently, our method provides more accurate gradient
estimates, leading to improved convergence and better performances
on several benchmark datasets and architectures.

Using our proposed method, feedback connections in the penulti-
mate layer become equal to the output weights. This results in gra-
dient estimates that are equivalent to BP. However, in deeper layers,
feedback connections linearly approximate the non-linear derivatives
between output and hidden neurons, introducing a bias. To address
this bias, the FDFA algorithm could be adapted to Feedback Alignment,

where feedback matrices replace the weights during the backward
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Fig. 6. Variance of the FG-W (red triangles) and FG-A (blue squares) gradient estimates as a function of the number of neurons 𝑛1 (Fig. 6(b)) and number of inputs 𝑛0 (Fig. 6(a))
in a two-layer fully connected network. Each point was produced by computing the variance of gradient estimates over 10 iterations of the MNIST dataset. The pixels of input
images were duplicated, to increase the number of inputs 𝑛0. The red and blue lines were fitted using linear regression. The slope 𝑎 and the asymptotic standard error of each
line are given with the same color. These figures show that the variance of FG-W scales linearly with the number of neurons and inputs while the variance of FG-A only scales
linearly with the number of neurons. Note that every axis has a logarithmic scale. Therefore, the slopes of straight lines relate to their exponents on linear scales.
Fig. 7. Correlation between the normalized variance of gradient estimates and the loss
f a two-layer network with 1000 hidden neurons, following a single training epoch on
he MNIST dataset. The variance of BP was artificially increased by adding Gaussian
oise to the gradients to simulate the stochasticity of forward gradients. All gradient
ariances were normalized with the expected squared norm of the gradient estimates to
nsure invariance with regard to the norm. Pairs of variance-loss for the FG-W, FG-A,
nd FDFA algorithms are represented in green, red, and blue, respectively. This figure
hows that the differences in convergence are solely due to the variance of the gradient
stimates.

ass of BP, rather than direct connections between output and hidden
ayers. Although this modification would lower biasedness and better
pproximate BP without requiring weight transport, it would come
t the cost of increased computation time due to backward locking.
his highlights a particular tradeoff between computation cost and
iasedness in FDFA. Future work could explore novel ways to leverage
his biasedness without hindering the parallel aspect of FDFA.

It is also important to note that, while both DFA and our pro-
osed FDFA algorithm compute pseudo-gradients in a similar way,
hey differ fundamentally in their respective definitions of the feedback
onnections. In DFA, feedback connections are initialized randomly and
emain fixed throughout training, thereby introducing a substantial bias
nto its pseudo-gradient. In contrast, our FDFA algorithms learns to rep-
esent the derivatives between output and hidden neurons as feedback
onnections. This distinction results in gradient estimates that align
ore closely with the steepest descent direction compared to DFA. This
ifference in biasedness was empirically verified in Fig. 8 by measuring
he angle between the gradient estimate of each algorithm and the true
radient computed with BP. As shown in Table 4, DFA and FDFA have
he same variance in the limit of small feedback learning rates (i.e. 0).
ence, their divergence lies solely in their respective biasness. We
bserved in our experiments that this difference in biasness consistently
nfluences both the rate of convergence and the performance of DNNs
n various benchmark datasets. Therefore, by providing an update
irection closer to the direction of steepest descent, our proposed
DFA algorithm demonstrates the ability to converge faster and achieve
reater performance than DFA.
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The method proposed in this work shares similarities with the
DKP algorithm in the way feedback connections are adapted through
learning, in contrast to DFA, where feedback matrices are kept fixed.
However, the FDFA and DKP algorithms fundamentally differ in their
feedback update rules. The convergence of Kolen–Pollack learning pri-
marily relies on the principle of weight decay, which allows the forward
and feedback weights to align (Akrout et al., 2019; Webster et al.,
2021). In contrast, the proposed FDFA algorithm directly estimates the
derivatives between output and hidden neurons using FG-A, without
relying on any weight decay. While both algorithms aim to learn the
feedback connections, our experiments demonstrated that the proposed
FDFA algorithm benefits from greater weight and gradient alignment
than DKP. This improved alignment, in turn, appears to lead to better
convergence rates and greater performance on benchmark datasets.

Another important aspect to consider is the computational cost of
our method. Due to the computation of directional derivatives, the
application of our feedback learning rule, and the computation of errors
through feedback connections, the proposed FDFA has ultimately a
greater computational cost than DFA, FG-A, and DKP. However, our
experiments demonstrated that, despite this higher computation cost,
the improved convergence rate of FDFA allows for fast convergence
relative to the execution time of the algorithm, even with sequential
computations on CPUs. Furthermore, when operations are parallelized
on GPUs, the computational cost of FDFA has minimal impact on
convergence relative to execution time, making it a suitable choice for
fast convergence of DNN without resorting to BP.

Finally, while methods relying on feedback connections showed
better performance than forward gradients methods, the use of feed-
back matrices increases the number of weights to store in memory and
ultimately poses a significant memory limitation, especially as networks
grow larger. This highlights another important tradeoff between mem-
ory usage and performance. Future work could explore mechanisms
such as sparse feedback matrices (Crafton et al., 2019) or reduced
weight precision (Han & jun Yoo, 2019) to mitigate the memory impact
of the proposed FDFA algorithm, further enhancing its practicality and
scalability. Moreover, in the context of DNNs, local gradients of neurons
are locally computed by differentiating the activations of neurons with
respect to their weights. Similarly to DFA, the computation local change
of weights is not restricted to the exact differentiation of neurons but
can also be adapted to other local learning mechanisms. For example,
the spikes fired by biologically plausible spiking neurons are known to
be non-differentiable, making the computation of local gradients more
challenging in Spiking Neural Networks. However, the FDFA could be
adapted to SNNs by combining our feedback learning rule with locally-
computed surrogate gradients or biologically plausible learning rules
such as Spike Timing-Dependant Plasticity (STDP). Future work could
thus explore the applicability of the FDFA algorithm to other local
learning rules compatible with neuromorphic hardware.
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Fig. 8. Layerwise alignment between gradient estimates and the true gradient computed using BP. These figures show that the proposed FDFA method (Fig. 8(c)) produces gradient

estimates that better align with the true gradients than DFA (Fig. 8(a)) which suggests improved descending directions.

.

6. Conclusion

The FDFA algorithm represents a promising local alternative to
error backpropagation, effectively resolving backward locking and the
weight transport problem. Its ability to approximate backpropagation
with low variance not only opens new possibilities for the creation
of efficient and scalable training algorithms but also holds significant
importance in the domain of neuromorphic computing. By solely prop-
agating information in a forward manner, the FDFA algorithm aligns
with the online constraints of neuromorphic systems, presenting new
prospects for developing algorithms specifically tailored to meet the
requirements of these hardware. Therefore, the implications of our
findings highlight the potential of FDFA as a promising direction of
research for online learning on neuromorphic systems.
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Appendix A. Experimental settings

Each architecture uses the ReLU activation function in the hidden
layers and linear activations in the output layer. For LG-FG-A, addi-
tional local linear outputs with their loss function were added after
each layer 𝑙 < 𝐿−1 to perform local greedy learning (Ren et al., 2023)
n BP, FG-W, FG-A, LG-FG-A, DKP, and FDFA, forward weights were
nitialized with the uniform Kaiming initialization (He et al., 2015).
or FDFA, feedback connections were initialized to 0. For Random
FA, forward weights were initialized to 0 and feedback weights were
rawn from a uniform Kaiming distribution and kept fixed during
raining. We removed the dropout layer in AlexNet as we found that
t negatively affects feedback learning. Finally, we also added batch
ormalization (Ioffe & Szegedy, 2015) after each convolutional layer
f AlexNet to help training.

We train each network over 100 epochs with Adam (Kingma & Ba,
017) and softmax cross-entropy loss functions. However, note that
ny differentiable loss functions can be used instead of the softmax
ross entropy, such as the MSE. We also used Adam for the updates
580
of feedback matrices in the FDFA and DKP algorithms. Adam was used
because it is invariant to rescaling of the gradient (Kingma & Ba, 2017),
making it a good optimization method to benchmark convergence with
gradient estimators that exhibit different scales. We used a learning rate
of 𝜆 = 𝛼 = 10−4 and the default values of the parameters 𝛽1 = 0.9,
𝛽2 = 0.999 and 𝜖 = 10−8 in Adam. Finally, no regularization or data
augmentation has been applied. Finally, we used learning rate decay
with a decay rate of 0.95 after every epoch.

In this work, all hyperparameters, including 𝛼 and 𝜆 were manually
tuned. We found that, in many cases, better convergence behaviors
were achieved if 𝛼 ≤ 𝜆. This motivated our choices for the learning
rates of FDFA. However, hyperparameter optimization and learning
rate scheduling could be used to further improve the convergence and
performance of the method.

Appendix B. Performance of fully-connected networks with differ-
ent depths

See Tables B.5 and B.6.

Table B.5
Number of neurons and number of parameters in fully-connected DNNs with different
depths.

Depth MNIST Fashion MNIST CIFAR10

N. Neurons
2 Layers 810 810 1010
3 Layers 1610 1610 2010
4 Layers 2410 2410 3010

N. Params.
2 Layers 636 K 636 K 3.08 M
3 Layers 1.2 M 1.2 M 4.08 M
4 Layers 1.9 M 1.9 M 5.08 M

Table B.6
Performance of fully-connected DNNs with different depths. LG-FG-A was not evaluated
with two-layers DNNs as these networks are not deep enough to require greedy learning

Depth Method Local MNIST Fashion MNIST CIFAR10

2 Layers

BP ✗ 98.25 ± 0.04% 89.37 ± 0.09% 56.20 ± 0.12%

FG-W

✓

85.87 ± 0.25% 77.72 ± 0.18% 30.47 ± 0.32%
FG-A 93.39 ± 0.06% 84.73 ± 0.14% 47.39 ± 0.23%
DFA 98.04 ± 0.07% 88.67 ± 0.12% 54.80 ± 0.22%
DKP 98.12 ± 0.05% 89.09 ± 0.11% 55.41 ± 0.18%
FDFA 98.21 ± 0.02% 89.27 ± 0.07% 55.74 ± 0.14%

3 Layers

BP ✗ 98.39 ± 0.06% 90.01 ± 0.08% 56.66 ± 0.18%

FG-W

✓

82.36 ± 0.48% 73.94 ± 0.57% 27.52 ± 0.34%
FG-A 90.86 ± 0.17% 82.21 ± 0.13% 43.39 ± 0.14%
LG-FG-A 91.64 ± 0.07% 82.41 ± 0.13% 43.08 ± 0.18%
DFA 98.18 ± 0.06% 89.19 ± 0.13% 54.20 ± 0.11%
DKP 98.28 ± 0.06% 89.63 ± 0.12% 55.15 ± 0.24%
FDFA 98.30 ± 0.04% 89.82 ± 0.13% 55.70 ± 0.15%

(continued on next page)
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Table B.6 (continued).
Depth Method Local MNIST Fashion MNIST CIFAR10

4 Layers

BP ✗ 98.46 ± 0.05% 89.99 ± 0.15% 56.92 ± 0.19%

FG-W

✓

80.03 ± 0.62% 71.72 ± 0.63% 25.17 ± 0.32%
FG-A 83.40 ± 1.33% 77.62 ± 0.25% 35.53 ± 0.21%
LG-FG-A 86.89 ± 0.90% 77.98 ± 0.21% 34.56 ± 0.34%
DFA 98.15 ± 0.05% 89.15 ± 0.09% 53.61 ± 0.16%
DKP 98.27 ± 0.05% 89.48 ± 0.09% 54.35 ± 0.21%
FDFA 98.32 ± 0.05% 89.56 ± 0.11% 54.97 ± 0.19%

Appendix C. Weight-Perturbed Forward Gradient Algorithm

Algorithm 2 Weight-Perturbed Forward Gradient algorithm (Baydin
et al., 2022) with a fully-connected DNN.
1: Input: Training data 
2: Randomly initialize 𝑤(𝑙)

𝑖𝑗 for all 𝑙, 𝑖 and 𝑗.
3: repeat
4: {Inference (sequential)}
5: for 𝒙 in  do
6: 𝒚(0) ← 𝒙𝑠
7: 𝒅(0) ← 𝟎
8: for 𝑙 = 1 to 𝐿 do
9: Sample 𝑽 (𝑙) ∼  (𝟎, 𝑰)

10: 𝒂(𝑙) ← 𝑾 (𝑙)𝒚(𝑙−1)
11: 𝒚(𝑙) ← 𝑓

(

𝒂(𝑙)
)

12: 𝒅(𝑙) ←
(

𝑾 (𝑙)𝒅(𝑙−1) + 𝑽 (𝑙)𝒚(𝑙−1)
)

⊙ 𝜎′
(

𝒂(𝑙)
)

13: end for
14: 𝑑 ← 𝜕(𝒙)

𝜕𝒚(𝐿) 𝒅
(𝐿)

5: {Weights updates (parallel)}
6: for 𝑙 = 1 to 𝐿 do

17: 𝑾 (𝑙) ← 𝑾 (𝑙) − 𝜆𝑽 (𝑙)𝑑
18: end for
19: end for
20: until E [(𝒙)] < 𝜖

Appendix D. Activity-Perturbed Forward Gradient Algorithm

Algorithm 3 Activity-Perturbed Forward Gradient algorithm (Ren
et al., 2023) with a fully-connected DNN.
1: Input: Training data 
2: Randomly initialize 𝑤(𝑙)

𝑖𝑗 for all 𝑙, 𝑖 and 𝑗.
3: repeat
4: {Inference (sequential)}
5: for all 𝒙 in  do
6: 𝒚(0) ← 𝒙𝑠
7: 𝒅(0) ← 𝟎
8: for 𝑙 = 1 to 𝐿 do
9: Sample 𝒗(𝑙) ∼  (𝟎, 𝑰)

10: 𝒂(𝑙) ← 𝑾 (𝑙)𝒚(𝑙−1)
11: 𝒚(𝑙) ← 𝜎

(

𝒂(𝑙)
)

12: 𝒅(𝑙) ←
(

𝑾 (𝑙)𝒅(𝑙−1))⊙ 𝜎′
(

𝒂(𝑙)
)

13: if 𝑙 < 𝐿 then
14: 𝒅(𝑙) ← 𝒅(𝑙) + 𝒗(𝑙)
5: end if
6: end for
7: 𝑑 ← 𝜕(𝒙)

𝜕𝒚(𝐿) 𝒅
(𝐿)

8: {Weights updates (parallel)}
9: for 𝑙 = 1 to 𝐿 do

20: 𝑾 (𝑙) ← 𝑾 (𝑙) − 𝜆
(

𝑑(𝐿)𝒗(𝑙) ⊙ 𝜎′
(

𝒂(𝑙)
))

⊗ 𝒚(𝑙−1)
1: end for
2: end for
3: until E [(𝒙)] < 𝜖
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Appendix E. Unbiasedness of forward gradients

Theorem 3 (Unbiasedness of Forward Gradients (Baydin et al., 2022)).
Let 𝒙 ∈ R𝑛 be a vector of size 𝑛 and 𝒗 ∈ R𝑛 be a random vector of
𝑛 independent variables. If 𝒗 ∼  (𝟎, 𝑰) follows a multivariate standard
normal distribution, then:

E [(𝒙 ⋅ 𝒗)𝒙] = 𝒙 (E.1)

Proof. Focusing on the 𝑖th element, we have:

E
[

(𝒙 ⋅ 𝒗) 𝑣𝑖
]

= E

[ 𝑛
∑

𝑗=1
𝑥𝑗𝑣𝑗𝑣𝑖

]

= E
[

𝑥𝑖𝑣
2
𝑖
]

+
𝑛
∑

𝑗=1
𝑗≠𝑖

E
[

𝑥𝑗𝑣𝑗𝑣𝑖
]

= 𝑥𝑖E
[

𝑣2𝑖
]

+
𝑛
∑

𝑗=1
𝑗≠𝑖

𝑥𝑗E
[

𝑣𝑗
]

E
[

𝑣𝑖
]

(E.2)

However, we know that 𝑣𝑖 ∼  (0, 1). Therefore, E
[

𝑣𝑖
]

= 0 and E
[

𝑣2𝑖
]

=
E
[

𝑣𝑖
]2 + Var

[

𝑣𝑖
]

= 1. Using these properties, Eq. (E.2) reduces to:

E
𝒙,𝒗

[

(𝒙 ⋅ 𝒗) 𝑣𝑖
]

= 𝑥𝑖 (E.3)

and

E
𝒙,𝒗

[(𝒙 ⋅ 𝒗) 𝒗] = 𝒙 (E.4)

which concludes the proof.

Appendix F. Variance of forward gradients

Lemma 4. Let 𝒙 ∈ R𝑛 be vector of size 𝑛 and 𝒗 ∈ R𝑛 be a random vector
of 𝑛 independent variables. If 𝒗 ∼  (𝟎, 𝑰) follows a multivariate standard
normal distribution, then:

Var
[

(𝒙 ⋅ 𝒗) 𝑣𝑖
]

=𝑥2𝑖 + ‖𝒙‖22 (F.1)

Proof. Because the elements of 𝒙 are considered as constants and all
the elements of 𝒗 are independent from each other, the variance of
(𝒙 ⋅ 𝒗) 𝑣𝑖 decomposes as follows:

Var
[

(𝒙 ⋅ 𝒗) 𝑣𝑖
]

=Var

[ 𝑛
∑

𝑗=1
𝑥𝑗𝑣𝑗𝑣𝑖

]

=
𝑛
∑

𝑗=1
𝑥2𝑗 Var

[

𝑣𝑗𝑣𝑖
]

(F.2)

We can show that, if 𝑗 ≠ 𝑖:

Var
[

𝑣𝑗𝑣𝑖
]

=E
[

(

𝑣𝑗𝑣𝑖
)2
]

− E
[

𝑣𝑗𝑣𝑖
]2

=E
[

𝑣2𝑖
]

E
[

𝑣2𝑗
]

− E
[

𝑣𝑖
]2 E

[

𝑣𝑗
]2

=1

(F.3)

and if 𝑗 = 𝑖:

Var
[

𝑣2𝑖
]

=E
[

(

𝑣2𝑖
)2] − E

[

𝑣2𝑖
]2

=E
[

𝑣4𝑖
]

− E
[

𝑣2𝑖
]2

=2

(F.4)

s E
[

𝑣2
]2 = Var

[

𝑣
]2 = 1 and E

[

𝑣4
]

= 3Var
[

𝑣
]

= 3.
𝑖 𝑖 𝑖 𝑖
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Therefore, by plugging Eqs. (F.3) and (F.4) into Eq. (F.2), we find:

Var
[

(𝒙 ⋅ 𝒗) 𝑣𝑖
]

=
𝑛
∑

𝑗=1
𝑥2𝑗 Var

[

𝑣𝑗𝑣𝑖
]

=𝑥2𝑖Var
[

𝑣2𝑖
]

+
𝑛
∑

𝑗=1
𝑗≠𝑖

𝑥2𝑗Var
[

𝑣𝑗𝑣𝑖
]

=2𝑥2𝑖 +
𝑛
∑

𝑗=1
𝑗≠𝑖

𝑥2𝑗

=𝑥2𝑖 +
𝑛
∑

𝑗=1
𝑥2𝑗

=𝑥2𝑖 + ‖𝒙‖22

(F.5)

which concludes the proof.

Appendix G. Variance of Weight-Perturbed Forward Gradients

Proposition 5 (Variance of Weight-Perturbed Forward Gradients). Let
𝑾 (1) ∈ R𝑛1 ,𝑛0 be the hidden weights of a two-layers fully-connected
neural network evaluated with an input sample 𝒙 ∈ R𝑛0 . We denote by
𝑔FG−W

(

𝑤(1)
𝑖,𝑗

)

the weight-perturbed forward gradient for the weight 𝑤(𝑙)
𝑖,𝑗 . We

also assume that all derivatives
(

𝜕(𝒙)∕𝜕𝑤(𝑙)
𝑖,𝑗

)2 ≤ 𝛽 are bounded and that all
the elements of the perturbation matrix 𝑽 (2) for the weights of the output
layer are 0. If each element 𝑣(1)𝑖,𝑗 ∼  (0, 1) of 𝑽 (1) follows a standard normal
distribution, then:

Var
𝒗(1)

[

𝑔FG−W
(

𝑤(1)
𝑖,𝑗

)

∣ 𝒙
]

=
⎛

⎜

⎜

⎝

𝜕(𝒙)
𝜕𝑤(1)

𝑖,𝑗

⎞

⎟

⎟

⎠

2

+
‖

‖

‖

‖

𝜕(𝒙)
𝜕𝑾 (1)

‖

‖

‖

‖

2

2

=𝑂
(

𝑛1𝑛0
)

(G.1)

n the limit of large 𝑛1 and large 𝑛0.

roof. By application of Lemma 4, we know that:

ar
𝒗(1)

[

𝑔FG−W
(

𝑤(1)
𝑖,𝑗

)

∣ 𝒙
]

=Var
𝒗(1)

⎡

⎢

⎢

⎣

𝑛1
∑

𝑘=1

𝑛0
∑

𝑙=1

𝜕(𝒙)
𝜕𝑤(1)

𝑘,𝑙

𝑣𝑘,𝑙 𝑣𝑖,𝑗
⎤

⎥

⎥

⎦

=
⎛

⎜

⎜

⎝

𝜕(𝒙)
𝜕𝑤(1)

𝑖,𝑗

⎞

⎟

⎟

⎠

2

+
‖

‖

‖

‖

𝜕(𝒙)
𝜕𝑾 (1)

‖

‖

‖

‖

2

2

(G.2)

However, in the limit of large 𝑛0 and large 𝑛1:

‖

‖

‖

‖

𝜕(𝒙)
𝜕𝑾 (1)

‖

‖

‖

‖

2

2
=

𝑛1
∑

𝑖=1

𝑛0
∑

𝑗=1

⎛

⎜

⎜

⎝

𝜕(𝒙)
𝜕𝑤(1)

𝑖,𝑗

⎞

⎟

⎟

⎠

2

= 𝑂
(

𝑛1𝑛0
)

(G.3)

Therefore, we conclude that:

Var
𝒗(1)

[

𝑔FG−W
(

𝑤(1)
𝑖,𝑗

)

∣ 𝒙
]

= 𝑂
(

𝑛1𝑛0
)

(G.4)

Appendix H. Variance of Activity-Perturbed Forward Gradients

Proposition 6 (Variance of Activity-Perturbed Forward Gradients). Let
(1) ∈ R𝑛1 ,𝑛0 be the hidden weights of a two-layers fully-connected

eural network evaluated with an input sample 𝒙 ∈ R𝑛0 . We denote by
FG−A

(

𝑤(1)
𝑖,𝑗

)

the activity-perturbed forward gradient for the weight 𝑤(𝑙)
𝑖,𝑗 .

e also assume that all derivatives
(

𝜕(𝒙)∕𝜕𝑤(𝑙)
𝑖,𝑗

)2 ≤ 𝛽 are bounded and that
ll the elements of the perturbation vector 𝒖(2) for the activations of the
utput layer are 0. If each element 𝑢(1)𝑖 ∼  (0, 1) of 𝒖(1) follows a standard
ormal distribution, then:

ar
𝒗(1)

[

𝑔FG−A
(

𝑤(1)
𝑖,𝑗

)

∣ 𝒙
]

=
⎡

⎢

⎢

⎣

(

𝜕(𝒙)
𝜕𝑦(1)𝑖

)2

+
‖

‖

‖

‖

‖

𝜕(𝒙)
𝜕𝒚(1)

‖

‖

‖

‖

‖

2

2

⎤

⎥

⎥

⎦

⎛

⎜

⎜

⎝

𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

⎞

⎟

⎟

⎠

2

( )

(H.1)
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= 𝑂 𝑛1
in the limit of large 𝑛1 and large 𝑛0.

Proof. Starting from the variance of 𝑔FG−A
(

𝑾 (1)), we have:

Var
𝒗(1)

[

𝑔FG−A
(

𝑤(1)
𝑖,𝑗

)

∣ 𝒙
]

=Var
𝒗(1)

⎡

⎢

⎢

⎣

( 𝑛1
∑

𝑘=1

𝜕(𝒙)
𝜕𝑦(1)𝑘

𝑢(1)𝑘

)

𝑢(1)𝑖

𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

⎤

⎥

⎥

⎦

=Var
𝒗(1)

[ 𝑛1
∑

𝑘=1

𝜕(𝒙)
𝜕𝑦(1)𝑘

𝑢(1)𝑘 𝑢(1)𝑖 ∣ 𝒙

]

⎛

⎜

⎜

⎝

𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

⎞

⎟

⎟

⎠

2 (H.2)

as the partial derivative 𝜕𝑦(1)𝑖

𝜕𝑤(1)
𝑖,𝑗

is considered as constant.

By applying Lemma 4, we obtain:

Var
𝒗(1)

[

𝑔FG−A
(

𝑤(1)
𝑖,𝑗

)

∣ 𝒙
]

=
⎡

⎢

⎢

⎣

(

𝜕(𝒙)
𝜕𝑦(1)𝑖

)2

+
‖

‖

‖

‖

‖

𝜕(𝒙)
𝜕𝒚(1)

‖

‖

‖

‖

‖

2

2

⎤

⎥

⎥

⎦

⎛

⎜

⎜

⎝

𝜕𝑦(1)𝑖
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𝑖,𝑗

⎞

⎟

⎟

⎠
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=
⎛

⎜

⎜

⎝

𝜕(𝒙)
𝜕𝑤(1)
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Finally, we can show that
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Therefore:
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