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Abstract

Supervised machine learning algorithms rarely cope directly with the temporal informa-
tion inherent to longitudinal datasets, which have multiple measurements of the same
feature across several time points and are often generated by large health studies. In this
paper we report on experiments which adapt the feature-selection function of decision
tree-based classifiers to consider the temporal information in longitudinal datasets, using
a lexicographic optimisation approach. This approach gives higher priority to the usual
objective of maximising the information gain ratio, and it favours the selection of features
more recently measured as a lower priority objective. Hence, when selecting between fea-
tures with equivalent information gain ratio, priority is given to more recent measurements
of biomedical features in our datasets. To evaluate the proposed approach, we performed
experiments with 20 longitudinal datasets created from a human ageing study. The results
of these experiments show that, in addition to an improvement in predictive accuracy for
random forests, the changed feature-selection function promotes models based on more
recent information that is more directly related to the subject’s current biomedical situation
and, thus, intuitively more interpretable and actionable.

Keywords Classification - Longitudinal data - Age-related diseases

1 Introduction

Longitudinal datasets are a special case of temporal datasets (i.e., datasets that store time-
related variations of feature values), where the same set of instances (e.g., patients) is fol-
lowed through a number of points in time, denominated waves. Several countries have been
running longitudinal populational studies of ageing, where they collect data on various

< Caio Ribeiro
C.E.Ribeiro@kent.ac.uk

Alex A. Freitas
A.A Freitas@kent.ac.uk

School of Computing, University of Kent, Canterbury, UK

Published online: 09 March 2024 ) Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-024-10718-1&domain=pdf

84 Page 2 of 29 C.Ribeiro, A. A. Freitas

aspects of the lives of older individuals, including physical and mental health, demograph-
ics, and socioeconomic aspects. Longitudinal datasets from human ageing studies typically
span several years, with longer intervals of time between waves, and measure a large num-
ber of features (Kaiser 2013; Ribeiro et al. 2017).

Analysing longitudinal data may offer insights, for example, on cause and effect pat-
terns, on how an event affects a feature’s values, or how a pattern evolves with time. Due
to the high number of predictive features (independent variables) in these studies, machine
learning (ML) applications are often needed for performing holistic analyses—i.e., consid-
ering hundreds or thousands of features simultaneously.

Note that longitudinal data should not be confused with time series data (Bagnall et al.
2017), even though both have a temporal nature. In the context of supervised ML, time
series data usually contain a single real-valued variable repeatedly measured across a large
number of time points; whilst our target longitudinal datasets consist of a large number of
both numerical and nominal variables repeatedly measured across a small number of time
points.

Supervised ML techniques use training data to create a model able to make predictions
about previously unseen data. Because standard supervised ML algorithms do not cope
directly with the temporality of longitudinal data, they disregard time-related information
that may be relevant to the problem.

One way to address this issue is to adapt existing ML algorithms to make them cope
directly with the temporal information in longitudinal data, so that they can use time-
related information (different measurements of a feature across several time points) to
try to improve predictive performance (Niemann et al. 2015; Ribeiro and Freitas 2019).
This is broadly the research direction followed in this article, which is in general an under-
explored research area—since relatively few existing supervised ML methods directly cope
with longitudinal data.

Thus, in this article we report the results of experiments with an algorithm adaptation to
decision tree-based classification algorithms that uses the time-related information of lon-
gitudinal data to increase predictive accuracy, first described in Ribeiro and Freitas (2020).
More precisely, this current article extends our recent previous work in two directions, as
follows.

First, in this article we report results for two well-known decision tree-based algorithms:
Random Forest (RF) (Breiman 2001) and the decision tree algorithm J48 (an implemen-
tation of the well-known C4.5 decision tree in the Weka tool) (Quinlan 1993), whilst in
Ribeiro and Freitas (2020) only the Random Forest (RF) algorithm was used. We also per-
form more experiments with the algorithms’ parameter optimisation in this article, opti-
mising up to two parameters for each algorithm, whilst in Ribeiro and Freitas (2020) the
experiments optimised only one parameter of the RF algorithm. Second, in this article we
report results for 20 longitudinal classification datasets, whilst only 10 datasets where used
in the experiments reported in Ribeiro and Freitas (2020).

Importantly, we created datasets from two different data sources (with two different
types of predictive features) that differ on the time distance between waves (time points)
and number of feature waves. By contrast, the experiments in Ribeiro and Freitas (2020)
used datasets from a single data source, where all datasets had the same number of waves.
The use of two classification algorithms and two data sources in this article led to fur-
ther insight about the effectiveness of the proposed adaptation for decision tree-based
classifiers.

The datasets were created for binary classification problems, each consisting of predict-
ing whether participants in a longitudinal study will develop an age-related disease at the
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last wave (time point) of the study, based on self-reported and biomedical health data col-
lected over several years.

The proposed algorithm adaptation is a lexicographic bi-objective split-feature selection
procedure that considers both the information gain ratio and the time-index of the can-
didate features when selecting the split feature of each node in the process for learning a
decision tree. In essence, the lexicographic approach gives priority to selecting features
with a higher information gain ratio, but when some candidate features have approximately
the same highest gain ratio, the most recent feature among those is selected.

Another contribution of this article is an analysis of the top-ranked features in our best
RF models. This analysis includes a discussion of the health-related features that were
most relevant in our predictive models, and whether they were previously associated with
the target age-related disease in the literature.

This article is organised as follows. Section 2 briefly discusses related work. Section 3
discusses the dataset creation process and the experimental setup. The algorithm adaptation
of changing the split-feature selection function of decision tree-based classifiers is defined
in Sect. 4, with experimental results for this approach presented in Sect. 5. In Sect. 6, we
interpret the top-ranked features in the best RF classifiers. In Sect. 7 we discuss our conclu-
sions and future work.

2 Related work

There are several possible approaches for considering temporal patterns in supervised
machine learning problems (Ribeiro and Freitas 2019), such as creating temporal features
in a preprocessing step (Ribeiro and Freitas 2021a), Structural Pattern Detection (Morid
et al. 2020), Recurrent Neural Networks (often Long-Short Term Memory) (Aghili et al.
2018), and Deep Learning (Luo et al. 2020). In this section we focus on decision tree-based
classifiers, which are popular in biomedical applications and are the focus of our proposed
algorithm adaptation for longitudinal classification.

More precisely, the algorithm adaptation approach in this work consists of adapting the
split-feature selection function of decision tree-based classification algorithms, by adding
a secondary objective to be considered. This approach of optimising objectives in priority
order is sometimes called the lexicographic approach (Freitas 2004), and it has been used
in decision tree algorithms for conventional (non-longitudinal) classification before (Bas-
galupp et al. 2009). A similar strategy of using time-related information in the split deci-
sion was used in Deng et al. (2013), where the authors combine entropy gain and a time-
related distance measure in their split criteria, for an application in time series datasets.

The lexicographic split approach is a simple adaptation that does not add significant
processing to the training process and can be applied to any decision tree-based classifier,
promoting the generation of classifiers that use more recent data, which is more readily
available, actionable and intuitively explainable, compared to older measurements of the
same features. For example, if the class variable to be predicted is the occurrence of a heart
attack, intuitively a recent measurement of a patient’s cholesterol level is more relevant for
that prediction than a much older measurement. It is worthwhile to mention that the our
approach does not reduce the interpretability of the models learned from the data, nor does
it significantly increase the execution times of these algorithms, both of these being impor-
tant characteristics of decision tree-based classifiers.
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3 Datasets and experimental set up
3.1 The created ELSA-nurse and ELSA-core datasets

The English Longitudinal Study of Ageing (ELSA) is currently one of the most promi-
nent populational studies of ageing (Abell et al. 2018; Banks et al. 2019). The ELSA
has, in each of its waves, thousands of respondents from inhabitants of United King-
dom households, which take part in a core interview every two years (the time inter-
val between two consecutive waves), answering questions about various aspects of
their lives, including demographic, health, wellbeing and economics. Data from this
core questionnaire is used to create the class labels for all our datasets, and to cre-
ate the ELSA-core datasets. For this project, we used data from the core waves 1-7
(2002-2014) to create the features of the ELSA-core datasets, and data from the core
wave 8 to create the class label for all our datasets.

In addition, special questionnaires are used to collect biomedical data every 2 waves
(i.e., roughly every 4 years), when a professional nurse visits the respondents in their
home and performs a face-to-face interview and a series of tests. The results of these
nurse visits are recorded in separate files, which we used to create our ELSA-nurse data-
sets. We used data from four waves of the ELSA study with data collected by a nurse:
waves 2, 4, 6 and 8 (2004-2016).

A total of 20 longitudinal datasets were created with the raw data files from the
ELSA-core and ELSA-nurse questionnaires, each with a combination of one of two data
sources (core data or data collected by a nurse) and one of 10 age-related diseases used
as class (target) variables. The class variable in each dataset refers to the presence (neg-
ative class) or absence (positive class) of a diagnose for an age-related disease, for each
instance (ELSA respondent), in wave 8. For all 10 diseases, the positive class (disease
absence) is the majority class, with an increased degree of class imbalance for rarer dis-
eases, such as Dementia and Parkinson’s Disease. Note that, in order to have class labels
for all instances (ELSA respondents), we only utilised data from respondents that par-
ticipated in the ELSA’s 8th wave. In cases where a respondent did not participate in any
of the other waves in the dataset, the values for that wave’s features were set as missing
for that respondent.

The 10 ELSA-nurse datasets share the same set of predictive features, as do the 10
ELSA-core datasets, even though they have different class variables (representing differ-
ent age-related diseases), as explained in more detail later. The ELSA class labels repre-
sent diagnosis for Angina, Arthritis, Cataract, Dementia, Diabetes, High blood pressure,
Heart attack, Osteoporosis, Parkinson’s Disease, and Stroke. Note that we have not used
any class labels from previous waves (before wave 8) as predictive features, meaning
the models have no information of earlier diagnosis, as this would change the prediction
problem (our aim is to make predictions based solely on biomedical variables and self-
reported health data, not based on previous diagnosis results).

Most predictive features in our datasets have multiple measures, one for each wave.
For instance, cholesterol is a feature measured in multiple waves, taking a value for each
wave. As an exception, some demographic features (such as sex) take just one value,
which is set with the most recent feature wave as time-index by default.

It is important to highlight that the ELSA participants themselves are reporting the
diagnosis of the target diseases in their core interviews, and there is no clinical data
available corroborating their answers. Thus, even though we take the data available as
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ground-truth, it is likely that some patients were undiagnosed or did not report their
diagnosis, and that some patients wrongly reported their positive diagnosis.

Table 1 shows the names of the class variables in terms of age-related diseases, the
names of the original ELSA variables used to create the class variables in this work, and
the class imbalance ratios for the ELSA-nurse and ELSA-core class variables. The class
imbalance ratio is calculated by dividing the number of majority class instances by the
number of minority class instances.

In addition to selecting the features in the questionnaires that were relevant to our clas-
sification problem, and performing standard data cleaning tasks such as coding missing
values and merging similar variables to reduce the dimensionality of the dataset, we also
imputed all missing values in the dataset in the data preprocessing stage. For this, we uti-
lised a data-driven missing value replacement approach proposed in Ribeiro and Freitas
(2021b), which completely replaces the existing missing values in a longitudinal dataset,
using various imputation methods, including some designed specifically for longitudinal
data. Importantly, this missing value imputation was performed using the training set only,
without using the test set. After the data preparation, the final ELSA-nurse and ELSA-core
datasets had 141 and 171 predictive features, and 7097 and 8405 instances (ELSA partici-
pants), respectively.

3.2 Experimental setup

For our experiments, we created classification models using the J48 Decision Tree (Quin-
lan 1993) and Random Forest (RF) (Breiman 2001) algorithms. The algorithm adaptation
discussed in this article can be implemented in any decision tree-based classification algo-
rithm; here we use one decision tree method (an implementation of the widely used C4.5)
and one ensemble method (Random Forests) as well-known representatives of two decision
tree-based approaches for classification. Note that RFs handle well datasets with a high
ratio of features to instances, which are prone to overfitting (Scornet et al. 2015). This is
desirable as longitudinal datasets often have a large number of features, as variables are
measured at multiple time points and each measurement becomes a predictive feature.

To cope with the class imbalance in our datasets, decision tree training sets were under-
sampled to a ratio of 1:1 (randomly removing majority class instances), and RF training
sets were balanced using the Balanced Random Forest (BRF) method (Chen et al. 2004).
BRF applies a majority class undersampling for each bootstrap sample taken at each tree of
the forest, so the subset of instances used to generate each decision tree has a balanced ratio
(1:1) of instances of the two classes. The 1:1 ratio is a default approach adopted by several
studies (Lopez et al. 2013; Weiss and Provost 2003). Intuitively, this ratio encourages the
algorithms to try to predict well both classes, preventing the algorithms from overwhelm-
ingly predicting the majority class. Note that, for both algorithms, majority-class under-
sampling is applied to the training set only; i.e. the test remains with the original imbal-
anced class distribution, which best reflects the true class distribution in the real-world.

The decision trees and RFs were trained and tested using the Weka toolkit! (Eiben
et al. 2016). We performed two types of experiments. In the first type, we used the
default parameter settings of the decision tree algorithm and the default settings for the
“standard parameters” of the decision tree and random forest algorithms. However, the

! Version 3.9, available at: https://www.cs.waikato.ac.nz/ml/weka/
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lexicographic versions of these two algorithms have a tie-threshold parameter, defined
later in Sect. 4.2. So, in this first type of experiment, we optimise only this non-stand-
ard tie-threshold parameter, for the lexicographic decision tree and random forest algo-
rithms, as described in Sect. 4.2. Since the standard (non-lexicographic) decision tree
and random forest algorithms do not have this tie-threshold parameter, in this first type
of experiment these standard algorithms do not have any parameter optimised.

In the second type of experiment, both the lexicographic and non-lexicographic ver-
sions of each algorithm (decision tree and random forest) have two parameters opti-
mised in controlled experiments, where each version of an algorithm is given the same
computational budget for parameter optimisation. To fix this computational budget, each
version of an algorithm optimises two parameters considering in total 10 combinations
of candidate values for those parameters (i.e. 10 algorithm configurations). The 10 com-
binations of candidate parameter values are evaluated using a well-known grid search,
via an internal cross-validation on the training set, i.e., the performance on that internal
cross-validation is used to select the parameter values with the best performance on
the current training set. Then, the chosen algorithm configuration is applied to the full
training set to learn a model that is evaluated on the test set. This process is repeated
for all training-test set pairs in the external cross-validation (i.e. this process performs
a “nested cross-validation” procedure). Note that test data is not used for optimising
parameters; test data is used only for measuring generalisation performance, as usual.

The default parameter settings on Weka for the chosen classifiers are: for deci-
sion trees, C = 0.25 (confidence factor used for pruning the trees), and M =2 (mini-
mum number of instances that can constitute a leaf node); for RFs ntrees = 100 (num-
ber of trees), minleafsamples = 1 (minimum number of instances in a leaf node) and
mitry = |log,(d)| + 1 (number of features randomly sampled to be used as candidate fea-
tures at each tree node), where the total number of features is d, and |x] is the “floor”
of x, i.e., the biggest integer which is smaller than or equal to x. In this second type of
experiment, the optimised parameters and their candidate values for each version of an
algorithm were as follows:

— Standard (non-lexicographic) decision tree: candidate C values: [0.1, 0.15, 0.2, 0.25,
0.3], candidate M values: [2, 5] (total computational budget: 10 models);

— Lexicographic decision tree: candidate C values: [0.15, 0.25], candidate tie-thresh-
old values: [0.01, 0.02, 0.03, 0.04, 0.05] (total computational budget: 10 models);

— Standard (non-lexicographic) random forest: candidate mtry values: |log,(d)] + 1,

2 % (|log,(d)] + 1), [0.5 * \/c_iJ [\/EJ, l2 * \/EJ], candidate minleafsamples values:
[1, 3] (total computational budget: 10 models);
— Lexicographic random forest: candidate mtry values: [|log,(d)]| + 1, [\/EJ], candi-

date tie-threshold values: [0.01, 0.02, 0.03, 0.04, 0.05] (total computational budget:
10 models);

The classifiers were evaluated using 4 metrics. These measures are formally defined as
follows, in terms of the numbers of True Positives (TP), False Positives (FP), False Neg-

atives (FN):

— Sensitivity (or Recall): a local metric of the true positive rate (given by Eq. 1, where
# denotes “the number of”). For problems where false negatives are the least desir-
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able outcome, such as clinical diagnosis applications, the ML algorithm needs to
maximise mainly Sensitivity.

— Specificity: a local metric that represents the true negative rate (given by Eq. 2). It is
a complementary measure to Sensitivity.

— Accuracy: the fraction of correct predictions made by the model over all predictions
(given by Eq. 3). This is a widely used global performance metric, however in highly
imbalanced datasets the majority class has a much bigger impact on Accuracy, which
can mask bad results for the minority class in a model.

— GMean: The geometric mean between Sensitivity and Specificity (given by Eq. 4).
This is another global performance metric, but it gives the exact same weight to both
classes regardless of the class distribution in the data.

Sensitivity = L 1

V= ¥TP + #FN M
o #IN
S, =
pecificity = 4 rp 3TN )
Accuracy = #TP + #TN .
#TP + #TN + #FP + #FN

GMean =+/Sensitivity * Specificity 4)

These metrics were chosen partially based on Malley et al. (2011, Chap. 4), which claim
that, for imbalanced biomedical data, models should be evaluated using “local” metrics
that consider their ability to predict each class separately (like Sensitivity and Specific-
ity) and at least one “global” metric of performance over both classes. The Accuracy is a
widely used measure of global importance, and we chose to add the GMean as a second
global measure because it assigns equal importance to the prediction of both minority-class
and majority-class instances, whilst the Accuracy assigns greater importance to the major-
ity class.

The experiments used the well-known 10-fold cross-validation procedure, and
report the average of these four performance metrics over the 10 test sets of the
cross-validation.

4 A lexicographic bi-objective function for selecting node-split
features in decision tree-based classifiers

The lexicographic split feature-selection adaptation for decision tree-based classifiers,
originally introduced in Ribeiro and Freitas (2020), consists of considering not only the
features’ information gain ratios but also their time points (wave ids) when choosing
the split feature inside a decision tree’s node, making the decision bi-objective. In this
article we report the results comparing the standard and modified versions of Random
Forests and J48 decision tree classifiers. Although this lexicographic approach has been
described in Ribeiro and Freitas (2020), we also describe it here in order to make this
current article self-contained.
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4.1 The rationale for a bi-objective split function

The modified split function works as follows. When choosing the feature to be used in a
node’s split, the decision trees in the adapted algorithms will consider maximising the gain
ratio as the primary objective and maximising the time-index of the features (ELSA wave
numbers) as the secondary objective. The rationale for this bi-objective feature evaluation
is that this adds a desirable bias favouring more recent information. This is based on the
heuristic that more recent values of biomedical features tend to be more useful for predict-
ing future occurrences of diseases than older values of the same features.

We believe this to be the case for longitudinal biomedical datasets in general. Intuitively,
the further in the past a feature value was measured, the less it is related to the class label.
However, we always prioritise gain ratio over the time-index, it remains the most important
criterion for improving predictive accuracy; whilst preferring more recent feature values as
a tie-breaking criterion is a heuristic for improving accuracy.

One limitation of the proposed heuristic with a bias favouring more recent features is
that, as any other heuristic for feature selection, it is not guaranteed to lead to better results
for all datasets. Note that, for some diseases such as dementia, early indications in biomedi-
cal variables might be helpful for prediction (Javeed et al. 2023), so removing older data
outright would not be advisable. Therefore, we keep all available data in the dataset, still
giving earlier data a chance to be selected by the split function (based on their information
gain ratio). The rationale for the bi-objective split is simply choosing more recent data in
cases where candidate features have equivalent information gain ratios.

Another argument for using the proposed lexicographic feature-selection criterion is
that it leads to classification models that are less dependent on older data. This is desirable
because longitudinal datasets created for classification problems, especially in the ageing
studies used as data sources in our experiments, tend to have more missing values in the
earlier waves. As many instances are added to the study as it has new waves added, and
instances from participants who left the study will not be present in the target wave (so
they don’t have a class value, and must be discarded for the classification datasets), the ten-
dency is that the closer to the target wave, the less likely a feature is to have a missing value
due to attrition.

4.2 Description of the lexicographic split function

In the standard J48 decision tree algorithm, the split-feature selection considers every fea-
ture of the dataset in each node of the tree, ordering them based on their Information gain
ratio g(f; ;) (feature i measured at time j) for that node, selecting the feature with the greater
gain value for splitting the data.

For the standard split-feature selection used by Random Trees in the RF algorithm,
instead of using all available features, the algorithm first randomly samples a set of candi-
date features S from the dataset (|S| = mtry, with mtry being a user-defined parameter for
how many features are sampled). Then, it selects, among the features in S, the one with the
greatest information gain ratio.

For the lexicographic split-feature selection approach, we define a threshold 4 as an
additional parameter, and consider two features equivalent when the difference between
their gain ratios is lower than this threshold. All eligible features (i.e., all features in J48
decision trees and the randomised pool of features sampled for the current node in Random
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Trees of RFs) that were considered equivalent to the initial best feature are compared based
on their time-indexes (wave id), and the most recent feature is selected. This process is
described in Algorithm 1 (Ribeiro and Freitas 2020). Note that, although we are consid-
ering the gain ratio function g(f;;) as the primary metric for selecting the split feature, it
could be replaced by other metrics such as the information gain.

Algorithm 1 The lexicographic split-feature selection function, applied at eachnode of a
decision tree. It receives a set of eligible features S and a user-specifiedtie-threshold ¢4, and
returns the selected splitfeature, based on gain ratio and thefeature’s time-index

1: function LexicographicSplitFeatureSelection(S,th)
2 S.DescendingOrder(gainratio)

3 split feature — S[0]

4: CandidateFeatures.add(split feature)

5: pos «— 1

6: while |g(splitfeature) — g(S[pos])| < th AND pos < S.length do
7 CandidateFeatures.add(S[pos])

8: pos + +

9: end while

10: Candidate Features. DescendingOrder(time-index)
11: splitfeature — CandidateFeatures|0]

12: return splitfeature

13: end function

The disadvantage of the lexicographic approach is the additional parameter to be
selected by the user, the tie-definition threshold th. As an alternative to a user-defined
parameter, we propose automating the choice of tie-threshold value by performing an inter-
nal 5-fold cross-validation using only the training set instances. In the experiments where
only this tie-threshold parameter is optimised (i.e. the other decision tree/random forest
parameters are left with their default values), this internal cross-validation creates clas-
sifiers using 11 possible threshold values (from 0.0 to 0.05, with 0.005 increments), and
chooses the value that yields the model with the best average Geometric Mean of Sensitiv-
ity and Specificity in the internal cross-validation (accessing the training set only). We use
these 11 candidate tie-threshold values as they worked well in Ribeiro and Freitas (2020).
Note that, in another type of experiment used in this current work, only 5 (rather than 11)
candidate tie-threshold values are considered because the algorithm has to spend part of its
“parameter optimisation budget” optimising another parameter, as described in Sect. 3.2.

Note also that a #h value of 0.0 does not mean that the lexicographic feature-selection
criterion would not be applied (i.e., two features would never be considered tied). The
information gain ratio values of different candidate features are often very close, with dif-
ferences small enough that a subtraction operation in Java (the programming language used
in our code) would return a 0 value. For nodes in lower depths of a decision tree, where
the number of instances in the dataset is very low, exact ties happen often and are detected
even with a 0.0 tie-threshold.

4.3 An example of the lexographic feature selection process

As an example of how the lexicographic feature-split approach works, consider a set S
(the set of eligible features to be selected on a given node split) consisting of a feature
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Jf1.1 (feature 1 measured at time point 1) with a gain ratio of g(f; ;) = 0.7, and a feature f, ,
with a gain ratio of g(f,,) = 0.67. In the standard decision tree algorithm, f; ; would be
selected for the split as it has the greater gain value. In the lexicographic approach, that
depends on the value of #h. If th = 0.05, we have |g(f| ;) — g(f,,)| < th, so the features’
gain ratios are considered equivalent and f, , is selected instead, because it was measured
at time point 2 instead of 1 (giving it a greater time-index value). However, if th = 0.01, we
have |g(f] ;) — g(f5,)| > th, so the features’ gain ratios are not considered equivalent, and
the selection proceeds normally, selecting f| ; based on its higher gain ratio. In case of a tie
for both the gain ratio value and the time-index criterion, a random selection is performed
(the algorithm’s default tie break).

5 Experimental results

In this Section we report on experiments comparing using our proposed lexicographic bi-
objective split-feature selection approach (named Lexic in the result Tables) to using the
baseline classification algorithms, with no changes (named NoLexic in the result Tables).
As mentioned, we performed experiments using both Random Forests (Sects. 5.1 and
5.2) and J48 decision tree (Sects. 5.3 and 5.4) classifiers, both used in two scenarios: (a)
using the classifiers with their default parameter settings in general, optimising only the
tie-threshold of the Lexic classifier as an exception; and (b) optimising two parameters of
the Lexic and NoLexic classifiers with a grid search via an internal cross-validation on the
training set. These experiments aim to investigate the impact of our proposal on ensem-
ble classifiers and single decision-tree classifiers. For details of which parameters are opti-
mised for each version (Lexic and NoLexic) of each algorithm (decision tree and random
forest), see Sects. 3.2 and 4.2. All result tables show, for each performance metric, the
average and the standard error over the 10-fold cross-validation for each dataset, then the
average ranks obtained by each algorithm for each type of data source (ELSA-nurse and
ELSA-core) and overall (for the 20 datasets) in the last 3 rows, with the best (smallest)
average rank in boldface.

5.1 Random forest results optimising only lexicographic threshold

The results of our experiments comparing the standard (non-lexicograpnic) and the lexi-
cographic Random Forests with default parameter settings (except that the lexicographic
Random Forest optimises the tie-threshold via internal cross-validation) are presented in
Tables 2 and 3, respectively.

These results show an overall trend of the Lexic approach learning models that have
better or equivalent predictive accuracy to the NoLexic approach. Considering the ELSA-
core datasets, with 7 feature waves (that are 2 years apart from each other), Lexic wins for
all 4 performance metrics with substantial differences in the average ranks. The average
rank difference is particularly large for the Geometric Mean of Sensitivity and Specific-
ity (GMean), where the lexicographic and non-lexicographic versions of Random Forest
achieved the average ranks of 1.1 and 1.9, respectively.

Regarding the ELSA-nurse datasets, with 4 feature waves (that are 4 years apart from
each other, instead of 2 years apart), the results are slightly positive — Lexic wins for Sensi-
tivity and Accuracy, but loses for Specificity and ties for GMean.
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Table 2 Sensitivity and Specificity results for Lexic and NoLexic random forests, optimising only the
parameter tie-threshold for Lexic random forest

Datasets Sensitivity Specificity

Lexic NoLexic Lexic NoLexic
EN_Angina 0.693 + 0.035 0.684 + 0.028 0.69 + 0.007 0.702 + 0.008
EN_Arthritis 0.669 + 0.009 0.671 + 0.007 0.589 + 0.07 0.586 + 0.008
EN_Cataract 0.63 +0.012 0.62 +0.013 0.72 + 0.008 0.723 + 0.008
EN_Dementia 0.74 + 0.035 0.729 + 0.027 0.723 + 0.005 0.709 + 0.006
EN_Diabetes 0.843 + 0.007 0.841 + 0.009 0.863 + 0.006 0.866 + 0.008
EN_HBP 0.647 + 0.008 0.651 £ 0.012 0.749 + 0.005 0.749 + 0.006
EN_HeartAttack 0.703 + 0.021 0.7 +0.017 0.741 £ 0.009 0.738 + 0.009
EN_Osteoporosis 0.654 + 0.016 0.649 + 0.017 0.716 + 0.007 0.696 + 0.006
EN_Parkinsons 0.634 + 0.005 0.628 + 0.075 0.636 + 0.006 0.712 + 0.007
EN_Stroke 0.677 + 0.024 0.67 +0.023 0.713 + 0.007 0.724 + 0.008
EC_Angina 0.709 + 0.02 0.711 + 0.026 0.737 + 0.003 0.723 + 0.004
EC_Arthritis 0.752 + 0.006 0.749 + 0.005 0.719 + 0.008 0.717 £ 0.008
EC_Cataract 0.625 + 0.009 0.609 + 0.01 0.715 + 0.007 0.717 £ 0.004
EC_Dementia 0.768 + 0.022 0.764 + 0.032 0.776 + 0.005 0.77 £ 0.003
EC_Diabetes 0.672 + 0.007 0.674 + 0.009 0.764 + 0.004 0.747 + 0.005
EC_HBP 0.633 + 0.01 0.641 + 0.007 0.665 + 0.005 0.662 + 0.007
EC_HeartAttack 0.683 +0.033 0.678 +0.03 0.689 + 0.004 0.692 + 0.004
EC_Osteoporosis 0.701 £ 0.018 0.7 £ 0.017 0.677 + 0.004 0.676 + 0.003
EC_Parkinsons 0.701 £ 0.072 0.697 + 0.062 0.733 + 0.005 0.693 + 0.004
EC_Stroke 0.697 + 0.002 0.694 + 0.019 0.729 + 0.005 0.721 + 0.005
AvgRank ELSA-nurse 1.20 1.80 1.55 1.45
AvgRank ELSA-core 1.30 1.70 1.20 1.80
AvgRank Overall 1.25 1.75 1.38 1.63

We compared the ranks of the Lexic and NoLexic approaches for each performance
metric using the Wilcoxon signed-rank test (Wilcoxon 1992). For this analysis, we ran the
Wilcoxon test over the results for all 20 datasets, i.e. considering the ranks of the Lexic and
NoLexic versions of RF for each data set separately. In this overall results analysis, none
of the p-values were significant. When considering only the results for the 10 ELSA-nurse
datasets, Lexic was significantly better than NoLexic for Sensitivity (p-value: 0.0248) and
Accuracy (p-value: 0.0170). In the 10 ELSA-core datasets there was a significant differ-
ence in Specificity (p-value: 0.0364) and GMean (p-value: 0.0142), both in favour of Lexic.

We also measured the effect the proposed lexicographic feature-selection approach had
on the resulting Random Forest models, i.e., how different the models generated with the
Lexic approach were from the the NoLexic models. For this, we counted in each RF model
the proportion of nodes where a tie happened (nodes where more than one candidate fea-
ture had equivalent information gain ratios, according to the tie-threshold parameter) and
the proportion of nodes where a replacement happened (nodes where the tie led to a differ-
ent, more recent feature being selected by the Lexic approach).

In the ELSA-nurse models we had an average of 50.3% of nodes where a tie occurred
(at least one candidate feature had an equivalent information gain ratio to the first-ranked
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Table 3 Accuracy and Geometric Mean of Sensitivity and Specificity (GMean) for Lexic and NoLexic ran-
dom forests: optimising only the tie-threshold parameter for Lexic random forests

Datasets Accuracy GMean

Lexic NoLexic Lexic NoLexic
EN_Angina 0.693 + 0.007 0.684 + 0.008 0.6920.019 0.693 + 0.015
EN_Arthritis 0.635 + 0.004 0.635 + 0.003 0.628 + 0.004 0.627 = 0.003
EN_Cataract 0.660 + 0.005 0.654 + 0.004 0.674 + 0.005 0.67 + 0.005
EN_Dementia 0.740 + 0.005 0.729 + 0.005 0.732 £ 0.017 0.719 £ 0.011
EN_Diabetes 0.845 + 0.005 0.845 + 0.005 0.853 + 0.006 0.855 + 0.007
EN_HBP 0.688 + 0.004 0.690 =+ 0.005 0.696 + 0.004 0.698 + 0.005
EN_HeartAttack 0.705 + 0.008 0.702 + 0.009 0.722 +£ 0.011 0.719 £ 0.011
EN_Osteoporosis 0.660 + 0.007 0.654 + 0.005 0.684 + 0.008 0.672 + 0.008
EN_Parkinsons 0.634 + 0.005 0.629 + 0.006 0.635 + 0.021 0.669 + 0.039
EN_Stroke 0.679 + 0.007 0.674 + 0.008 0.695 + 0.014 0.697 + 0.013
EC_Angina 0.710 = 0.003 0.711 + 0.004 0.723 + 0.009 0.717 £ 0.013
EC_Arthritis 0.739 + 0.005 0.736 + 0.004 0.735 + 0.005 0.733 +£ 0.004
EC_Cataract 0.651 + 0.005 0.641 + 0.005 0.668 + 0.005 0.661 + 0.006
EC_Dementia 0.768 + 0.005 0.764 + 0.003 0.772 £ 0.011 0.767 £ 0.015
EC_Diabetes 0.684 + 0.004 0.684 + 0.005 0.717 + 0.005 0.71 £ 0.05
EC_HBP 0.645 + 0.006 0.649 + 0.006 0.649 + 0.007 0.651 + 0.006
EC_HeartAttack 0.684 + 0.003 0.679 + 0.004 0.686 + 0.016 0.685 + 0.015
EC_Osteoporosis 0.699 + 0.004 0.698 + 0.003 0.689 + 0.009 0.668 + 0.009
EC_Parkinsons 0.702 + 0.005 0.697 + 0.004 0.717 +£ 0.038 0.695 + 0.032
EC_Stroke 0.699 + 0.005 0.695 + 0.005 0.713 £ 0.011 0.707 + 0.01
AvgRank ELSA-nurse 1.20 1.80 1.50 1.50
AvgRank ELSA-core 1.25 1.75 1.10 1.90
AvgRank Overall 1.23 1.78 1.30 1.70

feature), making them eligible for changing the split feature based on the secondary objec-
tive, the time-index. About half of these nodes switched the chosen feature for a more
recent feature, resulting in final models that were 26.6% different from the NoLexic models
(learned using a standard feature-selection function). In the ELSA-core datasets we had
42.9% average nodes with ties, leading to a 23.1% average difference in the models.

5.2 Random forest results optimising two parameters

The results of our experiments comparing the standard (non-lexicographic) and lexico-
graphic Random Forests, each with two parameters optimised via internal cross-validation,
are presented in Tables 4 and 5. Recall that the parameters optimised by the NoLexic Ran-
dom Forest were mtry and minleafsamples, whilst the parameters optimised by Lexic Ran-
dom Forest were mtry and the tie-threshold (see Subsection 3.2), with both Random Forest
versions using the same computational budget for parameter optimisation.

Overall the Lexic Random Forest outperformed the NoLexic Random Forest in these
experiments. Notably, although both methods had similar Sensitivity results (aver-
age ranks of 1.45 for Lexic and 1.55 for NoLexic), most models (17/20) had higher

@ Springer



A lexicographic optimisation approach to promote more recent... Page 150f29 84

Table 4 Sensitivity and Specificity results for Lexic and NoLexic random forests: optimising two param-
eters for both Lexic and NoLexic random forests

Datasets Sensitivity Specificity

Lexic NoLexic Lexic NoLexic
EN_Angina 0.706 + 0.033 0.699 + 0.038 0.683 + 0.006 0.681 + 0.008
EN_Arthritis 0.598 + 0.007 0.593 + 0.007 0.672 + 0.009 0.662 + 0.009
EN_Cataract 0.72 £ 0.012 0.722 + 0.012 0.624 + 0.009 0.617 = 0.007
EN_Dementia 0.733 + 0.037 0.737 + 0.04 0.735 £ 0.005 0.734 + 0.007
EN_Diabetes 0.858 + 0.009 0.859 + 0.013 0.847 + 0.006 0.844 + 0.006
EN_HBP 0.751 + 0.007 0.759 £ 0.01 0.648 + 0.006 0.644 + 0.008
EN_HeartAttack 0.718 + 0.021 0.724 £ 0.014 0.698 + 0.007 0.692 + 0.008
EN_Osteoporosis 0.707 + 0.015 0.71 £ 0.017 0.652 + 0.007 0.649 + 0.006
EN_Parkinsons 0.71 + 0.081 0.68 + 0.072 0.631 + 0.009 0.616 + 0.011
EN_Stroke 0.691 + 0.026 0.684 + 0.021 0.673 + 0.007 0.653 +0.018
EC_Angina 0.738 + 0.034 0.736 + 0.025 0.713 + 0.004 0.708 + 0.004
EC_Arthritis 0.712 + 0.006 0.718 + 0.006 0.748 + 0.007 0.747 £+ 0.005
EC_Cataract 0.728 + 0.008 0.718 £ 0.009 0.625 + 0.004 0.621 + 0.004
EC_Dementia 0.827 + 0.032 0.772 £ 0.034 0.767 + 0.004 0.761 + 0.005
EC_Diabetes 0.754 + 0.007 0.746 + 0.008 0.672 + 0.005 0.673 + 0.004
EC_HBP 0.661 + 0.007 0.677 + 0.007 0.638 + 0.004 0.638 + 0.005
EC_HeartAttack 0.699 + 0.036 0.683 + 0.029 0.683 + 0.003 0.685 + 0.003
EC_Osteoporosis 0.696 + 0.022 0.666 + 0.017 0.699 + 0.005 0.697 + 0.003
EC_Parkinsons 0.637 + 0.081 0.713 £ 0.055 0.689 + 0.005 0.685 + 0.007
EC_Stroke 0.72 £ 0.02 0.693 + 0.021 0.689 + 0.006 0.695 + 0.006
AvgRank ELSA-nurse 1.6 14 1 2
AvgRank ELSA-core 1.3 1.7 1.3 1.7
AvgRank Overall 1.45 1.55 1.15 1.85

Specificity values in the Lexic models. Regarding the global performance metrics, Lexic
performed better in most cases, only tying for the average Accuracy rank in ELSA-core
datasets. The Wilcoxon signed-ranked test for this set of experiments had three sig-
nificant results when comparing all 20 datasets: Specificity (p-value: 0.001), Accuracy
(p-value: 0.00453) and GMean (p-value: 0.01743), all in favour of the Lexic approach.
The non-significant result for Sensitivity was p-value: 0.119. Regarding the impact of
the Lexic approach in the resulting models, there was no significant change from the
results reported in the previous subsection, with the resulting RFs having about 25%
nodes with a more recent feature being selected after a tie.

The results of this current subsection and the previous subsection corroborate the
core principle of the lexicographic feature-selection approach, that adding a bias in
favour of more recent features could increase predictive accuracy. However, even though
there was clearly a significant change in the learned Random Forest models, across all
datasets, the resulting reflection on predictive accuracy is not expected to be large. This
is because the split features eligible for replacement are, by design, equivalent from
each other in terms of information gain. However, in these experiments the increased
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Table 5 Accuracy and Geometric Mean of Sensitivity and Specificity (GMean) for Lexic and NoLexic ran-
dom forests: optimising two parameters for both Lexic and NoLexic random forests

Datasets Accuracy GMean

Lexic NoLexic Lexic NoLexic
EN_Angina 0.684 + 0.007 0.681 + 0.008 0.693 + 0.018 0.688 + 0.021
EN_Arthritis 0.64 + 0.006 0.633 + 0.004 0.633 + 0.006 0.627 + 0.004
EN_Cataract 0.656 + 0.006 0.652 + 0.004 0.67 = 0.005 0.667 + 0.005
EN_Dementia 0.735 + 0.005 0.734 + 0.006 0.732 £ 0.018 0.732 £ 0.019
EN_Diabetes 0.848 + 0.006 0.846 + 0.006 0.852 + 0.006 0.851 + 0.008
EN_HBP 0.69 + 0.004 0.69 + 0.006 0.697 + 0.004 0.699 + 0.006
EN_HeartAttack 0.699 + 0.007 0.693 + 0.008 0.707 £ 0.011 0.707 + 0.007
EN_Osteoporosis 0.657 £ 0.006 0.655 + 0.005 0.679 + 0.008 0.678 + 0.008
EN_Parkinsons 0.631 + 0.008 0.616 +0.011 0.654 + 0.04 0.634 + 0.037
EN_Stroke 0.673 + 0.007 0.655 + 0.016 0.681 +0.014 0.667 + 0.014
EC_Angina 0.714 + 0.003 0.709 + 0.003 0.724 + 0.015 0.721 £ 0.011
EC_Arthritis 0.734 + 0.004 0.735 + 0.003 0.73 + 0.004 0.732 + 0.003
EC_Cataract 0.656 + 0.004 0.65 + 0.003 0.675 + 0.005 0.668 + 0.004
EC_Dementia 0.768 + 0.004 0.761 + 0.005 0.795 £ 0.016 0.765 £ 0.015
EC_Diabetes 0.683 + 0.004 0.683 + 0.004 0.712 + 0.004 0.709 + 0.005
EC_HBP 0.647 + 0.004 0.653 + 0.005 0.649 + 0.004 0.657 + 0.005
EC_HeartAttack 0.684 + 0.003 0.685 + 0.003 0.689 + 0.018 0.682 + 0.014
EC_Osteoporosis 0.699 + 0.005 0.695 + 0.004 0.697 + 0.012 0.681 + 0.009
EC_Parkinsons 0.689 + 0.005 0.685 + 0.007 0.649 + 0.046 0.694 + 0.027
EC_Stroke 0.691 + 0.007 0.695 + 0.006 0.704 + 0.012 0.693 + 0.011
AvgRank ELSA-nurse 1.1 1.9 1.2 1.8
AvgRank ELSA-core 1.5 1.5 1.3 1.7
AvgRank Overall 1.3 1.7 1.25 1.75

predictive accuracy associated with the lexicographic approach was enough to lead to
statistically significant results in most cases.

5.3 Decision Tree Results Optimising Only Lexicographic Threshold

The results of our experiments comparing the standard (non-lexicographic) and the lexi-
cographic J48 decision trees with default parameter settings (except that the lexicographic
J48 decision tree optimises the tie-threshold via internal cross-validation) are presented in
Tables 6 and 7.

In these experiments the predictive performances of both the Lexic and NoLexic ver-
sions of J48 were almost equivalent, with slightly smaller (better) average rank for Lexic in
Sensitivity and Accuracy and ties for Specificity and GMean, when considering the over-
all average ranks over the 20 datasets. Considering each type of data source separately,
for ELSA-nurse datasets we have Lexic with smaller (better) average ranks for Sensitiv-
ity, Accuracy and GMean, and a tie for Specificity. Surprisingly, for ELSA-core datasets
NoLexic wins by a small margin for Sensitivity, Accuracy and GMean, and also ties for
Specificity.
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Table 6 Sensitivity and Specificity results for Lexic and NoLexic decision trees, optimising only the param-
eter tie-threshold for Lexic decision tree

Dataset Sensitivity Specificity

Lexic NoLexic Lexic NoLexic
EN_Angina 0.617 + 0.041 0.608 + 0.039 0.574 + 0.009 0.589 + 0.001
EN_Arthritis 0.561 + 0.009 0.57 + 0.007 0.571 + 0.007 0.56 + 0.006
EN_Cataract 0.596 + 0.014 0.598 + 0.016 0.585 + 0.008 0.578 £ 0.011
EN_Dementia 0.683 + 0.04 0.679 + 0.039 0.649 + 0.01 0.622 + 0.008
EN_Diabetes 0.808 + 0.009 0.804 + 0.01 0.797 £+ 0.007 0.805 + 0.007
EN_HBP 0.618 + 0.008 0.587 £ 0.012 0.616 + 0.005 0.603 + 0.008
EN_HeartAttack 0.641 + 0.025 0.646 + 0.025 0.621 + 0.007 0.638 +£0.013
EN_Osteoporosis 0.614 + 0.029 0.594 + 0.015 0.612 + 0.009 0.63 + 0.004
EN_Parkinsons 0.646 + 0.074 0.633 + 0.058 0.636 + 0.018 0.5 +0.025
EN_Stroke 0.629 + 0.022 0.629 + 0.03 0.57 + 0.008 0.575 + 0.009
EC_Angina 0.675 + 0.027 0.674 + 0.024 0.632 + 0.011 0.635 + 0.007
EC_Arthritis 0.724 + 0.005 0.706 + 0.007 0.665 + 0.005 0.661 + 0.008
EC_Cataract 0.646 + 0.013 0.661 +0.011 0.652 + 0.006 0.642 + 0.007
EC_Dementia 0.715 + 0.031 0.747 £ 0.022 0.789 + 0.008 0.795 £ 0.01
EC_Diabetes 0.652 + 0.016 0.673 + 0.01 0.686 + 0.005 0.689 + 0.005
EC_HBP 0.621 +0.011 0.614 + 0.012 0.598 + 0.008 0.592 + 0.006
EC_HeartAttack 0.636 + 0.024 0.631 +0.028 0.659 + 0.008 0.634 + 0.008
EC_Osteoporosis 0.68 + 0.03 0.684 + 0.024 0.661 + 0.006 0.638 + 0.01
EC_Parkinsons 0.612 + 0.068 0.657 + 0.056 0.64 +0.018 0.676 + 0.019
EC_Stroke 0.644 + 0.017 0.649 + 0.026 0.6 +£0.011 0.666 + 0.005
AvgRank ELSA-nurse 1.35 1.65 1.5 1.5
AvgRank ELSA-core 1.6 1.4 1.5 1.5
AvgRank Overall 1.48 1.53 1.5 1.5

None of the Wilcoxon signed rank tests were significant for this set of experiments, but
notably the largest differences in average ranks were found in the ELSA-nurse results in
favour of the Lexic approach (for the Sensitivity and Accuracy metrics).

Regarding the impact of the lexicographic approach on the resulting decision trees, ties
happened much more often as every single feature is considered at each node, and replace-
ments also happened more often: for about of 30% of the nodes. We observed that the tree
size (number of nodes and leaf nodes) was not significantly changed by using the lexico-
graphic approach (i.e., no clear pattern, some trees were slightly larger or smaller when
applying the changed split function).

5.4 Decision Tree Results Optimising Two Parameters

The results of our experiments comparing the standard (non-lexicographic) and lexico-
graphic J48 decision trees, each with two parameters optimised via internal cross-valida-
tion, are shown in Tables 8 and 9. Recall that the parameters optimised by the NoLexic J48
decision trees were the pruning confidence factor C and minimum number of instances in
a leaf node, M; whilst the parameters optimised by Lexic J48 decision trees were C and the
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Table 7 Accuracy and Geometric Mean of Sensitivity and Specificity (GMean) for Lexic and NoLexic
decision trees: optimising only the tie-threshold parameter for Lexic decision trees

Dataset Accuracy GMean

Lexic NoLexic Lexic NoLexic
EN_Angina 0.615 + 0.009 0.608 + 0.01 0.595 +0.02 0.599 + 0.02
EN_Arthritis 0.565 + 0.006 0.566 + 0.004 0.566 + 0.006 0.565 + 0.004
EN_Cataract 0.592 + 0.004 0.592 + 0.007 0.59 + 0.005 0.588 + 0.006
EN_Dementia 0.683 + 0.009 0.678 + 0.007 0.666 + 0.018 0.65 + 0.021
EN_Diabetes 0.806 + 0.006 0.804 + 0.006 0.802 + 0.007 0.805 + 0.006
EN_HBP 0.617 £ 0.004 0.594 + 0.006 0.617 £ 0.004 0.595 + 0.007
EN_HeartAttack 0.640 + 0.007 0.646 + 0.012 0.631 £0.013 0.642 + 0.012
EN_Osteoporosis 0.613 £ 0.006 0.598 + 0.004 0.613 +0.011 0.612 + 0.008
EN_Parkinsons 0.646 + 0.018 0.632 + 0.024 0.641 + 0.039 0.563 + 0.025
EN_Stroke 0.626 + 0.007 0.625 + 0.008 0.599 + 0.012 0.601 + 0.014
EC_Angina 0.673 + 0.01 0.672 + 0.006 0.653 + 0.012 0.654 + 0.012
EC_Arthritis 0.700 £ 0.002 0.688 + 0.006 0.694 + 0.002 0.683 + 0.006
EC_Cataract 0.647 + 0.006 0.655 + 0.004 0.649 + 0.007 0.651 + 0.005
EC_Dementia 0.717 + 0.008 0.748 + 0.01 0.751 £ 0.015 0.771 £ 0.012
EC_Diabetes 0.656 + 0.005 0.675 + 0.005 0.669 + 0.008 0.681 + 0.006
EC_HBP 0.612 + 0.002 0.606 + 0.004 0.609 + 0.002 0.603 + 0.005
EC_HeartAttack 0.637 + 0.007 0.631 + 0.007 0.647 + 0.01 0.632 + 0.014
EC_Osteoporosis 0.678 + 0.006 0.680 + 0.01 0.67 £ 0.015 0.661 + 0.015
EC_Parkinsons 0.612 +0.018 0.658 + 0.019 0.626 + 0.044 0.667 + 0.028
EC_Stroke 0.642 + 0.001 0.650 + 0.005 0.622 + 0.008 0.658 + 0.014
AvgRank ELSA-nurse 1.25 1.75 14 1.6
AvgRank ELSA-core 1.60 1.40 1.6 14
AvgRank Overall 1.43 1.58 1.5 1.5

tie-threshold (Sect. 3.2), with both J48 versions using the same computational budget for
parameter optimisation.

In these experiments, there was a clear trend against the Lexic approach. The NoLexic
method had lower (better) average ranks in all cases, and only for Specificity the p-value
of the Wilcoxon signed-rank test comparing all 20 results was not significant (p-value:
0.117). The Significant p-values for Sensitivity, Accuracy and GMean were 0.0049, 0.002
and 0.0025, respectively. We believe this is due to the decision tree’s volatility and sensibil-
ity to parameter tuning, which will be discussed in more detail in the Conclusions section.
From these results we can conclude that a single decision-tree classifier does not benefit
from the lexicographic feature-selection approach, in regards to predictive accuracy, as the
RF does.

In this set of experiments, regarding the perceived impact of the lexicographic split in
the resulting models, there was no significant change from the results reported in the previ-
ous subsection. That is, for about 30% of the decision tree nodes a more recent feature was
selected after candidate features tied with similar information gain ratios.

In summary, the lexicographic feature-selection approach has a significant impact on
how recent the selected features of a decision tree-based model are, resulting in decision
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Table 8 Sensitivity and Specificity results for Lexic and NoLexic decision trees: optimising two parameters
for both Lexic and NoLexic decision trees

Dataset Sensitivity Specificity

Lexic NoLexic Lexic NoLexic
EN_Angina 0.622 + 0.039 0.615 + 0.044 0.599 + 0.01 0.623 +0.013
EN_Arthritis 0.582 + 0.008 0.583 + 0.009 0.575 + 0.006 0.572 + 0.007
EN_Cataract 0.581 + 0.007 0.62 + 0.023 0.622 + 0.011 0.608 + 0.011
EN_Dementia 0.66 + 0.039 0.66 + 0.039 0.686 + 0.008 0.701 £ 0.013
EN_Diabetes 0.792 £ 0.011 0.827 + 0.014 0.813 + 0.007 0.82 + 0.009
EN_HBP 0.62 +£0.013 0.644 +£0.014 0.626 + 0.009 0.622 + 0.01
EN_HeartAttack 0.627 + 0.025 0.661 + 0.034 0.646 +0.013 0.633 £ 0.01
EN_Osteoporosis 0.605 + 0.015 0.634 + 0.023 0.609 + 0.004 0.629 + 0.012
EN_Parkinsons 0.685 + 0.056 0.685 + 0.056 0.608 + 0.019 0.608 + 0.019
EN_Stroke 0.647 £ 0.03 0.618 + 0.036 0.629 + 0.009 0.643 +0.011
EC_Angina 0.64 + 0.024 0.612 + 0.038 0.671 + 0.006 0.677 £ 0.012
EC_Arthritis 0.686 + 0.01 0.685 + 0.008 0.722 + 0.009 0.732 + 0.007
EC_Cataract 0.644 +0.013 0.75 £ 0.013 0.642 + 0.008 0.619 + 0.008
EC_Dementia 0.801 + 0.027 0.821 + 0.04 0.697 £ 0.011 0.7+£0.014
EC_Diabetes 0.687 + 0.01 0.703 £ 0.014 0.663 + 0.005 0.675 + 0.007
EC_HBP 0.622 + 0.009 0.635 + 0.009 0.627 + 0.004 0.636 + 0.007
EC_HeartAttack 0.606 + 0.028 0.657 + 0.028 0.629 + 0.008 0.618 + 0.011
EC_Osteoporosis 0.61 +0.024 0.654 + 0.017 0.683 + 0.01 0.698 + 0.014
EC_Parkinsons 0.603 + 0.058 0.603 + 0.058 0.683 + 0.025 0.68 + 0.024
EC_Stroke 0.567 + 0.026 0.628 + 0.014 0.662 + 0.005 0.661 + 0.009
AvgRank ELSA-nurse 1.7 1.3 1.55 1.45
AvgRank ELSA-core 1.75 1.25 1.6 14
AvgRank Overall 1.725 1.275 1.575 1.425

trees and Random Forests where on average 25-30% of the nodes have split features
based on more recent data.

For RF classifiers, the positive impact of the lexicographic split was clear, as it
increased predictive performance in most cases, with several statistically significant
results. Hence, we recommend using the lexicographic approach with tree-ensemble
classifiers such as RF.

For decision trees, however, the Lexic approach optimising only the tie-threshold pro-
duced decision trees with predictive accuracy comparable to the trees produced by the
NoLexic approach without parameter optimisation. However, when both the Lexic and
NoLexic J48 decision trees were allowed to optimise two parameters with the same com-
putational budget, the NoLexic approach outperformed the Lexic approach, with statistical
significance in most cases. However, the use of the lexicographic feature-selection criterion
in decision tree classifiers applied to longitudinal could still be beneficial for other rea-
sons (beyond accuracy), e.g. to learn decision tree models with more recent features, which
could be more easily acceptable by users (considering that, for most diseases, a diagno-
sis based on recent medical tests seems more meaningful than a diagnosis based on older
tests).
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Table 9 Accuracy and the Geometric Mean of Sensitivity and Specificity (GMean) for Lexic and NoLexic
decision trees: optimising two parameters for both Lexic and NoLexic decision trees

Datasets Accuracy GMean

Lexic NoLexic Lexic NoLexic
EN_Angina 0.6 +0.01 0.622 + 0.012 0.608 + 0.02 0.614 + 0.022
EN_Arthritis 0.578 + 0.004 0.577 + 0.007 0.578 + 0.004 0.577 + 0.007
EN_Cataract 0.609 + 0.008 0.612 + 0.005 0.601 + 0.006 0.612 + 0.008
EN_Dementia 0.686 + 0.007 0.7 +0.012 0.67 + 0.021 0.677 = 0.02
EN_Diabetes 0.811 £ 0.006 0.822 + 0.008 0.802 + 0.006 0.823 + 0.008
EN_HBP 0.624 + 0.007 0.631 + 0.006 0.622 + 0.007 0.632 + 0.006
EN_HeartAttack 0.645 + 0.012 0.634 + 0.008 0.634 +£0.012 0.644 +0.014
EN_Osteoporosis 0.608 + 0.004 0.629 + 0.011 0.606 + 0.008 0.63 +£0.012
EN_Parkinsons 0.609 + 0.019 0.609 + 0.019 0.64 + 0.028 0.64 + 0.028
EN_Stroke 0.63 + 0.008 0.641 + 0.01 0.636 + 0.014 0.627 + 0.017
EC_Angina 0.67 + 0.006 0.675 +0.011 0.654 + 0.012 0.639 + 0.017
EC_Arthritis 0.708 + 0.005 0.714 + 0.005 0.703 + 0.005 0.708 + 0.005
EC_Cataract 0.643 + 0.004 0.658 + 0.005 0.642 + 0.004 0.681 + 0.005
EC_Dementia 0.699 + 0.011 0.702 + 0.013 0.746 + 0.012 0.755 £ 0.017
EC_Diabetes 0.667 + 0.005 0.679 + 0.005 0.675 + 0.006 0.689 + 0.005
EC_HBP 0.625 + 0.005 0.636 + 0.006 0.624 + 0.005 0.635 + 0.006
EC_HeartAttack 0.627 + 0.007 0.62 + 0.01 0.615 +0.014 0.635 + 0.012
EC_Osteoporosis 0.677 + 0.01 0.694 + 0.013 0.645 + 0.015 0.675 + 0.011
EC_Parkinsons 0.683 + 0.024 0.68 + 0.024 0.631 + 0.025 0.629 + 0.025
EC_Stroke 0.657 + 0.005 0.659 + 0.009 0.611 +0.014 0.644 + 0.008
AvgRank ELSA-nurse 1.75 1.25 1.75 1.25
AvgRank ELSA-core 1.8 1.2 1.8 1.2
AvgRank Overall 1.775 1.225 1.775 1.225

6 Interpreting the most accurate classification models

In this Section we will discuss what insight we can get from analysing our classification
models, by analysing the best RF models learned from our datasets. Before proceeding,
it is important to explain why we chose to interpret RF models, rather than decision
trees, since decision trees are a directly interpretable type of model representation in
general, due to their graphical nature (Quinlan 1993; Freitas 2014). Our motivation for
only analysing the best RF models is twofold. First, the decision trees in our models
tended to be too large for interpretation; and second, the RF models substantially out-
performed the decision trees in terms of predictive performance. We believe it is prefer-
able in this case to interpret the best models in terms of predictive performance, rather
than arguably more interpretable models with sub-optimal performance.

For RF models, directly interpreting each random tree in the forest is not feasible,
due to the large number of trees. However, we can calculate feature importance meas-
ures such as the average value of the information gain ratio (entropy metric used in our
RF models) across the nodes where the feature was selected. Hence, we can indirectly
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discuss how the RF models make predictions by reporting the most important features
for classification across all trees in the forest.

For our analysis in this Section we report the most important features in the best RF
models for our datasets, where these “best models” were selected as follows. First, we
selected the datasets that, over all four experimental setups (Lexic vs NoLexic, optimis-
ing only Lexic tie-threshold vs optimising two parameters), had at least one result above a
minimum threshold of 0.7 average GMean. Then, we selected the best model obtained for
each of these datasets. We focus here on the GMean because it assigns equal importance
to maximise the predictive accuracy for both the majority and minority classes, unlike the
Accuracy measure, which unduly assigns greater importance to the majority class.

This led to the selection of 9 models, all using random forests: 3 models from ELSA-
nurse datasets and 6 from ELSA-core datasets. In 8 of these 9 selected datasets the Lexic
version of RF outperformed the NoLexic version; the only exception was the model for the
ELSA-nurse Diabetes dataset in Table 3, where NoLexic had a 0.855 average GMean and
Lexic had 0.853, a very small difference of 0.002. For consistency, we chose to interpret
only models learned by the Lexic version of RFs.

In the second step of this analysis, for each of the 9 selected datasets, we trained a new
Lexic RF model using the entire dataset (i.e., no training and test set division), to ensure
that the models interpreted in this analysis would consider all available data, maximising
their quality. As done earlier, we coped with the imbalanced classes by training the models
using the Balanced Random Forest undersampling approach, meaning each random tree
in the forest is learned from a bootstrap sample which is undersampled to a 1:1 ratio of
instances of both classes. The datasets had their missing values replaced in a preprocessing
phase as mentioned earlier. The parameter values for the RFs optimising two parameters
were those selected most often during the 10-fold cross-validation, and were the default
values for the other models. However, we increased the number of trees from the default
100 to 1000, to have a more reliable set of most important features.

Table 10 shows the 5 top-ranked features (i.e. most important features) in each of the
selected RF models from ELSA-nurse datasets. The feature ranking is based on the average
impurity decrease (AID, the arithmetic mean of information gain ratio), calculated over all
nodes where the feature was selected, in all trees in the RF, for each dataset. This measure
represents the predictive power associated with the feature in the trees. In Tables 10 and
11, the “_w” suffix at the end of a feature’s name indicates the wave number (time point
when the feature was measured).

For the ELSA-nurse Dementia model, we have three different measurements (at differ-
ent time points) of the hastro variable, related to heart disease. There are several studies
that connect heart disease and risk of dementia, and some heart conditions such as coro-
nary heart disease are widely accepted to be a risk factor for dementia (Wolters et al. 2018).
The other two variables are related to respiratory infections and mobility, which are more
often connected to consequences of dementia than risk factors (Eisenmann et al. 2020).

For the Diabetes RF model, the age (indager_w8) and sex features were the highest
ranked. Naturally, all age-related diseases are correlated with the age feature, and diabetes
is more prevalent among men (Gale and Gillespie 2001). The other top features are 3 blood
sample features, namely cfib, clotb and hgb. Diabetes is known to increase the chance of
heart diseases (Dal Canto et al. 2019), so it is possible the RF models detected patterns
among ELSA respondents with heart or blood pressure problems.

For the ELSA-nurse Heart Attack model, five different variables were selected,
only one of them directly related to heart disease (clotting disorder). Among the
others, height and the blood triglyceride level are indirectly associated with risk of
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cardiovascular disease (Samaras 2013; Reiner 2017). The other two variables selected
are more related to general health history and mobility.

Table 11 shows the 5 best-ranked features in each of the best RF models learned for
the 6 selected ELSA-core datasets.

In the ELSA-core Angina model, only one top feature, the helng, is clearly con-
nected to the class variable, as chest pain is a common side-effect of respiratory dis-
eases (Indrakumari et al. 2020). Regarding the other four variables, a history of recent
cancer treatment, joint replacements and fractured hips are likely associated with older
age and frailty, which naturally increase the risk of cardiovascular disease.

In the ELSA-core Arthritis model, two measurements (at different time points) of
the feature that measures a self-reported depression score were selected among the
top predictors. Depression is considered a risk factor for several age-related diseases,
including Arthritis (Vallerand et al. 2019). Among the other selected variables we have
the age of the respondent, and the IADL (Instrumental Activities of Daily Living)
score, both predictors of overall health. Finally, the model selected the cause of death
of the mother as a top feature which is likely related to the fact that some hereditary
factors can increase the risk of Arthritis (Ren et al. 2020).

For the ELSA-core Dementia model one of the top features was hepsyX-of-9, an
indication of mental health self-reported by the patient that is clearly related to the
class variable. The other top-ranked features are about the medical history and current
health status of the respondent, namely helng, heji and hefrac. As mentioned, such fea-
tures are likely used as general measurements of overall health and frailty.

Regarding the ELSA-core Diabetes model, diabetes is connected to several other
health complications, such as asthma (Perez and Piedimonte 2014) (explaining the
helng and heam variables), and hip fractures (Vilaca et al. 2020) (explaining the
hefrac and heji variables). Finally, the age of the participant was chosen among the top
predictors.

Regarding the ELSA-core Parkinson’s Disease model, among the top features
selected by this model we have again some variables related to overall health medical
history (heji, helng and hecanb). The other two variables selected among the top fea-
tures are more directly related to this disease: heyrc regards mental health, and hepaw
is related to reported pain. The latter has been correlated with mental health as patients
may report pain less often if they are suffering from cognitive decline (McAuliffe et al.
2012).

Finally, the ELSA-core Stroke model selected the variable hefrac three times (at dif-
ferent time points) among its top 5 features. Hip fractures have been a good predictor
of general frailty over several models and were possibly used to separate younger and
healthier ELSA respondents from those in greater risk of developing the target age-
related disease. The heill variable is also indirectly associated with poor health and
frailty. Regarding the heyrc variable, psychological distress has been associated with
an increased risk of Stroke (Surtees et al. 2008), so this might be a good predictor that
is more directly connected to the class variable.

In summary, the ELSA-core variables are mostly focused on self-reported health
and wellbeing assessments, as well as medical history. Thus, the connections between
the selected top features and the target variables are expected to be less direct in these
models. General representations of physical frailty such as hip fractures were often
used as predictors by our models, but they also often selected variables that are known
risk factors of the age-related diseases they were predicting.
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7 Conclusions

In this article we reported extended computational results for our recently proposed
adaptation of decision tree-based classifiers for longitudinal datasets (Ribeiro and Fre-
itas 2020). This adaptation is a lexicographic bi-objective feature-selection approach,
which uses time-related information available in longitudinal data when selecting fea-
tures during the training of decision tree-based classifiers, which are a popular type of
classifier in biomedical applications — particularly ensembles of decision trees, like ran-
dom forests. The results in this article extended the results in Ribeiro and Freitas (2020)
by including two types of decision tree-based classifiers (random forests and J48),
reporting on experiments optimising up to two parameters of each algorithm, using 20
longitudinal classification datasets from two data sources (with different types of fea-
tures and numbers of feature waves); whilst the results in Ribeiro and Freitas (2020)
included only one type of decision tree-based classifier (random forests, optimising only
the lexicographic tie-threshold parameter) and 10 longitudinal classification datasets
from a single data source (with a single number of waves). Hence, the extended experi-
ments led to a more robust evaluation of the effectiveness of the proposed lexicographic
approach for longitudinal classification.

The rationale for the lexicographic adaptation is that more recent measurements of
a feature are intuitively more valuable for increasing predictive accuracy, particularly
when predicting the occurrence of age-related diseases (like in this work). Features
measured closer to the target variable’s measurement tend to more actionable, as they
often represent information that remains currently relevant, as opposed to older meas-
urements of the feature. More recent features are also less likely to have missing data
due to attrition, so adding a bias in their favour reduces the chances of selecting features
with missing or estimated values when training the classifier.

The proposed approach can be summarised as follows. The lexicographic split adds
the time-indexes of the candidate features as a secondary objective, to be used as a tie-
breaking criterion between features with equivalent information gain ratios (or other
primary selection criterion). In order to determine when candidate features can be con-
sidered equivalent regarding the primary criterion, we use a tie-threshold parameter, so
that features with information gain ratio differences smaller than this threshold are con-
sidered equivalent. The algorithm then uses the time-indexes of the tied features as the
selection criterion instead, with the most recent feature being selected. In order to avoid
having this additional parameter being manually and subjectively selected by the user,
we implemented a data-driven automated threshold selection, which is a more reliable
way to set the tie-threshold value using the training data.

We performed experiments using 20 real-world datasets prepared for this study, cre-
ated from the English Longitudinal Study of Ageing (ELSA), a prominent longitudinal
study from the United Kingdom. Our experiments compared the standard (non-lexico-
graphic) and adapted (lexicographic) versions of decision trees and random forests, as
a way to gauge the impact of the adaptation on a single decision tree and on ensemble
decision tree-based classifiers. We performed two types of experiments regarding the
algorithms’ parameter optimisation. In the first type, we optimised only the tie-threshold
parameter of the lexicographic decision tree and random forest algorithms. In the second
type of experiment, we optimised two parameters of both the lexicographic and non-
lexicographic versions of both decision tree and random forest algorithms in controlled
experiments, giving the same computational budget to each version of each algorithm.
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The proposed lexicographic approach improved the predictive accuracy of random for-
est classifiers, when compared to the standard split criterion based only on the information
gain ratio, in the majority of the experiments. The results were statistically significant in
most cases when both the lexicographic and the non-lexicographic random forests had two
parameters optimised; and the results were significant in some cases when we optimised
only the tie-threshold parameter of lexicographic random forest.

For decision tree classifiers, the lexicographic and non-lexicographic classifiers had
similar performances (no statistically significant differences) when only the tie-threshold
of the lexicographic decision tree was optimised, but the non-lexicographic classifiers had
statistically significantly better performance in most cases when both the lexicographic and
the non-lexicographic decision trees had two parameters optimised. We believe this lat-
ter unexpected result was due to decision tree classifiers being more sensitive to param-
eter tuning, which may have given the non-lexicographic approach an advantage. This is
because, as we gave the same computational budget for parameter optimisation to both the
lexicographic and the non-lexicographic decision tree classifiers, the lexicographic classi-
fier spent part of that budget optimising the tie-threshold parameter (which is not used by
the non-lexicographic classifier); whilst the non-lexicographic classifier was able to spend
its entire budget on optimising parameters that turned out to be more important, leading to
higher predictive performance.

We also investigated how often the lexicographic approach led to the decision tree or
random forest algorithm to select a different feature. On average 25% of nodes in RFs and
30% of nodes in DTs selected different features because of the lexicographic split function.
Therefore, the added bias in favour of more recent features resulted in considerably dif-
ferent classifiers for our longitudinal datasets, shifting the average time-index of selected
features further towards the most recent wave (time point), i.e., the wave of the class label.
It is important to highlight that longitudinal datasets tend to grow over time, so the impact
of the lexicographic approach also tends to increase as new waves are added to longitudinal
datasets.

We also interpreted the top features in our best random forest models, as an additional
contribution. We were able to find several existing connections between the top-ranking
features and peer-reviewed medical research.

As a final consideration, our investigations have shown that there is more exploration
to be done in identifying and making use of the temporal information that longitudinal
data brings. As more longitudinal studies progress, and more longitudinal data becomes
available, it becomes more and more important to develop machine learning algorithms
specialised for longitudinal classification, particularly considering that this is still an under-
explored area in machine learning. Therefore, we hope that our results can encourage the
development of other methods for coping with longitudinal data, including potentially the
application of the lexicographic approach to other types of machine learning algorithms.

Regarding code availability, we have created a public GitHub project website (github.
com/caioedurib/lexic_split_Weka) where we made the source code of our implementation
of the Lexicographic Split Function available in a Java script, as well as instructions for
using it with the Weka data mining tool.
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