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ABSTRACT
In this paper, the adaptive control problem is investigated for a class of intercon-
nected nonlinear systems (INS) with unknown interconnection delays and input
saturations. For state unmeasurable problem, a full dimension state observer (SO)
is designed to estimate the inaccessible state variables. Broad learning system (BLS),
a novel nonlinear approximation technique, is introduced in this study to identify
the unknown dynamics and could achieve better approximation performance. An
adaptive distributed control (DC) scheme is proposed for the uncertain time-delay
INS without input saturation, which guarantees that the stability of the closed loop
INS. On this basis, the input saturation problem is further considered, an online
approximation smooth function is added into the distributed adaptive tracking con-
troller, such that the closed-loop INS have the anti-input saturation capability. In
terms of Lyapunov theory, all the signals in the closed-loop uncertain time-delay
INS with input saturation are proved to be uniformly ultimately bounded (UUB)
and the tracking errors could converge to a small neighbourhood of zero. Finally, one
simulation example performed on two parallel inverted pendulum cars demonstrates
the superiority of the developed distributed control scheme.

KEYWORDS
Interconnected nonlinear systems (INS), distributed control (DC), input
saturation, time-delay interconnection.

1. Introduction

In recent years, the INS are becoming more and more important in the fields of modern
control theory and application, which could be used to describe the modern complex
cyber-physical systems, such as chemical reaction systems, power networks systems,
collaborative robotic arms and so on. Due to huge application potential of INS, the
control synthesis and stability analyzes problem of INS has been attracted the great
attention from many scholars (Mu, 2018; Salari, 2019; Yu, 2019; Zhang & Xiang, 2022),
meanwhile it also brings the great challenge (Li & Yang, 2018; Zhao, 2020). Because
the adaptive control has been extensively studied, it is considered for INS firstly. (Sui,
2021) investigates adaptive neural network (NN)-based controller design for stochastic
nonlinear systems with unmodeled dynamics in finite-time prescribed performance. An
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adaptive tracking control approach for a class of nonlinear state-constrained and time-
varying delay systems is proposed using Nussbaum gain technique in (Li, 2018). The
observer-based adaptive fuzzy controller is discussed for nonlinear systems with input
constraints and unknown disturbance in (Zhang, 2020). However, the above results
are not suitable to the INS composed of multiple subsystems but a single nonlinear
system.

Recently, some important results for the INS have been reported. In (Wang & Yang,
2019), the decentralized control strategy is studied for interconnected systems with
input quantization by using a static event triggered mechanism. In (Ma & Ma, 2020),
the decentralized fault tolerant controller is designed for a switched large scale systems.
In (Zhang, 2020), the fault detection and control issue is discussed for the INS by
designing the decentralized controller. A decentralized tracking proportional-integral
(PI) controller is investigated in (Sun & Zong, 2020) for INS with input quantization.
By introducing a reinforcement learning algorithm, (Liu, 2019) studies the optimal
decentralized control issue for the interconnected systems. In the above discussion, all
the control schemes are decentralized, which cannot achieve the cooperative control of
INS utilizing the neighbor’s information.

To date, the distributed control (DC) technique has a large number of applications
in the field of multi-agent systems (MASs), such as in (Li & Zheng, 2023) an adaptive
fuzzy prescribed-time distributed control problem is presented for non-strict feedback
nonlinear MASs. Further, in (Li & Li, 2023) the event triggered mechanism is added
for the distributed finite time formation controller to reduce the communication cost.
The results of MASs only makes use of the exchanged information, however, the re-
sults of the interconnected systems depend on both the exchanged information and
transmission substance between the subsystems. Thus they are different. Recently, a
DC scheme is developed for linear interconnected systems by using linear matrix in-
equalities (LMIs) in (Zhang, 2019), and a separation principle is employed for a class
of distributed interconnected systems in (Yang, 2019), but both of them are designed
for only linear interconnected systems.

The time-delay interconnected functions may occur because INS always consist
of many interacted subsystems and complex coupling relationships. For example, the
time-delays are generated from the transmission of reaction materials, electrical energy,
force and torque in chemical reaction systems, power networks systems, collaborative
robotic arms, respectively. There are some research results, (Yoo, 2016) investigates
the time-delay interconnected functions for INS. (Sun & Hou, 2020) proposes a track-
ing control strategy for the time delay INS. Besides, the inputs of the above systems
are material flow, power and motor speed, they are constrained within a certain range
due to the physical or energy limitations of actuators, which leads to the input satura-
tions. There also exist some results, (Zhan & Sui, 2021) designs a fuzzy decentralised
controller for the fractional-order INS with input saturation. (Chen, 2020) studies the
finite time controller for linear interconnected systems with input saturation. The in-
put saturation and interconnection delays have not been studied simultaneously in
above interconnected systems, especially when the states are unknown, it will be more
difficult. Therefore, how to simultaneously compensate the delayed interconnections,
input saturations when the states are unknown and further achieve the robust perfor-
mance of the INS is still a challenge.

Motivated by the above problems, this paper is concerned with the distributed
tracking control problem for a class of time-delay INS with input saturations. To solve
these problems, the broad learning system, a smooth variant Sigmoid function and
Lyapunov-Krasovskii theory are introduced into the controller design procedure. Si-

2



multaneously, a state observer is designed for each subsystem to estimated partial
inaccessible state variables. The main contributions of this study are concluded as
follows.
(i) Compared with the decentralized tracking control scheme, in which the intercon-
nected information is not adapted for the controller design, a novel DC approach is
proposed in this study for a class of time-delay INS by introducing the interconnected
information into the controller of each subsystem, and it can achieve the cooperative
control of INS.
(ii) Compared with the other intelligent methods, such as convolutional neural net-
work (CNNs), fuzzy logic system (FLS), RBFNNs and the single layer feedforward
neural networks, broad learning system (BLS) is employed as another approximator
to identify the unknown dynamics in this study, and it could improve the approxima-
tion accuracy and learning time by the structure of the random vector functional link
neural network and adding the enhancement nodes into the output layer.
(iii) Simultaneously, the unknown time delay interconnection and input saturations
problem of INS is solved in this study, which greatly extends the existing practical
engineering applications. The difficulty caused by unknown time delay interconnection
with unknown upper bounds is solved by designing the novel Lyapunov- Krasovskii
functions. The difficulty caused by the input saturation constraints is overcome by
introducing a smooth variant Sigmoid function.

The remainder of this paper is organized as follows. In section 2, the preliminaries
and problem formulation are given. In section 3, the adaptive distributed fault tolerant
tracking control scheme is proposed, and then the stability of closed loop systems is
analyzed. The simulation results are given in section 4 to verify the effectiveness of
the proposed control approach. Finally, some conclusions are given in section 5.

2. Preliminaries and problem formulation

2.1. Preliminaries

The broad learning system (BLS) is the novel neural network structure with approxi-
mation capabilities. The simplified broad learning systems are displayed as Figure 1,
where only b enhancement neurons are used in the framework. Assume that there are
Ki feature neurons in the ith feature subset, the m feature mappings are adopted to
collect the feature of n inputs, the mapped feature node Zi is denoted as (Chu, 2020)

Zi = ζ1(XWei +Bei), i = 1, ...,m (1)

where X ∈ R1×n denotes the input vector, Zi is represented as Zm = [Z1, . . . , Zm],
Bei ∈ R1×Ki and Wei ∈ Rn×Ki are the width and randomly weight at the initiation of
neural network. ζ1 is a preset activation function.

The jth enhancement node is yielded

Hj = ζ2(Z
mWbj +Bbj), j = 1, ..., b (2)

where Bbj ∈ R andWbj ∈ RK1+...+Km are the width and randomly weight, respectively.
ζ2 is a preset activation function.

Besides, the value of i and j is decided by the complexity of the neural network
systems, here the enhanced neuron vector is set as H = [H1, . . . ,Hb]. The output of
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Figure 1. The structure of BLS.

BLS neural network is denoted as

Y (X|W ) = (ZmW z +HW h)T =W Tφ = φTW (3)

where Y ∈ R denotes the output of BLS neural network. W z ∈ RK1+K2+...+Km and
W h ∈ Rb are the width and randomly weight, respectively.W = [W z; W h] denotes the
approximated weight column vector. φ = [Zm;H], φ ∈ RK1+K2...+Km+b is a function
of X. Since φ is determined by the input X, BLS with weight W and variable X can
estimate any continuous vector function uniformly (Chu, 2020; Sui, 2020).

The optimal weight vector is chosen as

W ∗ = argminW∈Ω[ sup
X∈U

∥Y (X|W )− F∥] (4)

where Y is employed to estimate the unknown dynamics F .
The estimation error can be denoted as

ϵ = F − Y (X|W ∗) (5)

where F is the approximated vector, |ϵj | ≤ ϵ̄ and ϵ̄ is an unknown positive constant.
From (3)-(5), it is concluded that

F =W ∗Tφ+ ϵ (6)

Then the approximated error of F is

F − Y (X|Ŵ ) = W̃ Tφ+ ϵ (7)

where W̃ =W ∗ − Ŵ , and Ŵ is the estimated value of W ∗.
Definition 1 (Zhan & Sui, 2021): The variant Sigmoid function S(x) could be

described as

S(x) = c1
e−c2x + 1

− c3 (8)
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Figure 2. Variant sigmoid function with c1 = 1, c3 = 0.

where c1, c2, and c3 are positive constants to be designed.
Remark 1: In Definition 1, S(x) is a differentiable real function and has no sin-

gularity. Meanwhile, Taylor expansion of S(x) is always convergent (Yan, 2021). For
example, S(.) with c1 = 1, c3 = 0 is illustrated as Figure 2.

Lemma 1 (Sun & Hou, 2020): If a set Γ := {Z||Z| < 0.8814ς}, then any Z does
not belong to Γ such that the following inequality holds.

1− 2tanh2(Z/ς) ≤ 0, ς > 0.

Lemma 2 (Sun & Hou, 2020): There exists a constant ν > 0 such that
lims→0 tanh

2(s/ν)/s = 0 holds where s ∈ R is a variable.

2.2. Problem formulation

Consider the general nonlinear time-delay interconnected nonlinear systems, consisting
of N interconnection subsystems with unknown nonlinearities (Baigzadehnoe, 2020;
Sun & Hou, 2020)


ẋi,m = xi,m+1 + fi,m(xi) + gi,m(y) + hi,m(yτi,m),

m = 1, 2, · · · , ni − 1
ẋi,ni

= ui + fi,ni
(xi) + gi,ni

(y) + hi,ni
(yτi,ni

)
yi = xi,1

xi(t) = ψi(t), − d̄i ≤ t ≤ 0

(9)

where xi = [xi,1, xi,2, . . . , xi,ni
]T , xi ∈ Rni is the state vector of the ith subsystem,

yi ∈ R is the output signal of the ith subsystem, ui ∈ R is the control input of the
ith subsystem. fi,j(·) (i = 1, · · · , N ; j = 1, · · · , ni) is the ith subsystem unknown non-
linear term. gi,j(y) with y = [y1, . . . , yN ]T is the unknown nonlinear interconnection
terms connecting the ith subsystem with the other subsystems while hi,j(yτi,j ) with

yτi,j = [y1(t − τi,j,1(t)), . . . , yN (t − τi,j,N (t))]T indicates the unknown time delay non-
linear interconnection effects among subsystems. τi,j,k (k = 1, . . . , N) is the unknown
time varying delay in hi,j(·) and yk(t− τi,j,k(t)) is the delayed output signal of the kth
subsystem received by the ith subsystem. ψi(t) indicates the initial state vector func-
tion of the ith subsystem. It is considered that di,j(t) = max1≤j≤ni,1≤k≤N{τi,j,k(t)},
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|di,j(t)| ≤ d̄i and d̄i is a positive constant (Baigzadehnoe, 2020).
Assumption 1 (Baigzadehnoe, 2020; Sun & Hou, 2020): The derivative of

di,j(t) is bounded with a known positive constant d∗i , and ḋi,j ≤ d∗i ≤ 1.
Assumption 2 (Zhang, 2020): The unknown nonlinear interconnection function

gi,j(y) satisfies

∥gi,j(y)∥ ≤
N∑
k=1

ϕi,j,k(yk)

where ϕi,j,k(·) (j = 1, · · · , ni) is partially known class-K function and satisfies

|ϕi,j,k(ξ)− ϕ̌i,j,k(ξ)| ≤ ϕ̄i,j,k(ξ), ∀ξ ∈ R

ϕ̌i,j,k(ξ) is the nominal function of ϕi,j,k(ξ), and the unknown function ϕ̄i,j,k(ξ) denotes
the bound on uncertainty for ϕi,j,k(ξ).

Assumption 3 (Yoo, 2016): It is assumed that the delayed interconnection func-
tion hi,j(yτi,j ) satisfies

∥hi,j(yτi,j )∥ ≤
N∑
k=1

ωi,j,k(yk(t− di,j))

where ωi,j,k(·) is partially known class-K function and satisfies

|ωi,j,k(ξ)− ω̌i,j,k(ξ)| ≤ ω̄i,j,k(ξ), ∀ξ ∈ R

the nominal function of ωi,j,k(ξ) is indicated as ω̌i,j,k(ξ) and the unknown function
ω̄i,j,k(ξ) denotes the bound on uncertainty for ωi,j,k(ξ).

The control objective of this study is to design a broad learning system (BLS)
approximator based adaptive distributed tracking control scheme, such that the output
yi(t) of the nonstrict-feedback interconnected nonlinear time-delay systems (9) follows
the command signal yi,r(t) and all the signals in the closed-loop interconnected systems
are uniformly ultimately bounded (UUB).

Remark 2: For practical systems, the interconnection delay is time-varying and
bounded in most cases. In many practical applications, the derivative of interconnec-
tion delay is also bounded, namely the change of interconnection delay is slow. Thus,
d∗i is accordingly assumed to be known and bounded in Assumption 1. Besides, three
nonlinear functions are considered to make the proposed distributed approach more
applicable and general in this study. The first unknown nonlinearity fi,j(.) ∈ R is
the function of the state xi and could be approximated by adopting the well-known
universal approximator. To deal with the second nonlinear interconnection function
gi,j(.) without losing generality, Assumption 2 is accordingly employed. Besides, the
function boundary represented by Assumption 3 is utilized to compensate the third
nonlinear delayed interconnection function hi,j(.) in this paper. It is worth noting that
Assumptions 1-3 are common in the field of interconnected systems (Ghosh, 2009; Sun
& Hou, 2020; Tong, 2011; Yoo, 2016).
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3. Distributed tracking controller design

3.1. Distributed controller design without input saturations

To deal with inaccessible state variables, a state observer could be designed for inter-
connected systems (9) as follows

˙̂xi,m = x̂i,m+1 − li,m(x̂i,1 − yi),m = 1, ..., ni − 1 (10)

˙̂xi,ni
= ui − li,ni

(x̂i,1 − yi) (11)

where the estimation of xi is indicated as x̂i = [x̂i,1, x̂i,2, . . . , x̂i,ni
]T . li,j(j = 1 . . . , ni)

is the observer gain parameter, which should be selected to make the following matrix

Ai,c =

 −li,1
... Ii,ni−1

−li,ni
0 . . . 0

 (12)

is a strict Hurwitz matrix, Ii,ni−1 is the ni − 1 dimension unit matrix. That is, there
exist two positive definite matrices Pi, Qi, such that

PiAi,c +AT
i,cPi = −Qi (13)

Defining the observer errors as ei,j = xi,j − x̂i,j , one has

ėi,m = −li,mei,1 + ei,m+1 + fi,m(xi) + gi,m(y) + hi,m(yτi,m) (14)

ėi,ni
= −li,ni

ei,1 + fi,ni
(xi) + gi,ni

(y) + hi,ni
(yτi,ni

) (15)

which can be expressed as the following form

ėi = Ai,cei + Fi(xi) +Gi(y) +Hi(yτi) (16)

where ei = [ei,1, . . . , ei,ni
]T , Gi(y) = [gi,1(y), . . . , gi,ni

(y)]T , Fi(xi) = [fi,1(xi), . . . ,
fi,n(xi)]

T , Hi(yτi) = [hi,1(yτi,1), . . . , hi,ni
(yτi,ni

)]T .
Remark 3: In the interconnected nonlinear systems (INS), some state variables

could not be inaccessible owing to the constraints of cost, space and other conditions.
However, in the most existing research results, all state variables of INS are required to
be known, such as (Chu, 2020; Liu, 2019; Yang, 2019). Compared with these results, in
which all state variables of the considered interconnected systems are measurable and
could be used to feedback control design, the partial state variables of the considered
interconnected systems are allowed to be unmeasured in this paper, which could be
identified by designing the state observer. Thus, the problem discussed in our study
is more complicated and tough to solve in term of the existing results.

Choose the Lyapunov-Krasovskii functional Vi = V 1
i + V 2

i to analyse the stability
of the ith closed loop subsystem, V 1

i includes the observer errors and time delay
interconnected term effects, V 2

i is defined later.

V 1
i =

1

2
eTi Piei + Vhi

(17)
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with

Vhi
=

Nβ

1− d∗i

ni∑
j=1

eχid̄i

∫ t

t−di,j

e−χi(t−ϑ)

(
N∑
k=1

ω2
i,j,k(yk(ϑ))

)
dϑ

where the parameters β > 0, χi > 0 will be determined later.
Differentiating V 1

i in (17) along the trajectory of (16) yields

V̇ 1
i = −1

2
eTi Qiei + eTi PiF (xi) + eTi PiGi(y) + eTi PiHi(yτi) + V̇hi

(18)

Taking the time derivative of Vhi
yields

V̇hi
= −χiVhi

+
Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

ω2
i,j,k(yk)

)
− Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
(1− ḋi,j)e

−χidi,j

N∑
k=1

ω2
i,j,k(yk(t− di,j))

)

≤ −χiVhi
+

Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

ω2
i,j,k(yk)

)
−Nβ

ni∑
j=1

N∑
k=1

ω2
i,j,k(yk(t− di,j)) (19)

According to Assumption 3, it could be seen that

eTi PiHi(yτi) + V̇hi
≤ δ∥Pi∥2e2i + β∥Hi(yτi)∥2 + V̇hi

≤ δ∥Pi∥2e2i +Nβ

ni∑
j=1

N∑
k=1

ω2
i,j,k(yk(t− di,j)) + V̇hi

≤ δ∥Pi∥2e2i − χiVhi
+

Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

ω2
i,j,k(yk)

)

≤ δ∥Pi∥2e2i − χiVhi
+

Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

(ω̌i,j,k(yk) + ω̄i,j,k(yk))
2

)

≤ δ∥Pi∥2e2i − χiVhi
+

Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̌2
i,j,k(yk)

)

+
Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̄2
i,j,k(yk)

)
(20)

where δ > 0 is a small positive scalar and β = 1
4δ .
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Substituting (20) into (18) yield

V̇ 1
i ≤ −1

2
eTi Qiei + eTi PiF (xi) + eTi PiGi(y) + δ∥Pi∥2e2i − χiVhi

+
Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̌2
i,j,k(yk)

)
+

Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̄2
i,j,k(yk)

)

≤ −1

2
eTi Qiei + eTi PiF (xi)− χiVhi

+ 2δ∥Pi∥2e2i + βG2
i (y)

+
Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̌2
i,j,k(yk)

)
+

Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̄2
i,j,k(yk)

)

≤ −1

2
eTi Qiei + 2δ∥Pi∥2e2i + eTi PiF (xi)+Nβ

ni∑
j=1

N∑
k=1

ϕ2i,j,k(yk)− χiVhi

+
Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̌2
i,j,k(yk)

)
+

Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̄2
i,j,k(yk)

)

≤ −1

2
eTi Qiei + 2δ∥Pi∥2e2i + eTi PiF (xi) +Nβ

ni∑
j=1

N∑
k=1

2ϕ̌2i,j,k(yk)

+Nβ

ni∑
j=1

N∑
k=1

2ϕ̄2i,j,k(yk)− χiVhi
+

Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̌2
i,j,k(yk)

)

+
Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̄2
i,j,k(yk)

)

≤ −1

2
eTi Qiei + 3δ∥Pi∥2e2i + β

ni∑
j=1

fTi,j(xi)fi,j(xi) +Nβ

ni∑
j=1

N∑
k=1

2ϕ̌2i,j,k(yk)

+Nβ

ni∑
j=1

N∑
k=1

2ϕ̄2i,j,k(yk)− χiVhi
+

Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̌2
i,j,k(yk)

)

+
Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̄2
i,j,k(yk)

)
(21)
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Choosing a positive definite matrix Λi such that Qi = 6δ∥Pi∥2Ini
+ 2Λi, then

V̇ 1
i ≤ −χie

2
i − χiVhi

+ β

ni∑
j=1

fTi,j(xi)fi,j(xi) +Nβ

ni∑
j=1

N∑
k=1

2ϕ̌2i,j,k(yk)

+Nβ

ni∑
j=1

N∑
k=1

2ϕ̄2i,j,k(yk) +
Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̌2
i,j,k(yk)

)

+
Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̄2
i,j,k(yk)

)
(22)

where χi is the minimum eigenvalue of Λi.
In this position, a distributed tracking controller will be designed for the considered

nonlinear system (9).
Step 1: Consider the first equation

ẏi = x̂i,2 + ei,2 + fi,1(xi) + gi,1(y) + hi,1(yτi,1) (23)

The tracking error is defined as zi,1 = yi − yi,r, the derivative of zi,1 is obtained as

żi,1 = x̂i,2 + ei,2 + fi,1(xi) + gi,1(y) + hi,1(yτi,1)− ẏi,r

= zi,2 + αi,1 + ei,2 + fi,1(xi) + gi,1(y) + hi,1(yτi,1)− ẏi,r (24)

where zi,2 = x̂i,2 − αi,1, αi,1 is the first virtual control input of the ith subsystem to
be determined later.

The quadratic Lyapunov function is selected as

V 2
i,1 =

1

2
z2i,1 + Vhi,1

(25)

where Vhi,1
= N

1−d∗
i
eχid̄i

∫ t
t−di,1

e−χi(t−ϑ)
(∑N

k=1 ω
2
i,1,k(yk(ϑ))

)
dϑ.

Differentiating V 2
i,1 in (25) along the trajectory of (24) yields

V̇ 2
i,1 = zTi,1żi,1 + V̇hi,1

= zi,1(zi,2 + αi,1

+ei,2 + fi,1(xi) + gi,1(y) + hi,1(yτi,1)− ẏi,r) + V̇hi,1
(26)

According to Assumption 2, one yields

zi,1gi,1(y) ≤ |zi,1||gi,1(y)| ≤ |zi,1|
N∑
k=1

ϕi,1,k(yk)

≤ 1

4
z2i,1 + (

N∑
k=1

ϕi,1,k(yk))
2 ≤ 1

4
z2i,1 +N

N∑
k=1

(ϕi,1,k(yk))
2

≤ 1

4
z2i,1 +N

N∑
k=1

|ϕi,1,k(yk)− ϕ̌i,1,k(yk) + ϕ̌i,1,k(yk)|2

10



≤ 1

4
z2i,1 +N

N∑
k=1

2|ϕi,1,k(yk)− ϕ̌i,1,k(yk)|2 +N

N∑
k=1

2|ϕ̌i,1,k(yk)|2

≤ 1

4
z2i,1 +N

N∑
k=1

2ϕ̌2i,1,k(yk) +N

N∑
k=1

2ϕ̄2i,1,k(yk)

According to Assumption 3, one yields

zi,1hi,1(yτi,1) ≤ |zi,1||hi,1(yτi,1)| ≤ |zi,1|
N∑
k=1

ωi,1,k(yk(t− di,1))

≤ 1

4
z2i,1 + (

N∑
k=1

ωi,1,k(yk(t− di,1)))
2 ≤ 1

4
z2i,1 +N

N∑
k=1

ω2
i,1,k(yk(t− di,1))

According to Young’s inequality, the inequality could be derived as

zi,1ei,2 ≤
1

2
z2i,1 +

1

2
∥ei,2∥2. (27)

Taking the time derivative of Vhi,1
yields

V̇hi,1
= −χiVhi,1

+
N

1− d∗i
eχid̄i

(
N∑
k=1

ω2
i,1,k(yk)− (1− ḋi,1)e

−χidi,1

N∑
k=1

ω2
i,j,k(yk(t− di,1))

)

≤ −χiVhi,1
+

N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̌2
i,1,k(yk)

)
−N

N∑
k=1

ω2
i,1,k(yk(t− di,1))

+
N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̄2
i,1,k(yk)

)
(28)

Substituting (27)-(28) into (26) yields

V̇ 2
i,1 ≤ zi,1(zi,2 + αi,1 + fi,1(xi)− ẏi,r) +

1

2
e2i,2 +N

N∑
k=1

2ϕ̌2i,1,k(yk) +N

N∑
k=1

2ϕ̄2i,1,k(yk)

+z2i,1 − χiVhi,1
+

N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̌2
i,1,k(yk)

)
+

N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̄2
i,1,k(yk)

)
(29)

From the above inequality, the virtual control input could be designed as

αi,1 = −bi,1zi,1 + ẏi,r (30)

where bi,1 > 0 is a constant.
Substituting (30) into (29) yields

V̇ 2
i,1 ≤ −(bi,1 −

3

2
)z2i,1 + zTi,1zi,2 +

1

2
f2i,1(xi) +N

N∑
k=1

2ϕ̌2i,1,k(yk) +N

N∑
k=1

2ϕ̄2i,1,k(yk)

11



−χiVhi,1
+

1

2
e2i,2 +

N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̌2
i,1,k(yk)

)
+

N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̄2
i,1,k(yk)

)

Step 2: Define the error as zi,2 = x̂i,2 − αi,1, the derivative of zi,2 is obtained as

żi,2 = zi,3 + αi,2 − li,2(x̂i,1 − yi)− α̇i,1

where zi,3 = x̂i,3 − αi,2, αi,2 is the second virtual control input of the ith subsystem
to be determined later.

The quadratic Lyapunov function is selected as

V 2
i,2 = V 2

i,1 +
1

2
z2i,2 (31)

Taking the derivative of (31) yields

V̇ 2
i,2 = V̇ 2

i1 + zTi,2(zi,3 + αi,2 − li,2(x̂i,1 − yi)− α̇i,1) (32)

The virtual control input could be designed as

αi,2 = −zi,1 − bi,2zi,2 + α̇i,1 − li,2ei,1 (33)

where bi,2 > 0 is a constant.
Substituting (33) into (32) yields

V̇ 2
i,2 ≤ −(bi,1 −

3

2
)z2i,1 − bi,2z

2
i,2 + zTi,2zi,3 +

1

2
f2i,1(xi)− χiVhi,1

+
1

2
e2i,2

+N

N∑
k=1

2ϕ̌2i,1,k(yk) +N

N∑
k=1

2ϕ̄2i,1,k(yk) +
N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̌2
i,1,k(yk)

)

+
N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̄2
i,1,k(yk)

)
(34)

Step m: Define the error as zi,m = x̂i,m −αi,m−1, the derivative of zi,m is obtained as

żi,m = −α̇i,m−1 + li,mei,1 + αi,m + zi,m+1 (35)

where zi,m+1 = x̂i,m+1−αi,m (m = 3, . . . , ni−1), αi,m is the mth virtual control input
of the ith subsystem to be determined later.

The quadratic Lyapunov function is selected as

V 2
i,m = V 2

i,m−1 +
1

2
z2i,m (36)

Calculating the derivative of V 2
i,m yields

V̇ 2
i,m = V̇ 2

i,m−1 + zi,m(zi,m+1 + αi,m + li,mei,1 − α̇i,m−1) (37)

12



The virtual input could be designed as

αi,m = −zi,m−1 − bi,mzi,m + α̇i,m−1 − li,mei,1 (38)

where bi,m > 0 is a constant.
Substituting (38) into (37) yields

V̇ 2
i,m ≤ −(bi,1 −

3

2
)z2i,1 −

m∑
c=2

bi,cz
2
i,c + zTi,mzi,m+1

+
1

2
e2i,2 +

1

2
f2i,1(xi)− χiVhi,1

+N

N∑
k=1

2ϕ̌2i,1,k(yk) +N

N∑
k=1

2ϕ̄2i,1,k(yk)

+
N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̌2
i,1,k(yk)

)
+

N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̄2
i,1,k(yk)

)

Step ni: Define the error as zi,ni
= x̂i,ni

−αi,ni−1, the derivative of zi,ni
is obtained as

żi,ni
= ui − li,ni

(x̂i,1 − yi)− α̇i,ni−1 (39)

The quadratic Lyapunov function is selected as

V 2
i = V 2

i,ni−1 +
1

2
z2i,ni

(40)

Taking the time derivative of V 2
i yields

V̇ 2
i = V̇ 2

i,ni−1 + zi,ni
(ui + li,ni

ei,1 − α̇i,ni−1)

= −(bi,1 −
3

2
)z2i,1 −

ni−1∑
c=2

bi,cz
2
i,c + zTi,ni−1zi,ni

+
1

2
e2i,2 +

1

2
f2i,1(xi)− χiVhi,1

+N

N∑
k=1

2ϕ̌2i,1,k(yk) +N

N∑
k=1

2ϕ̄2i,1,k(yk) +
N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̌2
i,1,k(yk)

)

+
N

1− d∗i
eχid̄i

(
N∑
k=1

2ω̄2
i,1,k(yk)

)
+ zi,ni

(ui + li,ni
ei,1 − α̇i,ni−1) (41)

For the ith subsystem of (9), the following Lyapunov function is defined as

Vi = V 1
i + V 2

i (42)

Taking the derivative of Vi yields

V̇i ≤ −(χi −
1

2
)e2i + γi − 2χiVhi

− (bi,1 −
3

2
)z2i,1 −

ni−1∑
c=2

bi,cz
2
i,c + zTi,ni−1zi,ni

+ηi + zi,ni
(ui + li,ni

ei,1 − α̇i,ni−1)

13



≤ −(χi −
1

2
)e2i + 2tanh2(zi,ni

/ς)(γi + ηi)− 2χiVhi
− (bi,1 −

3

2
)z2i,1 −

ni−1∑
c=2

bi,cz
2
i,c

+zTi,ni−1zi,ni
+ zi,ni

(ui + li,ni
ei,1 − α̇i,ni−1) + (1− 2tanh2(zi,ni

/ς))(γi + ηi) (43)

where the unknown dynamics are ηi(xi) = β
∑ni

j=1 f
T
i,j(xi)fi,j(xi) + Nβ

∑ni

j=1

∑N
k=1

2ϕ̄2i,j,k(yk)+N
∑N

k=1 2ϕ̄
2
i,1,k(yk)+

Nβ
1−d∗

i

∑ni

j=1 e
χid̄i(

∑N
k=1 2ω̄

2
i,j,k(yk))+

N
1−d∗

i
eχid̄i(

∑N
k=1

2ω̄2
i,1,k(yk)) +

1
2f

2
i,1(xi). And the lumped nominal functions are γi = Nβ

∑ni

j=1

∑N
k=1

2ϕ̌2i,j,k(yk)+
Nβ
1−d∗

i

∑ni

j=1 e
χid̄i

(∑N
k=1 2ω̌

2
i,j,k(yk)

)
+N

∑N
k=1 2ϕ̌

2
i,1,k(yk)+

N
1−d∗

i
eχid̄i(

∑N
k=1

2ω̌2
i,1,k(yk)). It is easily concluded that ηi + γi > 0. ς > 0 is a constant.
To eliminate the adverse effect of the unknown dynamics, the broad learning system

(3) is employed and ηi(xi) = W ∗T
i φi where W

∗
i is the optimal weight and φi is the

basis function. Accordingly it can be seen that η̂i(x̂i) = Ŵ T
i φi and η̃i = W̃ T

i φi, where

η̂i and Ŵi are the estimated values of ηi andW
∗
i , their estimation errors are η̃i = ηi−η̂i

and W̃i =W ∗
i − Ŵi.

From Lemma 2, the adaptive distributed tracking controller is designed as

ui = −zi,ni−1 − bi,ni
zi,ni

+ α̇i,ni−1 − li,ni
ei,1 −

2

zi,ni

(tanh2(zi,ni
/ς)(γi + η̂i)) (44)

where bi,n > 0 is a constant.
The adaptive parameter update law is

˙̂
Wi =

1

ϱi
(2tanh2(zi,ni

/ς)φi − λiŴi), i = 1, 2, ..., N (45)

where λi is a positive constant.
The calculation steps of broad learning system (BLS) neural networks for the above

approximated parameter η̂ are listed in Tables 1-2, where X = [x̂T ], η̂(0) and Ŵ (0)

are the initial values of η̂ and Ŵ , respectively.
For the ith closed loop subsystem, the following Lyapunov function is chosen as

V̄i = Vi +
1

2
ϱiW̃

T
i W̃i (46)

where ϱi is a positive constant.

Substituting (43)-(44) into ˙̄Vi, when t→ ∞, the following inequality holds

˙̄Vi ≤ −(χi −
1

2
)e2i − 2χiVhi

− (bi,1 −
3

2
)z2i,1 −

ni∑
c=2

bi,cz
2
i,c + 2tanh2(zi,ni

/ς)W̃ T
i φi

+(1− 2tanh2(zi,ni
/ς))(γi + ηi) + 2tanh2(zi,ni

/ς)ϵ̄− ϱiW̃
T
i

˙̂
Wi (47)

Remark 4: In this study, BLS is employed as a novel approximator to identify the
effect of the unknown dynamics. Compared with the convolutional networks approx-
imation technique, which suffers from the time consuming training process because
of a great number of hyperparameters and complicated structures, BLS effectively
eliminates the drawback of the long training process (Chen, 2019). Further, the math-
ematical proof of the universal approximation property of BLS has also been provided
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Table 1. The initial algorithm of broad learning systems

The initial algorithm
Input: X;
Output: η̂(0);

1 for i=1, i≤ m;
2 |Random Wei, Bei;
3 |Calculate Zi = ζ1(XWei +Bei);
4 end;
5 Set Zm = [Z1, ..., Zm];
6 for j=1, j ≤ b;
7 |Random Wbj , Bbj ;
8 |Calculate Hj = ζ2(Z

mWbj +Bbj);
9 end;
10 Set H = [H1, ..., Hb];
11 Random W z,W h;

12 Set Ŵ (0) = [W z;W h], φT = [Zm,H];

13 Set η̂(0) = Ŵ T (0)φ;

Table 2. The process algorithm of broad learning systems

The process algorithm

Input: X, Ŵ ;
Output: η̂;

1 for i=1, i≤ m;
2 |Calculate Zi = ζ1(XWei +Bei);
3 end;
4 Set Zm = [Z1, ..., Zm];
5 for j=1, j ≤ b;
6 |Calculate Hj = ζ2(Z

mWbj +Bbj);
7 end
8 Set H = [H1, ..., Hb];
9 Set φT = [Zm,H];

9 Set η̂ = Ŵ Tφ;

in (Chen, 2019). Moreover, different from fuzzy logic system (FLS), RBFNNs and the
single layer feedforward neural networks approximation techniques, which usually are
more sensitive to the parameter settings and suffer from slow convergence (Chen &
Liu, 2018; Cui, 2019; Niu, 2021; Sui, 2020) , BLS has achieved breakthrough successes
in identifying the uncertain nonlinear systems based on the structure of the random
vector functional link neural network and adding extra enhancing nodes (Sui, 2020).

Based on the above descriptions, the following result is now ready to be presented.
Theorem 1. Under Assumptions 1-3, consider the interconnected systems (9) with

interconnection delays, a distributed tracking controller (44) and the adaptive param-
eter update algorithm (45) guarantees that the nonlinear time-delay interconnected
systems (9) are uniformly ultimate bounded stable, meanwhile, all tracking errors of
(9) are also uniformly ultimately bounded (UUB).

Proof. For the whole closed-loop interconnected systems, the following Lyapunov
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candidate function are chosen as

V =

N∑
i=1

V̄i (48)

From Lemma 1 and (43), (1− 2tanh2(zi,ni
/ς))(γi + ηi) ≤ 0 is obtained and then

V̇ ≤
N∑
i=1

(−(χi −
1

2
)e2i − 2χiVhi

− (bi,1 −
3

2
)z2i,1 −

ni∑
c=2

bi,cz
2
i,c −

λi
2
W̃ 2

i

+
λi
2
W 2

i + 2tanh2(zi,ni
/ς)ϵ̄) ≤ −µV +M (49)

where µ = mini=1,...,N{(2χi − 1), 2χi, 2bi,1 − 3, 2bi,c,
λi

ϱi
}, χi > 1/2, bi,1 >

3
2 , bi,c >

0, (c = 2, . . . , ni), M ≥ ∥M0∥ is a upper bound constant of the time varying function
M0 with

M0 =

N∑
i=1

(
λi
2
W T

i Wi + 2tanh2(zi,ni
/ς)ϵ̄)

From (49), one yields

V ≤ V (0)e−µt +
M

µ
(1− e−µt) (50)

That is

V ≤ V (0)e−µt +
M

µ
(51)

Select the appropriate parameters to make µ > 0 and M > 0, then on the basis
of (51), it is clear that ei,j , zi,j , W̃i (i = 1, ..., N ; j = 1, . . . , ni) of systems (9) are
uniformly ultimately bounded (UUB). Simultaneously, the whole closed-loop INS are
UUB stable. From (49), bi,j > 0, λi > 0, ς > 0, and ϱi > 0 are properly chosen to
make zi,1 converge to a small region near origin. Namely, the larger µ and smaller
M , the better control performance of (9). Moreover, the output tracking error of ith
subsystem zi,1 = yi − yir satisfies

N∑
i=1

z2i,1
2

≤ V (0)e−µt +
M

µ
(52)

According to the above inequality, it is easy to obtain |zi,1| ≤
√

2V (0)e−µt +
√

2M
µ .

Therefore, zi,1 can be adjusted into a small neighborhood of the origin through properly
choosing the parameters bi,j , χi, λi and ϱi. This completes the proof.

Remark 5: Different from the general nonlinear or switched systems (Liu, 2020;
Wang, 2020, 2021; Zhan & Sui, 2021), which could only describe one plant, the con-
sidered nonlinear interconnected systems (9) could describe N different plants, which
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Figure 3. Block diagram of the distributed control systems

will cooperative control to complete a large and complex task. Compared with the ex-
isting research results of interconnected systems (Liu, 2019; Sun & Zong, 2020; Zhang
& Xiang, 2022), which did not consider the time-delay interconnection, the nonlinear
time-delay problem is investigated in this study. By using the upper bound informa-

tion of time-delay functions Nβ
1−d∗

i

∑ni

j=1 e
χid̄i

(∑N
k=1 2ω̌

2
i,j,k(yk)

)
in the controller (44),

a distributed tracking control scheme is developed to eliminate the adverse effect of
interconnection delay and further guarantee the stability of the whole interconnected
systems.

3.2. Distributed controller design with input saturations

Actually, the input saturation is a class of the most critical constraints and always
occurs in the actual physical systems. There are two main motivations to research the
input saturation constraint. One is that input saturation is a potential factor degrades
the control system performance, which often leads to undesirable inaccuracy, or even
causes system unstable. Another is that the energy or magnitude is always limited in
practice, so the saturation constraint of the control input is necessary.


ẋi,m = xi,m+1 + fi,m(xi) + gi,m(y) + hi,m(yτi,m),

m = 1, 2, · · · , ni − 1
ẋi,ni

= sat(ui) + fi,ni
(xi) + gi,ni

(y) + hi,ni
(yτi,ni

)
yi = xi,1

xi(t) = ψi(t),−d̄i ≤ t ≤ 0

(53)
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Then under the input saturation constraint, the control variable ui of the intercon-
nected systems (9) is transformed into

sat(ui) =

{
sign(ui)uiM , |ui(t)| ≥ uiM

ui, |ui(t)| < uiM
(54)

where uiM > 0 is the bound of ui. Clearly, there is a sharp corner between the ideal
input command ui and the actual input sat(ui) when |ui| ≥ uiM . Thus the above
backstepping control approach cannot be directly applied. From Definition 1, a smooth
function could be adopted to approximate the input saturation

Ai(ui) = uiM × (2S(a0ui
uiM

)− 1) (55)

where S(.) is a variant sigmoid function with c1 = 1, c2 = 1, c3 = 0, and a0 is a positive
designed constant. For example, the curve of the input saturation approximation under
u(t) = sin(t), a0 = 3, uM = 0.6 is shown in Figure 5.

Then the approximated error could be

∆i(ui) = sat(ui)−Ai(ui) = uiM + sat(ui)− (uiM × 2S(a0ui
uiM

)) (56)

It is noted that ∆i(ui) is bounded with

∆i(ui) = |sat(ui)−Ai(ui)| ≤ |uiM + sat(ui)|+ |uiM × 2S(a0ui
uiM

)| ≤ 4uiM (57)

Consider the mean-value theorem (Apostol, 1958), and there exists a positive constant
0 < ϑi < 1 such that

Ai(ui) = Ai(ui0) +Ai,uiϑ
(ui − ui0) (58)

where Ai,uiϑ
= ∂Ai(ui)

∂ui
|ui=uiϑ

and uiϑ = ϑiui + (1− ϑi)ui0. Let ui0 = 0, then it can be
derived that

Ai(ui) = Ai,uiϑ
ui (59)

where Ai,uiϑ
is positive and bounded from S(.) in (55)

Ai,uiϑ
= 2a0

e
− a0ui

uiM

(e
− a0ui

uiM + 1)2
≤ 2a0 (60)

Then the observer (10)-(11) can be turned into

˙̂xi,m = x̂i,m+1 − li,m(x̂i,1 − yi) (61)

˙̂xi,ni
= Ai,uiϑ

ui − li,ni
(x̂i,1 − yi) (62)

where m = 1, ..., ni − 1.
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The observer errors (14)-(15) are reformed as

ėi,m = −li,mei,1 + ei,m+1 + fi,m(xi) + gi,m(y) + hi,m(yτi,m) (63)

ėi,ni
= −li,ni

ei,1 +∆i(ui) + fi,ni
(xi) + gi,ni

(y) + hi,ni
(yτi,ni

) (64)

which can be expressed as the following form

ėi = Ai,cei + Fi(xi) +Gi(y) +Hi(yτi) + Πi(ui) (65)

where ei = [ei,1, . . . , ei,ni
]T , Fi(xi) = [fi,1(xi), . . . , fi,ni

(xi)]
T , Gi(y) = [gi,1(y), . . . ,

gi,ni
(y)], Hi(yτi) = [hi,1(yτi,1), . . . , hi,ni

(yτi,ni
)]T , Πi(ui) = [0, ..., 0,∆i(u

s
i )]

T .
The design steps of the distributed tracking controller with input saturation are the

same as that without saturation, thus step ni can be re-derived.
Step ni: The distributed fault tolerant control input can be designed by

ui =
1

2a0
(α̇i,ni−1 − zi,ni−1 − bi,ni

zi,ni
− li,ni

ei,1 −
1

2
zi,ni

− 2

zi,ni

(tanh2(zi,ni
/ς)(γsi + η̂si ))) (66)

where η̂si = Ŵ T
i φi is the estimation of the unknown dynamics ηsi , η

s
i = ηi + (Ai,uiϑ

−
2a0)zi,ni

ui, γ
s
i = γi + 16βu2iM + 16u2iM , γi, ηi, Ŵi are given in (43) and (45).

Computing the derivative of (17) leads to

V̇ 1
i ≤ −1

2
eTi Qiei + β

ni∑
j=1

fTi,j(xi)fi,j(xi)− χiVhi
+Nβ

ni∑
j=1

N∑
k=1

2ϕ̌2i,j,k(yk)

+Nβ

ni∑
j=1

N∑
k=1

2ϕ̄2i,j,k(yk) +
Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̌2
i,j,k(yk)

)
+ 4δe2i ||Pi||2

+
Nβ

1− d∗i

ni∑
j=1

eχid̄i

(
N∑
k=1

2ω̄2
i,j,k(yk)

)
+ 16βu2iM (67)

where δ and β are defined as (20).
Computing the derivative of (40) leads to

V̇ 2
i ≤ V̇ 2

i,ni−1 +
1

4
z2i,ni

+ 16u2iM + zi,ni
(2a0ui + li,nei,1 − α̇i,n−1 + (Ai,uiϑ

− 2a0)ui) (68)

Choosing a positive definite matrix Λi such that Qi = 8δ||Pi||2Ini
+ 2Λi, then V̇i is

transformed into

V̇i = V̇ 1
i + V̇ 2

i ≤ −(χi −
1

2
)e2i + 2tanh2(zi,ni

/ς))(γsi + ηsi )− 2χiVhi
+ zTi,n1−1zi,ni

−
ni−1∑
c=2

bi,cz
2
i,c + zi,ni

(2a0ui + li,nei,1 − α̇i,n−1)− (bi,1 −
3

2
)z2i,1

+
1

4
z2i,ni

+ (1− 2tanh2(zi,ni
/ς))(γsi + ηsi )
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From (66), one has

˙̄Vi = V̇i − ϱiW̃
T
i

˙̂
Wi ≤ −(χi −

1

2
)e2i − 2χiVhi

− (bi,1 −
3

2
)z2i,1

−
ni∑
c=2

bi,cz
2
i,c −

λi
2
W̃ 2

i +
λi
2
W 2

i − 1

4
z2i,ni

+ 2tanh2(zi,ni
/ς)ϵ̄

+(1− 2tanh2(zi,ni
/ς))(γsi + ηi + (Ai,uiϑ

− 2a0)zi,ni
ui) (69)

Therefore, the closed loop INS and the design procedure could be illustrated as Figure
3 and Figure 4.

Based on the above descriptions, the second result is now ready to be presented.
Theorem 2. Consider the interconnected systems (9) with input saturation con-

straints (54), under Assumptions 1-3, the designed distributed tracking controller (66)
and the adaptive parameter update algorithm (45) guarantee that the closed-loop in-
terconnected systems are uniformly ultimate bounded stable, meanwhile all the track-
ing errors are uniformly ultimately bounded.

Proof: The Lyapunov candidate function is chosen as V =
∑N

i=1 V̄i. For (Ai,uiϑ
−

2a0)ui is bounded, one yields due to Lemma 1

V̇ ≤
N∑
i=1

(−(χi −
1

2
)e2i − 2χiVhi

− (bi,1 −
3

2
)z2i,1 −

ni∑
c=2

bi,cz
2
i,c −

λi
2
W̃ 2

i + 2tanh2(zi,ni
/ς)ϵ̄

−1

4
z2i,ni

+
λi
2
W 2

i + Āi,uiϑ
|zi,ni

| − 2tanh2(zi,ni
/ς))/zi,ni

(Ai,uiϑ
− 2a0)uiz

2
i,ni

)

≤ −µV +M s (70)

where |(Ai,uiϑ
− 2a0)ui| ≤ Āi,uiϑ

and Āi,uiϑ
is a positive constant. M s

0 = M0 + Ā2
i,uiϑ

,

|M s
0 | ≤ M s, and M s is a positive constant. If bi,ni

≥ −2tanh2(zi,ni
/ς))/zi,ni

(Ai,uiϑ
−

2a0)ui and µ is chosen as (49), then the inequality (70) holds.
According to (70), it can be concluded that ei,j , zi,j , W̃i (i = 1, ..., N ; j = 1, . . . , ni)

of the interconnection systems (9) are UUB and simultaneously the whole closed loop
INS are uniformly ultimate bounded stable. From (70), the output tracking error zi,1
is adjusted into a small region near origin by selecting the proper parameters bi,j > 0,
λi > 0, ς > 0 and ϱi > 0. Namely, the larger µ and smaller M s, the better control
performance of (9). Note that χi in saturation case should be smaller than that in
normal case when Qi and δ are selected as the same in both cases. The proof is
completed.

Remark 6: From (70), it is easily known that the larger bi,j , λi, ς and smaller
ϱi, the better control performance of (9). In the actual application, these parameters
need to be tried many times and adjusted carefully to obtain the appropriate values
for achieving the satisfactory control performance. Meanwhile, the related parameters
in the design procedure could be chosen according to the given parameter selection
guideline.
1) Specify the known positive constants di,j , c1, c2, c3, a0, ϵ̄i to the controlled systems
(9).
2) Choose the appropriate gain parameter li,j such that Ai,c of (65) be a strict Hurwitz
matrix.
3) Choose the appropriate parameters such that bi,c > 0, ς > 0, λi > 0, ϱi > 0, which
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Figure 4. Block diagram of the design procedure

determine the virtual control input, the actual control input in (66) and the adaptive
parameter update algorithm in (45).
4) Ensure that the parameters selected above could make the inequality (70) hold.
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Figure 5. Curve of the input saturation approximation (a0 = 3).

Remark 7: The decentralized control scheme of INS is developed in (Liu, 2019;
Ma & Ma, 2020; Sun & Zong, 2020; Wang & Yang, 2019; Zhang, 2020) and (Tong,
2011), in which only the local subsystem information is adopted and only the stabil-
ity of local subsystem is guaranteed. Different from these results, the DC scheme of
INS is employed in this paper for practical engineering applications, it fully utilizes
neighbor subsystems information such that the stability of the whole closed-loop INS
is obviously improved.

Remark 8: Although the distributed tracking control problem has been investigat-
ed in (Yoo, 2016), the time delay interconnections, input saturations and unmeasured
states are not taken into account. In this paper, all these problems described above
are studied for the considered INS. Therefore, this study has wider applications than
some existing results, it could be regarded as the expansion and improvement of the
results developed in (Yoo, 2016).

Remark 9: When the order of considered systems is high, the differential explosion
in the calculation of partial derivatives of virtual control variables may occur in above
Theorems 1 and 2. In order to avoid “differential explosion”, the instruction filtering or
low pass filter can be introduced into the backstepping control method (Tong, 2011).

4. Simulation Example

In this section, the stability and robustness of the INS will be considered as a case
study to demonstrate the theoretical results. Two inverted double pendulum cars
connected by a spring shown in Figure 6 can be described by (Sun & Hou, 2020) and
(Baigzadehnoe, 2020).

ẋi,1 = xi,2 + fi,1(xi) + gi,1(y) + hi,1(yτi,1)
ẋi,2 =

ui

Ji
+ fi,2(xi) + gi,2(y) + hi,2(yτi,2)

yi = xi,1, i = 1, 2
(71)
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Figure 6. Parallel inverted pendulum cars

where xi = [xi,1, xi,2]
T = [θi, θ̇i]

T respectively denote the angular displacemen-
t and angular velocity of the pendulums from vertical. fi,1(xi) = 0, fi,2(xi) =
migr
Ji

− kr2

4Ji
sin(xi,1), gi,1(y) = 0, g1,2(y) = kr

2J1
(l − b) + kr2

4J1
sin(y2), g2,2(y) = kr

2J2
(l −

b) + kr2

4J2
sin(y1). To increase the complexity of time-delay interconnected systems

(74), the nonlinear interconnection terms with delays are chosen as hi,1(yτi,1) = 0,

h1,2(yτ1,2) = 1
J1
(y21(t − d1,2) ∗ cos(y1(t − d1,2))) +

1
J2
(y2(t − d1,2) ∗ sin(y2(t − d1,2))),

h2,2(yτ2,2) = 1
J2
(y22(t − d2,2) ∗ cos(y2(t − d2,2))) +

1
J1
(y1(t − d2,2) ∗ sin(y1(t − d2,2))).

Here m1 and m2 denote the pendulum end masses, J1 and J2 are the inertia mo-
ments, k denotes the spring constant, r is the pendulum height, l means the spring
natural length, b is distance between the pendulum hinges, and g is the gravitation-
al acceleration. According to (Sun & Hou, 2020), the system parameters are given as
m1 = 2kg, m2 = 2.5kg, J1 = 5kg, J2 = 6.25kg, k = 100N/m, g = 9.81m/s2, r = 0.5m,
l = 0.5m, b = 0.5m. The time varying delays are selected as d1,2 = 0.1 + 0.1cos(0.5t),
d2,2 = 0.2− 0.2sin(0.5t), then d̄1 = 0.2, d̄2 = 0.4.

The reference signals are given as y1,r = 0.8cos(t − 0.5) + 0.3sin(4t) and y2,r =
0.7sin(t) − 0.4cos(3t). The initial condition is chosen as x1,1(0) = 0.5, x2,1(0) = 0.5,
x̂1,1(0) = x̂2,1(0) = 0, ψ1(t) = ψ2(t) = 0.2[cos(t); sin(t)] with t ∈ [−0.4, 0].

To illustrate the effectiveness of the distributed control (DC) scheme, two different
cases will be carried out in the simulation as follows.

Case 1: The interconnected nonlinear systems (INS) with time-delay interconnec-
tions, unmeasured states are investigated in this case. First, a nonlinear state observer
is introduced and then the distributed controller is developed according to Theorem
1. The designed parameters are selected as l1,1 = 4, l1,2 = 1.75, l2,1 = 5, l2,2 = 2,
δ = 0.01, χ1 = 0.79, χ2 = 0.587, ϱ1 = ϱ2 = 10, b1,1 = b2,1 = 10, b1,2 = b2,2 = 5,
λ1 = λ2 = 1.

Case 2: The INS with time-delay interconnections, unmeasured states and input
saturations are discussed in this case. Similarly, we design a state observer and then a
distributed controller according to Theorem 2. The designed parameters are selected
as l1,1 = 4, l1,2 = 1.75, l2,1 = 5, l2,2 = 2, δ = 0.01, χ1 = 0.6, χ2 = 0.134, ϱ1 = ϱ2 = 5,
b1,1 = b2,1 = 5, b1,2 = b2,2 = 2, λ1 = λ2 = 1, u1M = 35, u2M = 40.

The broad learning system is introduced to estimate the unknown dynamics online.
At initialization time, the weight parameters of BLS are random from [−1, 1], just as
shown in Table I, and then their online training and updating run according to Table
II and (45). Due to the characteristics of the systems (71), the activation function

ζ1(x) = x, and ζ2(x) = tanh(x) = ex−e−x

ex+e−x .
In Figure 7, the original outputs y1, y2 of both inverted pendulums and their de-
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Figure 7. Curves of output signals in CASE 1

layed outputs generated by d1,2 and d2,2 between the first and second car are displayed.
It is easily known from the preset conditions that the amplitude of d2,2 is larger than
that of d1,2, so the phase deviations between yi(t−d2,2) and yi (i = 1, 2) are obviously
larger than that between yi(t− d1,2) and yi in Figure 7. The state observer (10)-(11)
can accurately estimate the states x̂1,1, x̂1,2, x̂2,1, x̂2,2 as shown in Figure 8. It is clear
that in CASE 1 the outputs of both inverted pendulums can track the desired trajec-
tory y1r, y2r and their tracking errors nearly converge to a very small neighborhood
of zero as exhibited in Figures 9-10. However, the control inputs in Figure 9 are too
large to be allowed in the practical systems due to energy or amplitude limitations
of actuators. Thus, the distributed control scheme for the uncertain time-delay INS
should be further improved, that is, the input saturation constraints have to be taken
into account next.
Similarly in CASE 2, it is shown in Figure 12 that the state observer could accurately
approach the states of two inverted pendulums. Although in Figures 13-14 it is clearly
demonstrated that the input saturation will degrade the dynamical tracking perfor-
mance of the systems (71) in CASE 2, the tracking trajectory steady-state errors can
still reach in a small neighborhood of zero and the steady-state precision in CASE 2
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Figure 9. Curves of tracking signals in CASE 1

nearly equals to CASE 1. Moreover, the control inputs of both inverted pendulums are
limited within the bounds just as shown in Figure 15, which is available in the practical
systems. And it is clear that the bounds of the control inputs are u1M = 35, u2M = 40,
which is the same as the preset bounds.

In conclusion, the above simulation results demonstrate that the developed dis-
tributed control approach is valid and feasible for the considered nonlinear multi-delay
systems in presence of inaccessible states and input saturations.
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5. Conclusion

In this paper, a BLS-based distributed adaptive tracking control scheme is proposed
for time-delay interconnected nonlinear systems (INS) with input saturations. A full
dimension state observer is designed to estimate the inaccessible state variables, and
then a distributed adaptive tracking control scheme (DATC) is proposed with the
help of BLS technique. Meanwhile the stability of the time-delay INS without input
saturations is analyzed. To solve the input saturation problem, a well defined smooth
function is introduced into the improved DATC, which guarantees the stability of the
closed loop INS with input saturations. Finally, the simulation results are given to
illustrate the effectiveness of the proposed control strategy. In addition, the DATC
will be extended to the time-delay INS with full state constraints in our future work.
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Figure 14. Curves of tracking errors in CASE 2
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