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Loss coverage, defined as expected population losses compensated by insurance, is a public policy criterion for 
comparing different risk-classification regimes. Using a model with two risk-groups (high and low) and iso-

elastic demand, we compare loss coverage under three alternative regulatory regimes: (i) full risk-classification 
(ii) pooling (iii) a price collar, whereby each insurer is permitted to set any premiums, subject to a maximum 
ratio of its highest and lowest prices for different risks. Outcomes depend on the comparative demand elasticities 
of low and high risks. If low-risk elasticity is sufficiently low compared with high-risk elasticity, pooling is 
optimal; and if it is sufficiently high, full risk-classification is optimal. For an intermediate region where the 
elasticities are not too far apart, a price collar is optimal, but only if both elasticities are greater than one. We 
give extensions of these results for more than two risk-groups. We also outline how they can be applied to other 
demand functions using the construct of arc elasticity.

1. Introduction

Restrictions on risk classification are common in retail insurance markets, usually in the form of bans on the use of particular variables (e.g. 
gender, race, genetic tests). Restrictions of this type can align insurance practice with social norms which deprecate discrimination on particular 
variables. But the use of deprecated variables is not the only public policy issue with risk classification. Another concern is the equity of a wide 
dispersion in prices for different risks, irrespective of the particular underlying variables which it might reflect; and in particular, the problem of 
unaffordable insurance for higher risks. For this type of concern, piecemeal restriction of specific variables seems an indirect and hard-to-calibrate 
form of regulation. Also, if insurers can use other variables which are correlated with the banned ones, the effect of the regulation can be partly 
undone, unless more prescriptive regulation requires estimation procedures which neutralise this effect (Pope and Sydnor (2011), Lindholm et al. 
(2021)).

A potentially more direct way of addressing equity concerns is to set an explicit limit on the dispersion of prices for different risks, via what 
we call a price collar. A price collar (sometimes called “partial community rating”) is a maximum ratio, say 𝜅, for the highest and lowest prices an 
insurer may charge for different risks. A price collar restricts only an insurer’s relative prices, not the absolute level. It can be used either in addition 
to, or instead of, limits on specific variables. One example is the Affordable Care Act in the US, which permits differentiation by a factor of up to 
1.5× for tobacco use and 3× for age (and no other factors except coverage tier, geography, and number of dependants).

In this paper, we abstract from the reference to specific variables and consider a price collar which limits the overall dispersion of an insurer’s 
prices. The collar regime, which can also be described as partial risk-classification, represents a compromise approach, in between full risk-classification

(where prices are fully differentiated for individual risks, which we assume are fully observable via insurers’ underwriting procedures), and pooling

(where all risk classification is banned and each insurer sets a single price, the same for all risks).

1.1. Loss coverage

A price collar can potentially ameliorate equity concerns, but policymakers also need to consider its efficiency consequences, in particular the 
adverse selection which may be induced. We take a nuanced view of this: we argue that whilst excessive adverse selection is a concern, a modest 
degree of adverse selection can actually increase efficiency, if it increases what we call “loss coverage”. This concept has been described elsewhere 
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Fig. 1. Regions where loss coverage is higher for pooling and full risk-classification.

(Thomas (2008, 2009, 2017); Hao et al. (2016, 2018, 2019), but it may remain unfamiliar to many readers; so we now review the rationale, in the 
specific context of a price collar.

The usual story about adverse selection runs as follows. Compared to fully risk-differentiated prices, the imposition of a price collar raises prices 
for low risks and lowers prices for high risks. Low risks buy less insurance, and high risks buy more (adverse selection). The weighted average price 
paid for insurance across the whole market rises. Also, because high risks are typically less numerous than low risks, the number of risks insured 
falls. This combination of a rise in average price and fall in demand is usually seen as a bad outcome, both for insurers and for society.

However, the social purpose of insurance is to compensate the population’s losses (not to sell “coverage” indiscriminately, with no regard for 
any prospect of loss). Insurance of one high risk contributes more in expectation to this objective than insurance of one low risk. This suggests that 
public policymakers might welcome increased purchasing by high risks, except for the usual story about adverse selection.

The usual story about adverse selection overlooks one point: with adverse selection, expected losses compensated by insurance – a quantity we 
term “loss coverage” – can be higher than with no adverse selection. The rise in weighted average price when a price collar is imposed reflects a shift 
in coverage towards higher risks. From a public policymaker’s viewpoint, this means that more of the “right” risks (i.e. those more likely to suffer 
loss) buy insurance. If this shift in coverage is large enough, it can more than offset the fall in numbers insured, so that loss coverage is increased. We 
argue that where adverse selection leads to higher loss coverage – that is, more risk being voluntarily transferred and more losses being compensated 
– then from society’s perspective, this should be seen as a good outcome from adverse selection. Formally, we define loss coverage as:

Loss coverage = Expected losses compensated by insurance (1.1)

and then we argue that a policymaker should prefer risk-classification schemes which generate higher loss coverage for the population as a whole 
(note: not necessarily the same as higher number of persons insured, irrespective of their individual risks).

Another way of putting this is that a public policymaker designing a risk-classification scheme in the context of adverse selection faces a trade-off 
between insurance of the “right” risks (those more likely to suffer loss), and insurance of a larger number of risks. The optimal trade-off depends on 
demand elasticities of high and low risks. The concept of loss coverage quantifies this trade-off, and provides a metric for comparing the efficacy of 
different risk-classification schemes in facilitating compensation for the losses of the population as a whole.1

Previous work (Hao et al. (2016, 2018)) used models of demand elasticity for high and low risks to compare loss coverage for the polar cases: 
full risk-classification (where prices fully reflect individual risks) and pooling (where all risk classification is banned). This led to results as sketched 
in Fig. 1. For some intuition on this pattern, suppose we start from full risk-classification and then increase the price for low risks and reduce the 
price for high risks (i.e. move towards pooling), while maintaining zero profits. If demand elasticity for low risks is low compared to that for high 
risks, only a small fraction of low risks leaves the market, while a large fraction of high risks enters the market. Furthermore, each high risk who 
enters “counts for more” towards our policy objective of expected losses compensated than each low risk who leaves. So even though coverage of 
persons typically falls on a move towards pooling,2 coverage of losses can rise.

Given the pattern of the two regions in Fig. 1, it is natural to wonder if there might be an intermediate region where a price collar – a compromise 
between pooling and full risk-classification – gives higher loss coverage than either of the two polar cases. That possibility is the subject of this 
paper. To anticipate our main conclusion, the answer is yes, but only if demand elasticities for both high and low risks are greater than 1.

1.2. Literature review

This paper is related to recent literature on State-level health insurance exchanges established in the United States under the Affordable Care 
Act (and earlier legislation in some States), which all involve some form of price collar (Ericson and Starc (2015), Mahoney and Weyl (2017), 
Einav et al. (2019), Geruso et al. (2023)). These papers all focus on the specific context of US healthcare, and so incorporate many institutional 
constraints and details which we omit: a fixed width of collar (in contrast, our primary focus is on the effect of varying the collar), risk adjustment, 

1 For a toy example illustrating the arithmetic of loss coverage for a small group of risks, see section 2 of Hao et al. (2018) or this link: Improving insurance with

some adverse selection.
2 Coverage of persons typically falls on a move towards pooling, despite the posited difference in elasticities, because the high risk-group represents a smaller 
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fraction of the population than the low risk-group. But we argue that this is not a disadvantage, if coverage of losses rises.
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premium subsidies for insurance purchase and penalties for non-purchase, etc. One of the conclusions is that demand elasticity on the healthcare 
exchanges for younger people (i.e. lower risks) appears empirically to be about twice that for older people (i.e. higher risks). Therefore if subsidies 
were differentiated by age to make premiums lower for younger people, this could increase enrolment (Ericson and Starc (2015)), and represents 
a more effective and flexible instrument for this purpose than risk adjustment (Einav et al. (2019)). This is broadly consistent with our results: if 
demand elasticity is high for low risks compared with high risks, more differentiated prices tend to increase coverage (and loss coverage). However 
the details of our analysis differ, in that we assume the policy criterion is to maximise loss coverage (risk-weighted demand), not numbers insured 
(un-weighted demand).

To illustrate the difference, if each high risk has two times the expected losses of each low risk, then on our criterion, the policymaker is 
indifferent between coverage of one high risk or two low risks; but in the other papers just cited, the policymaker is indifferent between coverage of 
one high risk and one low risk. In the healthcare example, our objective amounts to increasing (expected) coverage of sickness, rather than coverage 
of persons irrespective of their probability of sickness. We do not say that prioritising coverage of sickness over coverage of persons is the only 
reasonable preference, but we do say that it is at least arguable.

Einav et al. (2019) recognise the point when they note that their suggestion of a move from risk adjustment and uniform premium subsidies to 
less risk adjustment and more risk-differentiated subsidies, whilst increasing enrolment, could also make higher risks worse off; to address this, they 
suggest adding a Pareto-type restriction on the policy change (i.e. the effective prices faced by high risks, after the move to less risk adjustment and 
more differentiated subsidies, must be no higher than before the change). The restriction ensures that the policy change increases enrolment for 
low risks, and also does not reduce enrolment for high risks; in our terms, it ensures that the policy change increases loss coverage. But it does not 
necessarily maximise loss coverage.

The contribution of this paper is to analyse market outcomes over the full parameter space for demand elasticities of high and low risk-groups 
(iso-elastic for each risk-group); and over the full feasible range for a price collar, from complete pooling to full risk-classification. The paper 
also represents a natural extension of Hao et al. (2018), which considered only the polar cases of full risk-classification and pooling, and not the 
intermediate possibilities under a price collar.

2. Political and regulatory constraints

By “political constraints”, we mean certain general notions of fairness and proportionality, which are unlikely to be explicitly stated in insurance 
regulations, but may nevertheless constrain both the actions of regulators and insurers’ response to those actions. By “regulatory constraints”, we 
mean rules about risk-classification which are explicitly stated in insurance regulations (such as the rules imposing a price collar).

2.1. Political constraints

The main role of “political constraints” in our analysis is to rule out premium regimes which may be technically feasible, but which we think are 
likely to be widely regarded as perverse, unreasonable, or otherwise unacceptable. Here are some examples:

(i) Hyper-differentiation. High risks are charged more than their true risks, and low risks are charged less than theirs. This gives a cross-subsidy 
between risk-groups, but for most contexts, it is in the “wrong” direction (i.e. a disadvantaged high risk-group is over-charged to subsidise an 
already fortunate low risk-group).

(ii) Hyper-pooling. Low risks are charged more than high risks. This could be economically feasible, if demand elasticity for low risks is sufficiently 
low compared to that for high risks. Here, the cross-subsidy is in the “right” direction for equity, but too large.

(iii) Groupings which lead to unfair ordering of premiums. If there are three risk-groups, say low, medium and high risks, then a regime which groups 
low and high risk-groups at one premium, and medium risks at another premium, could be economically feasible. But this might be politically 
unacceptable, if it leads to low risks being charged more than medium risks. (Stated differently, the objection is that this gives a similar result 
to hyper-pooling of low and medium risks.)

To summarise these considerations: if premiums are differentiated, the span of premiums should not exceed the span of the risks, and the ordering 
of premiums should be the same as the ordering of risks.3 To state these notions formally, we now introduce some notation for the rest of the paper:

• We assume a population consisting of 𝑛 distinct risk-groups with probabilities of loss given by 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑛), which are ordered for 
convenience (𝜇1 smallest, 𝜇𝑛 largest).

• The proportion of the population belonging to risk-group 𝑖 is 𝑝𝑖, for 𝑖 = 1, 2, … , 𝑛.
• Members of risk-group 𝑖 are offered premium (per unit of loss) 𝜋𝑖. We call 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑛) a premium regime, or risk-classification 

regime.

The political constraints can then be encapsulated as:

Constraint 1 (Political). Given risks 𝜇, a politically acceptable premium regime 𝜋 needs to satisfy:

𝜇1 ≤ 𝜋1 ≤ 𝜋2 ≤⋯ ≤ 𝜋𝑛 ≤ 𝜇𝑛. (2.1)

Other examples of politically unacceptable premium regimes might include those which lack face validity (e.g. combine risk-groups having no 
apparent similarities), or which disadvantage socially protected classes (e.g. a high premium for high risk may be less acceptable for disability than 

3 The latter constraint is analogous to the principle of vertical equity in taxation: the ordering of post-tax incomes should be the same as the ordering of pre-tax 
76
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for dangerous sports). It is not possible to specify all the political considerations that might arise. But we think Constraint 1 above seems broadly 
applicable, and helps to rule out perverse interpretations of the price collar concept.

2.2. Regulatory constraints

The price collar concept was outlined in the introduction and is formally specified as Constraint 2.

Constraint 2 (Price collar). Given a prescribed price collar, 𝜅, where 𝜅 ≥ 1, any premium regime 𝜋 needs to satisfy:

𝜋𝐻 ≤ 𝜅 𝜋𝐿, (2.2)

where 𝜋𝐿 =min𝑖 𝜋𝑖 and 𝜋𝐻 =max𝑖 𝜋𝑖.

The acceptable range for a price collar is limited by the prohibition on hyper-separation and hyper-pooling in political Constraint 1, which 
implies that:

1 ≤ 𝜅 ≤ 𝜇𝑛
𝜇1
. (2.3)

Note that the extremes 𝜅 = 1 and 𝜅 = 𝜇𝑛∕𝜇1 correspond to pooling and full risk-classification respectively. We use the term partial risk-classification

to refer to all regimes where 𝜅 is set to an intermediate value.

A price collar can be circumvented if insurers can simply decline high risks (which amounts to quoting an infinite price above the collar for high 
risks). To be effective, it needs to be supported by guaranteed issue, that is an obligation on the insurer to accept any applicant at some price within 
the collar, as stated in Constraint 3.

Constraint 3 (Guaranteed issue). Insurers are required to quote a price within the collar to all applicants. Nobody can be declined for insurance.

Guaranteed issue might be unreasonable for types of insurance where there are a few exceptionally high probabilities of loss (e.g. term insurance 
for people with a terminal illness). This problem can be alleviated by a rule which permits a small fraction of higher prices, e.g. up to 1% of the 
prices charged by an insurer over a trailing three-year period are permitted to exceed the collar. But for simplicity, we assume guaranteed issue is 
required.

3. Insurance market and loss coverage

This section develops the theory of insurance market equilibrium and loss coverage under perfect competition, but subject to the political and 
regulatory constraints stated above.4

3.1. Insurance demand

Typical theories of insurance demand assume individuals know their own probabilities of loss and have a common utility function. Given an 
offered premium, individuals with the same probabilities of loss then all make the same purchasing decision. This does not correspond well to the 
observable reality of insurance markets, where individuals with similar probabilities of loss often appear to make different decisions, and substantial 
fractions of individuals do not purchase insurance at all.

We follow the different approach introduced in Hao et al. (2018, 2019); Chatterjee et al. (2021), which allows for heterogeneity in risk aversion 
across individuals with the same probabilities of loss, and hence generates the partial take-up of insurance that we observe in practice. In summary, 
our approach is based on the following assumptions.

(i) Individuals know their probability of loss and their own risk aversion, and make purchasing decisions accordingly.

(ii) Insurers can observe (via the usual underwriting procedures) individuals’ probabilities of loss and so correctly assign them to risk-groups, but 
cannot observe their individual risk aversion.

(iii) All insurance is for one unit of cover, in a contract which is standardised across all insurers, who compete only on price. Insurers do not offer 
partial cover or other contract menus.

(iv) Viewed by the insurer, the demand for insurance from risk-group 𝑖 at premium 𝜋𝑖 is then a function 𝑑𝑖(𝜋𝑖). The demand function represents 
the proportion of the risk-group who buy insurance, such that 0 < 𝑑𝑖(𝜋𝑖) < 1. We assume that this is decreasing and continuous.

Note that we use demand functions in a purely predictive way, to model how the fraction of a risk-group which purchases insurance varies 
with the price charged to the risk-group. The role of utility functions is limited to providing the micro-foundation or “back-story” for this predictive 
model. We do not use the implicit link between utility functions and demand to connect observed changes in demand to changes in social welfare, 
as in the approach originated by Einav et al. (2010).

4 Mahoney and Weyl (2017) give an analysis of imperfect competition in selection markets by indexing the degree of competition (and hence mark-ups) with 
a single parameter. But this cannot be applied in our set-up, where elasticities differ across risk-groups, and hence optimal mark-ups under pooling would vary 
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𝜇1 𝜇2 𝜇𝑙 𝜇𝑙+1 𝜇𝑛−ℎ 𝜇𝑛−ℎ+1 𝜇𝑛−1 𝜇𝑛

𝜋𝐿 𝜋𝐻

  

charged same premium 𝜋𝐿 charged fair premiums charged same premium 𝜋𝐻

Fig. 2. Price collar: tripartite solution.

3.2. Market equilibrium

To recap on notation: we have a population of 𝑛 risk-groups, where members of risk-group 𝑖 each have risk 𝜇𝑖, are offered premium 𝜋𝑖, and 
collectively represent proportion 𝑝𝑖 of the aggregate population. In a perfectly competitive insurance market, we then have:

Premium income =
𝑛∑
𝑖=1
𝑝𝑖 𝑑𝑖(𝜋𝑖)𝜋𝑖. (3.1)

(Expected) insurance claim =
𝑛∑
𝑖=1
𝑝𝑖 𝑑𝑖(𝜋𝑖)𝜇𝑖. (3.2)

(Expected) profit ∶𝐸
(
𝜋
)
=

𝑛∑
𝑖=1
𝑝𝑖 𝑑𝑖(𝜋𝑖)

(
𝜋𝑖 − 𝜇𝑖

)
. (3.3)

Market equilibrium ⇒𝐸
(
𝜋
)
= 0. (3.4)

Any candidate equilibrium premium regime 𝜋 satisfying Equation (3.4) also needs to be a Nash equilibrium: that is, it must be impossible for 
any single insurer to profitably disrupt the equilibrium by using a different regime, given the way other insurers would react.5 This property relies 
on a corollary of perfect competition: no insurer has any market power, because all individuals choose the lowest offer in the market for their risk.

To see why this corollary is important, imagine that one insurer could set a collar of the same maximum permitted width 𝜅 as other insurers, 
but with a lower mid-point, and increase its market share of (profit-making) low risks at the lower end of its collar without an equivalent increase 
in market share of (loss-making) high risks at the upper end of its collar. This insurer would profitably disrupt an existing zero-profit regime. But 
this is impossible under perfect competition, because an insurer which sets lower prices than other insurers for both high and low risks will attract 
essentially all the market demand from both low risks and high risks; and therefore if the other insurers were previously zero-profit, the deviating 
insurer will make a loss.6

3.3. The price collar equilibrium

The equilibrium conditions stated in Section 3.2, combined with the political and regulatory constraints stated in Section 2, lead to the following 
solutions for different values of the price collar:

(i) 𝜅 = 𝜇𝑛∕𝜇1: full risk-classification, where all risk-groups are charged their fair premiums i.e. 𝜋 = 𝜇, is a solution.

(ii) 𝜅 = 1: pooling, where all risk-groups are charged the same premium 𝜋0, is a solution.7

(iii) Intermediate values of 𝜅: a tripartite solution of this form:

• a super-group  of low risk-groups all charged the same 𝜋𝐿 (more than their fair premiums);

• a super-group  of “middle” risk-groups all charged their fair premiums;

• a super-group  of high risk-groups all charged the same 𝜋𝐻 (less than their fair premiums);

where the grouping into three super-groups (hence “tripartite”) has the pattern shown in Fig. 2.

For intuition on why the intermediate collar solution must take this tripartite form, first note that each insurer has to come up with its own collar 
limits, 𝜋𝐿 and 𝜋𝐻 = 𝜅 𝜋𝐿 . Then all risks lower than 𝜋𝐿 have to be charged at least 𝜋𝐿 ; and all risks higher than 𝜋𝐻 have to be charged at most 𝜋𝐻 . 
Competition in pricing for low and high risks drives all insurers towards the same values for the collar limits 𝜋𝐿 and 𝜋𝐻 . Then note that inside the 
limits of the collar, the same competitive forces operate as if no collar applied, with the same outcome: if one insurer attempts to pool a higher and 
lower risk-group inside the collar, this can be destabilised by another insurer offering the lower risk-group in the putative pooling a fair premium. 
Hence competition drives all insurers to charge all “middle” risk-groups exactly their fair premiums.

5 Our concept of different regime is limited to different set of prices for insurance contracts, which are standardised for regulatory or institutional reasons, as in 
Akerlof (1970); we do not consider differentiation by contract design, as in Rothschild and Stiglitz (1976).

6 Stating “no market power” differently: brand elasticity of demand for each insurer is infinite. Note that no contradiction arises from infinite brand demand 
elasticities combined with relatively low product demand elasticities, because they relate to different choice problems. Product elasticity relates to the choice over 
products in the consumer’s consumption bundle. Brand elasticity relates to the choice over brands, given that insurance is to be purchased. Alternatively, a weaker 
assumption could do the same work: if one insurer reduces prices for high and low risks by the same amount, it attracts the same increase in market share for high 
and low risks (as assumed in Mahoney and Weyl (2017)); that is, the semi-logarithmic brand elasticity of demand is uniform for high and low risks.

7 Given continuous demand functions, the existence of at least one pooling equilibrium is ensured by the intermediate value theorem. Uniqueness is technically 
not guaranteed, but pertains for plausible combinations of demand elasticities; and if, exceptionally, there are multiple solutions, any besides the lowest will be 
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eliminated by competition. The same elimination principle applies for any multiple solutions under the collar in the next point (for proof see Appendix A).
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A formal statement and proof of the tripartite solution is given as Theorem 1 in Appendix A.

3.4. Iso-elastic insurance demand

So far, we have only needed the insurance demand function, 𝑑𝑖(𝜋𝑖) for risk-group 𝑖, to be continuous and decreasing in 𝜋𝑖. We will now further 
assume differentiability, to define the (point price) elasticity of insurance demand as:

𝜖𝑖(𝜋𝑖) = −
𝜕 log𝑑𝑖(𝜋𝑖)
𝜕 log𝜋𝑖

= −

𝜕 𝑑𝑖(𝜋𝑖)
𝑑𝑖(𝜋𝑖)
𝜕 𝜋𝑖
𝜋𝑖

= −
𝜋𝑖

𝑑𝑖(𝜋𝑖)
𝜕 𝑑𝑖(𝜋𝑖)
𝜕𝜋𝑖

, (3.5)

which implies that insurance demand can also be expressed as:

𝑑𝑖(𝜋𝑖) = 𝜏𝑖 exp
⎡⎢⎢⎣−

𝜋𝑖

∫
𝜇𝑖

𝜖𝑖(𝑠)𝑑 log 𝑠
⎤⎥⎥⎦ , (3.6)

where 𝜏𝑖 = 𝑑𝑖(𝜇𝑖) is the fair-premium demand for risk-group 𝑖. A tractable functional form for demand is iso-elastic, i.e. demand elasticity is a positive 
constant, 𝜆𝑖:

𝜖𝑖(𝜋𝑖) = 𝜆𝑖; (3.7)

and by Equation (3.6), demand for risk-group 𝑖 then takes the form:

𝑑𝑖(𝜋𝑖) = 𝜏𝑖
(
𝜇𝑖
𝜋𝑖

)𝜆𝑖
, (subject to a cap of 1). (3.8)

Note that if the premium charged is sufficiently small, it is possible for a risk-group to be fully insured, i.e. 𝑑𝑖(𝜋𝑖) = 1.

For iso-elastic demand, the equilibrium condition in Equation (3.4) takes the form:

𝐸
(
𝜋
)
=

𝑛∑
𝑖=1
𝑝𝑖 𝜏𝑖

(
𝜇𝑖
𝜋𝑖

)𝜆𝑖 (
𝜋𝑖 − 𝜇𝑖

)
= 0. (3.9)

3.5. Loss coverage

In Section 1.1, loss coverage was defined as: expected losses compensated by insurance for the population as a whole, i.e.:

Loss coverage: 𝐶
(
𝜋
)
=

𝑛∑
𝑖=1
𝑝𝑖 𝑑𝑖(𝜋𝑖)𝜇𝑖. (3.10)

For iso-elastic demand, the expression for loss coverage takes the form:

𝐶
(
𝜋
)
=

𝑛∑
𝑖=1
𝑝𝑖 𝜏𝑖

(
𝜇𝑖
𝜋𝑖

)𝜆𝑖
𝜇𝑖. (3.11)

We suggest that a good objective for a regulator or policymaker is to calibrate the price collar 𝜅 to maximise loss coverage over all possible pre-

mium regimes. This will ensure that voluntary purchases of insurance cover the largest possible fraction of the population’s losses.8 Mathematically, 
the objective can be stated, in terms of premiums, as9:

max
𝜅

𝐶
(
𝜋
)
, subject to 𝐸

(
𝜋
)
= 0. (3.12)

4. The case of two risk-groups

4.1. Maximising loss coverage

Consider two premium regimes: 𝜋 = (𝜋1, 𝜋2) and 𝜋+Δ𝜋 = (𝜋1 +Δ𝜋1, 𝜋2 +Δ𝜋2), where both regimes satisfy the equilibrium condition in Equation 
(3.9), so that 𝐸

(
𝜋 +Δ𝜋

)
=𝐸
(
𝜋
)
= 0. If Δ𝜋 is “small”, ignoring higher-order terms in the Taylor series expansion gives:

Δ𝐸 =𝐸
(
𝜋 +Δ𝜋

)
−𝐸
(
𝜋
)
=𝐸1 Δ𝜋1 +𝐸2 Δ𝜋2, where 𝐸𝑖 =

𝜕𝐸

𝜕𝜋𝑖
for 𝑖 = 1,2. (4.1)

As 𝐸
(
𝜋 +Δ𝜋

)
=𝐸
(
𝜋
)
= 0, and thus Δ𝐸 = 0, the relationship between Δ𝜋1 and Δ𝜋2 can be expressed as:

Δ𝜋2 = −
𝐸1
𝐸2

Δ𝜋1. (4.2)

8 Compulsory purchase (a mandate) could ensure 100% coverage, but the reduction in liberty this involves is often unacceptable (this is discussed further in 
Section 6.1).

9 Readers who are familiar with Lagrange multipliers and the Kuhn-Tucker theorem (please see Dixit (1990) for an exposition from an economic perspective) 
will realise that the constrained maximisation problem can be framed in terms of these optimisation approaches. However, instead of applying these methods 
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mechanically, we provide the intermediate steps, so that the underlying economic interpretations are not overlooked.
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Fig. 3. Regions of 
(
𝜆1, 𝜆2

)
–plane where pooling, full or partial risk-classification give highest loss coverage. (Basis: 𝑝1 = 𝑝2 = 1∕2, 𝜏1 = 𝜏2 = 1∕2, 𝜇2∕𝜇1 = 4, but 

similar appearance for other plausible parameters.) (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

To compare loss coverages under two equilibrium premium regimes: 𝜋 = (𝜋1, 𝜋2) and 𝜋 + Δ𝜋 = (𝜋1 + Δ𝜋1, 𝜋2 + Δ𝜋2), Taylor series expansion 
ignoring higher-order terms gives:

Δ𝐶 = 𝐶1 Δ𝜋1 +𝐶2 Δ𝜋2 =
[
𝐶1 −

𝐸1
𝐸2

𝐶2

]
Δ𝜋1, where 𝐶𝑖 =

𝜕𝐶

𝜕𝜋𝑖
for 𝑖 = 1,2. (4.3)

For the specific case of iso-elastic demand functions, after obtaining 𝐸𝑖 and 𝐶𝑖 by taking derivatives, the sensitivity of loss coverage to small 
changes in the equilibrium premium regimes is given by:

Δ𝐶 = 𝑇
(
𝑚2 −𝑚1

)
Δ𝜋1 (4.4)

where 𝑇 =
𝑝1 𝜏1 𝜆1

(
𝜇1
𝜋1

)𝜆1+1
1 −𝑚2

(4.5)

and 𝑚𝑖 =
𝜋𝑖
𝜇𝑖

(
1 − 1

𝜆𝑖

)
for 𝑖 = 1,2. (4.6)

Note that the term 𝑇 is always positive, because the political constraint requires 𝜋2 ≤ 𝜇2, and thus 𝑚2 < 1.

The sign of the term 
(
𝑚2 −𝑚1

)
determines how 𝐶 depends on the low-risk premium 𝜋1. Specifically, for given values of 𝜆1 and 𝜆2, if the term (

𝑚2 −𝑚1
)

is positive or negative over the whole politically feasible range of 𝜋1, this tells us that loss coverage is maximised for pooling or full 
risk-classification respectively; and if it changes sign over the range of 𝜋1, there will be a turning point for loss coverage. A further interpretation of 
the 𝑚𝑖 will be given in Section 4.2 below.

The result is illustrated in Fig. 3. A formal statement as Theorem 2 and a proof are given in Appendix B.

Fig. 3 shows which risk-classification scheme – pooled, full or partial – gives highest loss coverage in each region of the 
(
𝜆1, 𝜆2

)
–plane. There 

are three main regions:

–  (left, green) where pooling is best.

–  (right, red) where full risk-classification is best.

– 𝐻 (intermediate, high elasticities, blue) where for each point in the region, there is a particular partial risk-classification regime which gives 
an interior maximum.

– The hatching 𝐿 (intermediate, low elasticities) over parts of the green and red regions denotes a zone where for each point, a particular 
partial risk-classification regime gives an interior minimum (note the analogy with region 𝐻 , where partial gives an interior maximum). This is 
consistent with the underlying green and red coding, i.e. one of pooling and full risk-classification regimes must be the maximum.

Also note:

– The large green region (pooling best) and red region (full best) are each divided into three sub-regions, delineated by the vertical and horizontal 
lines 𝜆1 = 1 and 𝜆2 = 1.
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– The grey central curve along which pooling and full risk-classification give equal loss coverage is the same as previously shown in Fig. 1.
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Table 1

Estimates of demand elasticity for various insurance markets.

Market and country Demand elasticitiesa Authors

Health insurance exchange, USA 2.05 (ages 26-31),

1.36 (ages 62-64) Tebaldi (2022)

Health insurance exchange, USA young > 2× old Ericson and Starc (2015)

Health insurance (pre-ACA), USA 0 to 0.2 Chernew et al. (1997),

Blumberg et al. (2001),

Buchmueller and Ohri (2006)

Health insurance, Australia 0.35 to 0.50 Butler (1999)

Long-term care insurance, USA 3.3 Goda (2011)

Term life insurance, USA 0.66 Viswanathan et al. (2006)

Yearly renewable term life, USA 0.4 to 0.5 Pauly et al. (2003)

Whole life insurance, USA 0.71 to 0.92 Babbel (1985)

Farm crop insurance, USA 0.32 to 0.73 Goodwin (1993)

a Estimates in empirical papers are generally given as negative values, but we have presented 
the absolute values here for consistency with the definition of demand elasticity used in this 
paper.

The range of elasticities in Fig. 3 is intended to be representative of real-world product demand elasticities.10 In this regard, Table 1 shows 
estimates from various authors for a selection of insurance markets. Note particularly Tebaldi (2022) and Ericson and Starc (2015), who provide 
some evidence of different elasticities for different risk-groups: they report substantial differences in elasticity between younger and older customers 
(i.e. lower and higher risks) on health insurance exchanges.

For graphical intuition into the general pattern of Fig. 3, look at Fig. 4, where the six panels show representative plots of equilibrium loss 
coverage against 𝜋1 for all the labelled regions in Fig. 3. In each panel, increasing 𝜋1 along the x-axis corresponds to reducing the price collar from 
its maximum of 𝜅 = 𝜇2∕𝜇1 (which permits full risk-classification) to its minimum of 𝜅 = 1 (which enforces pooling). Then note that the slope and 
convexity of the various plots account for the pattern of results illustrated in Fig. 4. In particular:

(i) For pooling to be best, the plot needs to have a maximum at its right extreme: regions 1 , 2 & 3 (first row of Fig. 4).

(ii) For full risk-classification to be best, the plot needs to have a maximum at its left extreme: regions 1 , 2 & 3 (second row of Fig. 4).

(iii) For partial risk-classification to be best, the plot needs to have an interior maximum (right panel of third row of Fig. 4). This is true only in 
the upper-right intermediate region 𝐻 .

(iv) For partial risk-classification to be worst, the plot needs to have an interior minimum (left panel of third row of Fig. 4). This is true only in 
the lower-left intermediate region 𝐿 .

4.2. Economic intuition: marginal revenue-to-cost ratios

From Equation (4.4), Δ𝐶∕Δ𝜋1 = 𝑇 (𝑚2 − 𝑚1), we can see that the slope of the loss coverage plots in Fig. 4 depends on (𝑚2 − 𝑚1). Each 𝑚𝑖
represents the ratio of marginal revenue to marginal cost for the risk-group.

To see this, first note that the total revenue and total cost given risk-group 𝑖 are 𝑇𝑅𝑖(𝜋𝑖) = 𝜋𝑖 𝑑𝑖(𝜋𝑖) and 𝑇𝐶𝑖(𝜋𝑖) = 𝜇𝑖 𝑑𝑖(𝜋𝑖). So the marginal 
revenue and marginal cost are:

𝑀𝑅𝑖(𝜋𝑖) =
𝜕 𝑇𝑅𝑖(𝜋𝑖)
𝜕 𝑑𝑖(𝜋𝑖)

=
𝜕
[
𝜋𝑖 𝑑𝑖(𝜋𝑖)

]
𝜕 𝑑𝑖(𝜋𝑖)

= 𝜋𝑖 + 𝑑𝑖(𝜋𝑖)
𝜕 𝜋𝑖

𝜕 𝑑𝑖(𝜋𝑖)
= 𝜋𝑖
(
1 − 1

𝜖𝑖(𝜋𝑖)

)
(4.7)

𝑀𝐶𝑖(𝜋𝑖) =
𝜕 𝑇𝐶𝑖(𝜋𝑖)
𝜕 𝑑𝑖(𝜋𝑖)

= 𝜇𝑖. (4.8)

So we define the marginal revenue-to-cost ratio as:

𝑚𝑖 =
𝑀𝑅𝑖(𝜋𝑖)
𝑀𝐶𝑖(𝜋𝑖)

=
𝜋𝑖
𝜇𝑖

(
1 − 1

𝜆𝑖

)
for iso-elastic demand, (4.9)

which is the same as the 𝑚𝑖 previously identified in Equation (4.6). The ratio measures the extent to which a small increase in a risk-group’s cost 
(i.e. its demand, multiplied by its risk rate 𝜇) is offset by a corresponding increase in its revenue (i.e. its demand, multiplied by its premium rate 𝜋).

The entirety of Fig. 3 can then be characterised by the following principle: to increase loss coverage, shift demand towards the risk-group with higher 
marginal revenue-to-cost ratio.11 This seems very intuitive: it helps to shift demand towards the risk-group which is more effective in generating 
incremental revenue to cover its incremental cost.

The principle is illustrated in Fig. 5. Throughout the solid green region, the ratio is higher for the high risk-group, for all feasible values of the 
collar 𝜅 (i.e. all premiums 𝜋1 and 𝜋2). So it helps to shift demand maximally towards the high risk-group (i.e. pooling is best). The converse applies 
throughout the solid red region.

In the blue region, either ratio can be higher, depending on the current value of the collar 𝜅. So it helps to shift demand “so far, but no further”, 
until the two ratios are equal (i.e. neither is higher), where loss coverage reaches an interior maximum.

In the hatched zone, either ratio can again be higher, depending on the current collar 𝜅; but when they are equal, loss coverage now has an 
interior minimum. From this point, either increasing or decreasing the collar 𝜅 will increase loss coverage; and so to be sure of maximising, we need 

10 Product elasticities, rather than brand elasticities, are relevant to our analysis (cf. Footnote 6).
11 “Higher” here means either more positive, or less negative (if both ratios are negative, i.e. both demands are inelastic). For proof of the principle see Lemma 3
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in Appendix B.



Insurance Mathematics and Economics 116 (2024) 74–94I. Chatterjee, M. Hao, P. Tapadar et al.

Fig. 4. Slope and convexity of loss coverage–premium plots.

to check which extremum (i.e. pooling or full risk-classification) gives the largest increase. (To see this graphically, look at the bottom left panel 
in Fig. 4. If we start to the left of the minimum point, marginally increasing loss coverage will take us towards the left extremum, but the right 
extremum gives the highest loss coverage.)

To see why the turning point in the blue region is a maximum, first note that the “equal ratios” condition for a turning point is:

𝑚1 =𝑚2 ⇒
𝜋1
𝜇1

(
1 − 1

𝜆1

)
=
𝜋2
𝜇2

(
1 − 1

𝜆2

)
. (4.10)

Now note that in the blue region, both 𝜆𝑖 > 1, so both brackets above are always positive. So starting from the turning point, if we move 𝜋1 ↓ and 
𝜋2 ↑ (i.e. shift demand towards low risks, and away from high risks), the marginal revenue-to-cost ratio falls in the risk-group with rising demand, 
and vice versa. This is an unfavourable combination. The same unfavourable combination obtains if we move 𝜋1 ↑ and 𝜋2 ↓. So whichever way we 
move the premiums to give a new equilibrium, loss coverage decreases; and therefore the turning point we started from must be a maximum.

Conversely, in the hatched zone, both 𝜆𝑖 < 1, and so both brackets above are always negative. The entire argument just given is then inverted, 
so the turning point for loss coverage in the hatched zone must be a minimum.

4.3. A general rule to select the optimal collar

The required price collar to equalise the marginal revenue-to-cost ratios and so give a turning point as just discussed can be found from Equation 
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(4.10) as:
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Fig. 5. Relationship between the marginal revenue-to-cost ratios 𝑚1 and 𝑚2 in the different regions of the
(
𝜆1, 𝜆2

)
–plane.

𝜅 =
𝜋𝐻
𝜋𝐿

=
𝜋2
𝜋1

=
1
𝜇1

(
1 − 1

𝜆1

)
1
𝜇2

(
1 − 1

𝜆2

) =Ψ say, (4.11)

but in regions other than 𝐿 and 𝐻 , this turning point will lie outside the feasible range [1, 𝜇2∕𝜇1] for the collar.12

When we limit the collar to the feasible range, the following rule selects the optimal collar 𝜅 to maximise loss coverage:

• for 𝜆2 > 1 set 𝜅 as close as feasible to Ψ and

• for 𝜆2 < 1: set 𝜅 as distant as feasible from Ψ.

In region 𝐻 , this rule sets 𝜅 = Ψ to give the turning point (a maximum) as in Equation (4.11). In all other regions, it selects the feasible 
extremum for 𝜅 (i.e. pooling or full risk-classification) which maximally implements the principle: to increase loss coverage, shift demand towards the 
risk-group with higher marginal revenue-to-cost ratio.

The form of the rule and its dependence on 𝜆2 ≶ 1 can also be understood graphically by reference to the curvature apparent in the six panels in 
Fig. 4. In all panels where 𝜆2 > 1, the curve is concave, so the theoretical turning point given by Equation (4.11) (not necessarily politically feasible) 
is a maximum. For these panels, the rule tells us to select the collar which gets us as close as possible to that turning point; and vice versa in all 
panels where 𝜆2 < 1, where the curve is convex and so the turning point is a minimum. (Although the theoretical turning point is not visible in the 
top four panels, its “off-screen” location is always visually implied: the flatter end of the curve points towards the turning point.)

5. Extensions and sensitivities

5.1. More than two risk-groups

For more than two risk-groups, we can generalise Theorem 2, using:

(i) the known tripartite structure of the Nash equilibrium premium regime under a price collar, as illustrated in Fig. 2 and formalised in 
Theorem 1, and

(ii) a heuristic assumption that all risk-groups in the “low” super-group  have the same iso-elastic demand elasticity 𝜆𝐿 , and all risk-groups in 
the “high” super-group  have the same iso-elastic demand elasticity 𝜆𝐻 . This is based on the premise that risk-groups with broadly similar 
risks are likely to have broadly similar elasticities.

Intuitively, the key insight for more than two risk-groups is that because all risk-groups in the “middle” super-group  always pay their fair 
premiums, they do not contribute to the cross-subsidies which determine equilibrium (and hence loss coverage). So for the purpose of determining 
how loss coverage changes when the collar changes, the “middle” super-group  can be completely disregarded. Therefore the analysis of loss 
coverage for two risk-groups in Equation (4.4) can be re-stated in terms of the two super-groups  and , with the super-group elasticities 𝜆𝐿 and 
𝜆𝐻 in place of 𝜆1 and 𝜆2, and other parameters also set to their super-group values, i.e.:

12 To illustrate, in region 2, there is a turning point with 𝜋1 < 𝜇1 and 𝜋2 > 𝜇2, i.e. hyper-differentiated premiums, which are politically infeasible. In region 1, both 
revenues always increase on any move towards pooling, so the “technical” turning point must involve one negative premium. Continuity with hyper-differentiation 
83

in 2 as just discussed suggests that the negative one should be 𝜋1 ; but any negative premium is both politically and economically infeasible.
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Δ𝐶 = 𝑇
(
𝑚𝐻 −𝑚𝐿

)
Δ𝜋𝐿, (5.1)

where 𝑇 =
𝑝𝐿 𝜏𝐿 𝜆𝐿

(
𝜇𝐿
𝜋𝐿

)𝜆𝐿+1
1 −𝑚𝐻

; and 𝑚𝑖 =
𝜋𝑖
𝜇𝑖

(
1 − 1

𝜆𝑖

)
; 𝑖 =𝐿,𝐻 ; (5.2)

where for the “low” and “high” super-groups  and :

• 𝜇𝐿 and 𝜇𝐻 are the respective pooled equilibrium premiums;

• 𝜋𝐿 and 𝜋𝐻 are the corresponding premiums;

• 𝑝𝐿 and 𝑝𝐻 are the proportions of the population belonging to the super-groups;

• 𝜏𝐿 and 𝜏𝐻 can be interpreted as the ‘fair-premium demand’ when all risk-groups in the respective super-groups are pooled and charged the same 
pooled premium.

As 𝑇 is always positive, the same inferences as before can then be made. A formal derivation of Equation (5.1) is given in Appendix C. Our general 
principle: to increase loss coverage, shift demand towards the risk-group with higher marginal revenue-to-cost ratio also remains valid when applied to the 
super-groups  and .

It is possible that when the width 𝜅 of the collar changes, the constituent risk-groups in the super-groups ,  and  may slightly change. This 
is not problematic, for the following reasons:

• Starting from pooling (i.e. 𝜅 = 1), all risk-groups with risks less than the pooled premium belong to the super-group  having the same 
demand elasticity 𝜆𝐿 ; while the remaining risk-groups with higher risks belong to the super-group  having the same demand elasticity 
𝜆𝐻 .

• As the price collar, 𝜅, is increased, more and more risk-groups from the super-groups  and  join . However, the remaining risk-groups 
in  and  continue to have the same demand elasticities 𝜆𝐿 and 𝜆𝐻 respectively. So, any change in the compositions of ,  and 
would not affect the underlying demand elasticities of the super-groups  and .

• Risk-groups at the upper end of  or lower end of , which are on the threshold of moving to , are already paying very close to their 
fair premiums. So their contribution to loss coverage is almost unchanged when they cross the threshold and transfer into .

• So provided insurance demands are “well-behaved” functions of premiums, which is indeed the case for iso-elastic demand functions, the 
loss coverage would be a continuous function of the price collar. Hence the conclusions would remain unaffected if the constituents of , 
 and  change when the price collar changes.

5.2. Other demand functions

To apply the results for non-iso-elastic demand functions, we can use the construct of arc elasticity (Hao et al. (2018), Vazquez (1995)) between 
two prices 𝑎 and 𝑏, defined as:

arc elasticity: 𝜂𝑖(𝑎, 𝑏) =
∫ 𝑏
𝑎 𝜖𝑖(𝑠)𝑑 log 𝑠

∫ 𝑏
𝑎 𝑑 log 𝑠

. (5.3)

Arc elasticity can be interpreted as the average value of (point) demand elasticity over the price logarithmic arc from price 𝑎 to price 𝑏. The political 
constraints on prices imply feasible arcs for 𝜋𝑖 to be (𝜇𝑖, 𝜋0) or (𝜋0, 𝜇𝑖) depending on whether or not 𝜇𝑖 is less than 𝜋0. If we re-define 𝜆𝑖 as the 
corresponding arc elasticity, i.e.:

𝜆𝑖 = 𝜂𝑖(𝜇𝑖, 𝜋𝑖) =
∫ 𝜇𝑖
𝜋𝑖
𝜖𝑖(𝑠)𝑑 log 𝑠

∫ 𝜇𝑖𝜋𝑖 𝑑 log 𝑠
, (5.4)

we can then apply the techniques presented in previous sections using these 𝜆𝑖-s, to compare various price collar regimes.

Note also that if we are evaluating only a small change in the risk-classification scheme (i.e. a small change in the high-risk and low-risk 
premiums), then only short arcs encompassing the proposed premium changes need to be considered. Furthermore, if elasticity is either less than 1 
or greater than 1 for a risk-group throughout its relevant arc, then so is the arc elasticity. This allows quick inferences to be made without calculating 
arc elasticities, if one is prepared to assume either “elastic demand” or “inelastic demand” for a risk-group throughout its relevant arc.

5.3. Different population structures

By “population structure”, we mean the proportions of low and high risks in the population, 𝑝1 and 𝑝2. These parameters were included in our 
definition of equilibrium in Equation (3.9), but do not appear in the definitions of most of the boundaries in Fig. 3. So making the population 
structure more extreme has no effect on most of the boundaries. The only change is that the central grey line of equality (i.e. where pooled and 
full give the same loss coverage) flexes slightly, while still passing through the points (0, 0) and (1, 1) and always remaining within the intermediate 
regions 𝐿 and 𝐻 . This is illustrated for 𝑝2∕𝑝1 = 50/50 and 99/1 in the first panel in Fig. 6.13

Making the population structure more extreme also makes all the loss coverage plots in Fig. 4 flatter over their full range. In other words, if 
either risk-group is very small, it makes almost no difference to loss coverage which risk-classification scheme we use.

13 For region 𝐿 , the exact position of the grey line of equality is given by Corollary 2.1 in Appendix B. A similar derivation could be given for region 𝐻 , but it is 
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of little interest, because partial risk-classification gives the highest loss coverage in this region.
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Fig. 6. Sensitivity to different population structures and relative risks.

5.4. Different relative risks

By “relative risk”, we mean the ratio of high-risk to low-risk probabilities of loss, 𝜇2∕𝜇1. The main effect of higher 𝜇2∕𝜇1 is to shrink the 
lower right region 2 inside the unit square where full risk-classification is always best. This effect is shown in the second panel of Fig. 6. The 
intuition is that as 𝜇2∕𝜇1 →∞, the relative contribution that low risks can potentially make to loss coverage falls. This implies there is less benefit 
in increasing demand from the low risks (i.e. reducing their premiums, via full risk-classification). So the range of elasticity combinations for which 
full risk-classification is best shrinks.

Comparing the two panels in Fig. 6, the effect of a modest change in relative risk is more noticeable than the effect of an extreme change in 
population structure. This is because changing relative risk shifts only costs between the risk-groups, but changing population structure shifts both 
costs and premiums, which to a large degree offset one another. The former is more disruptive of any initial equilibrium.

6. Discussion

6.1. Loss coverage versus other policy metrics

We have assumed that the objective – or at least, one objective – of insurance policymakers is to promote compensation of the population’s 
losses. This objective motivates the concept of loss coverage (expected losses covered), with risk-classification schemes which generate higher loss 
coverage being preferred. But the concept is not widely used in policy analysis, which prompts the questions: do policymakers actually care about 
loss coverage; and if not, what do they care about instead?

The most definitive way of promoting loss coverage is to make insurance compulsory. The fact that this is done in many jurisdictions, for 
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some important classes of insurance, suggests that policymakers do implicitly care very much about loss coverage. Compulsion as an expedient 
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to maximise loss coverage is commonly applied where any uninsured losses would fall on innocent third parties (e.g. auto and employer liability 
insurances), or where they relate to universal needs (e.g. some basic level of healthcare).

In other classes of personal insurance, such as life insurance, the third-party or universal-need justifications for compulsion are less clear-cut. On 
the one hand, people with no dependants have little or no need for life insurance. On the other hand, people who do have dependants often have far 
too little life insurance (Auerbach and Kotlikoff (1991), Bernheim et al. (2003)). In these circumstances, compulsion may be a poorly targeted policy 
for increasing loss coverage. It may be more politically acceptable to leave purchasing decisions to individuals, and look to adjust risk classification 
(e.g. the width of price collar) as a “nudge” to increase loss coverage.

Whilst increasing loss coverage seems an implicit motivation for many compulsory insurances, most political discussion focuses on coverage 
of persons rather than coverage of losses. Our impression is that this is not based on any principled preference, bur rather on the heuristic that 
since coverage of persons must always precede coverage of losses, the two are equivalent and no distinction needs to be made (but we say that it 
does). Much applied policy analysis, perhaps taking its cue from the political discussion, also focuses on coverage of persons. As recent examples, 
Wettstein (2017), Gruber and Sommers (2019) and Einav et al. (2019) all focus mainly on increases in enrolment (i.e. coverage of persons) under 
the Affordable Care Act.

More theoretical policy analyses, typically directed at academic rather than policy audiences, focus on utilitarian social welfare. One approach 
makes assumptions about utility functions and then directly calculates expected utility for a random member of the population, behind a Rawlsian 
veil of ignorance that screens off knowledge of one’s risk type (Hoy (2006)). Alternatively, on the assumption of revealed preference (i.e. demand 
from high and low risks represents their willingness-to-pay and hence expected utility), observed movements in the demand curves can be used to 
estimate changes in consumer and social surplus as measures of changes in welfare (Einav et al. (2010)). The latter approach has become popular 
in empirical work in recent years (for a survey of applications see Einav and Finkelstein (2023)), but we think it has two main drawbacks.

First, the principle of revealed preference assumes that insurance decisions accurately reflect expected utilities, but much evidence calls this into 
question. Probability distortions appear substantial, particularly over-weighting of the small probabilities usually relevant for insurance (Barseghyan 
et al. (2013)); inertia, lack of information and time and hassle costs appear to greatly influence decisions (Handel (2013), Ericson (2014), Handel 
and Kolstad (2015)); and more than half of health plan participants in one major study actually chose financially dominated options (Bhargava et 
al. (2017)). One justification for a simple focus on expected losses compensated (i.e. loss coverage) is that it sidesteps all such distortions.

Second, the demand curve approach implicitly places the same weights on changes in demand from high and low risks. However, footnote 6 in 
Einav and Finkelstein (2023) notes (but does not pursue) the important point that since higher risks are worse off ex-ante, this should imply higher 
weights for them in any social welfare function evaluated behind the veil of ignorance. Similarly, Hendren (2021) notes that willingness-to-pay is 
observed at a time when individuals’ risk status is already known, and so misses the value of insuring against high-risk status ex ante behind the veil 
of ignorance. Both these points are “directionally” similar to loss coverage; we say that it is sensible to place higher weight on demand from higher 
risks, in linear proportion to their higher expected losses.14

A practical advantage of loss coverage compared with welfare is that its evaluation requires knowledge only of numbers insured in each risk-

group and their expected losses, rather than unobservable utility functions or implicit links between utility functions and demand. This simplicity 
makes loss coverage more amenable to observation and measurement, and also to explanation and advocacy to broad policy audiences.

6.2. Price collars versus bans on specific variables

A common regime of risk-classification in retail insurance markets is “full, but with bans on a few deprecated variables (e.g. gender, age, genetic 
tests, etc)”. Conceptually, this “full with restrictions” risk-classification is not quite the same as our price collar. But if insurers are unable to fully 
compensate for the banned variables by using correlated variables, “full with restrictions” seems likely to lead to a similar outcome to a price 
collar: low risks are charged a bit more than their fair premiums, and high risks a bit less. Our result in Fig. 3 then seems rather striking: partial 
risk-classification can never be optimal for loss coverage if both demand elasticities (or arc elasticities over the relevant arcs) are less than 1.

However, this result says nothing about the quantum of the difference in loss coverage between any particular partial regime and the optimal 
regime (be it full or partial risk-classification). Partial risk-classification is not a single third option, but rather a continuum of options between full 
risk-classification and pooling. If full risk-classification is optimal, a “broad” price collar (or a ban on a variable with limited relevance) enforces a 
partial regime very close to full risk-classification. Conversely, if pooling is optimal, a “narrow” price collar enforces a partial regime very close to 
pooling. In either case, the reduction in loss coverage compared to the optimum will be very small. Policymakers may regard this as an acceptable 
cost for the wider social benefits of restrictions on deprecated variables.

An advantage of a price collar calibrated to maximise loss coverage, compared with restrictions on particular variables, is that it does not 
privilege any particular risk-groups, or any particular causes of increased risk. It simply places higher weights on all higher risks, but only in 
proportion to their higher expected losses. In this sense, it side-steps critiques along the lines of “genetic exceptionalism” (e.g. Mittra (2006), Malpas 
(2008), Murray (2019)) sometimes directed at bans on specific variables such as genetic test results (i.e. the critique that it is unjustified to ban 
these variables, when many other variables have similar effects on risk).

6.3. Price collar versus price cap

Any equilibrium implemented by a price collar can alternatively and equivalently be implemented by a price cap, that is a single upper limit 𝜋𝐻
on the premiums insurers can charge.15 The proof of the equivalence is given in Corollary 1.1 in Appendix A.

However, maximising loss coverage via a price cap has the technical disadvantage that we need to find the 𝜋𝐻 that solves Equation (3.12), i.e. 
maximising loss coverage subject to satisfying the equilibrium condition. This requires knowledge of all of the risks (𝜇𝑖), demand elasticities (𝜆𝑖), 
population proportions (𝑝𝑖) and fair-premiums demands (𝜏𝑖).

On the other hand, the optimal price collar from the feasible range [1, 𝜇2∕𝜇1] is given by the rule in Section 4.3:

14 Linearity places equal weights on compensating expected losses of high and low risks. There might sometimes be policy arguments to modify this weighting 
scheme, e.g. to reflect advantages or disadvantages associated with particular risk-groups that are not captured by their risk status. But for a policymaker who cares 
about compensation of losses, “equal weights on equal expected losses” seems the obvious default.
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15 See Dosis (2022) for an investigation into regulatory price caps with endogenous contracts in the tradition of Rothschild and Stiglitz (1976) and Wilson (1977).
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• for 𝜆2 > 1 set 𝜅 as close as feasible to Ψ; and

• for 𝜆2 < 1: set 𝜅 as distant as feasible from Ψ,

and this requires knowledge only of the terms in Ψ, i.e. the 𝜇𝑖 and 𝜆𝑖.
Apart from the technical disadvantage of greater information requirements, a price cap also has potential political disadvantages. While a 

correctly calibrated price cap can implement any price collar, it has the appearance of a more severe intervention: a constraint on the overall level 
of prices rather than just their spread. Also, given our necessary assumption of guaranteed issue (sub-section 2.2), a badly calibrated price cap that 
is set too low may not allow a zero-profit equilibrium at all.

7. Conclusions

Loss coverage, defined as expected population losses compensated by insurance, is a public policy criterion for comparing different risk-

classification regimes. Using a model with two risk-groups (high and low) and iso-elastic demand, we compared loss coverage under three alternative 
regulatory regimes: (i) full risk-classification (ii) pooling (iii) a price collar, whereby each insurer is permitted to set any premiums, subject to a 
maximum ratio of its highest and lowest prices for different risks. Outcomes depend on the comparative demand elasticities of low and high risks. 
If low-risk elasticity is sufficiently low compared with high-risk elasticity, pooling is optimal; and if it is sufficiently high, full risk-classification is 
optimal. For an intermediate region where the elasticities are not too far apart, a price collar is optimal, but only if both elasticities are greater than 
one.

A key driver of these results is the ratio of marginal revenue to marginal cost for each risk-group. From any initial equilibrium, the general 
principle is: to increase loss coverage, shift demand towards the risk-group with higher marginal revenue-to-cost ratio.

For more than two risk-groups, the results can be extended via the insight that equilibrium always involves a tripartite arrangement of risk-groups 
into three super-groups: a super-group  of low risk-groups all charged the same low premium, a super-group  of high risk-groups all charged the 
same high premium, and a middle super-group  all charged their actuarially fair premiums.

For non-iso-elastic demand functions, the results can be extended using the construct of arc elasticity of demand, which can be thought of as the 
average value of point elasticity over the logarithmic arc between two prices.
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Appendix A. Theorem 1

Theorem 1. If there are 𝑛 risk-groups, with risks 𝜇1 < 𝜇2 <⋯ < 𝜇𝑛 with a price collar of 𝜅, where 1 ≤ 𝜅 ≤ 𝜇𝑛∕𝜇1, there exists a Nash equilibrium 
premium regime 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑛), such that:

𝜋𝑖 =
⎧⎪⎨⎪⎩
𝜋𝐿 if 𝜇𝑖 < 𝜋𝐿;
𝜇𝑖 if 𝜋𝐿 ≤ 𝜇𝑖 ≤ 𝜋𝐻 ;
𝜋𝐻 if 𝜇𝑖 > 𝜋𝐻,

(A.1)

where 𝜋𝐿 =min𝑖 𝜋𝑖, 𝜋𝐻 =max𝑖 𝜋𝑖 and 𝜋𝐻 = 𝜅 𝜋𝐿 .

Proof. We will prove the theorem using the following steps:

1. An equilibrium premium regime with the structure proposed in Equation (A.1) exists.

2. If there are multiple equilibrium premium regimes with the same proposed structure, the regime with the smallest 𝜋𝐿 is preferred among all 
such regimes.

3. Given 𝜋𝐿 and 𝜋𝐻 = 𝜅 𝜋𝐿 , the premium regime with the proposed structure cannot be destabilised by any other equilibrium premium regime 
with the same 𝜋𝐿 and 𝜋𝐻 but having a different structure.

4. Given a compulsory price collar 𝜅, the premium regime with the proposed structure cannot be destabilised by any other premium regime based 
on a voluntary smaller price collar.

Proof of step 1. Given a price collar 𝜅, define the expected profit from setting the lowest premium 𝜋𝐿 , where 𝜇1 ≤ 𝜋𝐿 ≤ 𝜇𝑛∕𝜅, as follows:

𝑒𝜅
(
𝜋𝐿
)
=𝐸
(
𝜋
)
=

𝑛∑
𝑝𝑖 𝑑𝑖(𝜋𝑖)

(
𝜋𝑖 − 𝜇𝑖

)
; where 𝜋𝑖 =

⎧⎪⎨𝜋𝐿 if 𝜇𝑖 < 𝜋𝐿;
𝜇𝑖 if 𝜋𝐿 ≤ 𝜇𝑖 ≤ 𝜅 𝜋𝐿; (A.2)
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𝑖=1 ⎪⎩𝜅 𝜋𝐿 if 𝜇𝑖 > 𝜅 𝜋𝐿.
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𝜇1 𝜇2 𝜇𝑎 𝜇𝑏 𝜇𝑐 𝜇𝑛−1 𝜇𝑛

𝜋𝐿 𝜋̂𝐿 𝜋𝐻 𝜋̂𝐻

Fig. 7. Theorem 1: Proof of Step 2.

𝜇1 𝜇2 𝜇𝑎 𝜇𝑏 𝜇𝑐 𝜇𝑑 𝜇𝑛−1 𝜇𝑛

𝜋̂𝐿 𝜋𝐿 𝜋̂𝐻 𝜅 𝜋̂𝐿 𝜋𝐻

𝜅̂

𝜅

Fig. 8. Theorem 1: Proof of Step 4.

If 𝜋𝐿 = 𝜇1, as 𝜅 𝜇1 ≤ 𝜇𝑛, expected profit cannot be positive, i.e.: 𝑒𝜅
(
𝜇1
) ≤ 0.

If 𝜋𝐿 = 𝜇𝑛∕𝜅, as 𝜇1 ≤ 𝜇𝑛∕𝜅, expected profit cannot be negative, i.e.: 𝑒𝜅
(
𝜇𝑛∕𝜅
) ≥ 0.

Assuming continuity of the demand functions 𝑑𝑖(𝜋𝑖) for all risk-groups, 𝑒𝜅 (𝑥) is also a continuous function. So, by the intermediate value theorem, 
there exists a value 𝜋𝐿 , such that 𝜇1 ≤ 𝜋𝐿 ≤ 𝜇𝑛∕𝜅, for which 𝑒𝜅

(
𝜋𝐿
)
= 0. This proves the existence of an equilibrium premium regime as outlined 

in the theorem. □

Proof of step 2. If there are multiple solutions to the equation, 𝑒𝜅
(
𝜋𝐿
)
= 0, the premium regime based on the smallest of these roots cannot be 

destabilised by premium regimes based on any other solutions of 𝑒𝜅
(
𝜋𝐿
)
= 0. To show this, suppose if possible there are two premium regimes:

𝜋 =
(
𝜋1, 𝜋2,… , 𝜋𝑛

)
, with 𝜋𝐻 = 𝜅 𝜋𝐿, where 𝜋𝐿 =min

𝑖
𝜋𝑖 and 𝜋𝐻 =max

𝑖
𝜋𝑖;

𝜋̂ =
(
𝜋̂1, 𝜋̂2,… , 𝜋̂𝑛

)
, with 𝜋̂𝐻 = 𝜅 𝜋̂𝐿, where 𝜋̂𝐿 =min

𝑖
𝜋̂𝑖 and 𝜋̂𝐻 =max

𝑖
𝜋̂𝑖;

with 𝜋𝐿 < 𝜋̂𝐿 (and consequently 𝜋𝐻 < 𝜋̂𝐻 ), such as shown in Fig. 7.

• 𝜋̂ involves higher premiums for all risk-groups with 𝜇𝑖 < 𝜋̂𝐿 , and higher premiums for all risk-groups with 𝜇𝑖 > 𝜋𝐻 , and the same (actuarially 
fair) premiums to all risk-groups in between.

• So all risks are either not attracted to 𝜋̂ (because it charges more), or are indifferent (because it charges the same); and in the latter case, the 
premium regime 𝜋 would also be indifferent to the loss of these risk-groups, because they generate no profit or loss under 𝜋.

Therefore any higher solution 𝑒𝜅
(
𝜋𝐿
)
= 0 cannot destabilise the lowest solution. □

Proof of step 3. Any alternative regime 𝜋̂ with the same 𝜋𝐿 and 𝜋𝐻 and a different structure needs to charge some risks more, and/or some risks 
less.

• Risks which are charged less will be attracted by 𝜋̂, and generate a smaller profit contribution (or larger loss) than they do under 𝜋.

• To achieve zero profit then requires that this deficit be made up by charging other risks more.

• But no risks will be prepared to pay more, because they will prefer 𝜋.

Therefore 𝜋 cannot be destabilised by an alternative regime 𝜋̂ with the same 𝜋𝐿 and 𝜋𝐻 and a different structure. □

Proof of step 4. As a regulatory price collar would only require 𝜋𝐻 ≤ 𝜅 𝜋𝐿 , we need to show that 𝜋 cannot be destabilised by an equilibrium 
premium regime using a smaller price collar.

Consider an alternative equilibrium premium regime: 𝜋̂ =
(
𝜋̂1, 𝜋̂2,… , 𝜋̂𝑛

)
, with minimum and maximum premiums: 𝜋̂𝐿 = min𝑖 𝜋̂𝑖 and 𝜋̂𝐻 =

max𝑖 𝜋̂𝑖 respectively, such that 𝜋̂𝐻 = 𝜅̂ 𝜋̂𝐿 , for some 𝜅̂ < 𝜅, such as shown in Fig. 8.

• If the lower end of the new collar is set above the lower end of the old collar, then 𝜋̂ attracts none of the profitable low risks, and so cannot be 
profitable and cannot destabilise 𝜋.

• If the lower end of the new collar is set below the lower end of the old collar, then 𝜋̂ generates a smaller profit contribution on all risk-groups 
with 𝜇𝑖 < 𝜋𝐿.

• Equilibrium requires that this deficit be made up by charging other risks more.

• But because of the smaller 𝜅̂ and lower base of the collar, 𝜋̂ does not charge any risk-groups more.

Therefore no equilibrium solution with a smaller collar 𝜅̂ exists. □

So, 𝜋, as outlined in the theorem, exists, and is a unique Nash equilibrium premium regime satisfying all political, regulatory and economic 
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constraints. ■
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Corollary 1.1. A regulatory price cap regime, which specifies an upper limit, 𝜋𝐻 , on the premiums that insurers can charge, produces the same stable 
equilibrium as under a price collar regime, given in Equation (A.1), as long as the value of 𝜋𝐻 allows for viable equilibrium satisfying the political 
constraint.

Proof. Assuming 𝜋𝐻 < 𝜇𝑛, (as otherwise, it would lead to a full risk-classification regime) a price cap regime implicitly creates a super-group 
of high risk-groups, all charged the same premium 𝜋𝐻 . Then, under perfect competition, to ensure zero-profits equilibrium, insurers would have to 
recoup the losses from the remaining risk-groups. By the intermediate value theorem, there exists a 𝜋𝐿 ≤ 𝜋𝐻 , such that we get a premium regime 𝜋
with the same tripartite pattern as in Equation (A.1) and depicted in Fig. 2, which satisfies the equilibrium condition.

This equilibrium premium regime, 𝜋, cannot be destabilised by any other price cap premium regime 𝜋̂, because risks which are charged less 
will be attracted by 𝜋̂, and generate a smaller profit contribution (or larger loss) than they do under 𝜋. To achieve zero profit then requires that 
this deficit be made up by charging other risks more. But no risks will be prepared to pay more, because they will prefer 𝜋. So, 𝜋 cannot be 
destabilised. □

Appendix B. Theorem 2

In order to prove Theorem 2, we first provide the algebraic inequalities defining the regions represented graphically in Fig. 3. Recall the defini-

tions of graph regions:  : “Pooled”,  : “Full risk-classification”, 𝐿 : “Intermediate, low elasticity” and 𝐻 : “Intermediate, high elasticity”, so that:

𝐿: 𝜆2 ≤ 𝜆1 ≤ 1 and 1≤(1− 1
𝜆2

)/(
1− 1

𝜆1

)≤ 𝜇2∕𝜇1.

 : {(𝜆1, 𝜆2) ∶ 𝜆2 ≥ 𝜆1} − 𝐻 .

1: 𝜆1 ≤ 1 and 𝜆2 ≥ 1.

2: 𝜆1 ≤ 𝜆2 ≤ 1.

3: {(𝜆1, 𝜆2) ∶ 𝜆2 ≥ 𝜆1 ≥ 1} − 𝐻 .

𝐻 : 𝜆2 ≥ 𝜆1 ≥ 1 and 1≤(1− 1
𝜆2

)/(
1− 1

𝜆1

)≤ 𝜇2∕𝜇1.

 : {(𝜆1, 𝜆2) ∶ 𝜆2 ≤ 𝜆1} − 𝐿 .

1: 𝜆1 ≥ 1 and 𝜆2 ≤ 1.

2: {(𝜆1, 𝜆2) ∶ 𝜆2 ≤ 𝜆1 ≤ 1} − 𝐿 .

3: 𝜆1 ≥ 𝜆2 ≥ 1.

Lemma 1. For a risk-group 𝑖, with positive iso-elastic demand elasticity 𝜆𝑖, 𝑚𝑖 satisfies:

𝜆𝑖 ⪋ 1⇔𝑚𝑖 ⪋ 0.

Proof. This follows directly from the expression of 𝑚𝑖 given in Equation (4.6).16 □

Lemma 2. For the highest risk-group 𝑛, with positive iso-elastic demand elasticity 𝜆𝑛, 𝑚𝑛 is bounded above at 1, i.e. 𝑚𝑛 ≤ 1.

Proof. By the political constraint, 𝜋𝑛 ≤ 𝜇𝑛, and as 𝜆𝑛 > 0, 𝑚𝑛 ≤ 1. □

Next note that, for the case of two risk-groups:

𝑚2 −𝑚1 =
𝜋2
𝜇2

(
1 − 1

𝜆2

)
−
𝜋1
𝜇1

(
1 − 1

𝜆1

)
=
(
1 − 1

𝜆1

)
𝜋2
𝜇1

⎡⎢⎢⎣
⎛⎜⎜⎝
1 − 1

𝜆2

1 − 1
𝜆1

⎞⎟⎟⎠
(
𝜇1
𝜇2

)
−
𝜋1
𝜋2

⎤⎥⎥⎦ . (B.1)

And, specifically, for both 𝐿 and 𝐻 ,

1 ≤ 1 − 1
𝜆2

1 − 1
𝜆1

≤ 𝜇2
𝜇1

⇒
𝜇1
𝜇2

≤
⎛⎜⎜⎝
1 − 1

𝜆2

1 − 1
𝜆1

⎞⎟⎟⎠
(
𝜇1
𝜇2

)
≤ 1. (B.2)

Also, note that for any equilibrium premium regime 𝜋 = (𝜋1, 𝜋2), as 𝜋1 increases from 𝜋1 = 𝜇1 (full risk-classification) to 𝜋1 = 𝜋2 (pooling), the ratio 
𝜋1∕𝜋2 goes from 𝜇1∕𝜇2 to 1. So, for both 𝐿 and 𝐻 , by intermediate value theorem, there exists a premium regime 𝜋⋆ = (𝜋⋆1 , 𝜋

⋆
2 ), such that:

𝜋⋆1

𝜋⋆2
=
⎛⎜⎜⎝
1 − 1

𝜆2

1 − 1
𝜆1

⎞⎟⎟⎠
(
𝜇1
𝜇2

)
, (B.3)

so that Equation (B.1) becomes:

𝑚2 −𝑚1 =
(
1 − 1

𝜆1

)
𝜋2
𝜇1

[
𝜋⋆1

𝜋⋆2
−
𝜋1
𝜋2

]
. (B.4)

16 We use the notation ⪌ in the following sense: 𝐴 ⪌𝐵⇒ 𝐶 ⪌𝐷 is shorthand for 𝐴 > 𝐵⇒ 𝐶 >𝐷 and 𝐴 = 𝐵⇒ 𝐶 =𝐷 and 𝐴 < 𝐵⇒ 𝐶 <𝐷. A similar interpretation 
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Lemma 3. Suppose there are 2 risk-groups with risks 𝜇1 < 𝜇2 and iso-elastic demand elasticities 𝜆1 and 𝜆2 respectively. For equilibrium premium 
regime 𝜋 = (𝜋1, 𝜋2):

3.1.  : 𝑚2 −𝑚1 ≥ 0.

3.2. 𝐿 : 𝑚2 −𝑚1 ⪋ 0 ⇔ 𝜋1
𝜋2

⪋
𝜋⋆1
𝜋⋆2

.

3.3.  : 𝑚2 −𝑚1 ≤ 0.

3.4. 𝐻 : 𝑚2 −𝑚1 ⪌ 0 ⇔ 𝜋1
𝜋2

⪋
𝜋⋆1
𝜋⋆2

.

Proof of Lemma 3.1.

For 1 ∶𝜆1 ≤ 1 and 𝜆2 ≥ 1⇒𝑚1 ≤ 0 and 0 <𝑚2 ≤ 1⇒𝑚2 −𝑚1 ≥ 0.

For 2 ∶𝜆1 ≤ 𝜆2 ≤ 1⇒ 1 − 1
𝜆1

≤ 1 − 1
𝜆2

≤ 0 and
𝜋1
𝜇1

≥ 𝜋2
𝜇2

≥ 0⇒𝑚2 −𝑚1 ≥ 0.

For 3 ∶1 ≤ 𝜆1 ≤ 𝜆2 and

1 − 1
𝜆2

1 − 1
𝜆1

≥ 𝜇2
𝜇1

⇒
⎛⎜⎜⎝
1 − 1

𝜆2

1 − 1
𝜆1

⎞⎟⎟⎠
(
𝜇1
𝜇2

)
≥ 1,

𝜋1
𝜋2

≤ 1 and 𝜆1 ≥ 1

⇒𝑚2 −𝑚1 =
(
1 − 1

𝜆1

)
𝜋2
𝜇1

⎡⎢⎢⎣
⎛⎜⎜⎝
1 − 1

𝜆2

1 − 1
𝜆1

⎞⎟⎟⎠
(
𝜇1
𝜇2

)
−
𝜋1
𝜋2

⎤⎥⎥⎦ ≥ 0.

So, for  : 𝑚2 −𝑚1 ≥ 0. □

Proof of Lemma 3.2. For 𝐿 , 𝜆1 ≤ 1, so:

𝑚2 −𝑚1 =
(
1 − 1

𝜆1

)
𝜋2
𝜇1

[
𝜋⋆1

𝜋⋆2
−
𝜋1
𝜋2

]
⪋ 0⇔

𝜋1
𝜋2

⪋
𝜋⋆1

𝜋⋆2
□

Proof of Lemma 3.3.

For 1 ∶𝜆1 ≥ 1 and 𝜆2 ≤ 1⇒𝑚1 ≥ 0 and 𝑚2 ≤ 0⇒𝑚2 −𝑚1 ≤ 0.

For 3 ∶𝜆1 ≥ 𝜆2 ≥ 1⇒ 0 ≤ 1 − 1
𝜆2

≤ 1 − 1
𝜆1

and
𝜋2
𝜇2

≤ 𝜋1
𝜇1

⇒𝑚2 −𝑚1 ≤ 0.

For 2 ∶𝜆2 ≤ 𝜆1 ≤ 1 and

1 − 1
𝜆2

1 − 1
𝜆1

≥ 𝜇2
𝜇1

⇒
⎛⎜⎜⎝
1 − 1

𝜆2

1 − 1
𝜆1

⎞⎟⎟⎠
(
𝜇1
𝜇2

)
≥ 1,

𝜋1
𝜋2

≤ 1 and 𝜆1 ≤ 1

⇒𝑚2 −𝑚1 =
(
1 − 1

𝜆1

)
𝜋2
𝜇1

⎡⎢⎢⎣
⎛⎜⎜⎝
1 − 1

𝜆2

1 − 1
𝜆1

⎞⎟⎟⎠
(
𝜇1
𝜇2

)
−
𝜋1
𝜋2

⎤⎥⎥⎦ ≤ 0.

So, for  : 𝑚2 −𝑚1 ≤ 0. □

Proof of Lemma 3.4. For 𝐻 , 𝜆1 ≥ 1, so:

𝑚2 −𝑚1 =
(
1 − 1

𝜆1

)
𝜋2
𝜇1

[
𝜋⋆1

𝜋⋆2
−
𝜋1
𝜋2

]
⪌ 0⇔

𝜋1
𝜋2

⪋
𝜋⋆1

𝜋⋆2
□

Theorem 2. Suppose there are two risk-groups with risks 𝜇1 < 𝜇2 and iso-elastic demand elasticities 𝜆1 and 𝜆2 respectively.

2.1.  : Loss coverage is maximised by pooling and minimised by full risk-classification, while partial risk-classification is intermediate.

2.2. 𝐿 : Loss coverage is maximised by either pooling or full risk-classification depending on the population proportions and fair-premium demands.

2.3.  : Loss coverage is maximised by full risk-classification regime and minimised by pooling, while partial risk-classification is intermediate.

2.4. 𝐻 : Loss coverage is maximised by a specific partial risk-classification regime.
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For the proof of Theorem 2, recall from Equation (4.4):

Δ𝐶 = 𝑇
(
𝑚2 −𝑚1

)
Δ𝜋1, where 𝑇 > 0, (B.5)

and the behaviour of (𝑚2 −𝑚1) is outlined in Lemma 3.

Proof of Theorem 2.1. For  : 𝑚2 −𝑚1 ≥ 0. So, as 𝜋1 increases from full risk-classification (𝜋1 = 𝜇1) to pooling (𝜋1 = 𝜋2), the loss coverage, 𝐶 , is 
an increasing function. Hence, loss coverage is maximum for pooled equilibrium and minimum for full risk-classification. Partial risk-classification 
is intermediate. □

Proof of Theorem 2.2. For 𝐿 :

Δ𝐶
Δ𝜋1

= 𝑇
(
𝑚2 −𝑚1

)
⪋ 0⇔

𝜋1
𝜋2

⪋
𝜋⋆1

𝜋⋆2
. (B.6)

This implies that as 𝜋1 increases from full risk-classification (𝜋1 = 𝜇1) to pooling (𝜋1 = 𝜋2), the loss coverage, 𝐶 , first decreases and then increases 
reaching a minimum at 𝜋1 = 𝜋⋆1 . Hence, loss coverage is maximum at either of the two extremes, pooled or full risk-classification. □

Proof of Theorem 2.3. For  : 𝑚2 −𝑚1 ≤ 0. So, as 𝜋1 increases from full risk-classification (𝜋1 = 𝜇1) to pooling (𝜋1 = 𝜋2), the loss coverage, 𝐶 , is a 
decreasing function. Hence, loss coverage is maximum for full risk-classification and minimum for pooled equilibrium. Partial risk-classification is 
intermediate. □

Proof of Theorem 2.4. For 𝐻 :

Δ𝐶
Δ𝜋1

= 𝑇
(
𝑚2 −𝑚1

)
⪌ 0⇔

𝜋1
𝜋2

⪋
𝜋⋆1

𝜋⋆2
. (B.7)

This implies that as 𝜋1 increases from full risk-classification (𝜋1 = 𝜇1) to pooling (𝜋1 = 𝜋2), the loss coverage, 𝐶 , first increases and then decreases 
reaching a maximum at 𝜋1 = 𝜋⋆1 . Hence, loss coverage is maximum at the partial risk-classification regime 𝜋⋆. □

Corollary 2.1. In 𝐿 , the curve (𝜆1, 𝜆2) producing exactly the same loss coverage for pooling and full risk-classification is given by the following 
parametric equation:

𝜆1 = 𝜙1(𝜋0) =
log
(
𝑎1 (𝜇2−𝜋0)

𝜋0

)
log
(
𝜇1
𝜋0

) where 𝑎1 =
𝑝1 𝜏1 𝜇1 + 𝑝2 𝜏2 𝜇2
𝑝1 𝜏1 (𝜇2 − 𝜇1)

(B.8)

𝜆2 = 𝜙2(𝜋0) =
log
(
𝑎2 (𝜋0−𝜇1)

𝜋0

)
log
(
𝜇2
𝜋0

) where 𝑎2 =
𝑝1 𝜏1 𝜇1 + 𝑝2 𝜏2 𝜇2
𝑝2 𝜏2 (𝜇2 − 𝜇1)

(B.9)

Proof. For two risk-groups, the equilibrium condition under pooling, requires that:

𝑝1 𝜏1

(
𝜇1
𝜋0

)𝜆1 (
𝜋0 − 𝜇1

)
+ 𝑝2 𝜏2

(
𝜇2
𝜋0

)𝜆2 (
𝜋0 − 𝜇2

)
= 0. (B.10)

If loss coverage under pooling and full risk-classification also need to be equal, then:

𝑝1 𝜏1

(
𝜇1
𝜋0

)𝜆1
𝜇1 + 𝑝2 𝜏2

(
𝜇2
𝜋0

)𝜆2
𝜇2 = 𝑝1 𝜏1 𝜇1 + 𝑝2 𝜏2 𝜇2. (B.11)

From Equations (B.10) and (B.11), eliminating 
(
𝜇1
𝜋0

)𝜆1
and 
(
𝜇2
𝜋0

)𝜆2
, one at a time, gives:

(
𝜇2
𝜋0

)𝜆2 𝜋0
𝜋0 − 𝜇1

= 𝑎 ⇒ 𝜆2 =
log
(
𝑎2 (𝜋0−𝜇1)

𝜋0

)
log
(
𝜇2
𝜋0

) , where 𝑎2 =
𝑝1 𝜏1 𝜇1 + 𝑝2 𝜏2 𝜇2
𝑝2 𝜏2 (𝜇2 − 𝜇1)

; (B.12)

(
𝜇1
𝜋0

)𝜆1 𝜋0
𝜇2 − 𝜋0

= 𝑏 ⇒ 𝜆1 =
log
(
𝑎1 (𝜇2−𝜋0)

𝜋0

)
log
(
𝜇1
𝜋0

) , where 𝑎1 =
𝑝1 𝜏1 𝜇1 + 𝑝2 𝜏2 𝜇2
𝑝1 𝜏1 (𝜇2 − 𝜇1)

. (B.13)

So 𝜆2 is related to 𝜆1 through the pooled premium 𝜋0, and can be presented as a parametric equation: (𝜆1, 𝜆2) =
(
𝜙1(𝜋0), 𝜙2(𝜋0)

)
. And, as 𝜆1 < 1 in 

𝐿 :

𝑑𝜆2 =
𝜇1 + 𝜆2 (𝜋0 − 𝜇1)( ) > 0 and

𝑑𝜆1 =
𝜇2 (1 − 𝜆1) + 𝜆1 𝜋0( ) > 0. (B.14)
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𝑑𝜋0 𝜋0 (𝜋0 − 𝜇1) log
𝜇2
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𝑑𝜋0 𝜋0(𝜇2 − 𝜋0) log
𝜋0
𝜇1
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In other words, in 𝐿, the (𝜆1, 𝜆2) curve demarcating the regions between optimal pooling and full risk-classification regimes, is a well-defined 
increasing function, as 𝑑𝜆2

𝑑𝜆1
> 0. □

Appendix C. Theorem 3

Theorem 3. Suppose there are 𝑛 risk-groups, with risks 𝜇1 < 𝜇2 <⋯ < 𝜇𝑛 and iso-elastic demand elasticities 𝜆1, 𝜆2, … , 𝜆𝑛 respectively.

Under a price collar 𝜅, let 𝜋 be the Nash equilibrium premium regime, sub-dividing the risk-groups into three super-groups ,  and , where 
all risk-groups in  pay the same premium 𝜋𝐿 , all risk-groups in  pay the same premium 𝜋𝐻 , and all risk-groups in  pay their fair actuarial 
premiums. Let 𝜇𝐿 and 𝜇𝐻 be the pooled equilibrium premiums of the risk-groups in  and  respectively. Further suppose:

𝜆𝑖 =

{
𝜆𝐿 if 𝑖 ∈;
𝜆𝐻 if 𝑖 ∈.

Then the sensitivity of the loss coverage is given by:

Δ𝐶 = 𝑇
(
𝑚𝐻 −𝑚𝐿

)
Δ𝜋𝐿, (5.1)

where 𝑇 =
𝑝𝐿 𝜏𝐿 𝜆𝐿

(
𝜇𝐿
𝜋𝐿

)𝜆𝐿+1
1 −𝑚𝐻

; and 𝑚𝑖 =
𝜋𝑖
𝜇𝑖

(
1 − 1

𝜆𝑖

)
; 𝑖 =𝐿,𝐻 ; (5.2)

where for the super-groups  and , 𝑝𝐿 and 𝑝𝐻 are the aggregate proportion of population belonging to the super-groups; and 𝜏𝐿 and 𝜏𝐻 can be 
interpreted as the ‘fair-premium demand’ when all risk-groups in the respective super-groups are pooled and charged the same pooled premium.

Proof. As the risk-groups in  do not contribute to profit or loss, the equilibrium condition can be expressed as:

𝐸
(
𝜋
)
=
∑
𝑖∈

𝑝𝑖 𝜏𝑖

(
𝜇𝑖
𝜋𝐿

)𝜆𝐿 (
𝜋𝐿 − 𝜇𝑖

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐸

+
∑
𝑗∈

𝑝𝑗 𝜏𝑗

(
𝜇𝑗

𝜋𝐻

)𝜆𝐻 (
𝜋𝐻 − 𝜇𝑗

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐸

= 0. (C.1)

The first term, 𝐸, in Equation (C.1), can be split as follows:

𝐸 =
∑
𝑖∈

𝑝𝑖 𝜏𝑖

(
𝜇𝑖
𝜋𝐿

)𝜆𝐿 (
𝜋𝐿 − 𝜇𝑖

)
; (C.2)

=
∑
𝑖∈

𝑝𝑖 𝜏𝑖

(
𝜇𝐿
𝜋𝐿

)𝜆𝐿 ( 𝜇𝑖
𝜇𝐿

)𝜆𝐿 [(
𝜋𝐿 − 𝜇𝐿

)
+
(
𝜇𝐿 − 𝜇𝑖

)]
; (C.3)

=
(
𝜇𝐿
𝜋𝐿

)𝜆𝐿 [∑
𝑖∈

𝑝𝑖 𝜏𝑖

(
𝜇𝑖
𝜇𝐿

)𝜆𝐿 (
𝜋𝐿 − 𝜇𝐿

)
+
∑
𝑖∈

𝑝𝑖 𝜏𝑖

(
𝜇𝑖
𝜇𝐿

)𝜆𝐿 (
𝜇𝐿 − 𝜇𝑖

)]
; (C.4)

where 𝜇𝐿 is such that the second term in Equation (C.4), is zero, i.e.:

∑
𝑖∈

𝑝𝑖 𝜏𝑖

(
𝜇𝑖
𝜇𝐿

)𝜆𝐿 (
𝜇𝐿 − 𝜇𝑖

)
= 0, (C.5)

so that 𝜇𝐿 can be interpreted as the pooled equilibrium premium, if the insurance market only consisted of the risk-groups in . Also, 𝜇𝐿 is unique 
and is given by:

𝜇𝐿 =
∑
𝑖∈ 𝑝𝑖 𝜏𝑖 𝜇𝜆𝐿+1𝑖∑
𝑖∈ 𝑝𝑖 𝜏𝑖 𝜇𝜆𝐿𝑖

, so that: 𝜇1 ≤ 𝜇𝐿 ≤max
𝑖∈ 𝜇𝑖 ≤ 𝜋𝐿. (C.6)

Using such a 𝜇𝐿, the expression for 𝐸 in Equation (C.4) becomes:

𝐸 =

[∑
𝑖∈

𝑝𝑖 𝜏𝑖

(
𝜇𝑖
𝜇𝐿

)𝜆𝐿] (𝜇𝐿
𝜋𝐿

)𝜆𝐿 (
𝜋𝐿 − 𝜇𝐿

)
= 𝑝𝐿𝜏𝐿

(
𝜇𝐿
𝜋𝐿

)𝜆𝐿 (
𝜋𝐿 − 𝜇𝐿

)
; (C.7)

where 𝑝𝐿 =
∑
𝑖∈

𝑝𝑖, 𝜏𝐿 =
∑
𝑖∈

(
𝑝𝑖
𝑝𝐿

)
𝜏𝑖

(
𝜇𝑖
𝜇𝐿

)𝜆𝐿
. (C.8)

Note that 𝑝𝐿 is the aggregate proportion of population belonging to the collection of risk-groups in  and 𝜏𝐿 can be interpreted as the ‘fair-premium 
demand’ when all risk-groups in  are pooled and charged the same pooled premium, 𝜇𝐿 .

A similar line of argument for the risk-groups in  leads to:

𝐸 = 𝑝 𝜏

(
𝜇𝐻
)𝜆𝐻 (

𝜋 − 𝜇
)
; where 𝑝 =

∑
𝑝 , 𝜏 =

∑( 𝑝𝑗 )
𝜏

(
𝜇𝑗
)𝜆𝐻

, (C.9)
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𝐻 𝐻 𝐻

𝑗∈
𝑗 𝐻

𝑗∈ 𝑝𝐻
𝑗 𝜇𝐻
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where 𝜇𝐻 =
∑
𝑗∈ 𝑝𝑗 𝜏𝑗 𝜇𝜆𝐻+1

𝑗∑
𝑗∈ 𝑝𝑗 𝜏𝑗 𝜇𝜆𝐻𝑗

, so that: 𝜋𝐻 ≤min
𝑗∈ 𝜇𝑗 ≤ 𝜇𝐻 ≤ 𝜇𝑛. (C.10)

Using the expressions for 𝐸 and 𝐸 in Equations (C.7) and (C.9) respectively, Equation (C.1) becomes:

𝐸
(
𝜋
)
= 𝑝𝐿 𝜏𝐿

(
𝜇𝐿
𝜋𝐿

)𝜆𝐿 (
𝜋𝐿 − 𝜇𝐿

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐸

+ 𝑝𝐻 𝜏𝐻

(
𝜇𝐻
𝜋𝐻

)𝜆𝐻 (
𝜋𝐻 − 𝜇𝐻

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐸

= 0. (C.11)

Equation (C.11) shows that it is possible to conceptualise  and  as super-groups with demand elasticities 𝜆𝐿 and 𝜆𝐻 respectively, where the 
true risks of the super-groups are taken to be pooled equilibrium premiums, 𝜇𝐿 and 𝜇𝐻 , of the respective super-groups. Essentially, this reduces the 
problem involving more than two risk-groups to the simpler two risk-groups problem, so that the analysis of Section 4 can be extended directly to 
this situation.

The loss coverage for the Nash premium regime can then be expressed as:

𝐶
(
𝜋
)
=
∑
𝑖∈

𝑝𝑖 𝜏𝑖

(
𝜇𝑖
𝜋𝐿

)𝜆𝐿
𝜇𝑖 +

∑
𝑗∈

𝑝𝑗 𝜏𝑗

(
𝜇𝑗

𝜋𝐻

)𝜆𝐻
𝜇𝑗 +

∑
𝑚∈

𝑝𝑚 𝜏𝑚 𝜇𝑚; (C.12)

=
∑
𝑖∈

𝑝𝑖 𝜏𝑖

(
𝜇𝑖
𝜋𝐿

)𝜆𝐿
𝜋𝐿 +

∑
𝑗∈

𝑝𝑗 𝜏𝑗

(
𝜇𝑗

𝜋𝐻

)𝜆𝐻
𝜋𝐻 +

∑
𝑚∈

𝑝𝑚 𝜏𝑚 𝜇𝑚; (C.13)

. . . by the equilibrium condition in Equation (C.1);

= 𝑝𝐿 𝜏𝐿
(
𝜇𝐿
𝜋𝐿

)𝜆𝐿
𝜋𝐿 + 𝑝𝐻 𝜏𝐻

(
𝜇𝐻
𝜋𝐻

)𝜆𝐻
𝜋𝐻 +

∑
𝑚∈

𝑝𝑚 𝜏𝑚 𝜇𝑚; (C.14)

. . . by the definitions of 𝑝𝐿, 𝜏𝐿, 𝜇𝐿, 𝑝𝐻 , 𝜏𝐻 and 𝜇𝐻 ;

= 𝑝𝐿 𝜏𝐿
(
𝜇𝐿
𝜋𝐿

)𝜆𝐿
𝜇𝐿 + 𝑝𝐻 𝜏𝐻

(
𝜇𝐻
𝜋𝐻

)𝜆𝐻
𝜇𝐻 +

∑
𝑚∈

𝑝𝑚 𝜏𝑚 𝜇𝑚; (C.15)

by the equilibrium condition in Equation (C.11).

Assuming the compositions of ,  and  remain unaffected, changing 𝜋𝐿 affects 𝜋𝐻 without any implications for the risk-groups in . Also 
note that, as long as ,  and  remain unchanged, we can follow the same steps as in Section 4, to get:

Δ𝐶 = 𝑇
(
𝑚𝐻 −𝑚𝐿

)
Δ𝜋𝐿, (5.1)

where 𝑇 =
𝑝𝐿 𝜏𝐿 𝜆𝐿

(
𝜇𝐿
𝜋𝐿

)𝜆𝐿+1
1 −𝑚𝐻

; and 𝑚𝑖 =
𝜋𝑖
𝜇𝑖

(
1 − 1

𝜆𝑖

)
; 𝑖 =𝐿,𝐻. □ (5.2)
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