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ABSTRACT

ARTICLE HISTORY

Throughout its history, Operational Research has evolved to include methods, models and
algorithms that have been applied to a wide range of contexts. This encyclopedic article
consists of two main sections: methods and applications. The first summarises the up-to-
date knowledge and provides an overview of the state-of-the-art methods and key develop-
ments in the various subdomains of the field. The second offers a wide-ranging list of areas
where Operational Research has been applied. The article is meant to be read in a nonlinear
fashion and used as a point of reference by a diverse pool of readers: academics, research-
ers, students, and practitioners. The entries within the methods and applications sections are
presented in alphabetical order.

The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely
hope that advances in OR will play a role towards minimising the pain and suffering caused
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by this and future catastrophes.

Operations research is neither a method nor a
technique; it is or is becoming a science and as
such is defined by a combination of the phenomena
it studies.

Ackoff (1956)

1. Introduction’

The year 2024 marks the 75" anniversary of the
Journal of the Operational Research Society, formerly
known as Operational Research Quarterly. It is the
oldest Operational Research (OR) journal worldwide.
On this occasion, my colleague Fotios Petropoulos
from University of Bath proposed to the editors of
the journal to edit an encyclopedic article on the state
of the art in OR. Together, we identified the main
methodological and application areas to be covered,
based on topics included in the major OR journals
and conferences. We also identified potential authors
who responded enthusiastically and whom we thank
wholeheartedly for their contributions.

Modern OR originated in the United Kingdom
during World War II as a need to support the oper-
ations of early radar-detecting systems and was later
applied to other operations (McCloskey, 1987).
However, one could argue that it precedes this
period in history since it is partly rooted in several
mathematical fields such as probability theory and
statistics, calculus, and linear algebra, developed
much earlier. For example, the Fourier-Motzkin elim-
ination method (Fourier, 1826a, 1826b) constitutes
the main basis of linear programming. Queueing

theory, which plays a central role in telecommunica-
tions and computing, already existed as a distinct
field of study since the early 20™ century (Erlang,
1909), and other concepts, such as the economic
order quantity (Harris, 1913) were developed more
than one century ago. Interestingly, while many
recent advances in OR are rooted in theoretical or
algorithmic concepts, we are now witnessing a return
to the practical roots of OR through the development
of new disciplines such as business analytics.

After the war ended, several industrial applications
of OR arose, particularly in the manufacturing and
mining sectors which were then going through a
renaissance. The transportation sector is without doubt
the field that has most benefited from OR, mostly since
the 1960s. The aviation, rail, and e-commerce industries
could simply not operate at their current scale without
the support of massive data analysis and sophisticated
optimisation techniques. The application of OR to
maritime transportation is more recent, but it is fast
gaining in importance. Other areas that are less visible,
such as telecommunications, also deeply depend on
OR. The success of OR in these fields is partly
explained by their network structures which make
them amenable to systematic analysis and treatment
through mathematical optimisation techniques. In the
same vein, OR also plays a major role in various
branches of logistics and project management, such as
facility location, forecasting, inventory planning, sched-
uling, and supply chain management.

The public sector and service industries also bene-
fit greatly from OR. Healthcare is the first area that



comes to mind because of its very large scale and
complexity. Decision making in healthcare is more
decentralised than in transportation and manufactur-
ing, for example, and the human issues involved in
this sector add a layer of complexity. OR methodolo-
gies have also been applied to diverse areas such as
education, sports management, natural resources,
environment and sustainability, political districting,
safety and security, energy, finance and insurance,
revenue management, auctions and bidding, and dis-
aster relief, most of which are covered in this article.

Among OR methodologies, mathematical pro-
gramming occupies a central place. The simplex
method for linear programming, conceived by
Dantzig in 1947 but apparently first published later
(Dantzig, 1951), is arguably the single most signifi-
cant development in this area. Over time, linear pro-
gramming has branched out into several fields such
as nonlinear programming, mixed integer program-
ming, network optimisation, combinatorial optimisa-
tion, and stochastic programming. The techniques
most frequently employed for the exact solution of
mathematical programs are based on branch-and-
bound, branch-and-cut, branch-and-price (column
generation), and dynamic programming. Game the-
ory and data envelopment analysis are firmly rooted
in mathematical programming. Control theory is also
part of continuous mathematical optimisation and
relies heavily on differential equations.

Complexity theory is fundamental in optimisa-
tion. Most problems arising in combinatorial opti-
misation are A'P-hard and typically require the
application of heuristics for their solution. Much
progress has been made in the past 40 years or so
in the development of metaheuristics based on local
search, genetic search, and various hybridisation
schemes. Many problems in fields such as vehicle
routing, location analysis, cutting and packing, set
covering, and set partitioning can now be solved to
near optimality for realistic sizes by means of mod-
ern heuristics. A recent trend is the use of open-
source software which not only helps disseminate
research results, but also contributes to ensuring
their accuracy, reproducibility and adoption.

Several modelling paradigms such as systems
thinking and systems dynamics approach problems
from a high-level perspective, examining the inter-
relationships between multiple elements. Complex
systems can often be analysed through simulation,
which is also commonly used to assess the perform-
ance of heuristics. Decision analysis provides a use-
ful framework for structuring and solving complex
problems involving soft and hard criteria, behav-
ioural OR, stochasticity, and dynamism. Recently,
issues related to ethics and fairness have come to
play an increasing role in decision making.
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Because the various topics of this review paper
are listed in alphabetical order, the subsection on
“Artificial intelligence, machine learning and data sci-
ence” comes first, but this topic constitutes one of
the latest developments in the field. It holds great
potential for the future and is likely to reshape parts
of the OR discipline. Already, machine learning-based
heuristics are competitive for the solution of some
hard problems.

This paper begins with a quote from Russell L.
Ackoff who has been a pioneer of OR. In 1979, he
published in this journal two articles (Ackoft, 1979a,
1979b) that presented a rather pessimistic view of
our discipline. The author complained about the
lack of communications between academics and
practitioners, and about the fact that some OR cur-
ricula in universities did not sufficiently prepare stu-
dents for practice, which is still true to some extent.
One of his two articles is entitled “The Future of
Operational Research is Past”, which may be per-
ceived as an overreaction to this diagnosis. In my
view, the present article provides clear evidence to
the contrary. Soon after the publication of the two
Ackoff papers, we witnessed the development of
micro-computing, the Internet and the World Wide
Web. It has become much easier for researchers in
our community to access information, software and
computing facilities, and for practitioners to access
and use our research results. We are now fortunate
to have access to sophisticated open-source software,
data bases, bibliographic sources, editing and visual-
isation tools, and communication facilities. Our field
is richer than it has ever been, both in terms of the-
ory and applications. It is constantly evolving in
interaction with other disciplines, and it is clearly
alive and well and has a promising future.

2. Methods

2.1. Artificial intelligence, machine learning, and
data science®

Machine learning (ML) comprises techniques for
modelling predictive tasks, i.e., tasks that involve the
prediction of an unknown quantity from other
observed quantities. Ideas of learning in an artificial
system and the term machine learning were first
discussed in the 1950s (Samuel, 1959) and their
development and popularity have seen enormous
growth over the last two decades in part due to the
availability of large-scale datasets and increased
computational resources to model them.

Mitchell (1997) provides this concrete definition of
machine learning “A computer program is said to learn
from experience E with respect to some class of tasks
T, and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience
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E”. The program is a model or a function and its
experience E is the type of data it has access to. There
are three types of experiences supervised, unsupervised,
and reinforcement learning. The performance measure
(P) allows for model evaluation and comparison includ-
ing model selection.

Supervised learning is an experience where a
model aims at predicting one or more unobserved
target (dependent) variables given observed ibackpr-
out (independent) variables. In other words, a super-
vised model is a function that map inputs to outputs.
The process of solving a supervised problem involves
first learning a model, that is adjusting its parameters
using a training dataset with both input and target
variables. The training set is drawn IID (independ-
ently and identically distributed) from an underlying
distribution over inputs and targets. Once trained,
the model can provide target predictions for new
unseen samples from the same distribution. The
most common tasks in supervised learning are
regression (real dependent variable) and classification
(categorical dependent variable). Evaluating a super-
vised system is usually performed using held-out data
referred to as the test data while held-out validation
data is used for model development and selection
using procedures such as k-fold cross-validation.

Supervised models can be dichotomised into linear
and nonlinear models. Linear models perform a linear
mapping from inputs to outputs (e.g., linear regression).
Machine learning mostly investigates nonlinear super-
vised models including deep neural network (DNN)
models (Goodfellow et al., 2016). DNNs are composed
of a succession of parametrised nonlinear transforma-
tions called layers and each layer contains a set of
transformations called neurons. Layers successively
transform an input datum into a target. The parameters
of the layers are adjusted to iteratively obtain better
predictions using a procedure called backpropagation, a
form of gradient descent (Goodfellow et al., 2016, §6.5).
DNN s are state-of-the-art methods for many large-scale
non-structured datasets across domains (see also §3.19).
DNNs can be adapted to different sizes of inputs and
targets as well as variable types. They can also be speci-
alised for specific types of data. Recurrent neural net-
works (RNNs) are auto-regressive models for sequential
data (Rumelhart et al., 1986). The sequential data are
tokenised and an RNN transforms each token sequen-
tially along with a transformation of the previous
tokens. Convolutional neural networks (CNNs) are spe-
cialised networks for modelling data that is arranged
on a grid (e.g, an image Lecun, 1989). Their layers
contain a convolution operation between an input and
a parameterised filter followed by a nonlinear trans-
formation, and a pooling operation. Each layer proc-
esses data locally and so requires fewer parameters
compared to vanilla DNNs. As a result, CNNs can

model higher-dimensional data. Graphical neural net-
works (GNNs) are specialised architectures for model-
ling graph data (e.g., a social network; Scarselli et al.,
2009). In GNNs, the data are transformed by following
the topology of the graph. Last, attention layers dynam-
ically combine their inputs (tokens) based on their val-
ues. Transformer models use successions of attention
and feed-forward layers to model sequential input and
output data (Vaswani et al, 2017). Transformers are
more efficient to train than RNNs and can be trained
on internet-scale data given enormous computational
power. The availability of such broad datasets especially
in the text and image domains has given rise to a class
of very-large-scale models (also referred to as founda-
tion models) that display an ability to adapt to and
obtain high performance across a diversity of down-
stream supervised tasks (Bommasani et al., 2021)

Last, attention is a mechanism that considers data
to be unordered and uses transformations dynamic-
ally. Transformers are models based on attention.
They provide more efficient training than RNNs for
very large-scale datasets (Vaswani et al., 2017).

Neural networks currently outperform other meth-
ods when learning from unstructured data (e.g.,
images and text). For tabular data, data that is natur-
ally encoded in a table and that has heterogeneous
features (Grinsztajn et al, 2022), best-performing
methods use ideas first proposed in tree-based classi-
fiers, bagging, and boosting. They include random
forests (Breiman, 2001), XGBoost (Chen & Guestrin,
2016) which both scale to large-scale datasets as well
as kernel methods including support vector machines
(SVMs see, e.g., Schlkopf et al., 2018) and probabilis-
tic Gaussian Processes (GPs see, e.g., Rasmussen &
Williams, 2005). These methods are used across
regression and classification tasks.

In unsupervised learning, the second type of
experience, the data consist of independent variables
(features or covariates) alone. The aim of unsuper-
vised learning is to model the structure of the data
to better understand their properties. As a result,
evaluating an unsupervised model is often task and
application-dependant (Murphy, 2022, §1.3.4). The
prototypical unsupervised-learning task is clustering.
It involves learning a function that groups similar
data together according to a similarity measure and
desiderata often expressed as an objective function.
Several standard algorithms divided into hierarchical
and non-hierarchical methods exist. The former
uses the similarity between all pairs of data and
finds a hierarchy of clustering solutions with a dif-
ferent number of clusters using either a bottom-up
or top-down approach. Agglomerative clustering is a
standard hierarchical approach. Non-hierarchical
methods tend to be more computationally efficient
in terms of dataset size. For example, K-means



clustering is a well-known non-hierarchical method
that finds a single solution using K clusters
(MacQueen, 1967). Other unsupervised learning
tasks include dimensionality reduction for example
for visualisation or to prepare data for further ana-
lysis. Density modelling is another unsupervised task
where a probabilistic model learns to assign a prob-
ability to each datum (Murphy, 2022, §1.3).
Probabilistic models can be used to learn the hidden
structure in large quantities of data (e.g., Hoffman
et al., 2013). Further, probabilistic models are also
used to generate high-dimensional data (e.g., images
of human faces or English text) with high fidelity
(Karras et al., 2021) and often referred in this context
as generative models. Large Language Models are
examples of such generative models (Bommasani
et al.,, 2021).

Reinforcement learning (RL) is the third type of
experience. RL models collect their own data by exe-
cuting actions in their environment to maximise
their reward. RL is a sequential decision-making
task and is formalised using Markov decision proc-
esses (MDPs) (Sutton & Barto, 2018, $3.8). An
MDP encodes a set of states, available actions, dis-
tribution over next states given current states and
action, a reward function, and a discount factor.
Partially observable MDPs (or POMDDPs) extend the
formalism to environments where the exact current
state is unknown (Kaelbling et al., 1998). In RL, an
agent’s objective is to learn a policy, a distribution
over actions for each state in an environment. Tasks
are defined by rewards attached to different states.
Exact and approximate methods exist for solving RL
problems. Whereas exact solutions are appropriate
for smaller tabular problems only, deep neural net-
works are widely used for solving larger-scale prob-
lems that require approximate solutions yielding a
set of techniques known as deep reinforcement
learning (Mnih et al., 2015). An RL agent can also
learn to imitate an expert either by learning a map-
ping from states/observations to actions as in super-
vised learning (a technique known as imitation
learning; for a survey, see Hussein et al., 2017) or
by trying to learn the expert’s reward function
(inverse reinforcement learning Russell, 1998).

In addition to learning models for solving predic-
tion tasks using one of the three experiences above,
machine learning also studies methods for enabling
the reuse of information learned from one or mul-
tiple datasets and environments to other similar
ones. Representation learning studies how to learn
such reusable information and it can use both
supervised and unsupervised experiences (Murphy,
2023, §32). When using a deep learning model, a
representation is obtained after one or more layer
transformations of the data. Representation learning
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is used in a variety of situations including for trans-
fer learning tasks, where a trained model is reused
to solve a different supervised task (for a survey, see
Zhuang et al., 2021).

In the last decade, machine learning models have
achieved high performance on a variety of tasks
including perceptual ones (e.g., recognising objects
in images and words from speech) as well as natural
language processing ones thereby becoming a core
component of artificial intelligence (AI) methods.
The goal of AI methods is to develop intelligent sys-
tems. Some of these advances shine a bright light on
the ethical aspects of machine learning techniques
and are active areas of study (see, e.g., Dignum, 2019;
Barocas et al., 2019). Another area of active study is
explainability (Phillips et al., 2021). Some of the most
effective ML tools make predictions and recommen-
dations that are hard to explain to users (for example
when neural networks are employed). Clearly, lack of
explainability slows down ML use in those contexts
where decisions made due to those predictions and
recommendations are life changing and involve a
human in the loop, healthcare (applying a treatment),
finance (refusing a mortgage), or justice (granting
parole) to mention a few. So, explainability is cur-
rently one of the most crucial challenges for ML and
AT and, at the same time, a tremendous opportunity
for their wider applicability.

Further, advances in machine learning alongside
statistics, data management, and data processing, as
well as the wider availability of datasets from a var-
iety of domains have led to the popularisation and
development of data science (DS), a discipline
whose goal is to extract insights and knowledge
from these data. DS uses statistics and machine-
learning techniques for inference and prediction,
but it also aims at enabling and systematising the
analysis of large quantities of data. As such, it
includes components of data management, visualisa-
tion, as well as the design of (efficient) data process-
ing algorithms (Grus, 2019).

2.1.1. Resources

Murphy (2022) provides a thorough introduction to
the field following a probabilistic approach and its
sequel (Murphy, 2023) introduces advanced topics.
Goodfellow et al. (2016) provide a self-contained
introduction to the field of deep learning (the field
evolves rapidly and more advanced topics are cov-
ered through recent papers and in Murphy, 2023).
Open-source software packages in Python and other
languages are essential. They include data-wrangling
libraries such as pandas (McKinney, 2010) and plot-
ting ones such as matplotlib (Hunter, 2007). The
library scikit-learn (Pedregosa et al., 2011) in
Python offers an extensive API that includes data
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processing, a toolbox of standard supervised and
unsupervised models, and evaluation routines. For
deep learning, PyToch (Paszke et al, 2019) and
TensorFlow (Abadi et al., 2015) are the standard.

2.1.2. Learning for combinatorial optimisation

The impressive success of machine learning in the
last decade made it natural to explore its use in
many scientific disciplines, such as drug discovery
and material sciences. Combinatorial optimisation
(CO; §2.4) is no exception to this trend and we
have witnessed an intense exploration (or, better,
revival) of the use of machine learning for CO. Two
lines of work have strongly emerged. On the one
side, ML has been used to learn crucial decisions
within CO algorithms and solvers. This includes
imitating an algorithmic expert that is computation-
ally expensive like in the case of strong branching
for branch and bound, the single application that
has attracted the largest amount of interest (Lodi &
Zarpellon, 2017; Gasse et al., 2019). The interested
reader is referred to two recent surveys (Bengio
et al, 2021; Cappart et al, 2021), the latter high-
lighting the relevance of GNNs for effective CO rep-
resentation. On the other side, ML has been used
end to end, i.e., for solving CO problems directly or
leveraging ML to devise hybrid methods for CO.
The area is surveyed in Kotary et al. (2021).

2.2. Behavioural OR?

Behavioural OR (BOR) is concerned with the study
of human behaviour in OR-supported settings.
Specifically, BOR examines how the behaviour of
individuals affects, or is affected by, an OR-sup-
ported intervention®. The individuals of interest are
those who, acting in isolation or as part of a team,
design, implement and engage with OR in practice.
These individuals include OR practitioners playing
specific intervention roles (e.g., modellers, facilita-
tors, consultants), and other individuals with vary-
ing interests and stakes in the intervention (e.g.,
users, clients, domain experts, sponsors).

A concern with the behavioural aspects of the
OR profession can be traced back to past debates in
the 1960s, 1970s and 1980s (Churchman, 1970;
Dutton & Walton, 1964; Jackson et al., 1989).
Although these debates dwindled down in subse-
quent years, the emergence of BOR as a field of
study represents a return to these earlier concerns
(Franco & Hamaldinen, 2016; Hamadldinen et al.,
2013). What motivates this resurgence is the recog-
nition that the successful deployment of OR in prac-
tice relies heavily on our understanding of human
behaviour. For example, overconfidence, competing
interests, and the willingness to expend effort in

searching, sharing, and processing information are
three behavioural issues that can negatively affect
the success of OR activities. Attention to behav-
ioural issues has been central in disciplines such as
economics, psychology and sociology for decades,
and BOR studies draw heavily from these reference
disciplines (Franco et al., 2021).

It is important to distinguish between the specific
focus of BOR and the broader focus of behavioural
modelling. The creation of models that capture
human behaviour has a long tradition within OR,
but it is not necessarily concerned with the study of
human behaviour in OR-supported settings. For
example, in the last 20 years operational researchers
have produced an increasing number of robust ana-
lytical models that describe behaviour in, and pre-
dict its impact on, operations management settings
(Cui & Wu, 2018; Donohue et al., 2020; Loch &
Wu, 2007). Operational researchers also have pro-
duced simulation models that capture human behav-
iour within a system with different levels of
complexity. For example, systems dynamics models
incorporate high-level variables representing average
behaviour (Morecroft, 2015; Sterman, 2000, §2.22),
and discrete event simulation models capture
human processes controlled by simple behavioural
rules (Brailsford & Schmidt, 2003; Robinson, 2014,
§2.19). More complex agent-based simulation mod-
els represent behaviour as emergent from the inter-
actions of agents with particular behavioural
attributes (Sonnessa et al., 2017; Utomo et al., 2018,
§2.19). Overall, behavioural modelling within the
OR field is concerned with examining human
behaviour in a system of interest in order to
improve that system®. In contrast, BOR takes an
OR-supported intervention as the core system of
interest where human behaviour is examined. The
ultimate goal of BOR is to generate an improved
understanding of the behavioural dimension of OR
practice, and use this understanding to design and
implement better OR-supported interventions.

Another important distinction worth stating is
that between BOR and Soft OR. At first glance, this
distinction may seem unnecessary as BOR is a field
of study within OR, while Soft OR refers to a spe-
cific family of problem structuring approaches
(52.20). Soft OR approaches have been developed to
help groups reach agreements on problem structure
and, often, appropriate responses to a problem of
concern (Franco & Rouwette, 2022; Rosenhead &
Mingers, 2001). However, while Soft OR interven-
tion design and implementation typically require the
consideration of behavioural issues, this is not the
same as choosing human behaviour in a Soft OR
intervention context as the unit of analysis. Of
course, a study with such a focus would certainly



fall within the BOR remit (e.g., Tavella et al., 2021).
But note that BOR is also concerned with the study
of human behaviour in other OR-supported settings,
such as those involving the use of ‘hard’ and
‘mixed-method’ OR approaches.

Studies of behaviour in OR-supported settings
assume implicitly or explicitly that human behaviour
is either influenced by cognitive and external fac-
tors, or is in itself an influencing factor (Franco
et al., 2021). In the first case, observed individual
and collective action is taken to be guided by cogni-
tive structures (e.g., personality traits, cognitive
styles) manifested during OR-related activity -
behaviour is influenced. In contrast, the second case
assumes that individuals and collectives are respon-
sible for determining how OR-related activity will
unfold - behaviour is influencing. This raises the
practical possibility that the same OR methodology,
technique, or model could be used in distinctive
ways by various individuals or groups according to
their cognitive orientations, goals and interests
(Franco, 2013). Whilst behaviour in practice is likely
to lie somewhere between the influenced and influ-
encing assumptions, BOR studies tend to fore-
ground one of the extremes as the focus, while
backgrounding the other.

BOR studies can adopt three different research
methodologies to examine behaviour: variance, pro-
cess, and modelling. A variance methodology uses
variables that represent the important aspects or
attributes of the OR-supported activity being exam-
ined. Variance explanations of behavioural-related
phenomena take the form of causal statements cap-
tured in a theoretically-informed research model
that incorporates these variables (e.g., A causes B,
which causes C). The research model is then tested
with data generated by the activity, and the research
findings are assessed in terms of their generality
(Poole, 2004). Adopting a variance research method-
ology typically requires the implementation of
experimental, quasi-experimental, or survey research
designs®. This involves careful selection of inde-
pendent variables, which might be either manipu-
lated or left untreated, and of dependent variables
that act as surrogates for specific behaviours. Once
information about all variables is collected, data is
quantitatively analysed using a wide range of vari-
ance-based methods (e.g., analysis of variance,
regression, structural equation modelling).

Behavioural studies that use a variance research
methodology can produce a good picture of the gen-
erative mechanisms underpinning behavioural proc-
esses if they test hypotheses about those
mechanisms. For example, variance studies in BOR
have examined the impact of individual differences
in cognitive motivation and cognitive style on the
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conduct of OR-supported activity (Fasolo & Bana e
Costa, 2014; Franco et al., 2016b; Lu et al., 2001).
There is also a long tradition of testing the behav-
ioural effects of reconfiguring different aspects of
OR-supported activity such as varying model or
information displays (Bell & O’Keefe, 1995;
Gettinger et al, 2013), and preference elicitation
procedures (Cavallo et al, 2019; Hamalainen &
Lahtinen, 2016; Poyhonen et al., 2001; von Nitzsch
& Weber, 1993).

A process methodology is used to examine OR-
supported activity as a series of events that bring
about or lead to some behaviour-related outcome.
Specifically, it considers as the unit of analysis an
evolving individual or group whose behaviour is led
by, or leading, the occurrence of events (Poole,
2004). Process explanations take the form of theor-
etical narratives that account for how event dynam-
ics lead to a final outcome (Poole, 2007). These
narratives are often derived from observation, but it
is also possible to use an established narrative (e.g.,
a theory) to guide observation that further specifies
the narrative.

Diverse and eclectic research designs are used to
implement a process research methodology. Central
to these designs is the task of identifying or recon-
structing the process through the analysis of events
taking place over time. For example, there is an
important stream of BOR studies that examines the
process of building models by experts and novices
(Tako, 2015; Tako & Robinson, 2010; Waisel et al,,
2008; Willemain, 1995; Willemain & Powell, 2007).
There is also an increasing interest to use process
methodologies to take a closer look at actual behav-
iour in OR-supported settings both, before, during
and after OR-related activity is undertaken (Franco
& Greiffenhagen, 2018; Kaki et al., 2019; Velez-
Castiblanco et al., 2016; White et al., 2016).

The variance and process approaches may seem
opposite to each other, but instead they should be
seen as complementary (Franco et al, 2021; Van de
Ven & Poole, 2005). BOR studies using a variance
research methodology can explore and test the mech-
anisms that drive process explanations of behaviour,
while BOR studies adopting a process research meth-
odology can explore and test the narratives that
ground variance explanations of behaviour. One way
of combining a variance and process approach within
a single BOR study is by adopting modelling as a
research methodology. A modelling approach would
create models that capture the mechanisms that gen-
erate a process of interest such as, for example, trust
on an OR-derived solution, and the model can be
run to generate the characteristics of that process.
Model parameters and structure can then be varied
systematically to enable variance-based comparisons
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of trust levels. Furthermore, the trajectory of trust
levels over time can be used to gain insights into the
nature of the trust development process. As already
mentioned, there is a long behavioural modelling
tradition within OR but, as far as we know, its poten-
tial as a research methodology tool to specifically
examine behaviour in OR-supported settings is yet to
be realised.

In sum, the variance, process and modelling meth-
odologies offer rich possibilities for the study of
human behaviour in OR-supported settings. Which is
best for a particular study will depend on the types
of question being addressed by BOR researchers,
their assumptions about human behaviour, and the
data they have access to. Ultimately, a thorough
understanding of behaviour in OR-supported settings
is likely to require all three research methodologies.

For a detailed review of BOR studies the reader is
referred to Franco et al. (2021). A review of behav-
ioural studies in the context of OR in health has been
written by Kunc et al. (2020). There are also two col-
lections edited by Kunc et al. (2016) and White et al.
(2020). The European Journal of Operational Research
published a feature cluster on BOR edited by Franco
and Hamalainen (2016a). Finally, BOR-related news
and events can be found on the sites of the European
Working Group on Behavioural OR’, and the UK
BOR Special Interest Group®.

2.3. Business analytics®

Business Analytics has its origins in practice, rather
than theory, as illustrated by some of the earliest
publications on the subject (e.g., Kohavi et al.,
2002). Senior executives began to realise the impor-
tance of analytics in the first decade of the new mil-
lennium because of the ready availability of large
amounts of data, the maturity of business perform-
ance management, the emergence of self-service
analytics and business intelligence, and the declining
cost of computing power, data storage and band-
width (Acito & Khatri, 2014).

Davenport and Harris (2007) gave examples of
companies becoming ‘analytical competitors’ by
using analytics to support distinctive organisational
capabilities. To achieve this level of maturity, it was
argued that analytics needs to become a strategic
competency. In the 1990s, Fildes and Ranyard
(1997) reported on the closure or dispersal of
Operational Research groups. Davenport et al
(2010) reflected a reversal of that trend, by focusing
on how analytical talent can be organised as an
internal resource. They suggested that there are four
categories of people to be considered when finding,
developing and managing analysts: champions, pro-
fessionals, semi-professionals and amateurs. In

2012/13, the Institute for Management Science and
Operations Research (INFORMS) introduced the
Certified Analytics Professional program and exam-
ination. This covers the broad spectrum of skills
required of analytics professionals, including busi-
ness problem framing, analytics problem framing,
data (handling), methodology selection, model
building, deployment and lifecycle management
(INFORMS, 2022).

The development of talent is just one of the pre-
requisites for Business Analytics to create value.
Vidgen et al. (2017) recommended ‘coevolutionary
change’, aligning their analytics strategy with their
strategies for Information and Communications
Technology, human resources and the whole busi-
ness. This helps to ensure that the necessary data
assets are available, the right culture is developed to
build data and analytics skills, and that there is align-
ment with the business strategy for value creation.
Hindle and Vidgen (2018) proposed a Business
Analytics Methodology based on four activities,
namely problem situation structuring, business model
mapping, business analytics leverage and analytics
implementation. They advocated a soft OR approach,
Soft Systems Methodology (Checkland & Poulter,
2006), to support structuring and mapping activities.

Many definitions of Business Analytics have been
proposed; for a review of early definitions, see
Holsapple et al. (2014). According to Davenport
(2013), “By analytics we mean the extensive use of
data, statistical and quantitative analysis, explana-
tory and predictive models, and fact-based manage-
ment to drive decisions and actions’ (p. 7).
Mortenson et al. (2015) suggested that analytics is at
the intersection of quantitative methods, technolo-
gies and decision making. Rose (2016) considered
analytics as the union of Data Science (which is
data centric) and Operational Research (which is
problem centric). Power et al. (2018) proposed the
following definition: “Business Analytics is a system-
atic thinking process that applies qualitative, quanti-
tative and statistical computational tools and
methods to analyse data, gain insights, inform and
support decision-making”. Delen and Ram (2018)
pointed out that, although analytics includes ana-
lysis, it also involves synthesis and subsequent
implementation. These broad perspectives, empha-
sising synthesis as well as analysis, and qualitative as
well as quantitative approaches, are consistent with
earlier writings on the use of a broad range of
methods in Management Science (e.g., Mingers &
Brocklesby, 1997; Pidd, 2009).

Business Analytics can be viewed from different
orientations. From a methodological viewpoint, the
subject covers descriptive, predictive and prescrip-
tive methods (Lustig et al., 2010). These three



categories are sometimes extended to four, with a
distinction being drawn between ‘descriptive’ and
"diagnostic’ analytics, following the Gartner analytics
ascendancy model (Maoz, 2013). Lepenioti et al.
(2020) argue that it is preferable to maintain the
threefold categorisation to ensure consistency, with
each category addressing both ‘What?” and ‘Why’
questions. (Descriptive: ‘What happened?, “‘Why did
it happen?’; Predictive: “What will happen?, “Why
will it happen?’; Prescriptive: “What should I do to
make it happen?’, ‘Why should I make it happen?’).
For detailed literature reviews on descriptive, pre-
dictive and prescriptive analytics, the reader is
directed to Duan and Xiong (2015), Lu et al. (2017),
and Lepenioti et al. (2020), respectively.

From a technological viewpoint, Business
Analytics is facilitated by the integration of transac-
tional data with big data streaming from social
media platforms and the Internet of Things into a
unified analytics system (Shi & Wang, 2018). These
authors suggest that this integration can be achieved
in two stages, starting with integration of traditional
Enterprise Resource Planning (ERP) and big data,
and proceeding to integration of big-data ERP with
Business Analytics. Ruivo et al. (2020) reported that
analytics ranked second in extended ERP capabilities
(behind collaboration) according to the views of 20
experts engaged in a Delphi study. Romero and
Abad (2022) suggested that cloud-based big data
analytics software will not provide competitive
advantage to firms that have not installed a large
ERP system, although it will ensure that they do not
lag further behind their sector-leading competitors.

From an ethical viewpoint, Business Analytics
faces a number of challenges. Davenport et al. (2010)
recognised that issues of data privacy can be difficult
to address, especially if an organisation operates in a
wide range of territories or industries. Ram Mohan
Rao et al. (2018) summarised major privacy threats
in data analytics, namely surveillance, disclosure, dis-
crimination, and personal embarrassment and abuse,
and reviewed privacy preservation methods, including
randomisation and cryptographic techniques. A fur-
ther ethical issue is that AI algorithms are likely to
replicate and reinforce existing social biases (O’Neil,
2016). Such algorithmic bias is said to occur when
the outputs of an algorithm benefit or disadvantage
certain individuals or groups more than others with-
out a justified reason. Kordzadeh and Ghasemaghaei
(2022) reviewed the literature on algorithmic bias
and showed that most studies had examined the issue
from a conceptual standpoint, with only a limited
number of empirical studies. Similarly, Vidgen et al.
(2020) reviewed papers on ethics in Business
Analytics and found that most were at the level of
guiding principles and frameworks, with little of
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direct applicability for the practitioner. Their case
study demonstrated how ethical principles (utility,
rights, justice, common good and virtue) can be
embedded in analytics development. For further dis-
cussions on ethics and OR, the reader is referred to
Ormerod and Ulrich (2013), Le Menestrel and Van
Wassenhove (2004), and Mingers (2011a) but
also §3.8.

Analytics maturity models have been developed to
describe, explain and evaluate the development of ana-
lytics in an organisation. Krdl and Zdonek (2020)
reviewed 11 maturity models and assessed them in
terms of the number of assessment dimensions, scoring
mechanism, number of maturity levels, and the public
availability of the methodology. They found that the
most common assessment dimensions were technical
infrastructure, analytics culture and human resources,
including staff's analytics competencies. Lismont et al.
(2017) undertook a survey of companies, based on the
DELTA maturity model (Davenport et al, 2010) of
data, enterprise, leadership, targets and analysts. They
identified four analytics maturity levels from their sur-
vey. The most advanced companies tended to use a
wider variety of analytics techniques and applications,
to organise analytics more holistically, and to have a
more mature data governance policy.

A crucial empirical question is whether Business
Analytics adds value to an organisation. An early
study on the effect of Business Analytics on supply
chain performance was conducted by Trkman et al.
(2010). They examined over 300 companies, show-
ing a statistically significant relationship between
self-assessed analytical capabilities and performance.
Oesterreich et al. (2022) conducted a meta-analysis
of 125 firm-level studies, spanning ten years of
research in 26 countries. They found evidence of
Business Analytics having a positive impact on oper-
ational, financial and market performance. They
also found that human resources, management
capabilities and organisational culture were major
determinants of value creation, whereas techno-
logical factors were less important.

2.4. Combinatorial optimisation®

A Combinatorial Optimisation (CO) problem con-
sists of searching for the optimal element in a finite
collection of elements. More formally, given a set of
elements and a family of its subsets, each defining a
feasible solution and having an associated value, a
CO problem is to find a subset having the min-
imum (or, alternatively, the maximum) value. The
subsets may be proper, like, e.g., in the knapsack
problem, or represented by permutations, like, e.g.,
in the assignment problem (see below). Typically,
the feasible solutions are not explicitly listed, but are
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described in a concise manner (like a set of equal-
ities and inequalities, or a graph structure) and their
number is huge, so scanning all feasible solutions to
select the optimal one is intractable. A CO problem
can usually be modelled as an Integer Program (IP,
see also §2.15) with linear or nonlinear objective
function and constraints, in which the variables can
take a finite number of integer values.

Consider for example the problem of assigning n
tasks to n agents, by knowing the time that each
agent needs to complete each task, with the objective
of finding a solution that minimises the overall time
needed to complete all tasks (Assignment Problem,
AP). The solution could obviously be found by enu-
merating all permutations of the integers 1,2..,n
and selecting the best one. However, this number is
so huge that such approach is ruled out even for
small-size problem instances: for n=30, we have
n!=2.6-10, and the fastest supercomputer on
hearth would need millions of years to scan all solu-
tions. The challenge is thus to find more efficient
methods. For example, one of the most famous CO
algorithms (the Hungarian algorithm) can solve
assignment problem instances with millions of varia-
bles in few seconds on a standard PC.

The algorithm mentioned above can be imple-
mented so as to solve any AP instance in a time of
order n’, ie., in a time bounded by a polynomial
function of the input size. Unfortunately, only for
relatively few CO problems we know algorithms with
such property, while for most of them (N P-hard
problems) the best known algorithms can take, in the
worst case, a time that grows exponentially in the
size of the instance. In addition, Complexity theory
(see also §2.5) suggests that the existence of polyno-
mial-time algorithms for such problems is unlikely.
On the other hand, CO problems arise in many
industrial sectors (manufacturing, crew scheduling,
telecommunication, distribution, to mention a few)
and hence there is the prominent and practical need
to obtain good quality solutions, especially to large-
size instances, in reasonable times.

2.4.1. Origins

Many problems arising on graphs and networks (see
§2.12) belong to CO (the AP discussed above can be
described as that of finding a minimum weight per-
fect matching in a bipartite graph), and hence the
origins of CO date back to the eighteen century. In
the following, we narrow our focus to modern CO
(see Schrijver, 2005). Its roots can be found in the
first decades of the past century, when Central
European mathematicians developed seminal studies
on matching problems (Konig, 1916), paths Menger
(1927), and Shortest Spanning Trees (SST) (Jarnik,
1930;  Boruvka, 1926, results independently

rediscovered by Prim, 1957 and Kruskal, 1957). The
Fifties produced major results on the AP (Kuhn,
1955; 1956, on the basis of the results by Konig,
1916 and Egervary, 1931, also see Martello, 2010),
the Travelling Salesman Problem (Dantzig et al,
1954), and Network Flows (Ford & Fulkerson, 1962),
as well as fundamental studies on basic methodolo-
gies: dynamic programming (DP; Bellman, 1957, see
§2.9), cutting planes (Gomory, 1958, see §2.15), and
branch-and-bound (Land & Doig, 1960).

2.4.2. Problems and complexity

The most important CO problems, for which we
know there are polynomial algorithms, are the basic
graph-theory problems mentioned in the previous
section. Other important problems, which are rele-
vant both from the theoretical point of view and
from that of real-world applications, are instead
NP-hard. The main A'P-hard CO problems arise
in the following areas.

Scheduling. Given a set of tasks which must be
processed on a set of processors, a scheduling prob-
lem asks to find a processing schedule that satisfies
prescribed conditions and minimises (or maximises)
an objective function, frequently related to the time
needed to complete all tasks. This huge area, that
includes literally hundreds of problems and variants
(mostly A'P-hard), is also discussed in §3.27.

Travelling Salesman Problem (TSP). Given a
weighted (directed or undirected) graph, the prob-
lem is to find a circuit that visits each vertex exactly
once (Hamiltonian tour) and has minimum total
weight. This is one of the most intensively studied
problems of CO, and is treated in detail in §2.12.

Vehicle Routing Problems (VRP). A VRP is a gen-
eralisation of the TSP which consists of finding a set
of routes for a fleet of vehicles, based at one or
more depots, to deliver goods to a given set of cus-
tomers by satisfying a set of conditions and mini-
mising the overall transportation cost.

Facility Location. These problems require to find the
best placement of facilities on the basis of geographical
demands, installation costs, and transportation costs, so
as to satisfy a set of conditions and to minimise the
total cost (see §3.13 for a detailed treatment).

Steiner Trees. Given a weighted graph and a subset
S of vertices, it is requested to find an SST connect-
ing all vertices in S (possibly containing additional
vertices). These problems, which generalise both the
shortest path problem and the SST, are treated in
detail in §2.12.

Set Covering. Given a set of elements and a col-
lection of its subsets, each having a cost, we want to
find the least cost sub-collection whose union
includes (covers) all the elements.



Maximum Clique (MC). A clique is a complete
subgraph of a graph (i.e., it is defined by a subset of
vertices all adjacent to each other). Given a graph,
the MC problem is to find a clique of maximum
cardinality (or, if the graph is weighted, a clique of
maximum weight). We refer the reader to §2.12 for
a detailed analysis.

Cutting and Packing (C&P). Given a set of
“small” items, and a set of “large” containers, a
problem in this area asks for an optimal arrange-
ment of the items into the containers. Items and
containers can be in one dimension (Knapsack
Problems (KP), Bin Packing problems) or in more -
usually two or three - dimensions (C&P). See §3.3
for more details.

Quadratic Variants of CO problems. A currently
hot research area concerns CO problems whose
“normal” linear objective function is replaced by a
quadratic one. This greatly increases difficulty: in
most cases problems which, in their linear formula-
tion, can be solved in polynomial time (e.g., the AP)
or in pseudo-polynomial time (e.g., the KP) become
strongly A/P-hard.

2.4.3. Exact methods for N'P-hard problems

For heuristic and approximation algorithms, we
refer the reader to §2.13 and §2.5. With the excep-
tion of DP methods (§2.9), most exact algorithms
for N"P-hard CO problems, as well as most com-
monly used ILP solvers, are based on implicit enu-
meration. In the worst case, they can require the
evaluation of all feasible solutions, and hence com-
puting times growing exponentially with the prob-
lem size. The most common methods can be
classified as

e Branch-and-Bound (B&B);
o Branch-and-Cut (B&C);
e Branch-and-Price (B&P).

We will describe B&B, the other methods (and
their combinations, as B&C-and-Price) being its
extensions described in §2.15.

We consider a maximisation CO problem having
an IP model with inequality constraints of ‘<’ type.
For a problem P, having feasible solution set F(P),
z(P) denotes its optimal solution value, and ub(P)
an upper bound on z(P). The main ingredients of
B&B are branching scheme and upper bound
computation.

Branching scheme. The solution is obtained as
follows:

i. subdivide P into m subproblems, each having
the same objective function as P and a feasible
solution set contained in F(P), such that the
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union of their feasible solution sets is F(P). The
optimal solution of P is thus given by the opti-
mal solution of the subproblem having the
maximum objective function value;

ii. iteratively, if a subproblem cannot be immedi-
ately solved, subdivide it into additional
subproblems.

The resulting method can be represented through a
branch-decision tree, where the root node corresponds
to P and each node corresponds to a subproblem.

A node of the tree can be eliminated if the feas-
ible solution set of the corresponding subproblem is
empty, or its upper bound is not greater than the
value of the best feasible solution to P found so far.

Upper bound computation. A valid upper bound
ub(P) can be computed as the optimal solution value
of a Relaxation of the IP model of P, defined by:

i. a feasible solutions set containing F(P);
ii. an objective function whose value is not smaller
than that of P for any solution in F(P).

A relaxation is “good” if the resulting upper
bound ub(P) is “close” to z(P) (i.e., if the gap
between the two values, z(P) — ub(P), is “small”),
and the relaxed problem is “easy” to solve, i.e., its
optimal solution can be obtained with a computa-
tional effort much smaller than that required to
solve P.

2.4.4. Relaxations
The most common relaxation methods are:

o Constraint elimination: a subset of constraints is
removed from the IP model of P, so that the
resulting problem is easy to to solve. The most
widely used case is the linear relaxation;

o Linear relaxation: when the model is an Integer
Linear Problem (ILP), removing the constraints
that impose integrality of the variables leads to a
Linear Program (LP), which is polynomially solv-
able, commonly used in ILP solvers (see §2.15);

o Surrogate relaxation: a subset X of inequality
constraints is replaced by a single surrogate
inequality, so that the corresponding relaxed
problem is easy to solve. The surrogate inequality
is obtained by multiplying both sides of each
inequality of X by a non-negative constant, and
summing, respectively, the left-hand and right-
hand sides of the resulting inequalities;

o Lagrangian relaxation: a subset A of inequality
constraints is removed from the model and
“embedded”, in a Lagrangian fashion, into the
objective function. For each inequality of A, the
difference between left-hand and right-hand sides
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(slack) multiplied by a non-negative constant is
added to the objective function.

The relaxations can be strengthened by adding
one or more valid inequalities (cuts) to the IP model
of P, such that they are redundant for the IP model,
but can become active when the IP model is relaxed
(see §2.15).

2.4.5. Further readings

We refer the reader to the following selection of
references for more details on the topics covered in
this section. Well known, pre-1990 books are those
by Garfinkel and Nembhauser (1972, IP), Christofides
(1975, algorithmic graph theory), Garey and Johnson
(1979, complexity), Burkard and Derigs (1980, AP),
Lawler et al. (1985, TSP), and the CO specific vol-
umes by Lawler (1976), Christofides et al. (1979),
Papadimitriou and Steiglitz (1982), Martello et al.
(1987), and Nemhauser and Wolsey (1988). We list
more recent contributions in the order in which the
topics were introduced:

CO: Cook et al. (1998), Schrijver (2003);

AP: Burkard et al. (2012) for linear and quadratic
AP, Cela (2013) for quadratic AP;

Network Flows: Ahuja et al. (1993);

Scheduling: Blazewicz et al. (2001, 2007), Pinedo
(2012);

e TSP: Gutin and Punnen (2006), Applegate, et al.
(2007), Cook (2011);

VRP: Golden et al. (2008), Toth and Vigo (2014);
Facility Location: Mirchandani and Francis
(1990), Laporte et al. (2015);

e Steiner trees: Hwang et al. (1992), Promel and
Steger (2012). Also see the recent survey by
Ljubi¢ (2021);

e Cutting and packing: Martello and Toth (1990),
Kellerer et al. (2004). Also see the recent survey
by Cacchiani et al. (2022a, 2022b).

2.5. Computational complexity’’

Operational Research develops models and solution
methods for problems arising from practical deci-
sion making scenarios. Often, these solution meth-
ods are algorithms. The difficulty of a problem can
be assessed empirically by evaluating the running
times of corresponding algorithms, which requires
careful implementations and meaningful test data.
Moreover, this can be time-consuming and yields
insights that depend on the skills of the programmer
and are limited to the available test instances.
Computational complexity represents an alternative
approach that allows for a more general assessment

of a problem’s difficulty that is independent of spe-
cific problem instances or solution algorithms.

2.5.1. Problem encoding and running times of
algorithms

In complexity theory, the running time of an algo-
rithm is expressed in terms of the size of the input,
i, the amount of data necessary to encode an
instance of the problem. Since computers store data
in the form of binary digits (bits), the standard bin-
ary encoding represents all data of a problem
instance in the form of binary numbers. The num-
ber of required bits (the encoding length) of an inte-
ger is roughly given by the binary logarithm of its
absolute value. As an example, consider the binary
encoding of instances of the well-known 0-1 knap-
sack problem (KP). An instance of KP consists of n
items — each with a non-negative, integer weight
and profit - and a positive, integer knapsack cap-
acity ¢. We can assume that all # item weights are
bounded by the capacity ¢ and denote the value of the
largest item profit by pua. Then, the encoding length
of a KP instance is bounded by (n+1)- log,(c) +
1 - 1082 (Pmax) < (214 1)- log,(max{c, pmax})-

Rational numbers can be straightforwardly repre-
sented by their (integer) numerator and denomin-
ator, but their presence in the input might already
influence a problem’s computational complexity
(Wojtczak, 2018). Irrational numbers cannot be
encoded in binary without rounding them appropri-
ately, which means that a different kind of complex-
ity theory is required when general real numbers are
part of the input (see Blum et al., 1998, for details).
Hence, the following exposition is restricted to the
case of integer inputs, where the encoding length of
an instance can be bounded by the number of inte-
gers needed to represent it multiplied with the bin-
ary logarithm of the largest among their absolute
values (see the bound for KP instances provided
above as an example).

To allow universal running time analyses of algo-
rithms that are independent of specific computer
architectures, asymptotic running time bounds
described using the so-called O-notation (Cormen
et al., 2009) are used. Informally, every polynomial
in n with largest exponent k is in O(n¥). All terms
with exponents smaller than k and the constant
coefficient of n* are ignored. One is then often
interested in polynomial-time algorithms whose run-
ning time is in O(|I ¥) for some constant k, where
|I| denotes the encoding length of instance I. A less
preferred outcome would be a pseudopolynomial-
time algorithm, where the running time is only
required to be polynomial in the number of integers
in the input and the largest among their absolute
values (or, equivalently, in the exponentially larger



encoding length of the input when using unary
encoding, where the encoding length of an integer is
roughly its absolute value).

2.5.2. The complexity classes P and NP
Most  application  scenarios  encountered in
Operational Research finally lead to an optimisation
problem (often a combinatorial problem - see §2.4),
where a feasible solution is sought that minimises or
maximises a given objective function. Every opti-
misation problem immediately yields an associated
decision problem, asking a yes-no question. For
example, a minimisation problem consisting of a set
X of feasible solutions and an objective function f
can be written as min{f(x) : x € X'}. For a given
target value v, the associated decision problem then
asks: Does there exist a feasible solution x € X such
that f(x) <v? Solving an optimisation problem to
optimality trivially answers the associated decision
problem for any given v. On the other hand, every
algorithm for the decision problem can be used to
solve the underlying optimisation problem. Given
upper and lower bounds, the optimal solution value
can be identified in polynomial time by performing
binary search between these bounds using the deci-
sion problem to answer the query in every iteration
of the binary search (assuming that the range of
objective function values and the encoding lengths
of the bounds are polynomially bounded).
Motivated by the above, the computational com-
plexity of an optimisation problem follows from the
complexity of its associated decision problem. Here,
the most relevant complexity classes in Operational
Research are probably P and NP, which are often
used to draw the line between “easy” and “hard”
problems in this context. Formally, the class P
(“polynomial”) consists of all decision problems for
which a polynomial-time solution algorithm exists
on a deterministic Turing machine (or, equivalently,
in any other “reasonable” deterministic model of
computation), while the class NP (“nondeterministic
polynomial”) consists of all decision problems for
which the same holds on a nondeterministic Turing
machine. Equivalently, NP is the class of all decision
problems such that, for any yes instance I, there
exists a certificate with encoding length polynomial
in |I| and a deterministic algorithm that, given the
certificate, can verify in polynomial time that the
instance is indeed a yes instance. Since the most nat-
ural certificate is often a (sufficiently good) solution
of the problem, AP can informally be defined as the
class of decision problems for which solutions can be
verified in polynomial time. For example, when con-
sidering the travelling salesman problem (TSP) on a
given edge-weighted graph, the associated decision
problem asks whether or not there exists a tour

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 13

(Hamiltonian cycle) of at most a given length v.
While no polynomial-time algorithm for this decision
problem is known to date, the problem can easily be
seen to be in NP since the natural certificate to pro-
vide for a yes instance is simply a tour with length at
most v, whose feasibility and length can be easily
verified in polynomial time.

Observe that these definitions directly imply that
P C N'P. Most researchers believe that PCNP or,
equivalently, that there are problems in NP that do
not admit polynomial-time solution algorithms.
However, formally proving that P # NP (or that
P =NP) is still one of the most famous open
problems in theoretical computer science to date.

This so-called P versus NP problem can be
equivalently expressed using the well-known notion
of N'P-completeness (see, e.g., Garey & Johnson,
1979). Intuitively, NP-complete problems are the
hardest problems in NP in the sense that, if one of
these problems admits a polynomial-time solution
algorithm, then so does every problem in NP (and,
thus, we would obtain P = N'P). A decision prob-
lem (not necessarily in NP) with this property is
also called N'P-hard. This means that a problem is
NP-complete if and only if it is both A"P-hard and
contained in N'P. The first problem shown to be
NP-complete in Cook’s famous theorem (Cook,
1971) is the (Boolean) satisfiability problem (SAT).
Shortly after, Karp (1972a) gave a list of 21 funda-
mental problems that are NP-complete. While
Cook’s proof that SAT is N'P-complete required
considerable effort, proving that further problems
are N'P-complete became significantly easier with
this knowledge and hundreds - if not thousands -
of problems were shown to be A"P-complete.

A decision problem is NP-complete if and only if
(1) it is contained in NP and (2) some N P-complete
problem (and, therefore, all problems in NP) can be
reduced to it via a polynomial-time reduction. Such a
polynomial-time reduction works as follows: For any
instance of the known A/P-complete problem (e.g.
SAT or TSP), one has to construct an instance of the
investigated problem in polynomial time such that the
two instances are equivalent, ie., the constructed
instance is a yes instance if and only if the given
instance is a yes instance. Note that the requirement
that the instance must be constructed in polynomial
time (and, therefore, have encoding length polynomial
in the encoding length of the original instance) is cru-
cial. A common error in reductions is that the encod-
ing length of the constructed instance depends
polynomially on the size of numerical values in the
given instance (instead of their encoding length).

The importance of the encoding can be illustrated
by the 0-1 knapsack problem (KP), which is
NP-hard if binary encoding is used, but can be
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solved in polynomial time (via dynamic program-
ming) if unary encoding is used (so N P-hardness
of the unary-encoded version would imply that
P = N'P). Problems like this, i.e., problems whose
binary-encoded version is AP-hard, but whose
unary-encoded version can be solved in polynomial
time, are called weakly N'P-hard, while problems
(such as SAT) that remain NP-hard also under
unary encoding are called strongly N'P-hard. The
existence of a pseudopolynomial-time algorithm is
possible for weakly NP-hard problems, but not for
strongly A/P-hard problems (unless P = N'P).

2.5.3. Approximation algorithms

While some realistic-size instances of NP-hard
problems might still be solvable in reasonable time,
this is not the case for all instances. In general, one
can deal with N"P-hardness by relaxing the require-
ment of finding an optimal solution and instead set-
tling for a “good-enough” solution. This leads
to heuristics, whose aim is producing good-enough
solutions in reasonable time (see $§2.13 for details)
and approximation algorithms (Vazirani, 2001;
Williamson & Shmoys, 2011; Ausiello et al.,, 1999).
Given o > 1, an a-approximation algorithm for an
optimisation problem is a polynomial-time algo-
rithm that, for each instance of the problem, produ-
ces a solution whose objective value is at most a
factor a worse than the optimal objective value. The
factor o, which can be a constant or a function of
the instance size, is then called the approximation
ratio or performance guarantee of the approximation
algorithm. While it is standard to use o >1 for
minimisation problems, there is no clear consensus
in the literature as to whether o > 1 or o < 1 should
be used for maximisation problems. For example,
the simple extended greedy algorithm for the knap-
sack problem produces a solution with at least half
of the optimal objective value on each instance, i.e.,
it is a 1/2- or a 2-approximation algorithm.

While inapproximability results can be shown for
some N P-hard problems (see Hochbaum, 1997, ch.
10), others allow for approximation algorithms with
approximation ratios arbitrarily close to one, i.e., they
admit a polynomial-time approximation scheme
(PTAS). A PTAS is a family of algorithms that con-
tains a (1 + ¢)-approximation algorithm for every ¢ >
0. If the running time is additionally polynomial in
1/e, the PTAS is called a fully polynomial-time
approximation scheme (FPTAS). If all objective func-
tion values are integers, every FPTAS can be turned
into a pseudopolynomial-time exact algorithm, so
strongly NP-hard problems do not admit an FPTAS
(unless P = N'P). Conversely, pseudopolynomial-time
algorithms, in particular dynamic programming

algorithms, often serve as a starting point for design-
ing an FPTAS (Woeginger, 2000; Pruhs & Woeginger,
2007).

2.5.4. Further complexity classes

Theoretical computer science developed a wide
range of complexity classes far beyond the P vs.
NP dichotomy. Considering algorithms requiring
polynomial space, i.e., for which the encoding length
of the data stored at any time during the algorithm’s
execution is polynomial in the encoding length of
the input (but no bound on the running time is
required), gives rise to the class PSPACE. It is
widely Dbelieved that NPCPSPACE, but even
whether P # PSPACE holds is not known.

In the theoretical analysis of bilevel optimisation
problems (see, e.g., Labbé & Violin, 2016) the com-
plexity class X plays an important role (see
Woeginger, 2021). Here, a yes instance I is character-
ised by the existence of a certificate of encoding
length polynomial in |I],such that a certain polyno-
mial-time-verifiable property holds true for all ele-
ments of a given set ). As an example, consider the
2-quantified (Boolean) satisfiability problem. Here, an
instance consists of two sets X and Y of Boolean vari-
ables and a Boolean formula over X UY. The ques-
tion then is whether there exists a truth assignment
of the variables in X such that the formula evaluates
to true for all possible truth assignments of the varia-
bles in Y. This definition immediately sets the stage
for a bilevel problem, where the decision x of the
upper level (the leader) should guarantee a certain
outcome for every possible decision y at the lower level
(the follower). It is widely believed that N'PCXh
although 5-hardness does not rule out the existence
of a PTAS (Caprara et al., 2014). Under this assump-
tion, Zg—hardness does, however, rule out the exist-
ence of a compact ILP-formulation, which can be a
valuable finding for bilevel optimisation problems.

For some AP-hard problems, one can construct
algorithms with running time O(f(k) - poly(|I])) for
an arbitrary computable function f, where the par-
ameter k describes a property of the instance I. Such
problems are called fixed-parameter tractable. For
example, the satisfiability problem SAT is fixed-par-
ameter tractable with respect to the parameter k
that represents the tree-width of the primal graph of
the SAT instance. In this graph, the vertices are the
variables and two vertices are joined by an edge if
the associated variables occur together in at least
one clause, see Szeider (2003). This parametric point
of view is captured in the W-hierarchy of complex-
ity classes — see Niedermeier (2006) and the seminal
book by Downey and Fellows (1999).



2.6. Control theory'?

Control theory deals with designing a control signal
so that the state or output variables of the system
meet certain criteria. It is a broad umbrella term
that covers a variety of theories and techniques.
Control theory has been widely applied in the stud-
ies of economics (Tustin, 1953; Grubbstrom, 1967),
operations management (Simon, 1952; Vassian,
1955, also see (Sarimveis et al., 2008) for a recent
review), and finance (Sethi & Thompson, 1970).
Here, we do not intend to provide an exhaustive or
comprehensive review. Instead, we try to structurally
organise the concepts and techniques commonly
applied in operations research, which means that
technical details will be omitted. We direct inter-
ested readers to a number of textbooks in the refer-
ence list, and an excellent review by Astrom and
Kumar (2014) for those interested in the develop-
ment of control theory.

The major distinction between control theory and
other optimisation theories is that the control vari-
able to be designed is normally a time-varying,
dynamic function. The control signal can either be
dependent on the state variables (which is referred to
as feedback control or closed-loop control) or inde-
pendent (feedforward control or open-loop control).
The design of control signals and control policies
(defined as the function between the state of the sys-
tem and the control, also known as “control laws” or
“decision rules”) is based on the structure of the sys-
tem to be controlled (sometimes called the “plant” in
the control engineering literature). Thus, the type of
the dynamical system often define the type of control
problem. In continuous systems, the time variable is
defined on the real axis, suitable to describe continu-
ous processes such as fluid processing and finance. In
discrete systems, time is defined as integers, suitable
in cases such as production and inventory control,
where the production quantity is released every day.
Linear systems are comprised of linear (or affine)
state equations, while nonlinear systems contain non-
linear elements. Nonlinear systems are more difficult
to analyse and control, and may lead to complex sys-
tem behaviours such as bifurcation, chaos and fractals
(Strogatz, 2018). But there are linearisation strategies
which approximate the nonlinear system locally as
linear systems (Slotine et al., 1991). Based on whether
random input is present, the dynamical system can
be categorised into deterministic and stochastic.

There are two fundamental methods in the ana-
lysis of the system and control. The first relies on
time-frequency transformations (Laplace transform
for continuous systems and z-transform for discrete
systems). A transfer function in the frequency
domain can be used to represent and analyse the

system  (Towill, 1970). This method saves
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computational effort; however, it can only deal with
linear system models and each transfer function
only describes the relation between a single input
and a single output (SISO). The second method dir-
ectly tackles the state equations in the time domain
and describes the movement of system state in the
state space. It is suitable for nonlinear systems and
multi-input-multi-output (MIMO) systems. With
the advancement of computing technology, the com-
putational burden faced by the time-based method
becomes less significant. The literature refers to the
frequency-based method as classic control theory
(Ogata et al, 2010) and the time-based method as
modern control theory.

The system under the effect of the control policy
must be examined with respect to its properties and
dynamic performance. Stability is a property of the
dynamical system, that the system can return to its
steady state after receiving a finite external disturb-
ance. Stability is a fundamental precondition that
almost all control designs must meet, with few excep-
tions such as clocks and metronomes, where a peri-
odic or cyclic response is desired. The stability
criterion is straightforward to derive for linear sys-
tems, where both frequency-based (e.g., Routh-
Hurwitz stabibility criteria and Jury’s inners approach,
Jury & Paynter, 1975) and time-based (e.g., the eigen-
value approach) methods exist. However, stability
analysis for nonlinear systems is more challenging
(Bacciotti & Rosier, 2005). Other important properties
of the control system include controllability, defined
as the ability to move the system to preferred state
using only the control signal; and observability,
defined as the ability to infer the system state using
the observable output signals (Gilbert, 1963).

In addition to these intrinsic properties, the system
can also be evaluated by the system’s response to
some characteristic input functions. The step function
(sometimes referred to as the Heaviside function)
takes the value of zero before the reference time
point, and one thereafter. The impulse function (the
Dirac ¢ function) takes the value of infinity at the
reference time point and zero otherwise. These two
input functions usually represent an abrupt change in
the external environment. The sinusoidal function can
be used to describe the periodic and seasonal exter-
nalities. The Bode plot describes the amplitude and
phase shift between the sinusoidal input and output.
For stochastic environments, the white noise is used
to mimic random disturbances. It is a random signal
that follows an identical and independent Gaussian
distribution and has a constant power spectrum. The
noise bandwidth of the system determines the ratio
between output and input variances when the input
is iid. The value of the noice bandwidth can be
derived from either the transfer function or the state
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space representation. This concept is used in analy-
sing the amplification phenomena in supply chains
(see §3.24).

In practise, the system state and even the system
structure may be unknown. Therefore, statistical
techniques, known as state estimation and system
identification, have been developed. State estimation
uses observable output data to estimate the unob-
servable system states. A popular technique for this
purpose is the Kalman filter (Kalman, 1960), essen-
tially an adaptive estimator that can be applied not
only in linear, time-invariant cases (LTI, where the
system is linear and does not change over time), but
also non-linear and time-variant cases. For example,
it has been applied to estimate the demand process
from the observed sales data (Aviv, 2003). System
identification attempts to “guess” the structure of
the system from the input and output.

Along with the development of control theory,
various control strategies have been proposed. They
are designed to fit the structure of the system, the
objective of the control, and most importantly, to
offer a paradigm to design the control policy. In what
follows, we provide a brief summary of control strat-
egies. Linear control strategies can be represented lin-
early (in the form of transfer function). They offer
great analytical tractability and satisfactory perform-
ance, especially when the open-loop system is also lin-
ear. Two widely adopted policies in this family are
proportional-integral-derivative (PID) control and
full-state feedback (FSF) control. In PID control, an
error signal between the output and the reference
input (e.g., a Heaviside function) is computed. The
control signal is a linear combination of the error, the
integral, and the derivative of the error. These three
components can appear separately. The proportional
control has been applied in mechanical and manager-
ial mechanisms such as the centrifugal governor and
production planning (Chen & Disney, 2007). The
full-state feedback control defines the control signal as
a linear combination of the full system state vector,
where the coefficient vector (the “gain”) shares the
same dimensionality as the state vector. By tuning the
gain, the poles of the closed-loop system (the eigen-
value of the transition matrix or the roots of the char-
acteristic equation) will change their position in the
complex plane, adjusting the system performance.
The full-state feedback policy can also be applied in
production and inventory control (Gaalman, 2006).

In contrast to the linear strategies, the nonlinear
control strategies are defined as policies where the
control signal cannot be represented by a linear
function of the system state (Slotine et al,, 1991).
These policies are primarily used when the open
loop system is also nonlinear. One such policy is
sliding mode control, where the control signal is a

switching function of the state, dependent on some
switching rules. The system is then maintained near
a hypersurface of the state space (sliding), where the
dynamic behaviour of the system is desired. It
should be ensured that the hypersurface is reachable
from any initial state and that the system state can
be maintained on the hypersurface by the policy. In
practise, bang-bang control is adopted frequently as
a special case of sliding mode control, where the
control signal can take only two possible values. The
rocket engines and domestic thermostats are exam-
ples of such (with on and off states).

Optimal control aims at finding the control signal
or control policy that allows an objective function to
reach its extreme point (Sethi & Thompson, 2009;
Bertsekas, 2012a). The objective function could be
dependent on the state, output and/or control. Many
control policies mentioned above, e.g., full-state feed-
back control and sliding mode control, have been
proved to be the optimal control of some control
problems. Optimal control in the special sense is
based on Pontryagin’s Maximum (or equivalently
Minimum) Principle and mainly deals with the
design of the open-loop control signal. When
equipped with the Hamilton-Jacobi-Bellman (HJB)
theory, it can be used to design optimal feedback
control policies. Optimal control is closely connected
with dynamic programming, which will be reviewed
in §[dynamic programming]. The optimal control
technique has been widely applied in operations
management (e.g., Kumar & Swaminathan, 2003).

When random external disturbances are present,
the stochastic control techniques are necessary
(Astrom, 2012). In these situations, objective func-
tions are usually statistical functions of the state or
the output, such as the absolute mean or variance.
The most well-studied stochastic control problem is
the Linear Quadratic Gaussian (LQG) problem,
where the system is linear, the objective function is
of quadratic form, and the noise signal follows a
Gaussian distribution. The optimal control policy in
this case is a linear one. Many supply chain manage-
ment problems can be modelled in LQG form (Lee
et al, 1997). For more complex problems involving
nonlinearity or an unspecified system structure, the
model predictive control (MPC) approach can be used
(Camacho & Bordons, 2013). This approach trans-
forms the infinite-horizon problem into a finite-hori-
zon problem by focusing only on T periods in the
future, deriving the control signal for these T periods,
and adopting the most recent control. In the next
period, the prediction is updated, and this process is
repeated. MPC is not an optimal control method due
to the finite-horizon approximation, yet it works very
well in practise (Doganis et al., 2008). To deal with
parametrical uncertainties in the disturbance, robust



control provides guaranteed performance (Zhou &
Doyle, 1998). The well-known H, control (H infin-
ity) is one of such examples. It minimises the largest
singular value of the transition matrix function,
which in SISO systems equates to the peak value of
the frequency response curve. This minimax strategy
ensures that any frequency component in the input
will not be amplified too much. Finally, if the system
parameters vary over time, adaptive control allows
the control policy to update according to the esti-
mated parameters (Astrom & Wittenmark, 2013).
The difference between adaptive and robust control
is that the policy is dynamic in the former and static
in the latter.

Recent development of control theory can be
seen in the controlling of complex, large scale and
network system; the use of artificial intelligence in
control engineering; and the application of control
theory in areas of physics, biology and economics.

2.7. Data envelopment analysis’?

Data Envelopment Analysis (DEA) is a non-para-
metric frontier analysis methodology mainly used to
assess the relative efficiency of a set of homogeneous
operating units (termed Decision Making Units,
DMUs). DMUs are assumed to consume inputs (i.e.,
resources) to produce outputs (e.g., goods and serv-
ices). The production function that indicates the
amount of outputs that can be produced from a
given input vector is unknown. DEA does not make
any assumption about the functional form of that
dependency. Instead, DEA uses the observed data to
infer the Production Possibility Set (PPS), also called
the DEA technology, which contains all the operat-
ing points that are deemed feasible. This is achieved
on the basis of a few assumptions (like envelopment
of the observations, free disposability of inputs and
outputs, convexity and returns to scale) and invok-
ing the Minimum Extrapolation Principle. The
resulting PPS contains all linear combinations of the
observations along with all the operating points that
they dominate. This leads to Linear Programming
models whose main decision variables are the inten-
sity variables used to compute the target operating
point (projection). This target operating point must
dominate the DMU being projected and represents
maximal improvements (i.e., input reduction and
output increase) with respect to the latter. Hence,
the computed target belongs to the efficient frontier
(which is the non-dominated subset of the PPS) and
the efficiency score is a decreasing function of the
distance from the DMU to the computed efficient
target. There are different ways of measuring this
distance, which, ultimately, depends on the potential
input and output improvements (i.e., slacks)
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computed by DEA. Before diving into the DEA
methodology note that, as Cook et al. (2014) point
out, although DEA has a strong link with produc-
tion theory in economics, it is often used to bench-
mark the performance of manufacturing and service
operations. In such benchmarking exercises, the effi-
cient DMUs, as defined by DEA, may not necessar-
ily form a “production frontier”, but rather a “best-
practice frontier”. Thus, the purpose of the perform-
ance measurement exercise affects the classification
of the different variables considered into inputs or
outputs.

2.7.1. Efficiency assessment and target setting
DEA models

The seminal DEA models by Charnes et al. (1978)
and Banker et al. (1984) were oriented (i.e., gave
priority to reducing the inputs or to increasing the
outputs) and looked for a uniform (i.e., radial)
improvement in all the input or output dimensions.
The projection can also be estimated using a given
direction, giving rise to Directional Distance
Function (DDF) DEA models (Wang et al., 2019a).
However, most DEA approaches are non-radial and
non-oriented (e.g., Fukuyama & Weber, 2009).
Actually, because DEA aims at simultaneously
improving inputs and outputs, it is inherently a
multiobjective optimisation approach. Hence, taking
into account the preferences of a decision maker,
any Pareto optimal point can be selected as efficient
target (Soltani & Lozano, 2020).

Most DEA models compute targets that can be
sometimes far away from the observed DMU. This
increases the difficult and effort required to achieve
the target. Hence, DEA models that compute closest
efficient targets have been developed (Aparicio
et al., 2007). An alternative is to compute stepwise
efficiency improvement approaches that may even-
tually achieve ambitious efficient targets but after
several gradual improvement steps (Lozano & Villa,
2005).

DEA models for handling non-discretionary vari-
ables (Banker & Morey, 1986), undesirable outputs
(Kuosmanen, 2005), integer variables (Kazemi Matin
& Kuosmanen, 2009), ratio variables (Olesen et al,,
2022), negative data (Sharp et al., 2007), and fuzzy
data (Arana-Jiménez et al., 2022) have also been
proposed. Each of the above “complications”
requires specific adaptations of the methodology
and being capable of taking them into account is a
proof of the power and flexibility of DEA.

The DEA models based on the PPS concept are
labelled as envelopment formulations. There are also
dual multiplier formulations in which the decision
variables are not the intensity variables used to com-
pute the target inputs and outputs but the
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corresponding input and output shadow prices.
Multiplier formulations let each DMU choose these
input and output weights so that its efficiency is
maximised. This freedom often leads to DMUs
choosing idiosyncratic or unreasonable weights.
Imposing Assurance Regions (AR) and other types
of weight restrictions has been proposed (Allen
et al., 1997) as well as measuring the efficiency of
the DMUs as the average of the cross-efficiency
scores computed with the input and output weights
chosen by the different DMUs (Doyle & Green,
1994; Chen & Wang, 2022). Another alternative that
has been proposed is using a Common Set of
Weights (CSW) instead of letting each DMU choose
its own (Salahi et al., 2021).

In addition to computing efficiency scores, DEA
can be used to rank the DMU. The problem here is
that in conventional DEA all the DMUs labelled as
efficient are tied and cannot be ranked. In addition
to the CSW or cross-efficiency approaches men-
tioned above, there are other DEA-based full rank-
ing methods, like the super-efficiency approach
(Tone, 2002). Alternatively, instead of fully ranking
the DMUs, ranking intervals and dominance rela-
tions can be established (Salo & Punkka, 2011).

2.7.2. Dynamic and network DEA models
DEA views DMUs as input-output black boxes.
However, it is often the case that DMUs have an
internal structure with different stages or processes
(sometimes labelled subDMUs). Many different
Network DEA (NDEA) models have been developed
to address these scenarios (Tone & Tsutsui,, 2009).
The key features of NDEA models are that each pro-
cess has its own technology and that, except in the
case of parallel processes, there exist intermediate prod-
uct flows between the processes. Some NDEA models
can compute an efficiency score for each process and
relate the overall efficiency score to the scores of the
individual processes (Kao, 2016). It must be noted that
the NDEA configuration most studied and most com-
monly used in practice involves two stages in series
(see, e.g., Cook, et al., 2010; Halkos et al., 2014).
Multi-period and dynamic scenarios can be mod-
elled in a manner similar to NDEA simply by con-
sidering each time period as a subDMU. The
difference between multi-period approaches (Kao &
Liu, 2014) and Dynamic DEA (Tone & Tsutsui,
2010) is that in the latter there are flows between
consecutive periods (i.e., carryovers). Dynamic
NDEA (DNDEA) models, in which there are carry-
overs between periods as well as intermediate prod-
uct flows between the processes, have also been
developed (Tone & Tsutsui, 2014).

2.7.3. Centralised DEA models

DEA generally projects each DMU separately onto
the efficient frontier. There are situations in which
the DMUs belong to the same organisation and
there is a Central Decision Maker (CDM) that is
interested in the overall system performance and
therefore in projecting all the DMUs simultaneously.
This type of Centralised DEA (CDEA) models are
commonly used for resource allocation (Lozano &
Villa, 2004) and for centralised production planning
(Lozano, 2014). Also, an approach to measure the
centralised efficiency of the individual DMUs in
CDEA scenarios has been proposed (Davtalab-
Olyaie et al., 2023).

DEA models for allocating a fixed input or com-
mon revenue (Li et al.,, 2021) or for fixed-sum-out-
puts (FSO; Zhu et al.,, 2017) also share with CDEA
the need to project all the DMUs simultaneously to
take into account their interrelationships. These
models, same as CDEA, can use an envelopment or
a multiplier formulation. While the key feature of
the former is that all DMUs are projected simultan-
eously, that of the latter is that, same as in CSW, a
single set of input and output weights is considered.

2.7.4. DEA and total factor productivity (TFP)
growth

DEA can be used to compute the Malmquist
Productivity Index (MPI) by projecting the DMU in
two consecutive periods onto the efficient frontier of
each period and computing the geometric mean of the
change in the corresponding radial efficiency scores
between the two periods (Fare et al, 1992). The
Malmquist-Luenberger Productivity Indicator (MLPI)
is analogous but it employs the arithmetic average and
an additive decomposition of DDF efficiency scores
(Chambers et al., 1996). In both cases, the TFP growth
of each DMU can be decomposed into an efficiency
change and a technological change component. Other
alternative decompositions of the MPI and MLPI have
been developed (Epure et al., 2011).

Other approaches compute a global MPI (Pastor
& Lovell, 2005; Kao & Liu, 2014). These have the
circularity property, missing in the adjacent-periods
MPI. Changes in prices can be also incorporated to
compute and decompose a global cost MPI (Tohidi
et al., 2012). MPI variants that take into account the
projections of all the observations or of different
groups of observations as well as approaches to
compute and decompose the aggregate productivity
growth index of a whole industry and input-specific
productivity growth indexes have also been pro-
posed (Aparicio et al., 2017; Kapelko et al., 2015).



2.7.5. Metafrontier analysis

In scenarios where the DMUs are heterogeneous and
belong to different groups, not necessarily disjoint,
the DMUs can be projected onto its group frontier as
well as onto the metafrontier that results from envel-
oping all the group frontiers. Measuring the differ-
ence between the corresponding efficiency scores can
be used to estimate the distance between both fron-
tiers and hence the corresponding technology gap of
each group. Although the group technologies are
generally convex, the metatechnology is generally
non-convex (Afsharian & Podinovski, 2018).

The metafrontier approach can be wused in
DNDEA (See et al., 2021) and CDEA (Gan & Lee,
2022) contexts. Also, using metafrontier concepts
with each group of observations corresponding to a
different time period, meta-MPI and meta-MLPI
can be computed and appropriately decomposed
(Portela & Thanassoulis, 2010).

2.7.6. Other DEA approaches

There are other interesting DEA approaches that
have not been covered above, like congestion (Ren
et al., 2021), window analysis (Peykani et al., 2021),
etc. Moreover, the field, although mature, is still
expanding, with promising new developments, like
Efficiency Analysis Trees (EAT) (Esteve et al., 2020),
Support Vector Frontiers (SVF) (Valero-Carreras
et al., 2022), or big data DEA (Dellnitz, 2022). This is
not to mention the large and increasing number of
DEA applications (see §3.6, §3.7, and $3.19). For fur-
ther learning on DEA the interested reader is referred
to existing textbooks (Cooper et al., 2007), handbooks
(Cooper, et al, 2011; Cook & Zhu, 2014; Zhu, 2015)
and review papers (Kao, 2014; Contreras, 2020;
Peykani, et al., 2020).

2.8. Decision analysis™

The term decision analysis was introduced by
Howard (1966) as “a logical procedure for the bal-
ancing of the factors that influence a decision”,
pointing out that “the procedure incorporates
uncertainties, values and preferences in a basic
structure that models the decision”. According to
Keeney (1982) decision analysis is a “formalisation
of common sense for decision problems which are
too complex for informal use of common sense”
and, in more technical form “a philosophy, articu-
lated by a set of logical axioms, and a methodology
and collection of procedures, based upon those axi-
oms, for responsibly analysing the complexities
inherent in decision problems”. In a slighty differ-
ent perspective, Roy (1993) proposed the concept
of decision aiding as “the activity of one who, in
ways we call scientific, helps to obtain elements of
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answers to questions asked by actors involved in a
decision-making process, elements helping to clarify
this decision in order to provide actors with the
most favourable conditions possible for that type of
behaviour which will increase coherence between
the evolution of the process, on the one hand, and
the goals and/or systems of values within which
these actors operate on the other”.

For Howard (1966) “the essence of the procedure
is the construction of a structural model of the deci-
sion in a form suitable for computation and manip-
ulation”. For Keeney (1982) “the foundations of
decision analysis are provided by a set of axioms

. which provide principles for analysing decision
problems”. Moreover, “the philosophical implica-
tions of the axioms are that all decisions require
subjective judgements and that the likelihoods of
various consequences and their desirability should
be separately estimated using probabilities and util-
ities, respectively”. In this perspective, the key com-
ponents of a decision problem are the set of
alternatives to be taken into consideration; the set of
consequences describing outcomes of alternatives,
possibly in terms of a plurality of attributes or crite-
ria; if the consequences are uncertain, the beliefs
about their possible realisations expressed in terms
of a probability distribution; the preferences of the
decision maker. The objective of the decision ana-
lysis is to construct a value function representing
the preferences of the decision maker by assigning
each alternative an evaluation of its desirability. In
case of uncertainty of the consequences, the value
function is expressed in terms of expected value
with respect to the probability of the consequences.
The basic methodology to induce the value function
is based on the pioneering work of von Neumann
and Morgenstern (1944) that showed that a small
set of axioms imply that the “utility” of an outcome
x is defined as the probability of getting the most-
preferred outcome and otherwise the least-preferred
outcome that would be indifferent to receiving out-
come x with certainty. For Roy (1993), the decision
aiding procedure should be developed in a construct-
ive approach in which “concepts, models, procedures
and results are here seen as suitable tools for devel-
oping convictions and allowing them to evolve, as
well as for communicating with reference to the bases
of these convictions”. In this perspective the “object
is not to know or to approximate the best possible
decision but to develop a corpus of conditions and
means on which we can base our decisions in favour
of what we believe to be most suitable”.

Decision Analysis is mainly based on concepts
and tools related to the subjective probability of
Ramsey (1931) and de Finetti (1937), the theory of
expected utility of von Neumann and Morgenstern
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(1944) and subjective expected utility of Savage
(1954), the Multiple Attribute Utility Theory
(MAUT) of Keeney and Raiffa (1976) and the
psychology of judgement and decision-making of
Tversky and Kahneman (1974). The general idea is
to try to evaluate each alternative by assigning a
value based on the utilities of the outcomes obtained
in each state of the nature multiplied by their proba-
bilities. Delayed consequences may be discounted
according to the time at which they are obtained.
Each outcome may be evaluated by considering value
trade-offs among multiple attributes. Decision ana-
lysis techniques include Utility Function Elicitation
techniques, Probability Elicitation protocols, Net
Present Value, Decision Trees, Influence Diagrams,
and Monte Carlo simulation-based decision analysis
(Clemen, 1996); Value-Focused Thinking (Keeney,
1996a); Portfolio Decision Analysis (Salo et al,, 2011),
Bayesian Networks (Pearl, 1988), and multi-stage
decision optimization techniques such as dynamic
rogramming and reinforcement learning.
Considering the distinction between normative,
descriptive and prescriptive approaches (Bell et al.,
1988), the general perspective of the decision ana-
lysis is prescriptive rather than normative or
descriptive (Edwards et al., 2007). Descriptive ana-
lysis concerns the representation and prediction of
observed decisions and normative analysis concerns
the decisions that ideally coherent and rational
individuals should take. Instead, prescriptive ana-
lysis tries to propose methods and techniques that
will help real people make better decisions with
lower regret and greater coherence of values and
behaviors. In this context, decision analysis takes a
prescriptive approach that, focusing on the few
basic axioms underlying subjective expected utility,
adopts “pragmatically” the aspiration to the ration-
ality of the normative approach, trying to correct
all the heuristics and biases discovered and investi-
gated by descriptive analysis (Tversky & Kahneman,
1974). The decision aiding approach (Roy, 1993)
takes a different perspective that, criticising the
idea that there is an objectively optimal decision
to be discovered or at least approximated, aims to
provide a recommendation consisting in a set of
convictions constructed in the course of a decision
process based on multiple interactions between
the analyst and the decision maker. The decision
aiding approach leads directly to a multi-criteria
perspective (Belton & Stewart, 2002; Greco et al.,
2016) taking explicitly into consideration the mul-
tiple attributes or criteria (e.g., related to finance,
resources, time, and environmental impacts) to be
considered in the decision problem at hand. This
avoids the risk of a fictitious, not reasoned and
arbitrary conversion of evaluations on different

criteria to a common unit, facilitating the discus-
sion on the respective role of each criterion (Roy,
2005, 1996). To compare alternatives in a multi-
criteria decision procedure four main approaches
can be adopted:

e aggregating criteria assigning a single value to
each alternative: this is the case of above men-
tioned MAUT, as well as of some of the most
well known multicriteria methods such as
SMART (Edwards & Barron, 1994), and UTA
(Jacquet-Lagreze & Siskos, 1982); a specific men-
tion deserves in this context the AHP approach
(Saaty, 1977), that is probably the most adopted
(although controversial; see, e.g., Dyer, 1990) mul-
ticriteria method. It is based on the comparison
of “importance” of criteria and of evaluation of
alternatives with respect to considered criteria by
means of a nine point qualitative scale; another
specific class in this family are the distance-based
methods which, following the main principle of
TOPSIS (Hwang & Yoon, 1981), the first and
most famous of these methods, evaluate each
alternative on the basis of their distance from the
positive ideal solution and the negative ideal solu-
tion (the fictitious alternatives that have the best
and the worst evaluation on each criterion,
respectively); two other well-known methods in
this class are VIKOR (Opricovic & Tzeng, 2004)
and TODIM (Gomes & Lima, 1991).

e aggregating criteria by means of one or more
synthesising preference relations: the most well
known methods based on this approach are the
ELECTRE methods (Figueira et al., 2013, 2016),
that build a crisp or valued preference relation
called outranking for which an alternative a is at
least as good as another alternative b if a a is not
worse than b for a majority of important criteria
(concordance) and there is no criterion for which
the advantage of b over a is so large that it pre-
vents the possibility to declare a at least as good
as b (non-discordance);

e aggregating criteria through “if ..., then ...” deci-
sion rules (Greco et al., 2001): the alternatives
obtain an overall evaluation by matching decision
rules with a syntax “if the alternative is at least at
level [; on criterion gj and ... at least at level [;
on criterion g, then the alternative is globally at
least at level I,y ”, such as “if the student has an
evaluation at least good on mathematics and at
least medium on literature, then the student is glo-
bally at least medium”; these rules are induced
from a set of examples of decisions supplied by the
decision maker. The advantage of this approach is
its explainability due to the fact that the decision
rules are expressed in natural language;



e aggregating criteria through an interactive multi-
objective optimisation (Branke et al, 2008): with
this approach one can handle decision problems
in which a set of objectives have to be optimised
under given constraints (see Sawaragi et al., 1985;
Steuer, 1985; Miettinen, 1999; Ehrgott, 2005). In
this context, the concept of Pareto efficient solu-
tion is fundamental: it is a solution for which one
cannot improve one objective without deteriorat-
ing some others. Several algorithms have been
proposed for Pareto set generation and among
them let us remember the weighted sum method,
the lexicographic method, the achievement secu-
larising function, the epsilon constraint method
(for surveys see Marler & Arora, 2004, or
Chapters 18 and 19 in Greco et al., 2016). Dealing
with a multiobjective optimisation problem, it is
important to discover the set of Pareto efficient sol-
utions most preferred by the decision maker.
Recently, beyond many exact methods, some heur-
istic methods have been proposed for these prob-
lems, such as some hybridisation between
evolutionary multiobjective optimisation algorithms
aiming to approximate the whole set of Pareto effi-
cient solutions (Deb, 2001) and some multicriteria
preference elicitation methods to guide the opti-
misation algorithm toward the most interesting set
of Pareto efficient solutions (see, e.g., Phelps &
Koksalan, 2003; Branke et al., 2016).

2.9. Dynamic programming’’

Dynamic programming (DP) was the brainchild of
Richard Bellman (Bellman, 1953), who wrote “DP is a
mathematical theory devoted to the study of multistage
processes”. Indeed, in the seven decades since his sem-
inal work, the uses of DP have grown substantially
thanks to its algorithmic nature in solving sequential
decision-making problems, where the preceding actions
and their realisation (in terms of consequences) will
impact on the course of futures. Examples of such
problems include multiperiod inventory management,
or asset allocation (portfolio management) over a given
time horizon. The central idea of DP is to break down
the original multistage problem into a number of tail
sub-problems by stages. For each stage, the tail sub-
problem is a truncated version of the original problem
starting from this stage. These tail sub-problems are
then recursively solved one by one from the last stage
backwards to the first one, at which point the original
problem is solved. The solution of such a procedure is
guaranteed to be optimal when the problem concerned
satisfies a sufficient condition, ie., the Principle of
Optimality (Bellman, 1953; Puterman, 2014), which
states “an optimal policy has the property that whatever
the initial state and initial decision are, the remaining
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decisions must constitute an optimal policy with regard
to the state resulting from the first decision” (Bellman,
1953). Throughout this section, we focus our attention
on discrete time systems. For continuous time dynamic
systems, the readers are referred to the Hamilton-
Jacobi-Bellman equations in optimal control (see, for
example, Bertsekas, 2012a).

In particular, for a finite time horizon problem, the
decisions are made over a number of stages or decision
epochs, denoted by t =0,...,T — 1. At each decision
epoch, after observing the current system state x; (com-
prised of one or more information variables that char-
acterise how the system progresses), an action a; is
taken that leads to an immediate reward (cost) of
re(x, ar, wy), where w; is the random disturbance at
time t with a known probability distribution. The sys-
tem then evolves to state x;,; at the next decision
epoch, following the tranmsition function x4 =
fe(x,ap,we)  with  the  transition  probability
Pe(Xes1|xe, a, wy). After the last decision is made at
epoch T - 1, the system evolves to xr in the terminal
stage with the salvage value rr(x7). The objective of
the problem is to find a policy m, or a sequence of
actions (ag, ai, ..., ar—1) prescribed by a; = n(x;), that
maximises (minimises) the total expected reward (cost)
across the entire time horizon. Note that for the
expected total reward optimisation criterion (or additive
reward functions) the Principle of Optimality is always
satisfied (Puterman, 2014). To avoid the technical
subtleties, in what follows we focus on discrete state
space S and action space A, and assume the random
disturbance at an epoch is independent of those in the
previous epochs. Define the dimension of the state
space S as the number of the information variables in
the state. The mathematically inclined readers are
referred to Puterman (2014) for discussions on more
general situations. Before proceeding, it is worth men-
tioning that when the random disturbance w; takes
only a single value, the problem reduces to a determin-
istic problem. Perhaps the two most well known deter-
ministic sequential decision-making problems solvable
by DP are the Shortest Path problem (Dreyfus, 1969)
and the Knapsack problem (Kellerer et al., 2004).

Under the Principle of Optimality, the above-
mentioned problem can be solved by backward
induction. Denote by V,(x;) the value function, or
the optimal expected value-to-go from state x, at
epoch t until the end of the time horizon. The value
function (for maximisation problems) satisfies the
following optimality —equations (or Bellman
Equations, see e.g., Puterman, 2014),

Vi(xe) = TSXE[TI("““" we) + V,H(ﬁ(xt,a,,wt))],‘v’x, W

€S5t=0,..,T—1,
with the boundary condition Vr(x7) = rr(xr). By
recursively solving the optimality equations from the
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last stage backwards to time zero, we obtain the opti-
mal value functions and, at the same time, an optimal
policy. For this method to work, however, at each
stage one has to solve the value function for all states
before proceeding to the previous stage. For problems
with high dimensional state variables, the solution via
this method is simply not practical due to the prohibi-
tive amount of computational time and memory
required. The recent development on DP research has
been essentially trying to overcome this so called curse
of dimensionality (Powell, 2011), which is discussed in
the last paragraph of this section.

Many sequential decision-making problems in
practice do not have a natural termination stage,
leading to a rich body of literature studying infinite
horizon problems, for which the total expected
reward becomes unbounded as the time horizon
tends to infinity. To this end, two alternative criteria
have been widely used in the literature (Puterman,
2014; Bertsekas, 2012a). The first one applies a dis-
count factor between 0 and 1, say f, to the future
reward, which can be understood as the depreci-
ation of monetary values over time. The total dis-
counted reward is well defined as it is bounded by
the sum of a decreasing infinite geometric sequence.
In situations where discounting is not appropriate, a
meaningful criterion is to consider the long run
average reward, or the reward rate per stage.
Assuming a stationary system (in which the transi-
tion function/probability, the reward function, and
random disturbance do not change over time), the
Bellman Equations for the total discounted reward
criterion take the following form:

V(x) = mez}i(E[r(x, a,w) + BV(f(x,a,w))],Vx € S,
)

where the value function V(x) is the optimal dis-
counted value-to-go from state x over an infinite
time horizon. Note that there are no more boundary
conditions. There is no more dependency on time
either under the assumption of stationary systems,
which is often satisfied in practice (Bertsekas, 2012a).
When such an assumption is not satisfied, a periodic
or cyclic DP can be developed (Li et al., 2022a). For
brevity we do not include the Bellman equations for
the long run average reward criterion but direct the
readers to Bertsekas (2012a) and Puterman (2014).
There are mainly three solution algorithms
(Tijms, 1994; Puterman, 2014) for infinite horizon
problems. The most widely used and understood
algorithm is value iteration, or successive approxi-
mations as it was called in the early days. Starting
from an arbitrary bounded value function vector
(e.g, Vo(x) =0,Vx€S), this method iteratively
updates value functions via the recursive equation
below until the successive gaps between iterations

k+1 and k are within a predefined threshold.
Vi (x) = IEG%XE[r(x, a,w) + BVi(f(x, a, w))],

Vx € S.

©)

An alternative algorithm is policy iteration, which
starts with an arbitrary policy and then iteratively
improves it until no further improvements are pos-
sible. Each iteration includes two steps: firstly the
expected value-to-go under the current policy is
evaluated via a system of equations similar to (2)
but for the actions prescribed by the policy; after
that a policy improvement step is undertaken to
find an improved action for each state that leads to
a better value-to-go (Puterman, 2014). In the last
algorithm, the system of Bellman Equation (2) are
reformulated into a vary large scale linear program,
which has one decision variable for each state and
one constraint for each state-action pair. Regardless
of the solution algorithms, just as in finite horizon
problems, the curse of dimensionality remains the
biggest hurdle for the implementation of DP.

Various approximation methods have been pro-
posed to improve the scalability of DP, leading to an
important and thriving research field called
Approximate  Dynamic  Programming (ADP).
According to Bertsekas (2012a), most of the ADP
approaches fall into either the value space or policy
space. We concentrate on the approaches in the value
space (see also §2.21) while we direct readers to
Bertsekas (2012a) for the policy space counterparts.
The basic idea of the value space approaches is to
develop efficient methods to approximate the value
functions or the expected value-to-go for a given pol-
icy. The most studied methods approximate the value
functions via a linear or nonlinear combination of a
set of handcrafted feature vectors (functions of the
state) weighted by a set of parameters, which are cali-
brated by a suitable method (Bertsekas, 2012b; Ding
et al., 2008). Feature vectors are not always available,
in which case Neural Networks have been used to
construct feature vectors automatically (Powell, 2011;
Bertsekas, 2012a; He et al., 2018). Decomposition is
also a popular method, which decomposes the ori-
ginal problem into a number of sub-problems each
of which has a much smaller state space and can be
solved efficiently by the exact algorithms mentioned
above. The assembly of the value functions of these
sub-problems provides an approximation to the ori-
ginal value functions (Kunnumkal & Topaloglu,
2010; Li & Pang, 2017). A distinct decomposition
approach is Whittle’s Restless Bandit framework
(Whittle, 1988; Glazebrook et al., 2014; Li et al,
2020), which decomposes the original problem via
Lagrangian relaxation, calculates a state dependent
index value for each sub-problem and uses these
index values directly to derive policies for the original



problem. Another method in the value space approxi-
mates the value functions of a specific policy via
Monte Carlo simulation (Chang et al, 2007
Bertsekas, 2012b), which are then used to find an
improved policy. An alternative method is called Q-
Learning (Sutton & Barto, 2018), which approximates
the Q-factor for each state-action pair. The Q-factor
for (x, a) is the expected value-to-go by taking action
a at state x and then following either a given policy
or the optimal policy thereafter. Due to the large
number of combinations of state-action pairs, Q-
Learning is more suitable for problems with a small
state space (Bertsekas, 2012b). For an in-depth
account on ADP we refer to two seminal books of
Powell (2011) and Bertsekas (2012b).

2.10. Forecasting'®

Forecasting is concerned with the prediction of
unknown/future values of one or multiple variables
of interest. If the values of these variables are col-
lected over time, especially/in particular at regular
intervals, the corresponding problem is referred to as
time-series forecasting. The outputs of forecasting
models include point estimates as well as expressions
of uncertainty of such estimates in terms of probabil-
istic forecasts, prediction intervals, or path forecasts.
Forecasting is applied in a wide range of applications.
In this subsection, we offer an overview of established
forecasting approaches that are useful in social set-
tings (Makridakis et al., 2020a), such as forecasts pro-
duced to support decision making in operations and
supply chain management ($§3.12; $§3.24, finance
(§3.9), energy (§3.19), and other domains.
Exponential smoothing is one of the most popular
families of models for univariate time-series forecast-
ing. The underlying principle of exponential smooth-
ing models is that, at every step, the forecast is
updated such that the most recent information is
taken into account by exponentially discounting
information from previous periods. The estimates for
the exponential smoothing parameters are based on
in-sample fits. The first and simplest exponential
smoothing method, simple (or single) exponential
smoothing, was developed by Brown (1956). This
method was able to handle level-only data (no trend
nor seasonal patterns). Soon after, it was extended to
handle trended and seasonal data (Holt, 2004;
Winters, 1960). Forty years later, Hyndman et al.
(2002) introduced a fully fledged family of exponen-
tial smoothing models that are represented in a state-
space framework. Usually, three states are considered:
level, trend, and seasonality. The way that these three
states interact to produce the final forecast deter-
mines the types of trend and seasonality (such as
additive or multiplicative). Exponential smoothing
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models are fast to compute and perform well in a
wide range of data (Makridakis et al., 2020b), render-
ing them ideal benchmarks for forecasting applica-
tions. Detailed reviews of exponential smoothing
models are offered by Gardner (2006) and Hyndman
et al. (2008).

Autoregressive integrated moving average (ARIMA)
is another very popular family of univariate forecast-
ing models (for a seminal work on ARIMA, see Box
& Jenkins, 1976). In ARIMA, the data are first ren-
dered stationary through transformations and differ-
encing. The stationary data are then fitted in linear
regression models (see also the next paragraph on
regression models) in which the predictors are either
past values of the data (autoregressive terms) or past
errors (moving average terms). ARIMA models are
theoretically appealing as they can depict a wide
range of data generation processes. While manually
identifying an optimal ARIMA model can be some-
times challenging, nowadays automated approaches
exist (see, for example, Hyndman & Khandakar,
2008; Franses et al., 2014)

When the variable of interest is known to be
affected by other factors (also called “exogenous vari-
ables”), then causal modelling can be applied. In its
simplest form, causal models can be linear or nonlin-
ear regression models that regress the values of the
dependent variable on the values of the independent
variable(s). Apart from the ordinary least squares
regression models, other types of regression models
exist, such as the ordinal, logistic, Poisson, negative
binomial regression models as well as the Generalised
Linear Models (GLMs). The dependent variable (vari-
able of interest) is usually continuous, however spe-
cific regression models exist for ordinal or binary
dependent variables, such as the ordinal logistic
regression model.” But of course there are also
regression approaches for count data, like Poisson
regression or negative binomial regression (Hilbe’s
textbook of the same name is my go-to reference on
this), or more generally Generalized Linear Models
(GLMs). I would assume these to be more relevant to
OR than binary or ordinal logistic regressions.

A common rule for using regression models for
forecasting purposes is that the values of the inde-
pendent variables are either known or can be pre-
dicted, as is very common in energy forecasting; see
Weron (2014) and $3.19. Transformations of the
dependent or independent variables are sometimes
necessary so that assumptions regarding normality
of errors and constancy of the error variance are
satisfied (Lago et al., 2021). Another common issue
in regression models is that of multicollinearity
between independent variables. Linear regression
models can also be used to produce time-series fore-
casts when no exogenous variables are available. In
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these cases, we can construct predictors for trend
and seasonality and use these predictors as inde-
pendent variables to model the time-series patterns.
Finally, it is also worth mentioning that ARIMA
models can be extended to ARIMAX models that
can include the effects of exogenous variables, just
like autoregressive (AR) models can be extended
to ARX.

Instead of forecasting each time series separately,
several approaches exist in order to forecast time
series data as a collection. Multivariate models (also
known as structural models) are designed to model
cross-sectional data, producing forecasts for many
variables of interest at the same time. Such forecasts
take into account interactions between all series. A
common example is the vector autoregressive
(VAR) models (Sims, 1980; Hasbrouck, 1995).
Another very popular cross-sectional approach is
hierarchical ~forecasting (Athanasopoulos et al,
2020). Hierarchical forecasting deals with time-series
data that are naturally arranged in hierarchical
structures (for example, product or geographical
hierarchies). Forecasts for each node of the hier-
archy are first produced independently using stand-
ard univariate forecasting approaches (such as
exponential smoothing or ARIMA); then, forecasts
across the hierarchy are reconciled to achieve coher-
ency (Wickramasuriya et al., 2019; Hollyman et al,
2021). Hierarchical forecasts offer better accuracy
and are directly relevant for decision makers at mul-
tiple levels of an organisation. A different form of
forecasting using multiple series, which is widely
applied in machine-learning methods, is called
cross-learning. This approach implies learning (usu-
ally through features; Montero-Manso et al., 2020;
Wang et al., 2022c) from other series to be able to
predict the variable of interest. Compared to other
cross-sectional approaches, cross-learning requires
access to a set of “reference” data which, though, do
not have to be concurrent to the target data.

Given the plethora of available modelling options,
we need ways to help us decide on the best approach
for the target data. Two popular approaches for model
selection are information criteria and cross-validation.
Information criteria select the best model amongst a
pool of candidate models based on how well the in-
sample forecasts fit the actual data (model fit), penal-
ising at the same time for model complexity (Occam’s
razor). Information criteria are fast to compute and
widely applied, mostly due to their implementations
in open-source forecasting packages (Hyndman &
Khandakar, 2008). Cross-validation is based on the
comparison of the out-of-sample performance
between different models. To achieve this, the avail-
able data are split into “training” and “validation”
data. The validation follows a rolling-origin process,

where the forecasts of the candidate models are com-
pared for multiple forecast origins (Tashman, 2000;
Bergmeir & Benitez, 2012). A more recent approach
to forecast selection is based on the concept of repre-
sentativeness (Petropoulos & Siemsen, 2022). Out-of-
sample forecasts with higher representativeness to the
past data patterns are preferred to ones with lower
representativeness. Regardless of how one selects
between forecasts and models, the values of the selec-
tion criteria can also be used to combine forecasts
(Kolassa, 2011). In fact, multiple studies have shown
that combining forecasts, using equal or unequal
weights, can significantly boost the forecasting per-
formance of individual models (Bates & Granger,
1969; Nowotarski et al., 2016; Wang et al, 2022d).
Claeskens et al. (2016) offer a possible explanation on
why the performance of forecast combinations is bet-
ter than that of the individual forecasts.

Apart from statistical, algorithmic and computa-
tional approaches, the forecasting process