
A Genetic Algorithm for
Coverage Problems

Colin Johnson
Computing Laboratory, University of Kent

Canterbury, Kent, CT2 7NF, England
C.G.Johnson@kent.ac.uk

ABSTRACT
This paper describes a genetic algorithm approach to cover-
age problems, that is, problems where the aim is to discover
an example for each class in a given classification scheme.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Genetic Algorithms,Classification

1. DEFINING COVERAGE PROBLEMS
Classification is a well-studied problem where a set of ob-

jects is placed into a number of categories according to some
criteria or inductive scheme. This paper describes the “op-
posite” problem, which we term coverage. That is, given
a classification scheme (i.e. a function that places objects
from a set into a set of classes), find example objects for
each of the classes. Clearly for a dataset that is stored in
a database, this is trivial; however, for problems where the
examples need to be calculated or searched for, the problem
becomes harder.

The coverage problem is a generalisation from many spe-
cific problems in computing and its applications. For exam-
ple, computing problems such as test suite generation, ran-
domized compilation, specialisation in multi-agent systems
and information retrieval all contain problems that can be
characterised as coverage problems. Furthermore, a num-
ber of applied problems such as aspects of the protein fold-
ing problem in bioinformatics, and data-driven approaches
to computational mathematics also contain such coverage
problems.

Coverage problems have some similarity to multimodal
optimization problems. However, in coverage problems the
interest is in finding any example for each predefined class,
rather than a “best” example. Perhaps the closest similarity
is with the work on computational creativity, in particular
the important problem of recognizing and searching for nov-
elty.

Copyright is held by the author/owner(s).
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
ACM 978-1-59593-697-4/07/0007.

INPUT: Description of objects, classes,
and the classification function

Generate random population P
Assign fitness of 1 to each member of P
Generate list E of exampled classes, initially empty
LOOP (until timeout or all classes covered)

Genetic Algorithm step on P producing child population C:
Roulette-Wheel Selection,

based on pre-assigned fitness values
Crossover (uniform, crossover probability=0.9)
Mutation (probability 0.001 per string position)

Evaluate the class of all members of C
Determine which members of C represent unexampled classes,

by reference to the list E
If (all members of C are exampled)

Reinitialise C
Assign fitness of 1 to each member of C

else
Report the example-class pair for each

unexampled member of C
Add the newly-exampled classes to E
Set fitnesses in P to zero
For each parent in P:

Add 1 to fitness for each unexampled child
For each child in C:

Add together the fitnesses of its two parents
Copy C into P (members and fitness values)

END LOOP

Figure 1: Pseudocode description of the coverage
genetic algorithm

2. A GENETIC ALGORITHM FOR COVER-
AGE PROBLEMS

We have devised a genetic algorithm for coverage prob-
lems. Standard mutation and recombination operators are
used; however, fitness is calculated using a novel method of
dynamic fitness assignment called fitness passback that en-
courages the continued production of examples that fit into
classes for which an example has not yet been found.

The passback procedure works as follows. The class of
each object in the current population is determined. These
are then identified as exampled or unexampled based on
whether an example for that class has already been discov-
ered by a previous generation. A fitness value is then gener-
ated in the parent population, by tallying up the number of
unexampled children that that parent has produced. These
values are then passed onto the children and used as the
fitness function for the current generation. This algorithm
is detailed in figure 1.


