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Abstract

In this thesis, we propose three new computational methods to price financial derivatives
and construct hedging strategies under several underlying asset price dynamics. First, we
introduce a method to price and hedge European basket options under two displaced pro-
cesses with jumps, which are capable of accommodating negative skewness and excess kur-
tosis. The new approach uses Hermite polynomial expansion of a standard normal variable
to match the first m moments of the standardised basket return. It consists of Black-and-
Scholes type formulae and its improvement on the existing methods is twofold: we consider
more realistic asset price dynamics and we allow more flexible specifications for the basket.

Additionally, we propose two methods for pricing and hedging American options: one
quasi-analytic and one numerical method. The first approach aims to increase the accuracy
of almost any existing quasi-analytic method for American options under the geometric
Brownian motion dynamics. The new method relies on an approximation of the optimal
exercise price near the beginning of the contract combined with existing pricing approaches.
An extensive scenario-based study shows that the new method improves the existing pricing
and hedging formulae, for various maturity ranges, and, in particular, for long-maturity
options where the existing methods perform worst.

The second method combines Monte Carlo simulation with weighted least squares re-
gressions to estimate the continuation value of American-style derivatives, in a similar
framework to the one of the least squares Monte Carlo method proposed by Longstaff and
Schwartz. We justify the introduction of the weighted least squares regressions by numer-
ically and theoretically demonstrating that the regression estimators in the least squares
Monte Carlo method are not the best linear unbiased estimators (BLUE) since there is evi-
dence of heteroscedasticity in the regression errors. We find that the new method consider-
ably reduces the upward bias in pricing that affects the least squares Monte Carlo algorithm.
Finally, the superiority of our new two approaches for American options are also illustrated
over real financial data by considering S&P 100TM options and LEAPS®, traded from 15
February 2012 to 10 December 2014.
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Chapter 1

Introduction

Financial derivatives are contracts whose price depends upon or derives from one or more
underlying assets. Existence of rudimentary derivatives date back to 2000 BC in Meso-
potamia, where contracts for future delivery of goods were written in cuneiform script on
clay tablets (Weber, 2009). For centuries, derivatives have been exchanged in one-to-one
transactions in over-the-counter markets, but it was only in 1973, with the creation of the
Chicago Board of Options Exchange, (CBOE), that this industry experienced rapid growth.
Nowadays, the list of available contracts in organised markets is diverse and traders can
buy and sell derivatives on many asset classes such as currencies, stock indices, bonds, en-
ergy and commodities, interest rates or even other derivatives. Symmetrically, trading in
the over-the-counter markets is also very active and has flourished to meet investors’ needs,
which are not satisfied by the standard products traded in the exchanges.

In recent years, financial derivatives often made headlines for causing substantial losses
to a number of globally renowned companies and financial institutions. High profile cases
include Procter & Gamble (in 1994), Amaranth Advisors (in 2006), Société Générale (in
2008), Morgan Stanley (in 2008) and JPMorgan Chase (in 2012), all of whom lost billions
through derivatives trading. Additionally, in the United States, the derivatives created from
the subprime mortgages such as asset-backed securities and collateralised debt obligations
played a major role in the subprime mortgage crisis. For example, in 2008, American In-
ternational Group (AIG), a multinational insurance corporation with headquarters in the
United States, faced a credit downgrade for losses in credit default swaps on collateralised
debt obligations. Consequently, AIG was required to post additional collaterals. In order
to fulfil these requirements, the beleaguered company borrowed $85 billion from the Fed-
eral Reserve Bank. However, most of the time derivatives do help companies, banks and
other economic agents in running their businesses. Derivatives are employed to lower cost-
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funding, increase rates of return and manage risks and, consequently, they are traded by
many economic actors (Beder and Marshall, 2011).

One of the most well-known and traded classes of derivatives is options. An option is a
financial contract that gives its holder the right, but not the obligation, to purchase or sell a
prescribed asset (known as the underlying asset) for a prescribed amount (known as exercise
price or strike price, K). There are two main exercise styles: American, if the option can be
exercised any time before or at a prescribed time in the future (known as the expiry date or
maturity date, T ); and, European, if it can be exercised only at the maturity date.

Speculation and hedging are the main two reasons for trading options. Moreover, em-
bedded option features exist in many derivative contracts and this makes options a ‘special’
derivative class. Since the opening of the CBOE, the number of these contracts traded an-
nually in this market has increased 200 times, from 5.6 million to 1,119 million contracts
and CBOE is now the largest option exchange in the world (CBOE Holdings Inc., 2010).
Furthermore, the World Federation of Exchanges, an international federation composed of
54 of the most active options exchanges, reported for 2010 an options market of six hundred
trillion USD and a total of approximately 11 billion traded contracts (World Federation of
Exchange, 2010). Table 1.1 summarises details concerning the option market size for differ-
ent underlying assets, and Table 1.2 presents the option market divided into the three main
geographic regions, the Americas (North America, South America and associated islands),
Asia Pacific (East Asia, South Asia, South-East Asia, Oceania), and EMEA (Europe, the
Middle East and Africa).

In this thesis, we propose three new computational methods to price and hedge two
types of option contracts. In the section to follow, we outline the original contributions and
describe the structure of the thesis.

Table 1.1 Options market sizes: Classification for underlying asset class

Underlying
Volume traded Notional value Volume traded %

Notional value %(No. of contracts) (USD millions) (No. of contracts)
Stock index options 5,019,127,872 124,551,764.71 45.10% 20.31%
Single stock options 3,904,583,092 13,580,748.65 35.09% 2.21%

ETF options 1,242,256,285 2,074,949.93 11.16% 0.34%
STIR options 491,065,415 414,361,194.02 4.41% 67.57%

Commodity options 194,138,505 10,247.08 1.74% 0.00%
LTIR options 156,821,953 55,358,193.88 1.41% 9.03%

Currency options 55,799,674 3,148,247.39 0.50% 0.51%
Others options 64,152,131 149,638.60 0.58% 0.02%

Total 11,127,944,927 613,234,984.25 100.00% 100.00%
Note: Elaboration of the 2010 Annual Report of World Federation of Exchange (2010). In the table, the

acronym ETF stands for exchange-traded fund, STIR for short term interest rate, LTIR for long term
interest rate and “other options” are options on environmental commodities and VIX.
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Table 1.2 Options market sizes: Classification for region of trading

Volume traded Notional value Volume traded % Notional value %
(No. of contracts) (USD millions) (No. of contracts) (USD millions)

Stock index options

Americas 266,701,307 28,942,701.02 5.31% 23.24%
Asia Pacific 4,215,121,087 76,140,263.65 83.98% 61.13%

EMEA 537,305,478 19,468,800.04 10.71% 15.63%

Single stock options

Americas 3,197,186,575 12,421,641.98 81.88% 84.40%
Asia Pacific 106,296,615 679,265.90 2.72% 4.62%

EMEA 601,099,902 1,616,702.07 15.39% 10.98%

ETF options

Americas 1,241,616,618 2,070,376.64 99.95% 99.78%
Asia Pacific 497,949 3,350.51 0.04% 0.16%

EMEA 141,718 1,222.78 0.01% 0.06%

STIR options

Americas 300,001,865 190,923,909.62 61.09% 46.08%
Asia Pacific 42,040 38,565.27 0.01% 0.01%

EMEA 191,021,510 223,398,719.13 38.90% 53.91%

Commodity options

Americas 183,390,620 750.76 94.46% 7.33%
Asia Pacific 93,042 5,602.61 0.05% 54.68%

EMEA 10,654,843 3,893.72 5.49% 38.00%

LTIR options

Americas 86,736,965 41,421,903.10 55.31% 74.83%
Asia Pacific 5,001,474 3,499,149.77 3.19% 6.32%

EMEA 65,083,514 10,437,141.01 41.50% 18.85%

Currency options

Americas 38,232,235 3,057,458.27 68.52% 97.12%
Asia Pacific 6,277,165 6,270.70 11.25% 0.20%

EMEA 11,290,274 84,518.42 20.23% 2.68%

Other options

Americas 62,768,313 147,518.73 97.84% 98.58%
Asia Pacific - 0.00 0.00% 0.00%

EMEA 1,383,818 2,119.87 2.16% 1.42%
Note: Elaboration of the 2010 Annual Report of World Federation of Exchange (2010). In the table, Americas stands

for North America, South America and associated islands, Asia Pacific for the part of the world in or near the
Pacific ocean, EMEA for Europe, the Middle East and Africa.
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1.1 Original contributions and structure of the thesis

This thesis investigates computational methods for pricing option contracts and finding the
corresponding hedging strategy. In particular, the main focus will be on numerical and
quasi-analytic methods to price and hedge European basket options and American options
under several underlying asset price dynamics. The material presented in this thesis repre-
sents the author’s original contribution and covers the following three topics:

1. the pricing and hedging of basket options with an exact moment-matching procedure;

2. an improved quasi-analytic method for pricing and hedging long-dated American op-
tions under the geometric Brownian motion;

3. a simulation-based method that corrects the least squares Monte Carlo valuation method
developed by Longstaff and Schwartz (2001) for heteroscedasticity.

In Chapter 2, we present new quasi-analytic formulae to price and hedge basket options,
(i.e., call and put options written on a group of assets). Pricing and hedging these options
is not straightforward since many computational difficulties arise from the fact that the dis-
tribution of the basket return at the maturity date is not known in closed form, nor even for
simple dynamics such as the geometric Brownian motion. Many of the existing methods
resort to two assumptions: the price of each asset in the basket is log-normally distributed,
and the weighted sum of log-normal random variables is approximated by a (modified) log-
normal random variable. Our new methodology consists of Black-and-Scholes’ formulae
for both pricing and hedging and improves the results in the literature in both directions.
First, we model the asset prices with dynamics that (by comparison to the geometric Brow-
nian motion), fit the empirical evidence in the financial markets better. Indeed, we employ
the displaced jump-diffusion process of Câmara et al. (2009), which accounts for the nega-
tive skewness and excess kurtosis that characterise equity stocks, and the shifted asymmetric
jump-diffusion of Ramezani and Zeng (2007), where two independent sources of jumps are
considered. Second, we employ a Hermite polynomial expansion of a standard normal vari-
able to approximate the basket return at maturity by matching its first m moments. We
demonstrate via an extensive scenario-based comparison, that by matching only the first
four moments, one obtains satisfactory results, which, in most cases, are better than those
found by existing techniques in the literature.

The other two topics of this thesis concern the American option pricing and hedg-
ing problem. This problem is intrinsically more complex than the corresponding one for
European-style options, since it requires the solution of an optimal stopping time problem
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and, consequently, the selection of the optimal exercise price together with the valuation of
the contract. This double selection makes it a stochastic optimisation problem. In Chapter 3,
we review the theoretical properties and characteristics of, and the literature on, American
option pricing and hedging. Additionally, in this chapter, we introduce the notation that
we use in Chapters 4 and 5, where we present two new solution approaches addressing the
American option pricing and hedging problem.

Chapter 4 concentrates on a quasi-analytic technique that potentially improves on any
pricing and hedging method for long-maturity American options on a log-normally dis-
tributed asset. Based on an extensive numerical study, also confirmed by other research
in the literature (Broadie and Detemple (1996), AitSahlia and Carr (1997) and Kim et al.
(2013)), we identify that the existing pricing and hedging methods in the literature per-
form very well for short-term options but their performance worsens the longer the time-
to-maturity. The new technique relies on an approximation of the optimal exercise price
near the beginning of the contract, combined with existing pricing approaches so that the
maturity range for which small errors are attained is extended. Additionally, the new ap-
proach retains the quasi-analytic nature of the methods it improves and, consequently, we
derive generic quasi-analytic formulae for the price of an American option as well as for
its delta parameter. The method is shown to provide improved pricing and hedging perfor-
mances compared to the well-known methods of Geske and Johnson (1984), Barone-Adesi
and Whaley (1987), Kim (1990), Ju and Zhong (1999), Chung and Shih (2009) and Li
(2010b). This improvement is substantial over a large range of maturities and, in particu-
lar, for long-maturity options. Moreover, we show that the new method also works well in
‘extending’ many asymptotic expansions of the optimal exercise price. These asymptotic
expansions are methods that approximate the optimal exercise price near the maturity date
and are recognised as cutting-edge methods for American options as a result of their pre-
cise and fast estimation of the optimal exercise price. However, these methods only work
properly for maturities of a few months, and in a few cases up to two years and cannot be
employed for longer maturities. By ‘extending’ with our new technique the asymptotic ex-
pansion methods of Evans et al. (2002), Zhang and Li (2010) and Cheng and Zhang (2012),
we manage to obtain good pricing and hedging performance for options with maturities as
long as 5 years.

Chapter 5 describes a new numerical algorithm for pricing American-style derivatives
based on employing Monte Carlo simulations together with the weighted least squares re-
gression method. The new technique, which we call the weighted least squares Monte Carlo,
is an improvement on the least squares Monte Carlo algorithm (LSMC) originally proposed
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by Longstaff and Schwartz (2001), one of the best-known methods for pricing American-
style derivatives. The main contribution of Chapter 5 is that we demonstrate that the errors
of the ordinary least squares regressions of the LSMC algorithm are heteroscedastic, (i.e.
the conditional variance of these errors with respect to the regressors is not constant). This
heteroscedasticity, which we prove to exist in three different ways (numerically, graphically
and theoretically), makes the ordinary least squares estimators not the best linear unbi-
ased estimators (BLUE), as proved by the Gauss-Markov theorem (Section 5.2.5). In order
to retain the BLUE property when the errors are heteroscedastic, our new weighted least
squares Monte Carlo method follows the same steps as the LSMC method but substitutes
the ordinary least squares estimators with the weighted least squared ones. We show that
not accounting for heteroscedasticity (as in LSMC) causes upward bias in option prices.
Our weighted least squares Monte Carlo is shown to provide remarkable reduction of this
bias over both American call and put options under several price dynamics. In particular,
we numerically examine the pricing problem under the following price dynamics: geomet-
ric Brownian motion, exponential Ornstein-Uhlenbeck process, log-normal jump-diffusion
process, and dual exponential jump-diffusion process.

To understand the importance of a newly introduced technique for pricing derivatives,
one needs to evaluate the performance of this method when applied to real financial data.
In Chapter 6, we complement the extensive scenario-based performance comparisons in
Chapters 4 and 5 by considering a performance comparison in pricing S&P 100TM options
and LEAPS® (i.e., Long-term Equity AnticiPation Securities™) traded in the CBOE from
February 2012 to December 2014. The results are reassuring and indicate that both methods
improve on their direct competitors. Finally, Chapter 7 concludes and proposes ideas and
directions for further research.



Chapter 2

European Basket Options: Pricing and
Hedging via Moment Matching

In this chapter, we describe a new methodology to price and hedge European basket options
under the displaced log-normal process with jumps, which is capable of accommodating
negative skewness and excess kurtosis, which are well known to characterise equities. Our
technique involves Hermite polynomial expansions that can match exactly the first m mo-
ments of the model-implied basket return and it is shown to provide superior results, not
only with respect to pricing, but also for hedging. This chapter is structured as follows: Sec-
tions 2.1 introduces the basket-option pricing and hedging problem; Section 2.2 provides an
extensive review of the literature; Section 2.3 describes the pricing and hedging methodol-
ogy; Section 2.4 compares the pricing and hedging performance of the new methodology
with the methodology in Borovkova et al. (2007) over a large set of option scenarios; Sec-
tion 2.5 provides another application of our new method to basket options whose assets
follow shifted asymmetric jump-diffusion processes. Finally, Section 2.6 concludes.

2.1 Introduction

Basket options are contingent claims on a group of assets such as equities, commodities,
currencies and even other vanilla derivatives. They are commonly traded to hedge away
exposure to correlation or contagion risk and hedge-funds also use them for investment
purposes, to combine diversification with leverage. Basket options are also usually cheaper
than individual options on each asset in the basket (Dionne et al., 2006), and are used in
situations when one does not need to hedge against movements of a single asset price but,
rather, one is interested in the relative movements of the prices of a group of assets.
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These contracts are mainly traded over-the-counter but some spread options, i.e. bas-
ket options on the price difference between two or more assets, are also traded in some
exchanges. For example, the New York Mercantile Exchange, NYMEX, lists crack spread
options and calendar spread options. The former aim to solve the problems faced by re-
finery managers in the petroleum industry. These managers are concerned about the price
differences of their inputs and their outputs. One example of a contract of this type is the
“NY Harbor ULSD crack spread option”, which is the spread between NY Harbor ULSD
futures (HO) and Light Sweet Crude Oil futures (CL). On the other hand, calendar spread
options are options on the difference between futures on the same underlying asset but with
different maturities. An example is the “WTI crude oil 1 month calendar spread option”,
which is an option on the spread between the first and the second expiring Light Sweet
Crude Oil futures. They are largely traded by storage facility managers and other players in
the refining supply chain of oil or other energy products. On NYMEX there are also traded
spread options on assets of the same type but with different quality and/or point of produc-
tion/extraction. An example is the “WTI-Brent crude oil spread option”, i.e. an option on
the spread between the NYMEX Light Sweet Crude Oil futures first nearby contract and the
Brent Crude Oil (ICE) futures first nearby contract.

Additionally, the Chicago Board of Trade, CBOT mainly lists agricultural spread op-
tions. Typical products are: inter-commodity spread options and crush spread options. The
former are contracts on the difference in value between two or more futures on different as-
set classes. An example is the “Chicago SRW wheat-corn inter-commodity spread option”,
which is an option on the spread between Chicago SRW Wheat futures and Corn futures
with the same maturity date. The crush spread options are spread on inputs and outputs
of the soybean. They are used for the same purpose as the crack spread options discussed
above. An example of these contracts is the “soybean crush option”, which is written on the
spread

+0.022 Soybean Meal in $/ton

+11 Soybean Oil in ¢/lb

−1 Soybeans in $/bu.

Since the compositions of the underlying baskets are very heterogeneous and may con-
sist of several assets (especially in over-the-counter markets), the pricing and hedging of
these derivatives ought to be carried out with multidimensional models that are able to de-
scribe the empirical characteristics of the assets in the basket. Many pricing models that
seem to work well for single assets cannot be easily extended to a multidimensional set-
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up, mainly due to computational difficulties. Hence, practitioners usually resort to classical
multidimensional geometric Brownian motion type models, to keep the modelling frame-
work as simple as possible. However, by doing so, the empirical characteristics of the assets
are simply overlooked. In particular, the negative skewness and excess kurtosis, which
characterise equity stocks (Bakshi et al., 1997, 2003), cannot be captured properly by these
simple models because they produce a limited range of values for these statistics.

Ideally, one would like the best of both worlds, realistic modelling and precise cal-
culations. In this chapter, we present a general computational solution to the problem of
multidimensional models lacking closed-form formulae or requiring burdensome numerical
procedures. The purpose of this chapter is to provide a robust and precise methodology
for pricing and hedging basket options when the price of each of the assets in the basket
follows a model that is able to accommodate the empirical characteristics of the assets. One
such model is the displaced jump-diffusion, which will be used as a test subject to show the
superiority of the presented methodology. Câmara et al. (2009) priced options on a single
asset under this model; however, expanding the set-up to a basket of assets leads to compu-
tational problems related to the calculation of the probability distribution of the basket price
at expiration. Therefore, we circumvent this problem by employing a Hermite polynomial
expansion that matches exactly the first m moments of the model-implied basket return.

The pricing and hedging methodology we propose consists of quasi–analytical formulae
for both pricing and hedging. They are Black-and-Scholes type formulae and some of their
inputs are calculated as the solution of a system of m equations in m unknowns (the moment-
matching system). The main advantages of the new methodology are threefold:

• it incurs low computational cost compared to numerical methods, especially when one
prices a portfolio of options written on the same basket with different strikes and/or
payoffs, since the moment-matching procedure needs to be carried out only once;

• it provides precise calculations and availability of formulae for the hedging parame-
ters. The estimations of these parameters are arguably even more important than the
calculation of prices since despite the latter being available in the market, the former
are not. The availability of formulae for the hedging parameters is an important ad-
vantage of our methodology over numerical methods such as the Monte Carlo simula-
tion method, for which the calculation of these parameters is usually computationally
intensive and less precise;1

• the only prerequisite of our method is the existence of the moments of the basket and,

1See Glasserman (2003), Chapter 7, for detailed discussion on Monte Carlo methods for the estimation of
price sensitivities.
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consequently, it is applicable to situations in which some assets in the basket follow
one diffusion model and other assets follow a different diffusion model.

2.2 Literature review

The number of papers covering basket options has increased considerably in the last three
decades. Carmona and Durrleman (2003) reviewed the main contributions available in the
literature on solution approaches for the pricing problem. The available methods can be
classified into two categories: those that are numerical, and those that are (quasi)-analytical,
which includes methods based on various expansions and moment-matching techniques.
Our method belongs to the second category. In what follows, we review the main contribu-
tions to the two categories.

2.2.1 Numerical methods

When analytical formulae are difficult to derive under a particular model and/or payoff struc-
ture, it is common, in the finance industry, to resort to numerical methods to approximate
the solution of a pricing problem. Among these methods, we enumerate lattice methods and
Monte Carlo simulations.

Within the first group, Boyle (1988) introduced a binomial three method for pricing
contracts on two assets and Boyle et al. (1989) propose an extension of their method to
price contracts on ϒ ≥ 2 assets. Kamrad and Ritchken (1991) presented a multi-asset tri-
nomial tree which generalises the binomial tree methods in Boyle (1988) and Boyle et al.
(1989). However, the computational effort required by these three methods is prohibitive in
real word applications, since the number of nodes in the trees grows exponentially with the
number of underlying assets. This problem is usually defined as the “curse of dimension-
ality”. Borovkova et al. (2012), under the assumption of a log-normally distributed basket
return at maturity, priced American style options using a standard binomial tree; for general
payoffs, Leccadito et al. (2012) employed Hermite polynomials technique to price Euro-
pean and American basket options in the context of jump-diffusion and stochastic volatility
frameworks.

Unlike the lattice methods above, the Monte Carlo simulation methods do not suffer
from the curse of dimensionality and can be used efficiently in multi-dimensional pricing
frameworks. Boyle (1977) was the first to introduce this technique to solve option pric-
ing problems and his standard method has been improved in several ways. Barraquand
(1995) used a Monte Carlo simulation method with an error reduction technique, called
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quadratic re-sampling, which is based on the mean and variance-covariance matrix of the
underlying assets prices. Pellizzari (2001) proposed the mean Monte Carlo method, i.e. a
control variate technique for pricing multidimensional contingent claims based on the prop-
erty that if all but one of the asset prices are fixed at their mean value, the corresponding
uni-dimensional option price can often be calculated analytically.2 Korn and Zeytun (2013)
proposed a control variate technique for pricing basket options that is based on the price
of the corresponding geometric-basket option formula, which is given in exact closed-form
under the geometric Brownian motion.

While Monte Carlo methods offer a feasible solution, analytical formulae are usually
preferred by practitioners. Hence, the majority of the literature on basket option pricing
focuses on approximation methods that circumvent the numerical problems generated by
the high dimensionality of basket models.

2.2.2 Analytic and quasi-analytic methods

By analogy to early papers on pricing Asian options, Gentle (1993) proposed pricing basket
options by approximating the arithmetic weighted average with its geometric counterpart so
that a Black-and-Scholes type formula could be applied. Korn and Zeytun (2013) improved
this approximation using the fact that, if the spot prices of the assets in the basket are shifted
by a large scalar constant C, their arithmetic and geometric means converge asymptotically.
They consider log-normally distributed assets and approximate the C-shifted distribution
with standard log-normal distributions. Kirk (1995) developed a technique for pricing a
spread option by coupling the asset with negative weight with the strike price, considering
their combination as one asset with a shifted distribution and then employing the Margrabe
(1978) formula for options on the exchange of two assets. The methods in Li et al. (2008,
2010) extended the procedure proposed in Kirk (1995) to the case of more than two assets
with positive and negative weights. Venkatramanan and Alexander (2011) and Alexander
and Venkatramanan (2012) replicated European and American style spread options using a
portfolio of compound exchange options,3 under local volatility and local correlation frame-
works.

Curran (1994) priced basket options with only positive weights by conditioning on the
geometric basket value: the resulting formula is given as an exact term plus an approximated
term. Deelstra et al. (2004, 2010) extended on Curran (1994) and obtained lower and upper
bounds for the prices of basket options and Asian basket options, respectively. Similarly, Xu

2In Appendix 2.B, we describe the mean Monte Carlo method and how we apply this methodology for
asset price dynamics following the displaced jump-diffusion process in Section 2.3.

3Compound exchange options are options to exchange one option with another.
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and Zheng (2009) derived bounds for basket options on assets following a jump-diffusion
model with idiosyncratic and systematic jumps. Bertsimas and Popescu (2002), Hobson
et al. (2005a,b), and Laurence and Wang (2004, 2005) proposed model-free bounds based
on the prices of the European options, each on a single asset in the basket. However, in
general, they found that these bounds are not very tight.

Remarkably, Dempster and Hong (2000) employed the fast Fourier transform in Carr
and Madan (1999) to price spread options on two assets following models for which the
characteristic functions are known in closed form. Subsequently, Hurd and Zhou (2010)
extended this to more general spread options and also calculated the hedging parameters.

A vast amount of research has been carried out on approximate closed-form formulae for
basket options that involve moment-matching procedures to overcome the problem of not
knowing analytically the probability density function for the basket. Levy (1992) approx-
imated the distribution of a basket of log-normal assets by matching its first two moments
with the moments of a log-normal density function, and then derived a Black-and-Scholes
type pricing formula. A long series of papers have improved on this approximation, either by
allowing more flexible basket densities or by allowing for more realistic asset price dynam-
ics. Among the former group, Huynh (1994) employed the Edgeworth expansion around
the log-normal distribution that matches the first two moments of the basket; Milevsky
and Posner (1998a,b) used the reciprocal gamma distribution to approximate the probabil-
ity density function of a basket by matching its first two moments; Posner and Milevsky
(1998) and Dionne et al. (2011) employed the log-normal and the unbounded Johnson den-
sity functions, and matched the first four moments of the basket; and, Ju (2002) employed
Taylor expansions to replicate the basket density. However, the methods above cannot be
employed when the asset weights are negative since the basket values can be negative, while
the supports of the considered distributions are positive.

A remarkable improvement in pricing basket options with generic asset weights has been
proposed by Borovkova et al. (2007). Their methodology can incorporate negative skew-
ness while still retaining analytical tractability, under a shifted log-normal distribution, by
considering the entire basket as one single asset. This strong assumption allows the deriva-
tion of closed-form formulae for basket option pricing.4 Zhou and Wang (2008) advocated
a method similar to that of Borovkova et al. (2007), selecting the log-extended-skew-normal
as the approximating distribution. They also obtained a Black-and-Scholes type pricing for-
mula, where the standard extended-skew-normal cumulative distribution function replaces
the normal one.

4In Appendix 2.C we describe in detail this methodology and in Section 2.4 we compare its performance
with the one of our new methodology.
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On the other hand, some other research has priced basket options whose asset dy-
namics are more appropriate to accommodate the empirical characteristics of the asset
returns. Flamouris and Giamouridis (2007) priced basket options on assets following a
Bernoulli jump-diffusion process using the Edgeworth expansion in Huynh (1994); Wu et al.
(2009) assumed that asset prices follow the multivariate normal inverse Gaussian model
(mNIG) and employed the fast Fourier transform together with the methodology outlined
by Milevsky and Posner (1998b) to approximate the sum of assets following the mNIGs
model as a mNIG; Bae et al. (2011) priced basket options (with positive weights) on assets
following a jump-diffusion process by using the Taylor expansion method of Ju (2002).

Our methodology improves on both research directions. First, we consider that assets
in the basket follow the displaced jump-diffusion process in Câmara et al. (2009), which
is shown to produce large ranges of skewness and kurtosis. Second, we employ a Her-
mite polynomial expansion of a standard normal variable to match the first m moments of
the standardised basket returns. Our methodology works for any m and we shall show in
Section 2.4, using a scenario-based comparison, that matching higher-order moments con-
siderably improves the pricing and hedging performances.

An approximation similar to ours has been proposed by Necula and Farkas (2014), who
priced basket and spread options for assets whose joint characteristic function is known
in closed-form. Their methodology is based on the results of Necula et al. (2013), who
employed the physicists’ Hermite polynomials to expand the risk-neutral density of the
terminal underlying asset value. Their methodology is very precise being able to match
any number of moments. In order for their expansion to be a proper density (total mass
equal to 1), high-order truncations are required and, therefore, the computational cost may
be occasionally high, especially when the number of assets in the basket is relatively high.
The main differences with our method are that we use probabilists’ Hermite polynomials
rather than the physicists’ ones, and we employ these polynomials to expand the random
variable that represents the basket return at maturity rather than its distribution, so we can
truncate our expansion at any order. Additionally, we also provide a quasi-analytic formula
for the delta-hedging parameters, which we employ to implement a delta-hedging strategy
for a set of option scenarios and it is shown to provide a better performance than those of the
existing methodologies. This mainly depends on the fact that, since our method is capable
of matching a higher number of moments, it employs a better approximation of the basket
dynamics than most of the existing methods. Furthermore, we provide a general formula
for any hedging parameter. The calculation of each hedging parameter requires the solution
of a system of m equations in m unknowns. Consequently, other hedging strategies can be
easily implemented.
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2.3 The “exact moment-matching” method for basket op-
tions

This section describes our new pricing and hedging methodology for European basket op-
tions. Without loss of generality, henceforth we fix the current valuation time at t0 = 0 and
we indicate, with T , the time-to-maturity. The payoff at maturity of this type of option is:{

(BT −K)+ , for call options
(K −BT )

+ , for put options
(2.1)

driven by the underlying variable

Bt =
ϒ

∑
i=1

aiS
(i)
t , (2.2)

which is the value of the basket at time t, where ϒ is the number of assets in the basket, K is
the strike price, aaa = (a1, . . . ,aϒ)

′ is the vector of non-stochastic basket weights, which could
be positive or negative, and (x)+ = max{0,x}.

Under the majority of models applied in practice, and under the processes we assume for
the asset price dynamics in this chapter (i.e the displaced jump-diffusion process described
in Section 2.3.1 and the displaced asymmetric jump-diffusion described in Section 2.5), the
probability density of the basket value Bt cannot usually be obtained in closed-form and,
consequently, for pricing and hedging purposes, researchers and practitioners usually resort
to approximations. The methodology proposed in this chapter circumvents this problem by
approximating the standardised return of the basket by a polynomial transformation of a
standard normal random variable. This approximation is constructed in such a way as to
match exactly the first m moments of the model implied risk-neutral return.

In what follows, Section 2.3.1 defines the modelling framework, and Section 2.3.2 de-
scribes the moment-matching technique and provides the analytic formulae for the mo-
ments. Finally, Sections 2.3.3 and 2.3.4 depict the pricing and hedging methodologies,
respectively.

An alternative approach for pricing basket options is to model the dynamics of the en-
tire basket directly as a single asset and employ existing pricing and hedging formulae for
vanilla call/put options. However, by doing so, one would lose many of the advantages
that comes when modelling each asset separately. In particular, one can carry out much
deeper sensibility analysis over each of the parameters of the asset price dynamics and their
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correlations and, consequently, more robust results can be achieved for risk management
purposes.

2.3.1 Modelling framework

Consider the filtered probability space (Ω,F ,(Ft)t≥0,P) under the objective probability
measure P and, on this space, the financial market consisting of the assets

S(i), i = 1, · · · ,ϒ

and the bank account
Mt = ert

that can be used to borrow and deposit money with a continuously compounded interest rate
r ≥ 0, assumed constant over time.

From a modelling point of view, it would be appropriate for the assets S(i) to follow
models that are capable of generating negative skewness and excess kurtosis reflecting the
empirical evidence in equity markets. One such flexible model is the correlated displaced
(or shifted) jump-diffusion, that is a jump-diffusion process for the displaced or shifted
asset value, introduced by Câmara et al. (2009). In what follows, we assume that the asset
price dynamics follow this jump-process, which under the objective probability measure P
is defined by:

d
(

S(i)t −δ
(i)
t

)
= (αi −βiλi)

(
S(i)t −δ

(i)
t

)
dt +

(
S(i)t −δ

(i)
t

) nw

∑
j=1

γijdW( j)
t

+
(

S(i)t− −δ
(i)
t

)
dQ(i)

t , i = 1, · · · ,ϒ, (2.3)

where: αi is the expected rate of return on the shifted asset i;
{

W( j)
t

}
t≥0

are nw mutually in-

dependent Wiener processes; γij defines the correlation among assets i and j;
{

Q(i)
t

}
t≥0

are

independent compound Poisson processes formed from some underlying Poisson processes{
N(i)

t

}
t≥0

with intensity λi ≥ 0; and δ
(i)
t = δ

(i)
0 ert is the shift applied to S(i)t . Additionally,

we indicate with Y(i)
j the amplitude of the j-th jump (of the shifted process) of N(i)

t for any
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i = 1, · · · ,ϒ. The jumps are i.i.d. random variables with probability density function5

f (i)(y) : [−1,+∞)→ [0,1]

having an expected value under the physical measure P

βi = EP[Y(i)] =
∫

∞

−1
yf (i)(y)dy.

Jumps for different assets are assumed to be independent.
Câmara (1999) studied the relationship between the shift and the probability density

function of the displaced log-normal process (i.e. process (2.3) without jumps).6 In partic-
ular, Câmara found that a positive (resp. negative) value of δ

(i)
0 is associated with a more

positively (negatively) skewed and leptokurtic (mesokurtic) distribution. In order to repli-
cate the empirical evidence in the financial markets, it would be necessary in a model with
no-jump to consider negative values of δ0. However, negative values of δ0 lead to negative
stock prices with positive probability. On the other hand, by introducing jumps as in (2.3)
and in Câmara et al. (2009), one can capture the empirical properties of stocks for δ0 ≥ 0
and also guarantee that the stock prices will always be positive. For this reason, in what
follows, we assume δ

(i)
0 ≥ 0, for any i = 1, . . . ,ϒ.

For pricing and hedging purposes, a change of measure is applied to the dynamics (2.3).
The analytical framework in Shreve (2004), Chapter 11.5, for standard multidimensional
jump-diffusion models, is adapted here to deal with shifted assets by simply noticing that,
for δ

(i)
t = δ

(i)
0 ert , the martingale conditions for the discounted asset prices are easily verified.

The solution of SDE (2.3) under the risk-neutral pricing measure Q is carried out via
Itô’s lemma for jump-diffusion and reads

S(i)t =
(

S(i)0 −δ
(i)
0

)
e
(

r−β̃iλ̃i− 1
2 ∑

nw
j=1 γ2

ij

)
t+∑

nw
j=1 γijW̃

( j)
t

N(i)
t

∏
l=1

(
Y(i)

l +1
)
+δ

(i)
0 ert (2.4)

where the intensity of the Poisson process
{

N(i)
t

}
t≥0

is λ̃i, the expected value of Y(i)
l for any

l = 1, . . . ,N(i)
t is

β̃i = E[Y(i)
l ] =

∫ +∞

−1
yf̃ (i)(y)dy,

5Note that we do not specify any probability density function here but we rather leave f (i)(·) unspecified,
because what follows holds for general densities. Later, for exemplification purposes, we will first consider
the jump sizes to be log-normally distributed and, in Section 2.5, jump sizes will be assumed Pareto and Beta
distributed.

6This model was first introduced by Rubinstein (1981).
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the probability density function of Y(i)
j is f̃ (i)(y) : [−1,+∞) → [0,1] and

{
W̃( j)

t

}
t≥0

are

independent Wiener processes under the martingale measure Q. We indicate with E the
expectation operator under the risk-neutral measure Q.

For the model with SDE (2.4) not to introduce arbitrage, the parameters β̃1, · · · , β̃ϒ,

λ̃1, · · · , λ̃ϒ, and θ1, · · · ,θnw need to satisfy the system of equations

αi −βiλi − r =
nw

∑
j=1

γijθ j − β̃iλ̃i, i = 1, · · · ,ϒ. (2.5)

The solution to (2.5) is, in general, not unique so we are in incomplete markets. Neverthe-
less, we assume that one solution of the system (2.5) is selected and a pricing measure Q is
fixed. There is a large amount of literature devoted to the issue of selecting a pricing mea-
sure7 and we do not analyse this topic further but, henceforth, we assume the risk-neutral
measure Q as given: in particular, the model we consider is the displaced jump-diffusion
process with unsystematic jump risk in Câmara et al. (2009). We consider the jumps of each
asset price i.i.d. log-normally distributed such that

E[log(Y(i)
j +1)] = ηi

Var[log(Y(i)
j +1)] = υ

2
i .

Henceforth, in order to simplify the notation, we denote V (i)
t = ∑

nw
j=1

γij
σi

W̃( j)
t where σ2

i =

∑
nw
j=1 γ2

ij . Thus
{

V (i)
t

}
t≥t0

are dependent standard Brownian motions with correlation

ρl1l2 = corr
(

V (l1)
t ,V (l2)

t

)
=

1
σl1σl2

nw

∑
j=1

γl1jγl2j, (2.6)

and, consequently, (2.4) can be rewritten as

S(i)t =
(

S(i)0 −δ
(i)
0

)
e(r−β̃iλ̃i− 1

2 σ2
i )t+σiV

(i)
t

N(i)
t

∏
l=1

(
Y(i)

l +1
)
+δ

(i)
0 ert . (2.7)

All of the results below are stated for the dynamics in (2.7). Additionally, we point out that
the shifted jump-diffusion model will encompass three sub-cases:

• multidimensional geometric Brownian motion, GBM, when δ
(i)
0 = 0 and λ̃i = 0 for

each asset i;
7For a review, see Frittelli (2000) and references within.
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• shifted GBM when λ̃i = 0 for each asset i;

• standard jump-diffusion models when δ
(i)
0 = 0 for each asset i8.

In Section 2.5, we also describe a different displaced jump-diffusion process, i.e. the shifted
asymmetric jump-diffusion process, which includes two sources of jumps. The new pricing
method is then employed to price basket options on assets following this process, as in
Paletta et al. (2014).

2.3.2 Moment-matching procedure

The key feature of the proposed new methodology is the use of the variable

J(Z) =
m−1

∑
k=0

ϕkHk(Z), (2.8)

to approximate the standardised basket return9

XT =
B∗

T
B∗

0erT −h1 (2.9)

by matching its first m moments.10 Above, Hk(x) denotes the kth-order probabilists’ Her-
mite polynomial (see Appendix 2.A for a description of these polynomials)

Hk(x) =
(−1)k

n(x)
∂ kn(x)

∂xk ,

n(·) is the standard normal density function and Z is a standard normal random variable.
Additionally, we employed the two shifted quantities: the shifted strike price

K∗ = K −
ϒ

∑
i=1

aiδ
(i)
0 erT ; (2.10)

8For example, the log-normal jump-diffusion process of Merton (1976) and the dual-exponential jump-
diffusion process of Kou (2002) are within this category.

9The shifted basket value at time 0, B∗
0, is assumed to be different from 0.

10In (2.9), we consider the standardized basket return rather than the basket value for computational reasons.
Indeed, the moments of the standardized return XT usually have the same order of magnitude. On the contrary,
for the basket value B∗

T , different-order moments can also differ by several orders of magnitude and this may
cause numerical inefficiencies in the solution of the moment-matching system of equation (2.12).



2.3 The “exact moment-matching” method for basket options 19

and the shifted basket value at time T

B∗
T = BT −

ϒ

∑
i=1

aiδ
(i)
0 erT . (2.11)

Then, we consider two values for the parameter h1, and this leads to two variants of our new
methodology:

mmmGA indicates a moment matching procedure with h1 = 0 and, consequently, the first mo-
ment of XT (under the risk-neutral measure Q) is equal to 1;

mmmGB indicates a moment matching procedure with h1 = 1 and, consequently, the first mo-
ment of XT (under the risk-neutral measure Q) is equal to 0;

where the mnemonics driven by m stand for the number of moments matched and G high-
lights that a transformation of the Gaussian distribution is considered.

We also consider a hybrid methodology spanned by the two methods mGA and mGB,
which henceforth will be called mmmGAB. This hybrid method returns the solution of the
method that correctly matches the moments if one of mGA and mGB works properly and
takes into account the worst error between the two variants if both correctly match the mo-
ments. Consequently, we consider the worst scenario that can happen in choosing either one
or other method. The reason for doing so is that, while the fair benchmark prices are known
(as given by the method of Pellizzari (2001)) in the scenario-comparison we will carry out in
Section 2.4, when the mGAB method is applied in the financial markets, there is no bench-
mark price, since the actual market price is unknown and has to be calculated. By using the
worst error in the scenario-based study, we find the worst case we may have in employing
mGAB (under the assumption of a market following the model we are considering).

The methods mGA, mGB and mGAB expand on the Hermite tree method for pricing
financial derivatives proposed in Leccadito et al. (2012). The idea of their method is to
match the moments of the underlying asset log-return with the moments of a discrete ran-
dom variable. The methodology in this chapter extends on Leccadito et al. (2012) to deal
with baskets that may take on negative values and replaces the binomial distribution that
they use with the asymptotically equivalent Gaussian distribution. Consequently, our new
methodology consists of quasi-analytic pricing and hedging formulae, which do not employ
a tree or lattice method.
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The basis of the methodologies mGA, mGB and mGAB is the calculation of the param-
eters ϕk in (2.8) by solving the following system of m equations in m unknowns:

E[J] = E[XT ]

E[J2] = E[X2
T ]

. . .

E[Jm] = E[Xm
T ]

(2.12)

The solution of this system is carried out numerically. In the following, in Proposition 2.3.1
and formula (2.17), we calculate the k-th moment of XT and J, respectively.

Proposition 2.3.1 (Basket’s moments). The k-th moment of the standardised return XT in
formula (2.9), under Q, is given by

E[Xk
T ] = E

[(
B∗

T
B∗

0erT −h1

)k
]
=

k

∑
i=0

(
k
i

)
(−h1)

i

(B∗
0erT )k−i E[B

∗
T

k−i], (2.13)

where

E[B∗
t

k] =
ϒ

∑
i1=1

· · ·
ϒ

∑
ik=1

ai1

(
S(i1)0 −δ

(i1)
0

)
e(r+ωi1)t × . . .

. . .×aik

(
S(ik)0 −δ

(ik)
0

)
e(r+ωik )t mgf(eeei1 + . . .+ eeeik), (2.14)

ω j =−β̃ jλ̃ j − 1
2σ2

j , eee j ∈ ℜϒ is the vector having 1 in position j and 0 elsewhere. Further-

more, the moment generation function of σiV
(i)

t +∑
N(i)

t
l=1 log(Y(i)

l +1) is given by

mgf(uuu) = exp
{

tuuu′ΣΣΣuuu/2
} ϒ

∏
i=1

mgf
N(i)

t

(
ηiui +υ

2
i u2

i /2
)

(2.15)

where ΣΣΣ denotes the covariance matrix of VVV =
(

V (1)
t , · · · ,V (ϒ)

t

)′
, and

mgf
N(i)

t
(u) = exp(tλ̃i(eu −1)). (2.16)

Proof. Formulae (2.13) and (2.14) are derived by exponentiation of formulae (2.9) and
(2.11), respectively and the linear property of the expectation operator. Additionally, the

moment generation function of σiV
(i)

t +∑
N(i)

t
l=1 log(Y(i)

l +1) in (2.15) is calculated by condi-
tioning with respect to N(i)

t .
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On the other hand, since (1) Hermite polynomials are orthogonal with respect to the
standard normal probability density function (see formula (2.37)), (2) the product between
two Hermite polynomials is still a polynomial (although non-Hermitian) and (3) the ex-
pected value is a linear operator, then the k-th moment of J(Z), under Q, is calculated as:

E[Jk] =
m−1

∑
i1=0

. . .
m−1

∑
ik=0

ϕi1 . . .ϕikE[Hi1(Z) . . .Hik(Z)]. (2.17)

which admits a closed-form solution as a weighted sum of the moments of the standard
normal variable Z for any polynomial order m and moment order k.

For example, for m = 4, the first 4 moments of J(Z) are11

E[J ] = ϕ0

E[J2] =
m−1

∑
i=0

i!ϕ2
i

E[J3] = ϕ
3
0 +(3ϕ

2
1 +6ϕ

2
2 +18ϕ

2
3 )ϕ0 +6ϕ

2
1 ϕ2 +36ϕ1ϕ2ϕ3 +8ϕ

3
2 +108ϕ2ϕ

2
3

E[J4] = (6ϕ
2
1 +12ϕ

2
2 +36ϕ

2
3 )ϕ

2
0 +(24ϕ

2
1 ϕ2 +144ϕ1ϕ2ϕ3 +32ϕ

3
2 +432ϕ2ϕ

2
3 )ϕ0

+3ϕ
4
1 +24ϕ

3
1 ϕ3 +60ϕ

2
1 ϕ

2
2 +252ϕ

2
1 ϕ

2
3 +576ϕ1ϕ

2
2 ϕ3 +1296ϕ1ϕ

3
3

+60ϕ
4
2 +2232ϕ

2
2 ϕ

2
3 +3348ϕ

4
3 +ϕ

4
0 . (2.18)

In the following, we assume ϕ0, . . . ,ϕm−1 given and we state our main results for pricing
and hedging basket options.

2.3.3 Pricing methodology

Let us consider a basket call option with the payoff as in (2.1). The price of this option is
given as the expected discounted payoff at maturity. The mechanism of shifting the basket
and strike price in formulae (2.10) and (2.11) allows us to write the pricing formula in two
equivalent ways:

c0(B0,T,K) = e−rT E[(BT −K)+] = e−rT E[(B∗
T −K∗)+] = c0(B∗

0,T,K
∗). (2.19)

By using (2.19), the next proposition provides a quasi-analytic pricing formula for the Eu-
ropean basket call option when the Hermite polynomial approximation is employed.

Proposition 2.3.2 (Pricing formula). The price of a European basket call option with the

11The following calculations are carried out by the symbolic-calculus tool in Matlab R2013a by using
formulae (2.37) and (2.38).
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Hermite expansion variant mGA or mGB is given by:

c0(B0,T,K) = B∗
0 [(ϕ0 +h1)N (−h2z̃)+h2gH(z̃)]−K∗e−rT N (−h2z̃) (2.20)

where

gH(z̃) = n(z̃)
m−2

∑
k=0

ϕk+1Hk(z̃), (2.21)

K∗ is the shifted strike price, B∗ is the shifted basket, h1 = 0 for the variant mGA and
h1 = 1 for the variants mGB, h2 = sgn(B∗

0), z̃ is the solution of [J(z̃)+h1]B∗
0erT = K∗, n(·)

is the standard normal density function, N (·) is the standard normal cumulative distribu-
tion function and the parameters ϕk are calculated by matching the first m moments of the
standardised return quantity XT .

Proof. Let us consider the approximation of XT by the random variable J(Z) (see Sec-
tion 2.3.2) via the solution of the moment-matching procedure in the system of equations
in (2.12). Consequently,

B∗
T ≈ B∗

0erT (J(Z)+h1) (2.22)

and substituting it into the equality (2.19) we have:

c0(B∗
0,T,K

∗) = e−rT E[(B∗
T −K∗)+]≈ e−rT

∫ l2

l1

[
B∗

0erT (J(z)+h1)−K∗]n(z)dz

= B∗
0

∫ l2

l1
J(z)n(z)dz+(h1B∗

0 −K∗e−rT )N (−h2z̃) (2.23)

where, for B∗
0 > 0, l1 = z̃ and l2 =+∞ and, for B∗

0 < 0, l1 =−∞ and l2 = z̃.
For the calculation of the integral

∫ l2

l1
J(z)n(z)dz,

the results in formulae (2.39) and (2.40) are employed for B∗
0 > 0 and B∗

0 < 0, respectively.
Formula (2.20) is then proved by rearranging the terms.

On the other hand, let us consider a basket put option. Since the pricing formula (2.20)
works for both positive and negative basket values, the pricing of the put option can be
achieved via the call-pricing formula as shown by the following chain of equalities

p0(B0,T,K) = e−rT E[(K −BT )
+] = e−rT E[(K∗−B∗

T )
+] = e−rT E[{(−B∗

T )− (−K∗)}+].

Alternatively, the put price can be calculated directly using formula (2.20) and using the
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put-call parity relation for basket options:

p0(B0,T,K) = c0(B0,T,K)+Ke−rT −B0, (2.24)

which follows from the no-arbitrage principle.
Therefore, in what follows, we will focus exclusively on European basket call options.
We also note that the methodology described above holds for general asset dynamics

and that the assumptions in Section 2.3.1 impacts only on the ϕs, which are calculated by
solving the system of equations (2.12).

2.3.4 Hedging methodology

This section reports the formula for the hedging parameter with respect to the variable u,
which can be any of the involved quantities, such as S(i)0 , B0, σi, r, T , ai, λ̃i, δ

(i)
0 , β̃i, ηi or υi.

Proposition 2.3.3 (Hedging parameters). For h1, h2, z̃, gH(·), n(·) and N (·) defined in
Proposition 2.3.2, the hedging parameter of a European basket call option, with respect to
the variable u, under the Hermite expansion variant mGA or mGB, is given by

∂c0

∂u
= c0erT ∂e−rT

∂u
+B∗

0

[
h2gH

′(z̃)+
∂ϕ0

∂u
n(−h2z̃)

]
+h2e−rT N (z̃)

∂K∗

∂u

+e−rT ∂ (B∗
0erT )

∂u

[
h2gH(z̃)+ϕ0n(−h2z̃)+h1

(
−h2N (z̃)+

h2 +1
2

)]
(2.25)

where

gH
′(z̃) = n(z̃)

m−2

∑
k=0

∂ϕk+1

∂u
Hk(z̃) (2.26)

and c0 is the short for c0(B∗,T,K∗).

Proof. The calculation of the hedging parameter can be achieved by direct differentia-
tion using Leibniz’ rule of the pricing formula (2.19) considered together with approxi-
mation (2.22), as follows:

∂c0

∂u
=

∂e−rT

∂u

∫ l2

l1

[
B∗

0erT (J(z)+h1)−K∗]n(z)dz

+e−rT
∫ l2

l1

∂
[
B∗

0erT (J(z)+h1)−K∗]
∂u

n(z)dz =

= c0erT ∂e−rT

∂u
+ e−rT

∫ l2

l1

∂
[
B∗

0erT (J(z)+h1)−K∗]
∂u

n(z)dz.
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Additionally, since the Hermite polynomials do not depend on u,

∂J(z)
∂u

=
m−1

∑
k=0

∂ϕk

∂u
Hk(z),

and, consequently, formulae (2.39) and (2.40) in Appendix 2.A can also be used for the
integral ∫ l2

l1

∂J(z)
∂u

n(z)dz

where l1 and l2 are as defined for function (2.23). Formula (2.25) is then proved by rear-
ranging the terms.

In Proposition 2.3.3, the terms

∂ϕk

∂u
,k = 0, . . . ,m−1

are needed and are calculated with the methodology outlined in Borovkova et al. (2007). In
what follows, for the sake of completeness, we summarise and particularize this method-
ology for the price dynamics considered in this chapter. Consider the “moment-matching”
system of equations in (2.12) and differentiate both sides of each equation with respect to u.
The quantities ∂ϕk

∂u are given by the solution of the new system of equations

∂E[J]
∂u

∣∣∣
ϕ
= ∂E[XT ]

∂u

∂E[J2]
∂u

∣∣∣
ϕ
=

∂E[X2
T ]

∂u

. . .
∂E[Jm]

∂u

∣∣∣
ϕ
=

∂E[Xm
T ]

∂u

(2.27)

where ϕ = [ϕ0, . . . ,ϕm−1] is the vector of the coefficients of the Hermite polynomials ob-
tained as a solution of the system of equations (2.12), ∂E[Jk]

∂u

∣∣∣
ϕ

is the first derivative of the

k-moment of J (formula (2.17)) with respect to u at ϕ and ∂E[Xk
T ]

∂u is the first derivative of the
k-moment of XT (formula (2.13)) with respect to u.

In Section 2.4.2, our method is compared with the method of Borovkova et al. (2007)
using the delta-hedging performance as a yardstick. For that exercise, it is particularly
important to apply formula (2.25) for the calculation of the delta parameter. Below, we
show how the calculations are carried out in this case.
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Delta parameter For the case when u = B0, by employing the chain rule and the inverse-
function rule of differentiation we have:

∂c0

∂B0
=

∂c0

∂S(1)0

∂S(1)0
∂B0

=
∂c0

∂S(1)0

1
a1

, (2.28)

where

∂c0

∂S(1)0

= B∗
0

[
h2gH

′(z̃)+
∂ϕ0

∂S(1)0

n(−h2z̃)

]

+a1

[
h2gH(z̃)+ϕ0n(−h2z̃)+h1

(
−h2N (z̃)+

h2 +1
2

)]
(2.29)

which follows from Proposition 2.3.3 for u = S(1)0 . For the calculation of ∂ϕk

∂S(1)0

, as stated

before, the first derivatives with respect to S(1)0 of the moments of XT are needed. By us-
ing (2.13), the first derivative of the k-th moment of XT with respect to S(1)0 is given as:

∂E[Xk
T ]

∂S(1)0

=
k

∑
i=0

(
k
i

)
(−h1)

i

(B∗
0erT )k−i

(
∂E[B∗

T
k−i]

∂S(1)0

−a1
(k− i)E[B∗

T
k−i]

B∗
0

)
, (2.30)

where ∂E[B∗
t ]

∂S(1)0

= a1 and for k > 1

∂E[B∗k
t ]

∂S(1)0

=
∂E[Bk

t ]

∂S(1)0

= ka1e(r+ω1)t
ϒ

∑
i1=1

· · ·
ϒ

∑
ik−1=1

(
ai1S(i1)0 e(r+ωi1)t

)
×·· ·

· · ·×
(

aik−1S(ik−1)
0 e(r+ωik−1)t

)
mgf(eee1 + eeei1 + . . .+ eeeik−1),

and mgf(·) is defined in (2.15).

2.4 Numerical Study

The usefulness of a newly proposed method can be gauged by comparing it with other es-
tablished methods in the literature. The variants mGA, mGB and mGAB of our Hermite
approximation approach are compared on a large set of simulated option scenarios with
the method described in Borovkova et al. (2007), which is capable of matching quite large
ranges of skewness and kurtosis and is supported by a Black-and-Scholes type pricing for-
mula. In Appendix 2.C, we provide a detailed description of the method of Borovkova,
Permana and Weide.
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Both pricing and hedging performances are studied below.

2.4.1 Pricing performance

In this section, we study the pricing performance of each method with respect to the “exact”
fair benchmark prices, which are calculated using the mean Monte Carlo algorithm outlined
in Pellizzari (2001). This algorithm is described in Appendix 2.B, where we also adapt Pel-
lizzari’s method to basket options whose assets’ price dynamics follow a displaced diffusion
with jumps. The pricing performance is determined considering the following two measures
of error:

• the percentage of “good prices”, %-Good, defined as the percentage of scenarios for
which the absolute percentage error of the considered method is below 2%;12

• the mean absolute percentage error, MAPE, calculated relative to the scenarios for
which the method was able to find a numerical solution.

A moment-matching pricing method finds the price of an option scenarios whenever the
system of m equations in (2.12) admits a solution. The moments of the basket return may
be outside the domain of the Hermite polynomial expansions (for mGA or mGB) and/or of
the log-normal density (for the method of Borovkova et al. (2007)) and, consequently, the
method employed may not be able to price and hedge that option scenario. In our numerical
study, we find that our methods mGA and mGB found a solution in more than 90% of the
option scenarios. Additionally, we found that this percentage is very close to that for the
method of Borovkova et al., although in the analysis we require our methods to match a
higher number of moments (m = 4 or m = 6 moments versus only m = 3 for the method
of Borovkova et al. (2007)). Not surprisingly, the hybrid mGAB has a higher percentage of
solutions.

In what follows, we carry out two different performance comparisons. For the first,
we consider the six option scenarios in Borovkova et al. (2007), while for the second we
consider a larger set made up of 2,000 randomly simulated option scenarios.

12The 2% threshold was selected a posteriori as the smallest integer greater than the average MAPEs in
Tables 2.3 and 2.4. We also carried out a similar analysis for different threshold values and the analyses
returned qualitatively similar conclusions, with our mGA, mGB and mGAB significantly outperforming the
method of Borovkova et al. (2007).
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Comparison under the option scenarios in Borovkova et al. (2007)

This section directly compares the Hermite expansion methodologies introduced in this
chapter with the method of Borovkova et al. (2007) on the six basket option scenarios that
they considered in their study.

It is assumed that the i-th asset in the basket follows the process described by SDE (2.7)
with λ̃i = 0 and δ

(i)
0 = 0 (i.e. the assets following correlated geometric Brownian motions)

and the other parameters being as in Table 2.1. The results are depicted in Table 2.2: the
prices of the option scenarios calculated using the method of Borovkova et al. (2007) and
presented in this table differ from those they showed in their research article because, to
be consistent with the other results considered in this chapter, we price basket options on
equities and not on forward contracts, as they did in their study.

The numerical results indicate that our 4GA and 4GB return, for these six scenarios, ex-
actly the same prices (and consequently also 4GAB), and the two methods, appear to be as
good as the method of Borovkova et al. (2007) according to the %-Good criterion and out-
perform it according to the MAPE criterion. The methods 6GA and 6GB underperform the
other methods and, consequently, for the baskets analysed here, there is very little advantage
in matching six moments, as the Hermite approximation method works better overall when
only the first four moments are matched.

Comparison under a set of simulated scenarios

A general comparison is performed considering 2,000 simulated option scenarios. In the
first 1,000 scenarios (henceforth “Set 1”) each asset in the baskets follows the displaced
jump-diffusion model with dynamics given by SDE (2.7) where the parameters are drawn
based on the following specifications: all σi are independently uniformly distributed be-
tween 0.1 and 0.6; the spot prices S(i)0 are uniformly distributed between 70 and 130; the
shifts δ

(i)
0 range uniformly between 0 and 20; the intensities of the Poisson processes λ̃i are

uniformly distributed between 0 and 0.2; the average jump size (ηi) is uniformly distributed
between −0.3 and 0; and the volatility (υi) is uniformly distributed between 0 and 0.3.
Furthermore, the number of assets in the basket in each scenario is uniformly distributed
between 2 and 15, the risk-free rate r is uniformly distributed between 0.0 and 0.1, T is
uniformly distributed between 0.1 and 1 year, the weights ai of the assets in the basket are
uniformly distributed between −1 and 1, the ratios K/B0 are uniformly distributed between
0.8 and 1.2, and the correlation matrix among assets is randomly generated satisfying the
semi-positiveness condition (as in Hardin et al. (2013)). The second 1,000 scenarios (hence-
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Table 2.1 Specification of the basket option scenarios in Borovkova et al. (2007)

Basket 1 Basket 2 Basket 3 Basket 4 Basket 5 Basket 6
Stock Prices [100,120] [150,100] [110,90] [200,50] [95,90,105] [100,90,95]

Volatilities [0.2,0.3] [0.3,0.2] [0.3,0.2] [0.1,0.15] [0.2,0.3,0.25] [0.25,0.3,0.2]
Weights [-1,1] [-1,1] [0.7,0.3] [-1,1] [1,-0.8,-0.5] [0.6,0.8,-1]

Correlation(s) ρ1,2 = 0.9 ρ1,2 = 0.3 ρ1,2 = 0.9 ρ1,2 = 0.8
ρ1,2 = 0.9, ρ1,2 = 0.9,
ρ2,3 = 0.9 ρ2,3 = 0.9
ρ1,3 = 0.8 ρ1,3 = 0.8

Strike price 20 -50 104 -140 -30 35
Notes: Other relevant parameters are r = 3%, 1-year maturity, λ̃i = 0 and δ

(i)
0 = 0. The first row

indicates the stock prices S(i)0 , the second the volatilities σi, the third the weights ai of the assets
in the basket, the fourth the correlation ρi, j for each couple (i, j) of assets and the fifth the strike
K. The only difference compared with the scenarios in Borovkova et al. (2007) is that they price
options on baskets of forward contracts, while we price options on baskets of equities.

Table 2.2 Comparison on the option scenarios in Borovkova et al. (2007)

# Basket
MC

BPW 4GA 4GB 6GA 6GB
(SD)

1
8.2263

8.2442 8.1977 8.1977 8.2222 8.2222
(0.0031)

2
16.47

16.6215 16.4424 16.4424 16.4631 16.3654
(0.0052)

3
12.5887

12.5911 12.5695 12.5695 12.5888 12.5888
(0.0005)

4
1.1459

1.1456 1.1453 1.1453 1.0938 1.1162
(0.0008)

5
7.4681

7.4951 7.4563 7.4563 7.4555 7.4555
(0.0027)

6
9.7767

9.7989 9.7628 9.7628 9.7856 9.7856
(0.0030)

%-Good 100.00% 100.00% 100.00% 83.33% 83.33%
MAPE 0.30% 0.17% 0.17% 0.82% 0.59%

Notes: This table reports the comparison on the six basket option scenarios in
Borovkova et al. (2007) (see Table 2.1). The second column shows the
prices (standard deviation in bracket) calculated using the Monte Carlo
method (MC) with the control variate in Pellizzari (2001) with 106 sim-
ulations that are considered as benchmarks. The third column shows the
prices calculated using the method in Borovkova et al. (2007), BPW in the
table. The last four columns contain the prices under the methods mGA
and mGB when m = 4 and m = 6. The last two rows show the pricing per-
formance: %-Good is the percentage of absolute percentage errors smaller
than 2% (“good price”), and MAPE is the mean absolute percentage error.
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forth “Set 2”) are identical to the scenarios in Set 1, except for the average jump size (ηi),
which is uniformly distributed between −0.3 and 0.3.

The number of simulations used when applying the mean Monte Carlo method in Pelliz-
zari (2001) is between 105 and 106. In particular, for each scenario, this number is selected
in such a way that the standard deviations of the option prices are smaller than 0.01.

The results with respect to Set 1 and Set 2 are summarised in Tables 2.3 and 2.4, respec-
tively. The two tables show similar results. Overall, methods 4GA and 4GB have analogous
performance in terms of %-Good and MAPE criteria, with 4GB performing slightly better
than 4GA. 4GA outperforms 4GB only for longer maturities (greater than 0.5 years) sce-
narios under the %-Good measure and for near-the-money scenarios under MAPE. Both
4GA and 4GB are robust to a change in the risk-free rate. However, the performance of
both methods improves for longer-maturities under %-Good and worsens under MAPE.
Comparing our two Hermite expansion methodologies with the Borovkova-Permana-Weide
method, it is clear that the latter is not as good as the former at matching the model-implied
characteristics and that the fourth moment is necessary for pricing basket options. Although
not shown in the tables, both 4GA and 4GB show greater improvement on the method of
Borovkova et al. (2007) the greater the basket size. Finally, method 4GAB outperforms the
two methods under %-Good, performing almost as well under MAPE. Consequently, one
can use this hybrid method for practical purposes.

A cross analysis of Tables 2.3 and 2.4 shows that changes in the expected jump intensity
impact on the performances of the Hermite-approximant methods that are slightly better for
ηi ∈ [−0.3,0].

Additionally, the two tables show the pricing performance when methods mGA and
mGB are used for m = 6 moments. Method 6GB outperforms all of the others while 6GA
also outperforms the other methods under %-Good but underperforms 4GA and 4GB under
MAPE. Finally, also considering 6GB, the increase in computational time (about 10 times)
for the method may not be sustainable in real life applications and, therefore, we suggest
using 4GAB for a good trade-off in performance versus computational effort.

2.4.2 Delta-hedging performance

A comparison of delta-hedging performance between our formula (2.29) and the formula
proposed in Borovkova et al. (2007) is illustrated in this section.

A sample of nS = 1,000 simulated paths with a 1-week-interval hedging rolling fre-
quency is generated for six basket option scenarios. All of the scenarios have: ϒ = 2,
σ1 = 0.3, σ2 = 0.2, T = 0.5 years, S(1)0 = 110, S(2)0 = 90, a1 = 0.7, a2 = 0.3, δ

(1)
0 = δ

(2)
0 = 20,

λ̃1 = λ̃2 = 0.2, and υ1 = υ2 = 0.2. Additionally, we consider for three of the scenarios
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Table 2.3 Pricing performance comparison: Set 1 (negative average jump-sizes)

r T K
B0

≤ 0.05 > 0.05 ≤ 0.5 > 0.5 ≤ 0.98 (0.98,1.02] > 1.02 Total

%-Good

BPW 58.86% 61.38% 69.72% 50.79% 64.82% 66.98% 53.62% 60.10%
4GA 76.77% 74.39% 69.51% 81.50% 74.12% 74.53% 77.38% 75.60%
4GB 77.36% 75.20% 72.97% 79.53% 74.34% 76.42% 78.28% 76.30%

4GAB 82.48% 80.89% 80.08% 83.27% 79.42% 81.13% 84.16% 81.70%
6GA 85.46% 84.75% 85.68% 84.58% 81.93% 88.30% 87.56% 85.11%
6GB 88.99% 90.58% 86.37% 92.93% 89.60% 86.17% 90.80% 89.78%

MAPE

BPW 1.44% 1.29% 1.00% 1.73% 1.15% 1.35% 1.59% 1.37%
4GA 0.42% 0.39% 0.29% 0.50% 0.46% 0.43% 0.34% 0.40%
4GB 0.41% 0.39% 0.29% 0.50% 0.44% 0.45% 0.35% 0.40%

4GAB 0.43% 0.38% 0.30% 0.50% 0.44% 0.44% 0.36% 0.41%
6GA 0.58% 0.58% 0.54% 0.61% 0.56% 0.55% 0.60% 0.58%
6GB 0.36% 0.38% 0.42% 0.32% 0.34% 0.64% 0.33% 0.37%

No. of Options 508 492 492 508 452 106 442 1,000
Notes: This table contains a summary of the performances of several methods for pricing options in Set 1.

The assets follow equation (2.7) where the parameters are randomly generated and uniformly distributed
in the following ranges: ϒ ∈ [2,15], r ∈ (0;0.1], σi ∈ [0.1;0.6], T ∈ [0.1;1], S(i)0 = [70;130], ai ∈ [−1;1],
K
B ∈ [0.8;1.2], δ

(i)
0 ∈ [0;20], λ̃i ∈ [0;0.2], ηi ∈ [−0.3;0] and υi ∈ [0;0.3] for all i = 2, · · · ,ϒ. In each

row the results per method are shown: BPW stands for the method in Borovkova et al. (2007), mGA
and mGB are the Hermite approximation methods matching the first m moments of XT with m ∈ {4,6}.
Furthermore, 4GAB is a mixture of 4GA and 4GB and returns the solution of the method that correctly
matches the moments if only one of 4GA and 4GB works properly, or the solution of the method that
is the worst out of the two. The mean Monte Carlo method (MC) of Pellizzari (2001) is the benchmark
price.

Table 2.4 Pricing performance comparison: Set 2 (positive and negative average jump-sizes)

r T K∗

B∗
0

≤ 0.05 > 0.05 ≤ 0.5 > 0.5 ≤ 0.98 (0.98,1.02] > 1.02 Total

%-Good

BPW 52.95% 57.72% 65.04% 45.87% 59.73% 57.55% 50.23% 55.30%
4GA 72.24% 72.56% 65.65% 78.94% 70.80% 68.87% 74.89% 72.40%
4GB 74.02% 71.75% 68.70% 76.97% 71.46% 70.75% 74.89% 72.90%

4GAB 78.15% 77.24% 74.80% 80.51% 75.88% 73.58% 80.54% 77.70%
6GA 82.68% 84.96% 80.08% 87.40% 82.74% 83.96% 84.84% 83.80%
6GB 88.19% 90.04% 83.33% 94.69% 87.83% 88.68% 90.50% 89.10%

MAPE

BPW 1.59% 1.42% 1.18% 1.84% 1.26% 1.55% 1.74% 1.51%
4GA 0.59% 0.54% 0.46% 0.65% 0.64% 0.61% 0.49% 0.57%
4GB 0.57% 0.55% 0.46% 0.65% 0.62% 0.66% 0.48% 0.56%

4GAB 0.59% 0.55% 0.48% 0.66% 0.62% 0.68% 0.49% 0.57%
6GA 0.76% 0.70% 0.71% 0.75% 0.67% 0.82% 0.77% 0.73%
6GB 0.50% 0.52% 0.53% 0.49% 0.46% 0.62% 0.53% 0.51%

No. of Options 508 492 492 508 452 106 442 1,000
Notes: This table contains the summary of the performances of several methods for pricing options in Set 2.

The assets follow equation (2.7) where the parameters are randomly generated and uniformly distributed
in the following ranges: ϒ ∈ [2,15], r ∈ (0;0.1], σi ∈ [0.1;0.6], T ∈ [0.1;1], S(i)0 = [70;130], ai ∈ [−1;1],
K
B ∈ [0.8;1.2], δ

(i)
0 ∈ [0;20], λ̃i ∈ [0;0.2], ηi ∈ [−0.3;0.3] and υi ∈ [0;0.3] for all i = 2, · · · ,ϒ. For other

information see Table 2.3.
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r = 2% and η1 = η2 =−0.3 and for the other three r = 5% and η1 = η2 = 0.3. The strikes
considered are K = {100,104,110}.

For each path, the option deltas are calculated at each time-step using the methods 4GA,
4GB and the methodology outlined in Borovkova et al. (2007). The evaluation of the per-
formances for the delta-hedged portfolios is carried out via two error measures:

• the average hedging error among all of the simulations, AHE;

• the average quadratic hedging error, AQHE

where the hedging error is defined as the difference in values between the hedged portfolio
at the maturity date and the option’s payoff.

The results for the hedging performances are reported in Table 2.5. Methods 4GA and
4GB produce good results and their performances are virtually identical on the six scenarios
considered. For ηi =−0.3, the two Hermite expansion methods tend to super-hedge, as the
measure AHE indicates, although the average errors are almost negligible. However, when
ηi = 0.3, the hedging error is negative on average, showing a sub-hedge that is caused by
the high average jump size.

The method of Borovkova et al. also performs fairly well for the three scenarios with
ηi =−0.3 with virtually the same performances as 4GA and 4GB under the measure AQHE.
However, under these three scenarios, the new methods have much better performances than
the method of Borovkova et al. (2007) under the AHE measures (a remarkable reduction of
more than 25% is reached). When one considers the positive average jump size (ηi = 0.3),
the method of Borovkova et al. (2007) also sub-hedges under each scenario and both its
AHE and AQHE measures of error are worse than those of 4GA and 4GB.

2.5 Additional application: The shifted asymmetric jump-
diffusion process

In this section, we propose another application of the pricing formula in Proposition 2.3.2,
when the underlying assets follow more general price dynamics. The content presented in
this section summarises the results in Paletta et al. (2014).

Under the modelling framework in Section 2.3.1, let us consider the financial market
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consisting of ϒ assets S(i) for any i = 1, . . . ,ϒ, with dynamics given by:

d
(

S(i)t −δ
(i)
t

)
=

(
αi − ∑

q={U,D}
λi,qβi,q

)(
S(i)t −δ

(i)
t

)
dt +

(
S(i)t −δ

(i)
t

) nw

∑
j=1

γijdW( j)
t

+
(

S(i)t− −δ
(i)
t

)
∑

q{U,D}
dQ(i,q)

t (2.31)

Equation (2.31) describes the shifted asymmetric jump-diffusion process. This process
is a generalisation of the shifted jump-diffusion process in (2.3) and includes two sources of
jumps. We indicate by q ∈ {U,D} each source of jumps. The parameters in the stochastic
differential equation (2.31) are the same of those in (2.3), with the addition of the index q.
In particular,

{
Q(i,q)

t

}
t≥0

are independent compound Poisson processes formed from some

underlying Poisson processes
{

N(i,q)
t

}
t≥0

with intensity λi,q ≥ 0 and driven by the source of

jumps q; Y(i,q)
j represents the jump amplitude of the j-th jump of N(i,q)

t for any i = 1, . . . ,ϒ;

and the jumps Y(i,q)
j for any i = 1, . . . ,ϒ are independent and identically distributed random

variables with probability density function f (i,q)(y) : [−1,∞) → [0,1] and expected value
under the physical measure P

βi,q = EP[Y(i,q)] =
∫

∞

−1
y f (i,q)(y)dy.

Following the same approach as in Section 2.3.1, if a solution (θ , β̃U , λ̃U , β̃D, λ̃D) of the
system

αi −λi,U βi,U −λi,Dβi,D − r =
nw

∑
j=1

γijθ j − λ̃i,U β̃i,U − λ̃i,Dβ̃i,D, i = 1, . . . ,ϒ (2.32)

does exist and is selected in association with the risk-neutral pricing measure Q, then, under
this risk-neutral measure, the solution of (2.31) is:

S(i)t = δ
(i)
0 ert +(S(i)0 −δ

(i)
0 )e

(
r−∑q={U,D} λ̃i,qβ̃i,q− 1

2 ∑
nw
j=1 γ2

ij

)
t+∑

nw
j=1 γijW̃

( j)
t

∏
q={U,D}

N(i,q)
t

∏
l=1

(Y(i,q)
l +1).

(2.33)
Because the solution to (2.32) is, in general, not unique, as for (2.5), we assume that one
solution is selected and a pricing measure Q is fixed. Under this Q-measure, the intensity



2.5 Additional application: The shifted asymmetric jump-diffusion process 33

of the Poisson process
{

N(i,q)
t

}
t≥t0

for the i-th asset in the basket is λ̃i,q and

β̃i,q = E[Y(i,q)] =
∫ +∞

−1
y f̃ (i,q)dy.

An example of the distributions for the two jumps can be found in Ramezani and Zeng
(2007) where they choose for the U-jumps the Pareto distribution and for the D-jumps the
Beta distribution. The two sources respectively represent the arrival of good and bad news
in the market, which cause upward and downward jumps in prices, respectively.

The model implied k-th moment of B∗
t under Q, after the changing of variables σ2

i =

∑
nw
j=1 γ2

ij and V (i)
t = ∑

nw
j=1

γij
σi

W̃( j)
t as in (2.7), is:

E[B∗
t

k] =
ϒ

∑
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· · ·
ϒ

∑
ik=1

mgf(ei1 + . . .+ eik)
k

∏
l=1

ail

(
S(il)0 −δ

(il)
0

)
e(r+ωil )t (2.34)

as in (2.14), where ω j = −λ̃ j,U β̃ j,U − λ̃ j,Dβ̃ j,D − 1
2σ2

j , e j is the vector having 1 in position
j and zero elsewhere, the moment generation function (mgf) of

σiV
(i)

t + ∑
q={U,D}

N(i,q)
t

∑
l=1

log(Y(i,q)
l +1)

is given by:

mgf(u) = exp
{

tu′
Σu/2

}
∏

q={U,D}

ϒ

∏
i=1

mgf
N(i,q)

t

(
cg flog(Yi,q+1)(ui)
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(2.35)

where Σ denotes the covariance matrix of V =
(

V (1)
t , · · · ,V (ϒ)

t

)′
,

mgf
N(i,q)

t
(u) = exp(tλ̃i,q(eu −1))

and cgflog(Yi,q+1)(ui) is the cumulant-generating function of log(Yi,q +1). The approxima-
tion in Section 2.3 is then employed for pricing and hedging purposes.

Additionally, we benchmark our method 4GA with the method in Borovkova et al.
(2007) over three basket put option scenarios, where the “true” fair no-arbitrage prices
are calculated using the standard Monte Carlo methodology with 106 simulated terminal
values of the underlying asset prices. The prices for the basket put option scenarios are
calculated by the put-call parity in (2.24) and the call pricing formula (2.20). Table 2.6
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contains the prices for the basket put option scenarios and also, on the last two rows, the
error measures %-Good and MAPE. The three scenarios are identical, with ϒ= 6 assets that
follow the shifted asymmetric jump-diffusion process with S(i)0 = i, λ̃i,U = 0.4, λ̃i,D = 0.04,
Y(i,U)

l +1 ∼ Pareto(60), Y(i,D)
l +1 ∼ Beta(70,1) and δ

(i)
0 = e−rT . Furthermore, K = 21 (the

scenarios are at-the-money options), r = 4% and the variance-covariance matrix is simulated
using the algorithm in Hardin et al. (2013). The entries of the upper triangular part of this
matrix are in the order: 0.1037, 0.7620, 0.8570, 0.8790, 0.6970, -0.3040; 0.1657, 0.4050,
0.5108, 0.4331, 0.1701; 0.2124, 0.9067, 0.8829, -0.6870; 0.1431, 0.7479, -0.5702; 0.0468,
-0.7557; 0.2136. The three scenarios differ only for time-to-maturity with T = {1,2,3}
years.

The performances of our method 4GA and the method of Borovkova et al. (2007) are
summarised in Table 2.6, where it is shown that for the three scenarios considered, 4GA out-
performs the latter under both measures of error. The comparison shows that our method-
ology also works effectively in pricing basket options whose assets follow more general
dynamics.

2.6 Conclusions

Recent techniques for pricing and hedging basket options have imposed strong assumptions
on the overall evolution dynamics of the basket, searching for closed-form solutions and
repackaging log-normal Black-and-Scholes type pricing formulae. However, by doing so,
the empirical characteristics of historical prices are not taken into consideration. In this
chapter, we have highlighted a new methodology that can handle baskets of assets following
more realistic diffusions.

In particular, we considered the correlated shifted log-normal diffusion with jumps in
Câmara et al. (2009), which is capable of accounting for negative skewness and excess
kurtosis, which characterize equity stocks. We demonstrated with numerical comparisons
that our Hermite expansion approach provides pricing and hedging results for basket options
that are as good as the competing methods, and in many cases superior. The improved results
emphasized in the chapter are not surprising since the technique is fundamentally based
on matching additional moments under the model specification. Thus, we allow granular
specification of dynamics for each asset but then we only need to determine the moments of
the basket. We also provided an additional application of our methodology over the shifted
asymmetric jump-diffusion process. This application shows that the new method works
fairly well even for more general dynamics.

Our methodology has evident advantages over numerical methods since it consists of a
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Table 2.5 Delta-hedging performance comparison

Scenario AHE AQHE Scenario AHE AQHE Scenario AHE AQHE

1
r = 2% 0.021 0.102

2
r = 2% 0.041 0.110

3
r = 2% 0.066 0.121 BPW

ηi =−0.3 0.014 0.101 ηi =−0.3 0.034 0.108 ηi =−0.3 0.059 0.119 4GA
K = 100 0.014 0.101 K = 104 0.034 0.108 K = 110 0.059 0.119 4GB

4
r = 5% -0.663 0.589

5
r = 5% -0.642 0.558

6
r = 5% -0.618 0.521 BPW

ηi = 0.3 -0.337 0.460 ηi = 0.3 -0.317 0.455 ηi = 0.3 -0.293 0.449 4GA
K = 100 -0.337 0.460 K = 104 -0.317 0.455 K = 110 -0.293 0.449 4GB

Notes: This table contains a summary of the delta-hedging performances of three methods: BPW stands for the
method in Borovkova et al. (2007) and 4GA and 4GB are the Hermite approximation methods matching the
first 4 moments of XT . The measures of error considered are: AHE– average error, AQHE– average quadratic
hedging error. The six scenarios considered are: ϒ= 2, σ1 = 0.3, σ2 = 0.2, T = 0.5 years, S(1)0 = 110, S(2)0 = 90,

a1 = 0.7, a2 = 0.3, δ
(1)
0 = δ

(2)
0 = 20, λ̃i = 0.2, and υ1 = υ2 = 0.2 and the other parameter values are in the

‘Scenario’ columns.

Table 2.6 Pricing performance comparison: The shifted asymmetric jump-diffusion process

Maturity MC BPW 4GA

T = 1
0.5473

0.6078 0.5125
(0.0040)

T = 2
0.6382

0.7162 0.6402
(0.0051)

T = 3
0.6791

0.7465 0.6784
(0.0058)

%-Good 0.00% 66.67%
MAPE 11.07% 2.26%

Notes: This table shows the results for three put basket option scenarios under the shifted
asymmetric jump-diffusion. The scenarios are described in Section 2.5. The last two rows
indicate the two measures of error in Section 2.4.1.
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Black-and-Scholes type formula that only requires the solution of a system of equations for
the matching of the moments. Computationally, the effort required is relatively small and
our method is even more advantageous when one prices and hedges a portfolio of options
written on the same basket, since the solution of the system for the moment matching is
carried out only once.

While this chapter focused on equity baskets, it is clear that the same methodology can
be applied for mixtures of assets and models, as long as the moments can be calculated
easily.

2.6.1 Further research

Currently, the method we presented in this chapter has been employed exclusively for Eu-
ropean basket options. In the financial markets, a large number of American-style basket
options is traded, so it would be useful to extend our Hermite expansion method to in-
clude the pricing and hedging of these derivatives. As discussed in Section 2.2, there exist
some methodologies for pricing American-style derivatives that use moment matching pro-
cedures together with binomial tree methodologies and some quasi-analytic approximations
for spread options are also available. Further research would be on quasi-analytic pricing
formulae for American-style basket options that use the methodology presented here.

Another direction for the research will be to employ the Hermite expansion approach for
different payoff functions and/or asset price models. This will be researched in particular,
together with future research that we will conduct on the weighted least squares Monte
Carlo method described in Chapter 5. In particular, this new methodology improves on the
performances of the least squares Monte Carlo method of Longstaff and Schwartz (2001) by
employing the weighted least squares regression method. In Chapter 5, we will show that
a good approximation of the weighting function is given as the difference in price between
two European options. Consequently, we will conduct further research on this topic to find
an efficient way to price these options for multidimensional payoffs, which could be done
by employing the methodology outlined in this chapter.



Appendix

Appendix 2.A Results for the probabilists’ Hermite poly-
nomials

Throughout this chapter we use the probabilists’ Hermite polynomials which are defined as:

Hk(x) =
(−1)k

n(x)
∂ kn(x)

∂xk .

We report in the following the first six polynomials:

H0(x) = 1

H1(x) = x

H2(x) = x2 −1

H3(x) = x3 −3x

H4(x) = x4 −6x2 +3

H5(x) = x5 −10x3 +15x

Among the properties of the Hermite polynomials we enumerate:

• the recursive relation

Hk(z) = zHk−1(z)−H ′
k−1(z) k = 1,2, . . . (2.36)

where H ′
k(·) is the first derivative of Hk(·) with respect to z;

• the orthogonality property∫ +∞

−∞

Hm(x)Hn(x)n(x)dx = 0,m ̸= n (2.37)
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∫ +∞

−∞

Hn(x)Hn(x)n(x)dx = n!,m ̸= n (2.38)

i.e. the probabilists’ Hermite polynomials are orthogonal w.r.t. the standard normal
probability density function.

In the following, we show some useful results. Following from (2.36), for k ≥ 1∫ +∞

z̃
Hk(z)n(z)dz =

∫ +∞

z̃
zHk−1(z)n(z)dz−

∫ +∞

z̃
H ′

k−1(z)n(z)dz.

Solving the second integral by parts and using n′(z) =−zn(z),∫ +∞

z̃
Hk(z)n(z)dz =

∫ +∞

z̃
zHk−1(z)n(z)dz

−
[
+Hk−1(z)n(z)|+∞

z̃ +
∫ +∞

z̃
zHk−1(z)n(z)dz

]
=

= Hk−1(z̃)n(z̃) .

Additionally
∫+∞

z̃ H0(z)n(z)dz = N (−z̃), so

∫ +∞

z̃
J(z)n(z)dz = gH(z̃)+ϕ0N (−z̃) . (2.39)

where gH(·) is defined in formula (2.21).
Given the orthogonality property of these polynomials,

∫ z̃

−∞

Hk(z)n(z)dz =−Hk−1(z̃)n(z̃)

and, consequently, ∫ z̃

−∞

J(z)n(z)dz =−gH(z̃)+ϕ0N (z̃) . (2.40)

In the proofs of Propositions 2.3.2 and 2.3.3, formula (2.39) and formula (2.40) are used for
B∗

0 > 0 and B∗
0 < 0, respectively.

Appendix 2.B The mean Monte Carlo method (Pellizzari,
2001)

The fair benchmark prices in this chapter are calculated via the Monte Carlo method with
control variates in Pellizzari (2001). The key idea is to employ the closed-form pricing
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formula in the univariate case to reduce the variance of the Monte Carlo simulation method
for pricing multivariate payoffs.

In particular, the method considers a general European-style derivative, which pays out
at maturity

hP
T (S

(1)
T , . . . ,S(ϒ)T ) (2.41)

and considers the control variates

MT (i) = hP
T

(
E[S(1)T ], . . . ,E[S(i−1)

T ],S(i)T ,E[S(i+1)
T ], . . . ,E[S(ϒ)T ]

)
. (2.42)

Consequently, the Monte Carlo estimate is obtained by

MC(i) = e−rT 1
nS

nS

∑
j=1

[
hP

T( j)
−MT ( j)(i)+E[MT (i)]

]
(2.43)

where nS is the number of simulations, hP
T( j)

is the payoff function (2.41) evaluated for the
j-th path, MT ( j)(i) is the control variates function evaluated for the j-th path and E[MT (i)]
is the analytical price for the univariate case.

The method is quite general and also works for the basket options considered in this
chapter. In particular, if the payoff (2.41) is given as the payoff of a basket call option, then
(2.42) corresponds to the price of an option on the single asset S(i)T , with payoff function at
maturity

ai max

{
0,S(i)T − K −a1E[S(1)T ]− . . .−ai−1E[S(i−1)

T ]−ai+1E[S(i+1)
T ]− . . .−aϒE[S(ϒ)T ]

ai

}
(2.44)

i.e. the price of a call option with strike price

K −a1E[S(1)T ]− . . .−ai−1E[S(i−1)
T ]−ai+1E[S(i+1)

T ]− . . .−aϒE[S(ϒ)T ]

ai
.

For ai < 0, formula (2.42) becomes the payoff of a vanilla put option on S(i)T . In both cases,
under the modelling framework in Section 2.3.1, considering the mechanism of shifting the
strike price and basket value, these options can be priced using the option pricing formula
in Merton (1976) for a (non-shifted) jump-diffusion process.
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Appendix 2.C The shifted log-normal method in
Borovkova et al. (2007)

The method of Borovkova et al. (2007) uses a moment-matching technique to price basket
options and calculate the hedging parameters. The idea is to approximate the value of the
basket at maturity via a generalisation of the log normal distribution to cover baskets that
can take over negative values. This method assumes basket options whose assets follow
correlated geometric Brownian motions and we adapt it so that is also works for assets
following the shifted jump-diffusion model in Section 2.3.1.

The probability density function they consider is:

f (u) =
1√

2πσs(bhu− τs)
e
− 1

2σ2
s
(log(bhu−τs)−µs)

2

,u <−τs (2.45)

where µs is the scale, σs is the shape, τs is the location parameter and bh = {−1,1}. The
first three moments of a random variable with the probability density function in (2.45) are:

M1 = bh

[
τs + eµs+

1
2 σ2

s

]
(2.46)

M2 = τ
2
s +2τseµs+

1
2 σ2

s + e2µs+2σ2
s (2.47)

M3 = bh

[
τ

3
s +3τ

3
s eµs+

1
2 σ2

s +3τse2µs+2σ2
s + e3µs+

9
2 σ2

s

]
. (2.48)

Given the skewness of the basket at the maturity time,

skewT =
E[B∗

T −E[B∗
T ]]

3[
E[B∗

T
2]−E[B∗

T ]
2
]3/2 , (2.49)

for E[B∗
T

k] as in (2.14), Borovkova et al. (2007) select bh =−1 when skewT < 0 and bh = 1
for skewT > 0. The moment matching is then carried out by solving a system of three
equations in three unknowns, similar to that in (2.12).

Since the density (2.45) is a generalisation of the log-normal density, Borovkova et al.
carried out the pricing of a basket option using the Black-and-Scholes formula. In particular,
for the cases when bh = 1 and τs = 0, the option pricing is carried out by the standard Black-
and-Scholes pricing formula, while for the other cases they consider an adjusted version,
where the shift τs is coupled with the strike price. Specifically, considering B1, a log-
normally distributed basket with bh = 1 and τs = 0 with parameters µs and σs, then the
basket

B2 = B1 + τs (2.50)
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is a log-normally distributed with parameters µs, σs and τs. On the other hand, the basket

B3 =−B1 + τs (2.51)

is negative shifted log-normal with parameters µs, σs and τs. Consequently, in all of the
three cases above, one can still employ the Black-and-Scholes formula.



Chapter 3

American Options: Problem
Formulations and Existing
Methodologies

This chapter presents the American option pricing problem and it is a preamble to Chap-
ters 4 and 5 where we describe two new methodologies for pricing and hedging American
options. The chapter is structured as follows: Section 3.1 describes the market settings, pro-
vides mathematical formulations of the problem and introduces the notation for the follow-
ing chapters; Section 3.2 looks over the main properties and characteristics of the pricing
formula and the optimal exercise price; Section 3.3 reviews existing solution approaches
and classifies them into quasi-analytic methods and numerical methods; and, Section 3.4
details the six quasi-analytic methodologies we improve with our new ‘extension’ method
in Chapter 4. Finally, Section 3.5 overviews the contributions we will provide in the next
three chapters.

3.1 Problem formulations

Consider1 a filtered probability space (Ω,F ,(Ft)t≥t0 ,Q) representing a financial market
consisting of three assets: (1) a bank account dMt = rMtdt, where the risk-free interest rate
r is assumed constant over time, (2) a risky asset with the dynamics {St}t≥t0 given under the
risk-neutral measure Q as St = St0est , where St0 > 0 and {st}t≥t0 is a Markovian process with
st0 = 0 and (3) an American-style derivative written on the risky asset with payoff function
from exercise at time t in time-t0 dollars to the holder indicated by ht(·), and maturity at

1The notation we introduce here follows Glasserman (2003), chapter 8.
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time T . For example, for the state St = X , the vanilla put option has the payoff function:

ht(X ) = e−r(t−t0)max{0,K −X } (3.1)

and, for a call option, the payoff function is:

ht(X ) = e−r(t−t0)max{0,X −K}, (3.2)

where, as before, K is the strike price.
McKean (1967) and Van Moerbeke (1974) formulated the American option pricing

problem as a free boundary problem. Following a no-arbitrage argument, Bensoussan
(1984) and Karatzas (1988) expressed the American option pricing problem as the prob-
lem of finding the optimal expected discounted payoff under the risk-neutral measure Q:

Vt0(St0) = sup
t∗∈Γ

E
[
h(St∗)|St0

]
, (3.3)

where Γ is the class of admissible stopping times in (t0,T ]. In particular, when considering
an American put option, the supremum in formula (3.3) is achieved by the optimal stopping
time:

t∗ = inf
{

inf
t∈[t0,∞)

{St ≤ S(E)f (t)},T
}

(3.4)

where S(E)f (t) is the optimal exercise price. On the other hand, for an American call option,
the optimal stopping time assumes the form:

t∗ = inf
{

inf
t∈[t0,∞)

{St ≥ S(C,E)
f (t)},T

}
(3.5)

where equivalently, S(C,E)
f is the optimal exercise price for call option.2 Since the optimal

exercise price is not known in advance, in the following formulation we make explicit that
this function has to be determined together with the option price. Let us define the set
Π = { fS(t) : (t0,T ] 7→ ℜ+} of all real functions. Then, the problem (3.3) for an American
put option corresponds to:3

Vt0(St0) = sup
fS∈Π

E
[
h
(
St∗( fS)

)
|St0

]
, (3.6)

2In equation (3.31), we report the relation between S(E)f and S(C,E)
f for American options under geometric

Brownian motion, which is commonly defined as the put-call symmetry for optimal exercise prices.
3See, among others, Garcia (2003), for a parametric version of formulation (3.6).
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where, as before, t∗( fS) = inf
{

inft∈[t0,∞){St ≤ fS(t)},T
}

. Equivalently, for American call
options, the optimal stopping time is t∗( fS) = inf

{
inft∈[t0,∞){St ≥ fS(t)},T

}
.

Numerical solutions for problem (3.3) usually restrict the pricing of American options
to contracts that can be exercised only to a fixed set of exercise opportunities t1 < t2 <

.. . < tm = T and t0, the time of evaluation, is not usually part of this set. Without loss
of generality, we assume that ∆ti = ti+1 − ti = T/m = ∆t , for any i = 0, . . . ,m− 1. This
time discretisation leads to the solution of the pricing problem for the so-called Bermudan
contracts. Henceforth, we will refer to these contracts simply as American options.

Additionally, to simplify the notation under the discrete-time settings, we denote: the
underlying asset price at the ith exercise opportunity (the one at time ti) by Si; the logarithmic
return over the period (ti, ti+1) by si+1 = log

(
Si+1
Si

)
; the payoff function in time-t0 dollars

for exercise at time ti when the current state of the underlying asset is Si = X by hi(X );
the discount factor from time ti to time t0 by:

r0,i = e−ri∆t ; (3.7)

the value in time-t0 dollars of the American-style derivative at time ti given Si =X (assum-
ing the option has not been exercised previously) by Vi(X ); the continuation value of the
American-style derivative measured in time-t0 dollars conditional on the current state X

by:
Ci(X ) = Eti [Vi+1(Si+1)|Si = X ] , (3.8)

where Eti [·] is the expectation operator under the risk-neutral measure Q with respect to
the filtration Fti; and, the optimal exercise price at time ti by S fi , which is defined as the
underlying asset price X such that:

Ci(X ) = hi(X ), (3.9)

i.e. the underlying asset price for which it is indifferent to exercise the option or keep it
alive.

Under these discrete settings, problem (3.3) is often solved via the following equivalent
dynamic programming formulation:

{
Vm(X ) = hm(X )

Vi(X ) = max{hi(X ),Ci(X )}, i = 0, · · · ,m−1

(3.10)

(3.11)
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where one is ultimately interested in V0(St0) and time t0 is excluded from the set of exercise
opportunities by simply choosing h0(St0) = 0.

Moreover, considering the definition of S(E)f (t), problem (3.10)-(3.11) for American put
options can also be formulated as:


Vm(X ) = hm(X )

Vi(X ) =

hi(X ) if X ≤ S fi

Ci(X ) if X > S fi

, i = 0, . . . ,m−1

(3.12)

(3.13)

and, equivalently, for American call options as:


Vm(X ) = hm(X )

Vi(X ) =

hi(X ) if X ≥ S fi

Ci(X ) if X < S fi

, i = 0, . . . ,m−1.

(3.14)

(3.15)

In Chapter 4, we employ formulation (3.3) and a decomposition of the time-to-maturity into
two components to derive the pricing formula of our new quasi-analytic pricing and hedg-
ing method. In Chapter 5, we use formulation (3.10)-(3.11) for the iterations of our new
weighted least squares Monte Carlo algorithm. We use the two formulations (3.12)-(3.13)
and (3.14)-(3.15) to prove our main result in Chapter 5, that is the existence of heteroscedas-
ticity in the least squares Monte Carlo method by Longstaff and Schwartz (2001), and to
provide an approximation of the weighting function in the regressions we employ for our
new pricing method.4

3.1.1 Underlying asset price dynamics

In this section, we specify the underlying asset price dynamics we consider in the following
chapters, under the risk-neutral measure Q. The new method in Chapter 4 aims to improve
any quasi-analytic methodology for pricing and hedging American options under the geo-
metric Brownian motion dynamics. The notation we use is illustrated below.

Geometric Brownian motion (GBM): If a stochastic process {St}t≥t0 is a geometric
Brownian motion then it satisfies the following stochastic differential equation (SDE):

dSt = (r−δ )Stdt +σStdW̃t (3.16)
4We detail our algorithm in Section 5.3.
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where W̃t is a standard Wiener process under Q, σ is the volatility parameter and δ is the
dividend yield. The solution to (3.16) is:

St = St0e(r−δ−σ2
2 )(t−t0)+σW̃t−t0 . (3.17)

The arithmetic version of (3.16), dSt = (r−δ )dt +σdW̃t , was studied by Bachelier (1900)
in his doctoral thesis and then detailed by Albert Einstein in 1905.

Additionally, in Chapter 5, we propose a new numerical algorithm, the weighted least
squares Monte Carlo, which intends to solve the upper bias of one of the most employed
regression-based methods, the least squares Monte Carlo method of Longstaff and Schwartz
(2001). In order to prove the superiority of our new method, we will carry out a scenario-
based comparison (Section 5.3.2) on American options under the geometric Brownian mo-
tion or any of the following processes.

Exponential Ornstein-Uhlenbeck process: If a stochastic process {St}t≥t0 is following
the exponential Ornstein-Uhlenbeck process then it satisfies the following SDE:

dSt = η (µ − logSt)Stdt +σStdW̃t (3.18)

where µ is the logarithmic long-term mean under Q, η > 0 is the speed of mean-reversion
and σ is the volatility parameter. This process is discussed in Brigo et al. (2009) and corre-
sponds to the exponentiation of the logarithm-return process {st}t≥t0:

dst = η(θ − st)dt +σdW̃t (3.19)

where θ = µ − σ2

2η
. Process (3.18) has the advantage over (3.19) of providing only positive

values.

Log-normal jump-diffusion process: If a stochastic process {St}t≥t0 follows the log-
normal jump-diffusion then it satisfies the following SDE:

dSt = (r−δ −λκ)St−dt +σSt−dW̃t +St−d
QM

t

∑
l=1

(Y M
l −1) (3.20)

where r, δ and σ are as above, JM
t = ∑

QM
t

l=1 (Y
M
l −1) is a compound Poisson process driven

by the Poisson process QM
t with intensity λ , the jump sizes Y M

l are i.i.d with log(Y M
l ) ∼

N(αJ,σ
2
J ) and κ = E

[
Y M

l −1
]
= eαJ+σ2

J /2−1. All three random sources are assumed to be
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independent. This process was introduced in finance by Merton (1976) and its solution is:

St = St0e(r−δ−λκ−σ2
2 )(t−t0)+σW̃t−t0

QM
t

∏
l=1

Y M
l . (3.21)

Double exponential jump-diffusion process: If a stochastic process {St}t≥t0 is following
the double exponential jump-diffusion then it satisfies the following SDE:

dSt = (r−δ −λκ)St−dt +σSt−dW̃t +St−d
QK

t

∑
l=1

(Y K
l −1) (3.22)

where r, δ and σ are as above, JK
t = ∑

QK
t

l=1 (Y
K
l −1) is a compound Poisson process driven

by the Poisson process QK
t with intensity λ , the jump sizes Y K

l are i.i.d with:

log(Y K
l ) =

x+, with probability q,

−x−, with probability 1−q
(3.23)

where x+ and x− are exponential random variables with mean 1/η1 and 1/η2 respectively
(η1 > 1 and η2 > 0), and κ = (1−q) η2

η2+1 +q η1
η1−1 −1. All random sources are assumed to

be independent. This process was introduced in finance by Kou (2002) and its solution is:

St = St0e(r−δ−λκ−σ2
2 )(t−t0)+σW̃t−t0

QK
t

∏
l=1

Y K
l . (3.24)

All of the processes above are of the type St = St0est and, consequently, fulfil the as-
sumptions of Propositions 5.2.1 and 5.2.2 in Chapter 5. Additionally, for the four dynamics
above, there exist closed-form pricing formulae for European options, which we employ in
Section 5.3.1 to estimate the weights of the weighted least squares regression method.

3.2 Theoretical properties

Some important seminal works on the American pricing problem are Samuelson (1965),
McKean (1967) and Van Moerbeke (1974). The problem was later studied from different
perspectives and particular attention was focused on the optimal exercise price. In this sec-
tion, we review the main results on the option price function and the optimal exercise price
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for American options. The main focus will be on options under the geometric Brownian
motion since, in Chapter 4, we use this process to derive some theoretical results of our
new quasi-analytic ‘extension’ method as well as to motivate the new methodology. For
completeness, we also look over the main properties under other dynamics.

3.2.1 Properties of the option price function

We start by considering an American put (resp. call) option under the geometric Brownian
dynamics in (3.16).5 The pricing function, Vt(X ), of this option is continuous on t ∈ [t0,T ]
and, for all t ∈ [t0,T ], it is non-increasing (non-decreasing) and convex on ℜ+.

Additionally, the option pricing formula, for all X ∈ ℜ+, is non-increasing on [t0,T ],
i.e. it has decreasing time-value. Let us also define the delta parameter as ∆t(X ) = ∂Vt(X )

∂X .
For an American put option (resp. call), it holds that ∆t(X ) ∈ [−1,0] (∆t(X ) ∈ [0,−1])
for any X ∈ ℜ+ and all t ∈ [t0,T ].

An important property that links put and call options under geometric Brownian motion
is the put-call parity (McDonald and Schroder, 1998).6 Let Pt(St ,K,r,δ ,T ) and Ct(St ,K,r,δ ,T )
denote the time-t price functions of American put and call options respectively, where we
explicitly indicate the inputs in order: underlying spot price, strike price, risk-free rate,
dividend yield and maturity date. Then, it holds true that:

Pt(St ,K,r,δ ,T ) =Ct(K,St ,δ ,r,T ) (3.25)

and, consequently, the problem of pricing American call options can be reduced to that of
pricing American puts by reversing the order of St and K, and r and δ .

Moreover, in the case of infinite maturity, T →+∞ , McKean (1967) and Merton (1973)
priced American options by exact-closed formulae. These options are called perpetual and
their pricing formula for put options is:

V ∞
t0 (St0) = α(S∞

f )S
β

t0 (3.26)

where
α(S∞

f ) = (K −S∞
f )(S

∞
f )

−β , (3.27)

5An overview of some of these properties is also in Detemple (2005), Chapter 4.
6McDonald and Schroder (1998) derived formula (3.25) by expanding on the result by Grabbe (1983) who

worked for options on foreign exchange.
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√(
1
2
− r−δ

σ2

)2

+2
r

σ2 (3.28)

and the optimal exercise price is a flat function equal to:

S∞
f = K

β

β −1
. (3.29)

The call pricing formula is derived by put-call symmetry. Additionally, Mordecki (2002)
and Boyarchenko and Levendorskii (2002) priced perpetual options under various Lévy
models. Although perpetual options are not traded, they are useful to price real options
and/or to approximate finite-maturity options as we show in Chapter 4, where we employ
formula (3.26) to prove our new pricing formula (Proposition 4.2.1).

3.2.2 Properties of the optimal exercise price

We next review a number of documented properties of the optimal exercise price of an
American put, which will be useful in Chapter 4 for our ‘extension’ method. Again, let us
assume the geometric Brownian motion dynamics (3.18) and an American put option with
maturity T and strike price K. Jacka (1991) proved that the optimal exercise price S(E)f (t) is
a continuous function, non-decreasing with respect to time, with the limiting value

lim
t→T

S(E)f (t) = min{K,rK/δ} (3.30)

when dividends are paid at the rate δ , and bounded below by the optimal exercise price
of the perpetual put option in (3.29). Ekstrom (2004) and Chen et al. (2008) showed that
the optimal exercise price is a convex function when no dividends are paid. Chen et al.
(2013) extended the proof to dividend-paying assets and demonstrated that for a dividend
yield very close but slightly greater than the risk-free rate, i.e. 0 < δ − r ≪ 1, the optimal
exercise price loses convexity near maturity. Additionally, Van Moerbeke (1974) showed
that the optimal exercise price approaches the maturity date with infinite speed.7

On the other hand, moving away from maturity, the optimal exercise price has ‘nicer’
behaviour: Chen et al. (2011) for dividend-paying options and Xie et al. (2011) for the non-
dividend paying case calculated an upper bound of the optimal exercise price and proved that

7A vast amount of the literature has studied the behaviour of the optimal exercise price near expiration. In
Section 4.4, we review the contributions that provide the asymptotic behaviour of the optimal exercise price
near the maturity of the contract.
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this bound converges quickly (more than exponentially in time) to the flat function in (3.29).
Consequently, being reasonably far from maturity, one can expect that the optimal exercise
price is almost flat.

The results we just presented for times close to maturity and times far away from it
(i.e. times close to the beginning of the financial contract) are the starting points of our
methodology in Chapter 4. As we discuss there, the new method is based on splitting the
maturity time into two regions, one close-to-maturity and the other further from it, and using
two different approximations in order to focus any computational effort in the estimation
of the optimal exercise price close-to-maturity, since it changes slope rapidly and can be
difficult to estimate, and a simpler approximation near the beginning of the contract.

Additionally, our new method takes advantage of existing pricing functions8 to estimate
the optimal exercise price in the second region of time-to-maturity and this is made feasible
by the well-known property discussed in Geske and Johnson (1984), Kim (1990) and Basso
et al. (2004), whereby, under the Black-and-Scholes model, the optimal exercise price does
not depend on the current spot price. As a consequence, it is possible to employ the optimal
exercise price of a shorter maturity option to build part of the optimal exercise price of an
American option written on the same asset, with the same strike price but with a longer
maturity. This is the basis of the methodology in Chapter 4.

In addition, the optimal exercise prices of call and put options with identical charac-
teristics are linked via a put-call symmetry relation. Let us define S(E)f (t,K,r,δ ,T ) and

S(C,E)
f (t,K,r,δ ,T ) the optimal exercise prices of the put and call respectively, where t is the

valuation time and the other inputs are as in (3.25), then:

S(E)f (t,K,r,δ ,T ) =
K2

S(C,E)
f (t,K,δ ,r,T )

. (3.31)

Most of the results above have been generalised to other dynamics. For dividend yield,
risk-free rate and volatility given as a function of time and current underlying asset price,
Jacka and Lynn (1992) and Detemple and Tian (2002) proved that the optimal exercise price
of an American call option is unique (the exercise region is up-connected), non-increasing
and right-continuous. They also proved that the optimal exercise price for this dynamics is
not stochastic and is a function of only time-to-maturity, extending the results of Geske and

8The ‘extension’ method works in extending almost any method for pricing and hedging American op-
tions under the geometric Brownian motion dynamics. In this thesis, we will incorporate the methodologies
reviewed in Section 3.4. In Chapter 4 and 6, we show numerically that our methodology improves on these
existing methodologies in most cases.
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Johnson (1984), Kim (1990) and Basso et al. (2004). Assuming a constant risk-free rate,
they proved that the optimal exercise price is continuous. Bayraktar and Xing (2009) proved
that the optimal exercise price for American put options under various jump-diffusion pro-
cesses is continuously differentiable everywhere, except at maturity, and it is strictly increas-
ing. Chiarella et al. (2014) derived in implicit form the limiting value of the optimal exercise
price for jump-diffusions for t → T . It has a similar structure to the limiting value (3.30),
and it is expressed as an integral equation which involves the probability density function
of the jumps. Lamberton and Mikou (2008) proved continuity of the optimal exercise price
for general Lévy processes.

3.3 Review of the existing methodologies

The American option pricing problem has been studied in great depth by researchers from
different disciplines and backgrounds. As shown above, the main challenge consists in
the fact that the American optionality requires the selection of the optimal exercise price
together with the valuation of the contingent claim, and this selection makes it a stochastic
optimisation problem. The solution of the problem is useful not only from an academic
point of view, but also because it is particularly relevant for practitioners who operate in
the market. Neglecting the right exercise-decision process in option markets may cause
severe losses to option holders. Among others, Barraclough and Whaley (2012) analysed
the exercise of American put options on stocks over the period January 1996 through to
September 2008, and found that over 3.96 million contracts remained unexercised although
it was optimal to do so, with a lost profit to the contract holders of nearly $1.9 billion.
Similarly, Pool et al. (2008) estimated a lost profit to call option holders of over $491 million
during the period January 1996 through to April 2006. Both pieces of research justify these
losses partially with the existence of exercise/trading costs, but both state that the bulk of the
losses is not rationally justifiable. From a theoretical point of view, the same problem was
investigated by Ibáñez and Paraskevopoulos (2011) and Chockalingam and Feng (2015),
who derived upper bounds for the profit lost in the case of a suboptimal exercise strategy.

It is only in the last 10 years that exact formulae for pricing these financial instruments
have come out: using homotopy-analysis, Zhu (2006) provided a Taylor’s expansion to
price American options under the standard geometric Brownian motion dynamics for a non-
paying dividend asset and Zhao and Wong (2012) extended Zhu’s result to a general diffu-
sion process with local volatility and deterministic dividend yield, by providing a Maclaurin
series pricing formula. However, the two formulae are expressed as infinite series so they
are sometimes not recognized as exact closed-form pricing formulae and they do not have
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a clear advantage over pure numerical methods from a computational point of view. On the
other hand, several approximating methods have been proposed so far and below we review
the main contributions.

Reviews of existing solution approaches are in Broadie and Detemple (1996, 2004),
Glasserman (2003), Barone-Adesi (2005) and Pressacco et al. (2008).

3.3.1 Quasi-analytic methods

The methods reviewed in this section consist of analytic formulae that require at most a
reasonably small number of numerical solutions of (integral) equations. One of the first
methods in this category for pricing an American call option on a stock paying a single
(known) dividend is the Roll–Geske–Whaley formula (Roll (1977), Geske (1979, 1981) and
Whaley (1981)). Whaley (1982), by using weekly closing prices for the call options traded
on the Chicago Board of Options Exchange (CBOE) and written on all 91 dividend-paying
stocks over the period 1975-1978, show the superiority of this formula over the Black-and-
Scholes formula modified by Black (1975) to include the early exercise feature.9 Cassimon
et al. (2007) generalised the Roll–Geske–Whaley formula to the case of multiple discrete
(known) dividends.

Assuming a constant dividend yield, Geske and Johnson (1984) used a portfolio of com-
pound European options to replicate the early exercise feature of American options. How-
ever, their method includes high-dimension multivariate normal probabilities, whose calcu-
lation quickly becomes cumbersome. The method of Geske and Johnson (1984) was then
studied and extended in many directions: Shastri and Tandon (1986) adapted it to options
on futures but found significant deviations from market prices; Bunch and Johnson (1992)
optimally located the exercise points by maximizing the option value, i.e. they searched for
the best lower bound for the option pricing, and showed that most of the time only two –
and in a few cases for deep-in-the-money options only three – early-exercise dates including
maturity are required; Ho et al. (1997) included a stochastic interest rate economy; Gukhal
(2004) extended the method to the log-normal jump-diffusion process in Merton (1976);
and Prekopa and Szantai (2010) provided an exponential smoother Richardson extrapola-
tion, which was found to provide biased prices by Joshi and Staunton (2012).

A remarkable technique is the quadratic approximation in Barone-Adesi and Whaley
(1987), which gives in closed form an approximated solution of the Black-and-Scholes par-
tial differential equation with dividend by generalising the method in MacMillan (1986).

9Black (1975) priced American call options on a underlying asset paying one (known) dividend as the
higher of the prices of a European call option where the underlying spot price is net the dividend, and a
European call option where the time to ex-dividend is substituted for the time-to-maturity.
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Carr and Faguet (1996) proved that this method is the first-order expansion of the option
price function. The quadratic approximation, which is extremely fast and accurate for
very short and very long maturities, has been refined by Ju and Zhong (1999) including
a second-order extension that improves accuracy for middle-term maturities. Subsequently,
Li (2010a) further refined this second-order expansion by improving the accuracy of the
estimation of the optimal exercise price, although the complexity of the method increases
significantly without real improvements on the pricing performances. Kou and Wang (2004)
extended Barone-Adesi and Whaley (1987) to the double exponential jump-diffusion model
(see SDE (3.22)). However, the approximations of Barone-Adesi and Whaley (1987), Ju
and Zhong (1999), Kou and Wang (2004) and Li (2010a) have the limitation that the error
cannot be controlled.

An important step in the American option pricing literature is the result of Kim (1990),
who derived an implicit-form integral equation for the optimal exercise price. Hence, the
pricing of American options can be reduced to identifying the optimal exercise price ef-
ficiently. Additionally, they provided an American option pricing formulae that is given
as the European option price plus a correction term, which is named the early exercise
premium. Jacka (1991) and Carr et al. (1992) independently derived the same price decom-
position. Several subsequent papers focused on improving the computational performance
of the integral method. Among them, Sullivan (2000) employed Chebyshev polynomials
and Gaussian quadrature; Kallast and Kivinukk (2003) used the trapezoidal rule and the
Newton-Raphson method; Ibáñez (2003) modified the method to guarantee that the prices
monotonically get closer to the true price when the number of steps increases; and Kim
et al. (2013), based on an idea from Little et al. (2000), transformed the integral equation
into a numerical functional form with respect to the optimal exercise boundary, and sub-
sequently constructed an iterative method to calculate the boundary as a fixed point of the
functional. Additionally, Kim and Yu (1996) derived the integral-equation under a local
volatility process, and Detemple and Tian (2002) further generalised it to diffusions with
stochastic volatility and interest rate.

Moreover, Johnson (1983) proposed an analytic formula for non-dividend-paying stock
options as a weighted average of a lower and an upper bound for the option prices. The
disadvantage of this method is that the weights in the sum are found by regressing on the
option prices in Parkinson (1977) and consequently they are not reliable when the con-
ditions change. Blomeyer (1986) improved on it by including one known dividend. Li
(2010b), further improved on Johnson (1983) by deriving closed-form approximations of
the weight parameter. Other approaches are based on approximation of the optimal exercise
price: among them, Bjerksund and Stensland (1993) used a flat approximation of the opti-
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mal exercise price; Bjerksund and Stensland (2002) generalised on Bjerksund and Stensland
(1993) using a two-step function; Omberg (1987) approximated the optimal exercise price
with an exponential function; Ju (1998) proposed a piece-wise exponential function for the
optimal exercise price; and, Gutierrez (2013) generalised the approach to any function by
approximating the first-passage density of a Brownian motion to a curved barrier. Carr
(1998) priced American options from a series of random maturity options but this method
appears to be quite slow, as pointed out by Sullivan (2000). Chung and Shih (2009) pro-
posed a static replicating portfolio of European options with different strikes and maturities
in order to price American options under the geometric Brownian motion dynamics and the
constant elasticity of variance (CEV) model. Ruas et al. (2013) extended Chung and Shih
(2009) to the jump-to-default extended CEV model in Carr and Linetsky (2006).

Finally, a vast branch of the literature focuses on the calculation of lower (LB) and upper
(UB) bounds of the option price. Broadie and Detemple (1996) presented both a LB and a
UB: the latter is based on a lower bound of the optimal exercise price while the LB relies
on the approximation of the optimal exercise price via a flat function, in a similar way to
Bjerksund and Stensland (1993). Chung et al. (2010) tightened the bounds in Broadie and
Detemple (1996) by assuming an exponential approximation of the optimal exercise price.
Chen and Yeh (2002) and Chung and Chang (2007) proposed analytical upper bounds for
American options under stochastic interest rate, stochastic volatility and jumps. Laprise
et al. (2006) calculated the UB and LB by a series of replicating portfolios of European-style
options and two interpolation methods: the secant-line interpolation is used to calculate the
UB while the LB is calculated by the tangent-line interpolation.

3.3.2 Numerical methods

Although the quasi-analytic methods are preferable because they are fast and robust and
allow precise estimation of the Greek parameters, in many cases, the lack of flexibility to
adapt to different payoffs and/or underlying asset price dynamics makes these methods less
attractive. On the other hand, a vast family of methods that work extremely well for exotic
options and also for multidimensional cases, is numerical methods. In the following, we
review the main categories of numerical methods.

Lattice methods

Lattice methods proceed by a discretisation of the state space and the time space. Among
them, the finite difference method is a flexible technique that can price different deriva-
tives with the underlying asset prices following different stochastic processes (Tavella and
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Randall, 2000). The literature on this method is vast since it has been employed over many
different research areas such as physics and engineering. The most commonly used methods
in the financial industry are the explicit method by Schwartz (1977), the first-order implicit
method by Brennan and Schwartz (1978) and the Crank-Nicolson second-order implicit
method Courtadon (1982).

Another branch of lattice methods is the subfamily of binomial tree methods. This was
introduced by Sharpe (1978) and further developed by Cox et al. (1979) to price options
under the geometric Brownian motion. The method was further developed by many other
researchers: Trigeorgis (1991) proposed the additive binomial tree, i.e. a binomial tree for
the log-transformation of the stock price, for additional stability and efficiency; Tian (1993)
imposed a condition to match up to the third moment in the tree, reaching higher conver-
gence. Additionally, Breen (1991) used Richardson’s extrapolation of prices to speed up
convergence of the binomial trees; Broadie and Detemple (1996) proposed to price the op-
tions at the nodes of the tree just before maturity with the Black-and-Scholes formulae for
European options; and, Chen and Joshi (2012) proposed truncation techniques to accelerate
the binomial trees. Further studies were devoted to extending the binomial tree to dynam-
ics other than standard geometric Brownian motion: among them, Nelson and Ramaswamy
(1990) studied the binomial tree for general diffusion; and Amin (1993) and Hilliard and
Schwartz (2005) studied the binomial tree method under jump-diffusion processes. A per-
formance comparison of binomial trees is provided in Leisen (1998), where it is shown that
the methods of Cox et al. (1979) and Tian (1993) have similar performance.

Additionally, Heston and Zhou (2000) proved that given a tree with m successors for
each node and a payoff function differentiable 2m times, the tree can match the first m

moments of the underlying asset price process and converges at the rate O
(

∆
−m−1

2
t

)
where

∆t is the width of the time-step. This suggests that it is preferable to select higher orders
for the trees. Heston and Zhou (2000) and Alford and Webber (2001) proposed a m-nomial
tree and found that the heptanomial tree (m = 7) is the most competitive method when the
trade-off between speed of convergence and error is considered. Moreover, various lattice
methods have been proposed for multi-asset derivatives (see Section 2.2) although they are
usually not very useful for high-dimension problems since these methods suffer from the
so-called “curse of dimensionality”.

Another branch of the literature on lattice methods is that constituted by the ‘smile-
consistent’ methods. This class of methods takes the prices of traded European options as
given and builds lattice models that are consistent with the volatility smiles, which are em-
pirically observed for options written on several underlying asset types (Derman and Kani,
1998; Rubinstein, 1994, among others). Derman and Kani (1994) proposed a recombining
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binomial implied tree method that captures both the maturity and the strike dimension of the
implied volatility curve. Barle and Cakici (1995) modified the binomial tree of Derman and
Kani (1994) and worked with futures prices rather than spot prices, consequently ensuring
positive transition probabilities in the tree. In contrast to the previous two methodologies,
Rubinstein (1994) proposed a binomial implied tree that uses only backward induction (as
the standard binomial tree in Cox et al. (1979)) and does not require the initial forward
induction step that the previous two methods require. However, the method of Rubinstein
includes information only from European options with maturity at T , which corresponds
with the maturity of the tree. To overcome this limitation, Jackwerth (1997) generalised
Rubinstein (1994) by including in the tree the prices of European options with shorter ma-
turities. The novelty of Jackwerth’s method is that it does not require that paths ending in
the same node of the tree to have equal probabilities. Derman et al. (1996) proposed a tri-
nomial implied tree method that works in a similar way to the method in Derman and Kani
(1994) and solves the problem of negative transition probabilities encountered by the latter.
For an extensive literature review on ‘smile-consistent’ methods see Skiadopoulos (2001).

Several empirical studies have been carried out to evaluate the pricing performance of
these ‘smile-consistent’ methods. Brandt and Wu (2002) compared the implied tree of Der-
man and Kani (1994) with the standard binomial tree of Cox et al. (1979) (calculated from
at-the-money implied volatility) and the ad-hoc binomial tree method.10 The study was
conducted employing both European and American options of the FTSE 100 index traded
from October 1995 to September 1997 on the London International Financial Futures and
Options Exchange (LIFFE). It was found that the implied tree method outperforms the stan-
dard binomial tree but the performance is comparable with that of the ad-hoc method. These
results are similar to that in Dumas et al. (1998) where the test was carried for out-of-sample
options. Similarly, Lim and Zhi (2002) used daily prices of FTSE 100 index options from
January to November 1999 and tested the generalised binomial tree of Jackwerth (1997),
Derman and Kani (1994) and the standard binomial tree of Cox et al. (1979). They found
that the implied tree of Derman and Kani (1994) is highly sensitive to the interpolation tech-
niques employed and performs better for call than for put options. Additionally the implied
tree of Derman and Kani (1994) outperforms both the methods of Jackwerth (1997) and
Cox et al. (1979) for short maturity options while the generalised method produces better
results for at-the-money options. Linaras and Skiadopoulos (2005) compared the implied
trees of Derman and Kani (1994) and Barle and Cakici (1995) under several specifications
of the interpolation function,11 the standard tree of Cox et al. (1979) and the ad-hoc method.

10The ad-hoc method is a standard binomial tree (Cox et al., 1979) built from the implied volatility surface.
This method is ad-hoc because it is internally inconsistent.

11For both the implied tree methods, either the linear or the cubic spline interpolation method was employed.
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They employed daily prices of American options written on the S&P 100TM index traded
from 15 August 2001 to 21 July 2003. They found that linear interpolation is preferable
to the cubic spline interpolation. Additionally, the ad-hoc method performs better than the
others, the standard tree method of Cox et al. has the worst performance, and method of
Barle and Cakici (1995) is preferable to the tree of Derman and Kani (1994) since it has a
smaller pricing error. In Chapter 6,12 we carry out a similar analysis to that in Linaras and
Skiadopoulos (2005) over the pricing methods we propose in Chapters 4 and 5.

Monte Carlo methods

For a long time, it was believed that Monte Carlo simulation methods were suitable only for
pricing European style derivatives. It was Tilley (1993) who applied Monte Carlo methods
to American options, although his methodology is ad-hoc for plain American options and
difficult to adapt to multi-assets contracts.

The Monte Carlo methods consider the American option pricing problem from alterna-
tive paradigms. One of these is the approximation of the optimal exercise price. Garcia
(2003) and Ibáñez and Zapatero (2004) presented a method that involves two steps: a first
stage to find an approximation of the optimal exercise price and a valuation stage in which
the optimal exercise price is used in the actual pricing. The two methods differ in the first
step: Garcia performs an optimisation step where he calibrates a parametric optimal exercise
price, while Ibáñez and Zapatero use a backward iterative procedure and a trial-and-error
methodology that employs Monte Carlo simulations to determine the continuation value at
each time-step. Both use Monte Carlo simulations for the second step.

Another approach is the random tree method in Broadie and Glasserman (1997). This
involves dynamic backward programming as in the standard lattice method but the succes-
sors of each node are simulated by a Monte Carlo method. A biased high and a biased
low approximation are proposed. The complexity of this method is exponential in the num-
ber of exercise dates and consequently it cannot be implemented in the case of many ex-
ercise opportunities. Similarly, Broadie and Glasserman (2004) introduced the stochastic
mesh method. The main difference between this and the random tree method is that for the
pricing of the option at each node, the stochastic mesh method considers all of the nodes
at the following time-step, not only the successor nodes as the random tree method does.
Consequently, the number of nodes per time-step is kept constant rather than growing ex-
ponentially. Also for the stochastic mesh method, Broadie and Glasserman proposed both

12A review of other empirical comparisons on the pricing performance of other methods/underlying asset
models is provided in Section 6.1.



3.3 Review of the existing methodologies 58

biased high and low methodologies and proved that both approximations are asymptotically
unbiased.

On the other hand, Barraquand and Martineau (1995) proposed a state-space partition-
ing method called stratified state aggregation along the payoff (SSAP). While the random
tree method is based on sampled states, in SSAP the states are defined in advance and the
transition probabilities from one state partition to the other are estimated by a Monte Carlo
simulation method. This method is very competitive for a high number of exercise dates but
its complexity is exponential in the number of assets/stochastic factors. Another paradigm
is the dual formulation as discussed independently in Rogers (2002) and Haugh and Kogan
(2004). This is based on the duality formulations of the pricing problem and it generates
upper bounds for American option prices through a minimisation problem. Broadie and Cao
(2008) proposed techniques to improve the lower and upper bounds for American options:
they use the concept of “distance to the exercise boundary” to discern between paths that are
more likely to be exercised and that consequently require further analysis than the others.
Their methodology positively impacts on the computational effort required by the existing
methods and also reduces the pricing variances.

Finally, a well-known class of Monte Carlo methods includes regression-based methods.
These methods, introduced by Carriere (1996), Tsitsiklis and Van Roy (2001) and Longstaff
and Schwartz (2001), use regression methodology to estimate the continuation value of an
American-style option from simulated paths. This approach is equivalent to the stochas-
tic mesh method where each regression corresponds to the selection of the weight for that
time-step. Both the regression based methods and the stochastic mesh method are the most
powerful techniques for problems with many exercise dates and many stochastic factors. In
Chapter 5, we present our new weighted least squares Monte Carlo method, which aims to
correct the least squares Monte Carlo method of Longstaff and Schwartz for heteroscedas-
ticity in the regression errors, a condition that makes their regressions not BLUE, i.e. their
estimators are not the best linear unbiased estimator. In that chapter, we also provide an
expanded review of this family of methods (Section 5.1.1).

We point out that Alcock and Carmichael (2008), Alcock and Auerswald (2010) and
Yu and Xie (2015) also employed a weighted least squares Monte Carlo procedure to price
American style options by using market data. Their methods are different from the one that
we present in Chapter 5 since the weights they use are a change of measure from the real-
world measure (inferred from market prices) to the risk-neutral measure needed for pricing
purposes. In the light of what we will illustrate in Chapter 5, our weights are a correction to
the regressions in the algorithm by Longstaff and Schwartz (2001) to guarantee the BLUE
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condition and it may be useful to consider them in the weighted least squares methods of
Alcock and Carmichael, Alcock and Auerswald and Yu and Xie.

Other methods

In this section we review the numerical methods that do not fit in the previous two cate-
gories. Carr and Faguet (1996) employed the analytical method of horizontal lines (also
known as Rothe’s method), which is similar to the finite difference but only considers a
time discretisation. Consequently, this method is less computational intensive. Hon and
Mao (1997), Hon (2002) and Rad et al. (2015) used radial basis functions to price Ameri-
can options under the geometric Brownian motion, and Chan and Hubbert (2014) applied
the radial basis function interpolation scheme to jump-diffusions. The radial basis function
method consists of solving the partial differential equation governing the evolution of the
option by polynomial expansions of the option pricing. Kim et al. (2014) modified the ra-
dial basis function method and have a fast and robust estimation of high-order Greeks. Very
recently, Muthuraman (2008), Chockalingam and Muthuraman (2010, 2015) employed the
approximate moving boundaries method which iteratively finds an approximation of the op-
timal exercise price. This method converts the problem in (3.3) where the optimal exercise
price has to be found together with the option price in a sequence of problems with a given
approximation of the optimal exercise price. Medvedev and Scaillet (2010) employed the
moneyness for standard deviations, θ = ln(K/S)

σ
√

τ
, and exercised the American option as soon

as θ hit a flat barrier. The method is based on the solution of the partial differential equation
driving the option pricing for the given exercise barrier, which is achieved by an asymptotic
expansion of the option price near maturity. Their method has a comparable performance
with the method in Bunch and Johnson (2000) and Broadie and Detemple (1996) although
it is slower in the computations. The main advantage of their method is that it can be easily
extended to stochastic volatility and stochastic interest rate regimes.

A very powerful solution approach is the fast Fourier transform (FFT) introduced by
Carr and Madan (1999). Its main advantage is that the FFT solution is given in terms of
a general initial underlying asset price and payoff function, and consequently can handle a
broad class of American-style derivatives. Chiarella et al. (2014) priced American options
under the stochastic volatility model of Heston (1993) with jumps in the returns by using
Fourier and Laplace transforms.

Fang and Oosterlee (2008) developed the Fourier cosine expansion approach (COS) for
Bermudan options. This method works iteratively and, at any time-step, employs the cosine
series expansions of the option pricing function at the next time-step and the underlying
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price density function. Chiarella et al. (2014) extended COS for American options under
the Heston stochastic volatility model.

3.3.3 Other applications of option-pricing theory

Options are a ‘special’ class of derivatives since many other financial products have embed-
ded some degree of optionality. Consequently, option-theory and more specifically some of
the methods reviewed in the sections above are useful, not only to price and hedge single
options but also more complex derivatives that can be decomposed in a portfolio of vanilla
options. Merton (1998) provided a short review of applications of the option-pricing theory.
Among others, he enumerated the valuation of employee stock options, loan prepayments,
deposit insurances, student loan guarantees, patents and government policies. A vast amount
of the literature studies the valuation of these composite contracts by adapting some of the
methods above.

For example, the borrowers in a mortgage-backed security (i.e. a claim to the payments
generated by a pool of mortgages) have the optionality to prepay their loads. This op-
tionality substantially complicates the valuation of the mortgage-backed security since the
prepayments may be triggered by many factors and, consequently, the borrowers may return
the notional at any time before the expiration. The approaches currently employed in the lit-
erature evaluate these contracts by assuming that the borrowers aim to minimize the present
value of their overall cash flows related to the mortgage (Dunn and Spatt, 2005; Longstaff,
2005; Stanton and Wallace, 1998). In particular, Longstaff (2005) evaluated mortgage-
backed securities using a modified version of the least squares Monte Carlo method.

Also life insurance contracts usually offer policyholders several types of optionalities
(Smith, 1982; Walden, 1985). These options allow the policyholders to vary the insurance
contract at any time before expiration (American-style optionality) or only at the contract
expiration (European-style optionality). A common optionality embedded in life insurance
contract is the “surrender option”. This option has American exercise-style and gives the
policyholder the right to terminate the contract and receive the “surrender value”, which
is a predetermined amount of cash. This option can be exercised only upon the survival
of the policyholder and, consequently, it is a knock-out American barrier options, whose
evaluation requires the analysis of financial factors as well as demographic risk factors.
Andreatta and Corradin (2003), Baione et al. (2006) and Bacinello et al. (2010) employed
the least squares Monte Carlo method to determine the contract premium.

Additionally, the “abandonment option”, i.e. the option held by investors to abandon
the business for the assets’ exit value, is an American real option with both a stochastic
underlying asset price (the value of future cash flows) and a stochastic strike price (the
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exit value) (Berger et al., 1996). Other implicit embedded options are in the callable U.S.
Treasury bond, which is a standard coupon bond and a (short) call option on the coupon that
can be exercised by the U.S. Treasury during the last 5 years before expiration (Longstaff,
1993). A swaption gives the holder the right to enter into a swap contract, which is a contract
in which two counterparties agree to exchange cash flows (Schrager and Pelsser, 2006).
Finally, Ingersoll (2002); Murphy (2000) prices incentive stock options. These options
differ from standard equity options since the holders (employees, managers and executives)
have portfolios that are not differentiated but are principally made up of their own company.
Consequently, these options have less value than if they were part of a diversified portfolio.

3.4 Details on selected quasi-analytic methods

In Chapter 4, we describe the ‘extension’ method, i.e. a methodology that aims to improve
the pricing and hedging performance of almost any quasi-analytic method in the literature.
In this section, we review the six quasi-analytic methods used to test our new methodology:
Geske and Johnson (1984), Barone-Adesi and Whaley (1987), Ju and Zhong (1999), Kim
(1990), Li (2010b) and Chung and Shih (2009). Given the put-call symmetry in (3.25),
we consider only the put pricing formulae. In Chapter 4, we differentiate between a long-
maturity option and a short-maturity option. With regard to the former we mean the option
we are about to price and with regard to the latter we mean an option that has shorter ma-
turity, which is used to build part of the price formula for the former (more details in Sec-
tion 4.2.1). Here, as in the following chapter, tx ∈ [t0,T ] is the intermediary date, where we
split the maturity of the long-maturity option and it is consequently the time where the short
option is priced; S fx(·) is the optimal exercise price of the short-maturity starting life at tx and
with maturity at T ; and, P̃tx(Stx ,T,K) is the time-tx price of an American option contingent
on an underlying asset with the dynamics specified in equation (3.16), with time-to-maturity
τ = T − tx, strike price K and underlying price Stx .

Before describing each method, we enumerate some common factors underpinning the
methodologies below. First, the optimal exercise price of the option is calculated by solving
equation (3.9), which corresponds to finding S fx(t) by solving:

K −S fx(t) = P̃t(S fx(t),T,K),∀t ∈ [tx,T ]. (3.32)

In particular, for Barone-Adesi and Whaley (1987), Ju and Zhong (1999) and Li (2010b),
one needs only S fx(tx), while for Geske and Johnson (1984), Kim (1990) and Chung and
Shih (2009) the calculations of S fx(·) for intermediate times are also required. In Chapter 4,
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we apply the compound-option (Geske and Johnson, 1984) methodology, as well as the
integral method (Kim, 1990) and static replication portfolio methodology (Chung and Shih,
2009), with three as well as two steps. However, in the interest of brevity, we only present
the formulae for two time-steps in this section.

Moreover, the price of a European put option is given by the well-known Black-and-
Scholes formula for dividend-paying assets (Black and Scholes, 1973; Merton, 1973):

ptx(Stx ,T,K) = Ke−rτN (−d2(Stx ,K,τ))−Stxe
−δτN (−d1(Stx ,K,τ)) (3.33)

where for the generic time-to-maturity τm:

d1(S,q,τm) =
log
(

S
q

)
+
(

r−δ + σ2

2

)
τm

σ
√

τm
, d2(S,q,τm) = d1(S,q,τm)−σ

√
τm. (3.34)

The following shorter notations for d1 will also be used: d1(S) = d1(S,K,τ) or d1(S,q) =
d1(S,q,τ), and equivalently for d2. Furthermore, N (·) is the cumulative distribution function
(cdf) of a standard normal variable and N2 (x,y,ρ) is the bivariate standard normal cdf with
correlation ρ . Finally, we denote by ∆tx,T = T−tx

2 the time-step size and report only the
formulae for Stx > S fx(tx), because for Stx ≤ S fx(tx), the option price is simply its immediate
exercise P̃tx(Stx ,T,K) = K −Stx .

3.4.1 Compound-option method (GJ)

This method was outlined by Geske and Johnson (1984) and it is called compound-option
method because the price of an American option is given as a portfolio of options on options.
The method discretises the time-to-maturity. At each time-step, the option is exercised if
it has not been exercised at the previous time-steps, and if the current underlying asset
price is below the optimal exercise price. If, at any time-step, the option is not exercised,
then it is equivalent to have another option for the next time-steps. For the first step (i.e.
the one closest to the beginning of the contract), the probability that the option has been
already exercised is zero and, consequently, the expected payoff at that time-step in time-tx
dollars corresponds to the price of an European option with strike price equal to the optimal
exercise price. At the second time-step, the option can be exercised only if it was not
exercised at the first time-step and if the current spot price is below the optimal exercise
price. Consequently, the probability to exercise the option at the second time-step is given
in terms of the bivariate normal cumulative distribution function. Equivalently, for the third
time-step, the option is exercised if the current spot price is below the optimal exercise price
and if the underlying asset prices at the previous two time-steps were above the optimal
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exercise prices. In this case, the trivariate normal cumulative distribution function is needed
to calculate the probability of exercise. The main drawback of this method is that, if m
is the number of time-steps considered, the pricing formula includes m-variate cumulative
distribution functions, whose calculations are computationally intensive.

In what follows, we report the pricing formula of the compound-option method with two
time-steps for dividend-paying assets:

P̃tx(Stx ,T,K) = KU2(Stx)−StxW2(Stx), for Stx > S fx(tx) (3.35)

where:

U2(S) = e−r∆tx,T N (−d2(S,q1,∆tx,T ))

+e−2r∆tx,T N2

(
d2(S,q1,∆tx,T ),−d2(S,K,2∆tx,T ),−

1√
2

)
,

W2(S) = e−δ∆tx,T N (−d1(S,q1,∆tx,T ))

+e−2δ∆tx,T N2

(
d1(S,q1,∆tx,T ),−d1(S,K,2∆tx,T ),

1√
2

)
,

q1 = S fx(tx +∆tx,T ) solves K −q1 = ptx+∆tx,T
(q1,T,K) and S fx(tx) solve (3.32).

3.4.2 Quadratic methods (BAW and JZ)

The quadratic method in Barone-Adesi and Whaley (1987) corresponds to a first-order ap-
proximation of the option pricing formula (Carr and Faguet, 1996). The method starts from
the partial differential equation for the price function of American options under the geo-
metric Brownian motion. When one writes it for the (short-maturity) American put option
at time tx, the formula reads:13

1
2

σ
2S2

tx
∂ 2P̃tx

∂S2
tx
− rP̃tx +(r−δ )Stx

∂ P̃tx
∂Stx

+
∂ P̃tx
∂ tx

= 0. (3.36)

Since the differential operator is linear, the partial differential equation (3.36) also holds true
for the early exercise premium:

εtx = P̃tx − ptx . (3.37)

13In the partial differential equations below, we drop the input parameters of the price functions to avoid
cumbersomeness.
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The technique used by Barone-Adesi and Whaley is to consider

εtx = (1− e−r−τ) fBAW (Stx ,T,K),

and consequently, after some algebraic manipulations, (3.36) can be rewritten as:

S2
tx

∂ 2 fBAW

∂S2
tx

+
2(r−δ )

σ2 Stx
∂ fBAW

∂Stx
− 2r

σ2(1− erτ)
fBAW − 2r e−rτ

σ2
∂ fBAW

∂ (1− e−rτ)
= 0. (3.38)

Barone-Adesi and Whaley (1987) assume

2r e−rτ

σ2
∂ fBAW

∂ (1− e−rτ)
≈ 0, (3.39)

which is a good approximation for short and long time-to-maturities but works less effica-
ciously for medium-term maturities. Simplifying (3.38) by using the approximation above,
it becomes a second-order differential equation with two-linear independent solutions of the

form ASB
tx . Consequently, solving (3.38) for fBAW = A1Sβ1

tx +A(2)
1 Sβ

(2)
1

tx and setting14 A(2)
1 = 0,

one has the Barone-Adesi-Whaley pricing formula:

P̃tx(Stx ,T,K) = ptx(Stx ,T,K)+A1

(
Stx

S fx(tx)

)β1

for Stx > S fx(tx) (3.40)

where A1 =−S fx(tx)
β1

[
1− e−δτN

(
−d1(S fx(tx))

)]
, β1 =

1
2 −

r−δ

σ2 −
√(

1
2 −

r−δ

σ2

)2
+ 2r

σ2h ,

h = 1− e−rτ and S fx(tx) solves (3.32).

Ju and Zhong (1999) improved the approximation in Barone-Adesi and Whaley (1987)
by proposing a second-order expansion. They considered

εtx = (1− e−r−τ)( fBAW (Stx ,T,K)+ fJZ(Stx ,T,K)) ,

14This is a consequence of the fact that β
(2)
1 > 0, but for Stx →+∞ it has to be εtx → 0.
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and (3.36), after some algebraic manipulations, becomes

0 = S2
tx

∂ 2 fBAW

∂S2
tx

+
2(r−δ )

σ2 Stx
∂ fBAW

∂Stx
− 2r

σ2h
fBAW

+S2
tx

∂ 2 fJZ

∂S2
tx

+
2(r−δ )

σ2 Stx
∂ fJZ

∂Stx
− 2r

σ2h
fJZ

−(1−h)2r
σ2

(
∂ fBAW

∂h
+

∂ fJZ

∂h

)
. (3.41)

As in Barone-Adesi and Whaley (1987), the sum of the first three terms in the right-hand
side of (3.41) is fixed to zero. The remaining of (3.41) is solved by using the approximation
fJZ = χ

1−χ
fBAW . After some algebraic manipulations, the pricing formula proposed by Ju

and Zhong (1999) is:

P̃tx(Stx ,T,K) = ptx(Stx ,T,K)+
A2(S fx(tx))

(
Stx

S fx(tx)

)λ1

1−χ
for Stx > S fx(tx) (3.42)

where:

A2(S fx(tx)) = K −S fx(tx)− ptx(S fx(tx),T,K),

α1 =
2r
σ2 , α2 =

2(r−δ )

σ2 , α3 =
(1−h)α1λ ′

1
2(2λ1 +α2 −1)

,

α4 = − (1−h)α1

2λ1 +α2 −1

(
1

A2

∂ ptx(S fx(tx),T,K)

∂h
+

1
h
+

λ ′
1

2λ1 +α2 −1

)
,

χ = α3

(
log
(

Stx
S fx(tx)

))2

+α4

(
log
(

Stx
S fx(tx)

))
,
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√
(α2 −1)2 + 4α1

h

2
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′
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h2
√

(α2 −1)2 + 4α1
h

,

∂ ptx(S fx(tx),T,K)
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=

σS fx(tx)n
(
d1(S fx(tx))

)
2r
√

τe−(r−δ )τ
+

δS fx(tx)N
(
−d1(S fx(tx))

)
re−(r−δ )τ

−KN
(
−d2(S fx(tx))

)
and S fx(tx) solves

1− e−δτN
(
−d1(S fx(tx))

)
+

λ1A2(S fx(tx))
S fx(tx)

= 0.
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The method in Li (2010a), a further modification of the quadratic method, is not considered
here, since it has almost the same pricing performance of Ju and Zhong (1999) and is more
computationally intensive. Its only advantage is in the estimation of the optimal exercise
price, which is more precise.

3.4.3 Integral method (K)

Kim (1990) discretised the option life into a finite number of time-steps and works back-
wardly by recursively finding the values of the optimal exercise price functions. At the last
time-step (i.e. the one before maturity), the American option is equal to the equivalent Euro-
pean option. Moving one time-step backward, the option value consists of two components:
the expected immediate exercise at the last time-step before maturity, conditional on the
underlying asset price being below the optimal exercise price; and the value of the Ameri-
can option starting life at the next time-step, conditional on the underlying asset price being
above the optimal exercise price at that step. Moving backward and considering ∆tx,T → 0,
the option price is given as:

P̃tx(Stx ,T,K) = ptx(Stx ,T,K)+

+
∫

τ

0

[
rKe−r(τ−t)N

(
−d2(Stx ,S fx(tx + τ − t),τ − t)

)
+

−δStxe
−δ (τ−t)N

(
−d1(Stx ,S fx(tx + τ − t)),τ − t

)]
dt, for Stx > S fx(tx)

(3.43)

where S fx(t) solves (3.32). For implementation purposes, formula (3.43) is discretised:
when 2 time-steps of equal length ∆tx,T are considered, formula (3.43) becomes:

P̃tx(Stx ,T,K) = ptx(Stx ,T,K)+

+∆tx,T

2

∑
j=1

[
rKe−r∆

j
t N
(
−d2(Stx ,S fx(tx +∆

j
t ),∆

j
t )
)

−δStxe
−δ∆

j
t N
(
−d1(Stx ,S fx(tx +∆

j
t ),∆

j
t )
)]

(3.44)

where ∆
j
t = ∆tx,T (2− j).

We consider the basic integral method only and not any of the improvements proposed
in the literature (Kallast and Kivinukk, 2003; Kim et al., 2013; Sullivan, 2000), since only
few iterations (early exercise dates) will be considered in the computational comparison in
Section 4.3 and, consequently, the computational improvements do not have a big impact.
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However, it is worth pointing out that our ‘extension’ method can also be connected to these
improved methodologies.

3.4.4 Interpolation method (LI)

The interpolation method in Li (2010b) is based on two bounds of the price of an American
put option:

ptx(Stx ,T,K)≤ P̃tx(Stx ,T,K)≤ ptx(Stx ,T,Kerτ) (3.45)

where the lower bound is the correspondent European option, while the upper bound is an
European option with strike price Kerτ . This method is a generalization of the interpolation
method of Johnson (1983). The pricing formula is given as a weighted sum between the
lower and upper bounds as in Johnson (1983):

P̃tx(Stx ,T,K) = A3 ptx(Stx ,T,Kerτ)+(1−A3) ptx(Stx ,T,K), for Stx > S fx(tx). (3.46)

The advantage of Li’s method is that he provides an analytic formula for the weight (A3)
rather than a parameter based on empirical fitting as in Johnson (1983). The weight A3 in
formula (3.46) is

A3 = A4

(
Stx

S fx(tx)

)q(r−δ , r
Φ
)

(3.47)

where:

q
(

r−δ ,
r
Φ

)
=

1
2
− r−δ

σ2 − 1
2σ2

√
(σ2 −2(r−δ ))2 +8

r
Φ

σ2,

A4 =
eδτ −N(−d1(S fx(tx),K))[

N(−d1(S fx(tx),Kerτ))−N(−d1(S fx(tx),K))
]
− q(b, r

Φ
)D(Stx ,τ,K)

S fx(tx)e−δτ

Φ = 1− e−rτ , D(Stx ,τ,K) = ptx(Stx ,T,Kerτ)− ptx(Stx ,T,K).

This analytic formula is based on an approximating solution of the partial differential equa-
tion (3.36) using an approximation similar to that of Barone-Adesi and Whaley (1987). This
method has the advantage of being employable also for other underlying asset price dynam-
ics. In their research paper, Li also applied the interpolation method to price American
options under the Heston’s stochastic volatility model (Heston, 1993).
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3.4.5 Static-replicating portfolio method (CS)

The idea of this method is to create a portfolio of standard European options in such a way
that the value of this portfolio matches the payoff of the American option at maturity and
along the optimal exercise price. The advantage of this method is twofold. First, it allows the
construction of a static hedging strategy that is cheaper than the dynamic hedging strategy.
Second, the calculation of the American option in future dates is simple since there is no
need to find the static hedge portfolio again.

The method we study in Chapter 4 is that of Chung and Shih (2009). They construct a
portfolio of European options of different strikes and different maturities. Previous studies
proposed similar methods. Carr et al. (1998) used a portfolio of European options with
same maturity and different strikes, while Derman et al. (1995) used a portfolio of European
options with same strike and different maturities. The method of Chung and Shih (2009)
is a combination of these two methods. The advantage of the Chung-Shih method over the
other two is that, by using both different strikes and different maturities, the estimation of
the optimal exercise price is more precise, since this function is time variant.

When one considers only two time-steps, the static-replicating portfolio method approx-
imates an American option as a portfolio of three European options, where the number of
contracts held (w0 and w1) is calculated recursively. The pricing formula is:

P̃tx(Stx ,T,K) = ptx(Stx ,T,K)+Z2(Stx ,T,K) for Stx > S fx(tx) (3.48)

where

Z2(Stx ,T,K) = w1 ptx(Stx ,T,S fx(tx +∆tx,T ))+w0 ptx(Stx , tx +∆tx,T ,S fx(tx)) (3.49)

and w1, S fx(tx +∆tx,T ) and w0, S fx(tx) are backwardly determined as the solutions to the
smooth-pasting condition and the value matching condition in (3.32).

3.5 Conclusions and outline of next chapters

In this chapter, we reviewed the main contributions with regard to the American pricing
problem. In particular, after a summary of mathematical formulations of the pricing problem
and a description of the market, we focused on a review of the main characteristics of the
option price function and the optimal exercise price. Then, in Section 3.3, we carried out
an extensive review of the literature of the solution approaches. In conducting this review,
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we found two gaps in the literature that lead to the two new methodologies that we are
presenting in this thesis: the first is a quasi-analytic method (Chapter 4) and the second is a
numerical method (Chapter 5).

The main problem we found among many quasi-analytic methods for pricing and hedg-
ing American options under the geometric Brownian motion is their poor performance over
long-maturity options. The cause of this problem is, in many cases, the approximation of
an American option as Bermudan option. Indeed, for any given number m of early exercise
dates ti, the time gaps between them, ti − ti−1, are larger the longer the time-to-maturity. As
we will show in detail in Chapter 4, the majority of quasi-analytic method perform well for
short maturities but, when time-to-maturity is longer than one year, their performance dete-
riorates and the pricing and hedging errors become so significant that these methods cannot
be employed in many cases. However, options with maturity longer than one year are traded
on a large scale in the financial markets: for example, the Chicago Board of Options Ex-
change (CBOE) lists LEAPS®, i.e. long-term options with maturity of up to 39 months.
Consequently, improving on these methods is useful not only from an academic point of
view, but particularly from a practitioners’ perspective. In Chapter 4, we describe a new
methodology that can potentially improve on any quasi-analytic method for American op-
tions under the geometric Brownian motion and, as an exemplification via a scenario-based
comparison, we show that the improvements over the methods outlined in Section 3.4 are
also sizeable for short maturities.

On the other hand, in Chapter 5, we present our new numerical algorithm, the weighted
least squares Monte Carlo method that can be categorized under the regression-based meth-
ods. The aim of our new method is an upper-bias reduction to the algorithm outlined by
Longstaff and Schwartz (2001). In the chapter, we demonstrate in three different ways
(numerical, graphical and theoretical) that the regressions carried out in Longstaff and
Schwartz’ algorithm do not satisfy one of the assumptions of the ordinary least squares
regression, namely the homoscedasticity of the errors, and, consequently, their estimators
are not BLUE, i.e. the best linear unbiased estimators. Using a scenario-based comparison,
we show that, under the four dynamics in Section 3.1.1, by substituting the ordinary least
squares regressions with the weighted version, which is BLUE even for non-homoscedastic
errors, we reduce the upper bias of the algorithm by Longstaff and Schwartz (2001). Ad-
ditionally, we show that our method outperforms the inequality constrained least squares
algorithm of Létourneau and Stentoft (2014), who aim to reduce the upper bias by imposing
constraints on the ordinary least squares estimators.15

15The constraints they impose are monotonicity and convexity of the continuation value function as re-
viewed in Section 3.2.1. Additional details on this method can be found in Appendix 5.A.
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Finally, in Chapter 6, we test our two new methods over LEAPS® options on the S&P
100TM stock index, traded on the CBOE from 15 February 2012 to 10 December 2014. For
the new quasi-analytic method, the comparison shows that improvements are found for wide
ranges of maturities, and, in particular, for long-maturity options. On the other hand, the
new numerical method outperforms its competitors (the methods of Longstaff and Schwartz
(2001) and Létourneau and Stentoft (2014)) over all of the maturity ranges and almost all of
the error measures.



Chapter 4

American Options: An Improved
Method for Pricing and Hedging

In this chapter, we introduce a method to increase the accuracy of almost any existing quasi-
analytic methodology for pricing and hedging American options under the geometric Brow-
nian motion dynamics. Based on an extensive numerical comparison, we show that the
improvements are indeed sizeable over many methodologies, for all of the maturities con-
sidered and, particularly, for long-maturity options when the existing methodologies per-
form poorly. This chapter is structured as follows. Section 4.1 justifies the introduction of
the new method. Section 4.2 describes the pricing and hedging methodology together with
a convergence result. Section 4.3 numerically evaluates the performance of the new method
by comparing it with many existing quasi-analytic methodologies and Section 4.4 shows
how well the new method works together with the asymptotic expansions of the optimal
exercise price near maturity. Finally, Section 4.5 concludes.

4.1 Introduction

In 1990, the Chicago Board of Options Exchange (CBOE) listed the Long-term Equity
AnticiPation Securities™ (LEAPS®), which are American-style long-term option contracts
with expiration of up to 39 months from the date of the initial listing, currently listed on
about 500 equities1 and on the Standard & Poor’s 100 Index (S&P 100TM OEX®).

Many researchers have carried out performance comparisons over several pricing meth-
ods. Among them, Broadie and Detemple (1996) in their Figures 3 and 4 (p. 1227), Ait-

1Only the equity stock options with a maturity of 3 years have been considered. Considering shorter
maturities (above two years) the number is much higher.
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Figure 4.1 Equity LEAPS® market: Open interest and volume (Jan 2010 - Nov 2014)
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Note: This figure illustrates daily data on the Wednesdays from 6 January 2010 to 12 November 2014, for a
total of 254 observations for equity LEAPS® traded in the CBOE. The upper plot shows the open interest for
call options, put options and the total; the other shows the daily volume of call and put options together. The
values in the plots indicate the number of contracts.
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Sahlia and Carr (1997) in their Tables2 2a-2e and 3a-3e (pp. 76-85), Ju and Zhong (1999)
in their Exhibits 3 and 5, Li (2010b) in their Tables 3, 4 and 5 (pp. 91-93), Kallast and Kiv-
inukk (2003) in their Figures 4. and 5. (pp. 373-374) and Kim et al. (2013) in their Tables 4
and 5 (p. 7) show that many of the pricing methods perform well for short-maturity options
and that when they are employed for long-maturity options, their pricing performance is
worse.

In the interest of facilitating a deeper understanding of the change in performance of the
existing methodologies over options with different maturities, we consider a detailed nu-
merical study based on 10,000 put option scenarios with maturities ranging from a few days
to 5 years, divided into 10 sets (A,. . ., J) of 1,000 scenarios each. The purpose is to extend
the results of former pricing and hedging performance analyses, which usually restrict their
studies to options with maturities of up to 24 months. All of the other parameters are ran-
domly drawn as in Broadie and Detemple (1996) and, for this chapter to be self-contained,
they are described in Section 4.3. Figure 4.2 shows for six quasi-analytic methods the
mean absolute percentage error (MAPE) with respect to the benchmark prices given by the
binomial tree in Cox et al. (1979). The studied methods (details in Section 3.4) are the
compound-option method in Geske and Johnson (1984), the quadratic method in Barone-
Adesi and Whaley (1987), the interpolation method in Li (2010b), the integral method in
Kim (1990), the static-replicating portfolio method in Chung and Shih (2009), and the im-
proved quadratic method in Ju and Zhong (1999).

As in the previous research, we found that the existing methods perform less effica-
ciously for long-maturity options than for short-maturity ones. Figure 4.2 shows that the
difference in MAPEs between options with a maturity shorter than 6 months and options
with maturities longer than 4.5 years is more than one order of magnitude (for example,
the Geske-Johnson method with 2 exercise dates produces a MAPE of 0.39% for maturi-
ties below 6 months and 4.35% for maturities above 4.5 years; the interpolation method
produces respectively 0.17% and 1.96%). Moreover, the figure shows that the performance
over the 10 sets (A, . . ., J) monotonically decreases with time-to-maturity. Similar results
are obtained for the hedging performance (see Table 4.4).

In most of the cases, the causes of this phenomenon are in the approximations employed
for the solution of the American option pricing problem. Most of the existing pricing meth-
ods approximate American options via the equivalent Bermudan options; that is, a discrete
set of exercise dates is considered rather than a continuum exercise-interval. These approx-
imations lead to solutions of the pricing problem that converge to the benchmarks when the

2The results are for options on a non-dividend paying asset for short time-to-maturity and on a dividend
paying asset for long time-to-maturity options.
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Figure 4.2 Comparison of quasi-analytic methods for different maturities.
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Note: This plot presents the mean absolute percentage error (MAPE) for six quasi-analytic methods. The
methods studied are: (GJ) the compound-option method in Geske and Johnson (1984) with two and three exer-
cise dates, (BAW) the quadratic method in Barone-Adesi and Whaley (1987), (LI) the interpolation method in
Li (2010b), (K) the integral method in Kim (1990) with two and three exercise dates, (CS) the static-replicating
portfolio method in Chung and Shih (2009) with two and three exercise dates, and (JZ) the improved quadratic
method in Ju and Zhong (1999). Ten ranges of maturities (in years) are considered: (0;0.5] (A), (0.5;1] (B),
(1;1.5] (C), (1.5;2] (D), (2;2.5] (E), (2.5;3] (F), (3;3.5] (G), (3.5;4] (H), (4;4.5] (I), (4.5;5] (J). The results
are based on 10,000 put option scenarios (simulated as in Broadie and Detemple (1996) and as described in
Section 4.3).

number of early exercise dates increases or, equivalently, when the size of the time-steps
decreases. Consequently, for any given number of time-steps, the performance of these
approximation methods is better for short-maturity options than for long-maturity options
and more time-steps are required for the latter to have the same performance level as the
former. However, an increase in the number of time-steps rapidly makes these methods
inefficient and not applicable in real life situations where traders find themselves pricing
many hundreds of options simultaneously and, consequently, they require higher perfor-
mance methods.

In this chapter, we introduce a new pricing and hedging methodology with the primary
purpose of increasing the accuracy of existing quasi-analytic methods for long-maturity op-
tions. Our new method resorts to an approximation of the optimal exercise price near the
beginning of the contract combined with existing pricing approaches. In particular, as we
will show in Section 4.2, we divide each option’s time-to-maturity into two components
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according to the closeness to the beginning of the contract and we approximate the optimal
exercise price (OEP) separately in each of them. For the component closest to the beginning
of the contract, we use a constant function to approximate the OEP, while, for the second
component (the closest to maturity), we employ existing pricing methods and their associ-
ated estimation of the OEPs. Additionally, this method retains the quasi-analytic nature of
the methods it improves on and, consequently, we derive generic quasi-analytic formulae
for the price of an American put as well as for its delta parameter.

Since, the new approach extends the range of maturities for which an existing quasi-
analytic method returns good results, we call it the ‘extension’ method. Henceforth, the
word ‘extended’ means the opposite of ‘standard’: the latter refers to each method as found
in the literature (and reviewed in Section 3.4) and the former is given as in formulae (4.4)
and (4.17), for pricing and hedging purposes respectively.

The applications of the ‘extension’ method are not limited to standard quasi-analytic
methodologies. The new method also works successfully with asymptotic expansions of the
OEP near maturity (see Section 4.4). They consist of closed-form formulae that precisely
estimate the OEPs. However, their application is limited to option contracts with short time
left to maturity. By incorporating them into the ‘extension’ method, we show that good
pricing and hedging results are reached even for maturities as long as 5 years.

4.2 The ‘extension’ method

Let us consider the Black-and-Scholes market described in Section 3.1 so that, under the
risk-neutral measure Q, the dynamics of the underlying asset price S is given by:

dSt = (r−δ )Stdt +σStdW̃t , t ≥ t0

where r is the (constant) risk-free rate, δ is the dividend yield and {W̃t}t≥t0 is a Wiener
process under the martingale measure Q. For simplicity, we denote the difference r−δ by
b, the cost of carry.

Since, via the put-call symmetry of McDonald and Schroder (1998),3 the pricing prob-
lem for American call options can be reduced to that for an American put, without any loss
of generality, we will present the ‘extension’ method exclusively for American put options.

3We reviewed this property of American call and put options in Section 3.2, in equations (3.25) and (3.31).
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4.2.1 Idea

In Section 3.2.2, we reviewed the properties of the OEP of an American put option under
geometric Brownian motion. Among those results, there are two properties that, to the best
of our knowledge, have not been used together before for pricing purposes: close to the
beginning of the contract, the OEP is almost constant; and the OEP is independent of the
current underlying asset price and it is non-stochastic (i.e. it depends only on the risk-free
rate, strike price, volatility and time to maturity).

Taking advantage of these two properties and considering also that the estimation of the
OEP is more complex near maturity, it seems convenient to employ any computational ef-
fort in the estimation of the OEP near the maturity date, and to use a simple approximation
of the OEP near the beginning of the contract. Therefore, the essential idea underpinning
our approach is to break down the option life into two parts, one closest to the beginning
of the contract and one close to maturity, and employ existing pricing methods and their
corresponding estimation of the OEP in the latter, while using a flat approximation of the
OEP for the former. Consequently, any option priced by the ‘extension’ method is con-
structed over a shorter-maturity option, which is alive near its expiration. Henceforth, the
second option is simply called the “short-maturity option” while the initial option is called
the “long-maturity option” to highlight that the former is part of the latter.

Figure 4.3 delineates the intuition behind our method: for a given set of parameter values
(σ = 20%, δ = 5%, r = 8% and K = 100), the OEPs for two American put options, written
on the same underlying asset, with maturities t1 = 1 year and T = 2.5 years are considered at
the current time t0 = 0. Let us also define the intermediary time point tx = t0+(T −t1) = 1.5
years. Because the two options are identical apart from their different maturity dates, and
because the OEP does not depend on the spot price at t0, the OEPs for the two options will
coincide whenever the options have the same time-to-maturity. In particular, for any time t
in the interval [tx,T ], the OEP of the option maturing at T (long-maturity option) will be the
same as the OEP of the option maturing at t1 (short-maturity option), which is defined on
[t0, t1]. In the figure, the continuous line represents the OEP of the long-maturity option and
the dash-dot lines represent the OEPs of the short-maturity option. The left-most dash-dot
line is the ‘original’ OEP and the other is its translation over the continuous line to show that
they coincide on the interval [tx,T ]. Consequently, we can think of the short-maturity option
as either starting life at t0 and having maturity date t1, or as starting life at tx and having
maturity date T . In either case, at the onset, the shorter maturity option has t1 − t0 = T − tx
time (years) to maturity.

The ‘extension’ method splits the long-maturity option’s life into two components at
time tx: for the first part, i.e. the one closest to t0, we approximate the OEP as a constant
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Figure 4.3 Example of ‘extension’ method mechanism.
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Note: The optimal exercise prices of two American put options are considered in the figure. The two options
are written on the same underlying asset with σ = 20%, δ = 5%, r = 8% and K = 100. One option has
maturity t1 = 1 year and the other T = 2.5 years. The continuous line represents the optimal exercise price of
the option with maturity T and the dash-dot lines represent the optimal exercise of the option with maturity
t1. In particular, the left-most dash-dot line is the ‘original’ function and the other is its translation over the
continuous line to show that they coincide in the interval [tx,T ] where tx = t0 +(T − t1) = 1.5 years represents
the size of the translation. The OEPs are calculated by the integral method in Kim (1990).

Λ , while for the second part, i.e. the one closest to T , the OEP together with the time-tx
pricing formula for the short maturity option (time to maturity T − tx) is provided by the
pricing method we are ‘extending’. Consequently, we assume that the OEP of an American
put option with maturity T and starting life at t0, is given by:

S(E)f (t) =

Λ for t ∈ [t0, tx)

S f (t − (T − t1)) for t ∈ [tx,T ]
(4.1)

where tx ∈ [t0,T ] is the break-point and S f (·), the OEP of the shorter maturity option, will
be estimated via any existing quasi-analytic method in the literature (e.g. one of the methods
described in Section 3.4). The selection of tx is discussed in Section 4.2.3 together with the
selection of the parameter Λ .

Additionally, we note that when selecting tx → t0 in formula (4.1), the option price ob-
tained with the ‘extension’ method converges to the price obtained via the standard method
that we are extending, and when tx → T , the ‘extension’ method price converges to the price
of an American put option with a flat OEP equal to Λ . In particular, the method converges to
the method of Bjerksund and Stensland (1993).4 The numerical study in Section 4.3 shows

4In Section 4.2.4 we show that if we apply our ‘extension’ method to the method of Bjerksund and Stens-
land (1993), we obtain the pricing methodology in Bjerksund and Stensland (2002). Consequently, our method
can be considered a generalisation of the methodology of Bjerksund and Stensland (2002).
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that for intermediate values of tx, each ‘extended’ method provides better prices (according
to a number of criteria) than the corresponding ‘standard’ version.

In employing the ‘extension’ method for pricing purposes, the advantage is threefold:

• the estimation of the OEP near maturity is more precise: given a number of time-
steps, the standard pricing methods use them across the interval [t0,T ] while the ‘ex-
tension’ method only employs them across the shorter interval [tx,T ]. Consequently,
in the part of the option’s life close to maturity, the length of the time-step is much
smaller for the ‘extension’ method and the Bermudan approximation is closer to the
American price;

• the existing methods are used where they have a better performance (comparative ad-
vantage): even for those methods not based on the explicit calculation of the OEP (ex-
amples are Barone-Adesi and Whaley (1987), Ju and Zhong (1999) and Li (2010b)),
the ‘extension’ method resorts to a standard method to price a short-maturity option,
which is where the latter performs better;

• finally, the ‘extension’ method requires very low computational effort for the part
of the option’s life close to the beginning of the contract, where the theory suggests
that the OEP is ‘nicer’. Indeed, as Proposition 4.2.1 below shows, the expected pay-
off from exercising the option between (t0, tx] can be calculated in closed-form and
consequently the computational time is negligible.

4.2.2 Pricing and hedging methodology

Pricing method

With the optimal exercise price approximated as in (4.1) and assuming that tx and Λ are
known,5 the price of the long-maturity American put option is calculated as the sum of the
expected discounted payoff (between t0 and tx), assuming that the option is exercised as
soon as the spot price hits Λ , and the expected discounted payoff from the short-maturity
American option (between tx and T ) starting at time tx conditional on the underlying asset
price being above the barrier Λ between t0 and tx. Proposition 4.2.1 derives the pricing
formula of the ‘extension’ method, where the following notation will be used:

• Pt0(St0,T,K|tx,Λ) is the time-t0 price of the long-maturity option with maturity at T
when the underlying asset price is St0 and the OEP is given by (4.1).

5Section 4.2.3 discusses the selection of the two parameters.
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• P̃tx(Stx ,T,K) is the time-tx price of the short-maturity option with time to maturity
T − tx for a value of the underlying asset price of Stx ;

• S fx(·) is the OEP of the short maturity option. It is a function defined on [tx,T ] and is
the translation of the function S f (·), the latter being defined on [t0, t1]. In Figure 4.3,
S fx(·) is the right-most dash-dot line and S f (·) is the left-most dash-dot line;

We also define the expectation term:

ϕ(γ,H) = ϕ
P
t0(St0, tx|γ,H,Λ) =

= Et0

[
e−rtxSγ

txI (Stx > H) I
(

inf
t∈[t0,tx)

St > Λ

)]
=

= eλ txSγ

t0

[
N
(
dϕ,1(H)

)
−
(

Λ

St0

)κ

N
(
dϕ,2(H)

)]
(4.2)

the derivation of which is provided in detail in Appendix 4.A (see equation (4.31)) together
with the definitions of λ , κ , dϕ,1(H) and dϕ,2(H). Additionally, as in Ingersoll (1987), page
352, we define the probability density function of an arithmetic Brownian motion at time-tx
with a positive initial value zt0 , drift parameter b1 = b− 1

2σ2, volatility parameter σ and an
absorbing barrier at zero as:

f0(z) =
n
(

z−zt0−b1(tx−t0)
σ
√

tx−t0

)
− e−

2b1zt0
σ2 n

(
z+zt0−b1(tx−t0)

σ
√

tx−t0

)
σ
√

tx − t0
. (4.3)

With the notation introduced above, the new pricing formula is given in the next result.

Proposition 4.2.1 (Pricing formula). Assuming Black-and-Scholes dynamics, the time-t0
price of an American put option with strike price K and maturity T , based on the ‘extension’
of the standard method with pricing function P̃tx(Stx ,T,K), is given by:

Pt0(St0,T,K|tx,Λ) = ert0
{

α(Λ)
[
Sβ

t0e−rt0 −ϕ(β ,Λ)
]
−ϕ(1,Λ)+ϕ(1,S(E)f (tx))

+K
[
ϕ(0,Λ)−ϕ(0,S(E)f (tx))

]}
+
∫ +∞

B
g(z)dz, (4.4)

where
g(z) = e−r(tx−t0)P̃tx(Λez,T,K) f0(z), (4.5)

B = ln
S(E)f (tx)

Λ
, α(Λ) = (K −Λ)Λ−β and β =

(
1
2 −

b
σ2

)
−
√(

1
2 −

b
σ2

)2
+2 r

σ2 .

Proof. Let us define the stopping time corresponding to the OEP in (4.1) for any 0 < Λ ≤
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S fx(tx) as:

t∗ = inf
{

inf
t∈[t0,∞)

{St ≤ S(E)f (t)},T
}
= inf

{
t∗0(Λ), t∗x (S fx(t)),T

}
where t∗u(x) = inft∈[tu,∞){St ≤ x}. Additionally, we indicate with I (·) the indicator function.
The American put price is then calculated as:

Pt0(St0,T,K|tx,Λ) = Et0

[
e−r(t∗−t0)(K −St∗)

+
]
= ert0Et0

[
e−rt∗(K −St∗)

+
]

= ert0
{

Et0

[
e−rt∗(K −Λ)I (t0 ≤ t∗ < tx)

]
+Et0

[
e−rt∗(K −Stx)I (t

∗ = tx)
]

+ Et0

[
e−rt∗(K −S(E)f (t∗))+I (tx < t∗ ≤ T )

]}
. (4.6)

In what follows, we will calculate separately the three expectations in (4.6). We use the
results in Appendix 4.A.1 and the function ϕP

t0 , as in (4.2).
The first expectation in equation (4.6) is given as:

Et0

[
e−rt∗(K −Λ)I (t0 ≤ t∗ < tx)

]
= Et0

[
e−rt∗0 (Λ)(K −Λ)I

(
inf

t∈[t0,tx)
St < Λ

)]
= Et0

[
e−rt∗0 (Λ)(K −Λ)

(
1− I

(
inf

t∈[t0,tx)
St > Λ

))]
(e.1)
= α(Λ)Sβ

t0e−rt0 −Et0

[
e−rt∗0 (Λ)(K −Λ)I

(
inf

t∈[t0,tx)
St > Λ

)]
(e.2)
= α(Λ)Sβ

t0e−rt0 −Et0

[
e−rtxEtx

[
e−r(t∗x (Λ)−tx)(K −Λ)

]
I
(

inf
t∈[t0,tx)

St > Λ

)]
(e.3)
= α(Λ)Sβ

t0e−rt0 −α(Λ)Et0

[
e−rtxSβ

tx I (Stx ≥ Λ) I
(

inf
t∈[t0,tx)

St > Λ

)]
= α(Λ)Sβ

t0e−rt0 −α(Λ)ϕP
t0(St0 , tx|β ,Λ ,Λ) (4.7)

where equivalences (e.1) and (e.3) follow from formula (4.30) and equivalence (e.2) fol-
lows from the definition of the stopping time and the indicator function.
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The second expectation in equation (4.6) can be calculated as:

Et0

[
e−rt∗(K −Stx)I (t

∗ = tx)
]

= Et0

[
e−rtx(K −Stx)I

(
Λ ≤ Stx ≤ S(E)f (tx)

)
I
(

inf
t∈[t0,tx)

St > Λ

)]
(e.4)
= Et0

[
e−rtx(K −Stx)

[
I (Stx ≥ Λ)− I

(
Stx ≥ S(E)f (tx)

)]
I
(

inf
t∈[t0,tx)

St > Λ

)]
= KEt0

[
e−rtxI (Stx ≥ Λ) I

(
inf

t∈[t0,tx)
St > Λ

)]
−KEt0

[
e−rtxI

(
Stx ≥ S(E)f (tx)

)
I
(

inf
t∈[t0,tx)

St > Λ

)]
−Et0

[
e−rtxStxI (Stx ≥ Λ) I

(
inf

t∈[t0,tx)
St > Λ

)]
+Et0

[
e−rtxStxI

(
Stx ≥ S(E)f (tx)

)
I
(

inf
t∈[t0,tx)

St > Λ

)]
= K

[
ϕ

P
t0(St0, tx|0,Λ ,Λ)−ϕ

P
t0(St0 , tx|0,S

(E)
f (tx),Λ)

]
−
[
ϕ

P
t0(St0, tx|1,Λ ,Λ)−ϕ

P
t0(St0 , tx|1,S

(E)
f (tx),Λ)

]
. (4.8)

where equivalence (e.4) follows from:

I
(

Λ ≤ Stx ≤ S(E)f (tx)
)
= I (Stx ≥ Λ)− I

(
Stx ≥ S(E)f (tx)

)
.

The third expectation in equation (4.6) is:

Et0

[
e−rt∗(K −S(E)f (t∗))+I (tx < t∗ ≤ T )

]
= e−rtxEt0

[
Etx

[
e−r(t∗x (S

(E)
f (t))−tx)(K −S(E)f (t∗))+

]
I (tx < t∗ ≤ T )

]
(e.5)
= e−rtxEt0

[
P̃tx(Stx ,T,K)I

(
Stx > S(E)f (tx)

)
I
(

inf
t∈[t0,tx)

St > Λ

)]
(e.6)
= e−rtxEt0

[
P̃tx(Λeztx ,T,K)I (ztx > B) I

(
inf

t∈[t0,tx]
zt > 0

)]
= e−rtx

∫ +∞

B
P̃tx(Λez,T,K) f0(z)dz (4.9)

where equivalence (e.5) follows because the inner expectation is the time-tx price of an
option with maturity T and strike price K, i.e. what we defined before the short-maturity
option, and the equivalence (e.6) from zt = ln St

Λ
. By replacing the three expectations in

equations (4.7), (4.8) and (4.9) within equation (4.6), we get the pricing formula (4.4). This
concludes the proof.
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The proof above extends the proof that Bjerksund and Stensland (2002) provide for
their pricing formula. In Section 4.2.4 we show that the pricing method in Bjerksund and
Stensland (2002) can be seen as a particular case of the pricing method in Proposition 4.2.1,
when the OEP of the short-maturity option is approximated by a step-function as well.
As for the pricing formula of Bjerksund and Stensland (2002), also the pricing formula in
Proposition 4.2.1 depends on two parameters tx and Λ . In Section 4.2.3, we will show a
methodology to select the optimal values for these two parameters in order to minimize the
pricing errors with respect to the fair benchmark prices calculated by the binomial tree of
Cox et al. (1979). In Chapter 6, we employ the parameters selected in Section 4.2.3 to real
financial options.

Additionally, we note that all of the terms in (4.4) except the last, i.e. the integral
term, are independent of the selection of the pricing method for the short-maturity op-
tion, P̃tx(Stx ,T,K). The calculation of the last addend depends on the selected method and,
in many cases, the function g(·) in (4.5) can be analytically integrated: examples are the
quadratic method of Barone-Adesi (2005), the integral method of Kim (1990) and the static-
replicating portfolio method of Chung and Shih (2009).

The following result concerns the asymptotic behaviour of the pricing formula in Propo-
sition 4.2.1 when the time-to-maturity becomes arbitrarily large.

Proposition 4.2.2 (Convergence to perpetual option). For any tx ∈ (t0,T ], any 0 < Λ <

S fx(tx) and any pricing formula for the short-maturity option P̃tx(Stx ,T,K), when T →+∞,
the price

Pt0(St0,T,K|tx,Λ)

given in Proposition 4.2.1 converges to the price of the perpetual option written on the same
underlying asset, with the same strike price and which is exercised as soon as the underlying
asset price goes below Λ .

Proof. The proof consists in showing that:

lim
T→+∞

Pt0(St0,T,K|tx,Λ) = α(Λ)Sβ

t0, (4.10)

for any selection of tx ∈ (t0,T ] and Λ (i.e. the option price converges to the pricing formula
in equation (3.26)). For tx = t0+ϑ(T − t0) with ϑ ∈ (0,1], we prove that the result in (4.10)
is independent of ϑ . We discuss separately the cases for different values of γ , which can be
any of 0, 1 and β .
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When γ = β , for positive risk-free rate r,

γ = β =

(
1
2
− b

σ2

)
−

√(
1
2
− b

σ2

)2

+2
r

σ2 <
1
2
− b

σ2 (4.11)

and, consequently, since b+(γ − 1
2)σ

2 < 0,

lim
T→+∞

dϕ,1(H) = lim
T→+∞

dϕ,2(H) =−∞

and
lim

T→+∞
ϕ

P
t0(St0 , tx|β ,Λ ,Λ) = 0, (4.12)

for any ϑ . We note that the result (4.12) also holds when λ > 0, since l’Hôpital’s rule
guarantees that:

lim
T→+∞

eλϑT N
(
dϕ,1(H)

)
= lim

T→+∞
eλϑT N

(
dϕ,2(H)

)
= 0.

On the other hand, for γ = 0 or γ = 1, from the definition of λ in (4.34), we have:

λ =−r+ γb+
1
2

γ(γ −1)σ =−r+ γb ≤ 0

and
lim

T→+∞
dϕ,1(H) = lim

T→+∞
dϕ,2(H) = v,

with v independent from H. Therefore, the limit,

lim
T→+∞

ϕ
P
t0(St0, tx|γ,H,Λ) (4.13)

is finite for any positive and finite H and, since it does not depend on the selection of H, we
have

lim
T→+∞

[
ϕ

P
t0(St0, tx|γ,H1,Λ)−ϕ

P
t0(St0, tx|γ,H2,Λ)

]
= 0 (4.14)

for any finite H1 and H2. Finally,

lim
T→+∞

∫ +∞

B
g(z)dz = lim

T→+∞

∫ +∞

B
e−r(tx−t0)P̃tx(Λez,T,K) f0(z)dz = 0 (4.15)

since limT→+∞ f0(z) = 0, limT→+∞ e−r(tx−t0) = limT→+∞ e−rϑ(T−t0) = 0, and

0 ≤ P̃tx(Λez,T,K)≤ K
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following the non-arbitrage condition. Since the quantities α(Λ) and β are time invariant,
limit (4.10) is proved. This concludes the proof.

In particular, selecting Λ = S∞
f where S∞

f is the optimal exercise price of the corre-
sponding perpetual option in formula (3.29), the option price calculated via formula (4.4)
corresponds to the price of the perpetual option in McKean (1967) and Merton (1973) (see
formula (3.26)).

Delta parameter

In any financial markets, the calculation of the delta parameter is as important as the pricing
of the option. The proposition below provides an analytic formula for the calculation of the
delta parameter of an American put option by the ‘extension’ method. In the following, we
use the notation:

ϕ
′(γ,H) = ϕ

′
t0,St0

(St0, tx|γ,H,Λ) (4.16)

to denote the partial derivative of formula (4.2) w.r.t. St0 . Its formula and that for f ′0(z) =
∂ f0(z)
∂St0

are provided in Appendix 4.A.

Proposition 4.2.3 (Delta parameter). Under the same conditions as stated in Proposition 4.2.1,
the delta parameter is given by the following formula:

∆t0 = ert0
{

α(Λ)
[
βSβ−1

t0 e−rt0 −ϕ
′(β ,Λ)

]
−ϕ

′(1,Λ)+ϕ
′(1,S(E)f (tx))

+K
[
ϕ
′(0,Λ)−ϕ

′(0,S(E)f (tx))
]}

+
∫ +∞

B
g′(z)dz, (4.17)

where
g′(z) = e−r(tx−t0)P̃tx(Λez,T,K) f ′0(z).

The result above is an application of Leibniz’s derivation formula to function (4.4),
taking into account the results ∂B

∂St0
= 0, ∂ P̃tx(Λez,T,K)

∂St0
= 0, ∂Λ

∂St0
= 0 that follow from the

independence of the OEP from St0 . By applying once more Leibniz’s derivative formula to
function (4.17), the Gamma parameter (i.e. the second derivative of the option price w.r.t.
St0) can also be calculated in closed-form.

The pricing formula and the delta parameter in Propositions 4.2.1 and 4.2.3 respectively,
work under any specification for the pricing formula of the short-maturity option. Choosing
any of the standard methods only changes the last addends (i.e. the integrals) of formulae
(4.4) and (4.17). This makes the ‘extension’ method very flexible and, therefore, it can
potentially improve the performance of any quasi-analytic method.
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4.2.3 Selection of the parameters

Up to now, we have assumed that the two parameters Λ and tx are known. In this section,
we will detail how they should be selected.

One way to select the best values for the couple (tx,Λ) is via the solution of the following
problem:

(t∗x ,Λ
∗) = argmax

(tx,Λ)∈[t0,T ]×[S∞
f ,K]

Pt0(St0,T,K|tx,Λ), (4.18)

i.e. tx and Λ are the values corresponding to the best lower bound (see, among others,
Bjerksund and Stensland (1993, 2002)), where S∞

f is in (3.29). Problem (4.18) follows from
formulation (3.6), under the assumption that the standard method we incorporate into the
‘extension’ method returns a lower bound of the short maturity option’s price.

However, since the solution of problem (4.18) could be computationally intensive be-
cause it consists of a non-linear optimization problem, and the standard method could, in
general, not be a lower bound, we adopt a different approach that also leads to good results,
as the numerical comparison in Section 4.3 shows.

In particular, we assume:
Λ = S fx(tx), (4.19)

so that the approximation of the OEP in (4.1) satisfies the continuity property, which theo-
retical characterizes the OEP (see Section 3.2.2) also for t = tx.6

All of the numerical results in Section 4.3 are calculated for this equality holding. Ex-
ceptions are the results for the compound-option method (see Section 3.4.1) and the integral
method (see Section 3.4.3), which are obtained for Λ equal to the OEP at time tx calculated
by the quadratic method in Barone-Adesi and Whaley (1987) (pricing formula (3.40)). This
is because the calculations of S fx(tx) by either of the two methods are poor when only a few
early-exercise dates are considered. However, for these two methods, other choices of Λ

could have been made: among others, we point out the initial guess in Barone-Adesi and
Whaley (1987),

Λ = S∞
f +[K −S∞

f ]e
y1 , with y1 = K

b(T − t0)−2σ
√

T − t0
K −S∞

f
(4.20)

and that in Bjerksund and Stensland (1993),

Λ = S∞
f +[S f (T−)−S∞

f ]e
y2, with y2 = S f (T−)

b(T − t0)−2σ
√

T − t0
S f (T−)−S∞

f
(4.21)

6We note that the pricing and hedging functions are much simpler since the second expectation in for-
mula (4.6) is equal to zero.
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where S∞
f is as in (3.29) and S f (T−) = min{K, r

δ
K}.7

On the other hand, in order to select tx without loss of generality we choose t0 = 0, and
we express tx as a percentage of time-to-maturity tx = ϑT . Then, for any standard method
considered for the short-maturity options in the set,

M ∈ {GJ2, GJ3, BAW, LI, K2, K3, CS2, CS3, JZ}

we numerically solve the problem:

ϑ
∗,M = argmin

ϑ∈ϑϑϑ

MAPE(M )(ϑ) =
1
|O|

argmin
ϑ∈ϑϑϑ

∑
l∈O

APE(l,M )(ϑ) (4.22)

where O is the set of option scenarios with cardinality |O| = 10,000 and ϑϑϑ = {0.05 +

0.1 j| j = 0, . . . ,9} is the discrete version of the interval (t0,T ]. MAPE is the mean absolute
percentage error and APE, the absolute percentage error for option l and method M is
calculated as:

APE(l,M )(ϑ) =

∣∣∣∣∣∣
P(E)

t0

(
S(l)t0 ,T (l),K(l)

)
−Pt0

(
S(l)t0 ,T (l),K(l)

∣∣ϑT (l),Λ (l)
)

P(E)
t0

(
S(l)t0 ,T (l),K(l)

)
∣∣∣∣∣∣ (4.23)

where P(E)
t0 (·) is the benchmark price, Pt0(·) is the pricing function in Proposition 4.2.1, and

all of the other quantities are as above. We explicitly indicate, by the superscript (l), which
option scenario they refer to.

Figure 4.4 illustrates the mean absolute percentage error produced by the ‘extension’
method over the 10,000 scenarios in Figure 4.2 (Section 4.3) as a function of the ratio
ϑ = tx/T . It is clear from the plots in the figure that the ratio tx/T , for any of the methods
considered in Section 3.4, can be selected in a wide range, and the pricing performance of
the ‘extension’ method is still better than the standard method (the dash-dot lines). All of
the results in Section 4.3 are calculated for ϑ = ϑ ∗,M , for any of the considered method
M . Additionally, the plots in Figure 4.4 show that the optimal solution of problem (4.22),
for almost any of the methods considered, is reached for

ϑ
∗,M ≈ 0.5, (4.24)

i.e. half way through the time-to-maturity. Consequently, we suggest using the value 0.5
whenever the solution of problem (4.22) is not available.

7S f (T−) corresponds to the limiting value in (3.30).
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Besides, Figure 4.4 can be used to analyse the performance of the standard methods,
similarly to Figure 4.2. In particular, the position of the best ratio tx/T in any of the plots
gives information on how the corresponding standard method performs for long maturities:
the smaller the optimal ratio, the better the standard method we are ‘extending’ performs for
long-maturity options. Considering the two extreme situations, the method of Ju and Zhong
has the best ratio at about 0.35 while the method of Geske and Johnson with two time-steps
has the best ratio at about 0.6. This means that the former gives more weight to the standard
method than the flat function Λ ; on the other hand, the latter considers the approximation
Λ for a longer interval. This implies that the standard Geske-Johnson method with two
time-steps performs more poorly than the Ju-Zhong method does.

4.2.4 Similarities with Bjerksund and Stensland (2002)

As discussed extensively in the previous sections, the ‘extension’ method divides the option
life into two parts and uses an existing standard pricing technique in the part closest to
maturity. Suppose that the short-maturity option price is given by the method in Bjerksund
and Stensland (1993), which approximates the OEP as a flat function x and has a time-tx
pricing formula for an American put option with maturity at time T equal to:

P̃tx(Stx ,T,K) = ertx
{

α(Λ)
[
Sβ

tx e−rtx −ϕ
P
tx (Stx ,T |β ,x,x)

]
−ϕ

P
tx (Stx ,T |1,x,x)

+ϕ
P
tx (Stx ,T |1,K,x)+ K

[
ϕ

P
tx (Stx ,T |0,x,x)−ϕ

P
tx (Stx ,T |0,K,x)

]}
(4.25)

where ϕP
tx is as defined in (4.2).

When formula (4.25) is used in the pricing formula in Proposition 4.2.1, formula (4.4)
is given in closed form and corresponds to the pricing formula in Bjerksund and Stensland
(2002). Indeed, Bjerksund and Stensland (2002) also divided the life of the option into two
parts (t0, tx) and [tx,T ], but the OEP is approximated by two flat functions as:

S(E)f (t) =

Λ for t ∈ (t0, tx)

x for t ∈ [tx,T ].
(4.26)

Consequently, the ‘extension’ method can be considered as a generalisation over the
method in Bjerksund and Stensland (2002): the latter works by ‘extending’ only the standard
method in Bjerksund and Stensland (1993), while the former works for any quasi-analytic
pricing method.
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Figure 4.4 Optimal selection of the ratio ϑ = tx/T (quasi-analytic methods).
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This figure shows the ranges of ratios tx/T for which the ‘extended’ version (solid lines) outperforms the ‘standard’ version (dash-dot lines) for each method
when problem (4.22) is considered. The methods considered are those in Section 3.4 and the results are shown for all maturities (≤ 5 years). The minima of
the solid lines correspond to the values shown in Table 4.1 in column A-J.
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4.3 Numerical Study

The aim of this section is to show the usefulness of the ‘extension’ method. To this end,
we consider some of the most well-known and applied methods for pricing American put
options (‘standard’ methods), compare the performance of each of them with the ‘extended’
version and, then, highlight that the performance improves considerably when the new
method is employed.

Within the broad class of approximation methods, we focus our study on the quasi-
analytic methods, i.e. those consisting of analytic formulae that require at most a reasonably
small number of numerical solutions of integral equations. Among these methods, we over-
look those that depend on an optimization stage and/or parameters found by an intermediary
regression step and, consequently we exclude methods such as Johnson (1983), Blomeyer
(1986) and Broadie and Detemple (2004). We finish by selecting the following six methods:

GJ the compound-option method in Geske and Johnson (1984) with two and three exercise
dates (see Section 3.4.1);

BAW the quadratic method in Barone-Adesi and Whaley (1987) (see Section 3.4.2);

JZ the improved quadratic method in Ju and Zhong (1999) (see Section 3.4.2);

K the integral method in Kim (1990) with two and three exercise dates (see Section 3.4.3);

LI the interpolation method in Li (2010b) (see Section 3.4.4);

CS the static-replicating portfolio method in Chung and Shih (2009) with two and three
exercise dates (see Section 3.4.5).

GJ, K and CS will be followed in the tables and figures by the number of time-steps em-
ployed (for example GJ2 is the compound-option method with 2 time-steps). Additionally,
although most of these methods, in their original definition, include an extrapolation step
(mainly Richardson’s extrapolation) to speed up the convergence to the true price, we do not
consider any extrapolations since we focus on the improvement of the method for a specific
number of early-exercise dates.

Finally, the focus of this study is exclusively on the improvement in accuracy since the
computational effort required by the ‘extension’ method is only slightly higher than that of
the standard methods and, in most cases, the additional computational time is negligible.
Indeed, it should be noted that:

• for any given number of time-steps, any standard method and our extended version
calculate the same number of value points of the OEP. Moreover, for those standard
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methodologies that do not explicitly calculate the entire OEP but only require the
calculation of the OEP at the initial time S f (t0) (see for example Barone-Adesi and
Whaley (1987), Ju and Zhong (1999) and Li (2010b)), the ‘extension’ method also
requires only the calculation of the OEP at time tx, S fx(tx);

• ϕ(γ,Λ) is provided in closed-form (see formula (4.2)) as is its derivative w.r.t. the
underlying spot price (see formula (4.16)) and, consequently, the pricing formula (4.4)
and the hedging formula (4.17) can be calculated quickly;

• the integral
∫+∞

B g(z)dz can, in many cases, be calculated analytically. For those cases
where an analytic formula does not exist its numerical solution is much faster than the
solution of the integral equation required for the calculation of the OEP.

In the next two subsections, we study the pricing and the hedging performance of our
new method.

4.3.1 Pricing performance

The pricing-performance study is constructed from a total of 10,000 randomly generated
option scenarios. In particular, the parameter values of the underlying price dynamics and
the characteristics of the options (strike prices and maturity dates) are drawn as in Broadie
and Detemple (1996):

• the volatility σ is distributed uniformly between 0.1 and 0.6;

• the initial asset price St0 is fixed at 100;

• the strike price K is distributed uniformly between 70 and 130;

• the dividend rate δ is distributed uniformly between 0.0 and 0.10 with probability 0.8
and equal to 0.0 with probability 0.2;

• the risk-free interest rate is uniformly distributed between 0.0 and 0.1.

Without loss of generality, we assume t0 = 0. Given the importance of the time-to-maturity
to establish the usefulness of the ‘extension’ method, as stated previously, we divide the
10,000 option scenarios into 10 sets of equal cardinality. The sets are named A, . . . ,J and
the options are divided according to their time-to-maturity in ranges of 6 months. So, for
example, set A contains options with a maturity of between of 1 day and 6 months, set B op-
tions have maturities of between 6 months and 1 year, and so on, up to set J, which contains
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options with maturities of between 4.5 years and 5 years. The “exact” fair price (bench-
mark) is the binomial tree price in Cox et al. (1979) with 15,000 time-steps. As in Broadie
and Detemple (1996), options with benchmark prices smaller than 0.5 are discarded.

We use four measures of error to compare each method with its ‘extended’ version:

• mean absolute percentage error, MAPE (results in Table 4.1);

• percentage of good solution, % good, defined as the percentage of option scenarios
for which the relative error committed by the method considered is below 1% (results
in Table 4.2);8

• maximum relative error, Max Error (results in Table 4.3);

• number of best solutions found, % best, defined as the number of option scenarios for
which the relative error of the ‘extension’ method is smaller than that of the standard
method

and all of the results in the Tables are for Λ and tx as selected in Section 4.2.3.
For each ‘standard’ method considered, the ‘extension’ method increases its pricing

performance remarkably. Table 4.1 shows that the ‘extension’ method has the advantage of
evening out the performance of quasi-analytic methods across maturities, as shown by the
shrinking of the range of MAPEs. For example, the standard GJ2 goes from about 0.39% to
4.35% when the maturity range goes from less than 6 months to above 4.5 years, while for
our ‘extended’ version the MAPE goes from 0.25% to only 0.85%. This is true for all of the
quasi-analytic methods considered. Moreover, for some methods (BAW, CS2 and CS3) the
‘extension’ method achieves remarkable reductions in MAPE of over 80%. The ‘extension’
method also works efficiently for option scenarios with maturities of below 6 months: for
any of the standard methods considered, we assist in a reduction of the MAPE even over the
scenarios in set A, with the only exception being K3, whose MAPE is virtually identical to
that of our extended version.

Table 4.2 shows that the improvements of the ‘extension’ method are consistent over
the entire set of considered options. The % good measure indicates how reliable a method is
in pricing American put options. Across all of the maturity ranges, the ‘extension’ method
substantially increases the reliability of all of the standard methods. One noteworthy exam-
ple is for BAW. As we were expecting, this method has a very good performance for short
maturity and the performance is very poor when the time-to-maturity is longer, as shown by

8As for the “exact moment-matching” method in Chapter 2 (see footnote 12 at page 26), the 1% threshold
is selected a posteriori as the smallest integer greater than the average MAPEs in Table 4.1. In selecting this
value, we consider only options with time-to-maturity shorter than one year (i.e. maturity ranges A and B).
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a ‘% good’ measure of only about 28% for maturities of between 4.5 and 5 years. When
the ‘extension’ method is considered together with BAW, the percentage of good solutions
becomes 95%. For all of the standard methods considered with the exclusion of GJ2 and
GJ3, the percentage of good solutions found with the ‘extension’ method is above 90%. For
GJ2 and GJ3, the performance is lower but the ‘extension’ method still improves over the
standard methods.

Furthermore, as indicated in Table 4.3, the ‘extension’ method substantially reduces
the maximum relative error of the standard methods. This provides evidence that the new
method solves some of the problems encountered by standard methods, which, in many
cases, are caused by a low-volatility regime. This is confirmed by Broadie and Detemple
(1996) who, in their Plots 7 and 8, show that the performance of standard pricing methods
deteriorates when low-volatility values are considered.

Finally, the percentage of ‘best solutions’ for the ‘extended’ methods is always above
99%. The only exception is K3 for short-maturity options (set A): in this case, the percentage
is only 38.1% with the standard method outperforming the ‘extended’ version.

4.3.2 Hedging performance

The numerical study on hedging performance is based on the implementation of a delta-
hedging strategy and the analysis of the hedging errors. Delta-hedging is a commonly used
strategy to hedge a short position in a put option through a varying short position (equal
to the delta parameter of the option at that time) in the underlying asset and a varying
position in the risk-less asset. The performance evaluation is carried out according to the
average quadratic hedging error where the hedging error is defined as the difference in
values between the hedging portfolio at the exercise date and the option’s payoff. This error
measure has been used by Schweizer (1995) and Remillard et al. (2012) for European and
American-style options, respectively.

We consider a set of 15 option scenarios with strike price K = 100, maturity T (in years)
in the set {1,2,3,4,5}, written on underlying assets with volatility σ = 0.4, dividend yield
δ = 0.04 and initial spot price S0 = 100. Three different underlying assets are considered.
The stochastic differential equation describing these assets, under the objective-probability
measure P is:

dSt = µStdt +σStdWt (4.27)

and µ is one of the elements of the set {0.05,0.06,0.07}. The risk-free rate is r = 0.05. For
each of the three underlying assets, we simulate 1,000 paths (under the objective measure),
and for each of them, we set-up the one-month-rolling delta-hedging strategy deriving from
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each of the methods in the study. As in Section 4.3.1, the ‘exact’ fair option price is chosen
to be the 15,000 time-step binomial-tree price. Table 4.4 summarises the average quadratic
hedging error over the 15 option scenarios.

From the table, we notice that the different standard methods have very similar hedging
performances and that there is no clear correspondence between pricing performance and
hedging performance: for example, GJ2 is the worst standard method for pricing purposes
but for hedging purposes, it is one of the best. When the ‘extension’ method is considered,
across all of the different maturities and the three drifts µ , the quadratic errors are reduced
and, consequently, the ‘extension’ method also outperforms the standard methods when it
comes to delta-hedging strategies.

4.4 Additional application: Asymptotic expansions of the
OEP

The applications of the ‘extension’ method are not limited to quasi-analytic methods. This
section shows how well the new method performs when used together with asymptotic ex-
pansion of the optimal exercise price near the expiration of the option (aOEP).

Barone-Adesi (2005) and Chung and Shih (2009) consider the aOEP as one of the main
research streams in pricing methods for American-options. As stated in Chapter 3, the OEP
has to be calculated together with the American option price and this makes the American
option pricing problem more complex than the corresponding one for European options.
The aOEP literature is interested in finding analytic approximations of the OEP that are
valid close to expiration. The main drawback of these methods is that most of them work
effectively only up to a few months to maturity and only a few methods can be employed
for maturities of between 1 and 2 years. Therefore the aOEPs cannot be employed to price
long-maturity options.

Evans et al. (2002) suggest using the aOEPs together with numerical methods to over-
come this deficiency, and then price long-maturity options:

“Therefore the results of this paper (i.e. the aOEPs) are complementary to the
numerical methods (they refer mainly to binomial tree methods), since they
provide values near expiry that can be combined with the numerical methods
to calculate the option values and the optimal exercise boundary away from
expiry.”

(p. 200. The notes in brackets were added)
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However, in doing so, the advantages deriving from having analytic formulae for the aOEPs
are simply lost. In what follows, we show that by employing the aOEPs and the new ‘ex-
tension’ method together, we preserve the analytic formulation of the former and we are
able to price American options with a maturity as long as five years. In what follows,
Section 4.4.1 describes the existing contributions in the aOEP literature and Section 4.4.2
numerically evaluates the pricing and hedging performance of the ‘extension’ method when
it is employed together with the aOEPs.

4.4.1 Literature Review

The seminal papers on the approximation of the OEP near expiration are McKean (1967)
and Van Moerbeke (1974). They analysed the American call option case and found that
the OEP is parabolic near expiration. Traditionally, the approximations have been based
on expansion or asymptotic methods. Barles et al. (1995) attained the first-term expansion
of the aOEP for American put options on non-dividend paying assets. Kuske and Keller
(1998) found an aOEP that agrees to the leading order to that of Barles et al. (1995) and
proposed, by starting from the partial differential equation of Black-and-Scholes, an option
pricing formula that works only close-to-expiration. Stamicar et al. (1999) derived an in-
tegral equation for the OEP that asymptotically behaves as the aOEP of Kuske and Keller
(1998). Also, Alobaidi and Mallier (2001) found an aOEP equal to the leading order to
the Kuske-Keller aOEP, by expanding the OEP over the term [(T − t) ln(T − t)]. Chung
et al. (2011) found results consistent with Barles et al. (1995) by exploring the relationship
between the OEP and the gamma of the American put on non-dividend paying stock. Lauko
and Sevcovic (2010) compare the approximations in Evans et al. (2002), Stamicar et al.
(1999) and Zhou (2006) for non-dividend paying stock options. The results show that the
first and second methods have the same asymptotic behaviour while the third, obtained by
the projected successive over relaxation method, differs by a logarithmic factor.

Evans et al. (2002), henceforth EKK, generalised the aOEP in Kuske and Keller (1998)
for dividend-paying stocks, showing that the asymptotic behaviour of the OEP depends on
the ratio δ/r. The formula they propose is:

S fx(t)≈


K −Kσ

√
(T − t) ln σ2

8π(T−t)(r−δ )2 if 0 ≤ δ < r

K −Kσ

√
2(T − t) ln 1

4
√

πδ (T−t) if δ = r
r
δ

K
(

1−σα0
√

2(T − t)
)

if δ > r

(4.28)
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where α0 ≈ 0.4517. Independently, Lamberton and Villeneuve (2003) proved similar re-
sults.

Zhang and Li (2010), henceforth ZL, generalised Evans et al. (2002) by using the per-
turbation methodology in Chen and Chadam (2007). Their formula, which corresponds to a
fourth order expansion, is:

S fx(t)≈


Ke−

√
2σ2(T−t)u(ξ ) if 0 ≤ δ < r

Ke−
√

2σ2(T−t)v(η) if δ = r
r
δ

Ke−2
√

τ∗w(
√

τ∗) if δ > r

(4.29)

where

u(ξ ) = −ξ − 1
2ξ

+
1

8ξ 2 +
11

24ξ 3 +O
(

1
ξ 4

)
,ξ = ln

√
8πb2(T − t)/σ2

v(η) = −η − 1
2

ln(−η)− 1
4η

ln(−η)−
1− 5

4
√

2π

η
+o
(

1
η

)
η = ln(4

√
πr(T − t)), α1 =

2r
σ2 ,α5 =

2δ

σ2 ,τ
∗ =

1
2

σ
2(T − t)

w(
√

τ∗) = β0 +β1
√

τ∗+β2τ
∗+β3τ

∗3/2 +O(τ∗2)

β0 = 0.451723,β1 = 0.144914(α1 −α5)

β2 = −0.009801−0.041764(α1 +α5)+0.014829(α1 −α5)
2

β3 = −0.000618−0.002087(α1 −α5)−0.015670(α2
1 −α

2
5 )

−0.001052(α1 −α5)
3.

For δ = 0, the formula corresponds to that in Chen and Chadam (2007). Formula (4.29)
returns an accurate OEP for small values of σ(T − t) and usually works well for maturities
of up to 2 months.

All of the methods above are designed for a short time-to-maturity of, at most, a few
months. Recently, using the homotopy analysis method, researchers have presented aOEPs
that can also cover up to about a two-year maturity. Liao (2012) derived an analytic for-
mula for the OEP for an American option on non-dividend paying stock. Cheng and Zhang
(2012), henceforth CZ, provided an explicit approximated formula for the OEP function
that covers the case of dividends as an extension of the result in Cheng et al. (2010). Their

analytic approximations are in essence an expansion in terms of powers of
√

1
2σ2(T − t),

and, since the formulae are rather long, they will not be reproduced here. They provide three
alternative methods:
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CZ the simple analytic formula calculated by the homotopy analysis method, which is
given in their formula [8];

CZ-P the expansion of CZ calculated by Pade’ approximation as in their Appendix [C];

CZ-P-m a correction of CZ-P by formula (4.28) for δ > r. This method is introduced by
Cheng and Zhang (2012) since both CZ and CZ-P are calculated under the assumption
that δ < r.

A list of further references on aOEPs can be found in Chen and Chadam (2007), Byun
(2011) and Liao (2012).

4.4.2 Performance analysis

Among the methods described above, in what follows, we study five aOEP methods for
American options on dividend-paying stocks: EKK, ZL, CZ, CZ-P and CZ-P-m. As in
Zhang and Li (2010), we will use these 5 aOEPs together with the integral method in Kim
(1990) (see formula (3.43)) to find the time-tx price of the short-maturity options with ma-
turity at T and strike price K.

In order to establish the usefulness of the ‘extension’ method in ‘extending’ aOEPs, we
carry out a similar study to that in Section 4.3.

Pricing performance

The pricing performance analysis is based on the 10,000 option scenarios employed in Sec-
tion 4.3.1.

We fix Λ to be equal to the OEP of the quadratic method (see Section 3.4.2) at time
tx: the performances of CZ, CZ-P and CZ-P-m do not change when Λ is selected to be
equal to S fx(tx), while methods EKK and ZL perform poorly under this approximation for
long maturity options. Therefore, we report all of the results for Λ equal to the OEP at tx
calculated by the quadratic method in Barone-Adesi and Whaley (1987).

On the other hand, for the selection of tx, we proceed as in Section 4.2.3 by numerically
solving the optimization problem (4.22) for t0 = 0. Unlike in the case of the quasi-analytic
methods, the difference T − tx is relevant here rather than the ratio tx/T since the feasibility
of the asymptotic expansions depends exclusively on the time-to-maturity, in absolute terms.
The optimization is carried out for a series of values ζ = T − tx at intervals of 2 weeks. The
maximal expansion considered is two years (as suggested by Cheng and Zhang (2012)) and,
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consequently, 52 points were considered overall:

ζζζ = {2 weeks, 4 weeks, . . . , 2 years}.

For this reason, options with maturities shorter than 2 weeks have been discarded. The
calculation is carried out for seven exercise days per week.

The solutions of the optimization problem are in Figure 4.5 where, together with the
MAPE corresponding to each value ζ = T − tx, we show the percentage of options we
could price, excluding those for which the aOEP does not satisfy the theoretical properties.
In particular, we considered as non-valid aOEPs the methods that return negative values,
values above the strike price, non-monotonic or non-real functions (see Section 3.2.2)). In
order to guarantee the applicability of the ‘extension’ method, we selected the best ζ among
the only values for which at least 95% of the options could be priced. The figure shows that
the first two methods, EKK and ZL, work up to 2-3 month maturities. However, CZ, CZ-P
and CZ-P-m work properly up to longer maturities and with the restriction we impose of
95%, they work for about 6 months.

Table 4.5 shows the pricing performance of the ‘extension’ method via three of the
measures defined in Section 4.3.1: MAPE, Max Error and % Good. The % best has been
excluded since the standard aOEP methods cannot price options with maturities longer than
2-3 years and, consequently, a comparison cannot be carried out. When the ‘extension’
method is employed together with aOEPs, the MAPEs are remarkably low even for matu-
rities longer than 4.5 years (set J), with an average error over the 10,000 options of well
below 1%. Comparing these results with those in Table 4.1, on average lower MAPEs are
attained than those for most standard methods. However, the errors of the ‘extended’ aOEPs
are higher than the MAPEs attained when the ‘extension’ method was employed together
with the standard methods. Also, the Max Error measure shows impressive results since it is
significantly reduced. This shows that the new method solves many of the problems that the
standard methods encounter. The % Good measure shows that, unsurprisingly, the aOEP
methods are less reliable for long maturity options. However, considering MAPE and %
Good, together we see that, although the number of options with errors of less than 1% is
quite low for options above 3.5 years (sets H, I, J), the errors are usually close to 1%. Over-
all, the 5 methods also perform very well for long maturity options. The CZ-P-M method
outperforms all of the others but remarkable results are obtained by EKK, the performance
of which is comparable with CZ-P-M but it is much simpler to implement and has a shorter
computational time.
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Figure 4.5 Optimal selection of the difference ζ = T −tx (asymptotic expansions of the OEP
near maturity)
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Note: This figure shows that the MAPEs (the starred lines) change for different values of ζ (in years) for
the following asymptotic expansion methods: (EKK) the method in Evans et al. (2002); (ZL) the method
in Zhang and Li (2010); (CZ),(CZ-P)-(CZ-P-m) the method in Cheng and Zhang (2012) basic, with Pade’
approximation and with Pade’ approximation corrected for Evans et al. (2002). Moreover, the figure shows
for each method the percentage of options for which a feasible aOEP is obtained (% of priced options). The
threshold at 95% indicates the value above which the value ζ is accepted. The results are based on the 10,000
option scenarios in Section 4.3.1.



4.4 Additional application: Asymptotic expansions of the OEP 103

Ta
bl

e
4.

5
Pr

ic
in

g
pe

rf
or

m
an

ce
of

‘e
xt

en
de

d’
as

ym
pt

ot
ic

ex
pa

ns
io

ns
of

th
e

O
E

P
ne

ar
m

at
ur

ity

A
B

C
D

E
F

G
H

I
J

A
-J

MAPE

E
K

K
0.

14
3%

0.
32

2%
0.

48
7%

0.
73

2%
0.

56
8%

0.
50

2%
0.

50
5%

0.
70

3%
0.

89
7%

1.
17

2%
0.

61
7%

Z
L

0.
20

8%
0.

49
6%

0.
65

6%
0.

78
8%

0.
68

6%
0.

66
0%

0.
74

1%
0.

94
2%

1.
20

9%
1.

44
6%

0.
80

0%
C

Z
0.

32
3%

0.
49

9%
0.

61
1%

0.
95

4%
0.

79
6%

0.
67

9%
0.

72
0%

0.
92

5%
1.

05
7%

1.
44

8%
0.

81
6%

C
Z

-P
0.

34
7%

0.
60

4%
0.

80
0%

1.
18

8%
0.

94
3%

0.
83

1%
0.

80
7%

1.
04

2%
1.

25
6%

1.
52

7%
0.

95
2%

C
Z

-P
-m

0.
12

1%
0.

18
1%

0.
24

2%
0.

48
0%

0.
37

1%
0.

22
9%

0.
26

1%
0.

46
8%

0.
75

9%
1.

03
7%

0.
42

4%

MaxError

E
K

K
3.

12
3%

4.
61

2%
5.

09
6%

6.
71

7%
5.

80
1%

5.
29

3%
4.

35
4%

4.
22

1%
8.

21
4%

8.
18

4%
8.

21
4%

Z
L

4.
45

6%
6.

62
4%

8.
68

1%
9.

10
4%

7.
98

8%
6.

93
6%

5.
94

3%
5.

26
5%

5.
41

4%
6.

39
3%

9.
10

4%
C

Z
3.

52
8%

4.
25

6%
4.

56
6%

5.
41

5%
5.

83
7%

5.
16

6%
4.

66
3%

5.
06

1%
4.

78
5%

5.
32

3%
5.

83
7%

C
Z

-P
3.

57
7%

4.
89

8%
5.

29
0%

6.
96

0%
6.

51
6%

6.
32

0%
5.

35
7%

5.
91

7%
6.

11
0%

5.
46

1%
6.

96
0%

C
Z

-P
-m

4.
24

2%
4.

15
0%

4.
77

6%
2.

54
3%

2.
26

9%
2.

10
3%

2.
87

1%
2.

92
0%

4.
05

4%
5.

46
1%

5.
46

1%

%Good

E
K

K
98

.2
39

%
90

.8
48

%
82

.5
52

%
74

.0
94

%
78

.7
30

%
83

.1
40

%
81

.5
29

%
69

.4
42

%
61

.1
23

%
50

.4
24

%
76

.3
71

%
Z

L
96

.0
06

%
85

.5
88

%
80

.1
28

%
77

.6
01

%
77

.3
45

%
77

.7
54

%
69

.6
75

%
58

.1
76

%
45

.8
64

%
40

.3
81

%
70

.0
78

%
C

Z
92

.0
00

%
84

.2
98

%
80

.4
13

%
73

.1
55

%
78

.4
27

%
79

.7
88

%
76

.0
30

%
65

.5
72

%
58

.6
43

%
37

.0
14

%
71

.9
34

%
C

Z
-P

90
.4

00
%

82
.9

27
%

77
.6

09
%

63
.6

95
%

72
.8

92
%

75
.6

61
%

73
.9

13
%

61
.7

34
%

50
.7

90
%

35
.4

06
%

67
.8

31
%

C
Z

-P
-m

99
.6

20
%

99
.1

04
%

99
.1

28
%

86
.3

73
%

92
.5

37
%

96
.6

14
%

93
.2

42
%

81
.7

51
%

67
.1

58
%

52
.8

92
%

86
.4

02
%

N
o.

of
sc

en
ar

io
s

74
3

94
1

96
3

97
8

98
6

99
1

99
0

99
2

99
0

99
3

9,
56

7
N

ot
e:

T
hi

s
ta

bl
e

pr
es

en
ts

fo
r

fiv
e

as
ym

pt
ot

ic
ex

pa
ns

io
ns

m
et

ho
ds

(c
ou

pl
ed

w
ith

th
e

‘e
xt

en
si

on
’

m
et

ho
d)

th
e

m
ea

n
ab

so
lu

te
pe

rc
en

ta
ge

er
ro

r
(M

A
PE

),
th

e
m

ax
im

um
re

la
tiv

e
er

ro
r

an
d

th
e

pe
rc

en
ta

ge
of

‘g
oo

d’
so

lu
tio

ns
.

T
he

m
et

ho
ds

co
ns

id
er

ed
ar

e:
(E

K
K

)
th

e
m

et
ho

d
in

E
va

ns
et

al
.(

20
02

);
(Z

L
)

th
e

m
et

ho
d

in
Z

ha
ng

an
d

L
i

(2
01

0)
;

(C
Z

),(
C

Z
-P

)-
(C

Z
-P

-m
)

th
e

m
et

ho
d

in
C

he
ng

an
d

Z
ha

ng
(2

01
2)

ba
si

c,
w

ith
Pa

de
’

ap
pr

ox
im

at
io

n
an

d
w

ith
Pa

de
’a

pp
ro

xi
m

at
io

n
co

rr
ec

te
d

fo
rE

va
ns

et
al

.(
20

02
),

re
sp

ec
tiv

el
y.

Te
n

ra
ng

es
of

m
at

ur
iti

es
(i

n
ye

ar
s)

ar
e

co
ns

id
er

ed
:

(0
;0
.5
]

(A
),
(0
.5

;1
]

(B
),
(1

;1
.5
]

(C
),
(1
.5

;2
]

(D
),
(2

;2
.5
]

(E
),
(2
.5

;3
]

(F
),
(3

;3
.5
]

(G
),
(3
.5

;4
]

(H
),
(4

;4
.5
]

(I
),
(4
.5

;5
]

(J
).

T
he

re
su

lts
ar

e
ba

se
d

on
1,

00
0

si
m

ul
at

ed
sc

en
ar

io
s

fo
re

ac
h

m
at

ur
ity

ra
ng

e
dr

aw
n

fr
om

th
e

di
st

ri
bu

tio
n

in
di

ca
te

d
in

B
ro

ad
ie

an
d

D
et

em
pl

e
(1

99
6)

an
d

su
m

m
ar

is
ed

in
Se

ct
io

n
4.

3.
In

th
e

la
st

ro
w

,f
or

ea
ch

m
at

ur
ity

ra
ng

e,
th

er
e

is
th

e
nu

m
be

ro
fo

pt
io

ns
w

ith
an

‘e
xa

ct
’p

ri
ce

ab
ov

e
0.

5
an

d
a

m
at

ur
ity

of
lo

ng
er

th
an

2
w

ee
ks

.
T

he
va

lu
es

fo
rt

he
‘e

xt
en

si
on

’m
et

ho
d

ar
e

ca
lc

ul
at

ed
fo

rt
he

va
lu

e
T
−

t x
w

hi
ch

ha
s

th
e

sm
al

le
st

M
A

PE
lin

ke
d

to
it.

A
ll

of
th

e
re

su
lts

ar
e

ca
lc

ul
at

ed
co

ns
id

er
in

g
on

e
ex

er
ci

se
da

te
pe

rd
ay

(7
da

ys
a

w
ee

k)
.



4.4 Additional application: Asymptotic expansions of the OEP 104

Table 4.6 Delta-hedging comparison for different maturities: ‘Extended’ asymptotic expan-
sions of the OEP

µ = 0.05
ttm 1 (year) 2 3 4 5

EKK 0.47352 0.76189 1.00068 1.20457 1.36923
ZL 0.55815 0.80576 1.02811 1.24195 1.39007
CZ 0.39186 0.72313 0.97802 1.19328 1.36048

CZ-P 0.43306 0.74524 0.99166 1.20065 1.36234
CZ-P-m

µ = 0.06

EKK 0.56 0.86987 1.11097 1.29713 1.42159
ZL 0.64413 0.91436 1.14728 1.34103 1.44488
CZ 0.49471 0.8289 1.08657 1.28004 1.40973

CZ-P 0.526 0.84986 1.10056 1.29017 1.41367
CZ-P-m

µ = 0.07

EKK 0.47593 0.77894 1.02059 1.21979 1.37429
ZL 0.56951 0.82384 1.06247 1.26565 1.39759
CZ 0.39673 0.73723 0.99649 1.20358 1.36231

CZ-P 0.43222 0.75699 1.00973 1.21248 1.36434
CZ-P-m

Note: This table presents the average quadratic hedging error for five ‘extended’
asymptotic-expansion methods: (EKK) the method in Evans et al. (2002); (ZL) the
method in Zhang and Li (2010); (CZ), (CZ-P) and (CZ-P-m) the method in Cheng and
Zhang (2012) basic, with Pade’ approximation and with Pade’ approximation corrected
for Evans et al. (2002), respectively. CZ-P and CZ-P-m are considered together since
δ < r. Details on the analysis are in the caption of Table 4.4.

Hedging performance

Table 4.6 summarises the performance of the five ‘extended’ aOEP methods when em-
ployed to hedge the 15 option scenarios introduced in Section 4.3.2. Also for this study, the
error measure is the average quadratic hedging error.

As for the standard methods, as for the extended aOEPs, the hedging performance is
very similar across the different methods with ZL having the worst and CZ having the best
performance across the 5 methods studied. Overall, comparing Table 4.4 and Table 4.6,
the hedging performances of the aOEPs are better than the ones of the standard methods.
However, the five aOEPs are generally worse that the ‘extended’ methods across all of the
5 maturities with the exception of the one-year-maturity options, where the aOEP methods
perform better.

Analysis

Overall, we think that the performance of the aOEP methods are impressive. Although their
performance is not as good as that of the ‘extended’ methods for standard quasi-analytic
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methodologies, they are very precise in pricing and hedging American options and they
have the advantage of being fast since they do not require the solution of integral equations
as many standard methods do.

4.5 Conclusions

Most of the quasi-analytic methods currently used for pricing and hedging American op-
tions are more likely to perform better for short-maturity options than for long-maturity
ones. This is because of the nature of the approximation algorithms available in the litera-
ture, which achieve higher pricing and hedging performance, the smaller the time-step size
employed (i.e. the higher the number of exercise-dates considered).

In this chapter, we proposed a quasi-analytic method, which we referred to as the ‘ex-
tension’ method, which has the potential to improve the performance of any quasi-analytic
pricing and hedging method for long-maturity options under geometric Brownian motion.
The idea underpinning our new method is to use a flat approximation of the optimal exer-
cise price near the beginning of the contract, where the theory suggests that this function
is almost constant, combined with existing pricing approaches near the contract expiration.
Our extensive scenario-based study shows the usefulness of the ‘extension’ method in im-
proving the pricing and hedging performance of 6 well-known quasi-analytic methodologies
where the fair benchmark prices are calculated by the binomial tree method of Cox et al.
(1979): Geske and Johnson (1984), Barone-Adesi and Whaley (1987), Kim (1990), Ju and
Zhong (1999), Chung and Shih (2009) and Li (2010b). This study shows that the ‘exten-
sion’ method achieves a remarkable reduction in the pricing and hedging errors over each of
the 6 existing methods for a wide range of time-to-maturities. In particular, the new method
leads to sizeable improvements for long-maturity options, where the existing methodologies
usually fail, although it also improves on these standard methods for maturities shorter than
6 months.

Additionally, we showed that our method can successfully incorporate methods that cal-
culate asymptotic expansions of the optimal exercise price near maturity. These are the
cutting-edge methods for American options pricing (Barone-Adesi, 2005) and provide pre-
cise estimations of the optimal exercise price for maturities of the order of months. Cur-
rently, much research incorporates these methods into numerical algorithms (mainly the
binomial tree method of Cox et al. (1979)) for pricing and hedging longer-maturity options.
However, in doing so, the advantage of having an analytic formula for the optimal exercise
price is lost because the method of Cox et al. (1979) and the other numerical methods require
intense calculation and consequently the pricing process is very time consuming. In this
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chapter, we used these asymptotic formulae into our new method. We studied 3 asymptotic-
expansion methods (Evans et al. (2002), Zhang and Li (2010) and Cheng and Zhang (2012))
and our scenario-based study showed that, if these 3 asymptotic-expansion methods are in-
corporated into our ‘extension’ method, good pricing and hedging performances are reached
for options with a time-to-maturity as long as 5 years, with the advantage of retaining their
analytic nature.

In Chapter 6, we strengthen these results for both standard quasi-analytic and asymptotic
expansion methods by showing that the ‘extension’ method also improves on them when
employed over real financial data. For this purpose, we will use options and LEAPS® on
the S&P 100TM equity index traded from 15 February 2012 to 10 December 2014.

In what follows, we discuss some improvements to the ‘extension’ method that we will
leave for future research.

4.5.1 Further research

At the current stage, the ‘extension’ method has been applied exclusively to the pricing
and hedging of American options written on assets whose price dynamics follow geometric
Brownian motion. This model, although still largely used in the context of American option
pricing by both practitioners and academics as the recent literature shows, have many draw-
backs in representing the empirical evidence on the markets (see among other Fama (1965),
Bakshi et al. (1997), Bates (2000), Pan (2002) and Broadie et al. (2007)).

Further research will involve applying the idea in Section 4.2.1 to pricing long-maturity
options written on underlying assets following different dynamics than the geometric Brow-
nian motion. As in this chapter, the three key elements for this idea to be applicable are:

• the OEP of the American option has to be independent of the filtration at time t0;

• the availability of good approximations of (quasi)-analytic pricing formulae and/or
optimal exercise prices for the short-maturity options;

• the availability in closed-form of the probability density function of the underlying
asset price at time tx ∈ (t0,T ] conditional on not hitting the flat barrier Λ between t0
and tx.

At the current stage, the log-normal jump-diffusion process of Merton (1976) (see SDE (3.20))
and the dual exponential jump-diffusion process of Kou (2002) (see SDE (3.22)) appear to
be possible candidates. As in the case of geometric Brownian motion, since all of the param-
eters of the two jump-diffusion are time independent, it is shown that the OEPs are also time
independent; consequently, one can employ the OEP of a short-maturity option to construct
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the OEP of a longer-maturity option, as we did in this chapter for options under geometric
Brownian motion. Moreover, several quasi analytic formulae are available for pricing these
contracts (see among others, the methods in Kou and Wang (2004) for the dual exponential
diffusion process, and in Gukhal (2004) for the log-normal jump-diffusion process). Finally,
several studies (e.g. Kou and Wang (2003)) have investigated the first passage times to flat
boundaries for jump-diffusion processes; consequently the extension mechanism can work.

Another possible improvement over the ‘extension’ method is attainable by modify-
ing the approximation of the OEP near the beginning of the contract (t0, tx). In particular,
we think that changing the flat approximation Λ to some other functions may improve the
results we have. One suitable function seems to be Λex(t−t0), which corresponds to the
approximation introduced by Omberg (1987) and Ju (1998). However, the degree of com-
plexity of the new approximations and the possible performance improvement should be
traded off with the loss in computational efficiency with respect to the flat approximation.



Appendix

Appendix 4.A Useful results for the proofs

We collected here some results used in the proofs of Propositions 4.2.1 and 4.2.3.

4.A.1 Results for Proposition 4.2.1

The first result is the time-u price of a perpetual put option starting at time u:

Eu

[
e−r(t∗u (x)−u)(K − x)

]
= α(x)Sβ

u (4.30)

where α(x) and β are given in Proposition 4.2.1. Formula (3.26) corresponds to the formula
above for u = t0.

The second result is the following expectation:9

ϕ
P
t0(St0, tx|γ,H,Λ) = Et0

[
e−rtxSγ

txI (Stx > H) I
(

inf
t∈[t0,tx)

St > Λ

)]
=

= Λ
γEt0

[
e−rtxeztx I (ztx > BH) I

(
inf

t∈[t0,tx)
zt > 0

)]
=

= Λ
γ

∫ +∞

BH

e−rtxez f0(z,γ)dz =

= eλ txSγ

t0

[
N
(
dϕ,1(H)

)
−
(

Λ

St0

)κ

N
(
dϕ,2(H)

)]
(4.31)

where BH = γ ln H
Λ

, ztx = γ ln Stx
Λ

, N (·) is the standard normal cumulative distribution function
(cdf),

dϕ,1(H) =
ln

St0
H +(b+(γ − 1

2)σ
2)(tx − t0)

σ
√

tx − t0
, (4.32)

9We prove here the result for γ > 0. It is straightforward to prove that formula (4.31) also holds for γ = 0.
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dϕ,2(H) =
ln Λ 2

St0H +(b+(γ − 1
2)σ

2)(tx − t0)

σ
√

tx − t0
, (4.33)

λ = −r+ γb+
1
2

γ(γ −1)σ2 (4.34)

and κ = 2b
σ2 +(2γ −1). In the above derivation we also used the expression for f0(z,γ), the

probability density function of an arithmetic Brownian motion at time tx with positive initial
value zt0 , drift parameter b2 = γb1, volatility parameter σ1 = γσ and an absorbing barrier at
0 (Ingersoll, 1987, p. 352):

f0(z,γ) =
n
(

z−zt0−b2(tx−t0)
σ1

√
tx−t0

)
− e

−
2b2zt0

σ2
1 n

(
z+zt0−b2(tx−t0)

σ1
√

tx−t0

)
σ1

√
tx − t0

. (4.35)

For γ = 1, the formula above is equal to formula (4.3), i.e.

f0(z) = f0(z,1).

4.A.2 Results for Proposition 4.2.3

Defining n(·) as the standard normal density function, we have:

f ′0(z) =
1

St0σ
√

tx − t0

×
[

e−
2b1zt0

σ2 n
(

z+ zt0 −b1(tx − t0)
σ
√

tx − t0

)(
z+ zt0 −b1(tx − t0)

σ2(tx − t0)
+

2b1

σ2

)
+

z− zt0 −b1(tx − t0)
σ2(tx − t0)

n
(

z− zt0 −b1(tx − t0)
σ
√

tx − t0

)]
and

ϕ
′
t0,St0

(St0, tx|γ,H,Λ) =
∂ϕP

t0(St0 , tx|γ,H,Λ)

∂St0
= eλ tx

[
γSγ−1

t0 N
(
dϕ,1(H)

)
+

Sγ−1
t0

σ
√

tx − t0
n
(
dϕ,1(H)

)
−Λ

κ(γ −κ)Sγ−κ−1
t0 N

(
dϕ,2(H)

)
+

Λ κ

Sκ−γ+1
t0 σ

√
tx − t0

n
(
dϕ,2(H)

)]
.



Chapter 5

American Options: The Weighted Least
Squares Monte Carlo Valuation Method

The least squares Monte Carlo algorithm introduced by Longstaff and Schwartz (2001) is
one of the most widely applied numerical methods for pricing American-style derivatives.
This chapter examines the regression step of this algorithm and proves that, although unbi-
ased, the estimators calculated by the ordinary least squares regression method are not the
best linear unbiased estimators because there is evidence of heteroscedasticity. We propose
a new pricing method to account for heteroscedasticity and we demonstrate numerically that
the new method reduces the upper bias that is well-known to characterise the algorithm of
Longstaff and Schwartz. The chapter is structured as follows. Section 5.1 reviews the algo-
rithm of Longstaff and Schwartz and justifies the introduction of our new pricing method.
Section 5.2 is the main contribution of the chapter. It shows the existence of heteroscedastic-
ity in each regression step of the least squares Monte Carlo method for a set of scenarios and
then proves it theoretically for a wide class of underlying asset price dynamics. Section 5.3
describes our new method, numerically evaluates its pricing performance by comparing it
with existing methodologies and shows that it reduces the upward pricing bias significantly.
Section 5.4 concludes.

5.1 Introduction

One of the most powerful families of methods for pricing American-style options, when
many exercise opportunities and many random sources are involved, is the family of the
regression-based methods (Glasserman, 2003, p. 478). Unlike many other numerical meth-
ods, regression-based methodologies do not suffer from the so-called “curse of dimension-
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ality”, i.e. the exponential growth of the computational time with an increase in the number
of random sources. The key feature of these methodologies is the use of Monte Carlo simu-
lations together with a regression method to estimate numerically the continuation value of
the priced contract. This turns out to be one of the main advantages of the regression-based
methods since the computations are reduced to simple linear algebraic operations.

A long series of papers can be classified within this family of methods and the seminal
contributions are Carriere (1996), Tsitsiklis and Van Roy (2001) and Longstaff and Schwartz
(2001). While they all use regressions in a dynamic programming context, they have dis-
tinctive features: Carriere (1996) estimates the continuation value along each simulated
path by employing spline regressions and regressions with a local polynomial smoother;
Tsitsiklis and Van Roy (2001) similarly to Carriere (1996) also estimate the continuation
value along each path but they do so by using the ordinary least squares regression (OLS)
method; Longstaff and Schwartz (2001) also adopt ordinary least squares calculus but their
method proceeds by finding the optimal stopping time.

In the literature, the regression-based methods for pricing American options are centred
on the algorithm formulated by Longstaff and Schwartz (2001), the least squares Monte
Carlo (LSMC). A justification for the great success of the LSMC is given by Stentoft (2014),
who justifies its widespread use by noting that it has the smallest absolute bias and less error
accumulation when compared to the methods of Carriere and Tsitsiklis and Van Roy.

In this chapter, we study in detail the regression step of the LSMC algorithm. We pro-
ceed by proving that the standard assumption of homoscedasticity does not hold for the
regressions in the LSMC when it is applied to price American call and put options because
the variance of the errors conditional on the explanatory variables is a function of these
variables. Consequently, the errors of the regressions in the LSMC are heteroscedastic, a
condition that makes the OLS estimators not the best linear unbiased estimators, BLUE
(see Section 5.2). Additionally, we propose a new pricing method, which we refer to as
the weighted least squares Monte Carlo (wLSMC). The new method, which is similar in
structure to the LSMC, employs the weighted least squares regression (WLS) method in-
stead of the OLS method. Consequently, we are able to retain the BLUE condition, even
in the presence of heteroscedasticity, as shown by Aitken’s theorem (see Section 5.2.5). In
order to apply the WLS regression method, an estimation of the variance of the errors is
necessary for the weights of the new method. In Section 5.3, together with the explanation
of the wLSMC, we provide a closed-form approximation for the weights.

Additionally, via an extensive numerical comparison (see Section 5.3.2), we show that
the LSMC tends to exhibit a large pricing bias because the OLS estimators are more prone to
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overfitting the continuation value curve. Finally, we show that correcting for heteroscedas-
ticity via the wLSMC also corrects for curve overfitting problems and leads to a much
smaller upward bias.

5.1.1 Literature review on the least squares Monte Carlo method

Many researchers have examined the LSMC algorithm, from both theoretical and computa-
tional perspectives.

On the theoretical side, the convergence of the LSMC has been studied in Longstaff
and Schwartz (2001), Clement et al. (2002) and Stentoft (2004b). Longstaff and Schwartz
(2001) proved the convergence for problems with one state variable and only one exercise
date (except maturity). Clement et al. (2002) showed that, for a given set of basis functions,
the error resulting from Monte Carlo simulations converges to zero when the number of sim-
ulated paths goes to infinity. Within a multi-dimensional and multi-period setting, Stentoft
(2004b) proved convergence as the number of basis functions M and number of paths nS

go to infinity with M3/nS → 0. Egloff (2005) and Zanger (2009, 2013) improved on these
convergence results by using statistical learning. Additionally, Mostovyi (2013) studied the
stability of the LSMC near the beginning of the contract, for a time-step size approaching
zero and found that the regression problem is ill-posed and thus the LSMC is unstable in
these settings. Klimek and Pitera (2014) extended the results of Clement et al. (2002) to
non-Markovian processes and path-dependent payoffs.

On the computational side, Moreno and Navas (2003), Stentoft (2004a) and Areal et al.
(2008) assessed the pricing performances of the LSMC under different numbers of sim-
ulated paths, payoff structures and polynomial families in the regressions. They provide
evidence that the performance of the LSMC is virtually the same for vanilla options when
different polynomial families are employed and that their selection has a major impact in
the case of exotic options. Bolia et al. (2004), Lemieux and La (2005), Areal et al. (2008)
and Juneja and Kalra (2009), among others, tested different variance-reduction techniques
and quasi-random sequences for the LSMC algorithm. Rasmussen (2002) used the dis-
persed path technique to improve the estimation of the optimal exercise price in the LSMC.
Similarly, Wang and Caflisch (2010) modified the LSMC to straightforwardly calculate the
delta and gamma parameters of the options. Remarkably, Kan et al. (2009) proposed an
asymptotic correction for the pricing bias in the LSMC (and other Monte Carlo methods)
and successfully employed it for multi-asset options. Stentoft (2005) adapted the LSMC
to price American options under GARCH models. AitSahlia et al. (2010) priced American
options under the Heston model by modifying the LSMC algorithm: their method estimates
the optimal exercise surface (the equivalent of the optimal exercise price for bi-dimensional
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processes) via the LSMC and then employs it in the early exercise decomposition derived
by Chiarella and Ziogas (2006).

Particularly relevant to the topic of this chapter are the studies carried out on the re-
gression step of the LSMC algorithm and the price bias it may cause. The literature has
shown that the pricing bias in the LSMC is a combination of the downward bias caused
by the approximation of this curve by a finite low-dimensional polynomial, and the up-
ward bias caused by using the same paths to estimate the optimal stopping time, and is
consequently linked to overfitting the regression curve (see, among others, Létourneau and
Stentoft (2014)).

Glasserman and Yu (2004) proposed the “regression later” algorithm (as opposed to the
“regression now” algorithm in Longstaff and Schwartz (2001)) for American option pric-
ing. The “regression later” algorithm regresses the continuation value on functions of the
spot price at the current time rather than on values at the previous time-step as the LSMC
does. Although it has the advantage of having estimators with smaller variances, it requires
martingale basis functions that may be difficult to find in multidimensional settings. Tom-
paidis and Yang (2014) investigated different regression techniques as alternatives to the
OLS method. They examined quantile regression, Tikhonov regularization, matching pro-
jection pursuit, classification and regression trees and a non-parametric method. However,
by doing so, they lost the unbiasedness property of ordinary least squares estimators, which
we are able to retain by employing the wLSMC. Létourneau and Stentoft (2014) employed
the linear inequality constrained least squares method (ICLS) to impose monotonicity and
convexity properties on the continuation value curve as the theoretical results reviewed in
Section 3.2.1 suggest (for an outline of the ICLS methodology see Appendix 5.A).1 In a
numerical study, Létourneau and Stentoft showed that the ICLS algorithm is less prone to
curve-overfitting than the standard LSMC and that, consequently, the upward pricing bias is
significantly reduced. In Section 5.3.2, we numerically compare the wLSMC method with
the ICLS and show that they both succeed in reducing the bias in the LSMC and that, in
many cases, our methodology outperforms the inequality constrained least squares Monte
Carlo method.

Finally, we enumerate some applications that have successfully employed the LSMC
algorithm in fields other than the American option pricing problem: Longstaff (2005) em-
ployed the LSMC to value mortgage-backed securities in a multifactor framework; Sabour
and Poulin (2006) adapted LSMC to value real capital investments with examples in the
valuation of copper-extraction projects; Bacinello et al. (2010) priced life insurance con-

1One can show, equivalently to what we prove in this chapter, that also the ICLS method is affected by
heteroscedasticity, while the “regression later” approach by Glasserman and Yu (2004) is not affected since
the continuation value is regressed on the current spot price.
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tracts with surrender guarantees; Carmona and Ludkovski (2010) adapted the LSMC to
optimal switching models with inventory to evaluate energy storage facilities (natural gas
dome storage and hydroelectric pumped storage); Jarrow et al. (2010) priced callable bonds
via the LSMC and showed that the same technique can be applied to mortgage-backed secu-
rities. Recently, Carmona and Hinz (2011) studied a storage management problem, where
they controlled over time the level of the commodity stored in the facility to maximize the
returns.

5.1.2 Description of the least squares Monte Carlo method

Let us consider on the filtered probability space (Ω,F ,(Ft)t≥0,Q) the financial market
consisting of three assets as described in Section 3.1: a bank account with constant risk-free
interest rate r; a risky asset with price dynamics {St}t≥t0 ; and, an American-style derivative
written on the risky asset. Then, we restrict the pricing of American options to contracts
that can be exercised only to a fixed set of exercise opportunities t1 < t2 < .. . < tm = T and
t0 = 0, the time of evaluation, is not usually part of this set. Henceforth, we borrow the
notation introduced in Section 3.1, which we briefly summarise below: Si is the underlying
asset price at the ith exercise opportunity (the one at time ti); si+1 is the logarithmic return
over the period (ti, ti+1); hi(X ) is the payoff function in time-0 dollars for exercise at time ti
when the current state of the underlying asset is Si =X ; r0,i is the discount factor as defined
in formula (3.7); Vi(X ) is the value in time-0 dollars of the American-style derivative at
time ti given Si =X (assuming the option has not been previously exercised); Ci(X ) is the
continuation value of the American-style derivative measured in time-0 dollars conditional
on the current state X (see formula (3.8)); and, S fi is the optimal exercise price at time ti.

The LSMC method solves the dynamic programming problem in (3.10)-(3.11), by com-
bining Monte Carlo simulations and the OLS regression method. In particular, given a set
of nS simulated paths of the Markovian process {St}t≥0, a set of M + 1 basis functions2

ψl (·) : ℜ 7→ ℜ and a set of M + 1 parameters βi,l ∈ ℜ, l = 0, · · · ,M, for any time ti with
i = 1, . . . ,m−1, Longstaff and Schwartz employ the following expression for the continua-
tion value of an American-style derivatives (see equation (3.8)):

Ĉi(X ) =
M

∑
l=0

βi,lψl (X ) , (5.1)

2It is usually required that ψ0 (·) = 1.
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and the OLS method to calculate the parameters βi,l from the observations of pairs(
Si( j),Vi+1

(
Si+1( j)

))
, j = 1 . . . ,nS

where Si( j) indicates the value of process {St}t≥0 at time ti for the simulated path j-th. In
particular, the LSMC algorithm goes through the steps in the box below (LSMC).

LSMC Steps of the (ordinary) least squares Monte Carlo algorithm

1. Simulate nS independent paths {S1( j), · · · ,Sm( j)}, j = 1, · · · ,nS,

2. Set the option terminal-value equal to Vm
(
Sm( j)

)
= hm

(
Sm( j)

)
, j = 1, . . . ,nS,

3. Using backward dynamic programming for i = m−1, · · · ,1,

(a) Select the set J̃i of in-the-money paths at time-step i, i.e. J̃i = { j|hi
(
Si( j)

)
> 0},

(b) Run an OLS regression on the pairs
(
Si( j),Vi+1

(
Si+1( j)

))
for j ∈ J̃i, with basis

functions ψl (·), to determine βi,l ,

(c) For each j ∈ J̃i set

Vi
(
Si( j)

)
=

{
hi
(
Si( j)

)
, hi

(
Si( j)

)
≥ Ĉi

(
Si( j)

)
;

Vi+1
(
Si+1( j)

)
hi
(
Si( j)

)
< Ĉi

(
Si( j)

) (5.2)

with Ĉi(·) as in (5.1) and βi,l found in step 3.(b). For j ∈ {1, · · · ,nS}\ J̃i (out-of-
the money paths), set Vi

(
Si( j)

)
=Vi+1

(
Si+1( j)

)
,

4. Set V0(S0) =
1
nS

∑
nS
j=1V1

(
S1( j)

)
.

5.2 Heteroscedastic errors in the least squares Monte Carlo
method

Let us consider the OLS regression at any time-step i = 1, . . . ,m−1 of step 3b in the LSMC
algorithm. Additionally, let us define ui as the error of the time-ti regression given the
current price Si:

ui =Vi+1(Si+1)−Ci(Si), (5.3)
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which is a random variable dependent on Si+1 = Siesi+1 . These errors are homoscedastic if

Var[ui|Si = X ] = c, c ∈ ℜ
+,∀X ∈ ℜ

+. (5.4)

We note that in (5.4) it is required that the variance of the errors ui is equal to a constant c
for any value of the underlying asset price X .

The aim of this section is to show that there exist some underlying asset prices X1 ∈ ℜ+

and X2 ∈ ℜ+ such that

Var[ui|Si = X1] ̸= Var[ui|Si = X2].

This means that the conditional variance of errors changes with the underlying spot price, a
condition that is usually defined as heteroscedasticity of the errors.

In what follows, first, we demonstrate numerically via three statistical tests (see Sec-
tion 5.2.2), and graphically (see Section 5.2.3) the presence of heteroscedasticity for a set
of 320 option scenarios (described in Section 5.2.1) with an underlying asset price fol-
lowing any of the four well-known dynamics reviewed in Section 3.1.1. Together with
these scenario-based proofs, we also provide a formal proof of heteroscedasticity (see Sec-
tion 5.2.4) for an underlying asset whose price follows the general dynamics St = S0est

where {st}t≥t0 is a Markovian process. In what follows, we make use of the equality

Var[ui|Si = X ] = Var[Vi+1(Si+1)|Si = X ], (5.5)

which follows from (5.3).

5.2.1 Description of the option scenarios

Let us describe the option scenarios we will use in Sections 5.2.2 and 5.2.3 and for the
numerical comparison in Section 5.3.2. The option scenarios are American put and call
options on an underlying asset with one of the four price dynamics described mathemat-
ically in Section 3.1.1: the geometric Brownian motion with SDE (3.16), the exponential
Ornstein-Uhlenbeck process with SDE (3.18), the log-normal jump-diffusion process with
SDE (3.20), and the double exponential jump-diffusion process with SDE (3.22).

Option scenarios under different models

For our numerical exercises, we construct two sets, each consisting of 160 scenarios. The
scenarios in the first group are American put options and the other are American call options.
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They are all written on assets whose risk-neutral price dynamics is one of the four above.
The scenarios in the sets are spanned by the values for the parameters associated with the
underlying processes.

For both call and put options, under geometric Brownian motion, the study is carried
out on the 20 scenarios (rescaled for the strike price) described in Table 1 of Longstaff
and Schwartz (2001). The parameters are S0 ∈ {0.9,0.95,1,1.05,1.1}, σ ∈ {0.2,0.4},
T = {1,2} year(s), r = 6% and K = 1. For the other three processes, we use the follow-
ing additional parameters: the exponential Ornstein-Uhlenbeck process has η ∈ {0.15,0.3},
µ = {0, log(0.9)} and T = 1 year; the log-normal jump-diffusion process has λ ∈ {0.5,1},
αJ ∈ {−0.25,0.25}, σJ ∈ {0.2,0.4} and T = 1 year, and the double exponential jump-
diffusion process has q = 0.5, λ = 0.5, (η1,η2) ∈ {(2,3),(4,6)} and T = 1 year. Ad-
ditionally, for the American put case we consider options on non-dividend paying assets
(δ = 0%) as in Longstaff and Schwartz (2001); on the other hand, we assume a value for
the dividend yield of δ = 3% for the American call options since an American call option
for a non-dividend paying asset is equivalent to an European option (Merton, 1973) and,
consequently, there is no need to apply these numerical algorithms.

Overall, for each of the two sets, we consider 20 option scenarios under geometric Brow-
nian motion, 40 scenarios under the exponential Ornstein-Uhlenbeck process, 80 scenarios
under the log-normal jump-diffusion process and 40 scenarios under the double exponential
jump-diffusion process.

5.2.2 Statistical tests for heteroscedasticity

In this section, we run three alternative tests to detect heteroscedasticity in the regressions
3b in the LSMC (for all time-step i = m−1, . . . ,1), for each of the 320 scenarios described
above. In particular, we consider:

• Park’s test (see Park (1966));

• White’s general heteroscedasticity test (see White (1980));

• Breusch-Pagan-Godfrey test (BPG, see Breusch and Pagan (1979), Godfrey (2008)),

which are briefly described in Appendix 5.B and are based on the residuals

ûi, j =Vi+1
(
Si+1( j)

)
−Ĉi

(
Si( j)

)
, j ∈ J̃i, (5.6)

where as before the index j indicates the j-th simulated path and J̃i is the set of the in-the-
money paths at time-step i.
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For each of the 320 scenarios in the two sets described above, we implemented the
LSMC method with 50 time-steps per year (∆T = 0.02 year), basis functions

ψl (X ) = X l, l = 0, . . . ,3 (5.7)

and nS = 5,000 to estimate the continuation value in equation (5.1). Overall, for each of the
two sets of scenarios we have:

• 1,480 regressions under geometric Brownian motion (10 scenarios with T = 1 year ×
(50-1) regressions + 10 scenarios with T = 2 year × (100-1) regressions);

• 1,960 regressions under the exponential Ornstein-Uhlenbeck process (40 scenarios
with T = 1 year × (50-1) regressions);

• 3,920 regressions under the log-normal jump-diffusion process (80 scenarios with
T = 1 year × (50-1) regressions);

• 1,960 regressions under the double exponential jump-diffusion process (40 scenarios
with T = 1 year × (50-1) regressions).

American put options In Table 5.1, we present the percentage of regressions for which it
was not possible to reject homoscedasticity for the American put option scenarios.

Table 5.1 Statistical tests for heteroscedasticity: American put options

Statistical test
Park’s White’s BPG

Critical Value 1% 5% 1% 5% 1% 5%

GBM 2.30% 2.03% 4.05% 2.84% 9.19% 7.36%
Exp. Ornstein-Uhlenbeck 4.18% 3.27% 5.77% 3.93% 13.01% 11.02%

Log-normal jumps 2.19% 1.43% 10.38% 6.61% 9.54% 7.17%
Double Exp. jumps 0.56% 0.36% 12.45% 6.79% 6.94% 4.08%

Note: The entries in the table are the percentage of time for which it is not possible to reject the null
hypothesis of homoscedasticity for the regressions in the LSMC algorithm for the 160 put option
scenarios considered. A low percentage indicates serious evidence of heteroscedascity among the
option scenarios considered.

Although these three tests, to some extent, returned different results, it is clear from
Table 5.1 that heteroscedasticity is an issue in the vast majority of the regressions for the
160 scenarios considered. The majority of the percentages shown in the table are below 10%
and this proves numerically that for the scenarios considered, homoscedasticity is rejected
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in about 90% of the cases. Moreover, as an example, in Figure 5.1 we provide the result of
Park’s test over each regression of the LSMC algorithm for four of the options in the set. In
particular, we plot the value of the parameter ϕ1 in the equation

log ûuu2
i = ϕ0 +ϕ1 logSSSi,

which, as we review in Appendix 5.B, are the ordinary least squares estimators over the
residual ûi of a LSMC regression. Additionally, we plot the confidence interval for ϕ1

for a critical level of 1%. Heteroscedasticity characterizes the regressions for which ϕ1

is significantly different from zero, i.e. regressions with confidence intervals that do not
contain zero. The four option scenarios considered have S0 = 0.9, σ = 20%, r = 6%, T = 1
and K = 1. Moreover, the exponential Ornstein-Uhlenbeck process has η = 0.15 and µ =

0; the log-normal jump-diffusion has αJ = −0.25, σJ = 0.2 and λ = 0.5; and the double
exponential jump-diffusion has λ = 0.5, η1 = 2, η2 = 3 and q = 0.5.

Figure 5.1 Park’s test for heteroscedasticity: American put options
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Note: The four plots report the coefficient ϕ1 (solid lines), and the extrema of the confidence interval when
using a critical level of 1% for each of the 49 regressions (T = 1 year and ∆T = 0.02 years) log ûuu2

i = ϕ0 +
ϕ1 logSSSi (see Appendix 5.B) for the LSMC algorithm applied to four underlying price dynamics. The option
scenarios considered in the plot have S0 = 0.9, σ = 20%, r = 6%, T = 1 and K = 1. Moreover, the exponential
Ornstein-Uhlenbeck process has η = 0.15 and µ = 0; the log-normal jump-diffusion has αJ =−0.25, σJ = 0.2
and λ = 0.5; the double exponential jump-diffusion has λ = 0.5, η1 = 2, η2 = 3 and q = 0.5.
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American call options On the other hand, Table 5.2 presents the percentage of regressions
where homoscedasticity could not be rejected for the 160 American call option scenarios.
Although, as for the put options, there are some differences in the results among the three
statistical tests, the table shows that there is evidence of heteroscedasticity in most of the
regressions of the LSMC when it is applied to price American call options. An excep-
tion is the double exponential jump-diffusion process, where White’s test does not reject
homoscedasticity in the majority of cases. However, Park’s test and the Breusch-Pagan-
Godfrey test support the hypothesis of the existence of heteroscedasticity with percentages
comparable with the other three dynamics. Additionally, as for the American put scenarios,
Figure 5.2 shows the values of ϕ1 (see also Section 5.B) for the same options in Figure 5.1
with underlying spot price S0 = 1.1.

Table 5.2 Statistical tests for heteroscedasticity: American call options

Statistical test
Park’s White’s BPG

Critical Value 1% 5% 1% 5% 1% 5%

GBM 21.62% 16.15% 7.97% 4.86% 4.32% 2.97%
Exp. Ornstein-Uhlenbeck 13.78% 10.77% 10.66% 7.81% 11.12% 7.96%

Log-normal jumps 21.33% 16.45% 26.20% 19.67% 3.04% 2.04%
Double Exp. jumps 29.74% 23.42% 65.20% 59.85% 6.58% 3.98%

Note: The entries in the table are the percentage of time for which it is not possible to reject the
null hypothesis of homoscedasticity for the regressions in the LSMC algorithm for the 160 call option
scenarios considered. A low percentage indicates serious evidence of heteroscedascity among the
option scenarios considered.

5.2.3 Graphical proof of heteroscedasticity

This section provides a new numerical technique that shows graphically the conditional
standard deviation of the errors as a function of the values of the underlying asset prices
and, consequently, provides evidence of the existence of heteroscedasticity for any regres-
sion in the LSMC algorithm. The reason for considering such an alternative method is that
the statistical tests considered above are based on the residuals in (5.6) rather than the (the-
oretical) errors in (5.3) and one may erroneously conclude that heteroscedasticity depends
on the selection of the basis functions ψl (·) for the regressions at step 3b.

We use the equivalent of formula (5.5) for the standard deviation,

std[ui|Si = X ] = std[Vi+1(Si+1)|Si = X ], (5.8)
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Figure 5.2 Park’s test for heteroscedasticity: American call options
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Note: The four plots report the coefficient ϕ1 (solid lines), and the extrema of the confidence interval when
using a critical level of 1% for each of the 49 regressions (T = 1 year and ∆T = 0.02 years) log ûuu2

i = ϕ0 +
ϕ1 logSSSi for the LSMC algorithm applied to four underlying price dynamics, with S0 = 1.1, σ = 20%, r = 6%,
T = 1 and K = 1. For other information, see Figure 5.1.
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and estimate the conditional standard deviation on the right-hand side via the Monte Carlo
simulation technique. The calculations we carry out here differ from those in Section 5.2.2,
since we estimate the conditional standard deviation of the errors for each regression without
making use of the LSMC algorithm and, therefore, we circumvent the selection of the basis
functions, as shown below.

For this graphical proof, we consider the time-steps i = 1, . . . ,T/∆t with ∆t = 0.1 years
and discretise3 the underlying spot price range as S = 0,∆S, . . . ,K for the put options and as
S = K,K +∆S, . . . ,2K for the call options with step size ∆S = 0.05. For each point on the
grid (i,S), we simulate Nh = 100 stock prices at the next time-step (i+1) conditional on
the spot price at the current time-step (S). We then price the American options for each of
the Nh underlying spot prices at time ti+1 using the binomial tree method: for the geometric
Brownian motion case we use the binomial tree method in Cox et al. (1979) with 1,000
steps, for the exponential Ornstein-Uhlenbeck case we employ the binomial tree in Nelson
and Ramaswamy (1990) with 1,000 time-steps and for the two jump processes (log-normal
and double exponential) we apply the binomial tree method in Amin (1993) with 250 time-
steps. Then, we calculate the standard deviation of the Nh prices described above.

Figures 5.3 and 5.4 illustrate the standard deviations of the errors for the same four
American options considered in Figures 5.1 and 5.2. Each cross section along the i axis
is the standard deviation of the regression errors conditional on the underlying asset price
being S at time-step i. The plots in Figures 5.3 and 5.4 indicate that the conditional standard
deviation changes with the level of price S and that consequently, for the eight selected
options, the errors are heteroscedastic. These patterns can be observed for all of the other
scenarios and, consequently, there is graphical evidence of heteroscedasticity for the 320
option scenarios considered.

5.2.4 Formal proof of heteroscedasticity

In this section, we generalise the results in the two previous sections. In particular, we prove
that, for well-known underlying price dynamics, there is heteroscedasticity of errors in the
regressions of the LSMC algorithm when it is employed to price American call and put
options.

First, let us consider the American put option written on the risky asset whose price
dynamics is St = S0est , for which the first two conditional moments are finite and which is
defined for S0 > 0 and {st}t≥0 being a Markovian process with s0 = 0. Then, we can prove
the following result.

3As in the LSMC algorithm, we consider in-the-money paths only.
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Figure 5.3 Heteroscedasticity in the regressions of the LSMC algorithm via simulation:
American put options
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√

Var[ui|Si = S], i = 1, . . . ,9 calculated
using formula (5.5) for American put options under four price dynamics. All price dynamics have σ = 20%,
r = 6%, K = 1 and T = 1. Moreover, the exponential Ornstein-Uhlenbeck process has η = 0.15 and µ = 0;
the log-normal jump-diffusion has αJ =−0.25, σJ = 0.2 and λ = 0.5; the double exponential jump-diffusion
has λ = 0.5, η1 = 2, η2 = 3 and q = 0.5. The plots are created for a grid with ∆S = 0.05 and ∆T = 0.1 years.
For each point on the grid (i,S), Nh = 100 (50+50 antithetic) simulations of Si+1 (conditional on Si = S) are
calculated together with the price of the option with time-to-maturity T − ti+1 and underlying spot price Si+1.
The option prices are calculated using the binomial tree method. The plotted points represent the standard
deviation of the Nh prices.
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Figure 5.4 Heteroscedasticity in the regressions of the LSMC algorithm via simulation:
American call options
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Note: The plots report the conditional standard deviations std(S) =
√

Var[ui|Si = S], i = 1, . . . ,9 calculated
using formula (5.5) for American call options under four price dynamics. For other information, see Figure 5.4.
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Proposition 5.2.1 (American put options). The errors of the regressions in the LSMC algo-
rithm for the American put option are heteroscedastic.

Proof. Let us consider the regression at any given time-step i = 1, . . . ,m− 1. We proceed
by showing that for any4 X2 ∈ (0,K] there exists X1 ∈ (0,X2) such that

Var[ui|Si = X1]< Var[ui|Si = X2]

or, equivalently (see (5.5)),

Var[Vi+1(Si+1)|Si = X1]< Var[Vi+1(Si+1)|Si = X2] (5.9)

holds. The proof consists of showing that X1 and X2 are such that a lower bound of
Var[Vi+1(Si+1)|Si = X2] is strictly greater than an upper bound of Var[Vi+1(Si+1)|Si = X1]

and consequently the two conditional variances satisfy (5.9). For an illustration of the proof
see Figure 5.5.

Let us define the random variable Xi+1 as:

Xi+1 =

1 if hi+1(Si+1)≥Ci+1(Si+1);

0 if hi+1(Si+1)<Ci+1(Si+1),
(5.10)

where
hi(X ) = r0,i max{0,K −X }

and Ci+1(·) is as in (3.8). The random variable Xi+1 indicates whether the option is exercised
at the next time-step i+1, or, in other words, whether Si+1 ≤ S fi+1 where S fi is the optimal
exercise price at time i (see formulation (3.12)-(3.13)). Since the discounted option price
Vi+1(·) is an integrable random variable, by the law of total variance, we have:

Var[ui|Si = X2] = Var[Vi+1(Si+1)|Si = X2]

= E [Var[Vi+1(Si+1)|Si = X2,Xi+1]]+Var[E [Vi+1(Si+1)|Si = X2,Xi+1]]

= Var[Vi+1(Si+1)|Si = X2,Xi+1 = 1]PQ(Xi+1 = 1|Si = X2)

+Var[Vi+1(Si+1)|Si = X2,Xi+1 = 0] (1−PQ(Xi+1 = 1|Si = X2))

+Var [E [Vi+1(Si+1)|Si = X2,Xi+1]]

and, since PQ(Xi+1 = 1|Si = X2) ∈ (0,1) (it is the conditional probability of exercising the

4Since the LSMC algorithm restricts the regressions to only in-the-money paths (J̃i), we will prove the
following result for Si ∈ (0,K], although our result is also true for out-of-the-money paths.
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option at the next time-step),

Var[Vi+1(Si+1)|Si = X2,Xi+1 = 0]

and
Var [E [Vi+1(Si+1)|Si = X2,Xi+1]]

are non-negative by definition, and Si+1 = Siesi+1 , it follows that

Var[ui|Si = X2] ≥ Var[Vi+1(Si+1)|Si = X2,Xi+1 = 1]PQ(Xi+1 = 1|Si = X2)

= Var[hi+1(Si+1)|Si = X2,Xi+1 = 1]PQ(Xi+1 = 1|Si = X2)

= Var[r0,i (K −Si+1) |Si = X2,Xi+1 = 1]PQ(Xi+1 = 1|Si = X2)

= r2
0,iVar[Si+1|Si = X2,Xi+1 = 1]PQ(Xi+1 = 1|Si = X2)

= r2
0,iX

2
2 Var [esi+1|Si = X2,Xi+1 = 1]PQ(Xi+1 = 1|Si = X2).

(5.11)

Furthermore,5 let us define, for the generic Si+1 > 0, the functions

f (Si+1) =Vi+1(Si+1)− r0,iK

and g(Si+1) =
f (Si+1)

Si+1
. The function f is non-increasing with f (0) = 0 since Vi+1(Si+1) is a

non-increasing function and g(Si+1) ∈ [α1,α2] with α2 = limSi+1→+∞ g(Si+1) = 0 and

α1 = lim
Si+1→0

g(Si+1) = lim
Si+1→0

f (Si+1)

Si+1
= lim

Si+1→0

hi+1(Si+1)− r0,iK
Si+1

=−r0,i.

Moreover, since

E
[

f 2(Si+1)|Si = X1
]

= E
[
S2

i+1g2(Si+1)|Si = X1
]

≤ E
[
S2

i+1|Si = X1
](

lim
Si+1→0

g(Si+1)

)2

= r2
0,iE

[
S2

i+1|Si = X1
]
= r2

0,iX
2

1 E
[
e2si+1

]
and E [ f (Si+1)|Si = X1]

2 ≥ 0, then

Var[ui|Si = X1] = Var[Vi+1(Si+1)|Si = X1]

= Var[ f (Si+1)|Si = X1]≤ r2
0,iX

2
1 E[e2si+1]. (5.12)

Imposing the condition that the lower bound in (5.11) is strictly greater than the upper bound

5The following bound modifies for left-bounded intervals [0,∞) the bound derived in Goldstein (1974),
Theorem 2.
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in (5.12), we prove that for any couple (X1,X2) which satisfies

X 2
1 < X 2

2

{
PQ(Xi+1 = 1|Si = X2)

Var [esi+1|Si = X2,Xi+1 = 1]
E[e2si+1]

}
, (5.13)

relationship (5.9) holds. Since the quantity in curly brackets in (5.13) is strictly positive, for
any X2 there exists X1 ∈ (0,X2) that satisfies (5.13). Therefore, the proposition is proved.

Figure 5.5 Exemplification of the proof of heteroscedastic errors in LSMC
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Note: The figure exemplifies the proof of Proposition 5.2.1. The solid line is the real standard deviation
std(S) =

√
Var[ui|Si = S]. It is unknown for the generic time-step i but it is given in exact closed form as in

Formula (5.23) for the last time-step, the one we are plotting in this figure. The dashed line is the lower bound
and the line marked with + is the upper bound. The steps of the proofs are represented in order by the three
letters A, B and C. The steps are: (A) fix X2, (B) find the value of the lower bound of the standard deviation at
X2, (C) find X1 such that the upper bound of the standard deviation of the errors is equal to the lower bound
previously found. Condition (5.9) holds for any S < X1.

Second, let us consider the American call option written on the same risky asset with
price dynamics {St}t≥0. Then, the following result holds.

Proposition 5.2.2 (American call options). The errors of the regressions in the LSMC algo-
rithm for the American call option are heteroscedastic.

Proof. We proceed by showing that for any X1 ≥ 0 there exists X2 ∈ (0,X1) such that

Var[Vi+1(Si+1)|Si = X2]< Var[Vi+1(Si+1)|Si = X1] (5.14)
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holds. By using similar calculations as in formula (5.11), we derive:

Var[ui|Si = X1]≥ r2
0,iX

2
1 Var [esi+1|Si = X1,Xi+1 = 1]PQ(Xi+1 = 1|Si = X1) (5.15)

where Xi+1 is equivalent to (5.10) with

hi+1(X ) = r0,i max{0,X −K}.

In other words, Xi+1 = 1 if and only if Si+1 ≥ S fi+1 (see formulation (3.14)-(3.15)).
Furthermore, let us define

fC(Si+1) =−Vi+1(Si+1)

and gC(Si+1) =
fC(Si+1)

Si+1
. The function fC is non-increasing in Si+1, while gC ∈ [−r0,i,0]

since Vi+1(Si+1)≤ r0,iSi+1. Consequently, since

E
[(

fC(Si+1)
)2

|Si = X2

]
= E

[
S2

i+1

(
gC(Si+1)

)2
|Si = X2

]
≤ E

[
S2

i+1|Si = X2
](

sup
Si+1

gC(Si+1)

)2

= r2
0,iE

[
S2

i+1|Si = X2
]

= r2
0,iX

2
2 E
[
e2si+1

]
(5.16)

and E
[

fC(Si+1)|Si = X2
]2 ≥ 0, then

Var[ui|Si = X2] = Var[Vi+1(Si+1)|Si = X2]

= Var[ f (Si+1)|Si = X2]≤ r2
0,iX

2
2 E[e2si+1]. (5.17)

As in the case of American put options, imposing that the lower bound in (5.15) is
strictly greater than the upper bound in (5.17), we prove that for any couple (X1,X2) which
satisfies

X 2
2 < X 2

1

{
PQ(Xi+1 = 1|Si = X1)

Var [esi+1 |Si = X1,Xi+1 = 1]
E[e2si+1 ]

}
, (5.18)

the relationship (5.14) holds. Since the quantity in curly brackets in (5.18) is positive, for
any X1 there exists X2 < X1 satisfying (5.18). Therefore, the proposition is proved.
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5.2.5 Violation of the homoscedasticity assumption and its implica-
tions

The three proofs above show the heteroscedasticity of the errors of the regressions in the
LSMC algorithm. We summarise here its impact on the regression estimators and how we
can correct for it.

Let us assume the following regression model:6

yl =
k

∑
i=0

βixi,l + εl, (5.19)

where yl and xi,l, i = 0, . . . ,k are the l-th observation in the sample, and εl is the random
error. Let us define X = [xxx1,xxx2, . . . ,xxxk] as the sample matrix, xxxi as the column vector of the
components xi,l and x̄xxl as the l-th column of matrix X , then the classical linear regression
assumptions for (5.19) are:

Linearity in the parameters Equation (5.19) is a linear combination of the parameters βi;

Full rank The vectors xxx1,xxx2, . . . ,xxxk are linearly independent;

Exogeneity of the independent variables E [εl|x̄xxl1 ] = 0, for any l1, i.e. the independent
variables will not carry useful information for prediction of εl;

Homoscedasticity and non-autocorrelation Each error εl has the same finite variance and
is not correlated with any other error, εl1 , conditional on X ;

For the standard regression (5.19), the following result holds:

Theorem 5.2.3 (Gauss-Markov theorem). Under the classical linear regression assump-
tions, the OLS estimators are the best linear unbiased estimators (BLUE), i.e. among the
unbiased linear ones, the OLS estimators have the minimum variance.

It can be shown that, if all of the assumptions of the classical linear regression model
hold except for homoscedasticity of the errors, the following properties are true:

• the regression method is still useful since the violation of the homoscedasticity as-
sumption does not affect the unbiasedness;

• the OLS estimators may not have minimum variances and, consequently, they are not
BLUE.

6The content of this section is based on Gujarati and Porter (2008) and Greene (2012).
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In order to account for the heteroscedasticity in the regressions, it is necessary to employ
the weighted least squares regression (WLS) method instead of the OLS. In doing so, we
retain the BLUE property as shown by the following result:

Theorem 5.2.4 (Aitken’s theorem). Under all classical linear regression assumptions with
the exception of homoscedasticity of error, the WLS estimators are the best linear unbiased
estimators (BLUE).

This theorem lays the ground for us to introduce, in Section 5.3, a new pricing method
that retains the BLUE property of the regression estimators in the LSMC algorithm even in
the presence of heteroscedastic errors. Section 5.3.2 shows the positive effect of this new
pricing method over the upward pricing bias.

Additionally, it is commonly assumed that in an ordinary least squares regression the
errors are normally distributed. Although this assumption has no impact on the BLUE
property of the estimators (Gujarati and Porter, 2008), in Appendix 5.D, we show that it
does not hold for the regressions in the LSMC algorithm.

5.3 The weighted least squares Monte Carlo method

The proofs outlined in Section 5.2 and Aitken’s theorem justify the introduction of the
wLSMC algorithm that is detailed here. The new method is equivalent to the LSMC (see
page 115) whose step 3b is substituted by

wLSMC Step of the weighted least squares Monte Carlo method

3bw Run a WLS regression on the pairs
(
Si( j),Vi+1

(
Si+1( j)

))
for j ∈ J̃i, with basis functions

ψl (·), to determine β w
i,l .

Running a WLS regression corresponds to computing an OLS regression for the transformed
variables

ψl
(
Si( j)

)
std(Si( j))

→ ψ
w
l
(
Si( j)

)
,

Vi+1
(
Si+1( j)

)
std(Si( j))

→V w
i+1
(
Si+1( j)

)
(5.20)

where
std(Si( j)) =

√
Var[ui|Si = Si( j)]

is the conditional standard deviation of the errors and ψl (·) are the basis functions in (5.1).
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Thus, the continuation value is now calculated as:

Ĉi(X ) =
M

∑
l=0

β
w
i,lψl (X ) .

Theorem 5.2.4 ensures that the WLS regression method is BLUE even for heteroscedastic
errors.

5.3.1 Approximation of the standard deviation of the errors

For the use of the wLSMC algorithm, as shown in (5.20), the availability of the conditional
standard deviation std(·) is required, that is the weighting function for the weighted least
squares regressions. We propose here an analytical formula for the approximation of the
standard deviation. In the following, we work with variances rather than standard deviations
to avoid carrying the square root notation.

For the time-step just before maturity, since the American option is equal to the corre-
sponding European option, we can express the conditional variance of the errors in exact
closed-form:

Var[Vm(Sm)|Sm−1 = Sm−1( j)] = Var[hm(Sm)|Sm−1 = Sm−1( j)]

= E
[
hm(Sm)

2|Sm−1 = Sm−1( j)

]
−E
[
hm(Sm)|Sm−1 = Sm−1( j)

]2
. (5.21)

In order to calculate the conditional variance of the errors at the generic time-step i, we
assume a similar structure to the conditional variance in (5.21) and consider the following
approximation:

Var[Vi+1(Si+1)|Si = Si( j)]≈ Var[hi+1(Si+1)Xi+1|Si = Si( j)] (5.22)

where Xi is as in (5.10). This approximation allows one to preserve the evidence that:

• for American put options, the standard deviation of the errors (and consequently the
variance) peaks near the optimal exercise price and has smaller values far away from
it (see Figure 5.3);

• for American call options, the standard deviation of the errors is monotonically in-
creasing (see Figure 5.4);

By employing approximation (5.22), the conditional variance of the errors of the regression
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at any time-step i is then approximated as:

Var[ui|Si = Si( j)] ≈ E
[
hi+1(Si+1)

2Xi+1|Si = Si( j)

]
−E
[
hi+1(Si+1)Xi+1|Si = Si( j)

]2
, i = 1, . . . ,m−1. (5.23)

Formula (5.23) corresponds to the pricing of two European style options: a vanilla option
with payoff function in time-0 dollars hi+1(Si+1) and an option with payoff hi+1(Si+1)

2.
In order to simplify the calculations for American put options, we write the two expec-

tations in formula (5.23) as:

E
[
hi+1(Si+1)

2Xi+1|Si = Si( j)

]
= r2

0,i

[
K2EX ,0 −2KSi( j)EX ,1 +S2

i( j)EX ,2

]
E
[
hi+1(Si+1)Xi+1|Si = Si( j)

]
= r0,i

[
KEX ,0 −Si( j)EX ,1

]
(5.24)

where

EX ,l = E
[
elsi+1Xi+1|Si = Si( j)

]
=
∫ log

S fi+1
S
i( j)

−∞

ely f (y)dy (5.25)

with f (·) denoting the probability density function of the logarithmic return over the pe-
riod (ti, ti+1).7 In the following we calculate formula (5.25) for the price dynamics in Sec-
tion 5.2.1. The proofs are in the Appendix 5.C.

Formula (5.23) can be calculated in closed-form for many other underlying price dy-
namics since it is the difference between the prices of two European-style options. How-
ever, instead of calculating formula (5.23), one can always resort to the two-step algorithm
in Greene (2012) to estimate the standard deviation via OLS regression as a function of
the residuals. This algorithm first computes the conditional standard deviation, usually us-
ing the ordinary least squares residuals; then, in the second step, it employs this standard
deviation as weights in the weighted least squares regression.

Geometric Brownian motion Assuming that the process {St}t≥0 follows the dynamics
in (3.16), then the EX ,l is:

EX ,l = elµs+l2 σ2
s
2 N
(
−d(S fi+1)− lσs

)
(5.26)

where d(S) =
− log S

S
i( j)

+µs

σs
, µs = (r−δ − σ2

2 )∆t and σs = σ
√

∆t .

7As shown in Létourneau and Stentoft (2014), the LSMC does not guarantee monotonicity and convexity of
the continuation value functions and, consequently, more than one price S may satisfy hi(S) = Ĉi(S). In (5.25),
if more than one such S does exist, we consider S fi equal to the arithmetic average between the smallest and
the biggest S satisfying the condition.
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Exponential Ornstein-Uhlenbeck process Assuming that the process {St}t≥0 follows
the dynamics in (3.18), then EX ,l is as in (5.26) and µs = µ̃(1−e−η∆t ), σ2

s = σ2

2η
(1−e−2η∆t )

and µ̃ = µ − σ2

2η
.

Log-normal jump-diffusion process Assuming that the process {St}t≥0 follows the dy-
namics in (3.20), then EX ,l is

EX ,l = (1−λ∆t)elµs+l2 σ2
s
2 N
(
−d(S fi+1)− lσs

)
+λ∆telµsJ+l2 σ2

sJ
2 N
(
−dJ(S fi+1)− lσsJ

)
,

(5.27)

where d(S) =
− log S

S
i( j)

+µs

σs
, dJ(S) =

− log S
S
i( j)

+µsJ

σsJ
, µs = (r−δ −λκ −0.5σ2)∆t , σs = σ

√
∆t ,

µsJ = (r−δ −λκ −0.5σ2
s,J +

γ

∆t
)∆t , σ2

sJ
= σ2∆t +σ2

J and γ = αJ +
σ2

J
2 .

Double exponential jump-diffusion process Assuming that the process {St}t≥0 follows
the dynamics in (3.22) then EX ,l is:

EX ,l = (1−λ∆t)elµs+l2 σ2
s
2 N
(
−d(S fi+1)− lσs

)
+λ∆t

∫ log
S fi+1
S
i( j)

−∞

ely f1(y)dy, (5.28)

where d(·), σs and µs are defined as in the log-normal jump-diffusion process, f1(y) =
fZ(y+(r−δ −λκ−0.5σ2)∆t) and fZ(·), the density function of the variable Zt =σW̃t +JK

t

is

fZ(y) = qη1e0.5σ2∆tη
2
1 e−yη1N

(
y

σ
√

∆t
−ση1

√
∆t

)
+(1−q)η2eyη2e0.5σ2∆tη

2
2 N
(
− y

σ
√

∆t
−ση2

√
∆t

)
. (5.29)

On the other hand, we note that the formulae in (5.24) also hold for American call
options where (5.25) is substituted by

EX ,l = E
[
elsi+1Xi+1|Si = Si( j)

]
=
∫ +∞

log
S fi+1
S
i( j)

ely f (y)dy, (5.30)

formula (5.26) becomes

EX ,l = elµs+l2 σ2
s
2 N
(
d(S fi+1)+ lσs

)
(5.31)
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and formulae (5.27) and (5.28) change accordingly.

5.3.2 Numerical study on pricing performance

In this section, we evaluate the pricing performance of the new weighted least squares Monte
Carlo method by comparing it with the performance of the least squares Monte Carlo algo-
rithm of Longstaff and Schwartz (2001) and the performance of the inequality constrained
least squares Monte Carlo method of Létourneau and Stentoft (2014). The study is carried
out for the option scenarios described in Section 5.2.1 under any of the following asset price
dynamics: geometric Brownian motion, the exponential Ornstein-Uhlenbeck process, the
log-normal jump-diffusion process and the dual-exponential jump-diffusion process.

In the comparison, each algorithm M (any among LSMC, ICLS and wLSMC) calcu-
lates the price of each option scenario by using nS simulated paths of the underlying asset
price. In particular, we consider nS to take values in the set {1,000;2,000;5,000;10,000},
as in Létourneau and Stentoft (2014) and we report two measures of error based on the mean
over 100 independent repetitions of each method M . The two measures of error we consider
are the root mean squared relative error (RMSE) and the mean relative error (MRE). The
former is a measure of dispersion of prices around the “exact” fair price and is calculated as

RMSE(M ) = |O|−0.5

√√√√√√∑
o∈O

 1
100

100

∑
l=1

V (M )
l,o −V (E)

o

V (E)
o

2
, (5.32)

while the latter is a measure of pricing bias and is computed as

MRE(M ) =
1
|O| ∑

o∈O

V̄ (M )
o −V (E)

o

V (E)
o

, (5.33)

where V (M )
l,o is the price of option o in the set of all the options O (|O| is its cardinality)

calculated via method M with the l-th set of the nS simulated paths, V̄ (M )
o =

∑
100
l=1 V (M )

l,o
100 is

the mean price of option o calculated via method M , and V (E)
o is the “exact” fair price,

calculated via the binomial tree methods of Cox et al. (1979) (for the scenarios under geo-
metric Brownian motion), Nelson and Ramaswamy (1990) (under the exponential Ornstein-
Uhlenbeck process) and Amin (1993) (under the jump-diffusion processes).

Additionally, for the regression step of each of the three methods (LSMC, ICLS and
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wLSMC), we employ the basis function

ψl (X ) = X l, l = 1, . . . ,M

for M taking values in the set {2, . . . ,7}, and we fix the time-step length ∆t = 0.02 years
(i.e. 50 exercise dates per year) as in Longstaff and Schwartz (2001). In the implementa-
tion of the ICLS of Létourneau and Stentoft (2014) we impose monotonicity and convexity
constraints over a grid of six points (see Appendix 5.A for more details), as suggested by
Létourneau and Stentoft.

American put options In this section we compare the pricing performance of the three
Monte Carlo regression methods under the 160 American put option scenarios in Sec-
tion 5.2.1.

The first comparison is carried out for nS = 1,000 simulated paths. As in Létourneau
and Stentoft (2014), we use only 1,000 paths to study the behaviour of the three methods
in reducing different levels of upper bias in pricing. Indeed, Stentoft (2004b) proved that
both number of simulations nS and number of regressors M have to grow indefinitely for the
LSMC method to converge to the fair benchmark price, and, by considering a fixed number
of simulation nS and an increasing number of regressors, one experiences different degrees
of biasedness. The results of this analysis are summarised in Tables 5.3-5.6.

For the LSMC method, both the RMSEs and the MREs monotonically increase with
the polynomial order. Consequently, when only nS =1,000 simulated scenarios are used,
the upward bias caused by overfitting the continuation value curve dominates the downward
bias caused by the approximation over finite low-order polynomials. This confirms the
results found in Létourneau and Stentoft (2014) for price dynamics following geometric
Brownian motion. Moreover, the LSMC’s MREs are positive under all of the price dynamics
considered, indicating that this method tends to overestimate the option prices.

Under all of the considered price dynamics, by imposing structure on the estimators,
the ICLS method has a direct impact on reducing the upward bias over the estimated con-
tinuation value, as shown in Létourneau and Stentoft (2014). ICLS not only reduces the
spread around the exact fair price (shown by the RMSEs) but also leads to a reduction in the
upward bias as shown by the diminution of the MREs. However, under the four price dy-
namics considered, ICLS is still affected by upward pricing bias as shown by the all positive
MREs.

By correcting for the heteroscedasticity via the wLSMC, as proposed in this thesis, the
main advantage is that the errors across the polynomial orders are evened out, i.e. the errors
for high-order polynomials (seriously affected by upward bias in the LSMC algorithm) are
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closer to the errors for low-order polynomials. This phenomenon is linked to a reduction in
curve overfitting. Moreover, two other elements support the reduction in curve overfitting.
First, the increasing RMSE patterns over polynomial orders are lost in some circumstances
(for example, for σ = 0.4 in Table 5.3, for S0 = 1 in Table 5.4, for κ > 0 in Table 5.5,
the minimum RMSE is reached when the polynomial order is 3 while for κ = 0.375 in
Table 5.6 the minimum is reached for the fourth order). This suggests that by increasing the
polynomial order, the upward bias does not necessarily monotonically increase but other
combinations of upward and downward bias can become more favourable for the pricing
performances. Secondly, for low-order polynomials the MREs of wLSMC are in many
cases negative. This suggests that the wLSMC is effective in reducing the upward bias and,
for low-order polynomials, the downward bias dominates the other.

Overall, considering Tables 5.3-5.6, the wLSMC outperforms both the LSMC and the
ICLS in pricing American put options. Both the RMSEs and the MREs are remarkably
smaller when wLSMC is employed, especially for high-order polynomials. Only in a few
cases does the ICLS perform slightly better for second-order polynomials than the wLSMC
relative to the RMSE measure. However, the wLSMC has much smaller MREs even in
those few cases when its RMSE is larger. The only exceptions are for those scenarios
with σ = 20% in Table 5.5 where the ICLS has smaller MREs for second and third-order
polynomials than wLSMC, and those with S0 = 1 in Table 5.4 where ICLS has smaller (in
absolute terms) MREs for second-order polynomials.

For the second comparison, as in Létourneau and Stentoft (2014), we fixed the number
of basis functions equal to M = 5 and we let the number of paths increase with values:
nS ∈ {1,000;2,000;5,000;10,000}. The results are shown in Figures 5.6-5.8. For the com-
parison, the weights for the regression in the wLSMC algorithm are calculated using the
two-step algorithm in Greene (2012). In particular, in order to estimate the variance of the
errors, we consider the simple regression formula:

ûuu2
i = ϕ0 +ϕ1SSSi +ϕ2SSS2

i (5.34)

where ûuui is the vector of the residuals of an ordinary least squares regression, ûuu2
i is used

as a proxy of the variances of the residuals, and SSSi is the vector of the underlying asset
price values. This comparison is carried out by using the two-step algorithm in Greene
(2012) rather than the estimation of the weighting function in Section 5.3.1 because we
are mainly interested in the effect of the heteroscedasticity on the upper bias of the LSMC
algorithm, and the use of the approximation may distort the analysis. We also carried out the
same comparison by considering the approximations in Section 5.3.1 and, for the put option
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scenarios considered, the performances of the two alternatives are very similar. However,
since for American call options (see next paragraph), our variance approximations are not as
good as the put’ ones, for consistency, here we also illustrate the results when the algorithm
of Greene is employed.

Figures 5.6-5.7 plot the MRE and RMSE against the running time of the three algo-
rithms, for the four dynamics. The three methods have similar running times for nS= 1,000,
2,000 and 5,000 paths and the wLSMC method is slightly slower for nS = 10,000. Con-
sidering the trade-off of pricing error versus running time, the plots show that the wLSMC
algorithm for nS = 1,000, 2,000 and 5,000 paths outperforms the other two algorithms.

For each of the four price dynamics considered, the upper plots in Figure 5.8 detail the
MRE measure as a function of the number of paths. They show how the bias in price changes
with the change in the number of paths. For the scenarios considered in this study, the
wLSMC always has lower upper bias in option pricing. Not surprisingly, the improvements
of the new method are more significant for a low number of paths, although the wLSMC
algorithm also outperforms the other two methods for a high number of paths.

Additionally, it is common in studies that use the Monte Carlo method to carry out
a diagnostic test for the convergence of a simulation technique (Broadie and Glasserman,
1997; Longstaff and Schwartz, 2001). Basically, each algorithm is executed twice, each over
a different set of simulated paths: the exercise rule is estimated from one set of paths (in
sample) and then applied to another set of paths (out-of-sample). For the LSMC algorithm,
Longstaff and Schwartz proposed to implement this technique by estimating the regression
estimators from the in-sample set of paths and then apply these regression functions to the
out-of-sample set of paths. While the prices based on in-sample sets of paths are affected by
upper bias, the out-of-sample prices are affected by low bias. For each of the four underlying
asset dynamics, the lower plots of Figure 5.8 represent the MRE for the average between
the in-sample and out-of-sample prices. In most of the cases (exceptions are the cases
with nS = 1,000 for the exponential Ornstein-Uhlenbeck process and the dual exponential
jump-diffusion process) the MRE of this average for the wLSMC method is negative, this
being further proof of upper price reduction. Additionally, in most cases, the MRE of these
estimations is much closer to zero than the estimators of the LSMC and ICLS. Exceptions
are for nS = 5,000 and 10,000 for the jump-diffusion processes, where the LSMC and ICLS
are slightly better.

Overall, for the scenarios considered, the best method is our wLSMC with 2,000 paths
(in-sample), since it has almost the same running time as the ICLS and LSMC, slightly
smaller RMSE and a much smaller upper bias, as shown by the MRE. However, when
considering out-of sample sets, the best performance is that of our wLSMC with nS= 5,000.
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Figure 5.6 Pricing comparison for American PUT option scenarios: error measures versus
average running time (1)
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Note: The comparison in the upper plots is based on the 20 scenarios under geometric Brownian motion, which
are also used in Longstaff and Schwartz (2001), Table 1 (r = 6%, δ = 0, K = 1, S0 ∈ {0.9,0.95,1,1.05,1.1},
σ ∈ {0.2,0.4} and T = {1,2} year(s)). The comparison in the lower plots is based on the 40 scenarios
under the exponential Ornstein-Uhlenbeck process with r = 6%, K = 1, S0 ∈ {0.9,0.95,1,1.05,1.1}, σ ∈
{0.2,0.4}, T = 1 year, η = {0.2,0.4}, µ = {0, log(0.9)}. The methods compared are the least squares Monte
Carlo (LSMC), the inequality constrained least squares (ICLS) and the weighted least squares Monte Carlo
(wLSMC). The root mean squared relative errors (RMSE) and the mean relative errors (MRE) are based on
the mean over 100 independent simulations as in formulae (5.32) and (5.33). Fifty exercise dates per year are
used and the label of each data point indicates the number of paths nS (in thousands). This is a similar analysis
to that carried out in Table 2.2. The main difference is that here we used the two-step algorithm in Greene
(2012), as in formula (5.34).
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Figure 5.7 Pricing comparison for American PUT option scenarios: error measures versus
average running time (2)
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Note: The comparison in the upper plots is based on the 80 scenarios under the log-normal jump-diffusion
process (r = 6%, δ = 0, K = 1, S0 ∈ {0.9,0.95,1,1.05,1.1}, σ ∈ {0.2,0.4}, λ = {0.5,1}, αJ = {−0.25,0.25},
σJ = {0.2,0.4} and T = 1 year). The comparison in the lower plots is based on the 40 scenarios under
the exponential Ornstein-Uhlenbeck process with q = 0.5, λ = 0.5 and (η1,η2) ∈ {(2,3),(4,6)}. For other
information, see Figure 5.6.
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Figure 5.8 Pricing comparison for American PUT options: MRE as a function of number of
simulated paths nS
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Note: The comparison is carried out under the 160 option scenarios in Section 5.2.1. For each of the four price
dynamics, the upper plot represents the mean relative error (MRE) for the in-sample methods, while the lower
plot represents the MRE for the average price between the in-sample method and the out-of-sample method.
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American call options In this section, we further analyse the weighted least squares
Monte Carlo method by pricing American call option scenarios. We consider the option
scenarios in Section 5.2.1 and the additional scenarios created by varying the dividend yield
parameter. In particular we assume for the dividend yield δ any of the values in the set
{3%,5%,7%}. As for the put options, we fix M = 5 and let the number of paths nS change
in the set {1,000;2,000;5,000;10,000}. The weights for the regression in the wLSMC are
calculated using the two-step algorithm in Greene (2012), by using (5.34).

The results of the analysis are shown in Figures 5.9-5.11. Figure 5.11 and the left-hand
side plot in Figure 5.9 show that the wLSMC algorithm also works efficaciously in reducing
the upper bias of the LSMC for American call options under the four dynamics studied in
this chapter. Remarkable results are obtained for nS equal to {1,000;2,000;5,000} sim-
ulated paths, for which the MREs are much smaller (in absolute terms) than those of the
LSMC and ICLS. The improvements are consistent across the different dividends. How-
ever, for nS = 10,000 simulated paths the wLSMC algorithm performs slightly more poorly
than the ICLS method although better than the LSMC. The cause of this may be the ap-
proximation in (5.34), which, when the number of paths is high, does not properly estimate
the standard deviation of the errors. Finally, Figure 5.11 and the right-hand side of Fig-
ure 5.9 show the evolution of the MRE measure and the RMSE measure across the different
numbers of simulated paths. The RMSEs of the three methods are similar and, as for the
MRE measure, the wLSMC has a slightly higher value than the other two methods for
nS = 10,000. In the overall analysis, as with put option scenarios, the best method is the
wLSMC algorithm with 2,000 paths, which has a very small MRE (under almost all under-
lying dynamics MRE is lower than 1% in absolute values) compared to the other methods
and similar RMSE.

5.4 Conclusions

In this chapter, we studied in detail the regression step of the least squares Monte Carlo
algorithm for pricing American call and put options. We showed both numerically and the-
oretically that there exists heteroscedasticity in the regressions performed for pricing Amer-
ican options, for several well-known models of the underlying asset prices. Therefore, we
showed that the least squares estimators are not the best in terms of variances among the lin-
ear unbiased estimators. Additionally, we also illustrated via an extensive numerical study
that the failure to account for this heteroscedasticity results in curve overfitting problems
(especially for high-order polynomial basis functions in the regressions) and consequently
in an upward bias in the option prices.
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Figure 5.9 Pricing comparison for American CALL option scenarios under the exponential
Ornstein-Uhlenbeck process
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Note: The comparison is based on the 40 scenarios under the exponential Ornstein-Uhlenbeck process (r =
6%, K = 1, S0 ∈ {0.9,0.95,1,1.05,1.1}, σ ∈ {0.2,0.4} and T = 1 year, η = {0.2,0.4}, µ = {0, log(0.9)}. The
methods compared are the least squares Monte Carlo (LSMC), the inequality constrained least squares (ICLS)
and the weighted least squares Monte Carlo (wLSMC). The root mean squared relative errors (RMSE) and the
mean relative errors (MRE) are based on the mean over 100 independent simulations as in formulae (5.32) and
(5.33). Fifty exercise dates per year are used and the label of each data point indicates the number of paths nS
(in thousands).
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Figure 5.10 Pricing comparison for American CALL option scenarios: MRE as a function of number of simulated paths nS
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Note: The comparison in the first row is based on the scenarios in Section 5.2.1 (for a dividend yield of δ = 3%). Additionally in the second and third rows,
we consider the same scenarios in the first row with other dividend yields (δ = 5% and δ = 7%), respectively. The methods compared are the least squares
Monte Carlo (LSMC), the inequality constrained least squares (ICLS) and the weighted least squares Monte Carlo (wLSMC). The mean relative errors (MRE)
are based on the mean over 100 independent simulations as in formula (5.33). Fifty exercise dates per year are used.
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Figure 5.11 Pricing comparison for American CALL options: MRE versus RMSE as a function of number of simulated paths nS
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Note: The comparison is based on the scenarios in Section 5.2.1 (for a dividend yield δ = 3%). The methods compared are the least squares Monte Carlo
(LSMC), the inequality constrained least squares (ICLS) and the weighted least squares Monte Carlo (wLSMC). The mean relative errors (MRE) and the root
mean squared relative errors (RMSE) are based on the mean over 100 independent simulations as in formulae (5.32) and (5.33). Fifty exercise dates per year
are used.
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As a solution to this problem, we proposed the weighted least squares Monte Carlo
method. It retains all of the original steps of the (ordinary) least squares Monte Carlo method
described in Longstaff and Schwartz (2001) but substitutes the ordinary least squares regres-
sion with its weighted version in order to account for heteroscedasticity.

In our numerical study, we found that for each of the four considered underlying price
dynamics (geometric Brownian motion, exponential Ornstein-Uhlenbeck process, log-normal
jump-diffusion process and double exponential jump-diffusion process), the wLSMC pro-
duces a much smaller pricing error than the LSMC. We also compared the wLSMC with the
inequality constrained least squares method proposed by Létourneau and Stentoft (2014),
which, by using a different approach, seeks to reduce the pricing bias in the LSMC. The
results showed that both methods reduce the curve-overfitting problem (and consequently
the upward bias) and that, in many cases, the wLSMC outperforms the ICLS.

5.4.1 Further research

This chapter mainly discussed the existence of heteroscedasticity when the LSMC is applied
to price American call and put options on a single asset. However, we strongly believe that
heteroscedasticity can be generalised to many other payoff structures, even multi-assets.
Consequently, one direction for future research is formal proofs that generalise proposi-
tions 5.2.1 and 5.2.2 for generic square-integrable payoff functions, also considering multi-
asset derivatives. Preliminary scenario-based proofs for some other derivative-types have
been carried out and they are summarised in Appendix 5.E: for American spread options,
American basket options and American options on the minimum of two assets, there is
evidence of heteroscedasticity. This supports the need to conduct this future research.

Moreover, an additional field that requires further investigation is the estimation of the
standard deviation of the errors that is used within the wLSMC algorithm to correct for
heteroscedasticity. The results we have for American put options are already satisfactory,
and it will be interesting to study approximations for the other payoff structures. It will
be of particular interest to approximate the standard deviations for multi-asset options. In
particular, we will investigate the use of the moment-matching methodology in Chapter 2 to
estimate this standard deviation since, as stated, for these approximations the price of two
European style derivatives is required.

Finally, additional study will be carried over the errors of the regression, and in particular
on the bounds derived in Appendix 5.D.



Appendix

Appendix 5.A The linear inequality constrained least
squares MC method (ICLS)
of Létourneau and Stentoft (2014)

Létourneau and Stentoft (2014) refine the regression step 3b in the box LSMC on page 115.
The aim of their method is to reduce the upward bias in the valuation of American options
and they achieve this by substituting the OLS regression with a linear inequality constrained
least squares (studied by Liew (1976)). In particular, they impose structure on the estimated
continuation value function Ĉi(·), by considering two types of constraints:

• convexity of the continuation value with respect to the underlying asset price;

• boundedness of the continuation value slope with respect to the underlying asset price
(delta parameter),

which reflect the theoretical properties of the continuation value discussed in Section 3.2.1.
These two types of constraints are imposed on a grid of k points for the underlying asset

values (see also Beresteanu (2007)). Overall, Létourneau and Stentoft impose k constraints:
k−2 convexity constraints and just 2 slope constraints, since the convexity constraints en-
sure the monotonicity of the slopes and, consequently, the slope constraints are required for
only the smallest and largest points of the grid. As they point out, imposing constraints on a
discrete grid does not guarantee that the function Ĉi(·) respects the constraint over its whole
domain. However, they choose k = 6 and suggest increasing the value of k and consequently
they have a finer grid, which reduces the chances to break the constraints where they are not
imposed. In the numerical study we carry out in Section 5.3.2, we also impose k = 6.

To summarise, the ICLS algorithm is equal to the LSMC where step 3b in LSMC is
substituted with the step 3bICLS below.
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ICLS Steps of the linear inequality constrained least squares Monte Carlo method (ICLS)

3bICLS Run a linear inequality constrained least squares regression on the pairs(
Si( j),Vi+1

(
Si+1( j)

))
for j ∈ J̃i, with basis functions ψl (·), to determine β ICLS

i,l ;

Appendix 5.B Review of the heteroscedasticity tests em-
ployed

In the numerical proof in Section 5.2.2, for each of the regressions 3b in LSMC on page
115, we consider the following heteroscedasticity tests:

Park’s test The test checks whether, in the regression

log ûuu2
i = ϕ0 +ϕ1 logSSSi, (5.35)

the coefficient ϕ1 is different from 0, where ûuui and SSSi are column vectors made by
ûi, j and Si( j) , j ∈ J̃i, respectively and the squared residuals are used as a proxy of the
variances.

White’s general heteroscedasticity test The test checks whether, in the regression

ûuu2
i = ϕ0 +ϕ1Ĉi(SSSi)+ϕ2Ĉ2

i (SSSi), (5.36)

the coefficients ϕl , l = 1,2 are all different from 0, where Ĉi(·) is as in (5.1).

Breusch-Pagan-Godfrey test Given the regression

ûuu2
i = ϕ0 +

k

∑
l=1

ϕlψl (SSSi), (5.37)

the test checks whether the coefficients ϕl , l = 1, . . . ,k are different from 0, where
k ≤ M, M is the number of basis function considered in the regression (5.1) and ψl (·)
are the basis functions.

More details can be found in Gujarati and Porter (2008) and Greene (2012).
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Appendix 5.C Derivation of the approximations for the
conditional variances of the errors

In this section, we prove formulae (5.26)-(5.29). Firstly, we calculate formula (5.26) when
y is normally distributed with y ∼ N(µN ,σ

2
N):

EX ,l = E
[
elsi+1Xi+1|Si = Si( j)

]
=
∫ +∞

−∞

elyI
(

si+1 <
S fi+1

Si( j)

)
f (y)dy

=
∫ log

S fi+1
S
i( j)

−∞

ely f (y)dy =
∫ log

S fi+1
S
i( j)

−∞

ely 1√
2πσN

e
− (y−µN )2

2σ2
N dy

= elµN+0.5l2σ2
N

∫ 1
σN

(
log

S fi+1
S
i( j)

−µN

)
−∞

1√
2π

e−
(y−lσN )2

2 dy (5.38)

where I (x) is the indicator function with value 1 if x is true (see also the definition of
Xi+1 in (5.10)). Formula (5.26), for both geometric Brownian motion and exponential
Ornstein-Uhlenbeck process, follows directly from (5.38) since the log-returns are nor-
mally distributed with si+1 ∼ N(µs,σ

2
s ). Formula (5.27) follows from (5.38) by condi-

tioning first on the event of not having a jump and then on the event of having a jump.
In both cases the log-returns are normally distributed and si+1|no-jumps ∼ N(µs,σ

2
s ) and

si+1|no-jumps ∼ N(µsJ,σ
2
sJ). We assume that the probability of multiple jumps in the inter-

val ∆t is null.
Additionally, the first addend of formula (5.28) also follows from (5.38) and the density

function fZ of the random variable Zt = σW̃t +JK
t is given by the convolution of the density

of σNW̃t ( fW̃(·)) and the density of JK
t ( fJ(·)) where:

fW̃(x1) =
1

σZ
√

2π
e
− x2

1
2σ2

Z , with σZ = σ
√

∆T

fJ(x2) = qη1e−η1x2I (x2 ≥ 0)+(1−q)η2eη2x2I (x2 < 0) .

In particular, we have:

fZ(y) =
∫ +∞

−∞

fW̃(y− x2) fJ(x2)dx2 =
∫ +∞

−∞

fW̃(x2 − y) fJ(x2)dx2

=
∫ +∞

0

1
σZ

√
2π

e
− (x2−y)2

2σ2
Z qη1e−η1x2dx2

+
∫ 0

−∞

1
σZ

√
2π

e
− (x2−y)2

2σ2
Z (1−q)η2eη2x2dx2
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= qη1e0.5σ2
Z η2

1−yη1

∫ +∞

− y
σZ

1√
2π

e−
(z+η1σZ )

2

2 dx2

+(1−q)η2e0.5σ2
Z η2

2+yη2

∫ − y
σZ

−∞

1√
2π

e−
(z−η2σZ )

2

2 dx2. (5.39)

Formula (5.29) follows directly from (5.39).
Equivalently, for call options we have:

EX ,l = E
[
elsi+1Xi+1|Si = Si( j)

]
=
∫ +∞

log
S fi+1
S
i( j)

ely f (y)dy

= elµN+0.5l2σ2
N

∫ +∞

1
σN

(
log

S fi+1
S
i( j)

−µN

) 1√
2π

e−
(y−lσN )2

2 dy (5.40)

and formula (5.31) follows directly.

Appendix 5.D Non-normality of the regression errors

This section shows some additional results on the errors of the regressions at step 3b in the
LSMC method. Let us consider the financial market defined in Section 5.1.2, then we can
prove the following result.

Proposition 5.D.1 (Bounds for the errors: put option). The error ui of the regression at
time-step i in the LSMC algorithm for an American put option is bounded by:

Ci(Si)≤ ui ≤ r0,iK −Ci(Si). (5.41)

Proof. Starting from the definition of the error in equation (5.3), we prove the lower bound
in (5.41) by using the fact that the American put option price has a lowest value equal to 0,
when the spot price goes to infinity. Furthermore, we prove the upper bound by using the
fact that the strike price K is an upper bound of the option price. In (5.41), we discount the
strike price K since Vi+1(·) is given in time-0 dollars.

Equivalently, for an American call options we have:

ui ≥−Ci(Si) (5.42)

since the lowest attainable value for Vi+1(Si+1) is zero.
As an exemplification, in Figure 5.D.1 we plot the residuals of one of the regressions in

the LSMC for American call and put options with r = 0.06, K = 1 and underlying asset price
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dynamics following geometric Brownian motion with σ = 0.2 and S0 = 0.9. Furthermore,
we assume δ = 0 for the put option and δ = 4% for the call option.

Finally, by considering Proposition 5.D.1, the following additional remark can be done.

Remark 5.D.2. The errors of the regressions in the LSMC algorithm are not normally dis-
tributed, since they are bounded.

Appendix 5.E Graphical proof of heteroscedasticity for
other payoffs

The results in Section 5.2 are not limited to standard American call and put options. In this
section, we consider the graphical proof carried out in Section 5.2.3 for options written on
two assets: a spread option, a basket put option and an option on the minimum of two assets.

In particular, we consider the price dynamics of the two assets
{

S(1)t

}
t≥t0

and
{

S(2)t

}
t≥t0

,

to be two dependent geometric Brownian motions with ρ = corr(W̃(1)
t ,W̃(2)

t ) = 0.3 where
W̃(1)

t and W̃(2)
t are the Wiener processes driving the two assets, respectively. Additionally,

the volatility is 0.2 for the first asset and 0.4 for the second, the strike price is K = 1 and time-
to-maturity is T = 1 year. The plots in Figure 5.E.1 are the conditional standard deviations

std(S(1),S(2)) =
√

Var
[
ui|S(1)i = S(1),S(2)i = S(2)

]
(5.43)

for
ui =Vi+1

(
S(1)i+1,S

(2)
i+1

)
−Ci

(
S(1)i ,S(2)i

)
(5.44)

and Vi(·, ·) and Ci(·, ·) being the bi-dimensional versions of the value option and the contin-
uation value of the option at time ti, respectively. The three plots refer to time-step i = 5
i.e. t5 = 0.5 (∆t = 0.1 years) years with a time-to-maturity of 0.5 years. The same grid as in
Section 5.2.3 has been considered for the simulation exercise (∆S = 0.05).

For the options considered, the plots in the figure show the existence of heteroscedastic-
ity since for each cross-section, the conditional standard deviation changes with the under-
lying spot price.
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Figure 5.D.1 Regression residuals in the algorithm of Longstaff and Schwartz (2001)
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û
i

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

X

û
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Note: This figure plots for an American call option (above) and an American put option (below) the residuals
of the OLS regression for one time-step. The underlying asset price dynamics is the geometric Brownian
motion with r = 0.06, K = 1, σ = 0.2 and S0 = 0.9. Additionally, for the call option δ = 3%, while for the
put option δ = 0.
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Figure 5.E.1 Heteroscedasticity in the regressions of the LSMC algorithm via simulations:
multi-asset options
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Note: The three plots show the conditional standard deviation of the errors as a function of the two underlying
asset values, S(1)i = S(1) and S(2)i = S(2). The plots are created as described in Section 5.2.3.



Chapter 6

Empirical study of pricing
performances: Options and LEAPS® on
the S&P 100TM index

In this chapter, we examine the performances of the pricing methods introduced in Chap-
ters 4 and 5 over real financial data. To this end, we consider American put and call options
and LEAPS® on the S&P 100TM index traded from February 2012 to December 2014. This
empirical performance study is complementary to the scenario-based studies carried out in
the previous two chapters and shows that, in many cases, the ‘extension’ method and the
weighted least squares Monte Carlo method both outperform the corresponding competitor
methodologies when real financial data is considered. The chapter is structured as follows:
Section 6.1 reviews other research on S&P 100TM options; Section 6.2 describes the dataset
and the methodology we employ to carry out the empirical study; Section 6.3 summarises
the results; and Section 6.4 concludes.

6.1 Introduction

In the previous two chapters, we introduced two methodologies to price American options
and we carried out scenario-based comparisons,1 which confirmed that our new methods
outperform the existing methodologies when one employs different measures of error with
respect to the fair benchmark prices calculated via binomial tree methodologies. In this
chapter, we consider a complementary comparison and investigate how the ‘extension’
method and the weighted least squares Monte Carlo method perform over real financial

1See Sections 4.3.1, 4.4.2 and 5.3.2.
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data. For this purpose, we employ options on the S&P 100TM stock index traded from 15
February 2012 to 10 December 2014.

We chose to work with the S&P 100TM index for two main reasons. First, this index is
the only one that has exchange-listed options of American (with ticker OEX®) and Euro-
pean (with ticker XEO®) exercise types. This is an essential feature for the implementation
of the comparison: we employ the European contracts to estimate the unknown quantities,
volatility and dividend yield of the underlying asset (as shown in Section 6.2.2), and then
we price the corresponding American contracts by using these implied parameters as inputs.
Additionally, the CBOE lists LEAPS® on the S&P 100TM index and we can consequently
also evaluate our ‘extension’ method for long-term options, where the existing methodolo-
gies are known to perform badly.

S&P 100TM options have been used by many researchers to evaluate models and meth-
ods for American options.2 However, the empirical studies on American options are rela-
tively fewer than the correspondent ones for European options.3 Among them, Evnine and
Rudd (1985) examined the OEX® options using hourly data from June to August 1984 and
found that 2.7% of the S&P 100TM call option prices violated the non-arbitrage bounds al-
though, since the underlying indexes are not traded contracts, these arbitrage opportunities
were not easily exploitable. Whaley (1982), Sterk (1983) and Geske and Roll (1984) studied
the performance of the correction4 proposed by Black (1975) to price American call option
by correcting the European option prices. They found that this formula is biased and that
the Roll-Geske-Whaley formula (see Section 3.3.1) performs better. Sheikh (1991) found
that the XEO® implied standard deviation distributions over the period 1983 to 1985 were
skewed and leptokurtic. Day and Lewis (1992) found that the XEO® implicit volatilities
were an almost unbiased and informative forecast of the subsequent weekly volatility (data
from November 1983 to December 1989). In contrast, Canina and Figlewski (1993) stud-
ied the performance of the XEO® implied volatilities from March 1983 to March 1987 in
forecasting future realized volatility and found that they did not have any forecasting power.
Fleming et al. (1996) studied how the option market forecasts the underlying asset price
and found that XEO® options anticipated changes in the underlying stock index value by
about 5 minutes (data from January 1988 to March 1991). Harvey and Whaley (1992a,b)
used daily prices of OEX® options from March 1983 to December 1989. By employing
a dividend-adjusted binomial tree method, they found significantly higher implied volatil-

2Literature reviews on this topic can be found in Bates (1996) and references within.
3For a list of references see Bakshi et al. (1997) and reference within.
4Black (1975) priced American call options on a underlying asset paying one (known) dividend as the

higher of the prices of a European call option where the underlying spot price is net the dividend, and a
European call option where the time to ex-dividend is substituted for the time-to-maturity.
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ities for put options than call options. Additionally they found that the early exercises of
American option were mainly driven by dividends. Linaras and Skiadopoulos (2005) exam-
ined the pricing performance of several implied tree methods by using S&P 100TM option
prices.5 Stentoft (2005, 2008) employed the least squares Monte Carlo method of Longstaff
and Schwartz (2001) to price American options on assets whose price dynamics follow a
Gaussian GARCH model and a normal inverse Gaussian (NIG) GARCH model, respec-
tively. They use weekly observations on the S&P 100TM options traded6 from 1991 to 1995
and the results show that both the model outperform the Black-and-Scholes method (with
constant volatility) and that the NIG GARCH model outperform the Gaussian GARCH,
particularly for out-of-the-money options. Broadie et al. (2000a,b) consider end-of-the-day
daily data of OEX® options from 3 January 1984 to 30 March 1990, together with the ob-
servations of the exercise decisions of investor data. They estimate how the optimal exercise
price is perceived by the market participants using non-parametric methods. They found that
the exercise behaviours before and after the crash of 1987 are similar and this goes against
the part of literature that suggests the changes occurred in option market after the crisis of
1987.

In the following, we employ a methodology similar to that used by Linaras and Ski-
adopoulos (2005) and we evaluate our two techniques: the ‘extension’ method and the
wLSMC algorithm. In Section 6.2, we describe the comparison methodology and the dataset
we employ in the comparison and, in Section 6.3, we summarise our findings.

6.2 Dataset description and comparison methodology

We consider both OEX® (American) and XEO® (European) options written on the S&P
100TM index traded on the Wednesdays between 15 February 2012 and 10 December 2014.7

Overall, we consider options data for 148 days, spanned over the three years. We retrieved
the data from the Bloomberg database: for both the XEO® and the OEX®, we collected
ask and bid prices, open interest, volume and the contract specifications (strike, maturity
date and exercise-style). Additionally, we collected the last prices of the S&P 100TM index
and the US dollar Libor for seven days, one month, three months, six months and one year.
We use the Libor rates as proxy of the risk-free rate and we employ linear interpolation for
maturities shorter than one year and linear regression for maturities longer than one year.

5See also Section 3.3.2 for more details.
6The same test was carried for options on General Motors (GM), International Business Machines (IBM),

and Merck & Company, Inc. (MRK).
7Three Wednesdays, namely 4th July 2012, 25th December 2013 and 1st January 2014, were closing days

of the CBOE and consequently, the data were collected for the previous day.



6.2 Dataset description and comparison methodology 160

6.2.1 Data screening

In order to reduce possible sources of error, we filtered the data using a methodology similar
to that outlined by Linaras and Skiadopoulos (2005). From the XEO® options (European),
we discarded options with either (1) a zero volume and zero open interest, (2) a premium
smaller than $0.5, (3) a maturity smaller than 50 trading days and (4) a negative implied div-
idend yield (see Section 6.2.2) since that corresponds to the existence of arbitrages. Given
the implied dividend yield, we also discard options whose prices did not satisfy the static
bounds. The filters we applied are slightly different than those in Linaras and Skiadopoulos
(2005) since we are interested in longer maturity options, i.e. LEAPS® to test the im-
provement introduced by the ‘extension’ method. Then, we discarded the OEX® options
(American) for which there is no respective XEO®, for which the early exercise premium
(American-option price minus European-option price) is negative, and for which ask or bid
prices are unavailable. Table 6.1 details the number of contracts left after the application
of each filter: from the initial 84,394 contracts, after the screening we were left with 7,320
options (3,562 calls and 3,758 puts). Table 6.2 summarises the statistics of the retained
options. These options are classified with respect to time-to-maturity as:

• Short-maturity options with maturities from 50 to 250 trading days;

• Medium-maturity options with maturities from 250 to 500 trading days;

• Long-maturity options with maturities of more than 500 trading days.

With the term LEAPS®, one usually refers to the third category. S&P 100TM LEAPS® are
usually traded for hedging and investment purposes over the entire American market for a
time that can be measured in years rather that months as for standard options. Although
these contracts are traded with lower frequency (lower liquidity) than standard options since
they have very long maturities, they account for about 5/10% of the S&P 100TM option
market and their pricing is interesting for large part of option traders.

The next section shows how XEO®(European) options are employed to imply some of
the parameters that will then be used in the pricing of the corresponding American options.

6.2.2 Calculation of implied parameters

S&P 100TM is a dividend-paying asset and, consequently, in order to price the OEX® op-
tions, we proceed by estimating the dividend yield over the life of each contract. As in
Aït-Sahalia and Lo (2002) and Linaras and Skiadopoulos (2005), we imply the dividend
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Table 6.1 Screening of S&P 100TM options data

Filters No. of contracts

Initial contracts in dataset 84,394
- Zero volume and open interest (XEO®) 27,149
- Premium XEO®smaller than $0.5 24,146
- Maturities shorter than 50 trading days 13,245
- Negative implied dividend yield or no enough near-the-money options 12,279
- Bounds not satisfied (XEO®) 11,976
- OEX®with no correspondence to XEO® 11,881
- Negative early exercise premium (OEX®) 10,574
- Missing ask or bid price (OEX®) 10,148
- Zero volume and zero open Interest (OEX®) 7,320

Call Options 3,562
Put options 3,758

Note: This table indicates the number of options left in the dataset after the application of
each filter. The data was retrieved from the Bloomberg database every Wednesday over
the period 15 February 2012 to 10 December 2014. XEO® indicates the European style
contracts and OEX® indicates the American style contracts.

Table 6.2 Summary statistics for the OEX®(American) options on S&P 100TM

Short Medium Long

Call Put Both Call Put Both Call Put Both

Mean Mid-price 91.57 20.57 57.26 145.80 29.73 78.90 87.23 43.57 65.30
Mean bid-ask spread 3.20 2.15 2.70 6.53 3.60 4.84 7.32 4.33 5.82

Mean Ask−Bid
Mid spread 9.23% 23.14% 15.95% 5.36% 21.83% 14.85% 8.89% 11.82% 10.36%

Mean maturity 0.49 0.51 0.50 1.45 1.49 1.47 2.45 2.37 2.41

No. of retained options 2124 1987 4111 909 1237 2146 529 534 1063
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Figure 6.1 Implied volatility surface for the S&P 100TM options on 14 March 2012
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yield for each trading day and maturity date from the put-call parity

pt(St ,T,K)+Ste−δ (T−t) = ct(St ,T,K)+Ke−r(T−t) (6.1)

where pt and ct are the XEO® (European) put and call prices of at-the-money options
and all the other quantities are as defined in the previous chapters. The prices of at-the-
money options were calculated from the prices of the nearest-the-money call and put options
by linear interpolation. Consequently maturities with less than two call options or two
put options are discarded. Additionally, since negative implied dividend yields suggest the
existence of arbitrage opportunities, we also discarded options with this characteristic.

The second input we imply from the XEO® market prices is the volatility of the underly-
ing asset. We follow Skiadopoulos et al. (1999), Brandt and Wu (2002), Panigirtzoglou and
Skiadopoulos (2004) and Linaras and Skiadopoulos (2005) and we employ out-the-money
and at-the-money XEO® (European) call and put option prices. The in-the-money options
are not employed because: they are illiquid and consequently carry higher measurement
errors; and they are redundant and can be calculated from out-the-money options via the
put-call parity.

Figure 6.1 shows an example of volatility surface for the 14 March 2012: the volatility
surface is a function of strike price and maturity, which decreases with strike price and evens
out as maturity increases, or in other words, the volatility skew decreases. Similar shapes
are found for the other dates.
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6.2.3 Measures of pricing error

For our comparison, we employ the six error measures in Brandt and Wu (2002) and Linaras
and Skiadopoulos (2005). These are:

• average difference between each model price and the OEX® mid-price. This mea-
sure is defined as MVE, the mean valuation error and it is positive when the model
overprices the market on average;

• square-root of the average squared difference between the OEX® model price and
the mid-price. This measure is defined as RMSVE, the root mean squared valuation
error;

• percentage of time the model price is included within the market bid-ask spread. This
measure is defined as FIBA, the frequency in bid-ask;

• average error outside of the bid-ask spread, which is named the MOE, mean outside
error. The error outside the spread is defined as the model price minus the bid (resp.
ask quote) if the model price is below (above) the bid price (ask price) and is fixed
to zero for the cases when the model price falls within the bid-ask spread. This is a
measure of symmetry in model errors and of bias;

• variability of the errors outside the bid-ask spread, which is defined as the root mean
squared outside error, RMSOE;

• average outside error divided by the market price, which corresponds to the MOE but
in percentage terms. This is defined as the MROE, mean relative outside error.

6.3 Pricing performance

This section constitutes the main contribution of the chapter. It is divided into two parts:
in the first part, we show the pricing performances of the ‘extension’ method (Chapter 4)
and its competitors; the second part shows the pricing performances of the weighted least
squares Monte Carlo method (Chapter 5) compared to the LSMC by Longstaff and Schwartz
(2001) and ICLS by Létourneau and Stentoft (2014). Additionally, in the first part we report
the pricing performances of the asymptotic expansions of the optimal exercise price as in
Section 4.4.
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6.3.1 Results for the ‘extension’ method (Chapter 4)

Quasi-analytic methods

As in Chapter 4, we studied the ‘extension’ method when it is employed together with
the compound method in Geske and Johnson (1984), the quadratic method in Barone-Adesi
(2005), the interpolation method in Li (2010b), the integral method in Kim (1990), the static-
replicating portfolio method in Chung and Shih (2009), and the improved quadratic method
in Ju and Zhong (1999). Tables 6.3, 6.4 and 6.5 summarise the performances respectively
for long, medium and short maturities. Considering the analysis in Section 4.2.3, we select
the same ratio ϑ ∗,M = tx/T for each method. This ratio is 0.2 for short-maturity options,
0.3 for medium-maturity options and 0.5 for long-maturity options.

First, from the three tables we notice that for many of the existing methodologies the
most challenging maturity range, when pricing real financial options on the S&P 100TM

index, is that between 250 and 500 trading days. We also note that the nine methods have
comparable performances and there are not such big differences as we found in the scenario-
based comparison (see Figure 4.2).

The ‘extension’ method has been introduced in Chapter 4 to solve the problems of the
existing quasi-analytic methodologies in pricing long-term options. Considering the results
for long maturities (LEAPS®), we see that the ‘extended’-version of many methods (BAW,
LI, K3, CS2, CS3 and JZ) outperforms the standard version over all six error measures.
Overall, each extended method price is closer to the benchmark OEX® mid-price and more
condensed around it, and the prices outside the bid-ask spread are more symmetric and
smaller in size. Remarkable improvements are also reached over the methods K2 where the
‘extended’ version outperforms the standard one over five error measures with the exception
of MVE. The extended versions of GJ2 and GJ3 perform slightly worse than their standard
versions for the measures FIBA, MOE, RMSOE and MROE while they outperform the
respective standard version over the MVE and RMSVE measures. Our extended version
of GJ2 reaches an extraordinary MVE of 0.005, which is by far the best result over long
maturities.

For medium-term options, the ‘extension’ method also significantly improves on the
methods GJ2, GJ3, BAW, LI, K2 over all six measures. The (standard) methods K3, CS2,
CS3 and JZ perform very well for this maturity range and the extension method, with the
selected ratio ϑ ∗,M , is underperforming by comparison with the corresponding standard
method. However, the ‘extension’ method outperforms these 4 methods over the MOE and
MROE measures, being then less biased outside the bid-ask spread.

Not surprisingly, the ‘extension’ method also outperforms GJ2, BAW, LI, K2, K3 over
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Table 6.3 Empirical performances on S&P 100TM LEAPS®: Standard
versus ‘extended’ pricing methods over LONG maturities

MVE RMSVE FIBA MOE RMSOE MROE

GJ2
S -0.575 1.573 96.049% 0.041 0.644 0.044%
E 0.005 1.446 94.450% 0.087 0.719 0.099%

GJ3
S -0.232 1.412 95.767% 0.064 0.676 0.072%
E -0.059 1.410 95.014% 0.077 0.696 0.087%

BAW
S 0.562 1.742 91.063% 0.165 0.882 0.192%
E 0.281 1.567 92.380% 0.123 0.796 0.143%

LI
S 0.446 1.651 91.816% 0.143 0.844 0.165%
E 0.202 1.529 92.756% 0.112 0.778 0.130%

K2
S 0.139 1.496 93.039% 0.106 0.746 0.122%
E 0.162 1.488 93.133% 0.103 0.743 0.118%

K3
S 0.414 1.679 91.722% 0.150 0.827 0.170%
E 0.293 1.570 92.286% 0.126 0.795 0.145%

CS2
S 0.381 1.646 91.910% 0.140 0.816 0.159%
E 0.360 1.612 92.098% 0.136 0.816 0.156%

CS3
S 0.422 1.667 91.816% 0.146 0.831 0.166%
E 0.400 1.640 92.098% 0.142 0.828 0.162%

JZ
S 0.336 1.581 92.380% 0.127 0.793 0.145%
E 0.254 1.550 92.474% 0.120 0.788 0.139%

Note: This table shows the pricing performances for the methods GJ2 and GJ3 by Geske
and Johnson (1984), BAW by Barone-Adesi and Whaley (1987), LI by Li (2010b),
K2 and K3 by Kim (1990), CS2 and CS3 by Chung and Shih (2009) and JZ by Ju
and Zhong (1999). ‘S‘ stands for standard and ‘E’ for extended, i.e. respectively the
existing methods in the literature and our corresponding ‘extended’ versions via the
‘extension’ method. The results are for options with maturities above 500 trading
days. The six measures of error are detailed in Section 6.2.3.

the six measures while the performances of the standard GJ3, CS2, CS3 and JZ and our
extended versions are virtually equal.

These results indicate that, as shown by the scenario-based comparison in Section 4.3.1,
the ‘extension’ method can be applied over many maturity ranges with remarkable improve-
ments over the existing methodologies.

Asymptotic expansions of the optimal exercise price

In addition, we carried out a similar analysis employing asymptotic expansions of the opti-
mal exercise price. As stated in Chapter 4, many of these methods provide the optimal exer-
cise price for only short maturities and consequently they cannot be implemented straight-
forwardly for long maturity options such as OEX® LEAPS®. We employ the integral equa-
tion method by Kim (1990) together with the ‘extension’ method and we can price options
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Table 6.4 Empirical performances on S&P 100TM options: Standard versus
‘extended’ pricing methods over MEDIUM maturities

MVE RMSVE FIBA MOE RMSOE MROE

GJ2
S -1.061 2.941 75.582% -0.324 1.655 -0.234%
E -0.678 2.467 78.611% -0.088 1.314 -0.032%

GJ3
S -0.732 2.567 78.052% -0.142 1.404 -0.085%
E -0.783 2.567 77.866% -0.135 1.358 -0.062%

BAW
S -0.276 2.188 83.970% 0.073 1.220 0.095%
E -0.242 2.179 84.296% 0.081 1.222 0.100%

LI
S -0.324 2.218 83.085% 0.054 1.231 0.077%
E -0.292 2.209 83.411% 0.064 1.231 0.085%

K2
S -0.629 2.550 78.658% -0.111 1.439 -0.017%
E -0.626 2.430 79.031% -0.061 1.294 -0.005%

K3
S -0.215 2.212 83.737% 0.078 1.249 0.109%
E -0.475 2.323 80.475% 0.006 1.256 0.048%

CS2
S -0.136 2.149 86.114% 0.102 1.224 0.114%
E -0.351 2.251 82.246% 0.052 1.241 0.081%

CS3
S -0.125 2.153 85.927% 0.107 1.228 0.119%
E -0.281 2.216 83.178% 0.074 1.236 0.097%

JZ
S -0.206 2.185 84.436% 0.083 1.233 0.097%
E -0.588 2.411 79.310% -0.043 1.287 0.013%

Note: This table shows the results for options with maturities of between 250 and 500
trading days. See Table 6.3 for additional notes.
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Table 6.5 Empirical performances on S&P 100TM options: Standard versus
‘extended’ pricing methods over SHORT maturities

MVE RMSVE FIBA MOE RMSOE MROE

GJ2
S -0.697 1.248 83.946% -0.104 0.503 -0.167%
E -0.664 1.178 84.456% -0.090 0.436 -0.135%

GJ3
S -0.618 1.116 86.621% -0.073 0.426 -0.127%
E -0.698 1.250 83.508% -0.109 0.479 -0.152%

BAW
S -0.517 0.976 90.027% -0.046 0.358 -0.088%
E -0.508 0.960 90.124% -0.044 0.353 -0.085%

LI
S -0.530 0.992 89.832% -0.049 0.368 -0.094%
E -0.523 0.979 89.638% -0.047 0.361 -0.091%

K2
S -0.638 1.168 85.989% -0.099 0.476 -0.124%
E -0.533 0.985 89.297% -0.048 0.362 -0.094%

K3
S -0.504 0.957 89.443% -0.048 0.354 -0.083%
E -0.478 0.923 90.854% -0.038 0.340 -0.079%

CS2
S -0.459 0.906 91.121% -0.036 0.338 -0.080%
E -0.459 0.908 91.194% -0.036 0.339 -0.079%

CS3
S -0.450 0.900 91.340% -0.035 0.337 -0.077%
E -0.451 0.901 91.340% -0.035 0.338 -0.077%

JZ
S -0.462 0.916 91.146% -0.037 0.344 -0.079%
E -0.467 0.920 90.902% -0.038 0.345 -0.079%

Note: This Table shows the results for options with maturities of between 50 and 250
trading days. See Table 6.3 for additional notes.
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Table 6.6 Empirical performances on S&P 100TM options: ‘Extended’ asymp-
totic expansions of the OEP

MVE RMSVE FIBA MOE RMSOE MROE
Sh

or
t EKK E -0.684 1.442 85.892% -0.147 0.751 -0.208%

ZL E -0.940 2.019 80.564% -0.337 1.256 -0.417%
CZ E -0.542 1.027 88.640% -0.060 0.388 -0.117%

CZ-P E -0.565 1.017 88.494% -0.057 0.368 -0.109%

M
ed

iu
m EKK E -2.003 4.428 70.363% -1.017 2.883 -0.725%

ZL E -3.215 6.442 66.729% -2.050 4.905 -1.669%
CZ E -0.586 2.289 81.221% 0.027 1.243 0.062%

CZ-P E -1.066 2.630 76.701% -0.149 1.373 -0.062%

L
on

g

EKK E -0.270 3.999 76.858% -0.223 2.202 0.036%
ZL E -2.163 7.511 70.931% -1.747 5.526 -1.192%
CZ E 0.155 1.896 89.087% 0.152 0.881 0.180%

CZ-P E -0.103 2.225 83.067% 0.135 0.903 0.168%
Note: This table shows the pricing performances for the ‘extended’ asymptotic expansion meth-

ods EKK by Evans et al. (2002), ZL by Zhang and Li (2010), and CZ and CZ-P by Cheng
and Zhang (2012). The options are classified as Short (50-250 trading days), Medium (250-
500 trading days) and Long (above 500 trading days) maturities. The six measures of error
are detailed in Section 6.2.3.

with maturities as long as 5 years; this is more than the longest maturity listed today on
S&P 100TM options. For the selection of tx, we employ Figure 4.5 as discussed in Sec-
tion 4.4.2. The performances are summarised in Table 6.6. On average, the performances of
the five ‘extended’ asymptotic methods are better than some standard methods but are usu-
ally worse than the ‘extended’ versions.8 Besides, the ‘extended’ versions of CZ, CZ-P and
CZ-P-m are much better than that of CZ over almost any measure and any maturity range.
Finally, the EKK method also has very good performance when considering real financial
data. Its performance measures are close to the values of CZ, CZ-P and CZ-P-m but it is
much shorter running time and it is much easier to implement.

6.3.2 Results for the weighted least squares Monte Carlo method (Chap-
ter 5)

Finally, we carry out a similar analysis for the Monte Carlo methodologies in Chapter 5. We
compare the new weighted least squares Monte Carlo method with the least squares Monte
Carlo by Longstaff and Schwartz (2001) and the inequality constrained least squares Monte
Carlo method by Létourneau and Stentoft (2014).

We considered for each method M (LSMC, ICLS and wLSMC) M = 5 basis functions.
8In Table 6.6, the CZ-P and CZ-P-m methods are presented together because they have virtually the same

performances over the set of options considered.
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Additionally, we let the number of paths increase with the values nS ∈{1,000;2,000;10,000}.
For each of the options considered, the model price is assumed to be equal to the mean over
100 independent simulations. Figures 6.2-6.3 summarise the six error measures in Sec-
tion 6.2.3, for the three methods.

For short maturities, the LSMC and wLSMC methods perform similarly for nS = 2,000
and 10,000 number of paths. However, our new wLSMC method performs better than
LSMC when only 1,000 paths are employed, as shown by the reduction in all of the error
measures considered in Section 6.2.3. On the other hand, the performance of the ICLS is
slightly worse than the other two under all of the measures for nS= 2,000 and 10,000. How-
ever, the ICLS for nS = 1,000 performs very well and outperforms the other two methods
under all the error measures.

For medium and long maturities, the wLSMC improvements over the other two methods
are more evident. The wLSMC algorithm outperforms the other two under all performance
measures. The only exception is for medium-maturity options, under the FIBA measure,
where our new method performs slightly worse than the other two for nS = 2,000 and 5,000
steps. However, this is not of great importance for the valuation of the performance of the
wLSMC, since on average the measures of error outside the bid-ask spread (i.e. MOE, RM-
SOE and MROE) are substantially smaller for the wLSMC than for the other two methods.

6.4 Conclusions

When introducing a new method for pricing derivatives, it is necessary to assess its per-
formances with respect to those of the established methods for that particular class of fi-
nancial instruments. In the previous two chapters, we tested the ‘extension’ method and
the wLSMC method over a wide set of option scenarios, and we showed that, under the
assumption of a specific model for the underlying asset, our two methodologies outperform
the existing methodologies since our model prices are ‘closer’ to the fair benchmark price
(calculated via a binomial tree method). However, the relevance of the method is estab-
lished considering how close the model prices are to the market prices since it is there that
the methodologies are used and, consequently, the market always has the last word. In this
chapter, we considered options on the S&P 100TM index over a period of almost three years
and we conclude that the methodologies discussed in Chapters 4 and 5 achieved the aims
for which they were introduced.

The ‘extension’ method is introduced in Chapter 4 to correct any quasi-analytic method
for long-maturity options. In this chapter we show that it provides superior results compared
to its competitors over long maturity options, i.e. OEX® LEAPS®. The only (partial) ex-
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Figure 6.2 Empirical performances of the S&P 100TM options and LEAPS®: Monte Carlo simulation methods (1)
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Note: This figure illustrates the pricing performance for the least squares Monte Carlo method (LSMC) of Longstaff and Schwartz (2001), the inequality
constrained least squares Monte Carlo (ICLS) of Létourneau and Stentoft (2014) and the weighted least squares Monte Carlo in Chapter 5 (wLSMC). The
options are classified as Short (50-250 trading days), Medium (250-500 trading days) and Long (above 500 trading days) maturities. The three measures of
error are detailed in Section 6.2.3.
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Figure 6.3 Empirical performances of the S&P 100TM options and LEAPS®: Monte Carlo simulation methods (2)
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Note: This figure illustrates the pricing performance for the least squares Monte Carlo method (LSMC) of Longstaff and Schwartz (2001), the inequality
constrained least squares Monte Carlo (ICLS) of Létourneau and Stentoft (2014) and the weighted least squares Monte Carlo in Chapter 5 (wLSMC). The
options are classified as Short (50-250 trading days), Medium (250-500 trading days) and Long (above 500 trading days) maturities. The three measures of
error are detailed in Section 6.2.3.
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ception is the method in Geske and Johnson (1984): the ‘extension’ method also improves
on GJ2 and GJ3 (respectively their method with two and three time-steps) for the mea-
sures MVE and RMSVE but its performances are slightly worse than the standard versions
although still better than the other seven methodologies. Therefore, the extended version
of GJ3 is probably the best method (among those considered) to price long maturity op-
tions. Besides, the ‘extension’ method also performs very well for short and medium term
options, outperforming in many cases the existing methodologies. Additionally, we consid-
ered the asymptotic expansions of the optimal exercise price. Also in this case, employing
the ‘extension’ method we see good performance across different maturities.

Furthermore, the comparison over the S&P 100TM options shows that the weighted
least squares Monte Carlo in many cases remarkably improves on the two best least squares
Monte Carlo regression methods considered: the LSMC algorithm by Longstaff and Schwartz
(2001) and the ICLS by Létourneau and Stentoft (2014). Our new method reduces pricing
bias as shown by the MVE, which is similar to the mean relative error (MRE) employed
in Chapter 5, and the price dispersion around the OEX® (American) mid-prices. Conse-
quently, the new method constitutes a valid alternative to the other two and also creates
smaller errors outside the bid-ask spread. Future work will be carried out to test these two
methods over other asset classes and over an extended period of time.



Chapter 7

Conclusions

This thesis set out to explore new computational methods to price and hedge financial
derivatives when several models for the underlying asset price dynamics are considered.
We mainly focused on two types of derivatives, namely European basket options and Amer-
ican options, and we proposed three new methodologies: (1) an exact moment-matching
procedure for the pricing and hedging of basket options for assets under displaced jump-
diffusion processes; (2) a quasi-analytic method with the potential to improve almost any
existing quasi-analytic method for pricing and hedging long-dated American options under
the assumption of log-normal returns and (3) a simulation-based method that improves on
the regression step of the least squares Monte Carlo method developed by Longstaff and
Schwartz (2001) by correcting for heteroscedasticity.

The first method we proposed employs Hermite polynomial expansions and prices and
hedges European basket options via a moment-matching technique. Many of the existing
approaches impose strong assumptions either in terms of the price dynamics of the assets in
the basket, or on the overall evolution of the basket. On the other hand, our new technique
allows granular specification of price dynamics for each asset, and assumes more realistic
models such as the displaced jump-diffusion process of Câmara et al. (2009) and the dis-
placed version of the asymmetric jump-diffusion process of Ramezani and Zeng (2007),
which account for negative skewness and excess kurtosis known to characterise equity
stocks. Then, without assuming any dynamics for the overall basket value, we employ
an expansion of a standard normal random variable to replicate the random variable repre-
senting the standardised basket return at maturity by a moment-matching technique. Using
the properties of these polynomials, we obtain Black-and-Scholes type pricing and hedging
formulae. As shown by an extensive scenario-based comparison, the new method produces
small pricing errors as well as precise calculation of the Greek parameters for hedging pur-
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poses. Finally, we point out that the new method can be applied to other price dynamics as
far as the moments of the overall basket can be calculated in closed form.

Second, we proposed a new quasi-analytic method to price American options under the
geometric Brownian motion dynamics. The aim of our new approach is to improve existing
methods available for pricing long-maturity options. We justified the introduction of this
new technique by observing that the pricing approaches available in the literature work
properly for short-medium maturity options, but their performance worsens the longer the
time-to-maturity. The idea of our method for pricing a given option is to split its time to
maturity into two parts that are priced separately: the one closest to the beginning of the
contract is priced by approximating the optimal exercise price as a flat function, and the
second part (i.e. the one closest to the expiration date) is priced by employing any existing
pricing method. We term our new approach the ‘extension’ method. It can be considered a
technique that works in conjunction with any existing method in the literature and extends
the maturity range for which it attains small errors.

There are several advantages of this new technique. The first is that the new method
achieves a more precise estimation of the optimal exercise price near expiration, since we
focus any computational effort in the part where theory suggests that the optimal exercise
price is more complicated to estimate (see Jacka (1991) and Chen et al. (2013)). The second
advantage is that it incorporates the existing approaches to price options with shorter maturi-
ties, which is where they perform better. The third is that very low additional computational
effort is required for the ‘extension’ interval, (i.e., for the first part of option life), since we
provide an analytic closed-form formula. The fourth advantage is that the method facili-
tates precise and fast estimation of the delta and the gamma parameters of the options via a
quasi-analytic formula. Additionally, we provided a convergence result of the new pricing
technique to the perpetual option price when time-to-maturity approaches infinity, and we
showed that the applications of the new pricing and hedging formula are not limited to stan-
dard quasi-analytic methods but it can also be employed to extend any asymptotic expansion
of the optimal exercise price. These expansion techniques are currently the cutting-hedge
methods for American option pricing and consist of a closed-form approximation of the
optimal exercise price. However, although they perform very precisely for short-maturity
options, they cannot be employed for long-maturity options. With the approach we pro-
posed, one can price options with maturities as long as five years with pricing and hedging
performances that are usually better than standard methods and much faster, since they con-
sist of fully-analytic formulae. Finally, we tested our new method together with six standard
quasi-analytic methods and three asymptotic expansions of the optimal exercise price, and
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we achieved improvements for a wide range of maturities (from few days to 5 years) and
especially for long maturities, where the existing methods perform worst.

The last major contribution of this thesis is a new algorithm to improve on one of the
most applied numerical methods for pricing American-style derivatives, the least squares
regression method proposed by Longstaff and Schwartz (2001). The algorithm of Longstaff
and Schwartz employs Monte Carlo simulations and ordinary least squares regressions for
the estimation of the continuation value of an American-style derivative. The method we
introduced, termed the weighted least squares Monte Carlo, follows the same steps as those
in the Longstaff-Schwartz algorithm, but it substitutes the ordinary least squares regressions
with the weighted version. Our main contribution is that we prove that the ordinary least
squares regressions carried out in the algorithm of Longstaff and Schwartz do not provide
the best linear unbiased estimator when employed for the pricing of American call and put
options, since there is evidence of heteroscedasticity. First, we numerically and graphi-
cally demonstrated the existence of heteroscedastic errors for four price dynamics (namely,
geometric Brownian motion, exponential Ornstein- Uhlenbeck process, log-normal jump-
diffusion process and asymmetric dual exponential jump-diffusion), and then we provided
a theoretical proof that generalises the results to other Markovian processes. The existence
of this heteroscedasticity justifies the correction of the least squares Monte Carlo method by
considering the weighted least squares regressions that account for heteroscedasticity and
provide the best linear unbiased estimators. Furthermore, via an extensive scenario-based
study we demonstrated that our new algorithm is effective in reducing the upward bias of
the Longstaff-Schwartz prices, at the small cost of little additional computational time.

Finally, the performances of the ‘extension’ method and the weighted least squares
Monte Carlo method are compared against their major competitors using real financial data.
We considered S&P 100TM options and LEAPS® traded from 15 February 2012 to 10
December 2014. The empirical comparison showed that the two methods in most of the
cases outperform the existing approaches using real financial data, making these methods
preferable to existing ones.

7.1 Further Research

The contributions in this thesis can be further expanded in several ways. Major further
research directions involve the application of the new methods to price and hedge options
written on assets under price dynamics different than the ones considered and/or with other
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payoff structures. In particular, the moment-matching method introduced in Chapter 2 can
be easily adapted to price path-dependent options such as Asian basket options via a double
moment-matching procedure, as in the work of Borovkova and Permana (2007). However,
it would be more beneficial to apply the new method to price and hedge American-style
basket options since, as we outlined in Chapter 2, many basket options traded in organised
exchanges are American type.

Furthermore, it would be valuable to expand on the ‘extension’ method. Currently, this
method works exclusively for geometric Brownian motion dynamics, but it is well-known
that this process has several drawbacks in replicating the empirical evidence in the financial
markets (Bakshi et al., 1997; Fama, 1965, among others). Consequently, it would be useful
to apply the same approach of dividing the time-to-maturity into two parts to other price
dynamics. In order to apply the ‘extension’ method to other dynamics, it is necessary that
under this new dynamics: the optimal exercise price is independent of the filtration at time
of evaluation; a good approximation for the optimal exercise price and/or the option price is
available for short maturity options; and, the probability density function of the underlying
asset price conditional on not hitting a flat barrier is obtainable in closed-form. Preliminary
research indicates that the jump-diffusion models of Merton (1976) and Kou (2002) satisfy
the three conditions above and consequently, we will further explore them in future.

It would prove useful to conduct further research on the heteroscedasticity we identified
in Chapter 5 for the least squares Monte Carlo method. Preliminary results (Appendix 5.E)
show that heteroscedasticity of the errors also characterises the regression steps in the al-
gorithm of Longstaff and Schwartz (2001) for many multiasset payoffs and it would be
worth generalising the proof of heteroscedasticity that we presented in this thesis to general
square-integrable payoffs. Together with the derivation of these theoretical results, we will
also investigate approximations of the conditional variance of the regression errors (which
correspond to the weighting function of the weighted least squares method) for other payoff
structures. Following the approximations of the conditional variance for single asset options
that we considered in Chapter 5, we will investigate approximations which involve price
spreads between two European-style derivatives and we will most likely employ some of the
results presented in Chapter 2 to calculate these prices. Finally, it would be useful to study
additional properties of the errors of the regressions in the Longstaff-Schwartz algorithm, to
take advantage of their bounds for pricing purposes (Appendix 5.D). To complement this,
another line of research is the application of the weighted least squares regression method
to general optimal-control problems in the field of real options, optimal investments, man-
agement and control, such as in the work of Carmona and Hinz (2011), Sabour and Poulin
(2006) and Carmona and Durrleman (2003).
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