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Abstract

A class of large-scale interconnected systems with matched and unmatched uncertainties is
studied in this thesis, with the objective of proposing a controller based on diffeomorphisms and
some techniques to deal with the tracking problem of the system. The main research developed
in this thesis includes:

• Large-scale interconnected system is a complex system consisting of several semi-
independent subsystems, which are typically located in distinct geographic or logical
locations. In this situation, decentralised control which only collects the local information
is the practical method to deal with large-scale interconnected systems. The decentralised
methodology is utilised throughout this thesis, guaranteeing that systems exhibit essential
robustness against uncertainty.

• Sliding mode technique is involved in the process of controller design. By introducing
a nonsingular local diffeomorphism, the large-scale system can be transformed into
a system with a specific regular form, where the matched uncertainty is completely
absent from the subspace spanned by the sliding mode dynamics. The sliding mode
based controller is proposed in this thesis to successfully achieve high robustness of the
closed-loop interconnected systems with some particular uncertainties.

• The considered large-scale interconnected systems can always track the smooth desired
signals in a finite time. Each subsystem can track its own ideal signal or all subsystems
can track the same ideal signal. Both situations are discussed in this thesis and the results
are mathematically proven by introducing the Lyapunov theory, even when operating
under the presence of disturbances.

At the end of each chapter, some simulation examples, like a coupled inverted pendulums
system, a river pollution system and a high-speed train system, are presented to verify the
correctness of the proposed theory. At the conclusion of this thesis, a bried summary of the
research findings has been provided, along with a mention of potential future research directions
in tracking control of large-scale systems, like more general boundedness of interconnections,
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possibilities of distributed control, collaboration with intelligent control and so on. Some
mathematical theories involved and simulation code are included in the appendix section.
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Chapter 1

Introduction

Control theory, which primarily focuses on control systems, has become a crucial field in
modern technical society since the early twentieth century. A control system is designed to
enhance the performance of a specific process and achieve the desired objectives to meet user’s
requirements. An automatic control system refers to a self-regulating system that operates
under certain environment without direct human intervention. As our understanding of the
world has deepened, there has been a shift from studying and controlling individual systems
to investigating and managing large-scale systems. Large-scale interconnected systems are
pervasive in various domains, such as ecological systems, power systems, aerospace, robotics,
etc. Control of large-scale interconnected systems has become an irreversible trend. Subsequent
advancements in control technologies, such as sliding mode control, intelligent control, and
adaptive control, have significantly contributed to the stabilisation of large-scale interconnected
systems. However, with society progresses and technology advances, merely achieving stability
in large-scale interconnected systems is no longer sufficient to meet current demands. Desired
signal tracking in large-scale interconnected systems has emerged as a new research direction. In
this thesis, the focus is on studying the problem of signal tracking of large-scale interconnected
systems in the presence of disturbances.



2 Introduction

1.1 Background and Motivation

In today’s modern society, there is a growing demand for the control of complex systems.
As a result, researchers have been increasingly focusing on advanced control technologies to
effectively manage these complex systems. One specific type of complex systems is large-scale
interconnected systems, which are often composed of interconnected subsystems, and the
dynamics of each subsystem can be influenced by others due to the interconnections between
subsystems. These systems can be found in various areas, including engineering [39], biology
[37], economics [8], social networks [61, 46], and transportation systems [51, 72], etc.

The background of large-scale systems can be traced back to several fundamental concepts
and theories:

• Systems Theory: Systems theory [41, 34, 43] provides the foundation for understanding
and analysing the behaviour of interconnected systems. It encompasses concepts such
as system dynamics, system structure, feedback loops, and system interconnections.
Systems theory [3] allows the study of how individual components are interacted with
each others and affect the overall behaviour of the system.

• Control Theory: Control theory [34, 14] deals with the design and analysis of control
systems that can be influenced or regulated to achieve desired objectives. In the context
of large-scale systems, control theory provides the tools and methodologies [59, 115] to
design control strategies that ensure stability, performance, and robustness in the presence
of complex interconnections and uncertainties using decentralised or distributed control
strategies.

• Network Theory: Network theory is concerned with the study of interconnected networks
and their properties. Large-scale systems can often be represented as networks [57],
where nodes represent individual components, and edges represent interconnections be-
tween them. Network theory provides insights into the structural properties, connectivity,
and dynamics of large-scale systems.

• Optimization Theory: Optimization theory [89] plays a crucial role in large-scale systems
by addressing challenges of resource allocation, coordination, and decision-making.
Optimization techniques [5] are used to find optimal or sub-optimal solutions [99, 110,
109] to problems such as task allocation, scheduling, routing, and resource allocation in
large-scale systems.

• Complex Systems Theory: Complex systems theory focuses on understanding the be-
haviour of systems [73] with a large number of interacting components. It explores emerg-
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ing properties, self-organization, and the dynamics of complex systems. Large-scale
systems often exhibit complex behaviour and properties that require a multidisciplinary
approach drawing from physics, mathematics, computer science, and other fields.

Advancement in computing power, communication technologies, and data analysis tech-
niques has also contributed to the increased interest in large-scale systems. The advancement
enables the collection and analysis of vast amounts of data from interconnected systems, leading
to improved performance, modelling, and control of large-scale systems.

A notable characteristic of these systems is their wide spatial distribution [63, 121]. Conse-
quently, the control design of such systems needs to consider robustness against potential data
loss during data transfer, which may occur due to broken or unknown interconnections and
poor communication. The control problem for large-scale interconnected systems is inherently
challenging.

Decentralised control strategies only require local information from individual subsystems,
eliminating the need for extensive data transfer between subsystems. This characteristic
makes decentralised control more robust in cases where interconnections are disrupted or
communication is unreliable. Therefore, decentralised control has become a popular choice for
controlling large-scale interconnected systems, allowing them to exhibit the required level of
robustness.

Overall, the background of large-scale systems encompasses foundational theories and
concepts from systems theory, control theory, network theory, optimization theory, and complex
systems theory. It aims to provide a comprehensive understanding of the behaviour, dynamics,
and control of complex interconnected systems, with applications in diverse fields.

1.1.1 Main streams of nonlinear approach

The nonlinear approach to dealing with large-scale systems encompasses several main streams,
each offering distinct methodologies and techniques. These streams can be broadly categorized
as follows:

• Nonlinear Control Strategies: This stream focuses on the development and application of
nonlinear control techniques to manage the complexity of large-scale systems. Methods
such as feedback linearisation, sliding mode control, and adaptive control fall under this
category.

• Decentralised Control and Coordination: Decentralised approaches distribute control
tasks among subsystems, promoting scalability and reducing the burden on a central
controller. Techniques like decentralized control, consensus algorithms, and game theory
are explored to enhance coordination in large-scale systems.
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• Distributed Optimization: Addressing optimisation problems in a distributed manner
is crucial for large-scale systems. This stream involves algorithms and approaches
that enable distributed optimization, including convex optimization, distributed model
predictive control, and consensus-based optimization.

• Machine Learning and Data-Driven Methods: Leveraging machine learning and data-
driven methods has become increasingly popular. This stream involves using techniques
such as neural networks, reinforcement learning, and data-driven modelling to capture
and control the nonlinear dynamics of large-scale systems.

• Complex Network Theory: Large-scale systems can often be modelled as complex
networks. This stream explores nonlinear approaches based on network theory, exam-
ining concepts like network controllability, observability, and resilience to enhance the
understanding and control of these systems.

• Adaptive and Robust Control: Dealing with uncertainties and variations in large-scale
systems is a key focus of this stream. Adaptive and robust control methods are em-
ployed to handle the nonlinearities and disturbances, ensuring the system’s stability and
performance under varying conditions.

These main streams collectively contribute to the diverse toolkit available for addressing the
challenges posed by nonlinearities in large-scale systems. Researchers and practitioners often
integrate elements from multiple streams to develop comprehensive solutions tailored to specific
applications.

1.1.2 History of Tracking Control

System tracking control has been widely applied in practical engineering. The history of
tracking control can be traced back to the early development of control theory. A brief overview
of the key milestones in the history of tracking control is presented as follows:

• Development of Feedback Control Theory (1940s-1950s): The foundation of modern
control theory [23, 4] was laid in the 1940s and 1950s with the development of feedback
control concepts. The introduction of proportional-integral-derivative (PID) control
and the Nyquist stability criteria, provided the fundamental theory for tracking control
[128, 71, 130].

• Model-Based Control (1960s-1970s): In the 1960s and 1970s, researchers began to
explore model-based control techniques for achieving accurate tracking. Model predictive
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control [87, 82, 53, 54] and optimal control methods were developed, which involved
formulating dynamic models of the system and designing control strategies based on
optimization principles.

• Sliding Mode Control (1970s-1980s): Sliding mode control (SMC) emerged as a robust
control technique [90, 85] in the 1970s and 1980s. SMC provides robustness against
uncertainties and disturbances by ensuring that the system trajectory reaches and stays
on a predefined sliding surface. It has been widely applied in tracking control for various
systems [55, 21, 13].

• Adaptive Control (1980s-1990s): Adaptive control techniques [42] gained attention in the
1980s and 1990s, focusing on developing controllers that could adapt to varying system
dynamics and parameters. Adaptive control algorithms incorporate online parameter
estimation and adaptation mechanisms to achieve accurate tracking performance [104, 19]
in the presence of changing conditions.

• Robust Control (1990s-2000s): The development of robust control methods in the 1990s
and 2000s addressed the challenges of tracking control [76, 15] in the presence of
uncertainties and disturbances. Robust control techniques, such as H-infinity control
and mu-synthesis, provide guarantees on system performance and stability even in the
presence of model uncertainties and external disturbances.

• Intelligent Control (2000s-present): With the development of artificial intelligence and
computational intelligence techniques, intelligent control methods have been applied to
tracking control problems. Fuzzy logic control [98], neural network control [25, 26], and
evolutionary algorithms [84] have been widely used to handle complex systems with
nonlinearities and uncertainties.

Currently, system tracking control has received great attention in both control theory and
control engineering. Researchers have focused on improving the accuracy, robustness, and
adaptability of control systems to achieve accurate tracking for desired reference signals in
various applications.

1.1.3 Sliding Mode-based Tracking Control

At the early stages of control theory, the focus was primarily on single-input single-output
(SISO) systems, where control techniques such as PID control were developed. The PID
control algorithm, which emerged in the 1940s, can be tuned to regulate a system’s response
to track desired reference signals. Then, PID control was widely used in various industries
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and applications [65, 38]. In the 1960s-1970s, the focus shifted towards stabilisation of SISO
systems. Classical control techniques, including PID control and frequency-domain methods,
were widely applied to stabilise control systems [20]. With advancement of control theory,
the control of multiple-input multiple-output (MIMO) systems gained more attention [18].
This enabled better coordination and control of complex systems including large-scale systems
[36, 106, 2]. In parallel, sliding mode control emerged as a robust control technique in the
late 1950s and early 1960s. The concept was introduced by the Russian mathematician Lev
S. Pontryagin and his colleagues in the field of optimal control theory. However, the practical
implementation [100, 81] of sliding mode control was not realised until the 1970s when
advancement in control theory and power electronics made it feasible.

The development [32, 95] of robust control techniques for large-scale systems began to
emerge in the late 1980s and early 1990s. Robust control theory is a branch of control theory
that focuses on designing controllers that can effectively handle uncertainties and disturbances
existing in a system. Control techniques such as adaptive control [33], optimal control [47],
robust control, and intelligent control [134] have been applied to address the challenges of
controlling large-scale systems. These techniques aim to enhance the performance, robustness,
and adaptability of control systems by specifically focusing on uncertainties, disturbances,
and nonlinearities. The 1980s and 1990s also witnessed significant advancement [40, 12] in
sliding mode control theory, including the development of higher-order sliding modes [48],
reaching laws, and chattering reduction techniques [9]. However, sliding mode techniques
did not be primarily used for the control of large-scale systems. On the contrary, the focus of
control theory during this period was mainly for stabilisation control [106, 17] and analysis
[27] of large-scale systems. Researchers were exploring decentralised control methods and
coordination strategies to ensure stability in interconnected systems. And the emphasis on
tracking specific reference signals was not as a prominent problem during this period.

1.1.4 Motivation of this thesis

Sliding mode control is very popular in dealing with complex systems with uncertainties due to
its unique control characteristics ([119, 125]). On the one hand, the sliding mode dynamics are
often composed of a reduced-order system when compared with the original system, which
may simplify the corresponding system analysis and design. On the other hand, sliding mode
control is totally robust to matched uncertainty and disturbances. This has resulted in the sliding
mode control method being widely applied to deal with tracking problems, and standing out
among numerous technologies.

While the research on the stability of large-scale systems has already reached a high level
of maturity, the need for accurate tracking of reference signals in large-scale systems increased
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greatly since 2000s. And then, researchers started developing tracking control techniques
specifically tailored for large-scale systems. However, there is still a huge gap between large-
scale systems’ tracking and stabilisation, especially combing with sliding mode techniques and
some other techniques to deal with the uncertainties and boost robustness.

Motivated by this gap, this thesis focuses on addressing the challenge of tracking control for
large-scale systems with uncertainties using decentralised-based sliding mode control, which
can effectively handle inner uncertainties and improve the overall system performance.

1.2 Contributions and Thesis Organisation

This thesis focuses on tracking control of large-scale systems. The approaches developed in
this thesis are applied to various practical systems through case studies, including inverted
pendulum, river quality control systems, and high-speed trains. The key contributions of this
thesis can be summarised as follows:

• This is the first time to deal with the tracking problem of large-scale systems using
diffeomorphism-based sliding mode techniques. Various non-singular local diffeomor-
phism are applied to the considered large-scale systems, enabling the transformed systems
to have a required form to facilitate the analysis and design. This opens up possibilities
for the use of sliding mode techniques. Additionally, the proposed local diffeomorphisms
also convert the tracking problem into the problem of system stabilisation which has a
more mature theory.

• Under some proposed decentralised control strategies in this thesis, different types of
large-scale systems are demonstrated to have a good tracking performance for desired
signals. Moreover, by utilizing sliding mode techniques, the effect of matched distur-
bances can be completely rejected even using decentralised strategy. In this thesis, the
desired signals are time-varying rather than being limited to constant signals, which is
new compared to the existed works. For the specific large-scale systems, it is possible
to achieve the tracking for the same desired signal by each subsystem, as well as the
tracking of different desired signals by different subsystems.

• A solution is proposed to address the inevitable external disturbances in the control
process of large-scale systems for tracking problem of large-scale interconnected systems.
The solution assumes that the upper bound of the unknown external disturbance is known
and utilizes this known upper bound to aid in the design of the controller. The innovation
is that the asymptotically tracking results can be guaranteed by using the proposed
controllers, even in the presence of the internal and external disturbances.
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The remaining structure of this thesis is as follows:
Chapter 2 provides an overview of the control theory necessary for the subsequent analysis

and design conducted in this thesis. It covers essential definitions, including the concept of
a local diffeomorphism, which is a fundamental mathematical tool in the study of nonlinear
systems. This chapter also explores the key principles and basic results of sliding mode
techniques, which are widely applied in control systems. Additionally, the elementary theory
of Lyapunov stability is discussed, as it plays a crucial role in analysing the stability properties
of control systems in this thesis.

In Chapter 3, a decentralised controller is proposed for a class of nonlinear interconnected
systems with uncertainties using the sliding mode technique. The scheme considers both
matched nonlinear uncertainty and mismatched interconnections. To facilitate system analysis,
a geometric transformation is applied to transfer the interconnected system into a new nonlinear
system with a special structure. And a set of conditions is developed to ensure that the output
tracking errors converge to equilibrium point asymptotically and state variables are bounded as
well.

We focus on a class of interconnected systems in Chapter 4 where the isolated subsystems
are described by nonlinear systems with linear components. We propose a state feedback
decentralised control strategy based on sliding mode techniques. The objective is to ensure
that the outputs of the controlled interconnected system track the desired signals uniformly
ultimately, even when the desired reference signals are time-varying.

In Chapter 5, some proper coordinate transformations are introduced to explore the proper-
ties of system structure. Then, a system structure-based analysis is presented to decompose
the high-speed train models into large-scale interconnected systems with special structure
where both internal and external uncertainties are considered to reflect the practical situation.
A decentralised sliding mode controller is designed such that the output tracking errors are
uniformly bounded with bounded states. Simulations are performed at the end of each chapter
to demonstrate the effectiveness and feasibility of the proposed control strategies.

Chapter 6 provides a summary of the key findings and main conclusions derived from this
thesis. It outlines the significant contributions made in the thesis and discusses the implications
of the results. Furthermore, this chapter includes a discussion on potential areas for future
research and explores possible directions for further investigation.

Finally, the Appendix section provides an explanatory example of the SIMULINK software
used in this thesis. It shows how simulation results are obtained for all practical and numerical
examples included in the study. Additionally, the Appendix including a mathematical supple-
ment, provides further details and supporting information for the research work conducted in
the thesis.
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1.2.1 An Aerial View

Table 1.1 (See, next page) provides readers with a macro-level perspective to explore subtle
differences in the research subject and research methods across the main chapters. It also
highlights some commonalities among these five chapters as well as the unique aspects of each
chapter.
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Chapter 2

Fundamental Knowledge and Basic
Concepts

2.1 State-Space Systems

2.1.1 Linear Time-Invariant (LTI) Control Systems

Consider a continuous-time LTI control system

ẋ(t) = Ax(t)+Bu(t) (2.1)

y(t) =Cx(t)+Du(t) (2.2)

where x ∈ Rn, u ∈ Rm and y ∈ Rp with m ≤ p < n are the state, input and output of the system.
(2.1) is called "state equation" and (2.2) is called "output equation". The matrices A,B,C,D are
constant ∀t ≥ 0.

The equations (2.1)-(2.2) imply an input-output relationship between the input u(t) and
the output y(t). For a given input u(t), the state x(t) can be determined by (2.1) and then
determines the output y(t) through (2.2).

Remark 2.1.1 The matrix D in (2.2) is assumed to be zero matrix in this thesis, which means
the input signal u(t) does not exist in the output channel.
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Coordinate Transformations

For the system (2.1)-(2.2), we introduce a nonsingular coordinate transformation z(t) = T x(t)
and then the transformed system in the new coordinates z can be described by

ż(t) = Āz(t)+ B̄u(t) (2.3)

y(t) = C̄z(t)+ D̄u(t) (2.4)

where the relationship between (2.1)-(2.2) and (2.3)-(2.4) is described by

Ā = TAT−1, B̄ = T B (2.5)

C̄ =CT−1, D̄ = D (2.6)

2.1.2 Nonlinear Single-Input Single-Output (SISO) Systems

Local State Transformations

The purpose of this section is to show how to use a proper diffeomorphism to transform a
single-input single-output nonlinear system to a required form, a "normal form" of special
interest, on which several important properties can be elucidated.

Consider a continuous-time single-input single-output nonlinear system

ẋ(t) = f (x)+g(x)u(t) (2.7)

y(t) = h(x) (2.8)

where x ∈ Rn, u ∈ R and y ∈ R are the input, state and output of the system. f (x),g(x) and
h(x) are corresponding system, input and output distribution functions which are assumed to
be smooth enough in their arguments to guarantee the existence and uniqueness of the system
solutions.

Definition 2.1.1 System (2.7)-(2.8) is said to have relative degree r at a point x◦ (r ≤ n), if

• LgLk
f h(x) = 0 for all x in a neighbourhood of x◦ and all k < r−1.

• LgLr−1
f h(x◦) ̸= 0. 1

1Lk
f h(x) here means the kth order Lie derivative of the mapping h(x) along the vector field f (x). More details

of Lie derivative are available in Appendix A.4.



2.1 State-Space Systems 13

Then, introduce a local diffeomorphism2 Φ(x) as:

z(t) = Φ(x(t)) =



Φ1(x)
Φ2(x)

...
Φr(x)

Φr+1(x)
...

Φn(x)


=



h(x)
L f h(x)

...
Lr−1

f h(x)
Φr+1(x)

...
Φn(x)


(2.9)

If r is strictly less than n, it is always possible to find n− r more functions Φr+1(x), ...,Φn(x)
such that the local diffeomorphism Φ(x) has a Jacobian matrix which is nonsingular at x◦ and
therefore qualifies as a local state transformation in a neighbourhood of x◦. The value of these
additional functions at x◦ can be fixed arbitrarily. Actually, it is always possible to choose
Φr+1(x), ...,Φn(x) in such a way that

LgΦi(x) = 0 for all r+1 ≤ i ≤ n and all x around x◦. (2.10)

Thus, in summary, the state-space description of the systems (2.1) in the new coordinates z
defined in (2.9) will be shown as follows:

ż1 = z2

ż2 = z3

· · ·
żr−1 = zr

żr = b(z)+a(z)u

żr+1 = qr+1(z)

· · ·
żn = qn(z)

(2.11)

where

a(z) = LgLr−1
f h(Φ−1(z)) (2.12)

b(z) = Lr
f h(Φ−1(z)) (2.13)

2More details about diffeomorphisms are available in Appendix A.5.
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With the condition in (2.10), the partial functions qi(z) in (2.11) are given by:

qi(z) = L f Φi(Φ
−1(z)) for all r+1 ≤ i ≤ n. (2.14)

Note that at the point z◦ = Φ(x◦), a(z) ̸= 0 by definition. Thus, the coefficient a(z) is non-zero
for all z in a neighbourhood of z◦.

As for the output equation y = h(x) in (2.8), it is easy to check that in the new coordinates z,

y = z1 (2.15)

The structure of (2.11) and (2.15) is illustrated in the block diagram depicted in Fig. 2.1. The
equations thus defined are said to be in normal form, which facilities to understand the structure
of the considered system.

𝑟 + 1 ≤ 𝑖 ≤ 𝑛

  �    �  

Fig. 2.1 Block diagram of the transferred system (2.11)-(2.15)

Remark 2.1.2 For the nonlinear systems, only the single-input single-output system in the
form of (2.7)-(2.8) is considered in this thesis. For the multi-input multi-output case, a
straightforward extension of most of the theory developed in this section is available in [34].

Special Case (r = n)

Consider the nonlinear system (2.7)-(2.8) with relative degree r = n, i.e. the system relative
degree is exactly equal to the dimension of the state space, at the point x = x◦. In this case, it
follows from (2.9) that the change of coordinates required to obtain the normal form is given
exactly by

z(t) = Φ(x(t)) =


Φ1(x)
Φ2(x)
· · ·

Φn(x)

=


h(x)

L f h(x)
· · ·

Ln−1
f h(x)

 (2.16)
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i.e. by the function h(x) and its first n−1 Lie derivates along the vector field f (x). No extra
functions are needed in order to complete the transformation. Thus, in the new coordinates
(2.16) with the following state feedback control law

u =
1

a(z)
(−b(z)+ v), (2.17)

the system (2.7)-(2.8) can be described by equations of the following form

ż1 = z2

ż2 = z3

· · ·
żn−1 = zn

żn = v

(2.18)

where z=(z1, ...,zn). Recall also that at the point z◦=Φ(x◦) and thus at all z in a neighbourhood
of z◦, the function a(z) is non-zero. The resulting closed-loop system governed by (2.18) is
linear and controllable.

Thus, it is concluded that any nonlinear system (2.7)-(2.8) with relative degree n at some
point x◦ can be transformed into a system which, in a neighbourhood of the point z◦ = Φ(x◦),
is linear and controllable. It is important to stress that:

• The coordinate transformation (2.16) is defined locally around the point x◦.

• The state feedback transformation (2.17) is defined locally around the point x◦.

Remark 2.1.3 It is easily checked that the two transformations used in order to obtain the
linear form can be interchanged. One can first use a feedback and then change the coordinates
in the state space, and the result is the same. From the coordinate transformation (2.16) and
feedback transformation (2.17), it is easy to see that the feedback needed in the x coordinates
can be described by,

u =
1

a(Φ(x))
(−b(Φ(x))+ v) (2.19)

Zero Dynamics

In this section, we discuss a concept "zero dynamics", that in many instances plays an important
role in nonlinear system analysis and design for the case when r < n, where r is relative degree
and n is system dimension.
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Consider a nonlinear system with r strictly less than n and look at its normal form. In
order to write the equations in a slightly more compact manner, we introduce a suitable vector
notation. In particular, since there is no specific need to track each one of the last n− r
components of the state vector individually, we represent all of them in a compact way

η =

zr+1

· · ·
zn

 . (2.20)

Sometimes, whenever convenient and not otherwise required, the first r components of z are
denoted by:

ξ =

 z1

· · ·
zr

 . (2.21)

With the help of these notations, the normal form of a single-input single-output nonlinear
system with r < n (at some point of interest x◦, e.g. an equilibrium point) can be rewritten as:

ż1 = z2

ż2 = z3

· · ·
żr−1 = zr

żr = b(ξ ,η)+a(ξ ,η)u

η̇ = q(ξ ,η).

(2.22)

Recall that, if x◦ satisfies f (x◦) = 0 and h(x◦) = 0, then necessarily the first r new coordinates
z1,z2, ...,zr are 0 at x◦. Note that it is always possible to choose arbitrarily the value at x◦ of the
last n− r new coordinates, thus in particular being 0 at x◦. Therefore, without loss of generality,
one can assume that ξ = 0 and η = 0 at x◦. Thus, if x◦ was an equilibrium for the system in the
original coordinates, its corresponding point (ξ ,η) = (0,0) is an equilibrium for the system in
the new coordinates and from this we deduce that

b(ξ ,η) = 0 at(ξ ,η) = (0,0) (2.23)

q(ξ ,η) = 0 at(ξ ,η) = (0,0). (2.24)

Suppose now we want to analysis the following problem called the "Problem of Zeroing the
Output". Find, if any, pairs consisting of an initial state x◦ and of an input function u◦(·),
defined for all t in a neighbourhood of t = 0, such that the corresponding output y(t) of the
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system is identically zero for all t in a neighbourhood of t = 0. Apart from that, we perform
this analysis on the normal form of the system.

ẏ(t) = ż1(t) = ż2(t) = ...= żr(t) = 0. (2.25)

Definition 2.1.2 (Zero Dynamics) For system (2.22), it is clear that ξ (t) for all t is identically
zero and its behaviour is governed by the differential equation

η̇(t) = q(0,η(t)). (2.26)

The dynamics of (2.26) correspond to the dynamics describing the "internal" behaviour of
the system when input and initial conditions have been chosen in such a way as to constrain
the output to remain identically zero. These dynamics, are rather important in many of our
developments, are called the "zero dynamics" of system (2.22).

2.2 Sliding Mode Control (SMC) Methodology

Sliding mode control changes the system dynamics by specifically employing a discontinuous
control signal. The control methodology consists of two steps:

Step 1: To design a sliding surface such that the system considered has the desired performance
when restricted to the surface.

Step 2: To design a controller which drives the system trajectory to the designed sliding surface
in finite time and maintains a sliding motion on it thereafter.

A concise description is available in [115, 14, 101]. In view of these two steps, the system
motion can be separated into two phases: the reaching phase and the sliding phase. The former
refers to the motion when the system trajectory moves towards the sliding surface and the latter
concerns the motion when the system trajectory moves on the sliding surface.

2.2.1 Sliding Phase

Consider the linear system (2.1)-(2.2) with D = 0. In order to design a proper sliding function3

s = s(x) (2.27)

3Sometimes, also called switching function or s function directly in some books
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such that the resulting sliding motion has the desired performance, one way is to find the
dynamical equations which will govern the sliding motion, and then synthesise the sliding
surface based on the characteristics of the sliding mode dynamics or sliding motion. It is
assumed that the sliding motion exists. The following approach4 called "regular form" is
usually employed to find the sliding mode dynamics and in this way the stability of the sliding
motion is transformed to the problem of stability of an unforced system.

Suppose that there exists a coordinate transformation z(t) = T x(t) where matrix T ∈ Rn×n

is nonsingular such that in the new coordinate system z, the sliding surface s(x) = 0 can be
described in the form

z2 = Kz1 (2.28)

where K is a design parameter, z1 ∈ Rn−m, z2 ∈ Rm, z := col(z1,z2) and system (2.1)-(2.2) can
be described by

ż1 = A11z1 +A12z2 (2.29)

ż2 = A21z1 +A22z2 +B2u (2.30)

y =C1z1 +C2z2 (2.31)

where A11 ∈ R(n−m)×(n−m), B2 ∈ Rm×m is nonsingular, u ∈ Rm is the control, C1 ∈ Rm×(n−m)

and

Ā =

[
A11 A12

A21 A22

]
, B̄ =

[
0

B2

]
, C̄ =

[
C1 C2

]
(2.32)

with the matrix triple (Ā, B̄,C̄) is defined in (2.5)-(2.6). Noting that system (2.29) is independent
of the control signal u and the dimension of z2 is the same as the dimension of the control u.
System (2.29)-(2.30) is the so-called "regular form".

Based on the regular form, it is clear to see that the corresponding sliding mode dynamics
of system (2.1) is described by

ż1 = (A11 +A12K)z1 (2.33)

which is a reduced-order system when compared with system (2.1) and the term (A11 +A12K)

is always chosen to be Hurwitz stable5 by introducing a proper gain K if the matrix pair (A,B)
in (2.1) is controllable.

4Equivalent control is another approach for finding the sliding mode dynamics.
5A square matrix is called "Hurwitz" stable, if every eigenvalue of it has strictly negative real part.
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2.2.2 Reaching Phase

In order to guarantee that the system trajectory can be driven to the sliding surface s(x) = 0
in finite time and a sliding motion can be maintained on it thereafter, a proper discontinuous
control

u = u(t,x) (2.34)

needs to be designed such that the following condition is satisfied [14, 101]

s⊤(x)ṡ(x)≤−η ∥ s(x) ∥ (2.35)

for some constant η > 0. The inequality (2.35) is the so-called reachability condition and η is
called the reachability constant.

The following condition
s⊤(x)ṡ(x)< 0 (2.36)

is also called a reachability condition but it cannot guarantee that a sliding motion takes place
in finite time and thus a sliding motion may not occur in this case.

2.2.3 A Numerical Example

Consider a system

ẋ1(t) =x2(t) (2.37)

ẋ2(t) =u(t) (2.38)

Choosing the switching function

s(t) = mx1(t)+ x2(t) (2.39)

it follows that the reduced-order sliding motion will be given by

ẋ1(t) =−mx1(t) (2.40)

and so the positive design scalar m can be chosen to specify the rate of decay. And an
appropriate sliding mode control action is

u(t) =−mx2(t)−ηsgn(s) (2.41)
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Choosing the Lyapunov candidate function V (s) = 1
2s2, then the first derivate along the dynamic

trajectory (2.37)-(2.38) is
V̇ (s) = sṡ =−η |s| (2.42)

where the proposed sliding mode controller (2.41) with parameters m = 0.5, η = 2 is used to
establish the above conclusion. According to (2.42), it is easy to check that the reachability
condition (2.35) is satisfied which means the sliding motion (2.40) will occurs.

Fig. 2.2 shows the phase plane portrait of system (2.37)-(2.38) with controller (2.41).
From Fig. 2.2, the system states (x1,x2) are driven to the sliding surface from the initial point
x0 = (4,3) (reaching phase), and then move along the sliding surface to converge to the origin
(sliding phase).

-2 -1 0 1 2 3 4 5 6 7
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Fig. 2.2 The phase plane portrait of closed-loop system

2.2.4 Characteristics of Sliding Mode Control

It is essential to emphasis that sliding mode control has the following characteristics:

• Sliding mode dynamics are a reduced-order system when compared with the original
system dynamics.

For system (2.1) with sliding surface s = s(x), the corresponding sliding mode dynamics
can be described by (2.33). It is clear to see that the order of the system (2.33) is n−m
where n is the dimension of the original system and m is the dimension of the control.
Therefore, during the sliding motion, the system exhibits reduced-order dynamics when
compared with the original system.
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• Sliding motion is insensitive to matched uncertainty6.

Suppose system (2.1) experiences an uncertainty/disturbance and from (2.33), it is
straightforward to see that the dynamics governing the sliding motion are completely in-
dependent of the control and thus the sliding motion governed by sliding mode dynamics
(2.33) is totally robust to matched uncertainty.

• Uncertainties/disturbances will affect reachability.

In order to guarantee that the trajectory of the considered system is driven to the pre-
designed sliding surface, the reachability condition must be satisfied which involves the
uncertainties or disturbances. Therefore, they may affect the reaching phase no matter
whether they are matched or mismatched, but the effects of some uncertainties may be
completely rejected by design of an appropriate control.

• Chattering is inevitable in the evolution of control action.

The sliding mode control action (2.41) is given in Fig. 2.3. It can be seen that sliding
takes place after 2.0 second when high frequency switching/chattering takes place due to
the discontinuity in the control. Chattering is usually undesirable in practice, e.g. it may
result in unnecessary wear and tear on the actuator components and result in unnecessary
energy consumption. So how to reduce chattering is one of interesting topics in the area
relating sliding mode control.
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Fig. 2.3 Evolution of control action with respect to time

2.2.5 Output Sliding Surface Design

In order to form an output feedback sliding mode control scheme, it is usually required that
the designed switching function is a function of the system outputs. Consider initially a linear

6If the uncertainty or disturbance acts in the input/control channel or the effects are equivalent to an uncertainty
acting in the input channel, it is called matched uncertainty. Otherwise it is called mismatched uncertainty.
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system

ẋ = Ax+Bu

y =Cx
(2.43)

where x ∈ Rn,u ∈ Rm and y ∈ Rp are the states, inputs and outputs respectively. The triple
(A,B,C) are constant matrices of appropriate dimension with B being of full column rank and
C being of full row rank.

Consider (2.43) in the case of m = p which means the system (2.43) is a square system.
Since B has full column rank, there exists a coordinate transformation x̄ = T̄ x such that in the
new coordinate x̄, the triple (A,B,C) can be described by

Ā =

[
A11 A12

A21 A22

]
, B̄ =

[
0

B2

]
, C̄ =

[
C1 C2

]
(2.44)

where A11 ∈ R(n−m)×(n−m), B2 ∈ Rm×m is nonsingular and C1 ∈ Rm×(n−m).
Assume that rank(CB) = m and the invariant zeros of (A,B,C) lie in the left half plane.

From section 5.3 in [14], it follows that the matrix C2 ∈ Rm×m in (2.44) is nonsingular because
m = rank(CB)=rank(C̄B̄)=rank(C2B2) and B2 is nonsingular. Then, a coordinate transformation
x̂ = T̂ x̄ with T̂ defined by

T̂ =

[
I 0

C1 C2

]
(2.45)

is further introduced. Again from section 5.3 in [14], the triple (Ā, B̄,C̄) in the new coordinates
x̂ has the following structure

Â =

[
Â11 Â12

Â21 Â22

]
, B̂ =

[
0

B̂2

]
, Ĉ =

[
0 I

]
(2.46)

where Â11 ∈ R(n−m)×(n−m) is Hurwitz stable, B̂2 =C2B2 is nonsingular.

Remark 2.2.1 It should be pointed out that the first transformation matrix T̄ is used to change
the original system (A,B,C) into the regular form as in (2.44), and the second transformation
matrix T̂ is to make that the sub-matrix Â11 of the triple in (2.46) is Hurwitz stable and the
matrix Ĉ in (2.46) has the form of [0 I].
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2.3 Lyapunov Stability Analysis

2.3.1 Equilibrium Point

Consider a autonomous system
ẋ(t) = f (x) (2.47)

where f : D 7→ Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn. xe ∈ D is called
an "Equilibrium point" of (2.47), if

f (xe) = 0

Our goal is to characterize and study stability of xe. For convenience, we state all definitions
and theorems for the case when the equilibrium point is at the origin of Rn; that is, xe = 0.
There is no loss of generality in doing so because any equilibrium point can be shifted to
the origin via a change of variables. Suppose xe ̸= 0, and consider the change of variables
y = x− xe. The derivative of y is given by

ẏ = ẋ = f (x) = f (y+ xe) := g(y), where g(0) = 0

In the new variable y, the system has equilibrium at the origin. Therefore, without loss of
generality, we shall always assume that f (x) satisfies f (0) = 0, and study stability of the origin
x = 0.

Remark 2.3.1 Once the system’s state reaches an equilibrium point xe, it will remain at that
point without further changes.

Remark 2.3.2 If there are no other equilibrium points in the vicinity of an equilibrium point,
it is referred to as an "isolated equilibrium point". If an equilibrium point is not isolated, there
exists a continuum of equilibrium points at that location.

Remark 2.3.3 Linear systems can only have one isolated equilibrium point, whereas nonlinear
systems can have multiple isolated equilibrium points. This is why linear systems have a single
steady-state operating point. And regardless of the initial state, the system’s state will eventually
converge to this stable operating point. In contrast, nonlinear systems have multiple stable
operating points, and different initial states may converge to different stable operating points.

Consider a following linear system

ẋ1 = 3x1 (2.48)

ẋ2 = x1 + x2 (2.49)
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It is easy to check that the equilibrium point of (2.48)-(2.49) is at its origins.

2.3.2 Stability in the Sense of Lyapunov

Now, we will discuss the stability analysis of equilibrium at the origin. Consider a spherical
region of radius R about an equilibrium point xe such that

∥x− xe∥ ≤ R

where ∥x− xe∥ is defined as

∥x− xe∥= [(x1 − x1e)
2 +(x2 − x2e)

2 + ...+(xn − xne)
2]1/2

Let S(δ ) consists of all points such that ∥x0 − xe∥ ≤ δ and let S(ε) consists of all points such
that ∥x(t)− xe∥ ≤ ε for all t ≥ t0.

Definition 2.3.1 (Stable) An equilibrium point xe of the system (2.47) is said to be "stable"
in the sense of Lyapunov. If corresponding to each S(ε)7, there is S(δ ) such that trajectories
starting in S(δ ) do not leave S(ε) as time t increases indefinitely. The real number δ depends
on ε and in general also depends on t0. If δ does not depend on t0, the equilibrium point is
said to be "uniformly stable".

Definition 2.3.2 (Asymptotically Stable) An equilibrium point xe of the system (2.47) is said
to be "asymptotically stable", if it is in the sense of Lyapunov and every solution starting within
S(δ ) converges without leaving S(ε) to xe as t increases indefinitely.

Also, an equilibrium point xe of the system (2.47) is said to be "globally asymptotically
stable", if it is asymptotically stable for every initial states in the whole state space and every
solution converges to xe as t increases indefinitely.

Definition 2.3.3 (Unstable) An equilibrium point xe of the system (2.47) is said to be "unsta-
ble", if for some real number ε > 0 and any real number δ > 0, irrespective of how small it is,
there is always a state x0 in S(δ ) such that the trajectory starting at the states leaves S(ε).

7The region S(ε) must be selected firstly and for each S(ε), there must be a region S(δ ) in such a way that
trajectories starting within S(δ ) do not leave S(ε) as time t progresses.
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Unstable

Fig. 2.4 Different dynamic situation of system

The graphical representation of stability, asymptotic stability and instability is shown in
Fig. 2.4.

The region S(δ ) is binding the initial state x0 and the region S(ε) corresponds to the
boundary for the trajectory starting at x0. The correct region of allowable initial conditions are
not specified for the definitions of stability that we have seen previously. Thus these definitions
apply to the neighbourhood of the equilibrium point only if S(ε) is not corresponding to the
entire state space.

2.3.3 Lyapunov Stability Theorems

We are now ready to state Lyapunov’s stability theorem.

Theorem 2.3.1 Let x = 0 be an equilibrium point for (2.47) and D ⊂ Rn be a domain contain-
ing x = 0. Let V : D → R be a continuously differentiable function, such that

V (0) = 0 and V (x)> 0 in D−{0} (2.50)

V̇ (x)≤ 0 in D (2.51)

Then, x = 0 is "stable". Moreover, if

V̇ (x)< 0 in D−{0} (2.52)

then, x = 0 is "asymptotically stable".
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Theorem 2.3.2 Let x = 0 be an equilibrium point for (2.47). Let V : Rn →R be a continuously
differentiable function, such that

V (0) = 0 and V (x)> 0, ∀x ̸= 0 (2.53)

∥x∥→ ∞ ⇒V (x)→ ∞ (2.54)

V̇ (x)< 0, ∀x ̸= 0 (2.55)

then, x = 0 is "globally asymptotically stable".

Theorem 2.3.3 Let x = 0 be an equilibrium point for (2.47). Let V : D → R be a continuously
differentiable function, such that V (0) = 0 and V (x0)> 0 for some x0 with arbitrarily small
∥x0∥. Define a set U = {x ∈ Br|V (x)> 0} with Br = {x ∈ Rn|∥x∥ ≤ r}8 which is contained in
D and suppose that V̇ (x)> 0 in U. Then, x = 0 is "unstable".

2.3.4 Converse Lyapunov Theorem

For readers’ convenience, some basic concepts are introduced to help to understand converse
Lyapunov theorem at first.

Definition 2.3.4 (see, [43, 115]) A continuous function α : [0,a) 7→ R+ is said to belong to
class K , if it is strictly increasing and α(0) = 0. Also, it is said to belong to K∞, if a = ∞ and
limr→∞ α(r) = ∞.

Definition 2.3.5 (see, [43, 115]) A continuous function β : [0,a)×R+ 7→R+ is said to belong
to class K L , if any given s ∈ R+, the mapping β (r,s) belongs to class K with respect to
variable r, and for any given r ∈ [0,a), the mapping β (r,s) is decreasing with respect to the
variable s and lims→∞ β (r,s) = 0.

Consider a nonlinear non-autonomous system which is described by

ẋ(t) = f (t,x(t)) (2.56)

where the function f : R+×D 7→ Rn is continuous and D ⊂ Rn is a domain which contains the
origin x = 0. It is assumed that

f (t,0) = 0, t ∈ R+ (2.57)

which implies that the origin is an equilibrium point of the system.
8For a given ε , choose r ∈ (0,ε].
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Consider system (2.56) in domain D := Br = {x ∈ Rn| ∥ x ∥< r}.9 Let β (·) be a class
K L function and r0 be a positive constant such that

β (r0,0)< r and Br0 := {x| ∥ x ∥< r0} (2.58)

Theorem 2.3.4 (Lyapunov Converse Theorem) For system (2.56), assume that the Jacobian
matrix ∂ f

∂x is bounded10 in domain D uniformly for t ∈ R+, and that the trajectory of system
(2.56) satisfies

∥ x(t) ∥≤ β (∥ x(t0) ∥, t − t0), x(t0) ∈ Br0, t ≥ t0 ≥ 0 (2.59)

Then, there exists a continuously differentiable function V : R+×Br0 7→ R+ such that

α1(∥ x ∥)≤V (t,x)≤ α2(∥ x ∥) (2.60)

∂V
∂ t

+
∂V
∂x

f (t,x)≤ α3(∥ x ∥) (2.61)

∥ ∂V
∂x

∥ ≤ α4(∥ x ∥) (2.62)

where αi for i = 1,2,3,4 are class K functions defined on the interval [0,r0]. The function
V (·) can be chosen independent of time t if f (·) in system (2.56) is independent of the time t.

2.3.5 Uniformly Ultimate Boundedness

For a given System (2.56), if asymptotic stability is not possible, uniform ultimate bounded
stability can be considered. This is very useful in practical cases.

If there exists a function V : R+×D 7→ R+ be a continuously differentiable function such
that in t ∈ R+ and x ∈ Rn,

α1(∥ x ∥)≤V (t,x)≤ α2(∥ x ∥) (2.63)

∂V
∂ t

+
∂V
∂x

f (t,x)≤−W3(x), for any ∥ x ∥≥ µ > 0, (2.64)

9Br, the ball {x| ∥ x ∥< r} with radius r where r ∈ (0,+∞) and B̄r denotes the closure of Br.
10if the function f (·) in (2.56) is continuously differentiable in the ball B̄r, then ∂ f

∂x is bounded in the domain
D = Br.
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where α1(·) and α2(·) are class K functions and W3(·) is a continuous positive definite function
in domain D. Then x = 0 is uniformly ultimately bounded.11

Further, x = 0 is globally uniformly ultimately bounded, if D = Rn and α1(·) belongs to
class K∞. (See theorem 4.18, p. 172 in [43] for the detailed proof.)

2.3.6 Lyapunov Functions for Linear Time-Invariant Systems

Given a linear system of the form ẋ = Ax, let us consider a quadratic Lyapunov function
candidate

V = x⊤Px

where P is a given symmetric positive definite matrix. Differentiating the positive definite
function V along the trajectory of system (2.56) yields

V̇ = ẋ⊤Px+ x⊤Pẋ =−x⊤Qx (2.65)

where
A⊤P+PA =−Q (2.66)

Theorem 2.3.5 A necessary and sufficient condition for a LTI system ẋ = Ax to be strictly
stable is that, for any symmetric12 positive definite matrix Q, the Lyapunov equation (2.66) has
an unique solution P which is symmetric positive definite. (See section 3.5.1 in [91] for proof.)

Example 2.3.1 Consider a second-order linear system ẋ = Ax where A is given by

A =

[
0 4
−8 −12

]

Let us take Q = I and denote P by

P =

[
p11 p12

p21 p22

]
11The ultimate bound depends on the parameter µ , which can be estimated using the result given in Theorem

4.18 in [43].
12A symmetric matrix is a matrix that is equal to its transpose.
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where, due to the symmetry of P, p12 = p21. Then, the Lyapunov equation is[
p11 p12

p12 p22

][
0 4
−8 −12

]
+

[
0 −8
4 −12

][
p11 p12

p12 p22

]
=

[
−1 0
0 −1

]
=−Q

whose solution is p11 = 5/16, p12 = p21 = p22 = 1/16. The corresponding matrix

P =
1

16

[
5 1
1 1

]

is positive definite13, and therefore the linear system is globally asymptotically stable.

2.4 Tracking Problem

Generally speaking, the tasks of control systems can be divided into two categories: stabilisation
(or regulation) and tracking (or servo). In stabilisation problems, a control system is to be
designed so that the state of the closed-loop system is stable in a domain around an equilibrium
point. In tracking control problems which is mainly focused in this thesis, the design objective
is to construct a controller so that the system tracks given time-varying signals. Problems such
as making an aircraft fly along a specified path or making a robot hand draw straight lines or
circles are typical tracking control tasks.

The task of asymptotic tracking consists of trajectory tracking and output tracking. Given a
nonlinear dynamics system described by

ẋ = f (x,u, t) (2.67)

y = h(x) (2.68)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are state, input and output of the system.

Definition 2.4.1 (Trajectory tracking) For system (2.67) with a desired signal xd(t) ∈ Rn,
find a control law u(t) such that the state variable x(t) of the controlled system can track the
desired signal xd(t) when time t goes to infinity, i.e.

lim
t→∞

∥x(t)− xd(t)∥= 0 (2.69)

Definition 2.4.2 (Output tracking) For system (2.67)-(2.68) with a desired signal yd(t) ∈Rp,
find a control law u(t) such that the controlled system states are bounded and the controlled

13Matlab commands for solving the solution are available in Appendix ??.
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system output y(t) can track the desired output signal yd(t) when time t goes to infinity, i.e.

lim
t→∞

∥y(t)− yd(t)∥= 0 (2.70)

2.4.1 A Numerical Example of Output Tracking

Consider a simple system

ẋ1(t) =x2(t) (2.71)

ẋ2(t) =u(t) (2.72)

y(t) =x1(t) (2.73)

Our goal is: for a given desired signal yd(t), proposed a sliding mode based controller such
that the output y(t) in (2.73) can asymptotically track the desired signal yd(t)14 in finite time.

Define a error e(t) = y(t)− yd(t), and choose a proper sliding surface

s(t) = ė(t)+a∗ e(t) (2.74)

with the designed parameter a is positive.
Propose a sliding mode-based controller

u(t) = ÿd(t)−a∗ x2(t)+a∗ ẏd(t)−η ∗ sgn(s) (2.75)

with a positive design parameter η . According to Lyapunov candidate function V (s) = 1
2s2, it

is easy to get a negative result V̇ (s) =−η |s|, which the sliding motion s(t) in (2.74) trends to
zero in finite time.

Then, the condition in (2.70) is satisfied according to the s(t) = 0 with a positive parameter
a in (2.74). Thus, the output tracking is achieved where the desired signal is set as sin(t) and
initial state x1(0) = 1.5.

14The desired signal yd(t) and its derivatives are assumed to be smooth in the considered domain.
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Fig. 2.5 Evolution of tracking action with respect to time

2.5 Large-Scale Interconnected Systems

In the real world, there are a number of important systems which can be modelled as dynamical
equations composed of interconnections between a collection of lower-dimensional subsystems.
Such classes of systems are called large-scale interconnected systems, which are often widely
distributed in space [59, 63, 83]. A fundamental property of an interconnected system is
that a perturbation of one subsystem may affect the other subsystems as well as the overall
performance of the entire network. Decentralised control has been recognised as an effective
method to control such a class of systems.

From the mathematical point of view, a nonlinear large-scale interconnected system com-
posed of N ni-th order subsystems can be described by

ẋi = fi(xi)+gi(xi)(ui +∆gi(xi))+∆ fi(xi)+
N

∑
j=1 j ̸=i

ζi j(x j) (2.76)

yi = hi(xi), i = 1,2, ...,N (2.77)

where xi ∈ Ωi ⊆ Rni (Ωi is a neighbourhood of the origin,) ui ∈ Rmi and yi ∈ Rpi are the states,
inputs and outputs of the i-th subsystem respectively for i = 1,2, ...,N. All the matrix functions
gi(·)∈Rni×mi and the nonlinear vectors fi(·)∈Rni and hi(·)∈Rpi are known. The terms ∆gi(·)
and ∆ fi(·) represent the matched and the mismatched uncertainties respectively. The term

N

∑
j=1 j ̸=i

ζi j(x j)

represents the interconnection of the i-th subsystem. It is assumed that all the nonlinear
functions are smooth enough such that the unforced systems have unique continuous solutions.
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Definition 2.5.1 Consider system (2.76)-(2.77). The system

ẋi = fi(xi)+gi(xi)(ui +∆gi(xi))+∆ fi(xi) (2.78)

yi = hi(xi), i = 1,2, ...,N (2.79)

is called the i-th isolated subsystem of system (2.76)-(2.77), and the system

ẋi = fi(xi)+gi(xi)ui (2.80)

yi = hi(xi), i = 1,2, ...,N (2.81)

is called the i-th nominal isolated subsystem of system (2.76)-(2.77).

It is well known that one of the main problems for interconnected systems is to develop
a set of conditions under which the interconnected system (2.76)-(2.77) exhibits the desired
performance if all the isolated subsystems (2.78)-(2.79) or all the nominal isolated subsystems
(2.80)-(2.81) exhibit the required performance. Therefore, how to deal with interconnections is
a key problem of interest in decentralised control.

2.5.1 Decentralised Control

Definition 2.5.2 Consider system (2.76)-(2.77). If the designed controllers ui for the i-th
subsystems depend on the time t and the states xi of the i-th subsystem only, i.e.,

ui = ui(t,xi), i = 1,2, ...,N (2.82)

then (2.82) is called decentralised static state feedback control. If the controllers in (2.82) have
the form

ui = ui(t,yi), i = 1,2, ...,N (2.83)

that is, each local controller depends upon the time t and the outputs yi(t) of the local subsystem
only, then they are called decentralised static output feedback control.

Furthermore, if the designed controllers consist of the dynamical systems

˙̂xi = φi(t, x̂i,ui,yi), i = 1,2, ...,N (2.84)

and controllers
ui = ui(t, x̂,yi), i = 1,2, ...,N (2.85)
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then (2.84)-(2.85) is called decentralised dynamical output feedback control. Specifically, if
(2.84) is an observer of the system (2.76)-(2.77), then it is called decentralised observer-based
feedback control.

2.5.2 Distributed Control

There is a kind of special interconnected system whose subsystems are located in a chain
structure such as a train. And the corresponding dynamical equation according to system
(2.76)-(2.77) of this type of interconnected systems can be described by

ẋ1 = f1(x1)+g1(x1)(u1 +∆g1(x1))+∆ f1(x1)+ζ1(x1,x2) (2.86)

· · ·
ẋi = fi(xi)+gi(xi)(ui +∆gi(xi))+∆ fi(xi)+ζi(xi−1,xi,xi+1) (2.87)

· · ·
ẋn = fn(xn)+gn(xn)(un +∆gn(xn))+∆ fn(xn)+ζn(xn−1,xn) (2.88)

where i = 2,3, ...,n−1. It should be noted that in such a class of interconnected system, each
subsystem are only directly affected by its adjacent subsystem through interconnection terms.

Definition 2.5.3 Consider system (2.86)-(2.88). If the designed controller ui for the i-th
subsystems depends on the information of its own and its adjacent subsystems, i.e.,

ui = ui(t,xi,xi−1,xi+1) (2.89)

then (2.89) is called distributed control.

Decentralised and distributed control are mentioned above which are usually used to deal with
the interconnected systems.

Centralised Control

Centralised control describes a system in which all the information of its subsystems (if it has)
are transferred to and computed by a single controller whose structure is often in the form

ui = ui(t,x1,x2, ...,xN). (2.90)

This type of system architecture was common for power plants and other facilities using single-
loop controllers or early digital controls in the past, but it has now been largely supplanted by
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distributed control because of the high cost associated with large data transformation, routing
and installing all control system wiring to a central location.

Centralised control systems should only be considered for small industrial facilities and if
used, must have fully redundant processors. Where redundancy is provided in a centralised
control system segregated wiring pathways must be provided to assure that control signals to
and from equipment or systems that are redundant are not subject to common failure from
electrical fault, physical or environmental threats.

The Fig. 2.6 shows the basic structural diagrams of the controllers mentioned above.
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Centralised control Decentralised control Distributed control

Fig. 2.6 Three different systems consist of identical subsystems (the bigger circles) and the
corresponding controllers (the smaller circles). The solid lines represent interactions between
members of the same system, while the dashed lines are input/output flow between plant and
controller.

From the structure of decentralised control defined in (2.82), distributed control in (2.89)
and centralised control in (2.90), it is straightforward to see that

• Decentralised Control: decision-making authority is distributed among multiple control
subsystems or units. Each subsystem has its own autonomy and makes local deci-
sions based on local information. There is limited or no communication between the
subsystems, and they operate independently. Decentralised control is often used in
systems where local decision-making is efficient and there is a need for fault tolerance or
scalability.

• Distributed Control involves multiple control subsystems or units that communicate
and coordinate with each other to achieve a common goal. These subsystems collect
information from adjacent subsystems and collaborate in decision-making processes.
Distributed control systems typically involve a networked architecture where control
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units share information and work together to optimize system performance. Distributed
control is commonly used in complex systems that require coordination and cooperation
among multiple entities.

• Centralised Control involves a central authority or control unit that has complete decision-
making power and control over the system. The central controller receives information
from various sources, processes it, and determines the control actions to be executed. All
decisions and actions are centralised and executed by the central controller. Centralised
control is often used in systems where a single authority can effectively coordinate and
optimize the system’s performance.

In summary, decentralised control distributes decision-making authority, distributed control
involves collaboration among multiple entities, and centralised control concentrates decision-
making power in a central authority. The choice of control approach depends on factors such
as system complexity, communication capabilities, scalability requirements, and the need for
coordination among control units.

2.5.3 State-of-art Control Methods

State-of-the-art control methods continue to evolve rapidly in various fields. Some noteworthy
trends and approaches in control methods include:

• Deep Learning-Based Control: Integration of neural networks and deep learning for
adaptive and robust control in complex systems.

• Reinforcement Learning: Application of reinforcement learning algorithms for opti-
mizing control policies in dynamic and uncertain environments.

• Data-Driven Control: Increased emphasis on data-driven and model-free control strate-
gies, leveraging large datasets for system identification and control.

• Predictive Control: Growing use of model predictive control (MPC) for systems with
constraints, enabling real-time optimization and decision-making.

• Adaptive and Robust Control: Development of adaptive control methods to handle
uncertainties and variations in system dynamics.

• Quantum Control: Exploration of control methods in quantum systems, particularly in
quantum computing and quantum information processing.
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• Human-in-the-Loop Control: Integration of control systems with human inputs, con-
sidering human factors and interactions for improved system performance.

• Distributed and Networked Control: Advancements in control methods for large-scale
systems, including distributed control and networked control systems.

• Cyber-Physical Systems (CPS): Integration of control systems with information tech-
nologies in CPS, emphasizing connectivity, communication, and coordination.

In conclusion, the current state-of-the-art in control methods show a diverse and interdisciplinary
landscape. The integration of AI, focus on adaptability, and the exploration of quantum
technologies are key trends. Continued research and innovation are essential to addressing
challenges and pushing the boundaries of control theory and applications of large-scale systems.



Chapter 3

Diffeomorphism-Based Decentralised
Sliding Mode Output Tracking Control for
Nonlinear Interconnected Systems

In this chapter, a decentralised tracking control scheme is proposed for a class of nonlinear
interconnected systems with uncertainties using the sliding mode technique. The scheme
considers both matched nonlinear uncertainty in isolated subsystems and mismatched known
nonlinear interconnections. To facilitate system analysis and control design, a geometric trans-
formation is applied to transfer the interconnected system into a new nonlinear interconnected
system with a special structure. This transformation is performed under the condition that
the nominal isolated subsystems have relative degrees. Next, a composite sliding surface is
designed in terms of tracking errors, and decentralised controllers are proposed to drive the
system states to the designed sliding surface in finite time and maintain a sliding motion on it
thereafter. A set of conditions is developed to ensure that the output tracking errors converge
to zero asymptotically while keeping all system state variables bounded. Compared with the
existing works where the desired signals are mostly assumed to be constant, the closed-loop
system can track the time-varying desired signals, even though the existence of uncertainties.
Finally, the effectiveness of the proposed method is demonstrated through simulations on a
coupled-pendulums system, showcasing its practical applicability and performance.
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3.1 Introduction

Over the past few decades, significant progress has been made in the study of interconnected
systems [30]. In [49], a fuzzy controller based on a reduced-order observer is designed for inter-
connected systems using integral sliding mode technique. The work presented by Mahmoud in
[64] proposes a decentralised control strategy for linear interconnected time-delay systems. In
[28], a finite-time control strategy is introduced for nonlinear interconnected systems with dead-
zone input. Additionally, robust controllers are designed for an interconnected multimachine
power system using output feedback sliding mode techniques in [114]. A decentralised control
scheme is also proposed in [113] for fully nonlinear interconnected systems with time delay.
More recently, a decentralised predictor method-based controller is developed for large-scale
systems in [136], where the interconnected systems considered are linear, and there are strong
limitations on the interconnections between subsystems. It is important to note that most of the
existing results in the literature focus on stabilisation rather than tracking control, employing
either state feedback or output feedback control. Compared to stabilisation, tracking control
is more challenging, and thus the available results for tracking control are relatively limited,
especially for large-scale nonlinear interconnected systems using decentralised control.

The tracking control problem is widely recognised as an interesting and important topic in
engineering control. However, most existing work on tracking control focuses on centralised
control approaches (see, e.g., [96], [1], [107]). Although decentralised tracking control for
interconnected systems is studied in [77, 62], and distributed tracking control for intercon-
nected systems with communication constraints is considered in [78], these studies require the
isolated subsystems of the interconnected systems to be linear. Narendra and Zhang investigate
linear interconnected systems in [75], focusing on model reference tracking control. Tracking
control for interconnected systems is also explored in [6] using integral reinforcement learning,
but it requires that interconnected terms are matched. Recently, Han and Yan propose an
observer-based adaptive tracking control method for large-scale stochastic nonlinear systems in
[22], which increases the dimension of the closed-loop system and consequently increases the
computational load required for implementation. It should be noted that most existing results
on tracking control for interconnected systems are not decentralised, requiring communication
between each controller of one subsystem and all other subsystems through unobstructed chan-
nels for data transfer. This is obviously inconvenient for practical implementation. In [52], Li,
Tong, and Yang propose a decentralised event-triggered control scheme using observer-based
feedback control, which guarantees both tracking performance and stability of the closed-loop
interconnected system. However, this approach may significantly increase the computational
load. Decentralised event-triggered tracking control is also designed for nonlinear intercon-
nected systems with unknown interconnections in [10]. Nevertheless, both [52] and [10] assume
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that all isolated subsystems have a triangular structure. Sliding mode control, known for its
high robustness [115, 102], has been widely applied to address tracking problems (see, e.g.,
[116], [103], [24], and [126]). However, there are very few results on decentralised tracking
control using sliding mode techniques for nonlinear interconnected systems, particularly when
the desired signal is time-varying and the tracking errors are required to converge to zero
asymptotically. In [16], an adaptive fuzzy control based on dynamic surface sliding mode
technique is designed for prescribed output tracking. However, this approach can only be
applied to specific multi-machine power systems, and unfortunately, the designed controller is
not decentralised.

In this chapter, we focus on a class of nonlinear interconnected systems that incorporate
both matched uncertainty in the isolated subsystems1 and mismatched interconnections. To
analyse and design the control for these systems, a nonlinear coordinate transformation is
introduced to reveal the structure of the nominal isolated subsystems. This transformation
effectively converts the interconnected systems into a desired form, enabling easier system
analysis and control design using system structure. A composite sliding surface is designed in
terms of the tracking errors to achieve sliding mode stability for the system. Subsequently, a
decentralised sliding mode control scheme is proposed to drive the nonlinear interconnected
systems towards the designed sliding surface within finite time. Compared to adaptive control
approaches, sliding mode control imposes fewer restrictions to the bounds on the uncertainties
and the system structure, allowing for a more general form of uncertainty representation. The
main contributions of this chapter can be summarised as follows:

• The designed controller is decentralised, allowing for the control of interconnected
systems without the need for information from other subsystems. Furthermore, the
desired output signals are time-varying, which extends the applicability of the proposed
method compared to existing approaches that assume constant desired signals.

• The developed control scheme guarantees asymptotic tracking of the desired outputs
while ensuring boundedness of all the system states. This provides a desirable perfor-
mance for the interconnected systems under consideration.

• The considered interconnected systems are nonlinear with nonlinear disturbances bounded
by nonlinear functions. The proposed approach does not require the nominal isolated
subsystems to be linearisable, making it applicable to a broader range of systems.

1The concept "isolated subsystems" has been defined in Section 2.5, Chapter 2.
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• The interconnection terms are unmatched. Despite this, the developed control scheme
exhibits high robustness, enabling effective control even in the presence of matched
uncertainties and mismatched interconnections.

3.2 Problem Statement

Consider a nonlinear large-scale interconnected system formed by N subsystems as follows

ẋi = fi(xi)+gi(xi)(ui +ϕi(xi))+ pi(xi)ψi(x)

yi = hi(xi) i = 1,2, ...,N
(3.1)

where xi ∈ Πi ⊂ Rni , ui ∈ R and yi ∈ R are the states, input and output of the ith subsystem
respectively, Πi are neighbourhoods of the origin, x = col(x1,x2, ...,xN) ∈ Π, and Π := Π1 ×
...×ΠN ∈ R∑

N
i=1 ni . The terms ϕi(xi)∈ R are matched uncertainties. The terms pi(xi)ψi(x)∈ Rni

represent the interconnection of the ith subsystem where pi(xi) ∈ Rni are known and used
to describe the structure of the interconnections, and the terms ψi(x) ∈ R defined in Π are
interconnections for i= 1,2, . . . ,N. All of the nonlinear terms are assumed to be smooth enough
in their arguments to guarantee the existence and uniqueness of the system solutions2.

Remark 3.2.1 The interconnection term ψi(x) in (3.1) is a function of all the states x, which
represents the dynamic influence caused by and leads to the other subsystems.

In this chapter, the local case will be considered, and the considered domain may not be
specified in the subsequence unless it is necessary. It should be noted that each subsystem
in system (3.1) is assumed to be single-input and single-output for simplifying the analysis.
However, for the theory of nonlinear systems having many inputs and many outputs, it may
needs some further research.

The objective of this chapter is, for a given desired output signal yid(t), to design a de-
centralised control such that the output yi(t) can track the desired signal yid(t) asymptotically,
i.e.,

lim
t→∞

|yi(t)− yid(t)|= 0 (3.2)

for i = 1,2, ...,N, while all the state variables of the interconnected system (3.1) are bounded.
To deal with the tracking problem stated above, some assumptions on the considered system
(3.1) are introduced at first.

2For further details regarding the existence and uniqueness of solutions of nonlinear systems, please refer to
Appendix A.3.
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Assumption 3.2.1 There exist known continuous functions ρi(xi) in domain Πi such that
|ϕi(xi)| ≤ ρi(xi), where xi ∈ Πi with i = 1,2, ...,N.

Remark 3.2.2 Assumption 3.2.1 implies that the uncertainties ϕi(xi) in the system (3.1) have
known upper bounds which will be used in the control design to cancel the effects of the
corresponding uncertainties and enhance the robustness of system. For the case of unknown
upper bounds, it’s worthy some further research.

Assumption 3.2.2 For system (3.1), the triples ( fi,gi,hi) and ( fi, pi,hi) have uniform relative
degrees3 ra

i and rb
i respectively in the domain Πi, and satisfying ra

i = rb
i for i = 1,2, . . . ,N.

Remark 3.2.3 Assumption 3.2.2 is the limitation to both the structure of nominal isolated
subsystems and corresponding interconnections. The methodology developed in this chapter
can be directly extended to the case ra

i < rb
i . Here, the condition ra

i = rb
i imposed on system

(3.1) is just for simplification of the later analysis. Similar limitation to the system relative
degree is employed in [131].

Assumption 3.2.3 The desired output signals yid(t) and their time derivatives up to the ra
i th

order are smooth, known and bounded for all t ∈ [0,∞).

Remark 3.2.4 Assumption 3.2.3 is commonly introduced in tracking problem and usually can
be satisfied in reality in most cases. However, if the desired signal yid(t) is not continuous in
reality due to some engineering limitation, the work in this chapter may not be applied.

3.3 A Local Diffeomorphism

In this section, the theory of local diffeomorphism is extended to deal with the linearisation of
a large-scale system (3.1) with the uncertainties is considered. And the local diffeomorphism
zi = Ti(xi) is introduced as

xi,1

xi,2
...

xi,(ra
i −1)

xi,ra
i

xi,(ra
i +1)
...

xi,ni


zi=Ti(xi)−−−−−→



zi,1

zi,2
...

zi,(ra
i −1)

zi,ra
i

zi,(ra
i +1)
...

zi,ni


=:



ξi,1

ξi,2
...

ξi,(ra
i −1)

ξi,ra
i

ηi,(ra
i +1)
...

ηi,ni


(3.3)

3The definition of relative degree and more details are available in [34] and section 2.1.2.
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and a feedback transformation is given by

ui = ϖ
−1
i (xi)(−ςi(xi)+ vi) (3.4)

where ςi(xi) and ϖi(xi) are defined by

ςi(xi) = Lra
i
fi hi(xi) (3.5)

ϖi(xi) = LgiL
ra

i −1
fi hi(xi) (3.6)

where vi is the new controller to be designed later, and the notation LgiL
ra
i −1
fi hi(xi) denotes Lie

derivative (see e.g. [34] and section 2.1.2).
In the new coordinates zi, the terms ςi(xi) and ϖi(xi) in (3.5) and (3.6) are, respectively,

denoted by
αi(zi) = ςi(xi)|xi=T−1

i (zi)

βi(zi) = ϖi(xi)|xi=T−1
i (zi)

.

Then, under the diffeomorphism (3.3) and the feedback transformation (3.4), it follows from
[34] that in the new coordinates zi, the system (3.1) can be described by

ξ̇i,1 = ξi,2 (3.7)

ξ̇i,2 = ξi,3 (3.8)
...

ξ̇i,(ra
i −1) = ξi,ra

i
(3.9)

ξ̇i,ra
i
= vi(t)+βi(zi)τi(zi)+ γi(zi)δi(z) (3.10)

η̇i,(ra
i +1) = qi,(ra

i +1)(zi)+Γi,(ra
i +1)δi(z) (3.11)

...

η̇i,ni = qi,ni(zi)+Γi,niδi(z) (3.12)

yi = ξi,1 (3.13)
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where zi := col(ξi,ηi) with ξi := col(ξi,1,ξi,2, · · · ,ξi,ra
i
) and ηi := col(ηi,(ra

i +1), · · · ,ηi,ni), z =
col(z1,z2, · · · ,zN), and

τi(zi) = ϕi(xi)|xi=T−1
i (zi)

(3.14)

γi(zi) = LpiL
rb

i −1
fi hi(xi)|xi=T−1

i (zi)
(3.15)

δi(z) = ψi(x)|x=T−1(z). (3.16)

The system (3.7)-(3.13) can be expressed in a compact form as

ξ̇i = Aiξi +Bi[vi +βi(zi)τi(zi)+ γi(zi)δi(z)] (3.17)

η̇i = qi(ξi,ηi)+Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN) (3.18)

yi =Ciξi, i = 1,2, ...,N (3.19)

where zi = col(ξi,ηi) with ξi ∈ Rra
i and ηi ∈ Rni−ra

i . The triple (Ai,Bi,Ci) with appropriate
dimensions has a standard Brunovsky form [58] as follows

Ai =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1
0 0 0 . . . 0

 , Bi =


0
0
...
0
1

 (3.20)

Ci =
[

1 0 0 . . . 0
]

(3.21)

qi(ξi,ηi) and Γi(ξi,ηi) are the last ni − ra
i rows of the vectors[

∂Ti

∂xi
fi(xi)

]
xi=T−1

i (zi)

and
[

∂Ti

∂xi
pi(xi)

]
xi=T−1

i (zi)

respectively, for i = 1,2, ...,N.

Remark 3.3.1 It should be pointed out that the diffeomorphism zi = Ti(xi) = col(ξi,ηi) =

col(ξi,1,ξi,2, · · · ,ξi,ra
i
,ηi,(ra

i +1), · · · ,ηi,ni) given in (3.3) is not unique. According to [34], a way

to choose the diffeomorphism can be given as follows: ξi = col(hi(xi),L fihi(xi), ...,L
ra

i
fi hi(xi)),

for i = 1,2, ...,N. ηi = col(ηi,(ra
i +1), · · · ,ηi,ni) where ηi j can be obtained by solving the equa-

tions Lgiηi j = 0 for j = ra
i +1, ...,ni and i = 1,2, ...,N.
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Remark 3.3.2 However, from (3.17)-(3.19), it is clear to see that in this chapter, it is not
required that the nominal subsystems of system (3.1) are feedback linearisable. If the relative
degree ra

i = ni, then (3.7)-(3.13) will have the following form

ξ̇i,1 = ξi,2 (3.22)

ξ̇i,2 = ξi,3 (3.23)
...

ξ̇i,(ni−1) = ξi,ni (3.24)

ξ̇i,ni = vi(t)+βi(zi)τi(zi)+ γi(zi)δi(z) (3.25)

yi = ξi,1. (3.26)

where γi(zi) ̸= 0 in Πi for i = 1,2, ...,N. In this case, the nominal isolated subsystem of
interconnected system (3.17) is completely feedback linearisable and thus the nonlinear part
relating to the dynamics of variables ηi in system (3.18) disappears.

3.4 Synthesis of a Decentralised Control

In the subsequence, the nonlinear interconnected systems (3.17)-(3.19) are focused. Firstly, a
sliding surface in terms of tracking errors will be proposed. Then, a decentralised controller
based on sliding mode technique will be designed to implement the output tracking, and the
boundedness of the considered interconnected system will be discussed.

3.4.1 Properties of the Sliding Motion

It is assumed that the desired output signals yid(t) satisfy Assumption 3.2.3. For (3.19), the
output tracking errors ei are defined by

ei = yi(t)− yid(t). i = 1,2, ...,N (3.27)

The sliding functions are introduced as follows

Si(·) = e(r
a
i −1)

i +ai,1e(r
a
i −2)

i + ...+ai,(ra
i −2)e

(1)
i +ai,(ra

i −1)e
(0)
i (3.28)

where e(r
a
i −1)

i , e(r
a
i −2)

i , · · · , and e(1)i denote the (ra
i −1)th order, (ra

i −2)th order, · · · , and the 1st
order derivatives of ei(t) respectively, e(0)i := ei(t), and ai,1,ai,2, ...,ai,(ra

i −1) are a set of design
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parameters, which are chosen such that the following polynomials

λ
ra

i −1 +ai,1λ
ra

i −2 + ...+ai,(ra
i −2)λ +ai,(ra

i −1) (3.29)

are Hurwitz stable4 for i = 1,2, . . . ,N. Then, the composite sliding surface S for interconnected
system (3.17)-(3.19) can be described by

S = {col(S1,S2, · · · ,SN) | Si = 0, i = 1,2, ...,N} (3.30)

where Si are defined in (3.28). From the design above, it is clear to see that when Si = 0,

lim
t→∞

|ei(t)|= 0.

This implies that when sliding motion occurs,

lim
t→∞

|yi(t)− yid(t)|= lim
t→∞

|ei(t)|= 0 (3.31)

i.e., the outputs yi(t) of system (3.1) can track the ideal signal yid(t) asymptotically for i =
1,2, . . . ,N. The following result is now ready to be presented:

Theorem 3.4.1 Consider the interconnected system (3.17)-(3.19). Under Assumption 3.2.3,
when the system (3.17)-(3.19) is limited to moving on the sliding surface (3.30), the following
results hold:

i). lim
t→∞

|yi(t)− yid(t)|= lim
t→∞

|ei(t)|= 0 for i = 1,2, ...,N.

ii). The state variables ξi in (3.17) are bounded for i = 1,2, ...,N.

Proof The result in i) has been shown above (see (3.31)). The remains are to prove that the
result in ii) holds.

When system (3.17)-(3.19) is constrained to the sliding surface (3.28), it follows that

Si = e(r
a
i −1)

i +ai,1e(r
a
i −2)

i + ...+ai,(ra
i −2)e

(1)
i +ai,(ra

i −1)e
(0)
i = 0.

Then,

e(r
a
i −1)

i =−ai,1e(r
a
i −2)

i − ...−ai,(ra
i −2)e

(1)
i −ai,(ra

i −1)e
(0)
i .

4The Hurwitz polynomial is a polynomial whose roots (zeros) are located in the left half of the complex plane,
that is, the real part of every root is negative.
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Let
ei,1 ≜ e(0)i = ei.

Then, the following error dynamics are obtained

ėi,1 = e(1)i ≜ ei,2

ėi,2 = e(2)i ≜ ei,3

...

ėi,(ra
i −2) = e(r

a
i −2)

i ≜ ei,(ra
i −1)

ėi,(ra
i −1) =−ai,1ei,(ra

i −1)− ...−ai,(ra
i −2)ei,2 −ai,(ra

i −1)ei,1.

Therefore, the sliding mode dynamics of system (3.17)-(3.18) are given by the following equation
by rewriting the system above in a compact form as

ε̇i(t) =


0 1 0 . . . 0
0 0 1 . . . 0
...

... . . . ...
0 0 0 . . . 1

−ai,(ra
i −1) −ai,(ra

i −2) −ai,(ra
i −3) . . . −ai,1


︸ ︷︷ ︸

Ei

εi(t) (3.32)

where εi(t) = col(ei,1(t),ei,2(t), · · · ,ei,(ra
i −1)(t)). It should be noted that the entries of the

last row of matrix Ei: ai,1,ai,2, ...,ai,(ra
i −1) forms the Hurwitz stable polynomial (3.29). Thus,

system (3.32) is Hurwitz stable which implies that

lim
t→∞

|εi(t)|= 0. (3.33)

Further, from (3.31) and (3.33)

lim
t→∞

∥∥∥∥∥∥∥∥∥∥∥∥∥

ξi,1(t)− y(0)id (t)

ξi,2(t)− y(1)id (t)
...

ξi,(ra
i −1)(t)− y(r

a
i −2)

id (t)

ξi,ra
i
(t)− y(r

a
i −1)

id (t)

∥∥∥∥∥∥∥∥∥∥∥∥∥
= 0.



3.4 Synthesis of a Decentralised Control 47

From Assumption 3.2.3, the desired output signal yid(t) and its derivatives: y(1)id ,y(2)id , ...,y(r
a
i −1)

id
are bounded in t ∈ [0,∞]. It follows that the state variables ξi,1,ξi,2, ...,ξi,ra

i
are bounded and

thus the states ξi in (3.17) are bounded when the states of the system are limited to the sliding
surface (3.30). Hence, the result holds.

It is well known that the sliding mode is a reduced-order system. Section 3.4.1 shows that for
system (3.17)-(3.19) with the sliding surface given in (3.30), the corresponding sliding mode
dynamics are system (3.32). Theorem 3.4.1 shows that the sliding mode (3.32) is asymptotically
stable and the partial of state variable ξi is bounded. Next, the decentralised controllers are to
be designed to guarantee the reachability, and the boundedness of the partial states ηi will be
discussed as well.

3.4.2 The Reachability Problem

Now, the objective is to design a decentralised state-feedback controller based on sliding
mode technique such that the states of the controlled system (3.17)-(3.19) can be driven to the
designed sliding surface (3.28) in finite time.

Since zi = Ti(xi) is a diffeomorphism, from Assumption 3.2.1 and definitions of τi(zi) and
δi(z) in (3.14) and (3.16) respectively, it follows that there are continuous function ρ ′

i (zi) such
that in the considered neighbourhood of the origin

|τi(zi)| ≤ ρ
′
i (zi) (3.34)

where ρ ′
i (·) depends on the transformation zi = Ti(xi) and ρi(·) in Assumption 3.2.1. Since

ρi(·) is known, the bound ρ ′
i (·) can be obtained from zi = Ti(xi).

For system (3.17)-(3.19), the following control law is proposed

vi =−Ṡi + y(r
a
i )

i −
(

Ki(zi)+ |βi(zi)|ρ ′
i (zi)+

1
2
|γi(zi)|2

)
sgn(Si), i = 1,2, ...,N (3.35)

where the function Ki(zi) is the feedback gain to be designed later. Si(·) is given in (3.28)
and sgn(·) is the signum function. It is clear to check that the controllers vi in (3.35) are
decentralised.

Remark 3.4.1 From the structure of the control (3.35), it follows that only the variables
zi,yi,y

(ra
i )

i and yid(t) are used in the i-th control vi, which are available locally. Specially from

(3.7)-(3.13), y(r
a
i )

i is actually the first order derivative of the state xi,ra
i
, which totally depends

on the local state xi,ra
i
. Therefore, from the coordinate transformation zi = Ti(xi) and the
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relationship between ui and vi in (3.4), it is straightforward to see that the proposed controllers
are decentralised.

Theorem 3.4.2 Under Assumptions 3.2.1 and 3.2.3, the nonlinear interconnected system
(3.17)-(3.19) is driven to the sliding surface (3.28) in finite time by the controller (3.35) if the
control gain Ki(zi) satisfies

N

∑
i=1

Ki(zi)>
1
2

N

∑
i=1

|δi(z)|2 +σi (3.36)

where σi is a positive constant.

Proof The closed-loop system obtained by applying control law (3.35) into system (3.17)-(3.19)
can be described by

ξ̇i = Aiξi +Bi[−Ṡi + y(r
a
i )

i − (Ki(zi)+ |βi(zi)|ρ ′
i (zi)+

1
2
|γi(zi)|2)sgn(Si)

+βi(zi)τi(zi)+ γi(zi)δi(z)] (3.37)

η̇i = qi(ξi,ηi)+Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN) (3.38)

yi =Ciξi, i = 1,2, ...,N (3.39)

With the special structure of the triple (Ai,Bi,Ci) in (3.17)-(3.19), it follows that

yi = ξi,1 (3.40)

y(1)i = ξi,2 (3.41)
...

y(r
a
i −1)

i = ξi,ra
i

(3.42)

y(r
a
i )

i = ξ̇i,ra
i
=−Ṡi + y(r

a
i )

i − (Ki(zi)+ |βi(zi)|ρ ′
i (zi)+

1
2
|γi(zi)|2)sgn(Si)

+βi(zi)τi(zi)+ γi(zi)δi(z). (3.43)

From (3.43),

Ṡi =−
(

Ki(zi)+ |βi(zi)|ρ ′
i (zi)+

1
2
|γi(zi)|2

)
sgn(Si)+βi(zi)τi(zi)+ γi(zi)δi(z). (3.44)
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Then, from (3.34) - (3.44) and according to basic inequality:5 ab ≤ 1
2(a

2 +b2),

S⊤Ṡ =
N

∑
i=1

SiṠi

=
N

∑
i=1

(
−
(

Ki(zi)+ |βi(zi)|ρ ′
i (zi)+

1
2
|γi(zi)|2

)
|Si|+βi(zi)τi(zi)Si + γi(zi)δi(z)Si

)
≤

N

∑
i=1

(
−Ki(zi)|Si|−

1
2
|γi(zi)|2|Si|+

1
2
(|γi(zi)|2 + |δi(z)|2)|Si|

)
=

N

∑
i=1

(
−Ki(zi)+

1
2
|δi(z)|2

)
|Si|. (3.45)

It follows from (3.45), (3.36) and the basic inequality:6 (
∑

N
i=1 |Si|

)2 ≥ ∑
N
i=1 |Si|2 that

ST Ṡ <−σ

N

∑
i=1

|Si| ≤ −σ∥S∥ (3.46)

where σ := mini{σi} > 0 due to σi > 0 for i = 1,2, ...,N, meaning that the reachability
condition [14] holds for the closed-loop interconnected system (3.37)-(3.38). Hence, the result
holds.

Remark 3.4.2 Based on the analysis above and from the feedback transformation (3.35), it
follows that the decentralised controller

ui =ϖ
−1
i (xi)

[
− ςi(xi)− Ṡi + y(r

a
i )

i −
(

Ki(Ti(xi))+ |ϖi(xi)|ρi(xi)

+
1
2
|LpiL

rb
i −1
fi hi(xi)|2

)
sgn(Si)

]
(3.47)

can drive the system (3.1) to the corresponding sliding surface in finite time, where pi = pi(xi),
fi = fi(xi) and Si is defined in (3.28) for i = 1,2, ...,N.

3.4.3 The Boundedness of System States

In this subsection, due to the assumption of the relative degree is introduced as Assumption
3.2.2 which means the system (3.1) can not be fully linearised, the stability of zero dynamic ηi

for i = 1,2, ...,N in (3.38) need to be checked. For this, the boundedness of the closed-loop
system (3.37)-(3.38) is analysed. The following assumptions are introduced.

5More details of the Young’s inequality are available in Appendix A.1.
6More details of the inequality are available in "Norm properties" in Appendix A.2.
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Assumption 3.4.1 The functions qi(ξi,ηi) in system (3.37)-(3.38) satisfy the Lipschitz con-
dition with the Lipschitz constants Lqi uniformly for ηi in the considered domain. Moreover,
there exists a Lyapunov function Vi0(ηi) such that

χi1 ∥ ηi ∥2≤Vi0(ηi)≤ χi2 ∥ ηi ∥2

∂Vi0

∂ηi
qi(0,ηi)≤−χi3 ∥ ηi ∥2∥∥∥∥∂Vi0

∂ηi

∥∥∥∥≤ χi4 ∥ ηi ∥

(3.48)

where χi1, χi2, χi3, and χi4 are positive constants for i = 1,2, · · · ,N.

Remark 3.4.3 The Assumption 3.4.1 implies that there exists a constant Lqi such that

∥ qi(ξi,ηi)−qi(0,ηi) ∥ ≤ Lqi ∥ ξi ∥ . (3.49)

Assumption 3.4.1 is the limitation to the nonlinear term qi(ξi,ηi) in (3.37)-(3.38). It also
implies that the zero dynamics η̇i = qi(0,ηi) of the nominal system of system (3.37)-(3.38) is
asymptotically stable.

Assumption 3.4.2 There exist positive constants κ1 j and κ2 j such that

∥ Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN) ∥≤
N

∑
j=1

(κ1 j ∥ ξ j ∥+κ2 j ∥ η j ∥) (3.50)

for i = 1,2, · · · ,N.

Theorem 3.4.3 Under Assumptions 3.2.3 and 3.4.1-3.4.2, the states of the closed-loop system
(3.37)-(3.38) are bounded, if the matrix W T +W is positive definite with the matrix W defined
by

W :=


χ13 −χ14κ21 −χ14κ22 . . . −χ14κ2N

−χ24κ21 χ23 −χ24κ22 . . . −χ24κ2N
...

... . . .

−χN4κ21 −χN4κ22 . . . χN3 −χN4κ2N

 (3.51)

where χi j and κl j satisfy the Assumptions 3.4.1 and 3.4.2 for i = 1,2, · · · ,N, j = 1,2,3,4 and
l = 1,2.

Proof From Theorem 3.4.1, it follows that the variables ξi = col(ξi,1,ξi,2, ...,ξi,ra
i
) with i =

1,2, . . . ,N are bounded when the sliding motion occurs. Theorem 3.4.2 shows that the inter-
connected system can be driven to the sliding surface in finite time. From Theorems 3.4.1 and



3.4 Synthesis of a Decentralised Control 51

3.4.2, it follows that the variables ξi = col(ξi,1,ξi,2, ...,ξi,ra
i
) with i = 1,2, . . . ,N are bounded.

Therefore, there exist constants Ci > 0 such that in the considered domain,

∥ ξi ∥ ≤ Ci. i = 1,2, ...,N (3.52)

The remain is to prove that the variables ηi in the closed-loop system (3.37)-(3.38) are bounded
for i = 1,2, ...,N.

It should be noted that from (3.52), the variables ξi in the system (3.38) are bounded and can
be considered as parameters defined in a compact set. For this system, consider the following
Lyapunov candidate function

V (η1,η2, ...,ηN) =
N

∑
i=1

Vi0(ηi)

where Vi0(ηi) is defined in Assumption 3.4.1. Then, the time derivative of the Lyapunov function
V (·) along the trajectories of system (3.37)-(3.38) is given by

V̇ (η1,η2, ...,ηN)

=
N

∑
i=1

∂Vi0(ηi)

∂ηi

[
qi(ξi,ηi)+Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN)

]
=

N

∑
i=1

[
∂Vi0(ηi)

∂ηi
qi(0,ηi)+

∂Vi0(ηi)

∂ηi
(qi(ξi,ηi)−qi(0,ηi))

]
+

N

∑
i=1

∂Vi0(ηi)

∂ηi

[
Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN)

]
. (3.53)
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Further, from (3.49) and Assumptions 3.4.1 and 3.4.2, it follows

V̇ (η1,η2, ...,ηN)

≤
N

∑
i=1

(−χi3 ∥ ηi ∥2 + χi4LqiCi ∥ ηi ∥+
∣∣∣∣∣∣∂Vi0(ηi)

∂ηi

∣∣∣∣∣∣ ∥ Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN) ∥)

≤
N

∑
i=1

(−χi3 ∥ ηi ∥2 + χi4LqiCi ∥ ηi ∥+χi4 ∥ ηi ∥
N

∑
j=1

(κ1 j ∥ ξ j ∥+κ2 j ∥ η j ∥))

≤
N

∑
i=1

(−χi3 ∥ ηi ∥2 + χi4LqiCi ∥ ηi ∥+
N

∑
j=1

χi4κ1 jCi ∥ ηi ∥+
N

∑
j=1

χi4κ2 j ∥ ηi ∥∥ η j ∥)

=−(
N

∑
i=1

χi3 ∥ ηi ∥2 −
N

∑
i=1

N

∑
j=1

χi4κ2 j ∥ ηi ∥∥ η j ∥ −
N

∑
i=1

N

∑
j=1

χi4Ci(Lqi +κ1 j) ∥ ηi ∥)

=−1
2

(
∥ η1 ∥, ...,∥ ηN ∥

)
(W +W T )


∥ η1 ∥
∥ η2 ∥

...
∥ ηN ∥

+
N

∑
i=1

N

∑
j=1

χi4Ci(Lqi +κ1 j) ∥ ηi ∥

≤ −1
2

λmin(W +W T )∥η∥2 +
N

∑
i=1

N

∑
j=1

χi4Ci(Lqi +κ1 j) ∥ ηi ∥

=−1
2

λmin(W +W T )
N

∑
i=1

∥ηi∥2 +
N

∑
i=1

N

∑
j=1

χi4Ci(Lqi +κ1 j)∥ηi∥

=−1
2

N

∑
i=1

{
λmin(W +W T )∥ηi∥−

N

∑
j=1

χi4Ci(Lqi +κ1 j)
}
∥ηi∥

≤ 0 (3.54)

where ∥η∥ := ∥(∥ η1 ∥,∥ η2 ∥ , ..., ∥ ηN ∥)T∥, if

∥ηi∥ ≥
∑

N
j=1 χi4Ci(Lqi +κ1 j)

λmin(W )
, i = 1,2, ...,N

Then, from Theorem 4.18 in [43], the variables ηi are bounded for i = 1,2, . . . ,N. Hence, the
result holds.

Remark 3.4.4 From Remark 3.3.2, if ra
i = ni for i = 1,2, ...,N, the considered system can be

fully linearised and thus the dynamical equation (3.38) disappears. In this case, Assumptions
3.4.1-3.4.2 are unnecessary, and the interconnection terms are completely matched. This can
be regarded as a special case of the results developed in this chapter.
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3.5 Example: Inverted Pendulum

Consider two inverted pendulums connected by a spring as shown in Fig.3.1. Each pendulum

Fig. 3.1 Two inverted pendulums connected by a spring

is controlled by a servomotor which provides a torque input ui at the pivot. It is assumed that θi

and θ̇i represent the angular position and angular velocity of the pendulums respectively for
i = 1,2.The model which describes the motion of the pendulums is given by (see, [94])

ẋ1,1 = x1,2

ẋ1,2 =
u1

J1
+β1(x1)τ1(x1)+ γ1(x1)δ1(x)+

kr
2J1

(l −b)

y1 = x1,1

(3.55)

and

ẋ2,1 = x2,2

ẋ2,2 =
u2

J2
+β2(x2)τ2(x2)+ γ2(x2)δ2(x)−

kr
2J2

(l −b)

y2 = x2,1

(3.56)

where x1,1 = θ1, x2,1 = θ2, x1,2 = θ̇1 and x2,2 = θ̇2 are system states. It is assumed that x1,1 and
x2,1 are measurable, which are taken as system outputs.

It should be pointed out that system (3.55)-(3.56) above has already been in the form of
system (3.17) where

β1 =
m1gr

J1
− kr2

4J1
, β2 =

m2gr
J2

− kr2

4J2
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τ1(x1) = sin(x1,1), τ2(x2) = sin(x2,1)

γ1(x1) =
kr2

4J1
, γ2(x2) =

kr2

4J2

δ1(x) = sin(x2,1), δ2(x) = sin(x1,1).

From [94], the parameters are chosen as m1 =2 kg and m2 = 2.5 kg representing the end
masses of the pendulum. J1 = 0.5 kg· m2 and J2 = 0.625 kg· m2 are the moments of inertia. g =
9.81 m/s2 is the gravitational acceleration. k = 100 N/m is the spring constant of the connecting
spring. r = 0.5m is the pendulum height and l = 0.5m is the natural length of the spring. The
distance between the pendulum hinges is b = 0.5m.

By direct calculation

|τ1(x1)|= |sin(x1,1)| ≤ 1 = ρ1(x1),

|τ2(x2)|= |sin(x2,1)| ≤ 1 = ρ2(x2).

Here, both the value of σi for i = 1,2 are designed as 0.1. It can be verified that the relative
degree ra

i = rb
i = 2 for i = 1,2. The nominal subsystems can be feedback linearised. For

simulation purposes, the desired output signals yid(t) are chosen as

y1d = 0.5sin(t), y2d = 5e−t . (3.57)

It is clear that Assumption 3.2.3 is satisfied. Let

e1 = y1 − y1d, e2 = y2 − y2d

ė1 = ẏ1 − ẏ1d, ė2 = ẏ2 − ẏ2d

S1 = ė1 +a1 · e1, S2 = ė2 +a2 · e2

(3.58)

where the sliding function parameters are chosen as a1 = 2 and a2 = 3. Then from (3.35), the
control laws7 can be described by

u1 = J1

(
−Ṡ1 + y(2)1 −K1(x1)sgn(S1)

)
(3.59)

and

u2 = J2

(
−Ṡ2 + y(2)2 −K2(x2)sgn(S2)

)
(3.60)

7In the control design, the signum function sgn(·) here is replaced by a sigmoid-like function in order to avoid
a singularity in the solution. For more details, see Appendix B.1.
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where, based on (3.36), the values of the control gain Ki(·) are chosen as 19.72 for i = 1,2. By
direct calculation, Assumptions 3.4.1-3.4.2 as well as the conditions of Theorems 3.4.1-3.4.3
are satisfied. Therefore, the outputs of the closed-loop system formed by applying controllers
(3.59)-(3.60) to the system (3.55)-(3.56) can track the desired signals in (3.57) asymptotically.

The tracking results are shown in Fig.3.2 with a good tracking performance as expected.
Each angular position yi of the subsystem can track the ideal reference yid for i = 1,2, at around
2 seconds despite the interactions between the subsystems. The time responses of the states
of the system (3.55)-(3.56) are presented in Fig.3.3 where it is clear to see that the system
states are bounded. The simulation demonstrates that the results developed in this chapter are
effective and in consistence with the theoretical results.
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Fig. 3.2 Time responses of system’s output, and the desired output (upper), and controller
inputs (bottom) of system (3.55)-(3.56).
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Fig. 3.3 Evolution of state variables of system (3.55)-(3.56).

3.6 Summary

In this chapter, a decentralised sliding mode control scheme has been proposed for the output
tracking of a specific class of nonlinear interconnected systems. The developed control approach
ensures asymptotic output-tracking performance while maintaining all system state variables
bounded. One key advantage of the proposed scheme is that it is decentralised, meaning
each subsystem can be controlled independently without requiring information from other
subsystems. Additionally, the desired reference signals are allowed to be time-varying, making
the approach more flexible and applicable to dynamic scenarios. Importantly, the proposed
method does not assume linearity for either the interconnected system or the isolated subsystems.
This allows for the control of a broader range of nonlinear interconnected systems, providing
practical relevance in real-world applications. Furthermore, the developed results can be
extended to cases where the isolated subsystems have multiple inputs and multiple outputs,
enhancing the applicability of the method to complex large-scale systems. In summary, the
method presented in this chapter offers a suitable control solution for a wide class of large-scale
nonlinear interconnected systems. Its decentralised nature, ability to handle time-varying
reference signals, and flexibility in dealing with nonlinearities make it a valuable contribution
to the field.



Chapter 4

Decentralised Output Tracking of
Interconnected Systems with Unknown
Interconnections Using Sliding Mode
Control

In this chapter, a class of nonlinear interconnected systems is considered, which involves
both matched and unmatched uncertainties. The matched uncertainties and unmatched inter-
connection terms are assumed to be bounded by known nonlinear functions. To address the
tracking problem, a state feedback decentralised control scheme is proposed using sliding
mode techniques. The objective is to ensure that the system outputs can track the desired
signals uniformly ultimately, even if the desired reference signals are time-varying. To facilitate
the design of the sliding surface and decentralised control, appropriate transformations are
introduced to reshape the considered system into a new interconnected system with a suitable
structure. We then establish a set of conditions to ensure that the designed controller drives
the tracking errors onto the sliding surface. Moreover, the sliding motion exhibited by the
error dynamics is proven to be uniformly ultimately bounded. To demonstrate the effectiveness
and feasibility of the proposed decentralised control strategy, a simulation example on a river
quality control problem is presented. The simulation results confirm that the developed control
approach yields satisfactory performance and achieves the desired tracking objectives.
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4.1 Introduction

In recent years, significant progress has been made in the study of large-scale systems with
interconnected terms, leading to several interesting findings. For instance, in [44], a large-scale
fuzzy system with unknown interconnections is investigated, specifically focusing on systems
without matched uncertainties or disturbances. Additionally, other studies have examined
interconnected systems, such as [92], [6], [132], [31], and [79], where the emphasis is on
matched interconnections without considering unmatched interconnections or uncertainties.
Furthermore, certain work has approached large-scale systems by considering simplified or
idealized dynamic models, as demonstrated in [105], [112], [97], and [22]. However, these
works tend to focus on specific system structures and lack generality in their scope. In [117],
decentralised sliding mode control is developed for a fully nonlinear system with a more
general structure. Nonetheless, the emphasis of this study is on stabilisation problems rather
than addressing tracking control. Specifically, there is a need to address the limitations of the
existing studies by considering more comprehensive system structures and addressing tracking
control objectives.

Trajectory tracking and output tracking are fundamental aspects of control theory and con-
trol engineering. Several research studies have addressed tracking control in different contexts.
For instance, in [132], [7], and [6], tracking control results have been obtained. However, many
of these studies focus on systems with specific or special structures, as highlighted in [112],
[97], [50], and [22]. In the realm of large-scale systems, decentralised tracking control has
been investigated in [77], which specifically explores model reference control. Furthermore,
adaptive fuzzy techniques are utilized to address tracking control for interconnected systems in
[78]. It is worth noting that both [77] and [78] assume linearity for the isolated subsystems.
Therefore, it is significant to develop tracking control strategies that can handle a broader range
of system structures and address non-linearities and uncertainties commonly encountered in
large-scale interconnected systems.

Sliding mode control has gained significant popularity in addressing complex systems
with uncertainties, thanks to its unique characteristics ([93], [120], [122], [126]). One of
the advantages of sliding mode control is that the dynamics of the sliding mode are often
described by a reduced-order system compared to the original system ([115], [14]), simplifying
system analysis and design. Additionally, sliding mode control exhibits robustness against
matched uncertainties and disturbances. As a result, sliding mode control has found widespread
application in tracking problems, leading to numerous achievements in the field. For specific
vehicles, trajectory tracking control schemes based on sliding mode techniques are proposed in
([133], [111]). In [80], an output tracking sliding mode control is designed for a linear system.
While [129] considers tracking control for nonlinear systems with uncertainties using event-



4.1 Introduction 59

triggered tracking, it only accounts for matched disturbances. [135] explores a tracking problem
for a class of large-scale systems with interconnections using sliding mode control, although
it requires constant reference signals. Notably, there are very few results addressing output
tracking for large-scale nonlinear interconnected systems with unknown interconnections,
particularly when the reference signals are time-varying.

In this chapter, we investigate a class of nonlinear interconnected systems that incorporate
both unknown matched uncertainty and unknown unmatched nonlinear interconnections. To
analyse and design control strategies for output tracking, we introduce suitable coordinate
transformations that modify the nominal subsystems of the interconnected system, resulting in
systems with special structures. This transformation allows us to separate each subsystem of
the transformed system into two distinct parts. Based on the transformed system, we develop
the dynamic models for the tracking errors and design a sliding surface that governs the
behaviour of the tracking error system. We establish a set of conditions to ensure the uniform
ultimate boundedness of the sliding motion corresponding to the tracking errors. To achieve the
desired output tracking performance, we propose a decentralised sliding mode control scheme.
This control scheme is designed to drive the nonlinear interconnected systems towards the
predetermined sliding surface. By utilizing sliding mode control techniques, we aim to achieve
robustness against uncertainties and disturbances. The main contributions of this chapter can
be summarized as follows:

• The proposed control scheme is decentralised.

• The nominal subsystem of the interconnected systems are nonlinear, and the interconnec-
tions are unknown and unmatched.

• The developed results can guarantee that the system states are uniformly ultimately
bounded while all the uncertainties and interconnections are bounded.

• The developed results have high robustness against uncertainties and unknown intercon-
nections. Both the bounds on uncertainties and the unknown interconnections have more
general nonlinear forms.

In summary, the proposed decentralised control scheme offers a robust and practical solution
for large-scale interconnected systems with nonlinear subsystems, unknown interconnections,
and uncertainties. The application to a river quality control problem further illustrates the
effectiveness and applicability of the developed approach in real-world scenarios.
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4.2 Problem Formulation

Consider a nonlinear large-scale system formed by N interconnected subsystems

ẋi = Aixi + fi(xi)+Bi(ui +∆gi(xi))+hi(x)

yi =Cixi i = 1,2, ...,N
(4.1)

where x = col(x1,x2, ...,xN), xi ∈ Rni , ui ∈ Rmi and yi ∈ Rmi represent the states, inputs and
outputs of the ith subsystem respectively with mi < ni. The triple (Ai,Bi,Ci) represents constant
matrices of appropriate dimension where Bi is of full column rank and Ci is of full row rank.
The function fi(xi) represents known nonlinear term in the ith subsystem which is used to
model the nonlinear part of the ith subsystem, and the matched uncertainty of the ith isolated
subsystem is denoted by ∆gi(xi) which is acting in the input channel. The unknown term hi(x)
represents the system interconnection including all unmatched uncertainties. All the nonlinear
functions in (4.1) are assumed to be continuous in their arguments to guarantee the existence of
solutions of the controlled system (4.1).

The objective of this chapter is, for a given desired signal yid(t), to design a decentralised
sliding mode control such that the system output yi(t) of the controlled system (4.1) can track
the desired signal yid(t), i.e. the tracking errors yi(t)− yid(t) are uniformly ultimately bounded
for i = 1,2, ...,N while all the state variables of system (4.1) are bounded.

Remark 4.2.1 It should be noted that in this chapter, it is required that system (4.1) is square
for simplification of statement, that is, the dimension of each subsystem output is equal to
the dimension of the corresponding subsystem input. However, the developed results can be
extended to the case when the dimension of subsystem output is greater than the dimension of
the subsystem input by slightly modification.

In order to deal with the tracking problem stated above, some assumptions need to be imposed
on the considered interconnected system (4.1).

Assumption 4.2.1 All the invariant zeros of the triple (Ai,Bi,Ci) lie in the left half of the
complex plane, and rank(CiBi) = mi for i = 1,2, ...,N.

It follows from the section 2.2.5 in chapter 2. Under Assumption 4.2.1, there exists a nonsingular
coordinate transformation zi = Tixi such that the triple (Âi, B̂i,Ĉi) with respect to the new
coordinates zi has the following structure[

Âi11 Âi12

Âi21 Âi22

]
,

[
0

B̂i2

]
,

[
0 Ii2

]
(4.2)
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where Âi11 ∈ R(ni−mi)×(ni−mi) is Hurwitz stable, the square matrices B̂i2 ∈ Rmi×mi and Ii2 ∈
Rmi×mi are nonsingular for i = 1,2, ...,N.

Assumption 4.2.2 Suppose that fi(xi) has the decomposition fi(xi) = Γi(xi)xi, where Γi ∈
Rni×ni is a continuous function matrix for i = 1,2, ...,N.

Remark 4.2.2 If fi(0) = 0 and fi is sufficiently smooth, then the decomposition fi(xi) =

Γi(xi)xi is guaranteed. Therefore, the limitation to fi(xi) in Assumption 4.2.2 is not strict.

Assumption 4.2.3 There exist known continuous functions ρi(xi) and ηi(x) with ηi(0) = 0,
and ηi(·) is differentiable at the origin, such that ∥ ∆gi(xi) ∥≤ ρi(xi) and ∥ hi(x) ∥≤ ηi(∥x∥)
for i = 1,2, ...,N.

Remark 4.2.3 If the interconnection hi(x) in system (4.1) satisfies the condition in Assumption
4.2.3, then from ([118]) and ([121]), it follows that there exists a continuous function γi(·) such
that

ηi(∥x∥) = γi(∥x∥)∥x∥. (4.3)

Remark 4.2.4 Assumption 4.2.3 requires that the bounds on all uncertainties in system (4.1)
are known but they are allowed to be nonlinear. Moreover, the unknown interconnections are
allowed to have a more general nonlinear form.

Assumption 4.2.4 The desired output signal yid(t) is differentiable and satisfies
(i). ∥ yid(t) ∥≤ Li1; (ii). ∥ ẏid(t) ∥≤ Li2

for t ∈ [0,∞), where Li1 and Li2 are known constants for i = 1,2, ...,N.

Remark 4.2.5 Assumption 4.2.4 is a limitation on the desired output signals yid(t). It is
required that the desired output signal yid(t) and its derivative ẏid(t) are bounded. This
assumption is quite standard and can be satisfied in most practical cases.

4.3 A Coordinate Transformation

Consider the nonlinear interconnected system in (4.1). Under Assumption 4.2.1 and from
(4.2), there exists a linear nonsingular coordinate transformation zi = Tixi such that in the new
coordinate z = col(z1,z2, ...,zN), system (4.1) has the following form

żi =

[
Âi11 Âi12

Âi21 Âi22

]
zi +

[
Fi1(zi)

Fi2(zi)

]
+

[
0

B̂i2

]
(ui +∆gi(T−1

i zi))+

[
Hi1(z)
Hi2(z)

]
yi =

[
0 Ii2

]
zi, i = 1,2, ...,N

(4.4)
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where Âi11 is stable, the square sub-matrices B̂i2 ∈ Rmi×mi are nonsingular. Ii2 ∈ Rmi×mi is an
identity matrix, col(Fi1,Fi2) = Ti fi(xi)|xi=T−1

i zi
and Fi1(zi) ∈ Rni−mi , Fi2(zi) ∈ Rmi .

col(Hi1(z),Hi2(z)) = Tihi(x)|x=T−1z and Hi1(z) ∈ Rni−mi , Hi2(z) ∈ Rmi . The entire coordinate
transformation matrix T := diag{T1,T2, ...,TN}.

Since Âi11 is stable for i = 1,2, ...,N, for any Qi > 0, the following Lyapunov equation has
a unique solution Pi > 0

ÂT
i11Pi +PiÂi11 =−Qi, i = 1,2, ...,N. (4.5)

Now, in order to fully exploit the structural characteristics, partition zi = col(zi1,zi2) with
zi1 ∈ Rni−mi and zi2 ∈ Rmi . It follows that (4.4) can be described by

żi1 = Âi11zi1 + Âi12yi +Fi1(zi1,yi)+Hi1(z11,y1, ...,zN1,yN) (4.6)

ẏi = Âi21zi1 + Âi22yi +Fi2(zi1,yi)

+B̂i2(ui +∆gi(T−1
i zi))+Hi2(z11,y1, ...,zN1,yN). (4.7)

From system (4.4) and Assumption 4.2.2,

col(Fi1,Fi2) = TiΓi(xi)|xi=T−1
i zi

T−1
i col(z1i,yi). (4.8)

In order to reduce conservatism in the later analysis, the functions Fi1(zi1,yi) in system (4.6)
are described by

Fi1(zi1,yi) = Γi11(zi1,yi)zi1 +Γi12(zi1,yi)yi (4.9)

where Γi11(·) and Γi12(·) are defined by[
Γi11(·) Γi12(·)

⋆ ⋆

]
= TiΓi(xi)|xi=T−1

i zi
T−1

i

and the ⋆s are function matrices which are not necessary to specify. Therefore, (4.6) can be
described by

żi1 =Âi11zi1 + Âi12yi +Γi11(zi1,yi)zi1 +Γi12(zi1,yi)yi +Hi1(z11,y1, ...,zN1,yN) (4.10)

where Γi11(·) and Γi12(·) satisfy (4.9).
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4.4 Sliding Mode Tracking Control Design

In this section, a sliding surface in terms of output tracking errors will be designed based on
the system structure analysis in the previous section. Then sliding mode controllers will be
designed to implement the output tracking.

4.4.1 Hyperplane Design

Consider the situation when the desired output signal yid(t) satisfies Assumption 4.2.4. For
system (4.1), the output tracking errors ei are defined by

ei(t) = yi(t)− yid(t), i = 1,2, ...,N. (4.11)

Then, it follows that

ėi(t) = ẏi(t)− ẏid(t), i = 1,2, ...,N. (4.12)

Combining with (4.7), (4.10), and (4.12), a new system comprising zi1 and ei can be developed
by

żi1 = Âi11zi1 + Âi12yi +Γi11(zi1,yi)zi1 +Γi12(zi1,yi)yi +Hi1(z11,y1, ...,zN1,yN) (4.13)

ėi = Âi21zi1 + Âi22(ei + yid)+Fi2(zi1,yi)

+B̂i2(ui +∆gi(T−1
i col(zi1,yi)))+Hi2(z11,y1, ...,zN1,yN)− ẏid(t) (4.14)

for i = 1,2, ...,N.
From Assumption 4.2.3 and (4.3), it is easy to find functions γi1(·) and γi2(·) depending on

ηi(·) and T such that the following inequalities

∥Hi1(z11,y1, ...,zN1,yN) ∥≤ γi1(∥T−1col(z11,y1, ...,zN1,yN)∥)(
N

∑
j=1

∥ z j1 ∥+
N

∑
j=1

∥ y j ∥)

(4.15)

∥Hi2(z11,y1, ...,zN1,yN) ∥≤ γi2(∥T−1col(z11,y1, ...,zN1,yN)∥)(
N

∑
j=1

∥ z j1 ∥+
N

∑
j=1

∥ y j ∥)

(4.16)
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hold for i= 1,2, ...,N. For the system (4.13)-(4.14), the following sliding surface can be defined
as 

e1

e2
...

eN

= 0. (4.17)

Then, the sliding mode dynamics have the following form according to the structure of (4.13)-
(4.14)

żi1 = Âi11zi1 + Âi12yid +Γi11(zi1,yid)zi1 +Γi12(zi1,yid)yid +Hi1(z11,y1d, ...,zN1,yNd) (4.18)

for i = 1,2, ...,N.

Remark 4.4.1 When the sliding motion occurs, the equation (4.17) holds. From (4.11) and
(4.15), it follows that on the sliding surface (4.17), the inequalities

∥ Hi1(z11,y1d, ...,zN1,yNd) ∥

≤ γi1(∥T−1col(z11,y1d, ...,zN1,yNd∥))(
N

∑
j=1

∥ z j1 ∥+
N

∑
j=1

∥ y jd ∥) (4.19)

hold for i = 1,2, ...,N.

Obviously, the sliding mode dynamic (4.18) is a reduced-order interconnected system composed
of N subsystems whose dimension is ni −mi.

Next, a stability result will be presented for the interconnected system (4.18).

Theorem 4.4.1 Consider the sliding mode dynamic given in (4.18). Under Assumptions 4.2.1-
4.2.4, the sliding mode is uniformly ultimately bounded if there exists a domain Ω of the origin
such that MT+M > 0 in Ω\{0} where M := (mi j)N×N and for i, j = 1,2, ...,N.

mi j =

λmin(Qi)− ∥ Ri(·) ∥ −2 ∥ Pi ∥ γi1(·), i = j

−2 ∥ Pi ∥ γi1(·), i ̸= j
(4.20)

with Pi and Qi satisfying (4.5), and

Ri(·) := Γi11(zi1,yid)
TPi +PiΓi11(zi1,yid)

where Γi11(zi1,yi) is given by (4.4) and γi1(·) is determined by (4.19).
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Proof From the analysis above, it only needs to prove that system (4.18) is uniformly ultimately
bounded. For system (4.18), consider the following Lyapunov function candidate

V (z11,z21, ...,zN1) =
N

∑
i=1

(zi1)
TPizi1 (4.21)

where Pi satisfies (4.5).
Then, the time derivative of V (z11,z21, ...,zN1) along the trajectories of system (4.18) is

given by

V̇ (z11,z21, ...,zN1)

=
N

∑
i=1

[(żi1)
TPizi1 + zTi1Piżi1]

=
N

∑
i=1

[(Âi11zi1 + Âi12yid +Γi11(zi1,yid)zi1 +Γi12(zi1,yid)yid

+Hi1(z11,y1d, ...,zN1,yNd))
TPizi1 + zTi1Pi(Âi11zi1 + Âi12yid +Γi11(zi1,yid)zi1

+Γi12(zi1,yid)yid +Hi1(z11,y1d, ...,zN1,yNd))]

=
N

∑
i=1

[zTi1ÂT
i11Pizi1 + yTidÂT

i12Pizi1 + zTi1Γi11(zi1,yid)
TPizi1 + yTidΓi12(zi1,yid)

TPizi1

+Hi1(z11,y1d, ...,zN1,yNd)
TPizi1 + zTi1PiÂi11zi1 + zTi1PiÂi12yid

+ zTi1PiΓi11(zi1,yid)zi1 + zTi1PiΓi12(zi1,yid)yid + zTi1PiHi1(z11,y1d, ...,zN1,yNd)]

=
N

∑
i=1

{−zTi1Qizi1 + zTi1[Γi11(zi1,yid)
TPi +PiΓi11(zi1,yid)]zi1 +2zTi1PiÂi12yid

+2zTi1PiΓi12(zi1,yid)yid +2zTi1PiHi1(z11,y1d, ...,zN1,yNd)} (4.22)
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where (4.5) is used to establish the last equality above. By (4.19) and (i) in Assumption 4.2.4,
it follows that

V̇ (z11,z21, ...,zN1)

≤
N

∑
i=1

{−λmin(Qi) ∥ zi1 ∥2 + ∥ Γi11(zi1,yid)
TPi +PiΓi11(zi1,yid) ∥∥ zi1 ∥2

+2 ∥ zi1 ∥∥ Pi ∥∥ Âi12yid ∥+2 ∥ zi1 ∥∥ Pi ∥∥ Γi12(zi1,yid)yid ∥
+2 ∥ zi1 ∥∥ Pi ∥∥ Hi1(z11,y1d, ...,zN1,yNd) ∥}

=−
N

∑
i=1

{
λmin(Qi)− ∥ Ri(·) ∥ −2 ∥ Pi ∥ γi1(·)

}
∥ zi1 ∥2

+2
N

∑
i=1

N

∑
j=1
j ̸=i

∥ Pi ∥∥ zi1 ∥ γi1(·)(∥ z j1 ∥+Li1)

+2
N

∑
i=1

(∥ Âi12yid ∥+ ∥ Γi12(zi1,yid)yid ∥)· ∥ Pi ∥∥ zi1 ∥

≤− 1
2

λmin(MT+M)
N

∑
i=1

∥ zi1 ∥2

+2
N

∑
i=1

(∥ Âi12yid ∥+ ∥ Γi12(zi1,yid)yid ∥+γi1(·)Li1)· ∥ Pi ∥∥ zi1 ∥

=− 1
2

N

∑
i=1

{λmin(MT+M) ∥ zi1 ∥

−4(∥ Âi12yid ∥+ ∥ Γi12(zi1,yid)yid ∥+γi1(·)Li1) ∥ Pi ∥} ∥ zi1 ∥ (4.23)

where the matrix M is defined in (4.20). Under the Assumption 4.2.4, ∥ yid(t) ∥≤ Li1. It is clear
to check V̇ ≤ 0, if

∥ zi1 ∥≥
4(∥ Âi12Li1 ∥+ ∥ Γi12(zi1,yi)Li1 ∥+γi1(·)Li1) ∥ Pi ∥

λmin(MT+M)
(4.24)

for i = 1,2, ..,N. Hence, the conclusion holds.

Remark 4.4.2 From (4.24), it is clear to see that the ultimate bound of the sliding mode
dynamics is affected by the upper bound of the desired output signal yid(t), the system sub-
matrix Âi12, the nonlinearity of the system Γi12 and the bound of the interconnections γi1.
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4.4.2 Control Law Construction

The objective is now to design a feedback sliding mode control such that the system state is
driven to the sliding surface (4.17).

For the interconnected system (4.13)-(4.14), the reachability condition ([115, 117]) is
described by

N

∑
i=1

eTi (t)ėi(t)
∥ ei(t) ∥

< 0. (4.25)

Then, the following control law is proposed

ui =−B−1
i2 sgn(ei){∥ Âi21zi1 ∥+ ∥ Âi22yi ∥+ ∥ Fi2(zi1,yi) ∥

+ ∥ B̂i2 ∥ ρi(zi1,yi)+ ki(zi1,yi)+Li2} (4.26)

for i = 1,2, ...,N, where ei and Li2 are defined by (4.11) and Assumption 4.2.4, respectively.
ki(zi1,yi) is the control gain to be designed later.

Theorem 4.4.2 Consider the nonlinear interconnected system (4.13)–(4.14) and Assumptions
4.2.2-4.2.4. The controller (4.26) drives the system (4.13)–(4.14) to the composite sliding
surface (4.17) and maintains a sliding motion on it if the controller gains ki(zi1,yi) satisfy

N

∑
i=1

ki(zi1,yi)>
N

∑
i=1

(
γi2(·)

N

∑
j=1

(∥ z j1 ∥+ ∥ yi ∥)
)

(4.27)

where γi2 are defined in (4.16) for i = 1,2, ...,N.

Proof It is necessary to prove that the reachability condition (4.25) is satisfied. From (4.14)
and Assumption 4.2.2,

ėi = Âi21zi1 + Âi22yi +Fi2(zi1,yi)

+ B̂i2(ui +∆gi(T−1
i col(zi1,yi)))+Hi2(z11,y1, ...,zN1,yN)− ẏid (4.28)

for i = 1,2, ...,N. Substituting (4.26) into (4.28), it follows

eTi ėi

∥ ei ∥
=

eTi
∥ ei ∥

[Âi21zi1 + Âi22yi +Fi2(zi1,yi)+ B̂i2∆gi(T−1
i col(zi1,yi))+Hi2(·)

− ẏid]− ∥ Âi21zi1 ∥ − ∥ Âi22yi ∥ − ∥ Fi2(zi1,yi) ∥ − ∥ B̂i2 ∥ ρi(zi1,yi)

− ki(zi1,yi)−Li2. (4.29)
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It is clear to see

∥ Âi21zi1 + Âi22yi +Fi2(zi1,yi) ∥≤∥ Âi21zi1 ∥+ ∥ Âi22yi ∥+ ∥ Fi2(zi1,yi) ∥ . (4.30)

From Assumptions 4.2.3-4.2.4,

∥ B̂i2∆gi(T−1
i col(zi1,yi)) ∥ ≤∥ B̂i2 ∥ ρi(zi1,yi) (4.31)

∥ Hi2(z11,y1, ...,zN1,yN) ∥ ≤ γi2(·)
N

∑
j=1

(∥ z j1 ∥+ ∥ yi ∥) (4.32)

∥ ẏid ∥ ≤ Li2. (4.33)

Substituting the above four inequalities (4.30)-(4.33) into (4.29), it follows

N

∑
i=1

eTi (t)ėi(t)
∥ ei(t) ∥

<−
N

∑
i=1

ki(zi1,yi)+
N

∑
i=1

(
γi2(·)

N

∑
j=1

(∥ z j1 ∥+ ∥ yi ∥)
)
.

From (4.27), the reachability condition (4.25) is satisfied. Hence, the result holds.

Remark 4.4.3 Theorem 4.4.1 shows that the sliding mode dynamic (4.18) which is an inter-
connected system, is uniformly ultimately bounded. Theorem 4.4.2 shows that the reachability
condition is satisfied. According to the sliding mode theory, Theorems 4.4.1 and 4.4.2 combined
together show that the closed-loop system is uniformly ultimately bounded.

Remark 4.4.3 shows that the closed-loop systems formed by applying the control (4.26) to
the systems (4.13)–(4.14) are uniformly ultimately bounded, which implies that the variables
∥zi1(t)∥ and ∥ei(t)∥ are bounded for i = 1,2, . . . ,N. Further, from ei(t) = yi(t)− yid(t) and the
Assumption 4.2.4 which guarantees that yid(t) is bounded, it is straightforward to see that yi(t)
are bounded due to

yi(t) = ei(t)+ yid(t)

for i = 1,2, . . . ,N. Therefore, all the state variables of the system (4.6)–(4.7) are bounded.
Further, from xi = T−1

i zi, the state variables xi of system (4.1) are bounded. This shows that
the designed decentralised control (4.26) can not only makes the system outputs to track the
desired reference signals but also keep all the system state variables bounded.

4.5 Example: Water Quality Management

In this section, the decentralised control scheme developed in this chapter will be applied to a
river pollution problem [60] as shown in the Fig. 4.1. The water quality of a river is mainly
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dependent upon the concentrations of oxygen and pollutants. In a simplified manner, this
problem can be stated as the task of controlling the pollutants discharged at different places
along the river in such a way that the river pollution remains within a given tolerance.

River

𝒖𝟏 𝑦1 𝑢2 𝑦2

Sewage

Works 1 Sewage

Works 2

Region 1

Region 2

Fig. 4.1 River with sewage

Assume that the river has two regions and each region has a sewage station. Then, the river
pollution system can be described by a nonlinear interconnected systems as follows (see, [115]
for no delay case)

ẋ1 =

[
−1.32 0
−0.32 −1.2

]
︸ ︷︷ ︸

A1

x1 +

[
1
0

]
︸︷︷︸

B1

(u1 +∆g1(·))+h1(x) (4.34)

y1 =
[
1 0

]
︸ ︷︷ ︸

C1

x1 (4.35)

ẋ2 =

[
−1.32 0
−0.32 −1.2

]
︸ ︷︷ ︸

A2

x2 +

[
1
0

]
︸︷︷︸

B2

(u2 +∆g2(·))+h2(x) (4.36)

y2 =
[
1 0

]
︸ ︷︷ ︸

C2

x2 (4.37)

where x1 = col(x11,x12), x2 = col(x21,x22) and x = col(x1,x2). The variables xi1 and xi2 for
i= 1,2 represent the concentration of biochemical oxygen demand (BOD) and the concentration



70 Decentralised Output Tracking of Large-Scale Systems with Unknown Interconnections

of dissolved oxygen respectively, the controllers ui are the BOD of the effluent discharge into
the river, ∆gi represent any matched uncertainties and hi represent interconnections respectively
for i = 1,2. It is assumed that the concentrations of BOD for the two regions are measurable.

In this example, according to (4.1) the nonlinear term f1(x1) = f2(x2) = 0, so the Assump-
tion 4.2.2 is not required. Moreover, it can be verified that rank(CiBi) = 1 = mi for i = 1,2.
So the Assumption 1 is satisfied. Some suitable coordinate transformation matrices Ti are
introduced as below (zi = Tixi)

T1 = T2 =

[
0 1
1 0

]
.

Then, the system (4.34)-(4.37) in z coordinates can be given by

ż1 =

[
−1.2 −0.32

0 −1.32

]
︸ ︷︷ ︸

Â1

z1 +

[
0
1

]
︸︷︷︸

B̂1

(u1 +∆G1(z1))+H1(z) (4.38)

y1 =
[
0 1

]
︸ ︷︷ ︸

Ĉ1

z1 (4.39)

ż2 =

[
−1.2 −0.32

0 −1.32

]
︸ ︷︷ ︸

Â2

z2 +

[
0
1

]
︸︷︷︸

B̂2

(u2 +∆G1(z1))+H2(z) (4.40)

y2 =
[
0 1

]
︸ ︷︷ ︸

Ĉ2

z2 (4.41)

For simulation purpose, the matched uncertainties ∆G1(·) and ∆G2(·) are chosen to satisfy

|∆G1(·)| ≤ |−13.2z12|, |∆G2(·)| ≤ |cos2(z22)| (4.42)

and the interconnected terms are set to satisfy

∥ H1 ∥≤ |z22|, ∥ H2 ∥≤ |0.9z12|. (4.43)

Combining (4.42)-(4.43), it is clear that the Assumption 4.2.3 is satisfied. And the sliding
surfaces Si are

żi1 =−1.2zi1 −0.32zi2. i = 1,2
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The desired output signals yid are set as

y1d = 2e−t , y2d = sin(0.5t)+1.

It is clear that the Assumption 4.2.4 is satisfied. Let

L12 = 2, L22 = 0.5.

From (4.26), the proposed sliding mode controllers are as follows

u1 = −sgn(y1 − y1d)(|1.32z12|+ |13.2z12|+3) (4.44)

u2 = −sgn(y2 − y2d)(|1.32z22|+ |cos2(z22)|+2.3). (4.45)

According to (4.5), choose Q1 = Q2 = 1. Combining (4.34)-(4.36), Ai11 =−1.2 for i = 1,2.
Then

P1 = P2 = 0.416.

By direct calculation, it follows from (4.20) that

M⊤+M =

[
−1.664γ11 +2 −0.832(γ11 + γ21)

−0.832(γ11 + γ21) −1.664γ21 +2

]
.

According to (4.19), (4.38) and (4.40),

γ11 = 6 · sin2(z11), γ21 = 2 · cos(z21)+3.

By direct verification, it is straightforward to check that M⊤+M > 0 in the domain Ω of the
origin satisfying Ω = {(z11,z21)| |z11| ≤ 5.2, |z21| ≤ 3.9}. According to (4.23) for this example

V̇ (z11,z21)≤ 0 (4.46)

if |z11| ≥ 0.3 and |z21| ≥ 0.25. Therefore, system (4.34)-(4.37) is uniformly ultimately bounded.
The tracking results are shown in Fig. 4.2, which offers a high tracking performance. The

concentration of biochemical oxygen demand (BOD) of each subsystem yi can track the ideal
reference yid using the controller from (4.44)-(4.45), even in the presence of uncertainties. The
time response of the states and tracking errors of the system (4.34)-(4.37) are shown in Figs.
4.3-4.4. which indicates that the system states are bounded. Simulation results demonstrate that
the method developed in this chapter is effective. It is worth noting that when the subsystems
track the ideal signals within the first approximately 3 seconds, it indicates that the system state
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has reached the sliding mode surface. Subsequently, the system exhibits minor chattering in the
vicinity of the sliding mode surface, although these chattering are not clearly visible in Fig. 4.4,
they do exist in reality.
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Fig. 4.2 Time responses of system outputs and desired outputs.
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Fig. 4.3 Time response of system state variables.
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Fig. 4.4 Time response of the tracking errors.

4.6 Summary

This chapter has presented a sliding mode control strategy to deal with the output tracking
problem of a class of large-scale systems with unmatched nonlinear interconnections. The
desired reference signals are allowed to be time-varying. A decentralised sliding mode control
scheme has been proposed to satisfy the reachability condition. This drives the interconnected
system onto the pre-designed sliding surface. A set of conditions is introduced to guarantee that
the output tracking errors are uniformly ultimately bounded while all the state variables of the
interconnected system are bounded. The application of the developed results to a river pollution
control system has demonstrated that the proposed approach is effective and practicable.





Chapter 5

Speed Tracking Control of Underactuated
High-Speed Trains Using Sliding Mode
Techniques

This chapter focuses on dealing with the speed-tracking problem of underactuated high-speed
train systems. Proper coordinate transformations are introduced to explore systems structure
to facilitate system analysis and control design. Then, system structure-based analysis is
presented to decompose the high-speed train models into large-scale interconnected systems
with special structure where both internal and external uncertainties are considered to reflect the
practical situation. Decentralised sliding mode controllers are designed such that the resulting
closed-loop systems are uniformly ultimately bounded to guarantee that the output tracking
errors are uniformly bounded while all the system states are bounded. A simulation is carried
out on a high-speed train with eight carriages to demonstrate that the proposed controller is
effective and has high robustness against disturbances.
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5.1 Introduction

Trains have emerged as a revolutionary mode of transportation in recent decades, transforming
the way people travel and significantly impacting the global transportation landscape. With their
unparalleled speed, efficiency, and numerous benefits, trains have become a vital component of
modern societies. Among the trains in operation, the underactuated high-speed trains (see, e.g.,
[67, 127]) stand out as one of the most typical examples with the physical distribution of power
units at the midpoint of the entire train length. These “units" can be individual units or multiple
groups [45, 86], remotely controlled by a guiding locomotive.

Underactuated high-speed trains are special, not only because of their train structure, but
also because they are a type of transportation vehicle that runs on rails. Since all trains run
on finite rail lines, there are strict requirements for speed control between trains to ensure
safety. Typically, a train line is divided into many small intervals, and the speed of the train
is calculated automatically for each interval to avoid potential traffic accidents caused by
train collisions. Therefore, speed tracking is essential in control of high-speed trains (see
[7],[56],[66]). An optimization approach for the speed trajectory of high-speed train is studied
in [88] where the high-speed train is considered as a whole system, and the research does not
focus on the dynamic performance between the carriages of the running train. The railway
system (see, e.g., [29], [35]), as a very special large-scale system, has played a very important
role in human development. A train usually consists of many carriages where each carriage only
receives dynamic influences from its adjacent carriages directly. The enthusiasm for research
on such special large-scale systems continues to grow. For example, tracking and braking
control schemes for high-speed trains subject to traction and braking failures are studied in
[108], where the train model studied is based on a rather special chain structure which can
be considered as one of typical large-scale interconnected systems. However, the research on
the robustness and speed tracking of high-speed trains from a decentralised perspective is still
limited.

When studying large-scale systems, it is required to consider disturbances in the system
modelling, in order to make the model more realistic. Sliding mode control is always an
optimal choice (see, e.g., [70], [69]) for dealing with disturbances. By using some coordinate
transformations [14], a large-scale system can be transformed into a sliding mode regular
form. At this point, the matched disturbance is brought into the zero space of the system
in the new coordinate and thus does not affect the output performance of the system. Like
in [74], a nonlinear sliding mode controller is studied to deal with an automated highway
system with some certain disturbance, under which every vehicle is controlled within a safe
distance. Another example of designing a controller based on sliding mode techniques is the
interconnected power system. The significant penetration of renewable energy resources and
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ever-rising load demand often affect the smooth operation of power systems. Therefore, in the
control field of power systems, anti-interference and robust control are particularly prominent.
[124] takes advantage of the inherent advantages of sliding mode control and combines it
with the design of an observer to supplement the shortcomings of sliding mode techniques, in
which the proposed controller ultimately enables the closed-loop power system to have a good
robustness.

It should be noted that tracking control of large-scale systems have received great attention
and great achievement has been made recently. In [78], adaptive fuzzy control is employed to
solve the tracking problem of large-scale systems. Additionally, [77] also studied tracking of
large-scale systems, but the ideal signal in [77] is generated and referenced by another dynamic
model with a similar structure. What’s more, in [78, 77] strict limitations on the structure
of large-scale systems are required. A four-body vehicle system is considered in [68] and
the tracking problem is considered, but a centralised control approach is used which may not
work in reality when information transfer between subsystems are blocked. It should be noted
that the research work using decentralised sliding mode control to solve the high-speed train
tracking control problem are very little.

Starting from establishing a mathematical model of a high-speed train based on Newton’s
second law and some existed knowledge, this chapter takes into account air resistance for certain
carriages due to the high speed of the train, in order to make the model more general. Unlike
some other studies that treat the entire train as a single entity which neglect the interaction
between carriages, this chapter mainly focuses on the stability research between each carriage
of the train. By cleverly transforming the mathematical model, the train model is divided
into smaller subsystems, allowing mature large-scale system theory to be used to control
the complex internal dynamics of the train. A decentralised control based on sliding mode
technique is proposed to address the speed tracking problem of high-speed trains. Even with
external and internal disturbances, the system can still exhibit a good robustness. Finally, a
high-speed train system with eight carriages is used to demonstrate the obtained theoretical
results. The simulation result shows that the control theory proposed in this chapter is consistent
with expectations.

5.2 Multi-Body System

5.2.1 Description of a Carriage Motion

Consider the ith carriage in a high-speed train as shown in Fig. 5.1 where the carriage is
connected by springs and dampers with its adjacent carriages.
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Fig. 5.1 Mechanical analysis of the ith carriage

According to the Newton’s second law of motion and [68], its dynamical equation is given
by

Miz̈i(t) = Fi(t)+Fi−1(t)−Fi+1(t)−Fri(t) (5.1)

where Mi is the mass of the ith carriage. zi denotes the corresponding distance, and Fi is the
engine traction force. Fi−1 and Fi+1 are the restoring forces caused by the connection of the
adjacent carriages. Fri is the resistive force.

Due to the relatively small displacement, the restoring force is mathematically modelled as
a linear function which is given by

Fi+1(t) = ki(zi − zi+1)+di(żi − żi+1) (5.2)

where the known constants ki and di denote the spring and damping parameters respectively. zi,
zi+1 and żi, żi+1 are the ith and (i+1)th distances and the corresponding speeds respectively.

Assumption 5.2.1 The resistance force Fri(t) satisfies

Fri(t) = bio +bivvi(t)+biav2
i (t) (5.3)

where vi(t) is the ith carriage speed and the parameters bio,biv and bia are positive constants.

Remark 5.2.1 The first two terms are considered as rolling mechanical resistance, and the last
term biav2

i (t) denotes aerodynamic drag. Similar to the work (see, e.g. [11, 123]), aerodynamic
drag is included in the first carriage, which is a motor carriage (locomotive) in the model of
this chapter. Note that only the rolling resistance is considered for other carriages (except the
locomotive).

Consider a class of high-speed train whose engines are geographically distributed. Its
carriages are shown in Fig. 5.2 where the trailer carriages do not have a motor, while the motor
carriages do.
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Motor UnitTrailer Unit

Fig. 5.2 Trailer carriage (Left) & motor carriage (Right)

For convenience of description in modelling the train system, the first carriage is assumed
to be a motor carriage. The train is then divided into a number of subsystems. Each subsystem
contains only one motor carriage and any other carriages within the subsystem should be trailer
carriages situated after the motor carriage. Based on these rules, it is straightforward to see that
the number of subsystems depends on the number of motor carriages which the train has.

Assume that there are n̄i carriages in the ith subsystem for i = 1,2, ...,N which is shown as

Mi,1,Mi,2, ...,Mi,n̄i

where Mi, ji denotes the mass of the jith carriage in the ith subsystem, ji = 1,2, ..., n̄i.

�,� �,� �,� �,� �,�   M�,�   M�,�

�,� �,� �,� �,� �,� �,� �,� �,�
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1 2

3

3

Fig. 5.3 Trains with 3 subsystems

In the upper graph of Fig. 5.3, the train has seven carriages which are separated into
three subsystems: the first two carriages (M1,1 and M1,2) forms subsystem 1, the middle three
carriages (M2,1, M2,2 and M2,3) forms subsystem 2 while the last two carriages (M3,1 and M3,2)
forms subsystem 3. In the lower graph of Fig. 5.3, the train has eight carriages which are
divided into three subsystems as well: the first three carriages (M1,1, M1,2 and M1,3) forms
subsystem 1, the middle two carriages (M2,1 and M2,2) forms subsystem 2 while the last three
carriages (M3,1, M3,2 and M3,3) forms subsystem 3. Two examples are listed in Fig. 5.3 to
illustrate potential subsystem groupings.
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5.2.2 Mathematical Modelling

Compared with the original model in [68] and from the analysis above, a new dynamic equation
of the high-speed train system including aerodynamic drag is given by

Mi, ji z̈i, ji = Fi, ji(t)− ki, ji(zi, ji − zi, ji+1)− ki, ji−1(zi, ji − zi, ji−1)−di, ji(żi, ji − żi, ji+1)

−di, ji−1(żi, ji − żi, ji−1)− (bi, jio +bi, jivżi, ji +bi, jiaż2
i, ji) (5.4)

where Mi, ji is the mass of the jith carriage in the ith subsystem. ki, ji and di, ji are spring
and damping parameters of the corresponding carriage for i = 1,2, ...,N and ji = 1,2, ..., n̄i.
bi, jio, bi, jiv and bi, jia denote the corresponding friction parameters. zi, ji and żi, ji are the distance
and the speed. The traction force Fi, ji and the parameter bi, jia are given by

Fi, ji

̸= 0, ji = 1

= 0, ji = 2, ..., n̄i.
bi, jia

̸= 0, i = ji = 1

= 0, others.
(5.5)

Moreover,

k1,0 = d1,0 = 0, z1,0 = ż1,0 = 0,

kN,n̄N = dN,n̄N = 0, zN,n̄N+1 = żN,n̄N+1 = 0,

ki,0 = ki−1,n̄(i−1)(1 < i ⩽ N), di,0 = di−1,n̄(i−1)(1 < i ⩽ N),

zi,0 = zi−1,n̄(i−1)(1 < i ⩽ N), żi,0 = żi−1,n̄(i−1)(1 < i ⩽ N),

zi,n̄i+1 = zi+1,1(1 ⩽ i < N), żi,n̄i+1 = żi+1,1(1 ⩽ i < N).

Remark 5.2.2 The description above is introduced to guarantee that all the parameters in-
volved in the system (5.4) are well defined for all i = 1,2, ...N and ji = 1,2, ..., n̄i. For example,
some parameters of the 0th and (n̄N +1)th carriages exist mathematically which do not exist in
practice due to the special physical location of the first and the last carriages in some certain
subsystems.

5.3 System Structure-Based Analysis

Some uncertainties in the isolated subsystems and interconnections are added into the modelling
of the system (5.4) for practical reason.
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5.3.1 A General Framework

For (5.4), the following coordinate transformation is introduced:[
xi,(2 ji−1)

xi,(2 ji)

]
:=

[
zi, ji

żi, ji

]
(5.6)

where i= 2, ...,N and ji = 1,2, .., n̄i. From (5.6), xi,(2 ji−1) represents the distance of the carriage,
while xi,(2 ji) is the corresponding speed of the jith carriage in the ith subsystem.

Remark 5.3.1 It should be noted that the subscript 2 ji in (5.6) represents 2× ji, and this will
be applied in similar expressions throughout this chapter. The multiplication sign is just omitted
to make the expression more concise.

It is assumed that the speed of the first carriages żi,1 are measurable and taken as the outputs.
Then, (5.4) can be described by an interconnected system with N subsystems as follows:

ẋi,(2 ji−1) = xi,(2 ji), (5.7)

ẋi,(2 ji) =
ki,( ji−1)

Mi, ji
xi,(2 ji−3)+

di,( ji−1)

Mi, ji
xi,(2 ji−2)−

ki, ji + ki,( ji−1)

Mi, ji
xi,(2 ji−1)

−
di, ji +di,( ji−1)+bi, jiv

Mi, ji
xi,(2 ji)+

ki, ji
Mi, ji

xi,(2 ji+1)+
di, ji
Mi, ji

xi,(2 ji+2)

+
Fi, ji
Mi, ji

−
(bi, jio +bi, jiax2

i,(2 ji)
)

Mi, ji
+∆i, ji, (5.8)

yi = xi,2, (5.9)

where

∆i, ji =

∆Φi(xi), ji = 1

∆Ψi,(2 ji)(x), ji = 2, ..., n̄i

Fi, ji is the input. xi = col(xi,1,xi,2, ...,xi,2n̄i) and x = col(x1, ...,xN) are system states. ∆Φi(xi)

represent the uncertainties of the corresponding subsystem and ∆Ψi,(2 ji)(x) denote the uncer-
tainties in the interconnection for i = 1,2, ...,N and ji = 1,2, ..., n̄i.

The objective of this chapter is to design a kind of decentralised controller such that the
speed of each motor carriage yi(t) can track the given desired signal yd(t), i.e.,

lim
t→∞

|yi(t)− yd(t)|= 0 (5.10)

for i = 1,2, ...,N, while both the distance error zi,( ji+1)(t)− zi, ji(t) and the speed of the ith
trailer carriage żi, ji(t) are bounded for ji ̸= 1.
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The following assumptions are applied to system (5.7)-(5.9).

Assumption 5.3.1 The desired output signal yd(t) and its first time derivative ẏd(t) are smooth,
known and bounded for all t ∈ [0,∞).

Assumption 5.3.2 There exist known smooth mapping ρi(xi) and µi,(2 ji)(x) for i = 1,2, ...,N
such that

(i) |∆Φi(xi)| ≤ ρi(xi)∥xi∥,
(ii) |∆Ψi,(2 ji)(x)| ≤ µi,(2 ji)(x)∥x∥ ( ji = 2, ..., n̄i).

For (5.8), the following feedback transformation is introduced

Fi,1 =−ki−1,n̄(i−1)xi−1,(2n̄(i−1)−1)−di−1,n̄(i−1)xi−1,2n̄(i−1) + ki,1xi,1 +(di,1 +bi,1v)xi,2

− ki,1xi,3 −di,1xi,4 +bi,1o +bi,1ax2
i,2 +Mi,1vi (5.11)

where bi,1a satisfies (5.5) and vi is the new input to be designed later. The transformed system
is given by

ẋi,(2 ji−1) = xi,(2 ji), (5.12)

ẋi,(2 ji) =



vi +∆Φi(xi), ji = 1
ki,( ji−1)

Mi, ji
xi,(2 ji−3)+

di,( ji−1)
Mi, ji

xi,(2 ji−2)−
ki, ji+ki,( ji−1)

Mi, ji
xi,(2 ji−1)

−di, ji+di,( ji−1)+bi, jiv

Mi, ji
xi,(2 ji)+

ki, ji
Mi, ji

xi,(2 ji+1)

+
di, ji
Mi, ji

xi,(2 ji+2)−
bi, jio
Mi, ji

+∆Ψi,(2 ji)(x), ji = 2, ..., n̄i

yi = xi,2. (5.13)

where vi is the system input. It is easy to see that the dynamic equation (5.12)-(5.13) is in a
regular form which will facilitate the following sliding mode control design.

An additional coordinate transformation Ti, for i = 1,2, ...,N, is introduced as follows

Ti :

[
ξi

ei

]
=


ξi,1

ξi,ıi

ξi,ℏi

ei

=


x(i−1),1 − xi,1

xi,1 · 1⃗i − xi,(2ℓi−1)

xi,(2ℓi)

xi,2 − yd

 (5.14)

where the partial states ξi = col(ξi,1,ξi,2, ...,ξi,2n̄i−1) ∈ R2n̄i−1, the variables ei, x(i−1),1, xi,1,
xi,2 and yd are scalars, 1⃗i = col(1,1, ...,1) ∈ Rn̄i−1, ıi = 2, ..., n̄i, ℏi = n̄i +1, n̄i +2, ...,2n̄i −1
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and ℓi = 2, ..., n̄i. The system (5.12)-(5.13) after (5.14) is given by

ξ̇i,1 = ei−1 − ei, (5.15)

ξ̇i,2 = ei + yd −ξi,(n̄i+1), (5.16)
...

ξ̇i,n̄i = ei + yd −ξi,(2n̄i−1), (5.17)

ξ̇i,(n̄i+1) =
ki,1 + ki,2

Mi,2
ξi,2 −

ki,2

Mi,2
ξi,3 −

di,1 +di,2 +bi,2v

Mi,2
ξi,(n̄i+1)

+
di,2

Mi,2
ξi,(n̄i+2)+

di,1

Mi,2
ei +

di,1

Mi,2
yd −

bi,2o

Mi,2
+Πi,2(ξ ,e), (5.18)

...

ξ̇i,(2n̄i−1) =−
ki,(n̄i−1)

Mi,n̄i

ξi,(n̄i−1)+
ki,(n̄i−1)+ ki,n̄i

Mi,n̄i

ξi,n̄i −
ki,n̄i

Mi,n̄i

ξ(i+1),1

+
di,(n̄i−1)

Mi,n̄i

ξi,(2n̄i−2)−
di,(n̄i−1)+di,n̄i +bi,n̄iv

Mi,n̄i

ξi,(2n̄i−1)

+
di,n̄i

Mi,n̄i

ei+1 +
di,n̄i

Mi,n̄i

yd −
bi,n̄io

Mi,n̄i

+Πi,n̄i(ξ ,e), (5.19)

ėi = vi +Γi(ξi,ei)− ẏd, (5.20)

where

Γi(ξi,ei) = Ti∆Φi|col(ξi,ei)=Tixi, (5.21)

Πi, ji(ξ ,e) = Ti∆Ψi,2 ji|col(ξ ,e)=T x, ( ji = 2, ..., n̄i) (5.22)

where ξ = col(ξ1,ξ2, ...,ξN) and e = col(e1,e2, ...,eN). ξi,ei and Ti are defined in (5.14) and
T = diag(T1,T2, ...,TN).

Remark 5.3.2 In (5.14), the scalar ξi,1 is the distance difference between the (i−1)th and the
ith motor carriages. The vector ξi,ıi denotes the distance difference between the motor carriage
and other trailer carriages in the ith subsystem while the vector ξi,ℏi denotes the speed of the
trailer carriages in the ith subsystem. The scalar ei is the speed difference between the ith
motor carriage and the desired signal yd . By introducing (5.14), system (5.12)-(5.13) will be
transferred to (5.15)-(5.20). The analysis will now focus on (5.15)-(5.20) with state variables
(ξi,ei) which avoid the unbounded case of state variables xi if system (5.12)-(5.13) is studied.
This is consistent with real high-speed systems.
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5.3.2 Model when n̄i = 2

In order to simplify the statement, the train with N subsystems where each subsystem with
n̄i = 2 carriages is to be considered in this chapter.

In this case, the transformed interconnected system (5.15)-(5.20) can be described in a
compact form by

ξ̇i = Ai11ξi +Ai12ei +Hi1(ξ ,e,yd), (5.23)

ėi = Bivi +Hi2(ξ ,e, ẏd), (5.24)

where ξi = col(ξi1,ξi2,ξi3), for i = 1,2, ...,N,

Ai11 =

 0 0 0
0 0 −1

0 ki,1+ki,2
Mi,2

−di,2+di,1+bi,2v
Mi,2

 , Ai12 =

 −1
1

di,1
Mi,2

 ,

Hi1 =

 ei−1

yd
di,1+di,2

Mi,2
yd +

di,2
Mi,2

ei+1 −
ki,2
Mi,2

ξ(i+1),1 −
bi,2o
Mi,2

+Πi(ξ ,e)

 ,

Bi = 1, Hi2 = Γi(ξi,ei)− ẏd,

(5.25)

the uncertainties Γi(ξi,ei) and Πi(ξ ,e) are

Γi(ξi,ei) = Ti∆Φi|col(ξi,ei)=Tixi, (5.26)

Πi(ξ ,e) = Ti∆Ψi,2 ji|col(ξ ,e)=T x, ( ji = 2, ..., n̄i), (5.27)

where ξ and e are defined after (5.22).

5.4 Sliding Mode Stability Analysis

This section mainly focuses on designing a specific sliding surface which depends on the output
tracking errors. Then the fundamental stability analysis of the sliding dynamics is discussed.

5.4.1 Sliding Surface Design

For (5.13), introduce the tracking errors ei as

ei = yi(t)− yd(t), i = 1,2, ...,N. (5.28)
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Define an error dependent hyperplane as

col(e1,e2, ...,eN) = 0. (5.29)

When the system (5.23) attains the sliding surface, the sliding dynamic ξ s
i is given by

ξ̇
s
i = Ai11ξ

s
i +H∗

i1(ξ
s,yd) (5.30)

for i = 1,2, ...,N, ξ s = col(ξ s
1 ,ξ

s
2 , ...,ξ

s
N), ξ s

i = col(ξ s
i1,ξ

s
i2,ξ

s
i3) and

H∗
i1(ξ

s,yd) =

 0
yd

di,1+di,2
Mi,2

yd −
ki,2
Mi,2

ξ s
(i+1),1 −

bi,2o
Mi,2

+Πi(ξ
s)

 . (5.31)

The objective now is to study the stability of (5.30) which is rewritten in the following
compact way

ξ̇
s = A∗

11ξ
s +H∗

1 (ξ
s,yd) (5.32)

where ξ s = col(ξ s
1 ,ξ

s
2 , ...,ξ

s
N) is the system state and H∗

1 (·) = col(H∗
11,H

∗
21, ...,H

∗
N1) with H∗

i1(·)
is defined in (5.31),

A∗
11 =


A111 a111

A211 a211
. . . . . .

A(N−1),11 a(N−1),11

AN,11

 , (5.33)

where the matrix Ai11 for i = 1,2, ...,N is defined in (5.25) and the additional matrices a j11 are
given by

a j11 =

 0 0 0
0 0 0

− k j,2
M j,2

0 0

 . (5.34)

where j = 1,2, ...,N −1.

Remark 5.4.1 It is assumed that the interconnected uncertainties ∆Ψi,(2 ji)(x) satisfy the As-
sumption 5.3.2. Combining with the inequality ∥x∥ ≤ ∑

N
i=1 ∑

4
j=1 |xi, j|, the partial term Πi(ξ

s)
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in (5.31) after the transformation (5.22) becomes

Πi(ξ
s)≤ µi(T−1(ξ s))(

N

∑
i=1

3

∑
j∗=1

|ξi, j∗|) (5.35)

where i = 1,2, ...,N, and ξ s is defined after (5.30).

5.4.2 Properties of the Sliding Motion

From system (5.32) with A∗
11 defined by (5.33) and (5.34), it follows that

ξ̇
s
11 = yd, (i.e., ż1,1(t) = yd) (5.36)

ξ̇
s
i1 = 0, (i.e., ż(i−1),1(t)− żi,1(t) = 0) (5.37)

where i = 2,3, ...,N.

Remark 5.4.2 Consider (5.36) and from (5.6), ξ̇ s
11 = ẋ1,1 = x1,2 = yd . Given that x1,2 and x1,1

represent the speed and distance of the motor carriage in the first subsystem respectively, the
speed x1,2 tracks the desired speed yd which is consistent with the objective. Therefore, in the
following analysis, the state variable ξ s

11 can be separated from the rest of the states in (5.32).

Remark 5.4.3 Consider (5.37) and from (5.6), the states ξ s
i1 = z(i−1),1(t)−zi,1(t)= z(i−1),1(0)−

zi,1(0), for i = 2,3, ...,N which means the distance between the adjacent motor carriages is
invariant, the same as the initial value of the distance. Similarly, in the analysis of the simplified
system stability, the state variables ξ s

21, ...,ξ
s
N1 are independent as well. It follows that only

the partial states ξ̄ s = col(ξ̄ s
1 , ξ̄

s
2 , ..., ξ̄

s
N) where ξ̄ s

i = col(ξ s
i2,ξ

s
i3) for i = 1,2, ...,N need to be

considered.

According to Remarks 5.4.2-5.4.3, the new distribution matrix Ā∗
11 are as follows

˙̄
ξ

s = Ā∗
11ξ̄

s + H̄∗
1 (ξ̄

s,yd) (5.38)

where ξ̄ s = col(ξ̄ s
1 , ξ̄

s
2 , ..., ξ̄

s
N) with ξ̄ s

i = col(ξ s
i2,ξ

s
i3) for i = 1,2, ...,N.

Ā∗
11 =


Ā111 ā111

Ā211 ā211
. . . . . .

Ā(N−1),11 ā(N−1),11

ĀN,11

 , (5.39)
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and

Āi11 =

[
0 −1

ki,1+ki,2
Mi,2

−di,2+di,1+bi,2v
Mi,2

]
, ā j11 =

[
0 0

− k j,2
M j,2

0

]
. (5.40)

Moreover, H̄∗
1 (ξ̄

s,yd) = col(H̄∗
11, H̄

∗
21, ..., H̄

∗
N1), where

H̄∗
i1 =

[
yd

di,1+di,2
Mi,2

yd −
bi,2o
Mi,2

+Πi(ξ̄
s)

]
, (5.41)

for i = 1,2, ...,N, and j = 1,2, ...,N −1 in (5.40).
According to the conclusion in (5.35), H̄∗

1 (·) in (5.38) satisfies

∥ H̄∗
1 (ξ̄

s,yd) ∥≤∥ H̄∗s
1 (ξ̄ s) ∥+ ∥ H̄∗y

1 (yd) ∥ (5.42)

where the terms
H̄∗s

1 (ξ̄ s) = col(H̄∗s
11(ξ̄

s), H̄∗s
21(ξ̄

s), ..., H̄∗s
N1(ξ̄

s)),

H̄∗y
1 (yd) = col(H̄∗y

11(yd), H̄
∗y
21(yd), ..., H̄

∗y
N1(yd))

and

H̄∗s
i1 (ξ̄

s) =

[
0

µi(·)(∑N
i=1 ∑

3
j∗i =1 |ξi, j∗i |)

]
, (5.43)

H̄∗y
i1 (yd) =

[
yd

di,1+di,2
Mi,2

yd −
bi,2o
Mi,2

]
. (5.44)

The element H̄∗s
1 (ξ̄ s) only depends on the state ξ̄ s while H̄∗y

1 (yd) only depends on yd .

Assumption 5.4.1 The matrix Ā∗
11 in (5.38) is assumed to be a Hurwitz matrix.

Based on the Assumption 5.4.1, for any positive definite matrix Q, the following Lyapunov
equation has a corresponding unique solution P > 0

Ā∗⊤
11 P+PĀ∗

11 =−Q. (5.45)

Theorem 5.4.1 Under the Assumptions 5.3.1, 5.3.2 and 5.4.1, the sliding mode dynamics
(5.38) are uniformly ultimately bounded if there is a domain Ω\{0} such that M⊤+M > 0 in



88 Speed Tracking of Underactuated High-Speed Trains Using Sliding Mode Techniques

Ω\{0}, where the matrix M(·) is defined by

M =



q 0 · · · 0 0 · · · 0 0
p1 q+ p1 · · · p1 p1 · · · p1 p1
...

... . . . ...
... . . . ...

...
0 0 · · · q 0 · · · 0 0
pi pi · · · pi q+ pi · · · pi pi
...

... . . . ...
... . . . ...

...
0 0 · · · 0 0 · · · q 0

pN pN · · · pN pN · · · pN q+ pN


(5.46)

with q = λmin(Q) and pi = −2∥P∥µi(·) for i = 1,2,3, ...,N. λmin(Q) denotes the minimum
eigenvalue of the matrix Q.

Proof For the modified sliding mode dynamics (5.38), consider the following Lyapunov candi-
date function

V (ξ̄ s) = ξ̄
s⊤Pξ̄

s (5.47)

where P satisfies (5.45). Then, the first derivate of V (ξ̄ s) is given by

V̇ (ξ̄ s)

= ˙̄
ξ

s⊤Pξ̄
s + ξ̄

s⊤P ˙̄
ξ

s

=
(

Ā∗
11ξ̄

s + H̄∗
1 (ξ̄

s,yd)
)⊤

Pξ̄
s + ξ̄

s⊤P
(

Ā∗
11ξ̄

s + H̄∗
1 (ξ̄

s,yd)
)

= ξ̄
s⊤Ā∗⊤

11 Pξ̄
s + ξ̄

s⊤PĀ∗
11ξ̄

s + H̄∗
1 (ξ̄

s,yd)
⊤Pξ̄

s + ξ̄
s⊤PH̄∗

1 (ξ̄
s,yd). (5.48)

Combining with (5.42), it follows from (5.48) that

V̇ (ξ̄ s)

≤−ξ̄
s⊤Qξ̄

s +2ξ̄
s⊤PH̄∗

1 (ξ̄
s,yd)

≤−λmin(Q)∥ξ̄
s∥2 +2∥ξ̄

s∥∥P∥ ∥ H̄∗
1 (ξ̄

s,yd) ∥

≤ −1
2

λmin(M⊤+M)∥ξ̄
s∥2 +2∥ξ̄

s∥∥P∥∥H̄∗y
1 (yd)∥

≤ −1
2

(
λmin(M⊤+M)∥ξ̄

s∥−4∥P∥∥H̄∗y
1 (yd)∥

)
∥ξ̄

s∥ (5.49)



5.5 Control Law Synthesis 89

where (5.45) is used to establish the result above. It is clear to see that V̇ (·)≤ 0, if

∥ξ̄
s∥ ≥

4∥P∥∥H̄∗y
1 (yd)∥

λmin(M⊤+M)
. (5.50)

Hence, the conclusion follows.

5.5 Control Law Synthesis

For the simplified interconnected system (5.23)-(5.24), the corresponding reachability condition
is given by

N

∑
i=1

ei(t)ėi(t)
|ei(t)|

< 0. (5.51)

The control signal applied to the plant is designed as

vi =− ei

|ei|

(
Ki(ξi,ei)+ |ẏd|

)
(5.52)

where Ki(·) is to be designed later.

Theorem 5.5.1 Under Assumptions 5.3.1 and 5.3.2, the control signal (5.52) drives the states
of the closed-loop system (5.23)-(5.24) to the composite sliding surface (5.29) and maintains a
sliding motion on it thereafter if the controller gain Ki(ξi,ei) in (5.52) satisfies

N

∑
i=1

Ki(ξi,ei)>ρi(T−1(ξi,ei))(
3

∑
m=1

|ξi,m|+ |ei|) (5.53)

where ρi(·) is defined in Assumption 5.3.2.

Proof From the error dynamics (5.24) for n̄i = 2, it follows

ėi = vi +Γi(ξi,ei)− ẏd (5.54)

for i = 1,2, ...,N. According to (5.52)-(5.54),

eiėi

|ei|
=

ei

|ei|

(
Γi(ξi,ei)− ẏd

)
−Ki(ξi,ei)−|ẏd|. (5.55)

According to (5.26), it follows from Assumption 5.3.2 that

|Γi(·)| ≤ ρi(T−1(ξi,ei))(
3

∑
m=1

|ξi,m|+ |ei|). (5.56)
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Substituting the inequality (5.56) into (5.55), it follows that

N

∑
i=1

ei(t)ėi(t)
|ei(t)|

<−
N

∑
i=1

Ki(ξi,ei)+ρi(T−1(ξi,ei))(
3

∑
m=1

|ξi,m|+ |ei|). (5.57)

Then, the reachability condition (5.51) is satisfied with the condition in (5.53).

Remark 5.5.1 Recall the feedback transformation (5.11), the decentralised controller in the
original coordinate is given by

Fi,1 =−ki−1,n̄(i−1)xi−1,(2n̄(i−1)−1)−di−1,n̄(i−1)xi−1,2n̄(i−1) + ki,1xi,1 +(di,1 +bi,1v)xi,2

− ki,1xi,3 −di,1xi,4 +bi,1o +bi,1ax2
i,2 −

Mi,1(yi − yd)

|yi − yd|
(Ki(ξi,yi,yd)+ |ẏd|) (5.58)

can drive the system (5.7)-(5.9) when n̄i = 2 to the corresponding sliding surface.

According to the Theorems 5.4.1 and 5.5.1, the system (5.23)-(5.24) with the proposed con-
troller (5.52) is proved to be uniformly ultimately bounded (i.e., ∥ξ∥ is uniformly ultimately
bounded). And, the asymptotic stable errors ei with the limitation to the desired signal cause
the bounded system output yi, due to yi = ei + yd for i = 1,2, ...,N.

5.6 Example: A High-Speed Train

Consider the following desired signal

yd(t) = tanh(t), t ≥ 0 (5.59)
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Fig. 5.4 Time response of yd(t)
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The selected desired signal shown in Fig. 5.4 reflects the controlled speed of a train system
in reality when departing from a station. Therefore, it is reasonable to set the desired tracking
signal as a hyperbolic function in (5.59). Such signals are continuous and differentiable across
the considered domain which satisfies the Assumption 5.3.1.
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Fig. 5.5 Model of a high-speed train (N = 4)

For simulation purpose, consider the eight carriages connected by the springs and dampers
as shown in Fig. 5.5 where four carriages M1,M2,M3 and M4 are with motors. The parameters
for i = 2,3,4 are chosen as [68]

M1 = M2 = M3 = M4 = 126000kg,

T1 = T2 = T3 = T4 = 101090kg, k11 = k12 = k41 = 30×104N/m,

k21 = 30×109N/m, k22 = 30×108N/m, k31 = 40×1011N/m,

k32 = k42 = 40×1010N/m, d11 = d12 = 40×104Ns/m, d21 = d22 = 40×105Ns/m,

d31 = 50×104Ns/m, d32 = d42 = 50×105Ns/m, d41 = 30×104Ns/m,

b1,1o = 7.665×10−3N/kg, b1,1a = 2.06×10−5Ns2/(m2kg),

b1,2o = bi,1o = bi,2o = 6.362×10−3N/kg,

b1,1v = b1,2v = bi,1v = bi,2v = 1.08×10−4Ns/(mkg),

The eigenvalues of the matrix Ā∗
11 are −0.8,−7.1,−39.6±570i,−27.2±6597.3i and −26.2±

1989.0i, which satisfies the Assumption 5.4.1. For simulation purposes, the uncertainties satisfy

|∆Φi| ≤ αi1|xi2|+αi2|xi4|,
|∆Ψ1| ≤ sin2(x14 + x34)∥x∥, |∆Ψ2| ≤ 0.5cos2(x11 + x44 − x13)∥x∥,

|∆Ψ3| ≤
3
2

cos2(x23 − x11 + x44)∥x∥, |∆Ψ4| ≤
1
3

sin2(x31 − x33)∥x∥,

where αi1 and αi2 are known constants for i = 1,2,3,4.
According to the Assumption 5.3.2 and (5.53), the controller gain Ki(·) is given by

Ki(ξi,ei, t)> αi1|xi2|+αi2|xi4|+σ , (5.60)
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for i = 1,2,3,4 and σ = 1, α11 = 1,α12 = 2.1,α21 = 1,α22 = 2,α31 = 1,α32 = 0.5,α41 = 2
and α42 = 0.7.
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Fig. 5.6 Time response of the speed
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Fig. 5.7 Time response of the distance errors between adjacent carriages

The tracking results are shown in Fig. 5.6 where we could find the motor carriages
M1,M2,M3 and M4 can track the desired signal yd(t), though there exist uncertainties in the
system. The trailer carriages T1,T2,T3 and T4 also have similar dynamic performance, and the
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bounded distance errors are shown in Fig. 5.7. This example demonstrates the effective result
developed in this chapter.

5.7 Summary

A kind of system structural-based partition has been applied to a high-speed train model which
allows the train system to be treated as a large-scale system interconnected with a number
of subsystems. By using a decentralised sliding mode-based tracking control, a closed-loop
high-speed train system shows good tracking performance and high robustness, even in the
presence of external and internal uncertainties. A numerical example of a high-speed train with
eight carriages demonstrates the effective result in this chapter.





Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, a research of sliding mode-based tracking control for large-scale interconnected
systems has been presented. System structural analysis has been considered to formulate a
standard sliding mode form and has achieved robustness against the internal disturbance by
introducing some local diffeomorphisms. Some novel approaches have been developed to
tackle tracking problem, to boost the system performance and to estimate the relevant unknown
parameters of the systems.

Basic concepts like control theory, sliding mode methodology and thesis objectives have
been introduced in Chapter 2. Relating mathematical knowledge and other Supplementary
notes are given in Appendix sections.

In Chapters 3 and 4, decentralised controllers are proposed to deal with the output tracking
of nonlinear large-scale interconnected systems with disturbances. A local diffeomorphism is
introduced in Chapter 3 to explore system structure where some assumptions are introduced
like, the interconnections are assumed to be known, the uniform relative degree of relevant
system structural triples are the same (ra

i = rb
i ) and the designed controller does not strictly

adhere to a decentralized structure. And in Chapter 4, a sliding mode controller using output
information is designed. By introducing a non-singular coordinate transformation containing
output information, the original interconnected system is transformed into a kind of systems
with a special structure where the output is merged with partial states. In the end, the output of
the systems in Chapters 3 and 4 can track desired time-varying signals with the corresponding
control schemes.

A new kind of interconnected systems, i.e., underactuated high-speed train, is considered in
Chapter 5. For this system, not all the subsystems have input which means the system does not
have enough actuators. In this case, a sliding mode-based decentralised control is proposed to
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successfully tackle each system that can still track the same desired signal, even if some of the
subsystems are driven and powered by the interconnections. At the end of each chapter (from
Chapter 3 to 5), simulations are performed to show that with the proposed control strategies in
this thesis, the closed-loop systems achieve satisfactory tracking performance.

6.2 Future Work

There are several potential research directions for the future work in tracking control of large-
scale systems related to the topics in this thesis.

More general boundedness of Interconnections: For the control of large-scale systems,
dealing with the dynamic effects caused by interconnections is an inevitable topic. Inter-
connections are normally formed by the interactions between subsystems, which implies the
presence of uncertainties, disturbances, or unmodelled dynamic components in the intercon-
nections. In this thesis, the approach to handling interconnections assumes that the unknown
interconnections are bounded by a known function related to the system states. This known
function is incorporated into the controller design to compensate for the dynamic effects of
the interconnections on individual subsystems. However, in reality, not all system states are
fully measurable, and the assumption above is strong. Therefore, in future research, it is a
promising topic to design decentralised control schemes considering more general boundaries
for interconnections. Furthermore, in the main chapters of this thesis, the controllers proposed
assume that all states of the system are measurable as well. Investigating output feedback
control may be more meaningful than state feedback control in the following research.

Utilisation of Distributed Control: One key aspect of controlling large-scale systems
is to ensure that even if one subsystem experiences a fault or issue, the other subsystems
can continue to operate normally. Decentralised control naturally possesses an advantage in
addressing such challenges due to its unique control structure. However, the existence of
interconnections poses a challenge that decentralised control must confront. In this regard,
distributed control offers similar advantages to decentralised control, but its controller design
allows for a broader collection of system information while ensuring the robustness of individual
subsystems. Therefore, in future designs, developing a class of distributed control algorithms
to address control problems in large systems is also a potential research direction.

Reinforcement with intelligent control: Apart from that, the current advanced control
theories, design methods, and stability analyses are mostly based on well-defined system
models. However, these knowledge face significant limitations and drawbacks when applied to
the analysis of large-scale systems in practical applications. For instance, the mathematical
modelling of the system may be incomplete, leading to the neglect of certain dynamics and
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thereby reducing control performance. Alternatively, the designed controllers may require
strong assumptions and conditions to be applicable, limiting their practicality. These issues
gradually fail to meet the rapidly developing control demands. Given this situation, exploring
the integration of machine learning techniques, such as deep learning or reinforcement learning,
into tracking control algorithms for large-scale systems becomes very interesting. This can
enhance the system’s adaptability, robustness, and performance in handling uncertainties and
complex dynamics.

Focus on intelligence: In the era of modern intelligence, many intelligent agents possess
complex design structures with highly nonlinear models. Additionally, with the advancements
in sensors, obtaining precise and abundant data has become easier. Therefore, when it comes
to controlling complex large-scale systems, a shift from model-based control to data-driven
control can be considered. Data-driven control strategies do not rely on the knowledge of model
parameters or structures but instead directly utilize data to derive control laws. For instance, the
widely used PID control is a form of data-driven control as its control input design is based on
feedback of errors without considering model information. Therefore, utilizing real-time data
collected from sensors and actuators to improve the system’s tracking performance, optimize
control parameters, and handle uncertainties and disturbances, is also worth trying in the future.

Others: With the advancements in technology, the research on large-scale systems is
evolving to encompass the realm of discrete time systems. This expansion is particularly evident
in domains such as network systems and digital communication systems. The integration of
discrete time considerations into the study of large-scale systems is imperative, given the
prevalence of digital technologies in contemporary applications. Whether addressing network
dynamics or enhancing the efficiency of communication systems, the adaptation of research
methodologies to discrete time frameworks becomes essential. This paradigm shift reflects a
growing recognition of the need to align large-system studies with the intricacies of digital and
discrete processes, thereby ensuring the relevance and applicability of research outcomes in the
ever-evolving technological landscape.
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Appendix A

Mathematical Preliminaries

A.1 Young’s inequality for products

In mathematics, Young’s inequality for products is a mathematical inequality about the product
of two numbers. The inequality is named after William Henry Young.

For non-negative real numbers a,b and real numbers p,q such that p,q > 1 and 1
p +

1
q = 1,

then
ab ≤ ap

p
+

bq

q
. (A.1)

The inequality (A.1) is called Young’s inequality.

Elementary case

An elementary case of Young’s inequality is the inequality (A.1) when p = q = 2, that is,

ab ≤ a2

2
+

b2

2
, (A.2)

which also gives rise to the so-called Young’s inequality with ε (valid for every ε > 0).

ab ≤ a2

2ε
+

εb2

2
. (A.3)

Sometimes it is called the Peter-Paul inequality. This name refers to the fact that tighter control
of the second term is achieved at the cost of losing some control of the first term.
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A.2 Euclidean Space

The one-dimensional Euclidean space consists of all real numbers and is denoted by R. The
set of all n-dimensional vectors x = [x1, ...,xn]

⊤, where x1, ...,xn are real numbers, defines the
n-dimensional Euclidean space denoted by Rn. Vectors in Rn can be added by adding their
corresponding components. The inner product of two vectors x = (x1,x2, ...,xn) ∈ Rn and
y = (y1,y2, ...,yn)

⊤ ∈ Rn is x⊤y = ∑
n
i=1 xiyi.

Vector and Matrix Norms

The length of a vector is a non-negative number that describes the extent of the vector in space,
and is sometimes referred to as the vector’s magnitude or the norm. The norm ∥ x ∥ of a vector
x is a real-valued function with the following properties

• ∥ x ∥≥ 0 for all x ∈ Rn, with ∥ x ∥= 0 if and only if x = 0.

• ∥ x+ y ∥≤∥ x ∥+ ∥ y ∥, for all x,y ∈ Rn.

• ∥ αx ∥= |α| ∥ x ∥, for all α ∈ R and x ∈ Rn.

The second property is the triangle inequality. Consider the class of p-norms defined by

∥ x ∥p= (|x1|p + ...+ |xn|p)1/p, 1 ≤ p ≤ ∞

and
∥ x ∥∞= max

i
|xi|.

The three most commonly used norms are ∥ x ∥1,∥ x ∥∞ and the Euclidean norm

∥ x ∥2= (|x1|2 + ...+ |xn|2)1/2 = (x⊤x)1/2.

Quite often when we use norms, we only use properties deduced from the three basic properties
satisfied by any norm. In those cases, the subscript p is dropped, indicating that the norm can
be any p-norm.

An m×n matrix A of real elements defines a linear mapping y = Ax from Rn into Rm. The
induced p-norm of A is defined by1

∥ A ∥p= sup
x ̸=0

∥ Ax ∥p

∥ x ∥p
= max

∥x∥p=1
∥ Ax ∥p

1sup denotes supremum, the least upper bound; in f denotes Infimum, the greatest lower bound.
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which for p = 1,2 and ∞ is given by

∥ A ∥1= max
j

m

∑
i=1

|ai j|, ∥ A ∥2= [λmax(A⊤A)]1/2, ∥ A ∥∞= max
i

n

∑
j=1

|ai j|

where λmax(A⊤A) is the maximum eigenvalue of A⊤A.

A.3 Ordinary differential equations and its properties

This section states some fundamental properties of the solutions of ordinary differential equa-
tions, like existence and uniqueness which are essential for the state equation ẋ = f (t,x) to be
a useful mathematical model of a physical system. In experimenting with a physical system
such as the pendulum, we expect that starting the experiment from a given initial state at time
t0, the system will move and its state will be defined in the (at least immediate) future time
t > t0. Moreover, with a deterministic system, we expect that if we could repeat the experiment
exactly, we could get exactly the same motion and the same state at the same time t > t0. For
the mathematical model to predict the future state of the system from its current state at t0, the
initial-value problem

ẋ = f (t,x), x(t0) = x0 (A.4)

must have a unique solution. This is the question of existence and uniqueness which can be
ensured by imposing some constraints on the right-hand side function f (t,x) of equation (A.4).
The key constraint here is the Lipschitz condition, whereby f (t,x) satisfies the inequality2

∥ f (t,x)− f (t,y) ∥≤ L ∥ x− y ∥ (A.5)

for all (t,x) and (t,y) in the considered neighbourhood of (t0,x0).
An essential factor in the validity of any mathematical model is the continuous dependence

of its solutions on the date of the problem. The least we should expect from a mathematical
model is that arbitrarily small errors in the data will not result in large errors in the solution
obtained by the model.

2∥ · ∥ denotes any p-norm, as defined in Appendix A.2.



112 Mathematical Preliminaries

Existence and Uniqueness

In this section, we present sufficient conditions for the existence and uniqueness of the solution
of the initial-value problem (A.4). By a solution of (A.4) over an interval [t0, t1], it means that a
continuous function x : [t0, t1]→Rn such that ẋ(t) is defined and ẋ(t) = f (t,x) for all t ∈ [t0, t1].
If f (t,x) is continuous in t and x, then the solution x(t) will be continuously differentiable.
It is assumed that f (t,x) is continuous in x, but only piecewise continuous in t, in which
case, a solution x(t) could only be piecewise continuously differentiable. The assumption that
f (t,x) be piecewise continuous in t allows us to include the case when f (t,x) depends on a
time-varying input that may experience step changes with time. We introduce a theorem that
employs the Lipschitz condition to show existence and uniqueness.

Theorem A.3.1 (Local Existence and Uniqueness) If there exists a function f (t,x) be piece-
wise continuous in t and satisfy the Lipschitz condition

∥ f (t,x)− f (t,y) ∥≤ L ∥ x− y ∥

∀x,y ∈ B = {x ∈ Rn| ∥ x− x0 ∥≤ r},∀t ∈ [t0, t1]. Then, there exists some δ > 0 such that the
state equation ẋ = f (t,x) with x(t0) = x0 has a unique solution over [t0, t0 +δ ].

The key assumption in Theorem A.3.1 is the Lipschitz condition (A.5). A function satisfying
(A.5) is said to be Lipschitz in x, and the positive constant L is called a Lipschitz constant.

Lemma A.3.1 Let f : [a,b]×D → Rm be continuous for some domain D ⊂ Rn. Suppose that
[∂ f/∂x] exists and is continuous on [a,b]×D. If, for a convex subset W ⊂ D, there is a constant
L ≥ 0 such that

∥ ∂ f
∂x

(t,x) ∥≤ L

on [a,b]×W, then
∥ f (t,x)− f (t,y) ∥≤ L ∥ x− y ∥

for all t ∈ [a,b],x ∈W, and y ∈W.

The lemma shows how a Lipschitz constant can be calculated using knowledge of [∂ f/∂x].
The Lipschitz property of a function is stronger than continuity. It can be easily seen that if
f (x) is Lipschitz on W , then it is uniformly continuous on W . The converse is not true, as
seen from function f (x) = x1/3, which is continuous, but not locally Lipschitz at x = 0. The
Lipschitz property is weaker than continuous differentiability, as stated in the next lemma.

Lemma A.3.2 If f (t,x) and [∂ f/∂x](t,x) are continuous on [a,b]× D, for some domain
D ⊂ Rn, then f is locally Lipschitz in x on [a,b]×D.
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Lemma A.3.3 If f (t,x) and [∂ f/∂x](t,x) are continuous on [a,b]×Rn, then f is globally
Lipschitz in x on [a,b]×Rn if and only if [∂ f/∂x] is uniformly bounded on [a,b]×Rn.

Theorem A.3.2 (Global Existence and Uniqueness) Suppose f (t,x) be piecewise continu-
ous in t and satisfy the Lipschitz condition

∥ f (t,x)− f (t,y) ∥≤ L ∥ x− y ∥

∀x,y ∈Rn,∀t ∈ [t0, t1]. Then, the state equation ẋ = f (t,x) with x(t0) = x0 has a unique solution
over [t0, t1].

A.4 Gradient and Lie derivatives

The objective of this section is to formalize and generalize the previous intuitive concepts for a
broad class of nonlinear systems. To this effect, we first introduce some mathematical tools
from differential geometry and topology. To limit the conceptual and notational complexity,
we discuss these tools directly in the context of nonlinear dynamic systems (instead of general
topological spaces).

In describing these mathematical tools, we shall call a vector function f : Rn →Rn a vector
field in Rn, to be consistent with the terminology used in differential geometry. The intuitive
reason for this term is that to every vector function f corresponds a field of vectors in an
n-dimensional space (one can think of a vector f (x) emanating from every point x.) In the
following, we shall only be interested in smooth vector fields. By smoothness of a vector field,
we mean that function f (x) has continuous partial derivatives of any required order.

Given a smooth scalar function h(x) of the state x, the gradient of h is denoted by ∇h

∇h =
∂h
∂x

The gradient is represented by a row-vector of elements (∇h) j = ∂h/∂x j. Similarly, given a
vector field f (x), the Jacobian of f is denoted by ∇ f

∇ f =
∂ f
∂x

It is represented by an n×n matrix of elements (∇ f )i j = ∂ fi/∂x j.
Now, given a scalar function h(x) and a vector field f (x), we define a new scalar function

L f h, called the Lie derivative of h with respect to f .
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Definition A.4.1 If there exists a function h : Rn → R be a smooth scalar function, and
f : Rn → Rn be a smooth vector field on Rn, then the Lie derivative of h with respect to f is a
scalar function defined by L f h = ∇h f .

Thus, the Lie derivative L f h is simply the directional derivative of h along the direction of the
vector f .

Repeated Lie derivatives can be defined recursively

L0
f h = h

Li
f h = L f (Li−1

f h) = ∇(Li−1
f h) f i = 1,2, ...

Similarly, if g is another vector field, then the scalar function LgL f h(x) is

LgL f h(x) = ∇(L f h)g

One can easily see the relevance of Lie derivatives to dynamic systems by considering the
following single-output system

ẋ = f (x)

y = h(x)

The derivatives of the output are

ẏ =
∂h
∂x

ẋ = L f h

ÿ =
∂ [L f h]

∂x
= L2

f h

and so on. Similarly, if V is a Lyapunov function candidate for the system, its derivative V̇ can
be written as L fV .

A.5 Diffeomorphisms and State transformations

The concept of diffeomorphism can be viewed as a generalization of the familiar concept
coordinate transformation. It is formally defined as follows:

Definition A.5.1 A function Φ : Rn → Rn, defined in a region Ω, is called a diffeomorphism if
it is smooth, and if its inverse Φ−1 exists and is smooth.
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If the region Ω is the whole space Rn, then Φ(x) is called a global diffeomorphism. Global
diffeomorphisms are rare, and therefore one often looks for local diffeomorphisms, i.e., for
transformations defined only in a finite neighbourhood of a given point. Given a nonlinear
function Φ(x), it is easy to check whether it is a local diffeomorphism by using the following
lemma, which is a straightforward consequence of the well-known implicit function theorem.

Lemma A.5.1 Let Φ(x) be a smooth function defined in a region Ω in Rn. If the Jacobian
matrix ∇Φ is non-singular at a point x = x0 of Ω, then Φ(x) defines a local diffeomorphism in
a subregion of Ω.

A diffeomorphism can be used to transform a nonlinear system into another nonlinear
system in terms of a new set of states, similarly to what is commonly done in the analysis of
linear systems. Consider the dynamic system described by

ẋ = f (x)+g(x)u

y = h(x)

and let a new set of states be defined by z = Φ(x). Differentiation of z yields

ż =
∂Φ

∂x
ẋ =

∂Φ

∂x
( f (x)+g(x)u)

One can easily write the new state-space representation as

ż = f ∗(z)+g∗(z)u

y = h∗(z) (A.6)

where x = Φ−1(z) has been used, and the functions f ∗, g∗ and h∗ are defined obviously.





Appendix B

Assorted mfiles & simulink

In this thesis, MATLAB/SIMULINK software are mainly used to do the simulation. To illustrate
how the simulation was carried out, the example in Chapter 3 is used to show how the Simulink
blocks were built in this thesis. The section B.2.1 shows the MATLAB codes. The section B.3
shows the simulink screenshots1 of the two-inverted pendulums example which is studied in
section 3.5. Apart from that, some other relating materials are attached as an explanation in
this section.

B.1 Pseudo-sliding with a smooth control action

In certain problems, such as control of electric motors and power converters, the control
action is naturally discontinuous and sliding mode ideas can be used to obtain extremely high
performance. Although the control signal obtained from some theoretical analysis is preferable
to the earlier designs in terms of its chattering behaviour, in many situations (e.g. digital
simulation in computers) such a control signal would still not be considered acceptable. A
natural solution is to attempt to smooth the discontinuity in the signum function to obtain an
arbitrarily close but continuous approximation. One possible approximation is the sigmoid-like
function

νδ (s) =
s

(|s|+δ )
(B.1)

where δ is a small positive scalar, which is shown in Fig. B.1. It can be visualised that as
δ → 0, the continuous function νδ (s) can approach the signum function in any accuracy. The

1The simulation demonstrated in section B.3 is based on graphical Simulink and does not include the process
of coordinate transformation, due to the original system (3.55)-(3.56) in Chapter 3 is already in the required form.
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variable δ can be used to trade off the requirement of maintaining ideal performance with that
of ensuring a smooth control action.

Fig. B.1 A differentiable approximation of the signum function

Fig. B.2 shows an ideal sliding mode control action with signum function while Fig. B.3
shows a sliding mode control action where the signum function is replaced by a sigmoid-like
function as shown in Fig. B.1.

Fig. B.2 Evolution of control action with the signum function

Fig. B.3 Evolution of control action with the sigmoid-like function

Such continuous approximations enable ‘sliding mode’ controllers to be utilised in situations
where high frequency chattering effects would be unacceptable. It should be stressed that
ideal sliding no longer takes place: the continuous control action only drives the states to a
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neighbourhood of the switching surface. However, arbitrarily close approximation to ideal
sliding can be obtained by making δ small. In the literature, this is often referred to as pseudo-
sliding. And in the simulink code of the examples in this thesis, the signum function is replace
by the sigmoid-like function with a small δ .

B.2 Matlab code

B.2.1 mfile: Product of the simulation figure

clear
clc

figure(1) % Figure of state variables of the system
subplot(2,2,1)
plot(out.t,out.y1,’k’)
legend(’x_{11}’)
xlim([0,15])
ylim([-1,1.5])
xlabel(’time(s)’)
ylabel(’State Variable x_1’)

subplot(2,2,2)
plot(out.t,out.y2,’k’)
legend(’x_{21}’)
xlim([0,15])
ylim([-1,2])
xlabel(’time(s)’)
ylabel(’State Variable x_2’)

subplot(2,2,3)
plot(out.t,out.x12,’k’)
legend(’x_{12}’)
xlim([0,15])
ylim([-2.5,2])
xlabel(’time(s)’)
ylabel(’State Variable x_1’)
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subplot(2,2,4)
plot(out.t,out.x22,’k’)
legend(’x_{22}’)
xlim([0,15])
ylim([-2,6])
xlabel(’time(s)’)
ylabel(’State Variable x_2’)

figure(2) %Figure of system’s outputs, desired signals and controller inputs
subplot(2,2,1)
plot(out.t,out.y1,’k’)
hold on;
plot(out.t,out.y1d,’--k’)
legend(’y_1’,’y_{1d}’)
xlim([0,15])
ylim([-0.7,2])
xlabel(’time(s)’)
ylabel(’Output and Reference’);
ax = axes(’Position’,[0.2 0.777 0.07 0.13]);
plot(ax,out.t,out.y1d,’--k’);
hold on;
plot(ax,out.t,out.y1,’k’);
axis([14.99 15 0.3251 0.3275]);

x = [0.325 0.27];
y = [0.7 0.83];
annotation(’textarrow’,x,y);

subplot(2,2,2)
plot(out.t,out.y2,’K’)
hold on;
plot(out.t,out.y2d,’--K’)
legend(’y_2’,’y_{2d}’)
xlim([0,15])
ylim([-1,5])
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xlabel(’time(s)’)
ylabel(’Output and Reference’)
ax = axes(’Position’,[0.68 0.7 0.2 0.075]);
plot(ax,out.t,out.y2d,’--K’);
hold on;
plot(ax,out.t,out.y2,’K’);
axis([7 15 -0.005 0.005]);

x = [0.75 0.73];
y = [0.65 0.7];
annotation(’textarrow’,x,y);

subplot(2,2,3)
plot(out.t,out.u1,’k’)
legend(’u_1’)
xlim([0,15])
ylim([-12,15])
xlabel(’time(s)’)
ylabel(’Controller Input u_1’)

subplot(2,2,4)
plot(out.t,out.u2,’k’)
legend(’u_2’)
xlim([0,15])
ylim([-12,12])
xlabel(’time(s)’)
ylabel(’Controller Input u_2’)

B.3 Simulation screenshots
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