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Abstract

Given a Hermitian symmetric space M of noncompact type, we show, among other things, that
the metric compactification of M with respect to its Carathéodory distance is homeomorphic to a
closed ball in its tangent space. We first give a complete description of the horofunctions in the
compactification of M via the realisation of M as the open unit ball D of a Banach space (V.| - )
equipped with a particular Jordan structure, called a JB*-triple. We identify the horofunctions in the
metric compactification of (V.|| -||) and relate its geometry and global topology, via a homeomorphism,
to the closed unit ball of the dual space V*. Finally, we show that the exponential map exp,: V — D
at 0 € D extends to a homeomorphism between the metric compactifications of (V|| -||) and (D, p),
preserving the geometric structure, where p is the Carathéodory distance on D. Consequently, the
metric compactification of M admits a concrete realisation as the closed dual unit ball of (V|| - ||).
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1 Introduction

Compactifications of symmetric spaces is a particularly rich subject, which has been studied extensively [4]
15]. A variety of compactifications of symmetric spaces have been introduced with different applications
in mind. For instance, Satake [32] introduced his compactifications in his study of automorphic forms,
and the Martin and Furstenberg compactifications [12 28] were introduced to analyse harmonic functions.

Recently, metric (or horofunction) compactifications with respect to invariant Finsler metrics have
been used to investigate different types of compactifications of symmetric spaces. In particular, it was
shown in [16, B3] that generalised Satake compactifications and Martin compactifications of symmetric
spaces can be realised as metric compactifications under suitable invariant Finsler metrics. In [2I] an
explicit invariant Finsler metric was constructed on symmetric spaces whose metric compactification gives
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the maximal Satake compactification, and in [I3] the minimal Satake compactification of SL,,(R)/SO,,
was realised as a metric compactification.

In this paper we determine completely the metric compactifcation of noncompact type Hermitian
symmetric spaces with respect to the Carathéodory distance and provide a detailed analysis of its ge-
ometry and global topology. The Carathéodory distance plays an important role in the geometry and
analysis of Hermitian symmetric spaces.

Given a Hermitian symmetric space M of noncompact type, the Harish-Chandra embedding,

M~DcCyp" — M,

identifies M bihomorphically with a bounded symmetric domain D in a complex Euclidean space p™,
which is biholomorphic to an open dense subset of the compact dual M. of M. By the seminal works of
Loos [27] and Kaup [22], one can equip p* with a Jordan algebraic structure and a norm || || so that D is
biholomorphic to the open unit ball D of (p™, || -||), which is called a JB*-triple (see also [34]). Since the
Carathéodory distance is invariant under biholomorphisms, one can transfer from M to the open unit
ball D in the JB*-triple V = (p™,|| - ||) to study the metric compactification and exploit Jordan theory
and functional analysis. This is our task in the paper.

For symmetric spaces of noncompact type, the metric compactification with respect to the Riemannian
distance can be identified with its geodesic compactification ([2] and [I8], Proposition 12.6]), and is known
to be homeomorphic to a Euclidean ball, see [5, Chapter I1.8]. It has also been observed for various classes
of finite dimensional normed spaces that the geometry and global topology of the metric compactification
is closely related to the closed dual unit ball of the norm. In [I9) 20] this connection was established for
normed spaces with polyhedral unit balls, see also [I0]. At present, however, it is unknown [21, Question
6.18] if this duality phenomenon holds for general finite dimensional normed spaces.

In [23, 25] it was shown that the duality phenomenon does not only appear in finite dimensional
normed spaces, but also occurs in metric compactifications of certain symmetric spaces with invariant
Finsler norms. More precisely, it was shown in [23] 25] for symmetric cones equipped with the Thompson
and Hilbert distances that the geometry and global topology of the metric compactification coincides
with the geometry of the closed dual unit ball of the Finsler norm in the tangent space at the basepoint
of the metric compactification.

In these symmetric cones N the connection between the geometry of the metric compactification and
the dual unit ball manifests itself in the following way. The horofunction boundary N(oo) in the metric
compactification of the symmetric space N carries an equivalence relation where two horofunctions ¢ and
h are equivalent if sup,cy |g(z) — h(z)| < co. This relation yields a natural partition of the horofunction
boundary into equivalence classes. On the other hand, the boundary of the closed dual unit ball B* of
the Finsler norm on the tangent space TN at the basepoint b € N, is partitioned by the relative interiors
of its boundary faces. For the symmetric spaces N considered in [23], 25] it was shown that there exists
a homeomorphism ¢ from the metric compactification N U N (oo) onto B*, which maps each equivalence
class of N(oco0) onto the relative interior of a boundary face of B*. In this sense the dual ball captures
the geometry of the metric compactification.

Moreover, in [23] it was observed that the metric compactification of N is closely related to the metric
compactification of the normed space (TN, || - ||p), where || - || is the Finsler norm on the tangent space
Ty N at the basepoint b € N. More explicitly, it was shown that the exponential map exp,: TN — N
extends to a homeomorphism between the metric compactifications of the normed space (TN, || - ||») and
N under the invariant Finsler distance. Furthermore, the extension preserves the equivalence classes in
the horofunction boundaries.

For a noncompact type Hermitian symmetric space M identified as the open unit ball D of a JB*-
triple V.= (p™, || -||), with Carathéodory distance p, the JB*-triple norm || - || is the corresponding Finsler
norm [22), (4.5)]. We show in this paper that the analogues of the results in [23], 25] hold for the metric
compactification of (D, p).

More specifically, the following results are established. We provide a complete description of the
horofunctions of (D, p) in Theorem We also determine the horofunctions of the JB*-triple (V|| - ||)
in Theorem and establish in Theorem an explicit homeomorphism ¢ between the horofunction



compactification of (V|| -||) and its closed dual unit ball. Further, we show in Section [7| that the home-
omorphism ¢ maps each equivalence class in the horofunction boundary of (V,|| - ||) onto the relative
interior of a boundary face of the closed dual unit ball. Finally we prove in Theorem that the expo-
nential map expy: V' — D extends to a homeomorphism between the metric compactifications VUV (c0)
and D U D(oc0), which maps equivalence classes onto equivalence classes in the horofunction boundaries.
Combining the results we see that the geometry and global topology of the metric compactification of
(D, p) coincides with the geometry of the closed dual unit ball of (V,|| - ||).

We start by recalling the essential background on metric compactifications and the theory of JB*-
triples in Sections [2] and [3] respectively.

2 Horofunctions

The origins of the idea of the metric (or horofunction) compactification go back to Gromov [2]. Tt
has proven to be a valuable tool in numerous fields such as, geometric group theory, complex and real
dynamics, Riemannian geometry, and geometric analysis. It captures asymptotic geometric properties of
metric spaces and provides ways to analyse mappings or groups acting on them. Here we mostly follow
the set up as in [30].

Let (X,d) be a metric space and let RX be the space of all real functions on X equipped with the
topology of pointwise convergence. Fix a point b € X, called the basepoint, and write Lipé (X) to denote
the set of all functions h € R¥ such that h(b) = 0 and h is 1-Lipschitz, i.e., |h(z) — h(y)| < d(z,y) for all
z,y € X.

The set Lipll,(X ) is a compact subset of RX. Indeed, it is easy to verify that the complement of
Lipj (X) is open. Moreover, as |h(z)| = |h(z) — h(b)| < d(z,b) for all x € X and h € Lip}(X), we have
that Lipj(X) C [~d(z,b),d(x,b)]X. The set [—~d(z,b),d(x,b)]X is compact by Tychonoff’s theorem, and
hence Lip} (X) is a compact subset of R¥.

For y € X define the real valued function,

hy(z) = d(z,y) —d(b,y) (2 € X). (2.1)

Note that hy(b) = 0 and |hy(z) — hy(w)| = |d(2,y) — d(w,y)] < d(z,w) for all z,w € X, and hence
h, € Lipj(X).

Definition 2.1. Denote the closure of {h,: y € X} in RY by X, which is compact. The set X(cc0) =
X\ {hy: y € X} is called the horofunction boundary of (X,d). The elements of X(co) are called
horofunctions, and the set X U X (00) is called the metric (or horofunction) compactification of (X,d).
The elements of X are called metric functionals, and the metric functionals hy in are called internal
points.

The topology of pointwise convergence on Lip% (X) coincides with the topology of uniform convergence
on compact sets, see [29, p.291]. In general the topology of pointwise convergence on Lipj(X) is not
metrizable, and hence horofunctions are limits of nets rather than sequences. However, if the metric space
is separable, then the topology is metrizable and each horofunction is the limit of a sequence. In fact, one
can verify that given a countable dense subset {y;.: k € N} of (X, d), the function ¢ on Lip; (X) x Lip} (X)
given by,

o(f,9) =Y 2 " min{L, |f(y) — g(y)l} for f.g € Lipj(X),
k

is a metric whose topology coincides with the pointwise convergence topology on Lip;(X), [29, p. 289,
Ex. 10%].

The metric compactification may not be a compactification in the usual topological sense, as the
embedding ¢: y € X = hy € Lip;(X ) may fail to have the necessary properties. However, the embedding
t: X — 1(X) is always a continuous bijection. Indeed, if z,y € X, ¢ > 0, and we consider a neighbour-
hood U, = {h € Lip}(X): |h(y) — hs(y)| < €} of hy, then for z € X with d(z,2) < £/2 we have that
|hz(y)—ha(y)| < |d(y, z)—d(y, z)|+|d(b, z) —d(b,x)| < 2d(z,x) < ¢, and hence ¢(z) € U, which shows that



¢ is continuous. Moreover, if z,z € X and hy = h., then 0 = (h,(x) — hy(2)) + (he(2) — hs(2)) = 2d(z, 2),
which gives injectivity.

It can happen that ¢:: X — ¢(X) does not have a continuous inverse. If, however, (X,d) is proper
and geodesic, then the metric compactification will be a compactification in the usual topological sense.
We provide some details of this fact below. Recall that a metric space (X, d) is proper if all its closed
balls are compact. Note that a proper metric space is separable, as each closed ball is compact and hence
separable.

A map v from a, possibly unbounded, interval I C R into a metric space (X, d) is called a geodesic
path if

d(v(s),y(t)) =|s—t| forallstel.

The image, v(I), is called a geodesic. A metric space (X,d) is said to be geodesic if for each z,y € X
there exists a geodesic path v: [a,b] — X connecting x and vy, i.e, y(a) = x and v(b) = y.

Hermitian symmetric spaces with Carathéodory distance are proper geodesic metric spaces (cf. [14]).
In the discussion below we will focus on the metric compactification of such metric spaces.

The horofunctions of a proper geodesic metric space (X,d) are precisely the limits of converging
sequences (hy, ) such that d(b, zy) — co. A slightly stronger assertion was shown in [30, Theorem 4.7],
but for our purposes the following statement will suffice, see also [24, Lemma 2.1].

Lemma 2.2. If (X,d) is a proper geodesic metric space, then h € X(00) if and only if there exists a
sequence (zy) in X with d(b, xy) — 0o such that (hy,) converges to h € X as k — o0.

We use this lemma to show that, in this case, the embedding ¢: X — ¢(X) has a continuous inverse.
Lemma 2.3. If (X,d) is a proper geodesic metric space, then v: X — +(X) is a homeomorphism.

Proof. From the previous observations it remains to show that ¢: X — ¢(X) has a continuous inverse.
Let hy, = t(z0) where zp € X. Note that as (X, d) is proper it is also separable. So, to prove continuity of
1~1 at h,,, we can use sequences, as the topology of pointwise convergence on Lipll, (X) is metrizable. Let
(zx) be a sequence in X with h,, — h,,. By Lemma [2.2| we know that (2;) is bounded, and hence after
taking a subsequence we may assume that z; — 2. It follows that h, = h,,, and hence the injectivity
of ¢+ implies that z = zp, which completes the proof. O

Thus, the metric compactification is a compactification in the usual topological sense if (X, d) is a
proper geodesic space.

Special horofunctions come from so-called almost geodesics sequences. They were introduced by
Rieffel [30] and further developed by Walsh and co-workers in [1I 26l B35 [36]. A sequence (xj) in (X, d)
is called an almost geodesic if for each € > 0 there exists an N > 0 such that

d(xp, Tm) + d(Xm, x0) — d(n,z0) < e for allm >m > N.

In particular, every unbounded almost geodesic sequence yields a horofunction for a proper geodesic
metric space, see [30].

Lemma 2.4. Let (X,d) be a proper geodesic metric space. If (zy) is an unbounded almost geodesic in
(X,d), then

exists for all z € X and h € X(00).

Given a proper geodesic metric space (X, d), a horofunction h is called a Busemann point if there
exists an almost geodesic (z) in X such that h(z) = limy d(z, zx) — d(b, z) for all z € X. The collection
of all Busemann points is denoted by Bx.

The set of Busemann points can be equipped with a metric known as the detour distance, which
was introduced in [1], and is defined as follows. Suppose (X,d) is a proper geodesic metric space and



h,h € X(o00) are horofunctions. Let W}, be the collection of neighbourhoods of h in X. Then the detour
cost is given by

H(h,h') = sup ( inf d(b,:v)+h’(a:)>,
Wew, \z: t(z)eW

and the detour distance is defined by
§(h,h') = H(h,h") + H(R', h).
It is known [26], [36] that if (z) is an almost geodesic converging to a horofunction h, then

H(h,h') = lilgn d(b, zy) + h'(x) (2.2)

for all horofunctions h’. Moreover, on the set of Busemann points By the detour distance is a metric
where points can be at infinite distance from each other, see [26], 36].

The detour distance induces a partition of Bx into equivalence classes, called parts, where h and
B in Bx are equivalent if §(h,h’) < oo. In particular, if all horofunctions are Busemann points, so
Bx = X(00), then X (oc0) is the disjoint union of parts, each of which is a metric space under the detour
distance.

The horofunction boundary X (co) has a natural partition induced by the equivalence relation:

h~h if sup|h(z)— k' (z)] < .

rzeX

It was shown in [36, Proposition 4.5] that two Busemann points h and A’ in X (oco) have finite detour
distance if, and only if, h ~ h’. Thus, if all horofunctions are Busemann points, then the partition of
X (00) into parts coincides with the partition into equivalence classes X (00)/ ~.

We also like to note that each (surjective) isometry ¥: X — X extends as a homeomorphism to
X (o0) by

v(h)(@) =h(¢~ (2)) = (@' (b) (v € X, h € X(c0)).

It is known that on the Busemann points in X (co) the extension 1 is an isometry under the detour
distance, see e.g., [26]. Also if h ~ g in X (00), then ¥ (h) ~ ¥ (g).

3 Jordan algebraic structures

In this section, we recall some necessary definitions and results concerning Jordan algebraic structures
associated with Hermitian symmetric spaces. We refer to [6] [34] for more details of symmetric manifolds
and JB*-triples.

Throughout, M will denote an arbitrary Hermitian symmetric space of noncompact type. To deter-
mine the horofunctions of M and analyse the geometry and global topology of its metric compactification
with respect to the Carathéodory distance (and base point b € M), we make use of the fact that M can
be realised as the open unit ball in a JB*-triple. Indeed, there exists a biholomorphism,

v B DB pey, (3.1)

onto the open unit ball D of a finite dimensional JB*-triple V', with ¢(b) = 0, where 1 is the Harish-
Chandra embedding and v, is the Kaup Riemann mapping, which is unique up to a linear isometry [22]
Theorem 4.9].

Since the biholomorphism 1) preserves the Carathéodory distance, it induces a homeomorphism be-
tween the metric compactifications of M and D. Hence we can, and will, work in the setting

D C V, where D is the open unit ball of a finite dimensional JB*-triple V.

The results can be transferred to the corresponding ones for M via 1.



3.1 JB*-triples
A JB*-triple is a complex Banach space V equipped with a continuous triple product
{} VXV xV—YV,

called a Jordan triple product, which is linear and symmetric in the outer variables, and conjugate linear
in the middle variable, and satisfies the following axioms:

(i) {a,0,{z,y,2}} = {{a, b, 2}, y, 2} — {2, {b,a, 4}, 2} + {z,y,{a, b, 2}},  (JP1)
(ii) a0 a is Hermitian, that is, || expit(ana)|| =1 for all t € R;
(iii) ao a has nonnegative spectrum o(an a);
(iv) [laoafl = [lall?,
for a,b,x,y,z € V, where an b: V — V is a bounded linear map, called a bozx operator, defined by
aob(x) = {a,b,x} (xeV) (3.2)
and condition (iv) can be replaced by
{a,a,a}ll = la]®  (a€V). (3.3)
We note that the box operator in satisfies ||ao b|| < [|a||||®]]-

Remark 3.1. By definition, a Hermitian operator T: V. — V has real numerical range, which is the
closed convex hull of its spectrum o (7') and ||T'|| = sup{|A|: A € o(T")} [3, pp.46-54]. In particular, given
a,b in a JB*-triple, (i) and (ii) above implies

lao al| =sup{A: A € o(ama)}
and a0 b+ bo a is Hermitian. Further, if |jao b+ bo al| < 1, then we have o(ano b+ boa) C [—1,1].

Example 3.2. A prime example of a JB*-triple is the space of p x ¢ complex matrices M) ,(C) with
Jordan triple product,

1
{A,B,C} = J(AB*C + CB*4)  (A,B,C € M,,(C)),

which has open unit ball D = {A € M, ,(C): I — AA* positive definite}. In particular if ¢ = 1, we get
the complex Euclidean space CP with Jordan triple product
1
{(L’,y,Z}: §(<l’,y>2’+<2,y>$) ($,y,Z€Cp)
and D = {z € CP: (z,z) < 1} is the Euclidean ball.

Example 3.3. Given JB*-triples V1, ..., Vy, the direct sum V; @ --- @ Vg, with the £o-norm,
(@t aa) oo = max{llagl: i = 1,....d}, (a; € Vi)
is a JB*-triple with the coordinatewise triple product.

A finite dimensional JB*-triple V' decomposes into a finite direct sum V; &- - - @V of so-called Cartan
factors V; (j = 1,...,d) with ¢s-norm. There are six different types of (finite dimensional) Cartan
factors:

(1) Mpo(©) (D) S(C)  (3) Hy©) (1) Spa(©)  (5) Mia(0)  (6) Hy(O),
where S,(C) and H,(C) are norm closed subspaces of M, ,(C) consisting of ¢ x ¢ skew-symmetric and



symmetric matrices, respectively; and Sp,,(C) is a spin factor of dimension n > 2. The Cartan factors of
types b and 6 are exceptional Cartan factors (cf. [0, Theorem 2.5.9]).

There are various operators that play an important role in the theory of JB*-triples. Besides the
box operators, we will use the Bergman operator B(b,c): V. — V and the Mdébius transformation
go: D — D, where a € D and b, c € V, which are defined as follows:

B(b,c)(x) =x — 2(bo¢)(x) 4+ {b,{c,x, c}, b} (xeV), (3.4)

ga(z) = a+ B(a,a)"*(I +zoa) ' (z)  (z € D). (3.5)

Here I denotes the identity operator on V, and the inverse (I + xoa)™t: V — V exists, as ||zoal <
[ ]lllall < 1.

We note that B(a,b) is invertible for ||a]|||b]| < 1. The proof of the following two identities can be
found in [0, Proposition 3.2.13. Lemma 3.2.17].

1

1B(z,2) "2l = +—m
1—|lz)?

(12l < 1), (3.6)

1

1— ”g—y(z)HQ = ”B(Z,Z)_1/2B(Z,y)B(y,y)_1/2H (yvz € D) (37)

For the Euclidean ball D ¢ C? with inner product (-,-), we have from [7, Example 3.2.29] the formula

(L= llyI*)@ — 21"
1= (y,2)

Given a € V, the quadratic operator Qo: V — V is defined by

Qu(z) ={a,x,a} (zeV).

L= llg—y(2)II* = (y,z € D). (3.8)

An element e in a JB*-triple V is called a tripotent if {e,e,e} = e. Although 0 is a tripotent in
a JB*-triple, we are only interested in the nonzero ones, of which the norm is always 1. Tripotents in
C*-algebras are exactly the partial isometries.

Any tripotent e in V induces an eigenspace decomposition of V' called the Peirce decomposition
associated with e. The eigenvalues of the box operator eoe: V. — V are in the set {0,1/2,1}. Let

Vi(e) = {z € V: (e e)(z) = gx} (k=0,1,2)
be the corresponding eigenspaces, called the Peirce k-space of e. We have the algebraic direct sum
V =We) @ Vi(e) @ Vale).
where the Peirce k-spaces satisfy
{Vie), Vj(e), Vi(e)} S Viejsr(e) (3.9)
if i — j + k belongs to the set {0, 1,2}, and {V;(e), Vj(e), Vi(e)} = {0} otherwise. Further, we have
{Va(e),Vo(e),V} = {Vo(e), Va(e),V} = 0. (3.10)

The Peirce k-space Vi (e) is the range of the Peirce k-projection Py(e): V' — V', which are contractive
and given by
Pye) = Q2 Pi(e) =2(ene—@Q7), Pole) = Ble,e).

A nonzero tripotent e in a JB*-triple V' is called minimal if Q.(V') = Ce, or equivalently, Va(e) = Ce.
It is called mazimal if Vp(e) = {0}. In fact, the maximal tripotents in V' coincide with the extreme points
of the closed unit ball V' (cf. [6, Theorem 3.2.3]).



We note that, with the inherited norm from V', the Peirce 2-space V5 (e) is a JB*-algebra with identity
e, where the Jordan product o and involution * are given by

zoy={x,e,y}, z"={e,x,e}=Qx, (x,y€ Vale)) (3.11)
respectively [7, Example 2.4.18]. In particular, we have
[z]| = [l2*]| = |Qez]  (z € Va(e)). (3.12)

We refer to [7, Definition 2.4.16] for the definition of a JB*-algebra, which are examples of JB*-triples
[0, Lemma 3.1.6].
Let
Ale) ={z € Va(e): z* =z} = {z € Va(e): {e,x,e} =z} (3.13)

be the self-adjoint part of Va(e). Then it is a closed real subalgebra of (Va(e), o) satisfying

lall* = lla*|| < lla* +0*I,  (a,b € Afe))

where a? = a o a, in other words, it is a so-called JB-algebra [IT, 3.1.4].

There is a natural partial ordering < on A(e) defined by the closed cone
Ale)y = {2z € A(e)}

where < y if and only if y —x € A(e)+. We will make use of the fact that {a, A(e)+,a} C A(e)4+ for all
a € A(e), and
la]] <1 if and only if —e<a<e (3.14)

(cf. [I7, Proposition 3.3.6; 3.1.5]). An element a € Va(e) is called invertible if there is a (unique) element

a™1, called the inverse of a, such that aoa™! =e and a? ca™! = a. If a € A(e), then a™! € A(e).
Given a,b € V, we say that a is orthogonal to b if an b = 0. It is known that a is orthogonal to b if

and only if {a,a,b} = 0. Moreover, a orthogonal to b implies b orthogonal to a, in which case we have

la + bl = max{{al|, b}

from [6, Corollary 3.1.21].

3.2 Spectral decomposition

A linear subspace W C V of a JB*-triple V is called a JB*-subtriple if x,y, 2 € W implies {x,y, 2z} € W,
in the inherited Jordan triple product.
The rank r of a finite dimensional JB*-triple V' is defined by

r =sup{dimV(a): a € V'},

where V' (a) denotes the smallest closed subtriple of V' containing a € V. It can be shown that r is the
maximal number of mutually orthogonal minimal tripotents in V' [7, Example 3.3.3].

In a finite dimensional JB*-triple V' of rank r, each tripotent can be decomposed as a sum of pairwise
orthogonal minimal tripotents. Moreover, each element a € V' admits a decomposition

a=Ae1+ Aex+ -+ Aey (lal =X > X2 > - > A\ > 0) (3.15)
where eq, ..., e, are mutually orthogonal minimal tripotents. This is called a spectral decomposition of a.

Remark 3.4. The eigenvalues Ay, ..., A\, in the spectral decomposition are unique, but the minimal
tripotents e; need not be unique. We can however collect terms with equal non-zero eigenvalue in the sum
and write = Y7, pic;, where g1 > ... > ps > 0 and the ¢;’s are (not necessarily minimal) pairwise
orthogonal tripotents. In this case both the p;’s and ¢;’s are unique, see [6, Theorem 1.2.34]. For clarity
we refer to this decomposition of a, as the unique spectral decomposition.



Example 3.5. The nonzero tripotents in the Euclidean space C? are exactly the boundary points of
the closed unit ball D = {(z1,...,24) € C%: 2|2 + ---|24/> < 1} and there are no mutually orthogonal

nonzero tripotents. Each element a € C? has a unique spectral decomposition a = HaH(ﬁ)

Example 3.6. In the JB*-triple C ® C & C ({o-sum), with the standard orthonormal basis {e1, e3, €3},
each element a = («, 8,7) can be written as

a = aey + Bea + yez = |alee; +|Ble% ey + |yle®es  (0a,05,0, €R)

0 0

where e'fee;, €% ey, €% e3 are pairwise orthogonal minimal tripotents, and the sum can be written in such
a way that the coefficients are in decreasing order. Trivially, if v = 0, we can write

2

a = |ale%e; + |Ble% ey + Oe3 = |ale®e; + |B]el% ey + 0cf (ef = ePley).

Example 3.7. In the JB*-triple H,(C) of ¢ x ¢ symmetric matrices, the spectral decomposition can
be derived from the usual spectral theorem for matrices. In H3(C), we have the following two spectral
decompositions of the identity matrix:

1 00 000 000 1 00 0 0 0 1 0 0
000]+]01o0|+{000|=f0o00]+[0 L i])+]0 L -1
000 000 0 0 1 000 05 3 0o -+ 3

3.3 Peirce decomposition

Let {eq,...,e,} a family of mutually orthogonal tripotents in a JB*-triple V. For 4,5 € {0,1,...,n}, the
joint Peirce space V;; is defined by

Vij =Vijler,....en) = {2z € V: 2{ep, ep, 2} = (0 + i)z for k =1,...,n}, (3.16)

where 6;; is the Kronecker delta and V;; = Vj;.
The decomposition

vV = P vy

0<i<j<n

is called a joint Peirce decomposition.
The Peirce multiplication rules

(Viss Vi Vi) © Vie and V8 Vg = {0} for 0,7 ¢ {p.a}

hold. The contractive projection Pjj(e1,...,e,) from V onto Vij(er,...,e,) is called a joint Peirce
projection which satisfies
0 (i # J)
Piilel,...,en)(er) = L 3.17
U( 1 n)( k) { SikCr (Z:]). ( )

We shall simplify the notation Pj;(e,...,e,) to P;; if the tripotents ey, ..., e, are understood.
Let M = {0,1,...,n} and N C {1,...,n}. The Peirce k-spaces of the tripotent ey = Y ..y €; are
given by

Valen) = @Vij, (3.18)

ijEN

Vilen) = @ Vij,
ieN
JEM\N

Volen) = @ Vi

1,jEM\N



The Peirce projections provide a very useful formulation of the Bergman operators. Let eq,..., e, be
mutually orthogonal tripotents in a JB*-triple V and let z = )" | A;e; with A; € C. Then the Bergman
operator B(z,x) satisfies

B(z,z) = Y 1=\ =[NPy,
0<i<j<n
where we set \g = 0 and P;; = P;j(eq,...,e,). This gives the following formulae for the square roots
Bz, z)'? = Y (1= NP NP (2] < 1), (3.19)
0<i<j<n
Bz,z)™'? = 3 (1= NPT = NP TER (el < 1), (3:20)
0<i<j<n

The following lemma will be useful later for computing the horofunctions in a noncompact Hermitian
symmetric space.

Lemma 3.8. Let D be the open unit ball of a JB*-triple V. Given a sequence (yr) in D such that
yr — £ € 0D, we have
tim g () =1 (=€ D).

Proof. By and (3.7)), we have
§ 1
1B(z,2) =12 B(2, yn) B(yg, yx) = /2|
1Bz, yx) ' B(2.2)"/?|
1By, ) ~/2]|
= |B(zm) " B(z,2)?(1 = lwe]*) — 0 (:€D)

0<1- ”g*yk (2)

as k — 0o, since limy ||B(z,yk)*1B(z,z)1/2H = HB(z,{)*lB(z,z)l/QH. ]

3.4 Identities in JB*-triple

The identity (JP1) in the definition of a JB*-triple is called the main triple identity. In the sequel, we
will make use of several identities, listed below, which have been derived in [6, §1.2] and can be found in
[27, Appendix|. Let V be a JB*-triple. Then all elements a,b € V satisfy

(JPQ) (QD b)Qa = Qa(bD a)a
(JP3) Qq.¢) = QuQbQua;
(JP4) (CLD b)Qa = {CL, Yy Qa(b)}

4 Horofunctions of Hermitian symmetric spaces

Given the open unit ball D in a finite dimensional JB*-triple V', we now determine the horofunctions of D
under the Carathéodory distance p, with the origin 0 € D as a basepoint. Recall that the horofunctions
of the corresponding Hermitian symmetric space M with basepoint b € M can be obtained via 1 in ,
with 1 (b) = 0, where ¥ preserves the Carathéodory distance. In fact, we have

M(o0) ={hot: h € D(0)}.
The Carathéodory distance p on D is given by

plz,y) = sup{w(f(z), f(y)): f € H(D,D)}  (z,y € D),
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where H(D,D) is the set of all holomorphic functions f: D — D and w is the Poincaré distance of the
unit disc D = {z € C: |z] < 1}. We will make use of the formula (cf. [7, Theorem 3.5.9]):

p(z,y) = tanh™" ||g_ (2)].

For each y,z € D we have

L=yl 2

)

L 14 lgy@ 1, 14yl 1 L=yl (14 gmy(2)\2
hy(2) = —p(0,y) = = log - MI=p ) 2y — 1
o(2) = p(z9)=p(0.y) = g log 7 7 oy 3 0 &\ T, OF U Tyl
1

(4.1)

which can also be written as

1 1—Jyl? <1+Hg—z(y)H>2
hy(z) = = log . (4.2)
Y 2 <1— lg—=)I* \ 1+ [yl
Lemma 4.1. Let D be the open unit in a finite dimensional JB*-triple V', and p the Carathéodory
distance on D. Then h € D(oc0) if and only if there exists a sequence (yx) in D with y, — £ € OD such

that e ? A
.1 1=y .1 1 —lyk
h(z) = lim = log <> = lim — log <> (4.3)
ko2 L= |lg—y, ()2 ko2 L—lg—(yn)l?

forall z € D.

Proof. Suppose that h € D(c0). Then by Lemma we know that there exists a sequence (yi) in D
with p(0,yx) — oo and limy hy, (2) exists for all z € D. By taking a subsequence we may assume that
yr — £ € 0D. The implication now follows from and Lemma On the other hand, if there
exists a sequence (yx) in D with yp — £ € 9D such that holds for all z € D, then p(0,yx) =
tanh ™! ||yx|| — o0, as ||lyx|| — 1. So, we deduce from and Lemmathat h € D(0). O

Remark 4.2. The notion of a horofunction h on D is essentially the same as the function F' introduced
in [9, Lemma 4.1]. Indeed, the formula (4.3) in Lemma [4.1] for & is related to F by

h(z) = %log Flz) (zeD)

In case D is the open Euclidean ball in C? and y, — ¢ with ||€]l2 = 1, we find that

1 1 — |lyx|®
h(z) = lim - log <
k2 1= [[g—y, (2)I1?

is a horofunction, and from (3.8]) we have
1 1-— 2 1 1— 2
h(z) = lim = log <|<Z’yk>‘> = Zlog (!(z,@\) '

ko2 1— =] 2 1— =]
In particular, for the disc D C C we find that h: D — R is given by the well known expression,

LB 1 Je—sp
L=z 1,
122~ 2 81—z

h(z) = %log (z e D).

We now compute the limit in (4.3)) for general D. By [7, Lemma 3.2.28], one can express the limit
h = limy, hy, in (4.3)) in terms of the Bergman operators as

1 _ _
h(z) = lim =log(1 — yxl*)|B(z,2)"*B(z,yx) Blyr, ye) /| (2 € D).
k—o0 2
Let r be the rank of V. Each y; € D has a spectral decomposition

Yk = g1k + -+ rerk (4.4)
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where ek, ..., ey, are mutually orthogonal minimal tripotents in V' and
1> [lyell = cax > agp > -+ > app > 0.

Choosing a subsequence, we may assume for each i that the sequence (o)) converges to some «; € [0, 1]
and the minimal tripotent e;; converges to a minimal tripotent e;, as the set of minimal tripotents is a
closed subset of 0D. Note that a; = limy, ||yx|| = 1, as |lyx| — [|€]| = 1.
By [0, Lemma 5.8|, we have
§= li]glyk =aje; + -+ + ape,

and there exists o € {1,...,7} such that
(i) as > 0 for each 1 < s <y,

(ii) as =0 for s > 1o,

(iii) {e1,...,er,} is family of mutually orthogonal minimal tripotents.
Remark 4.3. The minimal tripotents ejg,...,e.r in the spectral decomposition of y; induce a joint
Peirce decomposition of V', with joint Peirce projections Pllj = Pjj(eik,...,er) and 0 <@ < j < r. By

(3.20), the Bergman operator B(ys, yx)"/? is of the form
Blyeyr) 2= Y (1-0af) (1= a3) 2Pt (a0 =0).
0<i<j<r

As (esk)r converges to a minimal tripotent es for 1 < s < rp, with ry as above, and the e,’s are pairwise
orthogonal, we have the following norm convergence,

lim R-j(elk, ey erok) = Bj(el, ceey em)
k—o0

of Peirce projections (cf. [9, Remark 5.9]).

Furthermore, if ey, ..., ey, are mutually orthogonal tripotents and 1 < g < m, then Pjj(e1,...,eq) =
Pij(er,...,em) forall 1 <i < j <g, see [9, Lemma 2.1(i)].

We will use the observations in the previous remark to prove the following theorem.

Theorem 4.4. Let D be the open unit ball of a finite dimensional JB*-triple V', with rank r. Then the
horofunction functions in D(o0) are exactly the functions of the form

1
h(z) = §log Z )\i)\jB(z,z)*l/QB(z,e)Hj (z € D),
1<i<j<p

where p € {1,...,r}, \; € (0,1] (4 = 1,...,p) with max; \; =1, e = e; +ea+---+ e, € 0D, and
P;;: V=V are the Peirce projections induced by the mutually orthogonal minimal tripotents e1, ..., ep.

Proof. Suppose that h is a horofunction. Then by Lemmathere exists a sequence (yx) in D converging
to & € 0D such that h(z) = limg_,o hy, (2) for all z € D.
Let
Yk = Qigelg + -+ Qrglrg

be the spectral decomposition. From Remark we know there is an rg € {1,...,r} such that
§= hl?lyk =ajer + -+ arep

with a1 =1, ay > 0 for 1 < s < ry and ay = 0 for s > ry. Moreover,

Blyg,yr) /% = Z (1—aZ) 21— a?k)fmpz’l; (g, = 0).

0<i<j<r
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Since 0 < 1 — a%k <1- afk for i € {1,...,r}, we may assume, by choosing subsequence if necessary,

for each 7 that
1— 2
1k

l-a zk

converges to some \; € [0, 1].

Note that \; =1 > ||yx|| = a1x and A\; = 0 for ¢ > rp. Combining this with Remark [4.3[ we get that

lim (1~ [l ) Blyk, yi) Y2 = lim — ol “““ Pl
k—oo k—o0 — a ik 1-— J
0<z<]<7" ?
= hm alk\/ al P elk, e ,emk)
0<z<]<7“0 o alk
= ) NiNEy
0<i<j<ro
where P;; are the Peirce projections induced by the orthogonal minimal tripotents eq,...,e.,. So,
1 _ _
h(z) = lim Slog(1— |lykl®)1B(z,2) "2 B(z, us) Blys, yx) 7|
k—o0 2
1
= 3 log Z NN B(z,2) Y2 B(2,6)Pylen, . . . en) (z € D). (4.5)
1<i<j<ro

Let p € {1,...,r0} be such that a; = 1 for i < p, and a; < 1 otherwise. Since A; = 0 when «a; < 1,
the horofunction h in (4.5)) reduces to

1
h(z) = 5 log > ANB(z,2)V2B(2,€)Pier, - )| (4.6)
1<i<j<p

as Pij(e1,...,ep) = Pijler, ..., en) for 1 <i < j <p by [9, Lemma 2.1].
Let e =e1+---+ep. For k & {i,j} and w € Vjj(eq,...,ey,) we have that (e,0w)(V) = {0} by the
Peirce multiplication rules, as ey € Vii(er, ..., er,). Therefore, for 1 <i < j <p,

o Pjer,....ep)(r) =&n Pjer, ... en)() =en Pijler,...,en)(:) =en Pijler,...,ep)(:),
and likewise

fo)ij(elw"aep)(') = {€1+Oé2€2+"'+04r06r0,Pz‘j(€17~--;€p)(')7€1+Oz2€2+-~-+04r06r0}

= {6, Pij(el, ce ,€p)(-), 6}.
Thus, Q¢Pij(e1,...,ep) = QePij(er, ..., ep). It now follows for 1 <i < j < p that
B(z,&)Pij(er,...,ep) = Pij(er,...,ep)—2(z0e)Pij(er,...,ep)+Q.QcPij(er, ..., ep) = B(z,e)Pij(er, ..., ep).
Thus, the horofunction & in (4.6 can be expressed as
1
h(z) = 5 log > ANB(z,2)?B(z,€)Pylen, . .., ep) (z € D).
1<i<j<p
To prove that each function of the form (4.4]) is a horofunction we let
1
h(z) =slog| Y AiX\B(z,2) ?B(z,e)P; (z € D)

2 —
1<i<j<p
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where p € {1,...,7}, A\; € (0,1] (i =1,...,p) with max; \; =1, and e = e; + €2+ --- + ¢, € 9D, with
Peirce projections P;;: V — V induced by the mutually orthogonal minimal tripotents e1, ..., e,.
For all k € N sufficiently large (depends on min; A;) we can define

B 2k —1
e
for 1 <4 < p. For those k set y, = (1 — 1/k)e1 + aapea + - - - + apre, and note that y, € D.
Then the sequence (yx) norm converges to e and

. _ . 1-(1—-1/k)? |1—(1—1/k)?
lim (1= o) By ) 72 = lim N L T P TV
k—o0 k—o0 — 1—O{-k 1—0[-k —
0<i<j<p i j 0<i<j<p
Hence
: . 1 — [lywl? )
lim hy () = lim —log <
k—o00 w(2) k—00 2 1 —||g—y,(2)]?
1 _ _
= lim  log(1 ~ gD Bz, 2) V2B, y) Blyo )2
1 _
= ilog Z i B(z, 2) 12B(z,e) Py,
I<i<j<p
which completes the proof. O

We see from the proof of Theorem that it can happen that two sequences (yi) and (z;) in D
converging to distinct points in 9D can give the same horofunction. Indeed, if we let y; be as in the
proof Theorem 4.4 and set zx = yi + (1 — 1/vVk)(ept1 + - -+ + e,), then both hy, and h,, converge to h

given by .

We also note that the horofunction h given by can be obtained by taking the limit of an
appropriate sequence in the flat Re; & - - - & Re,,. This is consistent with the observation in [16, Lemma
4.4]. Later in Lemma we shall show that one can obtain the horofunctions in D(c0) by taking limits
along geodesics in the flats.

5 Horofunctions of finite dimensional JB*-triples

We now determine the horofunctions of finite dimensional JB*-triples (V.|| - ||) as normed spaces, with
basepoint 0. Throughout we let r be the rank of V. As in (4.4)), each element a € V has a spectral
decomposisiton,

a=Aer+X e+ +Nep, (fla| =A== >\ >0),

where e1,..., e, are mutually orthogonal minimal tripotents in V.
Given a sequence (ag) in V' with h,, — h € V(00), we have r, = |Jag|| — oo (by Lemma [2.2)) and

o — an® = llaxl® _ @re)~ (@ — ar)o (x — ap)|| = 73)
|z — ak|| + ||ak]| 2_1(\\r,;1(x—ak)\| +1)

hay (z) = |lz — akl| — [laxl| =

As the denominator goes to 1 when k — oo, we need to analyse the limit

lim h, () = kli_r{loo(%k)_l(l!(x —ax)o (z —ap)| = r7) (5.1)

k—o0

to determine the form of the horofunctions.
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First we note that, for each y € V, the spectrum o(yoy) is the set of eigenvalues in [0, 00) since
dimV < oo, and by Remark lyo y|| = supo(yoy). On the other hand, V' is a finite dimensional
Hilbert space with inner-product

(x,y) = Tr(zovy) (z,y € V). (5.2)
For each self-adjoint operator 7" on (V/ (-, -)), we use the notation
A(T) =sup{(Tz,2): z€ V,(2,2) = 1}
to denote the maximum eigenvalue of T'. In particular, we have

Ayoy) =supa(yoy),

as yO y is a positive self-adjoint operator on the Hilbert space V' (cf. [0, Lemma 1.2.22]).
Since hgq, (z) = ||z — ag|| — ||ak|| > —||z|| for all z € V', we have

(2r) " (@ — ag) o (& = ag)l| = 7)) = —2|]| (5-3)

for sufficiently large k£ , which will be useful later.
To determine the limit (5.1)), and hence the form of the horofunctions, we need the following prelim-
inary lemma.

Lemma 5.1. Let (ay) be a sequence inV such that r, = ||ag|| — co. Let ar, = Y ;_; Nig€ix, be a spectral
decomposition of ayp, with 1, = A\ = Aok > ... > Mg > 0 and mutually orthogonal minimal tripotents

€lky -« - 5 Crk-
If ay, = m, — Nip — ; € [0,00] and e;, — e; for all i, then

lim hg, (z) = lim (27";6)*1(“(37 —ap)o (z —ay)| — 7“,%)
k— o0 k— o0

= sup <(—1(€[DSE—|—$D er) —Zai(eim €i))u,u), (5.4)
ueVa(er): (u,u)=1 2 icl

where I = {i: a; < oo} and ef =) ;€.

Proof. We will show that every subsequence of ((2ry)~!(||(z — ax)o (z — ax)|| — r?))x has a convergent
subsequence whose limit is the right-hand side of (5.4). Let ((2r,) ' (|[(x — am) o (2 — am)|| — r2,))m be
a subsequence. Note that

(2frm)_1(\|($—am)m (x—am)] —rzn) =A < ——(—oz+zo a—m) + L(amm A — 7"72”[)) , (5.5)

2rm 2 rm Tm 2rm

where I: V — V is the identity operator.
For each m there exists w™ € V with (w™,w™) = 1 such that

1 1. a a 1

A —zoz—=("0 o— — | —r2 T

(2rmx o 2(rm vt rm)+2rm(am am = Tm)
zozx 1 an Um 1 9 > >
= sup — —(—ozx+zo0—)+ —(@mnoap —r,,1)|v,v

veV:(v,v)1<<2rm 2(71m rm) 2rm( e m)
zox 1,a a 1
:<<27“m —i(imx—l—xm £)+2nn(ammam—r%1])> w™, wm>.

After taking a further subsequence, we may assume that w™ — w and Ay, /7 — p; € [0, 1] for all
i. S0, am/rm —> a =Y., pie;. Also note that p; =1 for all i € I, as
“m

le forall: e 1.

Wi = lim = lim
m. T m m
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Using (5.5) we will prove that

. _ 1
i (20) (2 — a8 (@ = )| = 12,) = (—5 (a0 2 + 28 a)w,w) = 3 (e, wes)
sel

— Y (o + 0w, wal)

s,tel: s<t

1
= <—§(€]D1§+«TD 6[ w, w Zas GSDGS w w> (56)
sel

To establish this identity we first show that w € Va(es), where e = >, ;e;. Consider the Peirce

decomposition V = Py ,;<, Vsi' with respect to eim, ..., erm and write
m
E Wy
0<s<t<r

Set Ao = 0 and gy, = 7y, for all m. From (3.16]), we have

wly  (i=s=t)
(€im O €jm )Wy = %w?} (i=s#tori=1t#s)
0 otherwise.

Therefore

1 1
(= (am O ap — 2, D™, w™) = (Z (A2 (€im D €im) W — rHw™), w™)

2rm — 2rm
A2 — 2 (A2 4+ X2 )/2 —r2
= > S Tmm w4 Y I T )
0<s<r m 0<s<t<r m
asm(ZTm - asm)
0<s<r m
Qg (27, — Qi (27, —
- Y (el ) an@rn Z0m)y g (5)
0<s<t<r m m
Note that, as the of set minimal tripotents is compact and ejg,..., e are mutually othogonal
tripotents, eq,...,e, are mutually orthogonal minimal tripotents. Let V = @< <<, Vit and w =
20§s§t<r wgt be the Peirce decompositions with respect to eq,...,e..

Then wy = 0 if {s,t} ¢ I. Indeed, w? — wy for all 0 < s < t < 7, and if wg # 0 for some
{s,t} ¢ I, then the right-hand side of (5.7 goes to —oco as m — oo, since

asm(zrm - asm) > Qsm v o0 or O‘tm(2rm - atm) > Qtm oo,
2rm 2 2rm 2
As (G5w™, w™) — 0 and
1 apn, A 1
(——(Zaz+2zo0 L) w™) — (—=(a0 z + z0 a)w, w),
2 Tm m 2

we find that (2r;)~'(||(z — ax) 0 (¥ — ay)|| — 77) — —oo, which contradicts (5.3). Hence

w E @ Vst = Va(er).

s,tel: s<t

Let us now show ([5.6)). Using the Peirce decomposition V' = Va(er) @ Vi(er) @ Vo(er) with respect to
the tripotent e; and the Peirce multiplication rules, we find for each z € V5(ey) (and in particular for w)
that

((aox)z,2) = ({er,x, 2} + {Z wier,x,z},z) = ((eyo )z, z)
gl
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and
((xoa)z, z) = ({x,er, 2} + {x, Z/,Liej, z},z)y ={((zoeg)z, 2).
igl
Hence we deduce from (j5.7)) that ([5.6]) holds.
From (5.6) we see that the left-hand side of ([5.4) does not exceed the right-hand side. To prove
equality in (5.4) pick v € Va(er) with (v,v) = 1 such that

1 1
(reroztzoe) - Yaaoev v)= s (—i(eroztzoer) -3 aifeis e, u)
2 ; . - 2 ;
icl ueVa(er): (u,u)=1 icl

Let v = Py(ef')v, where €' = Y.} €. By definition of w™, we have for large m,

rxox 1 a 1
o —i(imx—i—xm a)—i—ﬁ( m O am—rfnl))wm,wm)
zox 1. a a
> (( o —i(ﬁmx—l—xm i)—l—m(ammam—r?ﬂﬂ)v )

((

and v = Py(e]")v — Pa(er)v =v.

Write v™ = Z vy € @ o+~ Then (52

Ly™ v™) — 0 and
m

s,itel: s<t 0<s<t<lr
1,am Am\ m m 1 1
(——(—oz+zo—)" ") — (—=(aox +z0a)v,v) = (—=(ejO0x + xOes)v,v).
2°rm, Tm 2 2
As before,
1 Qs (21 — Qgm)
<2Tm(am[1 am — r2, o™, ™) = —Z om 27:m ™ ™)
sel
2rm — 27y, —
B Z asm( 'Z’: asm) + atm( 'Z;L atm)><vg,v$)
sitel: s<t m m
— —ZOzS((eSD €s)V, ).
sel
We conclude that
lim (2r) " (| (& = am) 0 (2 = am)|| —73,)
m—ro0
. zox 1,a a 1
= mh_1>noo o 5(%@ x+xa ﬁ) + %(amm am — 2 1)w™, w™)
1
> <—§(e[D r+xzoer)v— Zas(esm €s)V, V),
sel
which completes the proof. O

Remark. In (5.4]), we have
1
sup (==(ejox+zoer) _Zai(eiD ei))u, u)
ueVa(en): (wuy=1 2 iel

1
= sup ((—=(eyo Py(er)x + Pa(er)zoer) E ai(e;oe;))u,u)
) _ 2
ueVa(er): (uu)=1 icl

1
= Ayy(en) (= 2(€]D Py(er)x + Py(er)zoey) ZO‘Z e;ioe;)), (5.8)
el
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where the latter denotes the maximum eigenvalue of the operator

1
2(6[[1 Py(er)x + Py(er)xoey) Zal e;0e;)
el
restricted to the subspace Va(er), which it leaves invariant.

We are now ready to describe the horofunction boundary V' (o0).

Theorem 5.2. Let h be a horofunction in V(o). Then there exist I C {1,...,r} nonempty, mutually
orthogonal minimal tripotents e; € V and a; > 0 for ¢ € I, with min;ey a; = 0, such that

h(z) = wp{((—%(ejm x+xoer)— Zai(em ei))u,u): u € Va(er), (u,u) =1}
i€l

1
= Ayy(en) (= 2(6][1 Py(er)x + Py(er)xoey) ZO‘Z (e;0€;)) (xeV), (5.9)
el

where ef = Y ;€ is a tripotent with Peirce 2-space Va(er) and Peirce projection P (er).
Conversely, each function h: V — R of the form in (@) is a horofunction of V.

Proof. Let h = limy hq, be a horofunction, where ay € V and rp = |lag|| — oo. For each k, let
ap = Zgzl A€, be a spectral decomposition, with pairwise orthogonal minimal tripotents e;; and
lapll = Ax > ... > A 2 0.

After taking a subsequence, we may assume o = rp — Az — «; € [0,00] and e;; — e; for all

i =1,...,r, where eq,...,e, are mutually orthogonal minimal tripotents. Let I = {i: a; < oo} and
er = Y _ic1 € and note that I # (0, since a1 = 0.
We have

lz — ail® = llaxl® _ 2re)~ (= — ar)o (@ — ap)| - 7%)
[l = ar]| + llax| 271 (|l (2 — an)l| + 1)

h’ak (DU) =

and 271 (||r, ' (z—ay)| +1) — 1. Hence follows readily from Lemma and the preceding remark.
Conversely, let h: V' — R be of the form , where I is a nonempty subset of {1,...,7}, min;e; a; =
0 and e = >, € is the sum of mutually orthogonal minimal tripotents e;.
We show h € V(c0). For k =1,2,..., define

ajp = kej - E ;€.

il

For k > max;cs o, we have ri = ||ag|| = k and, in the notation of Lemma

= {ai (iel)

k  (otherwise)

It follows from Lemma [5.1] that

1
lim (2r) " (|(z — ax)o (z — ap)|| — r3) = sup (—=(ejox+zo 61)—2041'(67;[1 ei))u, u)
k—00 ueVa(er): (u,u)=1 2 icl
and
2 -1 _ _ .2
i o (o) — 1 0 )0 (2~ =)
k—00 k—o0 27 (Iry (= ap) || + 1)
1
= sup (—=(ejox+zoer) —Zai(em ei))u,u) = h(z)
ueVa(er): (u,u)=1 2 icl
for all z € V. Hence h € V(0). O
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If I is a singleton in the preceding theorem, i.e., e; = e with e a minimal tripotent, then the last
term of (5.9) vanishes and h is a real continuous linear functional of V. Indeed, Ps(e)(V) = Va(e) = Ce
implies Ps(e)z = £(z)e for some functional ¢ € V* and

h(z) = (—%(eEI Py(e)z + Pa(e)zoe)e, e){e,e) = —%((ev (U(z)ene)e) + ((U(x)en e)e, e))(e,e) !

= — S (@) + (x)) = ~Re(z).

To illustrate the theorem let us consider an example. Recall that C" is a JB*-triple with triple
product,

1
{e,y, 2} =5 ((x, y)z+ <27y>$> for z,y,z € C", (5.10)

with the Euclidean norm, ||z||3 = |21|> + - - - + |2, |?, as the triple norm. Using this triple product we can
equip V = C™ x .- x C"™ with a triple product by defining it componentwise as follows:

1 .
{z,y,2}; = §<<xj,yj)zj + (zj,yj>mj) for zj,y;,2; € C'" (5.11)

for j =1,...,r. In this case the triple norm on V is given by ||z|| = max; ||z;]|2 for z; € C", and hence
its open unit ball is a product of Euclidean balls, D = B™ x ---x B™. In V we have that e = ({1,...,&)
(& € C") is a tripotent if, and only if, for each j = 1,...,r we have that £ = 0 or ||;||2 = 1. Moreover,
e is a minimal tripotent precisely when there exists a k with [|{;||2 =1 and &; = 0 for all j # k.

Let us determine the form of the horofunction given by where the tripotent e; = (n1,...,7,)
satisfies 7; # 0 if and only if i € I. So e; = >, ;e;, where ¢; € V' is the minimal tripotent whose i-th
component is 7;. We have that (Pa(er)x); = {er,{er,z,er},er}; = (xj,mj)n; for j=1,...,r, hence

1
h(z) = AVQ(el)(—§(€]D Py(ep)x + Py(ep)xoer) — Zai(em ei))
iel
= AyyenO_(—Refws, mi) — i) (ei0 e;))
i€l
_ —Relz:. 1) — ;.
max e(xi, ;) — oy
Remark 5.3. In the course of proving the preceding theorem, we observe that each horofunction h €
V(00) can actually be constructed from a sequence (ay) going to infinity along a straight line, which is a
geodesic in the normed space V. In fact, the sequence ay = ker — ;. a;e; used in the proof lies on the
straight line, t — ter — >, .; ase; in the flat @;crRe;. Also note that if k£ > m with k > max;er o, then
llak|| = k and hq, (am) = |lax — am|| — ||ak|| = (kK —m) — k = —m, so that h(a,,) = —m for all m.

By the remark we have the following corollary.
Corollary 5.4. Fach horofunction in V(c0) is a Busemann point.

For general finite dimensional normed vector spaces it need not be true that all horofunctions are
Busemann points, see [35].

6 Homeomorphism onto the dual unit ball

In this section we give a homeomorphism of the metric compactification of V onto the closed dual unit
ball B* of (V.|| -|). We subsequently show in the next section that this homeomorphism maps each
equivalence class in V(00)/ ~ onto the relative interior of a boundary face of D*. So, the dual ball D*
captures the geometry of the metric compactification of V.

To prove these results we need a lemma concerning the partial ordering < on the set of tripotents of
a JB*-triple. Given two tripotents d and e in V', we write d < e if e — d is a tripotent in V' orthogonal
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to d, or equivalently, if Py(d)e = d [11, (2.4)]. We also have d < e if and only if d is a projection in the
JB*-algebra V(e), in which case
d={e,d,e} (6.1)

(cf. [6, pp.34-36]).
Lemma 6.1. Given two tripotents d,e € V, the following conditions are equivalent:

(i) d<e,

(iii) {d, Pa(d)e,d} +{d,d, Pa(d)e} = 2d,
(i
Proof. (i) = (ii). If d <'e, then e = d+ (e — d) where e — d is a tripotent orthogonal to d. Hence we have
{d,e,d} = d={d,d,e}, which proves (ii).
(ii) = (iii). By (JP2), we have {d, Px(d)e,d} = {d,e,d} = P>(d)({d, e, d}), the latter implies {d, e, d} €

Va(d). Hence (ii) implies {d,d, e} = 2d — {d,e,d} € Va(d). Applying the box operator do d to the Peirce
decomposition

)

(i) {d,e,d} +{d,d,e} = 2d,
)
)

v) B(e,d)w =0 for all w € Va(d).

e = Py(d)e + Pi(d)e + Py(d)e

gives {d,d,e} = Py(d)e + $Pi(d)e, which implies Pi(d)e = 0 since Pi(d)e = 2({d,d,e} — P>(d)e) €
Va(d) NVi(d). It follows that

{d, Py(d)e,d} + {d,d, Py(d)e} = {d,e,d} + Py(d)e = {d,e,d} + {d,d, e} = 2d.

(iii) = (i). We have noted in (3.11]) that V2(d) is a JB*-algebra with identity d, which is an extreme
point of the closed unit ball of V5(d). By (iii), we have

1 1
d= §{d, e, d} + §P2(d)e

which implies Ps(d)e = d as ||{d, e, d}|, || P2(d)e| < 1.
(i) = (iv). Since e = d + (e — d) and do (e — d) = 0, we have end = dod. Let w € Va(d). Using
(6.1)) and the Jordan triple identity (JP1), we deduce

Ble,dyw = w—2{e,d,w}+{e,{d,w,d}, e}
= w—2e,d,w}+2{e,d,{e,d,w}} —{w,d,{e,d, e}} (by (JP1))
= w-—2{d,d,w}+2{d,d,{d,d,w}} — {w,d,d} (by (6.1))

w— 2w+ 2w —w = 0.
(iv) = (i). Let a = Py(d)e € Va(d). Then {d,d,a} = a and {d, a,a} € Va(d) implies {d,d, {d,a,a}} =

{d,a,a}. We show a = d.
Observe that Q4(a) = Qq(e). Hence (JP3) implies

QaQaQd = Qq,(a) = QQu(e) = RuQeCa- (6.2)
By (JP2) and (JP4), we have
Qi(ao d) = (do a)Qq = {d, -, Qa(a)} = {d,-, Qa(e)} = (do €)Qq = Qa(et d). (6.3)
Using and (6.3), one deduces that
Q(d)B(a, d)w = (Q(d) — 2Qq(a0 d) + QiQaQa)(w) = Q(d)B(e,d)w =0,  (w € Va(d)).
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Now take w = d — {d, a,d} € Va(d). Then we have

B(a,d)yw = B(a,d)d — B(a,d){d,a,d}
= d—2a+{a,d,a} — ({d,a,d} — 2{a,d,{d,a,d}} + {a,{d,{d,a,d},d},a})
= d—2a+{a,d,a} —{d,a,d} +2{d,a,a} — {a,a,a}
= {d—a,d—a,d—a},

where {dv a, CL} = {dv a, {d> d, CL}} = {{d7 a, d}a d, a} — {dv {av d, d}a a} + {dv d, {d7 a, a}} = {{d’ a, d}» d, a}'
As {d—a,d —a,d — a} € Va(d), it follows from (3.12]) that

{d = a,d —a,d - a}| = |Qa{d — a,d — a,d — a}|| = ||QaB(a, d)w|| =0,
so that d — a = 0 by (3.3]). O

Remark 6.2. Given tripotents d, e € V and identity map I: V — V, we have ||do Ps(d)e+ Py(d)en d|| <
2 and 2] — (do Py(d)e + P»(d)en d) is a positive operator on the Hilbert space (Va(d), (-,-)) by Remark
Hence ((2I — (do Py(d)e + Py(d)en d))v,v) > 0 for all v € Va(d). Moreover, ((2I — (do Py(d)e +
Py(d)eo d))v,v) =0 for all v € Va(d) is equivalent to 2/ = do Py(d)e + Py(d)eo d on Va(d).

The previous lemma has the following useful corollary.
Corollary 6.3. Suppose that h and h' are horofunctions given, respectively, by (@) and
, 1
R (z) = Avy(e,) (= 2(CJDP2<CJ)$+P2 cy)racy) ZBJ ¢;0¢))
jeJ
Leta =) ,c;aze; and b= ZjeJ Bjcj. Then h = h'if and only if e = ¢y and a =b.
Proof. The sufficiency follows from the observation that e; = ¢y and a = b implies that
Zai(eime, Z:a@ez Joer = ( Zﬁ]c] DCJ—ZIBJ cjocy).
el el jeJ jeJ

Conversely, let limy hy, = h = b/ = limy, hy, , where we can choose a, = ke — a and by = kcj — b by
Remark [5.3] As h(ay) = —k, we have k + h/(az) = 0 and

1
k+H(ag) =k+ sup ((—=(cjo (ker —a) + (ke; —a)o ey — E Bj(c;o¢j))v,v)
. — 2 ,
vEVa(cy): (v,v)=1 jed

k
=k+ sup ((=5((csm Po(es)er) + (Pa(es)ern cg))v, v)
veVa(ey): (vv)=1

F{(Glervatanes) = 3 fileso e)v,u)
el
= k( sup (I - 1((CJEI Py(cy)er) + (Pacs)erncy)))v, v)
veVa(ey): (vw)=1 2

1
2k(cJDa+aDCJ ZBJ c;j0¢j))v,v)))
]EJ

+((

for k =1,2,.... So we find that ((I — 3(cjo Pa(cs)er + Pa(cy)erncy))v,v) = 0 for all v € Va(cy), and
hence 21 = cyo Pay(cy)er + Pa(cy)ero ¢y by Remark on Va(ey). Moreover,

1
sup ((z(cyjoa+apcy) E Bj(cjoes))v,v) = 0. (6.4)
. -1 2
vEVa2(cy): (vw)=1 jed

In particular, we have 2c; = (cjo Pa(cy)er)(cs) 4+ (Pa(cs)erocy)(cy), so ¢; < ey by Lemma [6.1]
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Analogously, 0 = k + h/(by) = k + h(by) implies e; < ¢y and

sup <<1(€[D b+boer) —Zai(ezﬂ ei))v,v) = 0. (6.5)
veVa(er): (vu)=1 2 jer

We conclude that e; = ¢y and note that this implies that

1 1
S(espatane) = (eroataner) =Y aifein )
el
and

1 1
§(eIDb+bDe[):§(CJDb+bDCJ Zﬂ] DC]
JjeJ

It now follows from and that >, ai(eine;) = 3 50, B8i(cjo ;) on Va(er) = Va(cy), as both

operators are self- ad301nt In partlcular

azg e = Zaz e;ae;)(er) ZBJ c;o¢)( Zﬂjcj—b

i€l el jeJ jeJ

O]

To show that the metric compactification V' U V(00) is homeomorphic to closed dual unit ball of
(Vo - |, we identify V' with its (algebraic) dual space V* by using an inner-product on V', which we can
do as V is finite dimensional. For convenience we adjust the inner-product (-,-) on V to define a new
inner-product [-, -] such that [¢,c] = 1 for each minimal tripotent ¢ € V.

To realise this we note that a finite dimensional JB*-algebra V' decomposes into a finite {y-sum,
V=WV&- &V of Cartan factors, each of which contains a minimal tripotent (cf. [7, Theorem 3.3.5,
Theorem 3.8.17]. In a finite dimensional Cartan factor Vj, the tripotents form a compact submanifold
M; of Vj, in which the minimal tripotents form a connected component N; [27, §5]. As shown in [8]
Proposition 2.2], the tangent space T.(NN;) at each e € N; identifies with iA(e) @ Vi(e), where A(e) is
defined in (3.13).

In particular, dim(iA(e) @ Vi(e)) = 1 + dim Vi (e) is constant for all e € N;. On V; we define, for a
fixed e € Nj, a normalised trace form

1
1 4 dim Vi (e)/2

(z,y); = Trace (z0 y) (x,y € Vj),

so that (c,c); =1 for all ¢ € N;, and (V}, (-,+);) is a Hilbert space.

Henceforth, we denote by [-,:] the inner-product of the Hilbert space direct sum V =V, & --- @ Vj.
Then each minimal tripotent ¢ € V lies in some V; and [c,c¢] = 1. Moreover, the inner-product is
associative, i.e.,

{a,b,y}, 2] = [y, {b,a,z}]  (a,b,y,z€V)
(cf. [6, (2.31)]). In particular, we have [Py(c)y, z] = [y, P2(c)z] for each tripotent ¢ € V. We note that if
a,b € V are triple orthogonal, i.e., ao b = 0, then [a, b] = 0.
By the Riesz representation theorem, the map

reVisi=|2leV* (6.6)

is a conjugate linear isomorphism.

Let D* = {x € V*: ||Z||« < 1} be the closed dual unit ball in dual space of the JB*-triple (V, || - ||).
Then for each ¥ = [-,z] € V*, where = has spectral decomposition z = 2521 Ajcj € V, we have
1Z][. = > Aj. Indeed,

|W—mmnww2wmmeM&mm<mZmM DA,
j=1

llyll=1 lyll=13= lyll= lyll=13=
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as P(cj)y = pcj for some p € C and |u| = [|P(c;)yll < |lyll = 1. On the other hand, y = >7%_, ¢;
satisfies [|y|| < 1 and hence ||Z|[. > [>T [cj, #]| = 277, A
We define

T T
Dy={zeV:zx= Z)\jcj spectral decomposition with Z Aj <1} (6.7)
j=1 j=1
It follows from the previous observations that the conjugate linear isomorphism z € V +— z € V* in
maps Dy onto D*, and hence Dy is the closed unit ball of a norm on V.

Thus, to prove that V UV (c0) is homeomorphic to D*, it suffices to show that there exists a homeo-
morphism ¢ from V UV (oco) onto Dy, which is what we will do.

Remark 6.4. Given z € V with spectral decomposition x = Y _;_; Aie;, so r is the rank of V', we have

that the eigenvalues \; > ... > A\, > 0 are unique, but the pairwise orthogonal minimal tripotents e;
need not be unique. We can however collect terms with equal non-zero eigenvalue in the sum and write
x =Y | pid;, where py > ... > pig > 0 and the d;’s are (not necessarily minimal) pairwise orthogonal

tripotents. In this case both the u;’s and d;’s are unique, see [27, Corollary 3.12]. For clarity we refer to
this decomposition of x, as the unique spectral decomposition.

We define the map ¢: V U V(c0) — Dy by

Soi_i(exp A —exp(—N))ci

pla) = iy (exp A; + exp(—N\;)) (6.8)
for each « € V with spectral decomposition z =, ; \i¢; € V, and
crexp(—a;)e;
olt) = L0, (69)
for h € V(o0) of the form,
h(x) = Avy(e)(— ;(elm Py(er)x + Py(er)zoey) Zaz eide;)) (xeV).

el

To see that ¢(z) is well-defined note that the right-hand side of is the spectral decomposition of
¢(x). Moreover, if \; = 0, then the corresponding coefficient in ¢(z) is also 0. So by switching to the
unique spectral decomposition we find that ¢(z) is well-defined by Remark Also ¢(h) is well defined.
Indeed, if h was expressed as

1
h(x) = Ayy(c))(— (JDPQ(CJ)aH—PQ cj)xaocy) EBJ ¢;0¢j)) (xeV),
jeJ

thene; =cyjanda =), ;ae; = ZjeJ Bjc; = b by Corollary Viewing a and b in the JB*-subtriple
Va(er) = Va(cy) we may assume after relabelling that I = J and «; = §; for all i € I = J. Now using
the unique spectral decomposition and the fact that e; = ¢, we find that ¢(h) is well-defined.

Theorem 6.5. The map ¢: VUV (0c0) — Dq is a homeomorphism.

The proof of the theorem will be split up in several lemmas. Note that the interior of Dy, denoted
int Dy, consists of those x = Z;Zl Ajc; with Z;Zl Aj < 1, and the boundary, 0Dy, of Dy are precisely
those = 3% Aje; with 3% A; = 1. This follows from the fact that z — & = [, 2] is a conjugate
linear isomorphism mapping Dy onto D*.

Lemma 6.6. We have (V) C int Dy and p(V (c0)) C 0Dy.
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Proof. The right-hand side of is the spectral decomposition of ¢(x) and
0< (Z e 4 e*Ai)*l(Z M — M) < 1,
i=1 i=1

so ¢(x) € int Dy. Clearly, ¢(h) € 0Dy. O
Lemma 6.7. The map ¢: VUV (c0) — Dy is continuous on V.

Proof. Let (vy) be a sequence in V' converging to v € V. To show ¢p(vy) = ¢(v) as k — oo, we show that
each subsequence of (v;) contains a subsequence (v,,) satisfying ¢(v,) — ¢(v) as n — co.

For each k, let v;, = 27;:1 WirCir. be a spectral decomposition. By convergence, (vy) is bounded. Hence
each subsequence of (v;) contains a subsequence

T

Up = E HinCin

i=1
such that u;, — p; > 0 and ¢, — ¢ as n — oo, where cy,...,c,. are mutually orthogonal minimal
tripotents.
It follows that v = lim, vy, = > ;_; pic; and
Qp(v ) _ Zzzl(e”in _ e_l"in)cin N Zg:l(eui —_ 6_'“1')(32‘ _ SO(/U)
n Z;:l eHin + e~ Hin Z::l eMi 4+ e~ Hi
as n — 0o, which completes the proof. O

Lemma 6.8. We have (V) = int Dy.

Proof. As ¢ is continuous on V and maps V into int Dy, we know from the Brouwer invariance of domain
theorem that ¢(V') is open in int Dy. Suppose, for the sake of contradiction, that ¢(V') # int Dy. Then
there exists w € dp(V) Nint Dy. Let (vy,) in V' be such that ¢(v,) — w. As ¢ is continuous on V, we
must have that [|v"| — oo.

Consider the spectral decomposition v,, = Y ._; AinCin. After taking a subsequence we may assume
that (1) cin — ¢, and (2) i = Aip — Ain —> a; € [0,00], for all i = 1,...,r. Note that A1, = ||vn|| —
00.

Let I = {i: a; < 00}. Then 1 € I and

(U ) _ 22:1 (6)\in _ e—)\in)Cm B Zzzl(e—ozm _ e—)\ln—)\m)cin . Zie[ e—Cic;
©\Un) = Z;:l erin 4 e~ Ain - Z;‘":l e—%n + e~ An—Ain Zie[ P

This implies that w = lim,,—,o @(v,) € 0Dy, which contradicts the assumption that w € int Dy. O
Lemma 6.9. The map ¢ satisfies o(V(00)) = 0Dy.

Proof. Let € dDy. Then x has spectral decomposition =Y ;_; Aje; with >_7_; X\; = 1 and there exists
ape{l,...,r}suchthat \y >... > A, >0and Ay =0forp<s <r.

Fori=1,...,p put g; = —log\; and o; = p; — 1. Then «; > 0 and a3 = 0. Now consider the
horofunction h € V(c0) given by

h(z) = sz(e)(—%(ea Py(e)a+ Pae)zoe) - Y aieine))  (weV).
=1

Then we have ) )
o(h) = i=1 exp(—a;)e; _ Zi:1 Ai€; _
f:l eXp(_O‘i) f:l Ai
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Lemma 6.10. The map ¢ is injective on V UV (00).

Proof. Suppose first that p(z) = ¢(y). Let =Y/, Aic; and y = >, pid; be the spectral decomposi-
tions. Then we have

_»zx;ﬂeM~—e_M)q _»zx;lwui_e—m)m

QD(.%) - 2;21 €>‘i 4 €_>‘i 22‘21 ehi & e M @(y)

where the coefficients of the minimal tripotents of both sides are decreasing through the order of the
indices. If we let for j =1,...,7,

Ze +e M) TH e —e ™) and By = (et e )T et — e ),

then o = 3; by Remark It now follows from [25, Lemma 3.7] that A\j = p; for j =1,...,r

Note that «; = 0 if and only if A\; = 0, and similarly 5; = 0 if and only if y; = 0. So by considering
the unique spectral decompositions of ¢(x) and ¢(y) and using Remark [6.4 we find that z = y.

Now suppose h, h' € V(oc0) with ¢(h) = ¢(h’). Let h be of the form and ' of the form

1
W(z) :AVQ(CJ)( 2(CJD Py(cj)x + Py(cy)zocy) Zﬁ] ¢;0¢j))
jeJ

Then we have
Y icr exp(—a;)e; Zjej exp(—5;)¢;

> icr exp(—a;) Zjej exp(—05))
where the coefficients of the minimal tripotents on both sides are strictly positive. By relabelling the
indices, we may assume that 1 = {1,...,p} and 0 = a1 < ap < ... < o, Likewise we can assume that
J=A{1,...,q} and 0 = 51 < B < ... < f3,;. Since the norm of both sides above in V' are equal, we have

S exp(—ai) = 3 exp(~B)).

iel jeJ

By Remark wehavep=¢q,e % =e P e = e1+-- dep =ci1+ ey =cyand ) e, =) Bic.
Hence h = h' by Corollary O

Lemma 6.11. If (ay) in V is such that he, — h € V(00), then p(ar) — @(h).

Proof. Let h be given by (5.9). To show that ¢(ax) — ¢(h), we show that each subsequence of
(p(ag)) has a convergent subsequence with limit ¢(h). So let (¢(an,)) be a subsequence. Using the
spectral decomposition we write a,, = Z§:1 MimCim With f1m, > ... > ppm > 0. As h is a horofunction,

fim = ||am| — oo by Lemma [2.2]
After taking a subsequence we may assume that B, = pim — tim — 5i € [0,00] and ¢, — ¢; for

all i. Let J = {i: 5; < oo} ={1,...,q} and note that ¢ > 1, as 51 = 0.
It follows from Lemma [5.1| that h,,, — h’ where

1
W (x) = Avy(e,)(— 2(CJD Py(cj)x + Pa(cy)xocy) ZBJ i0cj)) (xeV),
jeJ

and h' € V(c0) by Theorem As hg,, — h, we know that b’ = h, and hence e; = ¢y and
Z ;€ = Z ﬁjcj
icl jed

by Corollary [6.3]
We can relabel the «;’s such that 7 = {1,...,p} and 0 = a3 < az < ... < o It follows from Remark

that p=gqgand a; = for all i € {1,...,p}. Moreover, Y ¥ | e %e; => " e Pic;.

1=
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. z::]- (eiui'm — ef,ufim)cim _ Z::]-(e*ﬁzm — efﬂlmfﬂim)cim

plam) = Z;Zl elim — e—Mim 2§:1 e—Bim — e—Kim—Him
we find that ,
1 — _Bz -1 —Bi _az -1
IETRED WEURD WATEI WER) it
i=1 =1 =1
Thus, ¢(am) — ¢(h), which completes the proof. O

To prove continuity of ¢ on the boundary V' (c0), we need the following technical lemma.

Lemma 6.12. Let J C {1,...,r} be nonempty, and for eachn, let {cjn: j € J} be a collection of mutually
orthogonal minimal tripotents in V' such that cj, — ¢; for all j € J. For j € J let (Bjn)n be a sequence
in [0, 00) converging to B; € [0,00], with minjcy Bjn = 0 for each n. If we let J' = {j € J: Bj < oo} # 0
and consider the horofunctions,

hn(z) = Avg(CJn)(—%(CJnD Py(csm)a + Palcsm)rocm) = Y Bin(einocn))  (z€V),

JjeJ
where cjn = Y ;c; Cin, then
. 1
n1£1>100 hn(l’) = AVQ(CJ/)( 2(CJ/ O PQ(CJ/)x + PQ(CJ/ xO CJ/ Z ﬁj id C] (610)

jeJ’

with ¢y =3 ey €.

Proof. We show that each subsequence of (h,()) has a convergent subsequence with limit the right-hand
side of (6.10). Pick a subsequence (hy(z)). As {u € V': (u,u) = 1} is compact, there exists w* € Va(c )
with (w*, w*) = 1 and

1
hi(z) = sup ((—=(cjn0 Pa(cjn)x + Pa(cyn)xo cpp) — Zﬁjn(cjnm Cin))V, V)
veVa(ern) 2 jed

1
(=5 (ean Palesk)z + Po(esr)wo cpr) - > Binlejen cjp))w, wh). (6.11)
Jj€J
Taking a subsequence, we may assume that w® — w. For each k, let

v= & v (6.12)

0<s<t;s,teJ

be the Peirce decomposition of V' with respect to the tripotents {c;: j € J}, and let

V= P V

0<s<t;s,teJ

be the decomposition with respect to the tripotents {c;: j € J}. We show

w e @ Ve = ‘/Q(CJ/). (613)
s,teJ’: s<t

Let w¥ € V% be the (s,t)-component of w* in the Peirce decomposition in (6.12). Then we have
wft — wet € Vi and

1 1
—i(chD Py(cyi)x + Pa(cyr)zo ch)wft — —i(CJD Py(cy)x + Pa(cy)xo cg)wg.
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Moreover,
dsjBjk + 0t Bk

Z/Bjk<cjkD Cjk)wft = Z <”2“ w];t'

JjeJ jeJ
Recall from the proof of Lemma that if s,t € J with {s,t} ¢ J', then Bs — 00 or Sy, —> 00. As
hy(x) > —||z| for all k and B, > 0 for all j € J, we find that w — 0 for all s,t € J with {s,t} ¢ J'.
This implies that (6.13]) holds.

Next, we make use of the following fact. Let e be a tripotent. If v € Va(e)UVy(e), y € V and z € Vi (e),

then Py(e){v,y,z} = {P2(e)v, Px(e)y, z} and Pa(e){y,v, z} = {Pa(e)y, Pa(e)v, z}. In particular,

<_%(CJEI Py(cj)z + Py(cj)zoey)w,w) = <_%(CJ’ 0 Py(er)Poley)r + Poley) Po(cs)za cr)w, w)
= <_%(CJ’ 0 Py(cy)z + Polcy)zocpw,w),

as PQ(CJ/)PQ(CJ) = PQ(CJ/).
It follows that

. . 1 ko k
Jim hy(e) = Tim (=5 (eqnn Pole)z + Palegi)zo egr) = ;5]'16(0]']@@ cjk))w”, wr)
j
1
= <(—§(CJ/D Py(cy)x + Py(cy)zocy — Zﬁj c;0¢j))w, w).

jeJ’

Since w € Va(cy), we find that

. 1
lim hy(z) < Avye,)(— 2( 770 Pa(cy)x + Pa(cy)xocy) Zﬁj i0cj))

k—o00
jeJ’

To show that this is an equality, let u € Va(cy7) be such that

1
AVg(cJ/)( 2(6]/[1 PQ(CJ/)$—|—P2 CJ/ xO CJ/ ZB] DC]
jeJ’

1
= <(—§(CJ/D PQ(CJ/) —|—P2 CJ/ x O CJ/ Zﬁj DCJ >

jeJ’
As Py(cyi)u € Va(egr), we have that
1
<(—§(CJkD Py(cjp)x + Py(cyi)ro cr) — Z Bjr(cjro cjr))wh, wh)
jeJ
1
2 (=5 (canm Pales)z + Po(egr)zn cr)

— Z Bjk(cjkm cjk))Pz(cJ/k)u, P2(CJIk-)U> <P2(CJ/k)u, PQ(CJ/k)u>_1
jed
Note that, as (Py(cyg)u, Pa(cyk)uy — (u,u) = 1, the right-hand side is defined for all k large.
So,

<(—%(Cjk;m Pacsr)r + Palesi)zocgr) = Binl(ci0 k) Pa(cw)u, Pa(cyn)u)

jed
1
= ((=5(erwn Poleyw)z + Paleyr)ro cyn) — > Bin(eje 0 cjp)) Palck)u, Pa(cym)u)
jed’
1
_><(—§(CJID Py(cy)x + Py(cy)zocy) ZBJ ¢jo¢j))u, u),
jeJ’
which proves (/6.10)). O
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Lemma 6.13. The map ¢: V UV (co) — Dy is continuous on V(c0).

Proof. Let h, — h in V(c0). We show that each subsequence (p(hg)) of (¢(hy)) has a convergent
subsequence with limit ¢(h). As h,, is horofunction, we can express it as

1
hn(2) = Avy(ey, ) (— 2(CJnnD Py(cyn)r + Pa(crn)xocy,n) Z Bin(cinD cjn)) (xeV).
JE€JIn

After taking successive subsequences we may assume for each k that J;, = J C {1,...,r}, ¢jr — ¢;, and
Bjr — Bj € [0,00] for all j € J. Note that minjey 8; = 0, as minje; f;; = 0 for all k.
Now let J' = {j € J: B < oo}. By Lemma we find that hi(x) — h'(z) for each z € V, where

1
h/(ﬂj‘) = AVQ(CJ/)( 2(CJ/E1 PQ(C]/)QJ‘ + P2(C]/ xa CJ/ Z BJ | CJ
jed’

By Theorem we know that A’ is a horofunction. As h,, — h, we conclude that A = A/, and hence
er =cy and ), ;qie; = Zjej, Bjc; by Corollary This implies, by Remark that

~Bike, ~Bie, —a
Zgéje T Cik Z]lee ¢ Ziele Yie;

lim hg(x) = lim = = —)
k— o0 k( ) k—s o0 Z]E] e_ﬁjk Z]GJ/ e /BJ Zie[ e Qi SO( )
and hence we are done. O

Collecting the results it is now easy to show that ¢ is a homeomorphism.

Proof of Theorem[6.5. Note that ¢ is continuous on V UV (c0) by Lemmas [6.7 and Moreover, ¢ is
a bijection by Lemmas and As VUV(0) is compact and Dg is Hausdorff, we conclude
that ¢ is a homeomorphism. O

7 Geometry of V U V(c0)

We now analyse the geometry of the metric compactification of V. Recall that on V' (c0) there is a natural
equivalence relation, h ~ g if sup,cy |h(x) — g(z)| < oco. In this section, we show that the partition of
V(o0) into equivalence classes is closely related to the geometry of Dy (and hence also to D*). In fact,
we prove that the homeomorphism ¢: V UV (c0) — Dy given in and maps each equivalence
class onto the relative interior of a boundary face of Dy.

For the basic terminology from convex analysis we follow [3I]. If C' C V is convex, then F C C' is
called a face if \x + (1 — \)y € F for some 0 < A < 1 and z,y € C implies that x,y € F. Note that the
empty set and C' are both faces of C, and each face is convex. The relative interior of a face F, denoted
ri F'| is the interior of F' regarded as a subset of the affine hull of F'. It is well known that each nonempty
convex set C' is partitioned by the relative interiors of its nonempty faces, see [31, Theorem 18.2].

To analyse the equivalence classes it is useful to recall that for Busemann points h,g € V(c0) one
has that h ~ ¢ if and only if §(h, g) < oo, see [36, Proposition 4.5]. As each horofunction is a Busemann
point by Corollary we see that the equivalence classes coincide with the parts of V(co). Therefore
we start by analysing the parts.

Using and Remark [5.3| we find for h, ' € V(c0), where

1
h(x) = Ay, (e (= 2(6[D Py(er)x + Py(er)roer) Zal (e;0€)) (xeV) (7.1)
el
and )
h/(ﬂj):AV2(CJ)( 2(CJEI PQ(CJ)$+P2 CJ xrg CJ Zﬁ] DC] (SCEV), (72)
JjeJ
that
H(h ) = Tim_ ()] + R ((1)), (7.3

with ¢(t) = tey—> ;e cie;. Likewise, H(R', h) = limy—o0 |9/ (1) [[+R(¢'(2)), with ¢'(2) = tes—> e Bjc)-
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Lemma 7.1. Let h and h' be given by and . If ef = cj, then

H(h7 h/) = sup (((a_ b)D 6[)U,U>
ueVa(er): (uu)=1

and
Hh) = swp (b a)oer)u,u).
ueVa(er): (uu)=1

where a =3,y aie; and b=} . ; Bjc;.
Proof. Let ¥(t) = tef — Y ;c; aie;. For t > 0 large, [|¢(t)| = t, and hence
1
[+ (W (t) =t + sup (=5 (crmw(t) +¥()oeu— ) B(ejo cj)u,u)

ueVa(cy): (u,u)=1 jed

1
= sup (t(cjoecy)u— =(cyjo (tef —a) + (tey —a)ocy u—Zﬁ] ¢;0 ¢j)u,u)
ueVa(cy): (uu)=1 2 jed

1
= sup <2(6[Da—|—CLD6[ U—Zﬂ] ¢;0 ¢j)u, u)

ueVa(cy): (u,u)=1 JjeJ
— sup <(CLD eI)u — (bD CJ)uv 'LL>
ueVa(ey): (u,u)=1
— sup (((a —b)oer)u,u).

ueVa(er): (u,u)=1

So, by ([7.3)) the first equality holds. The second one is obtained by changing the roles of h and A'. [

We use this lemma to give a simple criterion for two horofunctions to be in the same part of V(oo).

Theorem 7.2. Two horofunctions h and h' given by and , respectively, are in the same part
of V(o0) if and only if e; = ¢y,

Proof. Let ef = ¢j. Then by Lemma we have that

S(h, 1) = sup (((a=b)oer)u,u) + sup ((b—a)oer)u,u) < oo
ueVa(er): (u,u)=1 ueVa(er): (u,u)=1

where a = ), ; oje; and b = ZjeJ Bjc;. Hence h and b/ are in the same part.

Conversely, given e; # ¢y, we need to show that h and b’ are in different parts, that is, §(h, h') = co.
We have either ¢ ﬁ ey or ey j{ cj. Assume the former. Note that it suffices to show H(h,h') = oo, since
the detour cost is nonnegative.

By Lemma [6.1] and Remark [6.2] we have
1
(cg— E(CJD Py(cy)er + Py(cy)erocey)(ey), cg) > 0. (7.4)

As before, for large ¢, we have ||1)(t)|| = ¢, so that

[N+ H@E) =1+ s (oo b(t) + 6o er)u— 3 Bi(e0 ¢)uu)

ueVa(ey): (u,u)=1 jet

t 1
= sup (tu — =(cjo Py(cy)er + Pa(cg)eroeg)u+ —(cjoa+aocy) U—Zﬁj c;0 ¢j)u, u).
ueVa(ey): (u,u)=1 2 2 jeJ

Hence (|7.4) implies

t 1
H(h,h) > lim (tcy — §(CJD Py(cy)er + Pa(cy)eroey)(cy) + i(CJD a+atcy)cy —Zﬂjcj, cj) = o0.

t—00
jeJ
Analogously, ey % ¢y implies H(h/, h) = oc0. O
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Let us now recall the facial structure of D*. By [I1, Theorem 4.4], the closed boundary faces of D*
are exactly the sets of the form F} = {z € D*: z(e) = [e,z] = 1}, where e is a tripotent in V. So, the
boundary faces of Dy are precisely the sets of the form

F.={zx e Dy: [e,z] =1} (e € V tripotent).

Note that F, C 0Dy, as F} C 0D*.
The next lemma gives an alternative description of F,, which will be useful in our discussion.

Lemma 7.3. Suppose that e € V is a tripotent. Then
F, = {Zle i€ le Xi =1, N\; >0, and e;’s mutually orthogonal minimal tripotents with e; < e}.

Proof. Suppose that x € F,. Using the spectral decomposition we can write z as x = Y ©_; \;e;, where
Ap > 0 and p < r (so we ignore the zero eigenvalues). Then Y% | \; =1, since x € dDy. As F, is a face
and e; € Dy, we know that e; € F,, and hence 1 = [e, e;] = [Pa(e;)e, ¢;]. Combining this with the fact
that Py(e;)e € Ce; and [e;, e;] = 1 gives Py(ej)e = e;. Thus, e; <efori=1,...,p.

On the other hand, given z = >_*_| Aje; such that Y7 ;A\, =1, A; > 0, and eq,...,¢e, < e mutually
orthogonal minimal tripotents in V', we have that © € Dy and

p p

le,x] = Zx\i[e, ei] = Z)\i[ei,ei] =1.

Hence x € F,. ]

We like to point out that F, = 0DyN A(e), where A(e) is the closed positive cone in the JB-algebra
A(e) in Va(e), cf. [27, Theorem 6.12].

Theorem 7.4. If h € V(o) is given by (7.1)), then ¢(h) € riF.,. Moreover, ¢ maps each equivalence
class in V(o0)/ ~ onto the relative interior of a boundary face of Dy.

Proof. Let |I| = q and set w = ¢ ey, where e; = Y, ;. Note that [e;,w] =1 and w € F,,. We claim
that w is in the relative interior of F,,. Let x € F,,. To prove the claim it suffices to show that for each
e > 0 small, w. = w +e(w — ) is in F,,, see [31, Theorem 6.4].

By Lemma we know that we can write z = Y% | \id;, where ¥ X\; =1, \; > 0 and d; < eg for
all i. We have that e; — > _F_, d; is a (possibly 0) tripotent orthogonal to the tripotent Y ?_; d;, say with
spectral decomposition e; — 327 d; = 31\ d;. So,

p

we = (g7 (L+e) —eX)di + zq: ¢ (1 +¢e)d; (7.5)
i=1 i=p+1

and [ef, we] = (1+¢)[er, w] —eler, 7] = 1. As g1 (1+¢&)—e); > 0 for all € > 0 small, the right hand-side of
is a spectral decomposition of w, for all € > 0 small. (We have ignored terms with zero eigenvalues.)
Thus, w, € Dy for all € > 0 small, and hence w, € F,, = {x € Dy: [er,z] = 1}.

To complete the proof of the first assertion we assume by way of contradiction that ¢(h) € ri Fy,. As
@o(h) € F,, we know that ¢(h) is in the relative boundary of F¢,. This implies that z. = (1+¢)p(h)—cw ¢
F,, for all ¢ > 0. Here we use the fact that w is in ri ¥, and F¢, is a convex set.

Note that .
(I4+e)e ™ ¢
=N = d 7.6
. i=1 ( e g (76)

Let 1 be the coefficient of the d; in the sum (7.6). Then p$ > 0 for all 7 when € > 0 is sufficiently small.
Moreover, Y7, us = [er, 2] = 1, since e = dy + -+ + d,. But this implies that z. € F,, for all e > 0
small, which is impossible.
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To show the second statement we note that for h, h’ € V(c0) given by and , respectively, we
have that h ~ h’ if and only if they are in the same part, as all horofunctions are Busemann points. This
is equivalent to saying that e; = c; by Theorem So by the first assertion, we get that h and h’ are
both mapped into ri F, under ¢. As ¢ maps V(oo) onto 0Dy we conclude that ¢ maps each equivalence
class in V(00)/ ~ onto the relative interior of a boundary face of Dy. O

In the remained of this section we show that each part in V(oo0) with the detour distance is isometric
to a normed space. More specifically, we shall see that the part of h € V(o0), where h given by ,
equipped with the detour distance is isometric to a quotient space of the JB-algebra A(e;) = {x €
Vie=ua"} = {x € Valer): {er,z,er} = x} under a suitable norm. To introduce the norm let e € V be
a tripotent and define for z € A(e),

|Z]|lvar = sup ((xoe)u,u) + sup ((—zD e)u,u)
ueVa(e): (u,u)=1 ueVa(e): (u,u)=1
= sup roe)u,u) — inf roe)u,u). 7.7
ueVa(e): (u,u):1<( ) > u€Va(e): <u,u>:1<( ) > ( )
Lemma 7.5. The function || - |lvar is a semi-norm on the real vector space A(e), with ||z||var = 0 if and

only if © = Ae for some A € R.

Proof. From the definition, we have ||z||var > 0 for all z € A(e). If @ > 0, then ||az|var = af|||var by
(7.7). For a < 0 we have

loz|var = sup (o e)u,u) — inf ((axo e)u, u)
u€Va(e): (uu)=1 ueVa(e): (u,u)=1
= - inf —axOe)u,u) + sup —axDe)u,u
u€Va(e): <U7U>=1<( ) > ucVa(e): (u,u>:1<( ) >
= —afz|var,

and hence [|ax|var = |||z]]var for all @ € R and = € A(e).
It follows directly from the definition that ||z + yllvar < [[2[var + [|ylvar for all z,y € A(e). Given
A€ R and z € A(e), we have

|z + Aellvar = sup (((x + Xe)o e)u,u) — inf (((x + Xe)o e)u, u)

ueVa(e): (u,u)=1 ueVa(e): (u,u)=1

= sup (((zo e)u,u) + A{(eo e)u,u)) — inf (((zo e)u,u) + A{(eo e)u,u))
ueVa(e): (u,u)=1 ueVa(e): (u,u)=1

= sup ({((xoe)u,u) + A) — inf (((xoe)u,u) + N)
ueVa(e): (u,u)=1 ueVa(e): (u,u)=1

= sup roe)u,u) — inf roe)u,u),
ueVa(e): (u,u>:1<( ) > ueVa(e): <u,u):1<( ) >

and hence ||z + Ae|lvar = ||*]|var-

On the other hand, if ||z||var = 0 with a spectral decomposition z = Y_¥_, a;e; in the JB-algebra A(e),
where ag > ... > oy and e; + -+ + ¢, = e, then we show = Ae for some A € R.

Take p = inf,cvy(e): wuy=1((z0 €)u,u) and set y = x — pe. So, [|y|lvar = [|Z|lvar = 0 and

[Yllvar = sup  ((yoe)u,u) — inf ~  ((yoe)u,u) = sup ((yoe)u,u) = 0.
ueVa(e): (u,u)=1 u€Va(e): (uu)=1 ueVa(e): (u,u)=1

But y = Y7, (a; — p)ei, and hence for each 1 < k < p we get that

0> ((yoe)er, ex) = (ar — p){(exD ex)er, ex) = (ar — p){ex, ex),

as e, € A(e) C Va(e).
This implies that ai — p < 0 for all 1 < k£ < p and hence —y is in the closed cone of the JB-algebra
A(e), so that < pe in A(e). Likewise

sup —yoe)u,u) = — inf yoe)u,u) =0,
u€Va(e): (u,u):1<( ) > ueVa(e): (u,u):1<( ) >
gives y > 0 and hence pe < x. We conclude that © = pe, which completes the proof. O
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The preceding result shows that || - |lvar is genuine norm on the quotient space A(e)/Re of the JB-
algebra A(e). Further, we have the following corollary.

Corollary 7.6. For h € V(co) we have that ([h], ) is isometric to (A(er)/Rer, || - ||var)-
Proof. Let h € V(o0) be given by (7.1). We define a map 7: [h] — A(es)/Rer by

T(W) = Bjc; + Rey € Aer)/Rer (W' €[] given by (T:2)).
Jj€J
This is a bijection, as minjc s 3; = 0 and e; = ¢y for all horofunctions i’ € [h] by Theorem . It is an
isometry by Lemmas [7.1] and O

8 Extension of the exponential map

The exponential map expy: V. — D at 0 € D of the Bergman metric g is a real analytic homeomorphism,
where go(z,w) = 2Trace(z0 w) for z,w € V (cf. [7, Example 3.5.13]) and

expg(z) = tanh(x) = Ztanh(/\i)ei (8.1)
i=1

for each x € V' with spectral decomposition x =Y _;_; \ie; [27, Lemma 4.3 and Corollary 4.8].

In this final section we show that exp extends as a homeomorphism expy: V' UV (c0) — DU D(o0)
such that exp, maps each equivalence class in V(c0)/ ~ onto an equivalence class of D(o0)/ ~. In
particular, we find that the metric compactification of a Hermitian symmetric space M ~ D C V can
be realised as the closed dual unit ball D*, by Theorem [6.5 and its geometry coincides with the facial
structure of D* by Theorem [7.4

Given h € V(o0) with

hz) = AVQ(S)(—%(eD P(e)z+ Pa(e)aoe) = Y ai(eine)) (e V),
=1

we define expy(h) = g, where the function g: D — R is given by

g9(z) = %log Z e e % B(z,2) YV?B(z,e)P,; (z € D), (8.2)

I<i<j<p

which is a horofunction by Theorem as min; a; = 0 implies max; e™% = 1.
We will prove that the extension exp is a homeomorphism in following theorem.

Theorem 8.1. The extension expy: V UV (oco) — D U D(o0) of the exponential map is a well-defined
homeomorphism that maps each equivalence class of V(00)/ ~ onto an equivalence class of D(c0)/ ~.

It follows from this theorem that the geometry and global topology of the metric compactifications of
(D, p) and of the JB*-triple (V, || - ||) with open unit ball D coincide. So have the following consequence

by Theorems [6.5] and [7.4]

Corollary 8.2. There ezists a homeomorphism 1: D U D(c0) — Dq that maps each equivalence class
in D(o0)/ ~ onto the relative interior of a boundary face of Dy.

To prove Theorem we will need the fact that all horofunctions of DU D(00) are Busemann points
and exploit the detour distance on the parts in D(00).
Let h be horofunction functions in D(c0) of the form,

h(z) = 11og > XiXjB(z,2)"'/?B(z,¢)P; (z € D) (8.3)

2 —
1<i<j<p
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for some p € {1,...,7}, \; € (0,1] with max; \; = 1 and e = e; + ez + --- + ¢, a tripotent. Using
Va(e) = @1993) Vi; and (3.18)), the norm in (8.3) can be computed over Vz(e), that is,

> XNNB(z2)VPB(z )Pyl = Y. Ai\B(z,2)"?B(z,e) P Pa(e)|. (8.4)

1<i<j<p 1<i<j<p

Fori=1,...,p, let a; = —log A; > 0, so min; o; = 0. Let «y: [0,00) — D be the path

~(t) = expy(te — Z aje;) = tanh(te — Z ae;) = Ztanh(t — ;)€ (t>0). (8.5)

Note that y(t) — e € 9D as t —» oo, in other words, y(t) goes to infinity in the metric space (D, p).
We show below that v is a geodesic in the metric space (D, p), in the sense that d(v(s),v(t)) = |s — t|
for all s,t € [0,00). We will see that h in is a horofunction obtained by taking a sequence (7y(tx))
along ~. For simplicity we say that v(t) converges to h, viewing h € D(o0) as an ideal boundary point of

(D, p).

Lemma 8.3. The path v in is a geodesic in (D, p) converging to the horofunction h in , and
h is a Busemann point.

Proof. Recall that

() (V1)) = =v(s) + B(v(5), 7()) (T = v(t) 0 v(s)) (1),
We note that
tanh(t — oy
(I =7()57(s)) (Z 1 — tanh(t — fxl) tanil(s — ;) ei)

tanh(t — ay) — tanhQ(t — ;) tanh(s — o)
= = tanh(t —
Z 1 — tanh(¢ — o) tanh(s — ;) “ Z an ai)e

So,

(I —y(t)o~(s) () = Z 1_ tanh;jrl_}l(ofi)_t:ﬁl(s —a) "

Now using (3.19) we find that

(1 — tanh?(s — o)) tanh(t — ;)
1 — tanh(¢ — o) tanh(s — ;)

79

B((s),7(s)YHI —v(H)m(s) () = >

i

which implies that

() + B((),7(s) (I =1 (0)m () 2(0) = Y tanh(f ~ a;) — tanh(s —a) Z tanh(t — )

1 — tanh(t — a;) tanh(s — ;)

Thus, for ¢ > s we have that

p

lg— () (Y(ED ] = || Y _ tanh(t — s)e;]| = tanh(t — s)
=1

and hence p(y(t),7v(s)) =t — s, which shows that ~ is a geodesic.

Observe that for sufficiently large ¢ > 0, we have [|y(t)|| = tanh(¢), as min; o; = 0. It follows that
1 —||v(®)|?> = 1 — tanh?(¢) for large t.

Set By = tanh(t — o) for i = 1,...,p, and put B; = 0 for i = 0. From we know that

B(y(£), ()72 = > (=g 72— 857 PRy.

0<i<j<p
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Using the identity €2* = (1 + tanh(z))/(1 — tanh(x)), we get

ast — oo

1 — tanh2(¢)\ /2 e~t(1 + tanh(t)) .
N _z2 = it e
1-6; e i(1+ tanh(t — o))

for i = 1,...,p. For i = 0, we have (1 — tanh?())/(1 — $2) = 1 — tanh?(t) — 0.
Recall that by Lemma and equations (3.7)) and (4.2), we have for each z € D that

lihy(2) = lim 3 log | (1 = tank () Bz, 2) 2Bz, 2(0) B0, ()2

2

1/2
= h{n 1 log Z <1_ta‘nh2(t)> 1/2 (1—‘6&11112@)) B(z’ Z)_l/QB(z,’y(t))Pij

1- 52 =)

0<i<j<p

This implies that

h?lhv(t)(z):%l(’g ST e e B(2,2) V2B (2, e)Py|| = h(z) (€ D)

1<i<j<p
and shows that h is a Busemann point.

Let us now analyse the parts of horofunction boundary D(oc0).

Proposition 8.4. Let h,h' € D(o0) with h given as in and I/ given by

1 _
W(z)=slog|| D punyBlz2)"2B(z,0) Py
1<i<j<gq

where ¢ =c¢1 + -+ ¢q. If h and b/ are in the same part, then e = c.

(8.6)

Proof. If h and I’ are in the same part, then H(h,h') < oco. Let v(t) be the geodesic converging to h
given in (8.5). As h and h' are Busemann, H(h, h') = limg p(0,(¢)) + ' (y(t)) = limy t + 1/ (y(t)) by (2.2)),

so that )
H(h,h’)zlil{nt+§10gll > i B(y(1),7(t) "2 B(y(t), )Py

1<i<j<q

1/2

If we let v=>"7, pu;""¢;, then

> i BO(®),7(1) "2 B(v(t), ) P); = B(y(t),v() V2B (4(t), 0)Q:
1<i<j<q

by [27, Corollary 3.15]. So, H(h,h') < oo implies that

IB(v(t),v()) "2 B((t), c) Q2| — 0.

(8.7)

We claim that this implies that B(e,c)w = 0 for all w € Va(c). To show this we set 8;; = tanh(t — ;)

fori=1,...,q, and set B; = 0 for ¢ = 0. Then

B(y(t),~(t)) ! = Z (1831 (1= 85" Py

0<i<j<q

We note that B(v(t),~(t)) is a self-adjoint invertible operator on the Hilbert space (V, (-,-)) in (5.2)), by

[0, Lemma 1.2.22]. Hence the preceding equation implies
(B(y(t),~(t)) to,0) > (v,0)  (vEV).
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Suppose that there exists a w € Va(c) with z = B(e, c)w # 0. Now letting z; = B(y(t), c)w, we find
that

(B((8),7(8)) 72z, BOy(), v (1) ™?20) = (B(y():7(8) " 215 20) = (zy20) — (2,2) > 0. (8.8)

From [27, Corollary 3.15] we know that Q2 is invertible on V(c), with inverse Q?_, and v~ =
7 ,ul-_l/Qci. So, if we let u = Qg_lw, then there exists 6 > 0 such that for all large ¢ > 0,

IB(v(1),7(6)) 2 B(v(1), Q2| > [ B(v(t),v(1))" 2 B(v(t), &) Qaullllul ™" = [ BOy(£), v(£) 2| [[u] " > 6
by , which contradicts .

It now follows from Lemma that ¢ <e. As H(h',h) < 0o as well, we can interchange the roles of
h and k' and deduce e < ¢, hence concluding the proof of e = c. O

In the next proposition we show that e = ¢ is also a sufficient condition for h and A’ to be in the same
part.

Proposition 8.5. Let h,h' € D(o0) be given by and , respectively. If e = c, then h and h' are
in the same part. Moreover, h = h' if and only if e = ¢ and Y_F_; Nie; = D1 pic;.

Proof. Let e = ¢c. Then p = q. Since h and h' are Busemann points, we have by (2.2)) that
H(h,h) = li{nt +h(y(t) = hm log || exp(2t) Z it B fy(t))_l/zB('y(t),e)R(j||,
1<i<j<p

where 7(t) is the geodesic converging to h in (8.5)), and we have used e = c.
Let V = @o<r<i<pVr be the Peirce decomposition with respect to eq,...,e,. For wy € Vi, we have

(1 — Bre)(1 — Bur)
1= BE)Y2(1 — B7)

where (3;; = tanh(t — «;) for 1 <i < p and So; = 0. So,

Bh@%ﬂm””BW@&Mw=<( m)wmzwm—@—%»wm—@—mw%h

li%n exp(28) B(v(t), v(£)) Y2 B(v(t), €)wpy = exp (o) exp (o )wpy = A g,

where a; = —log A; fori =1,...,p and A\g = 1.
For w € Va(e) = ®1<k<i<pVir we have that

lim exp(26) B(y(1), 7(6) "2 B(y(t), e)w = limexp(2t) 3" By(t),4(6) " Bx(1), €)uq
1<k<i<p

Z I oy = Z AN Q2w = Q-1 Qew

1<k<I<p 1<k<I<p

where ™! = >"P_ A tey by [27, Corollary 3.15]. Recall that by (3.11)), Va(e) carries the structure of a
JB*-algebra, in which the self-adjoint part A(e) is partially ordered by the cone A(e)y = {2?: z € A(e)}.

The tripotents eq,...,ep,c1,...,¢q reside in A(e)4 and are idempotents in the JB-algebra A(e). Let
a = Zk 1 Mkeg and b = Y% pic;. Then a and b are invertible elements in A(e);, with inverses
a ! = k 1 )\I;Iek and b—! = F ui_lci, respectively.

So, as e = ¢, we now find for v € Va(e) = Va(c) that

hmexp 2t Z piphi B ’Y(t))il/zB(fV( t),e Pl v = Z IU”L/’L]QG, 1QePIjU = Qu1QcQpQcv.

1<i<j<q 1<i<j<q

Hence, by ,
H(h, 1) = 3108 Q01 Qu@Qe Po(e)]| = 5 108 | Qu1QeQue]l < oo (8.9)
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Interchanging the roles of h and ', we conclude
§(h,h') = H(h,h")+ H(h',h) < .
Finally, given e = ¢ and a = b, we can use the identity (JP3) to get

Qa‘lQeQer = {b_17 {bv *y b}a b_l} = P2(6)7

which is the identity operator on Va(e), and therefore H(h,h') = 0 by (8.9). Likewise, H(h',h) = 0, so
that §(h,h') = 0 and hence h = 1/.

Conversely, if h = I/, then they are in the same part. By Proposition we have e = ¢, and
implies [|Q,-1QQpQc|| = 1. In particular,

I{a™, 0% 0™} = [|Qa-1Qe@uQee| <1 and  [[{b7,a® b7 }|| = [Qp-1QcQuQeel| < 1.
In A(e), the first inequality implies {a~!,b% a~'} < e, by , and hence
v ={a,{a 0% a1}, a} <{a,e,a} = d?
whereas the second implies a? < b2, It follows that a® = b? and a = b, since a,b € A(e) . O

We now begin the proof of Theorem which will be split into several lemmas. Let
expy: V UV (o00) — DU D(c0)

be as defined in (8.1)) and (8.2).

Lemma 8.6. The map exp, is a well-defined bijection which maps V onto D and V(oco) onto D(c0).
Further, it maps each equivalence class in V(00)/ ~ onto an equivalence class of D(o0)/ ~.

Proof. To see that exp, is well-defined, pick h € V(c0) with two formulations

h(a) = Ao (—5 (€0 Pafe)a + Pole)roe) = Y aifeioe)) (e V)

i=1
and

h(z) = AV2(e/)(7%(6/D Py(e)x + Po(e)zoe) — Z%(egm e)) (xeV).
i=1

Note that by [27, Corollary 3.15(2)],

1 1
3 log Z e Ye % B(z,2) V?B(z,e)Pyl| = 3 log HB(z,z)*l/QB(z, e)QaQePg(e)H (z € D),
1<i<j<p
where a = Y ¥ | e~ %e;. Likewise,
1 1
3 log Z e Ve Vi B(z,2) " Y/?B(z, )Pl = 3 log HB(Z, 2)"12B(z, e’)Qer/PQ(e')H (z€ D),
1<i<j<q

where b= Y"1 | e el

It follows from Corollary that e = ¢/, p =g and Y 0, ae; = > 1, y;el. By relabelling we may
as well assume that a1 > ... > o, = 0 and 74 > ... > v, = 0. As the ecigenvalues in the spectral
decomposition in V are unique, we conclude that a = b by Remark and hence exp is well-defined.
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Note that it follows from Theorems and that exp, maps V(co) onto D(c0). Moreover, given
I’ is in the same part as h, with

q

b (z) = AV2(C)(—%(CD Py(c)x + Py(c)zp c) — Zﬂj(czﬂ ci)) (x eV),
i=1

Theorem implies e = ¢, and hence expy(h) and expy(h') are in the same part in D(c0) as well, by
Proposition Thus, the extension maps each equivalence class in V(00)/ ~ onto and equivalence class
on D(00)/ ~, as all horofunctions are Busemann.

To complete the proof, we need to show that exp, is injective on V(00). Let h,h’ € V(o0) be given
by

1
h(z) = Ay, ey (— (eD Py(e)x + Pa(e)zoe) Zozl e;ioe;)) (xeV)

and
q

B (z) = AVQ(C)(—%(CD Py(c)x + Py(c)zoc) — Zﬁi(cm ¢i)) (xeV).

=1

Set g = expy(h) and ¢’ = expy(h’), and suppose g = ¢’. Thene =c,p=qgand >0 e %e; = Y.L e Pig;

by Proposition By Remark (6 . we have > P a;e; = > 1 | Bic;, and hence h = h' by Corollary (6.3} .,
which concludes the proof. O

Lemma 8.7. Let (vy,) be a sequence in' V' converging to h € V(o0). Then (expy(vy)) converges to expy(h).

Proof. Let h € V(c0) with

1 p
h(z) = Ayye)(— (eD Py(e)x + Pa(e)zoe) Zaz (e;0e;)) (xeV),
=1
and
_ 1 . ,
g(z) = expy(h) = 5 log Z e_o‘le_aJB(z,z)_1/2B(z,e)R-j (z € D).
1<i<j<p

It suffices to show that each subsequence (expy(vg)) has a convergent subsequence with limit g.
Since h € V(00), we know ||vg|| — oo. Let 1, = ||vg|| and denote by

Vg = W1kCik + MokCok + - - + UrkCri

the spectral decomposition of vy.
Taking subsequences, we may assume that

(1) Bik = 1 — par — Bi € [0, 00],
(2) cik — ci,

for all ¢ = 1,...,r, where 0 = 51 < By < ... < B,. Let J = {i: B; < oo} = {1,...,q} and set
c=c+ -+
Observe that
2 — vk |* = lloxll* _ 2re) "Iz — k)0 (@ = ve)l| = 77)

h’U (:L‘) = = —
g 2 — vkl + [Jog]] 2-1(||r Nz — o) || + 1)

and 271(||r;*(z — vy)|| + 1) — 1. Hence it follows from Lemma that (h,, ) converges to

q

B (z) = AVQ(C)(—%(CD Py(c)x + Py(c)zoc) — Z Bi(cio¢)) (xeV)
i=1
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and, it follows from Theorem [5.2| that A’ € V(c0).
Therefore h = h’, and it follows from Corollary that e=c¢, p=gand >0, aje; =Y 7, Bic;. By

Remark we get
P

q
Z e Ve, = Z e Pic;.
i=1 i=1

Let wy, = expy(vk) and fu, (2) = p(z,wr) — p(0,wy) for z € D. By taking a subsequence, we may
assume that wy — ¢ € 9D. Note that £ has a spectral decomposition { = Y, pic;, where p; = 1 for
t=1,...,q. Let g_y, : D — D be the Mobius transformation that maps wy to 0. Then

1. 1+tanhry
= J— 71 -

fun (%) Pz w) 2 %1 tanh 7,

14 llg—w (2| 1, 1+ tanhry

1
19 1 tanhr
28T lgeu )| 2 8T tanhry
1
2

log (L= tanh?re \ (14 g, ()]
S\l )2) 1T+ tanhre ) -
By Lemma [3.8] we have limy, [|[g—w, (2)|| = 1, so that
2
(1 + Hg—wk(Z)H> Y

1+ tanh g
As before, we set por = 0 and let PZ; be the Peirce projections with respect to the tripotents cig, ..., Crk.
Then
1 — tanh? ry, B B
T oD I(1 — tanh® ) B(z, 2) /2 B(z, w") B(wy, wp) "'/
—w
1 — tanh? Tk 1/2 1 — tanh? Tk 1/2 _
=1 > <h2 ) <h2 > B(z,2) 2 B(z, wy,) P
0<i<i<r 1 — tanh” p;p 1 — tanh® iy,
= || Z e Tk tHik o =Tkt K ( 1 + tanhry > < L+ tanh 7y, ) B(Z,Z)*l/zB(z,wk)Pfj-H
o< < 1 + tanh p 1 + tanh 1y,

—Bir —B: 1+ tanhry, > < 1+ tanhry > B
= g e Pike™hi B(z,z B(z,w;)PZ||,
| 0<i<j<r (1 + tanh(ry, — Bix) 1 + tanh(ry — Bjk) (2,2) ( ) ij |

where Bor = 7.
For each i =1,...,q, we have
1+ tanh g

1 + tanh(rk — ﬁzk)

By [9, Remark 5.9], the Peirce projections H’; converge to the Peirce projections P/. of the minimal
tripotents c1,...,¢, as ¢ — ¢; for all i. Using the fact that wy, — & = >/ pic; and p; = 1 for

i=1,...,q, we find that

B B, 1 + tanh 7y 1 4 tanhry B
O B(z,2)" /2B pk
H 0<;j<r€ ‘ <1 + tanh(ry — 5ik)> (1 + tanh(rg — ﬁjk)> (2,2) (2, w) z]”

— 1.

— | Y e P FiB(z,2) B2, )Pl =1 > e PePiB(z,2) ' /2B(z,¢) P}

1<i<j<q 1<i<j<q ’
and hence )
Fue(z) — Slogll Y e e B(2,2) "2 B(z,¢) Py
1<i<j<q
The right-hand side is a horofunction, say f, in D(oco) by Theorem Ase=cand Y7 e %e =

> e Pic;, we obtain g = f from Proposition This shows that (expy(vk)) has a subsequence
converging to g. O
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Finally, we prove the following lemma which, together with the preceding ones, complete the proof
of Theorem [l

Lemma 8.8. Let (hy) be a sequence in V(co) converging to h € V(o0). Then (expg(hy)) converges to
e/)?f)/o(h)

Proof. Let h,, € V(c0) be given by
1 n
hn(z) = AVQ(Cn)(—i(C 0 Py(c")x + Py(c™)zo " Zﬁm CinO Cin)) (xeV).

and let h € V(c0) be given by
1 p
h(z) = Avy(e)(—5 (€0 Pa(e)a + Po(e)o e) — D aileine)) (zeV).
=1

We show that each subsequence (expg(hy)) has a convergent subsequence converging to expy(h) = g,
where

1
g(z) = 3 log Z e~ %e"% B(z,2)"Y2B(z,e) Py (z € D).
1<i<j<p

Taking further subsequences, we may assume that g, = qo for all k, S — B; € [0, 00] and ¢; — ¢
forall i = 1,...,q90. As min{fBy: 7 =1,...,q0} = 0, we have min{f;: ¢ = 1,...,q0} = 0. Let J =
{i: B; < oo}. After relabelling we may assume that J = {1,...,¢}. Let ¢ =¢; + -+ ¢;. Then Lemma
6.12| implies

q

lim i (2) = Ay (o (5 (€0 Po(e)a + Pale)aoc) = 3 fr(eio ) (z€ V).
=1

The right-hand side is horofunction by Theorem say h' € V(o0). As hy — h, we conclude that
h = h' and hence Corollary . gives e = ¢, p = q, and SP  aie; =>1, Bici. By Remark we have

p q
i=1 i=1
The right-hand side of the following limit is a horofunction ¢’ in D(o0), by Theorem
—— 1
expg(hx) = 5 log || Z e Pire=Bik B(z, 2) V2 B(z, & PkH
1<i<j<qo

1
— 5 log|| Z e Pie PiB(z,2) 2B (z,c) P},
1<i<j<gq

where Pk are the Peirce projections for the tripotents cyy, ..., cgk, and PZ’] the Peirce projections for the
tr1p0tents Cly. . cq. Ase=cand 30 e %e; =Y 1 e Pig, Proposition gives g = ¢’. We conclude
that (expg(hx)) has a subsequence converging to g, which completes the proof. O
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