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Abstract

The topological insulator state describes a quantum state of matter that hosts topologically
protected conductive edge modes, similar to the quantum spin Hall state but without the
necessary applied fields. The coupling of topology to condensed matter theory in the
context of topological insulators has produced the periodic table of topological insulators
and superconductors. The ever popular SSH chain has become the prototypical model for
describing simple topological properties in one-dimension. It is widely known that this
model, in its modern form, hosts symmetry protected end states that are at zero energy. This
model has supported mountains of research.

In this thesis we will use two deformed SSH model chains to constuct ladder models that
are topological insulators in each of the chiral universality classes (AIII, BDI, CII, DIII, and
CI). We systematically construct these models from general forms to specific forms examining
their energy and wavefunction spectrums, leading easily to the conclusion of their topological
nature. These constructions are motivated by the finding that the winding number has a
sign ambiguity. This ambiguity leads to two forms of the chiral symmetry operator and
subsequently two forms of the ladder, one adhering to the BDI and CII universality classes,
and one for the DIII and CI classes. We are able to analytical derive expressions for the edge
states in each chiral class ladder model and demonstrate the symmetry properties of each are
encoded in these states. Additionally we show that, as a consequence of the sign ambiguity,
for a weak interchain coupling, the winding numbers of the individual chains can be added
leading to an index of 2, in the case of the BDI and CII class models, or subtracted giving an
index of 0 in the case of the DIII and CI models. The conclusions and properties from this
section of work is completely general and applicable to other chiral models.

In the final section of research we show via diagrammatic arguments and mean field
theory the existence of a Z2 symmetry breaking bond density wave ground state in an
SSH-like model with density-density interactions and a reduced filling fraction. The reduced
filling fraction stabilizes a topological ground state where interactions would normally not
permit one to exist. We further demonstrate this ground state occurs as a result of mean
field rather than strong correlation effects. The ground state model turns out to be the
noninteracting SSH4 model which we show has quantized Zak phases of individual bands
confirming the topological nature of the model in a reduced filling fraction regime.

Publication: P. Matveeva, T. Hewitt, D. Liu, K. Reddy, D. Gutman, and S. T. Carr, ‘One-
dimensional noninteracting topological insulators with chiral symmetry’, Phys. Rev. B., vol.
107, no. 7, Feb. 2023.
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Chapter 1

Introduction

While symmetry has been a strong member of physics for centuries, topology is a relatively
recent addition. These two concepts have become an entangled entity propelling physics
research forward in a number of areas. In the last twenty years or so, topology has become
a driving force behind our understanding of a range of fields in physics from elementary
particles through exotic phases of matter [1]. In the field of condensed matter theory topology
is playing a central role in how we classify phases and their properties [2, 3]. Novel work in
discoveries of topological phases which has laid the ground work for much of condensed
matter research today garnered Nobel prizes in Physics, notably in 20161. In the context of
electronic solid state physics this classification via topological indexes emerged with the
integer quantum Hall effect [4] where the quantized Hall voltage is the topological quantum
number which, in this case acts as the topological invariant of the model. The applied
magnetic field in the integer quantum Hall model results in broken time-reversal symmetry
and Landau levels opening a energy spectral gap in the bulk of the two-dimensional sample.
The topological invariant in this case is the first Chern number, the typical invariant for
odd-dimensional systems. The Chern number forces this gap to close at the boundaries
causing protected chiral edge modes to emerge [5]. These modes are topological causing
them to be robust against any symmetry preserving perturbations and are electronically
conductive. We have come to understand that an applied magnetic field isn’t necessary to
induce robust conductive edge states, e.g. the quantum spin Hall effect discovered by Kane
and Mele [6]. If one engineers the topology of the occupied bands correctly, robust edge
states emerge. The name topological insulator was given to such models, and research into
these nontrivial topological states has become a strong branch of condensed matter theory
and materials science.

A major contribution to these theories and materials has been understanding the role
of symmetry in these models, which led to a plethora of different invariants to classify
phases in noninteracting electronic systems. It was previously thought that the integer
quantum Hall state was the only phase that cannot be smoothly deformed into a trivial
band insulator without breaking one of the protecting symmetries, although in higher

1Given to Thouless, Haldane, and Kosterlitz for ’Theoretical discoveries of topological phase transitions and
topological phases of matter’.



2 Introduction

dimensions it is possible. It was later found that by instituting a symmetry on the model,
such as time-reversal, distinct phases arose that also could not be deformed to the trivial
state or each other. A famous example is the quantum spin Hall state already mentioned,
which relies on spin-orbit interactions to host helical edge modes topologically protected
against scattering. As research progressed realistic models were proposed [7, 8], followed
very shortly by experiments [9] confirming their states. These nontrivial properties have
sparked a wave of research into topological phases of matter and their practical applications.
While these quantum Hall models lie in two-dimensions, there has been a lot of work on
three-dimensional topological insulator states which spurred work both theoretically [10–13]
and experimentally [14–17]. However there has been much interest recently in 1D models,
with advances in experimental techniques allowing these systems to be realized. This thesis
will focus on this dimensional regime.

This burgeoning interest in topological states has given researchers the well quoted
’periodic table of topological insulators and superconductors’ [18, 19]. This table and the
associated research has shown that dimensionality and symmetries are the only factors
necessary to determine whether an insulator state is a topological insulator or a trivial one.
The symmetries used in the classification, which come from random matrix theory [20], are
time-reversal, particle-hole, and the combination of the two known as chiral symmetry. The
topological indices of the ground states have three categories, the Z index like the Chern
number, the Z2 index like those proposed by Kane and Mele and the subsequent models,
and finally the null category of nontopological models. These indexes arise from homotopy
groups of the spaces of ground states [21, 22]. The landscape of topological insulators is
extensive, more developed in 2D and 3D theoretical and experimental models and materials,
so we look towards the one-dimensional models where we can ask the specific question, is it
possible to construct a 1D topological insulator in the same vein as the quantum spin Hall
state? This dimension is interesting because of its affordability for both intuitive pictures and
increasing popularity with the advent of tunable trapped ion and cold atom experiments.

In this thesis we use the ever popular 1D Su-Schrieffer-Heeger (SSH) model [23] as
a building block to construct ladder models in all five chiral universality classes and
demonstrate topological insulator properties in each model class. The SSH model is the
simplest 1D topological insulator hosting zero energy edge modes, where similar models
have been experimentall realized [24, 25]. Crucially we follow a recipe similar to that used
by Kane and Mele [6] to construct a 2D topological insulator. Their procedure is to take two
time-reversed copies of a particular Haldane [26] model and couple them together making
the model time-reversal symmetric. One chain has a Chern number of +1 and the other
-1 so that in the coupled system the total Chern number is 0. Despite this, the topological
properties of the system can still be characterized if one uses a different Z2 index. We will
pay particular attention to the quantum spin Hall model as it was initially proposed by
Kane and Mele [27] because we utilize the same methodology to construct our models. We
use the exact same procedure however working in 1D using deformed SSH chains and the
winding number topological index. The deformed SSH chain belongs to the chiral symmetry
preserving AIII class with time-reversal and particle-hole symmetries being broken. As
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before, taking two time-reversed copies of these AIII chains and coupling them together to
form a ladder restores the time-reversal and particle-hole symmetries.

One of the crucial differences is that the Chern number is odd under time-reversal
symmetry (acquires an opposite sign), the 1D winding number is not. We will use this
fact to couple the AIII chains in two unique ways giving the BDI and CII, and DIII and CI
class models respectively. Before coupling both chains have a winding number of 𝜈 = 1,
however when weakly coupled the winding number is not necessarily 2, it can also be 0. This
ambiguity, as we will explore in more depth, arises from the winding number being odd
under lattice relabeling. The winding number is therefore only defined up to a sign, which
permits two different interchain coupling forms. Such a fact is a main thread through this
thesis, we will couple topology and symmetry to construct novel nontrivial phases.

Topological insulators have been topics of research for decades and there are a number
of well cited reviews that cover the extent of the topic from various lenses, [28, 29], as well
as several detailing the classification of topological insulators and superconductors [30, 30].
There are several texts on the subject as well, [31] and [32], tackling it from the perspective of
the Dirac equation. In terms of classification there are a number of notable reviews [19, 33].

While noninteracting phases come with well documented classification and understand-
ing, interacting topological insulators are much less so. In general, interactions typically
destroy a topological state hosted in a single particle regime. New research [34] however
proposes that a reduced filling fraction and repulsive nearest neighbor interactions can restore
a topological state disrupted by strong interactions [35, 36], although this is not so surprising
as such models can be mapped to the spin-1/2 XXZ chain [37]. Taking a different avenue
for the SSH model, we apply interactions and reduced filling fraction, we show that via a
mean field approach the system falls into a Z2 symmetry breaking topological bond density
wave phase. Typically topological models with degenerate spectra are characterized by the
Wilczek-Zee phase topological number [38, 39], however in the mean field approximation
the Zak phase provides an analogous role. Our work in this thesis contributes to a group of
work analyzing fractional topological insulators induced via interactions by a number of
techniques [40–48].

To put this work into a broader context, these models are enticing because of their
experimental viability with cold atomic gases in optical lattices. These systems can realize
band structures and permit accurate tunability of system parameters [49–53]. Luckily for
this thesis, there has been good work simulating one-dimensional ladders [54–64] and these
experiments have been able to detect chiral edge currents [65] (like the Hall effect) and even
skipping orbits [66, 67] which are typically very hard to detect.

1.1 Thesis structure

This thesis has two main sections, the theoretical background and the novel research and
results. Chapters 2 and 3 provide the necessary introductions to topological insulators, the
SSH model, and calculating winding numbers. Secondly chapters 3, 4, 5, 6, and 7 present the
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novel research of this thesis. Lastly chapter 8 wraps the work with a summary, conclusion,
and projected future work based on the given research.

One may notice that chapter 3 has been listed in both sections. This chapter acts in a
hybrid fashion, both giving the necessary information to understand the winding number as
a topological invariant in lattice models and presents a surprising result regarding a sign
ambiguity. This result acts as a stepping off point for the following chapters.

Briefly, chapter 4 presents our methodology for constructing topological insulator models
by coupling two SSH model chains together. We use symmetry arguments to design and
build these models to adhere to the known universality classes. Using these models we
proceed to chapter 5 to construct the real space lattices for each model and offer energy
spectrum results identifying hallmark signs of topological insulator phases including gapped
band structures and zero energy edge modes. Chapter 6 examines the edge states associated
to these zero energy modes both numerically and analytically, and demonstrates the robust
symmetry protected properties of these states in each class. This section wraps up and
validates the methodology that topological insulators can be, carefully, constructed by
’stacking’ SSH chains.

Chapter 7 takes a different path than the previous chapters and presents results for an
SSH-like chain with repulsive interactions at a reduced filling fraction of 𝜐 = 1/4. While
this research is heavily motivated by Barbarino et al we take a slightly different approach
by using mean field theory. We find the mean field theory results in a simpler toy model,
named SSH4 [68], and subsequently show the description of a Z2 symmetry breaking bond
density wave state. We show via Zak phase calculations the lower band of the SSH4 model is
quantized in the topological regime and 0 for the trivial phase. The results show that the
topological phase at the reduced filling fraction can be attributed to mean field effects of the
interactions and not strong correlation effects.



Chapter 2

Background

In this chapter we lay the necessary background material to understand the results presented
in this thesis. We start by introducing the SSH model and its essential features as we use it
as the foundation for constructing our models. Particular attention is paid to the nontrivial
topological insulator phase which presents with symmetry protected edge states and a
quantized winding number. As with much of physics, symmetry plays an important and
essential role in the SSH model as well as the work presented here. We will look at the nature
of time-reversal, particle-hole and chiral symmetries, and their necessity in the categorization
of models which fall under the universality class system. These concepts will be utilized to
construct our ladder models in the later chapters.

2.1 SSH model and the Topological Insulator state

The Su-Schrieffer-Heeger (SSH) model stands as the prototypical model demonstrating
physical properties attributed to the topological insulator state. It is interesting to note
that this model, as presented in the original paper, was an analogue of a polyacetylene
chain investigating phonons and a symmetry broken phase. This model has evolved as the
simplest model to demonstrate the power of topology in condensed matter and the unique
topological insulator phase. Current literature describes the SSH model as electrons (or
spinless fermions) hopping on a one-dimensional lattice with alternating (i.e. staggered)
hopping amplitudes.

We take the time to introduce the main features of the SSH model because it acts as the
building block model, conveniently describing a 1D topological insulator state, and of the
research presented in this thesis. In this chapter we will present the SSH lattice model and
solve its Hamiltonian to examine the energy spectrums across several coupling regimes to
see the trivial and nontrivial phases. The concepts of single particle Hamiltonians, bulk-
boundary correspondence, chiral symmetry, gapless edge states, and the winding number
topological invariant will be introduced as well. We will also briefly discuss symmetries and
universality classes as we utilize these concepts to construct our models in later chapters.
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Fig. 2.1 Lattice diagram for the SSH model. Unit cells, encircled by the red dotted line, consist
of two sublattice sites, an A site and a B site. Intracell coupling is given by v and the intercell
coupling is given by w.

It is worth noting that the SSH model as a topological insulator has some detractors but
here we define the unit cell specifically so these topological properties arise and it cannot be
deformed to the atomic flat band limit. By defining the unit cell in this way we remove any
ambiguity about the topology.

A single chain SSH model is a tight-binding model that consists of connected unit cells
with two internal states, Fig. 2.1. The sites within the unit cell are labeled 𝐴 and 𝐵, a notation
that will be used through the extent of this thesis. The internal structures of the unit cell are
known as sublattices. The model Hamiltonian (in position/site representation),

�̂�𝑆𝑆𝐻 = 𝑣

𝑁∑
𝑛=1

(𝑐†𝑛𝐴𝑐𝑛𝐵+ 𝑐
†
𝑛𝐵𝑐𝑛𝐴)+𝑤

𝑁−1∑
𝑛=1

(𝑐†𝑛𝐵𝑐𝑛+1,𝐴+ 𝑐†𝑛+1,𝐴𝑐𝑛𝐵) (2.1)

where v and w are the intra- and inter- cell couplings, respectively, and the sum is over all
unit cells (N) and n is the cell index. The operator 𝑐(𝑐†) denote the annihilation(creation)
operators on that particular unit cell (n) and sublattate (A,B). We constrain these hoppings to
be real and positive. It should be noted that if these couplings are complex, the phases can
be ’gauged’ away by redefining the basis states with an additional phase.

We neglect any interactions and spin degrees of freedom, focusing only on the single
particle Hamiltonian states. We are interested in the zero temperature and zero chemical
potential dynamics of the fermions near or at the ground state(s). We consider the situation of
half filling - all negative energy eigenstates are singly occupied as a result of the Pauli exclusion
principle. This model is characteristic of simple realistic systems such as polyacetylene
where the carbon atoms contribute a single conduction electron, i.e. one particle per unit cell.
Throughout this thesis we will consider the bulk to be translationally invariant.

The real space SSH Hamiltonian matrix for a 3 cell system in the basis {𝐴1 , 𝐵1 , 𝐴2 , 𝐵2 , 𝐴3 , 𝐵3}
is given by,

�̂�𝑆𝑆𝐻 =

3∑
𝑛

𝐶†
𝑛 ℎ̂𝐶𝑛 (2.2)

where 𝐶†
𝑛(𝐶𝑛) is the one-dimensional vector of creation(annihilation) operators, respectively.

The operator ℎ̂ is the matrix,



2.1 SSH model and the Topological Insulator state 7

ℎ̂ =

©«

0 𝑣 0 0 0 0
𝑣 0 𝑤 0 0 0
0 𝑤 0 𝑣 0 0
0 0 𝑣 0 𝑤 0
0 0 0 𝑤 0 𝑣

0 0 0 0 𝑣 0

ª®®®®®®®®¬
(2.3)

It is convenient to define the external degrees of freedom of the state as the cell index (n) and
the internal degrees as the sublattice index {𝐴,𝐵}. We work with open boundary conditions
because the topological phase does not arise with periodic boundaries [69]. The state is then
easily represented by a tensor basis,

|𝑛,𝛼⟩ → |𝑛⟩ ⊗ |𝛼⟩ ∈ ℋ𝑒𝑥𝑡. ⊗ℋ𝑖𝑛𝑡. (2.4)

where ℋ𝑒𝑥𝑡/𝑖𝑛𝑡 are the Hilbert spaces of their respective domains. The energy spectrum for
a 10 unit cell system shows a series of gapped states at zero energy when 𝑣 < 𝑤, Fig 2.2.
These states are absent in the opposing regime (𝑣 > 𝑤), which suggests a change in phase.
In the thermodynamic limit this quantum phase transition point is at 𝜖 = 0, i.e. 𝑣 = 𝑤. We
will show later in this chapter these zero energy states are doubley degenerate symmetry
protected edge modes. While both phases appear to be insulating, we will show they are
different and can be classified distinctly. These zero energy states are a hallmark property of
the topological insulator phase and will be a property we look for when we construct more
complex models in later chapters.

We shift focus here to examine the band structure of this model which tells us the electron
dynamics by utilizing the translational invariance and periodic nature of the lattice, and
Bloch’s theorem to define the appropriate Fourier operators to transform the Hamiltonian to
reciprocal momentum space,

𝑐𝑛 =
1√
𝑁

𝐵𝑍,𝑁∑
𝑘𝑛

𝑒 𝑖𝑘𝑛𝑐𝑘 (2.5)

𝑐†𝑛 =
1√
𝑁

𝐵𝑍,𝑁∑
𝑘𝑛

𝑒−𝑖𝑘𝑛𝑐†
𝑘

(2.6)

where k is the crystal momentum and we have set the lattice constant to be 1, i.e. k is
dimensionless. This gives,

�̂�(𝑘) =
𝐵𝑍∑
𝑘

𝐶†
𝑘
ℎ̂(𝑘)𝐶𝑘 (2.7)

where,

ℎ̂(𝑘) =
(

0 𝑣+𝑤𝑒−𝑖𝑘
𝑣+𝑤𝑒 𝑖𝑘 0

)
(2.8)
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Fig. 2.2 Energy spectrum of the SSH model as a function of 𝜖 where 𝜖 acts to parameterize v
and w relative to each other, i.e. 𝑣 = 1+ 𝜖 and 𝑤 = 1− 𝜖. Zero energy states are indicated by
the red data points.

The 2x2 nature of �̂�𝑆𝑆𝐻 can be decomposed into Pauli matrix components with some
Bloch sphere dependence 𝑑(𝑘),

ℎ̂(𝑘) = ®𝑑(𝑘)®𝜎 = 𝑑𝑥(𝑘)𝜎𝑥 + 𝑑𝑦(𝑘)𝜎𝑦 + 𝑑𝑧(𝑘)𝜎𝑧 (2.9)

where ®𝑑(𝑘)𝑇 = {𝑑0(𝑘) 𝑑𝑥(𝑘) 𝑑𝑦(𝑘) 𝑑𝑧(𝑘)} and ®𝜎 is the set of Pauli matrices (𝜎0 𝜎𝑥 𝜎𝑦 𝜎𝑧).
From equation (2.8) we see that 𝑑𝑥 = 𝑣+𝑤𝑐𝑜𝑠(𝑘), 𝑑𝑦 = 𝑤𝑠𝑖𝑛(𝑘) and 𝑑0 = 𝑑𝑧 = 0. We examine
the dispersion relation of this model by choosing a plane wave wavefunction to use in the
time-independent Schrödinger equation. Such a wave is an eigenstate of energy in position
space and has internal degrees of freedom to represent the A and B sublattices.

Solving (2.8) for the energy eigenvalues,

𝐸(𝑘) = ±
√
𝑣2 +𝑤2 +2𝑣𝑤𝑐𝑜𝑠(𝑘) (2.10)

gives a dispersion relation between the energy of the system as a function of the crystal
momentum k across the first Brillouin zone, i.e. 𝑘 = [−𝜋,𝜋).
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Fig. 2.3 Band structures for the SSH model, Eq. (2.10), for five different hopping parameter
sets: (a) 𝑣 = 0.0 and 𝑤 = 2.0; (b) 𝑣 = 0.5 and 𝑤 = 1.5; (c) 𝑣 = 1.0 and 𝑤 = 1.0; (d) 𝑣 = 1.5 and
𝑤 = 0.5; (e) 𝑣 = 2.0 and 𝑤 = 0.0. The crystal momentum k spans the Brillouin zone [−𝜋,𝜋).
Plots (a), (b), (d), and (e) describe insulating phases while plot (c) shows a metal phase.

2.1.1 Band structures

The dispersion relation gives us information about the electron dynamics of the model such
as phase and degeneracies in terms of energy bands. As the unit cell consists of two sites
there will be two bands in the dispersion relation. We show the energy band spectrum for
five parameter sets, see Figs. 2.3. When bands cross the Fermi level there are conductive
states, i.e. the electrons are moving, however when the bands are fully gapped the system
is in an insulating phase. The valence electrons in the states below the Fermi level require
energy to ’jump’ the gap to the empty conduction band.

The spectrums show that as long as the hopping amplitudes are not equal, i.e. 𝑣 ≠ 𝑤
(Figs. 2.3(a), (b), (d), (e)), the bands are gapped with a separation of 2𝐸(𝑘). We observe that in
the absence of staggered hoppings, i.e. if 𝑣 = 𝑤, (Fig. 2.3(c)) the bands touch at the Brillouin
zone terminal limits (𝑘 = ±𝜋), these Fermi points describe a conductive metal state. In this
regime there exist small energy plane waves in the bulk that can transport electrons across
the length of the chain. We observe that as the difference in relative hopping amplitudes
increases, the more energetically favorable the system becomes because the lower bands
continue to drop in energy.

In the limit that one of the hopping amplitudes becomes 0, 𝑣 = 0 or 𝑤 = 0 (Figs. 2.3(a),
(e)), the bands become flat and the physical chain enters a dimerization state. This series of
band structures tells us that as the parameters change from 𝑣 > 𝑤 to 𝑣 < 𝑤, where 𝑣 and 𝑤
are positive, we see that the gap closes. This strongly indicates the existence of a quantum
phase transition.

The signature of a phase transition in this 1D system will be a closing and opening of
the spectral gap at some value of the momentum 𝑘. This phase transition is between the
trivial 𝑣 > 𝑤 and topological phase 𝑣 < 𝑤 and occurs when 𝑣 = 𝑤, as shown in the plots.
The conditions for when the energy is zero is easily calculated from the dispersion relation
Eq. (2.10).
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Fig. 2.4 Possible dimers of the SSH model in the strong coupling limits. Top chain shows a
𝑤 = 0 dimer state, a series of unit cells. Bottom chain shows a 𝑣 = 0 dimer state, a series of
dimers with isolated edge sites, one on each end of the chain.

2.1.2 Edge states

While the bulk part of the SSH chain gives a lot of information about the system, the edges
present the most interesting properties of the SSH model. The distinction between the bulk
and the boundary edge in the thermodynamic limit lies in the behaviour of the energy
eigenstates in each region. As we will show, the bulk eigenstates are spread through the
system while the edge eigenstates are localized on at the boundaries. We will begin our
discussion of edge states in the fully dimerized limit where the edges are very distinguishable
from the bulk in the topologically nontrivial phase.

Outside the full dimer limit 𝑣 = 0 the edge is not sharply defined leading to hydrization
of the left and right edges. This thesis will focus very majorily on the topological phase of
the presented models. Isolated edge states have become a hallmark indicator of topological
insulators, the number of edge states can be used as a topological invariant. We introduce
them here as they are a key component of later discussions in this thesis. These edge states
only arise with open boundary conditions and thus the topological phase occurs in this
configuration and does not emerge with periodic boundary conditions as there is no edge.

Fully dimerized limits

One of the key properties that makes the SSH model so powerful is its simplicity in the limit
cases where 𝑣 or 𝑤 are 0, see Fig. 2.4. In these limits the chain falls apart into a series of
disconnected dimers. The form of these dimers depends on the which coupling is 0. In the
𝑤 = 0 (Fig. 2.3(e)) configuration all of the sites are paired up in their original unit cells. The
energy eigenstates will therefore be some even or odd superposition of the sublattices in
each cell, i.e.,

𝑣 = 1,𝑤 = 0 : �̂�(|𝑛,𝐴⟩ ± |𝑛,𝐵⟩) = ±(|𝑛,𝐴⟩ ± |𝑛,𝐵⟩) (2.11)
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We see that this bulk state has energy ±𝑣 where �̂�(𝑘) is independent of the wavenumber, i.e.
�̂�(𝑘) = 𝜎𝑥 . However in the 𝑣 = 0 (Fig. 2.3(a)) limit the bulk consists of dimers of neighboring
cells but there are singular isolated sites at each end of the chain, an A site on the left edge
and a B site on the right edge, Fig. 2.4. In this case there must be two degenerate zero energy
eigenstates [70] that exist on these isolated edge sites, as there is no onsite potential,

𝑣 = 0,𝑤 = 1 : �̂�(|𝑛,𝐵⟩ ± |𝑛+1, 𝐴⟩) = ±(|𝑛,𝐵⟩ ± |𝑛+1, 𝐴⟩) (2.12)

While the band is also flat in this case as well Fig. 2.3(a), the Hamiltonian has wavenumber
dependence �̂�(𝑘) = 𝑐𝑜𝑠𝑘𝜎𝑥 + 𝑠𝑖𝑛𝑘𝜎𝑦 . In both dimer limits the energy eigenvalues are
independent of momentum k, leading to the flat bands. Any particle added to the system
will have an isolated wavefunction as it is unable to propogate through the chain due to zero
velocity.

We will see that these zero energy modes, Eq. (2.13), exist in the middle of the spectral
gap of the energy spectrum. They cannot be easily removed unless the gap is closed, i.e.
bringing other states closer so the energy cost is much lower to move to a different energy
state.

𝑣 = 0,𝑤 = 1 : �̂� |1, 𝐴⟩ = �̂� |𝑁,𝐵⟩ = 0 (2.13)

These states exist in the fully dimerized chain in the topological phase of the model. However
this dimer configuration has more eigenstates available due to the isolated zero energy end
sites, leading to a simple example of an edge state.

We note that these edge states emerge for open boundary conditions. No edge states
emerge for periodic boundaries.

Perturbed dimer limits

Starting in the topological dimer phase (𝑣 = 0,𝑤 = 1) we will add a small perturbation by
turning on the 𝑣 hopping parameter and see that as the chain becomes increasingly connected
the edge state wavefunctions decay exponentially into the bulk of the chain. These states are
no longer pinned to zero energy as well. The edge state wavefunctions will hybridize into
even and odd superpositions, Figs. 2.5(a),(b). Moving slightly away from the dimerized limit
results in states that are not fully localized on a single site at the edge. These near zero energy
states decay exponentially into the bulk. In the finite system there is an overlap between the
left and right edge state wavefunctions but in the thermodynamic limit there is zero overlap.
In the non-dimer limit the wavefunction is spread through the entirety of the chain, with
most of the amplitude in the bulk. These wavefunctions show nonvanishing amplitudes only
on the A or B sublattice, depending on the edge, suggesting it is energetically favorable to
have the particles only on one of the sublattices. We will see in the next section these unique
properties are the consequence of chiral symmetry.
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Fig. 2.5 Wavefunction spectra for the SSH model in the topological and trivial phases. Plots
(a) and (b) present symmetric and antisymmetric near dimer edge state combinations with
𝑣 = 0.4 and 𝑤 = 1.0. Plot (c) shows the wavefunction for a trivial phase 𝑣 = 1.0 and 𝑤 = 0.4
where the amplitude is spread in the bulk.

2.1.3 SSH Winding number

The SSH model is a bipartite lattice, with the unit cells divided into two sites or sublattices
and the Hamiltonian only has terms connecting A-B sites, and no terms connected A-A, B-B
sites. In condensed matter physics we define chiral symmetry of a Hamiltonian as,

𝐶𝐻𝐶† = −𝐻 (2.14)

This symmetry commutes with the Hamiltonian H and therefore they can be diagonalized
together. The Hamiltonian H will have no matrix elements between eigenstates of C
with different eigenvalues. This allows us to segment the H into sectors labeled by their
corresponding eigenvalues. The physics in each sector can be regarded as separate from
another sector. The Hamiltonian can thusly be ordered into blocks which can be analyzed
separately. A consequence of this commutation relation is the energy spectrums are
symmetric or mirrored. Any state with energy E has a chiral symmetry ’partner’ with energy
−𝐸. To be more concrete,
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�̂� |𝜓𝑛⟩ = 𝐸 |𝜓𝑛⟩ ⇒ �̂�𝐶 |𝜓𝑛⟩ = −𝐶�̂� |𝜓𝑛⟩ = −𝐶𝐸 |𝜓𝑛⟩ = −𝐸𝐶 |𝜓𝑛⟩ (2.15)

The SSH model has chiral symmetry which gives the off-diagonal structure of the Hamiltonian,
Eq. (2.16). As the wavenumber k moves through the Brillouin zone, ([−𝜋,𝜋)), the endpoint
of ®𝑑(𝑘) describes a closed path of radius w in the complex plane since there are no 𝜎0 or 𝜎𝑧
components in the Hamiltonian, Eq. (2.8).

We know that there are two phases as per the band structure plots, characterized by
a quantum phase transition where the gap closes at 𝑣 = 𝑤, which corresponds to a zero
energy point at the origin ®𝑑 = 0 in the complex plane. At this point the model is no longer an
insulator but a metal, as previously stated. This describes a closed loop in this plane running
through the Brillouin zone which describes a ’winding number’ about the origin and it is the
primary invariant for chiral symmetric systems in odd dimensions. Simply, this describes
the number count of loops around a given point (origin) as the vector cycles through the
Brillouin zone.

Any loop that does not encircle the origin (𝑣 > 𝑤) can be deformed into any other loop
not encircling the origin, Fig. 2.6. The principle also applies to loops that have the origin
inside them (𝑣 < 𝑤). In essence the origin is the phase transition point, such that ®𝑑(𝑘) must
pass through it to change phase. A loop that does not encompass the origin must pass
through the origin i.e. the energy gap is closed and the bands touch (see Fig. 2.3(c)), in order
to become a loop that encircles the origin. This is where the topology enters the picture,
the winding number is a topological invariant used to describe and differentiate between
quantum phases and will be used heavily in this thesis. It is important to note that if 𝑑𝑧 ≠ 0
then the rotation could be lifted out of the plane and thus the invariant changes.

Any closed loop that encompasses the origin can be adiabatically deformed to any other
loop also encompassing the origin with the same winding number index. The same principle
is true for loops not encompassing the origin. Insulating Hamiltonians are adiabatically
equivalent if they can be adiabatically deformed into eachother.

The winding number can be calculated from the bulk momentum space Hamiltonian,
Eq. (2.16), which is in the basis where the chiral symmetry operator is diagonal (𝜎𝑧),

�̂�(𝑘) =
𝐵𝑍∑
𝑘

𝐶†
𝑘
ℎ̂(𝑘)𝑐𝑘 ℎ̂(𝑘) =

(
0 Δ(𝑘)

Δ†(𝑘) 0

)
Δ(𝑘) = 𝑑𝑥(𝑘)− 𝑖𝑑𝑦(𝑘) = 𝑣+𝑤𝑒−𝑖𝑘 (2.16)

The winding number 𝜈 can be written as a convenient integral by virtue of Cauchy’s theorem
from complex analysis. We can then define the winding number as [69] [71],

𝜈 =
−𝑖
2𝜋

∫
𝐵𝑍

𝑑

𝑑𝑘
(𝑙𝑜𝑔(Δ(𝑘)))𝑑𝑘 (2.17)

where we have used the complex logarithm function 𝑙𝑜𝑔(|Δ|𝑒 𝑖𝑎𝑟𝑔ℎ) = 𝑙𝑜𝑔 |Δ| + 𝑖𝑎𝑟𝑔ℎ. We take
care to define the logarithm branch so the derivative is always well defined and the winding
number is well quantized. For the SSH model the winding number takes the value of either 0
for the trivial phase (𝑣 > 𝑤), dominant intracell hopping) and 1 for the topological insulator
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Fig. 2.6 Winding number of the SSH Hamiltonian vector ®Δ(𝑘), Eq. (2.9), through the complex
(Bloch) plane. For 𝑣 < 𝑤 the winding encirles the origin (marked by the red star). For 𝑣 > 𝑤
the winding does not encircle the origin. Each circle has its origin at 𝑣 with radius 𝑤.

phase (𝑣 < 𝑤), dominant intercell hopping). The winding number is obtained using the bulk
Hamiltonian only. One can take some intuition about the winding number calculation by
looking at the exponential of Δ(𝑘). Since it is a linear combination of sinusoidal functions
and the range of the Brillouin zone is 2𝜋 we know that the ’vector’ represented by ®𝑑(𝑘)
must form a complete circle. The number of rotations the vector makes over the span of the
Brillouin zone is dependent, in this case, on the hoppings and therefore on the value of the
exponential, e.g. −𝑖𝑘 will be one rotation, −2𝑖𝑘 will be two rotations, −3𝑖𝑘 will be three, etc.
Longer range hoppings will give the higher integers in the exponential.

Two (or more) Hamiltonians are equivalent if they can be transformed into each other via
an adiabatic process that respects the important symmetries. From this principle we can say
that the winding number is a topological invariant which cannot change under adiabatic
symmetry perserving deformations of the Hamiltonian. We then conclude that the two
phases that occur in the SSH model, the trivial and topological phases are not adiabatically
connected because they have different winding indexes, 0 and 1 respectively. In the case
of the SSH model if chiral symmetry is broken the Hamiltonian may have diagonal terms,
permitting adiabatic connections between the two phases as the vector can be lifted out of
the plane and therefore can bypass the zero energy point.

The edge states can be connected to the bulk winding number in what is known as the
bulk-boundary correspondence. We have seen that the number of zero energy edge states is
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fixed and finite (in the thermodynamic limit) which are situated on a single sublattice. If
we examine the low energy sector (lower band) of the left edge the winding number is 0
in the trivial case (𝑣 > 𝑤) and 1 when in the topological phase (𝑣 < 𝑤), Eq. 2.18. Since the
winding number is calculated over the bulk Hamiltonian we can connect the bulk topological
invariant to the boundary physics, i.e. number of edge states on a single edge.

𝜈 =


0 𝑖 𝑓 𝑣 > 𝑤

𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 𝑖 𝑓 𝑣 = 𝑤

1 𝑖 𝑓 𝑣 < 𝑤

(2.18)

At the point when the bands touch (𝑣 = 𝑤) the winding number becomes undefined due to
the bands being degenerate. The bulk can be related to the edges via the bulk-boundary
correspondence which connects the winding number to the edge states, the number of edge
modes is related to the magnitude of the winding number. In summary, the winding number
serves as a topological invariant that characterizes the presence and number of topologically
protected edge modes in the SSH model. It establishes a direct correspondence between the
bulk properties (captured by the winding number) and the edge properties of the system.

2.2 On the nature of symmetries

As we saw in the previous section chiral symmetry plays a key role in the characterization
of the phases of the SSH model. Symmetry is one of the single most important concepts in
physics. As a definition symmetry means a transformation that leaves the properties of the
model unchanged. A sphere remains a sphere even after being rotated about. In condensed
matter physics the most common symmetries in systems are time reversal symmetry, particle-
hole symmetry, and chiral or sublattice symmetry. The idea of symmetry is quite simple,
does a transformation on the system have any effect on the properties of that system. If the
properties are unchanged the system is said to have that particular symmetry (i.e. rotating
a circle by any angle returns the same circle). If the properties of the system do change
then that particular symmetry is said to have been broken by the transformation. It has
been well established by Atland and Zirnbauer (and others) [72–74, 20] that all random
matrices can be classified into ten symmetry classes based on how the matrices respond to
transformations. The random matrices can be interpreted as Hamiltonians of non-interacting
fermionic systems.

The symmetry properties of a given model are encoded in the Hamiltonian of that system.
The Hamiltonian needs to fulfill certain conditions to exhibit time reversal (T), particle
hole/charge conjugation (P), and chiral/sublattice (C) symmetries. In the case of the SSH
model we use the Hamiltonian matrix Eq. (2.16) to understand these symmetries. From
a physical standpoint time-reversal will reverse the momentum of particles, particle-hole
symmetry relates the dichotomy of the existence and absence of a particle particle. Finally
chiral or sublattice symmetry relates the relabelling of sites in a unit cell, a property which is
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of particular importance to this thesis. We will use these terms interchangeably as they are
equivalent here. These conditions are [75, 69],

𝑇 :𝑈𝑇𝐾 | 𝑈𝑇𝐾𝐻
∗(−𝑘)𝑈†

𝑇𝐾 = 𝐻(𝑘) (2.19a)
𝑃 :𝑈𝑃𝐾 | 𝑈𝑃𝐾𝐻

∗(−𝑘)𝑈†
𝑃𝐾 = −𝐻(𝑘) (2.19b)

𝐶 :𝑈𝐶 | 𝑈𝐶𝐻(𝑘)𝑈†
𝐶 = −𝐻(𝑘) (2.19c)

These matrices 𝑈𝑁 are unitary with no dependence on the (crystal) momentum k. Note
the Hamiltonian is in the momentum-space basis and 𝐾 is the complex conjugate operator.
The time-reversal and particle hole symmetries have the property that 𝑇2 = 𝑃2 = ±1. The
square of the operator matters because it tells us the operator can take two forms, each form
bringing about different consequences. Additionally if both time-reversal symmetry and
particle-hole symmetry exist then chiral symmetry must exist,𝑈𝑆 =𝑈𝑇𝑈

∗
𝐶

. If only one exists,
then chiral symmetry won’t exist. The chiral symmetry operator only comes in +1 form. This
gives 10 possible combinations of the operators, known as the ten-fold way [30].

In the case of an antiunitary operator that squares to −1, in our case 𝑇2 = −1, we have an
application of Kramers theorem [76]. The theorem describes a degeneracy that results from
the commutation of the Hamiltonian with T of this form. The implication being that at ’high’
time-reversal points of momenta (𝑘 = 0,±𝜋) there are two orthogonal states with the same
energy. We will see in later section the implications of this degeneracy in dispersion spectra.
In general time-reversal symmetry creates a ’mirror’ symmetric spectrum across the center
of the Brillouin zone value. Particle-hole symmetry (𝐸→−𝐸) forces a similar behaviour over
the zero energy axis. The existence of chiral symmetry will constrain the spectra to adhere to
the properties of time-reversal and particle-hole symmetries.

On the Nature of Universality Classes

There have been several successful approaches to classifying noninteracting fermionic
topological quantum matter, notable Anderson localization [19, 77, 30], Topology (K-theory)
[18], and quantum anomalies [78]1. Collectively these approaches have born the current
classification system known as the ’ten-fold’ way. This scheme identifies five distinct forms
of topological insulators (superconductors) in each dimension. In 1D these are AIII, BDI, CI,
CII, and DIII. In the single particle basis the time-reversal and particle-hole symmetries are
anti-unitarily realized symmetries. In contrast chiral/sublattice symmetry is unitary. As
we will see in the next chapter time-reversal symmetry commutes with the single particle
Hamiltonian while particle-hole and chiral symmetries anti-commute with it [33].2.

The ten-fold way gives a simple system for the ten universality classes of noninteracting
topological insulators and superconductors, their symmetries, and their topological index in
each dimension. We restrict our focus to the 5 classes, Table 2.1, that have chiral symmetry,

1There have been advances on these approaches in the last decade, see [79] [80]
2There are extensive and indepth reviews of this classification system, details of which we leave to the

literature [33, 72, 19]
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Class 𝑇2 𝑃2 𝐶2 Topological index in 1D
AIII 0 0 1 Z
BDI 1 1 1 Z
CII -1 -1 1 2Z
DIII -1 1 1 Z2
CI 1 -1 1 0

Table 2.1 Summary of chiral universality classes and their topological index in one-dimension.

because chiral symmetry will play a central role in the models developed here. The
classification provides a framework to orient and guide the research presented here.

The universality classes are not defined by ’which symmetries does the model have’
but rather ’what kinds of arbitrary symmetry terms do we add to our model’. These five
chiral classes contain all possible combinations of symmetries. We show that the different
combinations give different but observable properties in our models. Additionally the
topological indexes provide information about the edge states as we will also show. Observe
that the CI class is not topological in 1D. These classes will provide structure to our discussions
as we present results for classed ladder models. For conveniece

The topologies Z and Z2 indicate whether the space of quantum ground states is
partitioned into topological sectors labeled by an integer or a Z2 quantity, respectively. In
the case of CII its inherent Kramers pairing the ground states always come in time-reversed
pairs which forces the invariant to always be even. These topological invariants have been
worked out for every class and dimension, in what is known as the ten-fold way [30].





Chapter 3

Winding number of 1D noninteracting
gapped systems

This chapter will perform a hybrid purpose in that it will both provide necessary background
information on winding number as a topological invariant in 2N-band models, and give a
crucial result regarding a sign ambiguity in the definition of the winding number [81].

We will derive a general expression for the winding number calculable for noninteracting
2N-band models in 1D and discuss important details of chiral symmetry as they pertain to
the lattice and the winding number. The winding number is defined in any odd dimension,
therefore the results presented are applicable to any of these spaces.

There is a subtlety that arises in the winding number of a system with chiral symmetry,
which is an ambiguity in the sign of the index in the topological phase. This finding
underpins the construction of the combined model presented later in this thesis. We will
discuss the significance of this ambiguity later in this chapter.

3.1 Winding number in 2N-band models

Here we need to expand our discussion of the winding number as a topological invariant
in 1D noninteracting models with a specific focus on the nuances of chiral symmetry. The
winding number is well studied and very often defined in the context of 2-band models (see
previous sections) but a definition for any general N-band chiral model is not well know. We
will give a detailed derivation of the winding number for a 2N-band model [82] and show
that it is equivalent to the often used Q-matrix operators method [30].

In lattice models chiral symmetry is equivalent to a sublattice symmetry, i.e. swapping
the ’labels’ of the sublattice sites within a unit cell. This can be shown by defining new
operators using the chiral operator given by equation (2.19c),

𝑃𝐴(𝐵) =
1
2 (1±𝑈𝐶) (3.1)

In a bipartite lattice, like the SSH model, these operators are projectors onto the A or B
sublattice and therefore have the properties of 𝑃𝐴 +𝑃𝐵 = 1 and 𝑃𝐴𝑃𝐵 = 0. The projector
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acting on a state only retains say the A-site components for 𝑃𝐴 and zeros the B components.
And vice versa for 𝑃𝐵. It is easy to see that changing the sign of the chiral operator simply
swaps 𝑃𝐴 ↔ 𝑃𝐵. It must be noted that if the chiral symmetry operator is not diagonal, as it is
defined in this thesis, then an easy basis may not be as physically recognizable. Additionally
we would like to explicitly say that we will use descriptions of change of sign of the chiral
operator and relabeling the sublattices interchangably as these are equivalent.

The anticommutation of the chiral operator 𝑈𝐶 with the Hamiltonian, {𝑈𝐶 ,𝐻} = 0,
implies the same condition for the projection operators from equation (3.1),

𝑃𝐴𝐻𝑃𝐴 = 𝑃𝐵𝐻𝑃𝐵 = 0 (3.2)

In order for the above statements to be true the Hamiltonian must be block off-diagonal in
our chosen basis in momentum space where,

�̂�(𝑘) =
𝐵𝑍∑
𝑘

𝑐†
𝑘
ℎ̂(𝑘)𝑐𝑘 (3.3)

This means there are no direct hoppings between like sites, i.e. no A-A or B-B site couplings.
Therefore the Hamiltonian can be written,

ℎ̂(𝑘) =
(

0 Δ̂(𝑘)
Δ̂†(𝑘) 0

)
(3.4)

From here the winding number of this model can be defined via,

𝜈 =
−𝑖
2𝜋

∫
𝐵𝑍

𝜕𝑘 𝑖𝜙(𝑘)𝑑𝑘 (3.5)

with 𝜙(𝑘) being the complex phase of the determinant of Δ̂(𝑘) and is defined from the
formula,

𝑑𝑒𝑡Δ̂(𝑘) = 𝑟(𝑘)𝑒 𝑖𝜙(𝑘) (3.6)

We find the above expressions to provide a more intuitive picture of the winding number
integral, where we can define,

𝜙(𝑘) = 𝑎𝑟𝑐𝑡𝑎𝑛
[
𝐼𝑚[𝑑𝑒𝑡Δ̂(𝑘)]
𝑅𝑒[𝑑𝑒𝑡Δ̂(𝑘)]

]
(3.7)

This expression for the winding number is very well known in the two-band model [69]
but less developed for models with more than two bands. We note for clarity that the
winding number is defined over all filled bands in the half-filled case. For an N-band model
equation (3.5) is given in [82] but with limited detail. A detailed derivation for a general
N-band model is provided in Appendix A and in Matveev et. al. [83]. This derivation
shows that this method is valid, robust, and general. It is easy to see that by adding the
determinant this expression is equivalent to the Q-matrix method for multiband systems
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[19]. The integral in equation (3.5) tells us that the winding number index 𝜈 is determined
by the number of poles 𝑓 (𝑘) = 𝜕𝑘𝜙(𝑘) that lie in a unit circle and the number of times the
𝑑𝑒𝑡Δ̂(𝑘) winds around this pole in the complex plane.

The index of the winding number is invariant as long as any smooth adiabatic deformation
doesn’t result in the band gap closing, i.e. 𝑑𝑒𝑡Δ̂(𝑘) = 0. The system will go through a phase
transition if the gap closes, the path of the vector will have to cross through the pole. The
winding number is well quantized and can wind around the pole any integer number of
times, making it a Z topological index in the case of only chiral symmetry being present.

To construct the winding number for this type of system we follow Ryu et. al. [30] by
building a projection P(k) onto the filled bands and use this projection to build the Q(k)-matrix.
The off-diagonal structure of the Q(k)-matrix is a consequence of how the chiral symmetry is
defined in the A-B basis.

The Q(k)-matrix is defined via these projection operators,

𝑄(𝑘) = 1−2𝑃(𝑘) (3.8)

𝑃(𝑘) =
∑
𝑎

|𝑢𝑎(𝑘)⟩ ⟨𝑢𝑎(𝑘)| (3.9)

This form of the projection operator is equivalent to equation (3.1) where we have summed
over all filled bands a. The Q(k)-matrix is chiral symmetric i.e. {𝐶,𝑄} = 0 where C is the
chiral symmetry operator and in the basis where C is block diagonal, we have 𝐶 = 𝜆𝜎𝑧 where
𝜆 is a unitary matrix. The Q(k)-matrix is in the same basis as the Hamiltonian operator and
is block off-diagonal,

𝑄(𝑘) =
(

0 𝑞(𝑘)
𝑞†(𝑘) 0

)
(3.10)

where 𝑞(𝑘) is in the set of complex valued unitary matrices of dimension N, 𝑞 ∈𝑈(𝑁). In
our case 𝑁 = 2 and there are 4 bands. The submatrix 𝑞(𝑘) describes a mapping between the
Brillouin zone onto the space of two-dimensional unitary matrices𝑈(2). To be more clear
we are mapping the Brillouin zone equivalent in 1D of a 1D sphere 𝑆1. The corresponding
homotopy group is non-trivial 𝜋(𝑈(1)) � Z. Finally we write the winding number in terms
of the 𝑞(𝑘) submatrices,

𝜈 =
𝑖

2𝜋

∫
𝐵𝑍

𝑡𝑟[𝑞−1(𝑘)𝜕𝑘𝑞(𝑘)]𝑑𝑘 (3.11)

Luckily for an arbitrary unitary matrix, which 𝑞(𝑘) is, this invariant is given by the winding
number of the determinant of the matrix. Thus we find,

𝑡𝑟[𝑞−1𝜕𝑘𝑞] = 𝜕𝑘 𝑙𝑜𝑔𝑑𝑒𝑡[𝑞] = 𝑖𝜕𝑘𝜙(𝑘) (3.12)

where we have used 𝑑𝑒𝑡[𝑞(𝑘)] = 𝑒 𝑖𝜙(𝑘). The above procedure requires the Hamiltonian to
be diagonalized and eigenvectors calculated. The advantage of equation (3.5) is it is basis
independent, does not require any diagonalization, relies only on the Hamiltonian being
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block off-diagonal, and is completely equivalent to the Q-matrix method. This leads nicely
to the formula which matches equation (3.5),

𝜈 =
𝑖

2𝜋

∫
𝐵𝑍

𝜕𝑘𝜙(𝑘)𝑑𝑘 (3.13)

where 𝜙(𝑘) is defined as the complex phase of 𝑞(𝑘). While equivalent, this method does not
provide an elegant intuative picture of the winding number.

We can then safely say that the chiral symmetry protects this index and is in fact required
as the winding number needs this protection to be well-defined and quantized. Chiral
symmetry is the only symmetry required for these conditions to occur, and the winding
number 𝜈 cannot change unless the gap is closed. This statement is well founded [69]. We
will see later that additional symmetries, which give the other chiral classes, can restrict
the type of the index. In some cases the constraint causes the index to be 0, in other cases
the index becomes Z2 or 2Z. While we have performed and described this derivation in
1D, these characteristics will exist in all odd dimensions where the winding number can be
defined [84].

3.2 Winding number ambiguity

In this section we present the result that there is a sign ambiguity in the winding number
which subsequently leads to two different forms of the chiral symmetry operator. These
different forms become important when we construct the combined ladder model in the next
chapter.

While the winding number is a well known topological invariant for 1D models and in
general an application of Cauchy’s integral formula [81] in complex analysis, we derived an
interesting and surprising result when applied to lattice models with chiral symmetry. This
result being that there is an ambiguity in the sign of the winding number in 1D, in other
words it is only defined up to a sign. As shown in a previous section the winding number of
the SSH model is +1 in the topological phase and 0 trivial phase. A negative winding number
can be achieved by ’winding’ the Hamiltonian vector in the opposite direction around the
pole.

Relabeling the sublattices i.e. 𝐴→ 𝐵, 𝐵→ 𝐴 causes the hamiltonian (3.4) to become,

ℎ̂(𝑘) =
(

0 Δ̂(𝑘)†
Δ̂(𝑘) 0

)
(3.14)

This transformation changes the determinant used in the winding number calculation such
that 𝑑𝑒𝑡Δ̂(𝑘) → (𝑑𝑒𝑡Δ̂(𝑘))∗. The sign of the phase changes 𝜙(𝑘) → −𝜙(𝑘), and hence the
winding number gains a minus sign,

𝜈→−𝜈 (3.15)
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While this may seem inconsequential, such a transformation has a significant effect on the
construction of our later models. This crucial notion arises from the labeling of the sublattices
in the unit cell, which has no physical significance. The winding number is odd under a
relabeling of these sublattices which is equivalent to changing the sign of the chiral symmetry
operator. Chiral symmetry, Eq. (2.19c), is a unitary operator meaning there is an arbitrary
phase attached to the operator. We can make a gauge choice that gets rid of this phase by
explicitly defining 𝑈2

𝐶
= 1 [33], however while this definition fixes the gauge it does not

uniguely define the operator as there is still a sign ambiguity, i.e. 𝑈𝐶 →−𝑈𝐶 . This means
that the chiral symmetry operator is defined up to a sign and therefore there is no physical
difference between a winding number of 𝜈 = +1 and 𝜈 = −1.

However due to how the winding number integral is defined, flipping the structure of the
unit cell so 𝐴→ 𝐵 and vice-versa or application of the chiral symmetry operator, causes the
sign of the winding number to change so that one can calculate -1 in the topological phase
and 0 in the trivial phase. This simply amounts to performing the integral with Δ̂†(𝑘) which
has the opposite signed phase. Geometrically this simply means the vector winds in the
opposite direction now. Physically speaking, because the winding number is the winding of
a phase, +1 and -1 are identical.

While such an ambiguity may be known to experts and those well versed in the subtleties
of calculating geometric phases, this result does not seem to be present or discussed in the
literature. Naturally a question then arises, what does this ambiguity mean when coupling
multiple chains together? If one takes two models, each with its own winding number,
𝜈1 and 𝜈2 respectively, there will be two ways to couple them that still respect the chiral
symmetry. One method results in a total winding number 𝜈𝑡𝑜𝑡 = 𝜈1 + 𝜈2 and the other gives
𝜈𝑡𝑜𝑡 = 𝜈1 − 𝜈2. It is no leap then to state models with differently signed winding numbers can
be adiabatically deformed into each other without closing the energy gap.

Physical measurements can’t distinguish individual sublattices, it can not tell the difference
between a system that has +Z winding number or −Z winding number. Thus there is an
ambiguity in the topological index Z such that +Z↔−Z for 𝐴→ 𝐵 and 𝐵→ 𝐴. One of the
main points we are making is that the winding number only makes sense up to a sign so that
essentially +1 and −1 are the same topologically speaking. This is what gives rise to the two
possible ways of constructing the chiral symmetry operator, one for AIII, BDI, and CII class
models, and another for DIII and CI class models, which we will present in the next chapter.

It needs to be pointed out that the sign ambiguity in the winding number is unrelated to
the sign ambiguity in the Chern number. In even dimensions the Chern number, equivalent
to the winding number, is odd under time-reversal symmetry however the winding number
is not. In this way a two-dimensional coupled system of time-reversed elements will always
result in a Chern number of 0. Since the winding number does not have this restriction,
the total value of the invariant can take a range of specific values that is dependent on the
number of coupled chains in the system. It is surprising that given two subcomponents (i.e.
chains) of a model both with winding number 𝜈 = 1 the weakly coupled combined system of
two chains can necessarily have a winding number of 0 or 2 depending on the form of the
chains.
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This result is not unique to one-dimension but is general to all odd dimensions where
the winding number can be defined. See reference [83] and Appendix B for this derviation.

In the next chapter we will construct general ladder models of two chains (in momentum
space) utilizing the sign ambiguity of the winding number to derive the two different forms of
the chiral symmetry operator as well as the two forms for the time-reversal and particle-hole
symmetry operators. These steps are crucial to construct the proper interchain couplings,
and the full model.



Chapter 4

Constructing the combined (ladder)
model

In this chapter we will construct a combined ladder model utilizing the winding number sign
ambiguity towards answering the project aims, i.e. constructing the topological insulator
phase by stitching together time-reversed SSH-like chains. Firstly we will build an SSH-like
chain that is in the AIII universality class. Using this, five ladder models can be constructed
corresponding to each of the chiral universality classes, see Table 2.1. As stated in the
introduction we use the methodology laid out by Kane and Mele to construct the quantum
spin Hall state to build our models by coupling two copies of a smaller model. We will
use AIII chains as the smaller model to construct the ladder where the coupling will give
the appropriate symmetry properties. The winding number ambiguity will be essential to
building the ladder models and the symmetry operators.

4.1 AIII chain model

In this section we will construct the AIII class chain by deforming the SSH chain model.
Using symmetry arguments and this AIII chain we will construct the combined ladder model
for all five chiral universality classes (AIII, BDI, CII, DIII, CI).

The emergent characteristics of the SSH model, including the topological state and zero
energy edge modes, are due to the inherent chiral symmetry, and will translate directly to
the ladder models we will construct. The basic idea is that the chiral universality classes
can be constructed easily using an SSH-like chain as a base and adding terms for the other
symmetries.

We are interested strictly in the chiral symmetry universality classes, see Table 2.1. The
specific topological insulator properties stem from the chiral symmetry, as shown in the
SSH model. While the edge states of the SSH model have properties that can be attributed
to time-reversal or particle-hole symmetry, the edge state itself exists because of the chiral
symmetry and in most classes (AIII, BDI, and CII) is protected by this symmetry. We will
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show that the DIII class model picks up protection in a different way. We will also show that
the edge states carry some of the symmetry properties of the models.

The SSH model is arguably in the BDI topological class, with edge mode momentum
of either 0 or 𝜋 which maintains time-reversal symmetry [75]. When the SSH model is
discussed in the literature, this is the form they mean. While there are counter arguments
to this assertion, they only depend on the symmetries one decides to ’enforce’. Here we
force the model to be in the BDI universality class with Z topology index. The BDI class has
𝑇2 = 𝑃2 = 𝐶1 = 1 symmetries. As we want to maintain chiral symmetry, we proceed to break
time-reversal symmetry to get to the AIII class model.The most general method would be to
add phase factors on the intracell hopping 𝑣 and the intercell hopping 𝑤, so that instead of
being real quantities these hoppings would be complex, 𝑣,𝑤 ∈ C.

These complex hoppings subsequently break the time-reversal symmetry (and therefore
particle-hole) of the SSH model leaving only chiral symmetry intact, see equations (2.19a),
(2.19b), and (2.19c). The new model is in the AIII universality class which only has chiral
symmetry. It is worth noting that there is a subtlety in this case, as these hoppings, 𝑣 and 𝑤,
can be made real again by adding a gauge factor to the creation and annihilation operators
of the Hamiltonian, i.e. 𝑐𝑛 → 𝑒 𝑖𝑎𝑛𝑐𝑛 . The chain can have time-reversal symmetry despite
the complex hoppings as long as one defines the time-reversal symmetry operator correctly.
However time-reversal symmetry in the chains is truly broken in the combined model.

We construct the matrix for a single AIII chain in momentum-space, which becomes the
SSH model for real 𝑣 and 𝑤,

𝐻𝐴𝐼𝐼𝐼 =

(
0 𝑣+𝑤𝑒−𝑖𝑘

𝑣∗+𝑤∗𝑒 𝑖𝑘 0

)
(4.1)

where the basis is given as Ψ𝑇
𝑘
= {𝐴𝑘 , 𝐵𝑘}. It is easy to check that this Hamiltonian only has

chiral symmetry by showing it does not have time-reversal symmetry, Eq. (2.19a),

�̂�∗
𝐴𝐼𝐼𝐼(−𝑘) =

(
0 𝑣∗+𝑤∗𝑒−𝑖𝑘

𝑣+𝑤𝑒 𝑖𝑘 0

)
≠ �̂�𝐴𝐼𝐼𝐼(𝑘) (4.2)

It is easy to see there is no unitary matrix that can fulfill the time-reversal symmetry in this
case. We can think about this in terms of rotations of the bloch sphere in the 𝑥− 𝑦 plane,
there is no rotation that can affect 𝐻∗

𝐴𝐼𝐼𝐼
(−𝑘) to return 𝐻𝐴𝐼𝐼𝐼(𝑘).

The dispersion plots and edge state spectrums are similar to those shown for the SSH
model, see Figs. 2.3 and 2.5, and we can thus conclude that this AIII model is rigorous and
can be used to construct topological ladder models. From here we have the fundamentals to
construct the other chiral classes. In the next section we will build the combined models and
show the existence of topological insulator phases in these models.
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4.2 Constructing the combined (ladder) models

The main idea here is the hypothesis that we can construct all of the chiral symmetric
universality classes via adding the correct symmetric terms to the AIII class Hamiltonian
and the models will have topological insulator phases. This is done by coupling two spinless
1D time-reversed AIII chains. We are going to use this understanding to construct the proper
symmetry operators for this coupled model. Understanding the symmetry operations for
each class will allow us to understand the associated topological phases and indices.

Constructing the more complicated chiral models will involve adding terms that give the
model time-reversal or particle-hole symmetry. We choose to add time-reversal terms to
construct the models. We are permitted to do this because of the finite momentum of the
edge states, resulting from the additional phase factors in the complex hoppings 𝑣 and𝑤. The
methodology for coupling chains related by time-reversal symmetry is consistent with the
procedure for constructing the quantum spin Hall insulator state, by coupling time-reversed
partners. By adding coupling terms we can artifically keep or break symmetries to obtain
the symmetry class we are interested in.

The momentum of the edge state is fixed at some value determined by the phases of 𝑣
and 𝑤 (i.e. finite) and not variable, we can add a second chain or ’leg’ to the lattice model
with the time-reversed momentum [83]. This time-reversed chain will have the opposite
momentum but same energy. Taking an instance of both types of chains and coupling them
together in a specific way makes the combined system adhere to time-reversal symmetry and
chiral symmetry, and subsequently particle hole symmetry. We describe each chain as ℎ̂+
and ℎ̂−, where ℎ̂− = ℎ̂∗+, and both chains have the same unit cell basis. We emphasize that the
hopping parameters on both chains are the same, 𝑣1 = 𝑣2 and 𝑤1 = 𝑤2 where 1, 2 represent
the ’top’ and ’bottom’ chains respectfully for the sake this discussion.

The 2-chain uncoupled model now reads,

�̂�𝑢𝑛𝑐𝑜𝑢𝑝𝑙𝑒𝑑(𝑘) =
(
ℎ̂+(𝑘) 0

0 ℎ̂−(𝑘)

)
(4.3)

where ℎ̂+ is the AIII Hamiltonian, Eq. (4.1). This matrix, Eq. (4.3), represents two uncoupled
chains each in the AIII class that are the time-reversed partners. For clarity we state the basis
𝑐𝑘 = {𝑐𝐴,1,𝑘 , 𝑐𝐵,1,𝑘 , 𝑐𝐴,2,𝑘 , 𝑐𝐵,2,𝑘}. The basis is chosen such that matrix is diagonal in the chains,
making an easy chiral basis. This is a 4x4 matrix where each element is a 2x2 matrix. From
here we can now build and list the full operators for each symmetry for four of the five chiral
classes.

The next step is to couple the chains in some way that gives the correct symmetry terms.
This interchain rung coupling will act as a small perturbation on the two uncoupled chain
system such that the topological properties of each chain should remain unaffected, i.e.
they are weakly coupled. The properties of the coupled system will be the summation of
both chains. In the current basis (𝐴,𝐵) this coupling fills the off-diagonal matrix elements,
represented by Δ̂(𝑘). Similar to the ℎ̂± elements, Δ̂(𝑘) is a 2x2 matrix with quasimomentum-𝑘
dependence. The full 2-leg ladder Hamiltonian matrix is given as,
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�̂�(𝑘) =
(
ℎ̂+(𝑘) Δ̂(𝑘)
Δ̂†(𝑘) ℎ̂−(𝑘)

)
(4.4)

There will be restrictions on the form of the chain coupling matrix Δ̂(𝑘) which depend on
which version of the symmetries �̂�(𝑘) adheres to, i.e. whether 𝑇2 = 1 or −1 and 𝑃2 = 1 or
−1. We can think about this in reverse by saying that the nature of the Δ̂(𝑘) will force the
full Hamiltonian �̂�(𝑘), Eq. (4.4), to be in one of the chiral classes. The symmetry operators
consist of 2 parts, one acting on the internal structure of each 2x2 matrix denoted using 𝑆𝑛 ,
and a second part acting on the structure of the condensed �̂�(𝑘) matrix denoted by 𝜎𝑛 . Both
𝑆𝑛 and 𝜎𝑛 represent a matrix from the set of Pauli matrices.

4.2.1 Deriving symmetry operators

In this section we will derive all of the symmetry operators for the combined model for
each universality class. It is well known that an SSH chain has winding number 𝜈 = 1 in the
topological nontrivial phase (|𝑤 | < |𝑣 |) and 𝜈 = 0 for the trivial phase (|𝑤 | > |𝑣 |). The chiral
symmetry operator for the natural A, B basis is 𝑆𝑧 . Additionally due to the ambiguity in the
sign of the winding number the nontrivial phase can also occur with 𝜈 = −1 when the sites
within the cells are flipped 𝐴↔ 𝐵. This case would have a chiral symmetry operator of −𝑆𝑧 .
Given this, we then have a choice of operator.

In regards to a single chain such a choice makes little difference to the physical and
observable pictures. However an interesting scenario arises when multiple chains are
coupled together because we have this choice of operator on each individual chain so the
sign matters. Thus it stands to reason that the winding number of a two chain system would
be the sum or difference of the winding numbers of both chains dependent on the sign of the
chiral operators.

We can understand this more closely by examining the Hamiltonian of two uncoupled
AIII chains. The first case is to have both chains take on the same signed chiral symmetry
operator, where the total winding number is the sum of the winding number of the individual
chains, i.e. 𝜈 = 𝜈1 + 𝜈2. In the second case when the chiral operators differ by as sign the total
winding number is the difference of the individual winding numbers, i.e. 𝜈 = 𝜈1 − 𝜈2.

In the combined model we need to be more concrete and account for both the intracell
chiral symmetry and the chain chiral symmetry. There are two possible forms for the chain
coupling terms, which stem from the winding number sign ambiguity. We remind the reader
that in the combined model the unit cell is now four sites, two on the top chain and two on
the bottom, and we use the basis stated previously. Thus we will define a ’double’ operator,
with one acting in the chain basis and the other acting in the unit cell basis.

In the case that we choose for both chains to have the same chiral operator the combined
operator can be written as 𝐶1 = 𝑆𝑧𝜎0 where 𝑆𝑧 acts in the unit cell basis and 𝜎0 acts in the
chain basis. Depending on the relative magnitudes of the hopping parameters |𝑣 | and |𝑤 |
the total winding number can be 0 or 2, representing trivial phases and topological phases
on both chains. In the case where the unit cell chiral operators have opposing signs, the
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Fig. 4.1 Two ladder models of coupled deformed SSH chains where (a) demonstrates the
𝐶1 = 𝑆𝑧𝜎0 chiral symmetry and (b) shows the 𝐶2 = 𝑆𝑧𝜎𝑧 chiral symmetry form. The sites
labeled as A and B are what we consider the natural sublattice basis. Those sites labeled
with A’ and B’ are those defined by the 𝐶2 chiral operator. Projectors between sublattices are
given by Eq. (3.1).

combined operator is given as 𝐶2 = 𝑆𝑧𝜎𝑧 . The total winding number will always be 0 for this
case. In figure 4.1 we illustrate these two sublattice forms, i.e. A/B and A’/B’.

It is interesting that the winding number can not be uniquely defined in the uncoupled
chains model. The block diagonal structure indicates there is an additional symmetry present
that we haven’t accounted for, in this case the charge is being conserved in each chain. This
extra symmetry is subsequently causing the winding number to be ambiguious. We will
break this symmetry by coupling the chains together which in turn causes the winding
number to be defined explicitly (up to a sign). Note there are other additional symmetries
in the system such as discrete translational symmetry that may affect the matrix structure
however since the winding number is defined for the coupled chains case we don’t worry
about them.

With no other constraints other than chiral symmetry on the interchain coupling then
the model in either case (𝐶1,2) belongs to the AIII class but are inequivalent. By applying
further symmetry constraints on the interchain coupling we can force the model to fall with
in one of the other four chiral classes, i.e. BDI, CII, DIII, or CI.

We will describe the derivation of the time-reversal operator for the BDI configuration
here and leave the remaining derivations to the appendix (Appendix B) as they all follow
the same logical procedure. Since we have constructed our AIII chains to be time-reversal
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partners of each other, if we interpret the operation physically one needs to "swap" the chains
in the matrix. This means the operator will be proportional to 𝜎𝑥 or 𝜎𝑦 .

This raises the question, why are there two distinct operators for TRS that are both
symmetries of the decoupled system? The ambiguity of this choice of operators, much like
the ambiguity in the chiral operator, exists because of the block diagonal structure and an
additional unitary symmetry the uncoupled model exhibits. This additional symmetry is
broken when the inter-chain rung coupling is added, which in turn lifts this ambiguity
and the time-reversal operator is fixed to 𝜎𝑥 or 𝜎𝑦 . The interchain rung couplings fix the
ambiguity in the operators. Recall the equation for time-reversal symmetry, Eq. (2.19a),
and note that the time-reversal symmetry operator is a unitary operator times the complex
conjugate operator, 𝑇 =𝑈𝑇𝐾, which commutes with the Hamiltonian (4.4).

�̂�(𝑘) =
(
ℎ̂+ Δ̂(𝑘)

Δ̂†(𝑘) ℎ̂−

)
�̂�∗(−𝑘) =

(
ℎ̂− Δ̂∗(−𝑘)

Δ̂𝑇(−𝑘) ℎ̂+

)
(4.5)

As we don’t know the internal structures of Δ̂(𝑘) we will revisit them in the next section.
Comparing �̂�(𝑘) and �̂�∗(−𝑘), Eq. (4.5), we need an operator that will flip ℎ̂+ and the ℎ̂−
elements. As the internal components of these matrices are unchanged we need the identity
operator to act on the sublattice basis, so we use 𝑆0. Additionally the 𝜎𝑥 Pauli matrix
performs the necessary flipping of the matrix elements. The BDI class requires the time-
reversal symmetry operator to have the property 𝑇2 = +1, which 𝑆0𝜎𝑥 satisfies. Therefore
the time-reversal symmetry operator for the BDI class,

𝑇 =𝑈+
𝑇𝐾 = 𝑆0𝜎𝑥𝐾 (4.6)

which satisfies the necessary symmetry equations,

𝑇𝐻∗(−𝑘)𝑇† = 𝐻(𝑘) (4.7a)
𝑆0𝜎𝑥𝐻

∗(−𝑘)𝜎†𝑥𝑆†0 = 𝐻(𝑘) (4.7b)

where we use the identity (𝐴𝐵)† = 𝐵†𝐴†.
The particle-hole symmetry operator is derived in the same logical manner as above

and is 𝑆𝑧𝜎𝑥 for the BDI class. The chiral symmetry operator can be derived from either the
symmetry equation or by combining the time-reversal and particle-hole symmetry operators.
Both methods yield the same result,

𝐶 = 𝑇 ·𝑃
=𝑈𝑇𝐾𝑈𝐶𝐾

= 𝑆𝑧𝜎0

(4.8)

All the symmetry operators for all of the chiral classes are derived in a similar procedure,
Table 4.1. We see that the choice of chiral symmetry affects the description of the time-reversal
and particle-hole symmetry operators. It is also interesting to note that the decoupled system
is class ambiguous, it can be in any of the four different universality classes - BDI, CII, CI,
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AIII 𝐶1 =𝑈𝐶1 = 𝑆𝑧𝜎0
𝐶2 =𝑈𝐶2 = 𝑆𝑧𝜎𝑧

BDI
𝑇+ =𝑈+

𝑇
𝐾 = 𝑆0𝜎𝑥𝐾

𝑃+ =𝑈−
𝑃
𝐾 = 𝑆𝑧𝜎𝑥𝐾

𝐶1 =𝑈𝐶1 = 𝑆𝑧𝜎0

CII
𝑇− =𝑈𝑇𝐾 = 𝑖𝑆0𝜎𝑦𝐾
𝑃− =𝑈𝑃𝐾 = −𝑖𝑆𝑧𝜎𝑦𝐾
𝐶1 =𝑈𝐶1 = 𝑆𝑧𝜎0

DIII
𝑇− =𝑈−

𝑇
𝐾 = 𝑖𝑆0𝜎𝑦𝐾

𝑃+ =𝑈+
𝑃
𝐾 = 𝑆𝑧𝜎𝑥𝐾

𝐶2 =𝑈𝐶2 = 𝑆𝑧𝜎𝑧

CI
𝑇+ =𝑈+

𝑇
𝐾 = 𝑆0𝜎𝑥𝐾

𝑃− =𝑈−
𝑃
𝐾 = −𝑖𝑆𝑧𝜎𝑦𝐾

𝐶2 =𝑈𝐶2 = 𝑆𝑧𝜎𝑧
Table 4.1 Symmetry operators for chiral universality classes.

or DIII. There is an extra symmetry that the decoupled system has that is broken when
the interchain coupling is added which collapses the model to a specific class. This is a
very curious result because these classes are different topologically. The BDI and CII class
models are topological insulators with Z topology index, the DIII class model is a topological
insulator with Z2 index, and CI is topologically trivial.

In order to collapse the uncoupled model to a specific class we will make our model
concrete by deriving and defining specifically the Δ̂(𝑘)matrix to form the coupled chain model.
In the next section we will construct Δ̂(𝑘) so that it is compatible for chiral, time-reversal,
and particle-hole symmetries.

4.2.2 Deriving the Δ̂(𝑘) matrix

In this section we will derive the structure and properties of the Δ̂(𝑘) matrix in each
universality class in terms of generic even and odd functions, and Pauli matrices. To
properly construct the chiral symmetric topological models we need to understand how
the Hamiltonian (4.4) of coupled chains transforms when symmetry operators 𝑇± and 𝑃±,
Table 4.1, are applied. The symmetry operators impose constraints on the Δ̂(𝑘) matrices that
we can exploit to understand their properties. We work in 𝑘-space for simplicity.

Starting with the time-reversal symmetry equation (2.19a) and the 𝑇− operator (CII) we
find (see Appendix B for details),(

ℎ̂+(𝑘) −Δ̂𝑇(−𝑘)
−Δ̂∗(−𝑘) ℎ̂−(𝑘)

)
=

(
ℎ̂+(𝑘) Δ̂(𝑘)
Δ̂†(𝑘) ℎ̂−(𝑘)

)
(4.9)

In order to maintain the 𝑇− symmetry then the following relation for Δ̂(𝑘) must be true,

Δ̂(𝑘) = −Δ̂𝑇(−𝑘) (4.10)
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The procedure for the remaining classes is trivial from here and we list simply the full set of
relations here:

𝑇+ : Δ̂(𝑘) = Δ̂𝑇(−𝑘) (4.11a)
𝑇− : Δ̂(𝑘) = −Δ̂𝑇(−𝑘) (4.11b)
𝑃+ : 𝑆𝑧Δ̂(𝑘)𝑆𝑧 = −Δ̂𝑇(−𝑘) (4.11c)
𝑃− : 𝑆𝑧Δ̂(𝑘)𝑆𝑧 = Δ̂𝑇(−𝑘) (4.11d)

We proceed now to solving for Δ̂(𝑘) explicitly in each case and find the general form for
Δ̂(𝑘) for the chiral classes. Again we will derive the solution for an example and list the full
results at the end. We will show the derivation using the 𝑇− operator, Eq. (4.11b),

𝑇− : Δ̂(𝑘) = −Δ̂𝑇(−𝑘) (4.12)

We can examine the matrix elements as functions in two ways, as either an even function or
an odd function. We find the most general solution is the linear combination of even and
odd functions. The real space structure of this matrix will depend on the choices of even or
odd functions, i.e. constant functions provide the intracell hoppings while sinusoidal and
exponentials provide intercell and longer range hoppings. From Figure 4.1 we know the
Δ̂(𝑘) for the BDI and CII model will be a linear combination of 𝑆𝑥 and 𝑆𝑦 , since our basis is
𝐴1 , 𝐵1 , 𝐴2 , 𝐵2. Equally, the DIII and CI class lattice will need a Δ̂(𝑘) consisting of 𝑆0 and 𝑆𝑧 .
The full definitions of Δ̂(𝑘) in terms of even and odd functions for each class are listed at the
end of this subsection, Eqs. (4.18).

For the odd functions ( 𝑓𝑜(𝑘), 𝑔𝑜(𝑘)) we only have 𝑠𝑖𝑛(𝑘) as a choice. If we choose an odd
function,

Δ̂𝑜𝑑𝑑(𝑘) = Δ̂𝑇
𝑜𝑑𝑑

(𝑘) (4.13)

For the relation to hold true, as the function is a 2x2 matrix, it must be a linear combination
of the Pauli matrices 𝑆0,𝑥,𝑧 .

Alternatively if the function is even ( 𝑓𝑒(𝑘), 𝑔𝑒(𝑘)) in k, the relation becomes,

Δ̂𝑒𝑣𝑒𝑛(𝑘) = −Δ̂𝑇𝑒𝑣𝑒𝑛(𝑘) (4.14)

In this case we have the choice of 𝑆𝑥 or 𝑖𝑆𝑦 . To preserve the 𝑈−
𝑇

symmetry, Δ̂(𝑘) is a linear
combination of the terms:

sin(𝑘)𝑆0 , sin(𝑘)𝑆𝑥 , sin(𝑘)𝑆𝑧 , 𝑆𝑦 , 𝑖𝑆𝑦 (4.15)

Any even or odd function would work here, the ones shown here are merely examples of
possible functions. However the choice of function must adhere to the physical lattice model
we are analyzing, e.g. 𝑠𝑖𝑛(𝑘), will add an extra factor of 𝑘 so the hopping connects further
separated sites, e.g. next-nearest neighbor and etc. Listing all of the terms for each symmetry
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case:

𝑈−
𝑇 : sin(𝑘)𝑆0 , sin(𝑘)𝑆𝑥 , sin(𝑘)𝑆𝑧 , 𝑆𝑦 , 𝑖𝑆𝑦 (4.16a)

𝑈−
𝑃 : 𝑆0 , sin(𝑘)𝑆𝑥 , 𝑆𝑧 , sin(𝑘)𝑆𝑧 , 𝑖𝑆𝑦 (4.16b)

𝑈+
𝑇 : 𝑆0 , 𝑆𝑥 , 𝑆𝑧 , sin(𝑘)𝑆𝑦 , sin(𝑘)𝑖𝑆𝑦 (4.16c)

𝑈+
𝑃 : sin(𝑘)𝑆0 , 𝑆𝑥 , sin(𝑘)𝑆𝑧 , 𝑆𝑦 , sin(𝑘)𝑆𝑦 , sin(𝑘)𝑖𝑆𝑦 (4.16d)

It is now possible to construct the Hamiltonian for BDI, CII, DIII, and CI universality class
models. To create a Hamiltonian that obeys the BDI class, for example, we will need to select
functions that appear in both the𝑈+

𝑇
and𝑈+

𝐶
catergories. Doing this for all 4 classes, we get

the following possible representations:

𝐵𝐷𝐼 | 𝑇2 = 𝑃2 = 1 (𝑈+
𝑇 ,𝑈

+
𝑃 )

Δ̂(𝑘) = 𝑎𝑆𝑥 + 𝑏 sin(𝑘)(𝑖𝑆𝑦)
𝐶𝐼𝐼 | 𝑇2 = 𝑃2 = −1 (𝑈−

𝑇 ,𝑈
−
𝑃 )

Δ̂(𝑘) = 𝑎 sin(𝑘)𝑆𝑥 + 𝑏(𝑖𝑆𝑦)
𝐷𝐼𝐼𝐼 | 𝑇2 = −1 𝑃2 = 1 (𝑈−

𝑇 ,𝑈
+
𝑃 )

Δ̂(𝑘) = sin(𝑘)[𝑎𝑆0 + 𝑏𝑆𝑧]
𝐶𝐼 | 𝑇2 = 1 𝑃2 = −1 (𝑈+

𝑇 ,𝑈
−
𝑃 )

Δ̂(𝑘) = sin(𝑘)[𝑎𝑆0 + 𝑏𝑆𝑧]

(4.17)

These conditions are completely general and we could have chosen functions other than
a constant for the even function and sin(𝑘) for the odd function. From the equation set (4.17)
it is easy to see that due to the presence of 𝑆𝑥 and 𝑆𝑦 matrices, which are off-diagonal, the
BDI and CII models will have 𝐴−𝐵 and 𝐵−𝐴 interchain (rung) couplings, Fig. 4.1. Similary,
the DIII and CI classes exclusively have the 𝑆0 and 𝑆𝑧 matrices which are diagonal resulting
in 𝐴−𝐴 and 𝐵−𝐵 interchain rung couplings. The choice of even and odd functions in Δ̂(𝑘)
determine how these sites are connected, same cell, nearest neighbor cells, etc. The ℎ̂+ and
ℎ̂− parts of the ladder Hamiltonian matrix, Eq. (4.4), describe how the sites along each chain
are connected.

Let’s be more general with our equations from (4.17) by noticing the even and odd
function structure of each equation such that we can say:

𝐵𝐷𝐼 : Δ̂(𝑘) = 𝑓𝑒(𝑘)𝑆𝑥 + 𝑓𝑜(𝑘)(𝑖𝑆𝑦) (4.18a)
𝐶𝐼𝐼 : Δ̂(𝑘) = 𝑓𝑜(𝑘)𝑆𝑥 + 𝑓𝑒(𝑘)(𝑖𝑆𝑦) (4.18b)
𝐷𝐼𝐼𝐼 : Δ̂(𝑘) = 𝑓𝑜(𝑘)𝑆0 + 𝑔𝑜(𝑘)𝑆𝑧 (4.18c)
𝐶𝐼 : Δ̂(𝑘) = 𝑓𝑒(𝑘)𝑆0 + 𝑔𝑒(𝑘)𝑆𝑧 (4.18d)

where e and o subscripts denote even or odd, respectively. The goal from here is to build the
coupling Δ̂(𝑘) that is compatible with chiral, time-reversal, and particle-hole symmetries in
order to construct our models in the above four different chiral classes. In the next sections
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we will investigate the dispersion spectrum properties of 4-band models and zero energy
modes of each class model.

4.2.3 BDI and CII class models

In the previous section we derived the general function structures for the Δ̂(𝑘) matrices that
couple the chains together. In this section we will present the general dispersion features of
4-band models, which will help us understand model specific band structures presented in
a later section. We will make approximations about the Δ̂(𝑘) functions in order to plot the
dispersions. The band structure is an important characteristic of a model as it shows the
allowed and forbidden quantum mechanical wave functions of the electron in the system
and in our case the degeneracies and zero energy modes of a topological insulator phase.
The band structure will also give us insight into the winding number of the models.

We group BDI and CII together because their Hamiltonian matrix is similar, same with
the DIII and CI classes. The BDI and CII model spectrums will be different. One reason is
CII has Kramers degeneracy via the 𝑇− time-reversal symmetry so there has to be degenerate
points in the spectrum however this won’t in general be the case for a BDI class model. We
should be able to show that BDI can host degeneracies but also show that it doesn’t and it
only depends on the parameters and the degeneracy is fixed by some symmetry. Typical
BDI models might have a degeneracy in the spectrum because an additional symmetry like
inversion might be present. For CII there will always be degenerate points in the spectra
so there should be some ambiguity in something like the winding number but BDI there
should no ambiguity given no degeneracies in the spectra.

Let’s first consider the case with the chiral symmetry operator 𝐶1 = 𝑆0𝜎𝑧 . This case
corresponds to the BDI and CII classes. The lattice model specific to this configuration has
couplings according to figure 4.1(a). Starting from the general Hamiltonian using the basis
𝑐𝑇
𝑘
= {𝑐𝐴,1,𝑘 , 𝑐𝐵,1,𝑘 , 𝑐𝐴,2,𝑘 , 𝑐𝐵,2,𝑘},

�̂�(𝑘) =
(
ℎ̂+(𝑘) Δ̂(𝑘)
Δ̂†(𝑘) ℎ̂−(𝑘)

)
(4.19)

For the BDI and CII classes this gives the following 4x4 matrix,

�̂�𝐵𝐷𝐼/𝐶𝐼𝐼(𝑘) =
©«

0 𝑣+𝑤𝑒 𝑖𝑘 0 𝐴+𝐵
𝑣∗+𝑤∗𝑒−𝑖𝑘 0 𝐴−𝐵 0

0 (𝐴−𝐵)∗ 0 𝑣∗+𝑤∗𝑒 𝑖𝑘

(𝐴+𝐵)∗ 0 𝑣+𝑤𝑒−𝑖𝑘 0

ª®®®®¬
(4.20)
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Rearranging the basis set 𝑐𝑇𝑛 = {𝑐𝐴,1,𝑘 , 𝑐𝐴,2,𝑘 , 𝑐𝐵,1,𝑘 , 𝑐𝐵,2,𝑘} brings the Hamiltonian to full
off-diagonal block form,

�̂�𝐵𝐷𝐼/𝐶𝐼𝐼(𝑘) =
©«

0 0 𝑥 𝜏

0 0 𝜔∗ 𝑦

𝑥∗ 𝜔 0 0
𝜏∗ 𝑦∗ 0 0

ª®®®®¬
(4.21)

where,

𝑥 = 𝑣+𝑤𝑒 𝑖𝑘 (4.22a)
𝑦 = 𝑣∗+𝑤∗𝑒 𝑖𝑘 (4.22b)
𝜏 = 𝐴+ 𝑏 (4.22c)
𝜔 = 𝐴−𝐵 (4.22d)

𝐵𝐷𝐼 : 𝐴 = 𝑓𝑒(𝑘), 𝐵 = 𝑓𝑜(𝑘) (4.22e)
𝐶𝐼𝐼 : 𝐴 = 𝑓𝑜(𝑘), 𝐵 = 𝑓𝑒(𝑘) (4.22f)

Solving the matrix gives the dispersion,

𝜆2 =
1
2

[
|𝜏|2 + |𝜔 |2 + |𝑥 |2 + |𝑦 |2

±
√
(|𝜏|2 + |𝜔 |2 + |𝑥 |2 + |𝑦 |2)2 −4(|𝜏|2 |𝜔 |2 + |𝑥 |2 |𝑦 |2 −𝜏∗𝜔𝑥𝑦−𝜏𝜔∗𝑥∗𝑦∗)

]
(4.23)

It is trivial to see that equation (4.23) will give a 4-band dispersion plot. Any Hamiltonian
constructed in this way will have four bands. The ± for the 𝜆2 sets the magnitude of the
positive (upper) subbands and negative (lower) energy subbands while the ± on the inner
square root dictates the splitting of the two positive bands and the two negative bands.

The terms under the square root open a gap between the two upper subbands and
between the two lower subbands i.e. the degeneracy of the two time-reversed AIII models is
lifted. Since chiral symmetry is an anti-unitary symmetry, its anticommutation results in a
negative sign when the chiral symmetry operator is applied. The chiral symmetry ensures a
mirroring effect of the bands over the zero energy (𝜖 = 0) axis. Such a feature is present in all
chiral classes. The different symmetry properties of each class will show up in the spectra,
which will be demonstrated in the next sections.

BDI

For the sake of simplicity to understand the basic features of these classed dispersion band
structures we have set the odd function 𝑓𝑜 = 0 and the even function will be some (small
valued) real constant, Eq. (4.18a), such that it acts as a perturbation on the uncoupled
chain system. As described in the previous section, any even and odd function would be
permissible to use, however the choice would affect the real lattice hoppings and the band
structures.

As we expect for an insulator state the valence and conduction bands are fully gapped, at
half filling, through the entirety of the Brillouin zone, Fig. 4.2. We will see in the next chapter
that our BDI model has degeneracies at 𝑘 = [−𝜋,𝜋). The difference arises in how we have
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defined the interchain couplings in momentum space, here we have chosen a real constant
while our model has exponentials due to the cell hoppings.

The magnitude of the interchain constant controls the size of the subband gaps. As
expected, the band spectrum represents an insulator, i.e. the Fermi level is surrounded
by gaps to the valence bands at lower energies and conduction bands at higher energies.
Recalling the band features caused by symmetries, Eqs. (2.19), the bands have mirror
symmetries across both axes resulting from the presence of all three symmetries.

Fig. 4.2 BDI class model band structure with 𝑣 = 0.5 𝑤 = 1.5 𝑓𝑒 = 0.1 𝑔𝑜 = 0. This plot uses a
real constant for the even function 𝑓𝑒 and sets the odd function 𝑔𝑜 = 0. Analytically calculated
dispersion matches the numerical calculations.

CII

In the CII model, where again the odd function is set as 𝑓𝑜 = 0, and the even function is
set to a constant imaginary value, Eq. (4.18b), that is small as not to close the gap. Due to
the present Kramers degeneracy (𝑇2 = −1) there are multiple degenerate points where the
subbands meet. These high symmetry points are fixed by time-reversal symmetry and not
dependent on the parameters, Fig. 4.3. Examining the terms in the inner square root of
equation (4.23) we see trivially these go to 0 in the high symmetry points of 𝑘 = {0,±𝜋}. For
this model these degeneracies appear as a consequence of symmetries and the gap can not
be opened via tuning of parameters.
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Fig. 4.3 CII class model band structure with 𝑣 = 0.5 𝑤 = 1.5 𝑓𝑒 = 0.1𝑖 𝑔𝑜 = 0. This plot uses a
imaginary constant for the even function 𝑓𝑒 and sets the odd function 𝑔𝑜 = 0. Analytically
calculated dispersion matches the numerical calculations.

4.2.4 DIII and CI class models

Next we build the lattices and Hamiltonians for the CI and DIII classes which have the
second form of the chiral operator 𝐶2 = 𝑆𝑧𝜎𝑧 . For the CI class Δ̂(𝑘) consists of two even
functions in momentum space Eq. (4.18d), alternatively for the DIII class these functions
are odd, Eq. (4.18c). To reiterate the defining aspect that makes the lattices in these classes
different from the BDI/CII lattices is that the rungs connect A sites to A sites and B sites to B
sites. Therefore depending on the functions we choose the rungs could connect the same
cells together (standard ladder) or next neighbor cells on the same site (cross hatched ladder
similar to the previous lattices), see Fig. 4.1(b). However we will see that a square ladder
lattice doesn’t give the CI class model.

Any more complicated function, such as cosine, connect nearest neighbor cells together,
as seen in the BDI and CII lattices. For the DIII and CI lattice type, A-sites are connected to
the A’-site in the next unit cell, similarly for the B-sites. Additionally the rung couplings have
an imaginary prefactor in order to make them odd. However the CI class is not topological
in 1D so we shouldn’t see any protected edge states.
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Reiterating the CI/DIII momentum space Hamiltonian as,

�̂�𝐷𝐼𝐼𝐼/𝐶𝐼(𝑘) =
©«

0 𝑣+𝑤𝑒 𝑖𝑘 𝑓𝑛(𝑘)− 𝑔𝑛(𝑘) 0
𝑣∗+𝑤∗𝑒−𝑖𝑘 0 0 𝑓𝑛(𝑘)+ 𝑔𝑛(𝑘)

( 𝑓𝑛(𝑘)− 𝑔𝑛(𝑘))∗ 0 0 𝑣∗+𝑤∗𝑒 𝑖𝑘

0 ( 𝑓𝑛(𝑘)+ 𝑔𝑛(𝑘))∗ 𝑣+𝑤𝑒−𝑖𝑘 0

ª®®®®¬
(4.24)

where we have 𝑛 = 𝑒𝑣𝑒𝑛 for the CI class and 𝑛 = 𝑜𝑑𝑑 for the DIII class representing even and
odd functions in momentum/wavenumber k. Following the same abbreviation scheme as
the previous subsection we get the matrix,

�̂�𝐷𝐼𝐼𝐼/𝐶𝐼(𝑘) =
©«

0 𝑥 𝜏 0
𝑥∗ 0 0 𝜔

𝜏∗ 0 0 𝑦

0 𝜔∗ 𝑦∗ 0

ª®®®®¬
(4.25)

where 𝑥 and 𝑦 are defined the same as the BDI and CII case, and 𝜏 = 𝑓𝑛 − 𝑔𝑛 and 𝜔 = 𝑓𝑛 + 𝑔𝑛 .
This matrix cannot be brought into a block off-diagonal form in a convenient way. Solving
the dispersion relation gives,

𝜆2 =
1
2

[
|𝜏|2 + |𝜔 |2 + |𝑥 |2 + |𝑦 |2

±
√
(|𝜏|2 + |𝜔 |2 + |𝑥 |2 + |𝑦 |2)2 −4(|𝜏|2 |𝜔 |2 + |𝑥 |2 |𝑦 |2 −𝜏𝜔∗𝑥∗𝑦−𝜏∗𝜔𝑥𝑦∗)

]
(4.26)

The relation is slightly different than the BDI/CII relation in the last two terms. The spectrums
will be four bands and have similar features to the previous cases.

DIII

The model in the DIII class presents with the summation of two odd functions in the Δ̂(𝑘)
matrix. Similar to the previous models of BDI and CII we will set one of these odd functions
to 0 to simplify the calculations. We further restrict the nonzero function to be 𝑓𝑜 = −𝑥, which
is a simple odd function. The characteristics of the spectrum will be invariant to whichever
function is set to zero, as can be seen in figure 4.4.

Based on the symmetry properties of DIII (𝑇− and 𝑃+) we can predict that the spectrum
should have features common to both BDI and CII. Figure 4.4 shows there is a degenerate
point at 𝑘 = 0 which presents in the CII case and gaps at the 𝑘 = {−𝜋,𝜋} points which show
up in the BDI case. The shape of the bands is determined by the function 𝑓 (𝑘). Any odd
function will work but they will all present a degenerate point at 𝑘 = 0.

CI

The CI universality class is not topological in 1D, Table 2.1. However it is instructive to do
some analysis for this class to compare the results of the other chiral classes. The simplest
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Fig. 4.4 DIII class model band structure with 𝑣 = 0.5 𝑤 = 1.5 𝑓𝑜 = 0.1𝑖 𝑔𝑜 = 0. This plot sets
one odd function 𝑓𝑜 = 0.1𝑖 and sets the other odd function 𝑔𝑜 = 0. Analytically calculated
dispersion matches the numerical calculations.

model is to set 𝑓𝑒 or 𝑔𝑒 to zero and the remaining function to a small constant. A constant
is the most trivial even function. As with the DIII model there is no difference to the
characteristics of the spectrum which function we choose to set to zero.

Setting the functions in 𝜏 and 𝜔 to a constant will result in a fully gapped state, Fig. 4.5,
notably at 𝑘 = 0 which is degenerate in the previous models. The gap size will be some
proportion of the value of the constant these functions are set to. We notice the subbands
are gapped through the full regime of the Brillouin zone similar to the BDI model which is
due to matrix elements of Δ̂(𝑘) being real constants in both models. We will see in the next
chapter when we develop specific models that the band structures will be different.

In the next chapter we will use the general expressions derived here to construct the real
lattice models in each chiral class and analyze the specific band structures as well as the
energy spectra.
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Fig. 4.5 CI class model band structure with 𝑣 = 0.5 𝑤 = 1.5 𝑓𝑒 = 0.1 𝑔𝑒 = 0. This plot sets
one odd function 𝑓𝑜 = 0.1 and sets the other odd function 𝑔𝑜 = 0. Analytically calculated
dispersion matches the numerical calculations.



Chapter 5

Realizing real space 1D Topological
Insulators

In this section we will build the real space realizations of our classed models and examine
the eigenvalue and eigenvector spectrums for the hallmark characteristics of topological
insulator states, notably zero energy modes and symmetry protected edge states. We will
also take the opportunity to derive the specific band structures for each model. We will see
that by coupling two chains together we expand the unit cell from two sites to four sites
which has implications for the band structures, energy spectra, and edge states. The four
topological classes will have degenerate points in the spectra at two or three of the high
symmetry points, the CI class model will not.

We will demonstrate that our combined models maintain the characteristics of the
topological insulator phase similar to the prototypical SSH model, i.e. zero energy edge
modes. The topological and trivial phases still emerge as a function of the intra- (𝑣) and
intercell couplings (𝑤). To reiterate, the fully gapped trivial phase emerges with intercell
coupling being less than the intracell coupling, i.e. |𝑣 | > |𝑤 |. The topological phase arises
in the opposing sector with the intracell coupling being less than the intercell coupling,
|𝑣 | < |𝑤 |. In such a state the ends of the chains become increasingly isolated from the bulk of
the system, given that the interchain rung coupling (𝛼,𝛽) remains small relative to the chain
couplings, i.e. 𝛼,𝛽 < |𝑤 | − |𝑣 |.

One of the defining characteristics of the topological insulator phase is the emergence
of zero energy edge state modes in the topological sector protected by symmetries. These
modes will be degenerate due to the chiral symmetry. We will first consider the chiral
symmetry classes AIII, BDI and CII, and then look at the BdG classes DIII and CI. We will
examine the energy spectrum, using exact diagonalization techniques, of each class to see
these zero energy modes emerge in the topological phase.
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5.0.1 AIII, BDI, and CII class models

In this section we will examine the energy spectrums for the 𝐶1 chiral classes AIII, BDI, and
CII, Fig. 4.1(a). These classes have similar characteristics in terms of their topological index
(Z) and winding number.

The minimal Hamiltonian �̂�1 for these models is given by,

�̂�1 = �̂�0 + �̂�1 (5.1)

where �̂�0 represents the Hamiltonians (Eq. (4.3)) for the uncoupled AIII chains (SSH model
with complex hoppings). We reiterate it here for clarity,

�̂�0 = 𝑣

𝑁∑
𝑛=1

𝑐†𝐴𝑛𝑐𝐵𝑛 +𝑤
𝑁−1∑
𝑛=1

𝑐†𝐵𝑛𝑐𝐴𝑛+1 + ℎ.𝑐. (5.2)

The interchain Hamiltonian, �̂�1, are given as,

�̂�1 = 𝛼
𝑁−1∑
𝑛

(𝑐†𝐴,1,𝑛𝑐𝐵,2,𝑛 + 𝑐
†
𝐴,2,𝑛𝑐𝐵,1,𝑛 + 𝑐

†
𝐵,1,𝑛𝑐𝐴,2,𝑛+1 + 𝑐†𝐵,2,𝑛𝑐𝐴,1,𝑛+1)+ ℎ.𝑐. (5.3)

Note that �̂�1 is not the most general Hamiltonian that could be written here and adiditional
symmetry compatible terms could be added. For convenience we parameterize the chain cou-
plings by defining 𝑣 = (1+ 𝜖)𝑒 𝑖𝛿1 and 𝑤 = (1− 𝜖)𝑒 𝑖𝛿2 , where 𝜖 is the variable parameterization
factor that causes the phase to change and 𝛿1,2 is valued so 𝑣 and 𝑤 are complex.

Due to the BDI, CII, and AIII class models having the same Hamiltonian structure we
can trivially parameterize the value of the interchain rung couplings which distinguish each
class from the others, such that 𝛼→ |𝛼 |𝑒 𝑖𝜃. The parameter 𝜃 is adjusted to give the necessary
value for each class model. In this way we can move between the classes in an easy manner.
It is trivial to show that if 𝛼 is real (𝜃 = 0,𝜋) the Hamiltonian is 𝑇+ and 𝑃+ symmetric and
is therefore within the BDI universality class. If 𝛼 is imaginary (𝜃 = 𝜋/2) the Hamiltonian
conforms to the 𝑇− and 𝑃− compliant and thus is CII classed. Lastly if 𝛼 is complex (i.e.
𝜃 ≠ {0,𝜋,𝜋/2}) the Hamiltonian is in the AIII class with just chiral symmetry.

We will see that the spectrums for these classes are very similar, all showing the same
features including fully gapped trivial states (𝜖 > 0, |𝑣 | > |𝑤 |) and zero modes in the
topological phase (𝜖 < 0, |𝑣 | < |𝑤 |).

The transformation of �̂�1 to momentum space gives the matrix,

�̂�1(𝑘) =
©«

0 0 𝑥 𝑎

0 0 𝑏∗ 𝑦

𝑥∗ 𝑏 0 0
𝑎∗ 𝑦∗ 0 0

ª®®®®¬
(5.4)



43

where,

𝑥 = 𝑣+𝑤𝑒 𝑖𝑘 (5.5a)
𝑦 = 𝑣∗+𝑤∗𝑒 𝑖𝑘 (5.5b)
𝑎 = 𝛼+𝛼∗𝑒−𝑖𝑘 (5.5c)
𝑏 = 𝛼∗+𝛼𝑒 𝑖𝑘 (5.5d)

The dispersion relation is then given by the general form equation (4.23), where 𝜏 = 𝛼+𝛼∗𝑒−𝑖𝑘

and 𝜔 = 𝛼∗+𝛼𝑒 𝑖𝑘 .
We will show the specific band structures of each of our models and demonstrate the

properties pointed out in the previous chapter. As we have parameterized the interchain
coupling in such a way moving through the complex plane, we will examine the BDI (real)
model first, followed by the AIII (complex) model, and lastly the CII (imaginary) model. We
present the band spectra for topological phase of each model. We will also show the energy
spectrums, demonstrating the trivial and topological phases arising as the relative strengths
of the chain hoppings are varied.

BDI class model

From the Hamiltonian matrix (5.4), we can calculate the dispersion relation numerically
using exact diagonalization and analytically for this specific BDI model, Eq. (5.1). Unlike
the band spectrum of the generic model, Fig. 4.2, our specific model hosts degeneracies in
the subbands. These bands are gapped with crossings occur at the Brillouin zone terminal
points 𝑘 = ±𝜋.

As stated previously one of the indicative features of topological insulators is zero energy
edge states in the topological phase. The lower and upper bands are fully gapped in the
trivial phase and there are zero energy modes (in the middle of the gap) hosted in the
topological phase (|𝑣 | < |𝑤 |). We will see these zero energy modes are 4-fold degenerate,
and correspond to the four possible edge states, just as we saw in the SSH model. We will
derive the symmetry properties of these edge states in the next chapter. Figure 5.2 shows
a BDI classed system with isotropic real valued interchain couplings. The zero energy
states are clearly visible in the 𝜖 < 0 regime. The closing of the gap at 𝜖 = 0 indicates the
system undergoes a quantum phase transition between the trivial and nontrivial phases.
This further indicates the gaps in the band structure would close, similar to the SSH case, for
some expression of the hopping parameters at 𝐸 = 0.

In the case 𝛼 ∼ 1 the zero energy modes are maintained however the band gap closes in
both phase sectors, Fig. 5.3. In the strong coupling case that 𝛼 is large the system transitions
to a full dimer state where the zero energy modes exist through the range of the calculated
spectrum, Fig. 5.4. Once the gap closes in both phases the system transitions to a phase
where the dimers exist on the rungs instead of the chains, explaining why the zero modes
exist throughout the spectrum. This state will be broken (i.e. fully gapped) when the chain
couplings are sufficiently large and are the dominant couplings again. All this amounts to
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Fig. 5.1 Band structure for the BDI class model with isotropic real valued rung couplings
𝛼 = 0.1 with 𝑣 = 0.5 𝑤 = 1.5 where the system is in the topological phase. Analytically
calculated dispersion matches the numerical calculations.

Fig. 5.2 Energy eigenvalue spectrum as a function of dimer parameter 𝜖 for the BDI model
with real valued interchain couplings 𝛼 = 0.1 with 75 unit cells per chain.
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Fig. 5.3 Energy eigenvalue spectrum as a function of dimer parameter 𝜖 for the BDI model
with real valued interchain couplings 𝛼 = 0.8 with 75 unit cells per chain.

Fig. 5.4 Energy eigenvalue spectrum as a function of dimer parameter 𝜖 for the BDI model
with real valued interchain couplings 𝛼 = 2.0 with 75 unit cells per chain.
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shifting the phase transition point. At this interchain coupling strength, the 4-fold degeneracy
is lifted to just a double degeneracy at zero energy throughout the spectrum. These results
sufficiently demonstrate the strong interchain coupling regime forces a phase transition
which may or not be topological. The basis for calculating the combined winding number
is no longer valid. We have presented these results for completeness and clarity but will
refrain in the remaining classes as they would return the same physics.

We note that the complex phase of 𝑣 and 𝑤 has little effect on the energy spectrum. The
significant and defining factor, as we have definitively shown, is the relative strengths of
these couplings.

AIII class model

Setting the interchain rung coupling to a complex value brings the model into the AIII
class, we choose to 𝜃 = 𝜋/4. The dispersion spectra, Fig. 5.5, indicates an insulator state as
there is a gap separating the upper and lower bands. The upper bands and lower bands
have degenerate points for 𝑘 = ±𝜋. We will see that all of the dispersion spectra share this
property,

Fig. 5.5 Band structure for the AIII model with isotropic complex valued rung couplings
𝛼 = 0.1 with 𝑣 = 0.5, 𝑤 = 1.5. Deep in the topological phase 𝑣 < 𝑤. Analytically calculated
dispersion matches the numerical calculations.
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Fig. 5.6 Energy eigenvalue spectrum as a function of dimer parameter 𝜖 for the AIII model
with complex valued interchain couplings 𝛼 = 0.1+0.1𝑗 with 75 unit cells per chain.

The spectrum, Fig. 5.6, clearly shows the upper and lower energy bands separated by a
gap and the phase transition point at 𝜖 = 0. The trivial phase (|𝑣 | > |𝑤 |) is characterized by a
full gap with no zero energy states in the gap. As the anistropy parameter 𝜖 becomes negative
(|𝑣 | < |𝑤 |) the system undergoes a quantum phase transition to the topological phase, which
is symmetry protected in this case. We will cover these topological characteristics in later
sections. This same spectrum profile should appear the BDI and CII classed models.

CII class model

The dispersion plot for the specific CII model, Fig. 5.7, which has imaginary interchain
couplings 𝛼, features multiple degeneracies at the high symmetry points 𝑘 = {0,±𝜋} as a
result of Kramers degeneracy. These characteristics are exactly as described in the generic
CII model from section 4.2.3. The analytical calculations exactly match the numerical results
from exact diagonalization. The degeneracies suggest that there is some nontrivial structure
to the stationary states at these points.

The CII classed model shows similar results to the AIII and BDI classed models in the
previous sections, with the only difference is the imaginary valued rung couplings. Just as
in the BDI case zero energy states appear in the topological phase of 𝜖 < 0 (|𝑣 | < |𝑤 |) and
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Fig. 5.7 Band structure for the CII model with isotropic imaginary valued rung couplings
𝛼 = 0.1𝑗 with 𝑣 = 0.5 and 𝑤 = 1.5. Analytically calculated dispersion matches the numerical
calculations.

Fig. 5.8 Energy eigenvalue spectrum as a function of dimer parameter 𝜖 for the CII model
with imaginary valued interchain couplings 𝛼 = 0.1𝑗 with 75 unit cells per chain.
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are 4-fold degenerate. As stated previously these four modes correspond to the four zero
energy edge states present in the topological phase of the real space system. Due to Kramers
degeneracy these states a two sets of paired eigenstates.

It is quite apparent that the energy eigenvalue spectrums for the AIII, BDI, and CII class
models all look very similar. Given the similarity of these spectra we will show in a later
section that these models are in essence topologically the same, to some degree it is possible
to transition between these models without closing the gap, i.e. without a phase transition.

5.0.2 DIII and CI class models

In this section we will examine the energy and eigenvector spectrums for the BdG chiral
classes DIII and CI which represent the 𝐶2 form of the chiral operator, Fig 4.1(b).

For the DIII and CI models the chiral symmetry operator has the form 𝐶2 = 𝑆𝑧𝜎𝑧 as
shown in the previous sections, that couples 𝐴−𝐴 and 𝐵−𝐵. It is interesting to note that the
simplest lattice configuration would be a regular square ladder however it is more useful
to disregard (i.e. set to zero) this coupling and instead turn on the next-nearest neighbor
interchain couplings. We label these couplings 𝛽, which are isotropic along the length of the
ladder giving the Hamiltonian,

�̂�2 = �̂�0 + �̂�2 (5.6)

where the interchain coupling is given by,

�̂�2 = 𝛽
𝑛−1∑
𝑛

(𝑐†𝐴,1,𝑛𝑐𝐴,2,𝑛+1 + 𝑐†𝐴,2,𝑛𝑐𝐴,1,𝑛+1 + 𝑐†𝐵,1,𝑛𝑐𝐵,2,𝑛+1 + 𝑐†𝐵,2,𝑛𝑐𝐵,1,𝑛+1)+ ℎ.𝑐. (5.7)

Note that �̂�2 is not the most general Hamiltonian that could be written here and more
symmetry compatible terms could be added.

If 𝛽 is imaginary valued the Hamiltonian conforms to the 𝑇− and 𝑃+ symmetries making
it DIII class. Conversely if 𝛽 is real this complies with the CI class adhering to the 𝑇+ and 𝑃−
symmetries. If 𝛽 is any complex number the model is in the AIII class as shown previously.
We refer the reader to the previous section on the AIII model for these results.

The momentum space transformation for this set of classes is given by,

�̂�2(𝑘) =
©«

0 𝑥 𝑎 0
𝑥∗ 0 0 𝑏

𝑎 0 0 𝑦

0 𝑏 𝑦∗ 0

ª®®®®¬
(5.8)

Where the equations for the abbreviations are the same as (5.4), with 𝑎∗ = 𝑎 and 𝑏∗ = 𝑏, and,

𝑎 = 𝑏 = 𝛽𝑒 𝑖𝑘 +𝛽∗𝑒−𝑖𝑘 (5.9)
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This matrix is not easily rearranged into convenient blocks in the current basis. We will show
that the properties of the band structures of our specific models are the same as those of
the generic models in section 4.2.4, however the DIII model spectrum is quite different. The
dispersion relation is identical to the general case, Eq. (4.26), where 𝜏 = 𝜔 = 𝑎.

DIII class model

From equation (5.8) we calculate and show the dispersion relation for our specific DIII model,
Fig. 5.9. The dispersion shows degeneracies at 𝑘 = {0,±𝜋}. This is slightly inconsistent
with the observations made in section 4.2.4. The spectrum shown here is similar to the
CII case above with three degenerate points, which is expected since both classes have 𝑇−
time-reversal symmetry, i.e. Kramers pairing.

Similar to the previous models, the DIII classed model exhibits gapped bands in the
trivial phase (𝜖 > 0) and zero energy modes in the topological sector (𝜖 < 0), Fig. 5.10. The
fully gapped dispersion spectrum indicates an insulator state. As we will show later, CII has
a winding number of 2 and DIII is always 0, which suggests again the band structure doesn’t
say much about the topological index of these models.

These zero energy modes can be gapped by adding a term that respects chiral symmetry
but not time-reversal or particle hole symmetries. This fact suggests these modes are not
protected by chiral symmetry, a fact we will prove in a later section. The previous models
are robust against such chiral perturbations.

CI class model

We can make some interesting observations about the CI class model. A quick glance at a
universality Class and Topology table, Table 2.1, in the lens of topological insulators would
make one think that the CI class wouldn’t host any edge states because it is not topological in
1D. We will find here that this is not the case. This particular model does in fact host edge
states but they are not pinned to zero energy and are not robust against perturbations. One
would think it was only able to host extended states, which turns out not to be the case.

The band spectrum for this model, Fig. 5.11, indicates fully gapped bands. Unlike all
the previous models there are no degenerate points for the upper or lower subbands. This
suggests that symmetric degenerate points are an indicator of some topological features in
the model, as the previous models have.

The CI class which has the same lattice geometry, Fig. 4.1(b), as DIII however with real
valued interchain rung couplings 𝛽. Figure 5.12 shows that energy spectrum of the model
doesn’t host states at zero energy. We know that CI is not topological in 1D so we cannot
expect to see gapless states in what we have been referring to as the topological regime
(𝜖 < 0).

There is still a zero energy point at the dimer limit 𝜖 = −1.0. While there may be a zero
energy state in this limit is it is the dimer limit, this state is not topologically protected and
merely a consequence of the parameter sets. Looking at the spectrum we do see that the
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Fig. 5.9 Band structure for the DIII model with isotropic imaginary valued rung couplings
𝛽 = 0.1𝑗 with 𝑣 = 0.5 and 𝑤 = 1.5, i.e. the topological nontrivial phase. Analytically calculated
dispersion matches the numerical calculations.

Fig. 5.10 Energy eigenvalue spectrum as a function of dimer parameter 𝜖 for the DIII model
with imaginary valued interchain couplings 𝛽 = 0.1𝑗 with 75 unit cells per chain.
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Fig. 5.11 Band structure for the CI model with imaginary valued interchain couplings 𝛽 = 0.1
with 𝑣 = 0.5 and 𝑤 = 1.5.

Fig. 5.12 Energy eigenvalue spectrum as a function of dimer parameter 𝜖 for the CI model
with real valued interchain couplings 𝛽 = 0.1 with 75 unit cells per chain.
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states previously pinned to zero energy have now acquired a gap. Interestingly this gap is
not consistent but changes, greater at some points and smaller at other values of 𝜖.

5.1 Winding numbers revisited

In this section we will discuss the role of the winding number in the combined model. We
consider the model in the topological phase when the interchain rung couplings are smaller
than the gap. We can treat the topological properties of the combined model by considering
the chains as separate such that the total winding number is the sum or difference of the
individual chain indices, i.e. 𝜈𝑡𝑜𝑡 = 𝜈1 ± 𝜈2.

We will examine how this is done for both possible cases, governed by the chiral operator
descriptions 𝐶1 and 𝐶2.

5.1.1 BDI and CII class models

In this subsection we will consider the BDI and CII class models which are characterized by
the chiral operator 𝐶1 which couple 𝐴−𝐵 sites between the chains, Fig. 4.1(a). These classes,
along with AIII, have Z topology categories such that by adding chains the topological index
increases.

In order to maintain the invariant properties of the individual chains the coupling
between the chains 𝛼 is small, compared to the difference between the chain couplings
specifically |𝑣 | − |𝑤 |. If the rung coupling is too large it could close the gap, disrupting the
insulator phase of the model possibly leading to conductive bulk states. Since 𝛼 is small we
can take the total winding number of the coupled system to be the sum of the individual
(decoupled) chains, ie 𝜈𝑡𝑜𝑡 = 𝜈1 + 𝜈2. Since the chains can be considered as separate then the
winding numbers can also be considered as such, from both a mathematical and physical
stance. As we have shown in previous sections a decoupled chain can take the winding
number of 0 for the topologically trivial phase or +1 for the topologically nontrivial phase,
for this chiral operator case. The coupled system is characterized by the phases,

𝜈𝑡𝑜𝑡 =

{
2, if |𝑤/𝑣 | > 1
0, if |𝑤/𝑣 | < 1

(5.10)

This result can be calculated directly from the winding number formula (3.5), and by reading
off the matrix elements in the ℎ̂(𝑘) blocks in the momentum space Hamiltonians. It is also
significant to note that this result is independent of the complex phase of the rung coupling
𝛼, and therefore the AIII, BDI, and CII models will have a winding number of 2 in the
topological phase and an index of 0 in the trivial phase, see Figs. 5.13a, 5.13b, and 5.13c,
respectively.

Equally as important is the implication that these gapped topological phases are equivalent
across classes. We can show that one can take a smooth connected path through the complex
phase space of 𝛼 = |𝛼 |𝑒 𝑖𝜃 from real 𝛼 (BDI) at 𝜃 = 0 to imaginary 𝛼 at 𝜃 = 𝜋/2 (CII) and
complex (AIII) inbetween, and the state will remain topological along the whole path. The
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zero energy edge modes will remain intact as well. We will demonstrate this graphically in
the next chapter.

It is prudent to address a subtlety here about the CII class. The 𝑇− symmetry leads to
Kramers pairs for all states and this doubling causes the winding number to always be
even, so the topological classification becomes 2Z rather than Z, as can be seen in the band
structure. We can therefore say that any odd winding number can never be in the CII class
and any model with an even winding number can be adiabatically deformed to the CII class
without closing the gap.

5.1.2 DIII and CI class models

Turning to the second set of classes characterized by the chiral operator 𝐶2 = 𝑆𝑧𝜎𝑧 . In the
natural basis like sites (𝐴−𝐴, 𝐵− 𝐵) are coupled across the chains and we do this in a
next-nearest neighbor manner, Fig. 4.1(b).

When the interchain coupling |𝛽 | is small, as shown in the previous section, we can
define a total winding number as 𝜈𝑡𝑜𝑡 = 𝜈1 − 𝜈2 = 0 and can be calculated directly. In the DIII
model, similar to the CII model, there is a present 𝑇− symmetry resulting in Kramers pairs.
Despite the winding number always being 0 owing from the different winding numbers on
the top and bottom chains, we can actually define another invariant based on the parity of the
winding number of one of the Kramers pairs [85]. The eigenstates of these weakly coupled
chains are Kramers partners so a Z2 index can be determined by the winding number of one
of the chains alone as follows,

𝑝 = (−1)𝜈𝑆𝑆𝐻 (5.11)

𝜈𝑆𝑆𝐻 =

{
1, if |𝑤/𝑣 | > 1
0, if |𝑤/𝑣 | < 1

(5.12)

The case with 𝑝 = −1 hosts edge states and therefore can be considered a topological phase.
The opposing case of 𝑝 = 1 does not host edge states and is a trivial phase. The existence of
the edge states is not protected by the chiral symmetry in the DIII model, which is in contrast
to the chiral classes AIII, BDI, and CII. We will discuss this result further in a later section and
simply note here that additional symmetries are necessary for this protection. An interesting
property does appear that if the system is in the topological phase, tuning 𝛽 can close the
gap resulting in a phase transition to the trivial phase. However the opposite driving can
not take the system from the trivial phase to the topological one. CI is not topological and
therefore there is nothing to say or present about the properties of its topological invariant.

In the next chapter we will take the models we have built here and examine the
wavefunction spectra for these zero energy modes. The wavefunctions will show the edge
states indicative of topological insulator states, thus completing the picture of these nontrivial
states in ladder models.
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(a) Winding number as a function of the dimer parameter 𝜖 for the BDI combined ladder
model with 𝛼 = 0.1. Winding number 𝜈 = 2 for topological phase 𝜖 < 0 and 𝜈 = 0 for trivial
phase 𝜖 > 0.

(b) Winding number as a function of the dimer parameter 𝜖 for the AIII combined ladder
model with 𝛼 = 0.1𝑒 𝑖𝜋/4. Winding number 𝜈 = 2 for topological phase 𝜖 < 0 and 𝜈 = 0 for
trivial phase 𝜖 > 0.

(c) Winding number as a function of the dimer parameter 𝜖 for the CII combined ladder
model with 𝛼 = 0.1𝑗. Winding number 𝜈 = 2 for topological phase 𝜖 < 0 and 𝜈 = 0 for trivial
phase 𝜖 > 0.

Fig. 5.13 Winding numbers for chiral classes BDI (a), AIII (b), and CII (c).





Chapter 6

Edge states

In this chapter we will examine the zero energy edge states of the combined model and show
the specific properties of the edge states, demonstrating the model symmetries are encoded
in the properties of these states. It can also be shown that the edge states of the chiral classes
(BDI, AIII, CII) can be connected along a continuous path without closing the gap. We will
look at the numerical results and follow up with the analytical calculations, and discuss
important general properties of these edge states as they pertain to our model. The literature
typically only discusses these properties in reference to the SSH model, it is pertinent that
we present and extend these considerations to our multi-chain models in a general way.

6.1 Edge states and their properties

We have shown our models in the classes AIII, BDI, and CII display zero energy modes and
we will show that these correspond to exponentially localized edge states associated with the
topological insulator phase. The BdG classes DIII and CI also host exponentially localized
edge states however only the DIII class model has symmetry protected edge states. The edge
states of the SSH model are localized on the A-sublattice on the left edge and B-sublattice on
the right edge. We will show that this property continues to be true in the combined model.
This fact is obvious for the 𝐶1 cases where both end sites are A-sublattice on the left and B on
the right. However the 𝐶2 case is more subtle since the ’chiral’ sublattice has A’ and B’ end
sites on each edge.

6.1.1 BDI class models

In this section we present and examine the zero energy edge state wavefunctions of the BDI
class model. We recall the BDI Hamiltonian Eq. (5.1) where the interchain coupling 𝛼 is real
and utilize exact diagonalization routines to calculate the eigenvalues and eigenvectors for
an 𝑁 = 10 size chain.

For clarity we select the four degenerate eigensets that corresponds to one of these zero
energy states and plot the eigenvector wavefunctions as a function of the unit cell and
sublattice. This tells us the coefficient probabilities associated with each sublattice (A and B).
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Fig. 6.1 Full eigenvector wavefunctions as a function of lattice site for BDI system for all four
zero energy modes. Parameters are 𝑣 = 0.5, 𝑤 = 1.5, 𝛼 = 0.1, 10 cells are represented on this
graph, with data for both the top (blue) and bottom (orange) legs.

The wavefunctions, Fig. 6.1, show clearly exponentially localized states at the edges of the
system in all four states. We have chosen a parameter set slightly perturbed away from the
dimer limit in order to demonstrate the full wavefunction decaying into the bulk. As stated
previously, the Numpy routines return linear combinations of the eigenstates such that we
see mixtures of several states in each wavefunction. An isolated edge state can be observed
by taking linear combinations of these four states such that only a state on the end of one
chain is present. However we find it more visually instructive to present the near dimerized
chain limits to see the edges decay into the bulk, similar to the SSH model (Figs. 2.5(a),(b)).
Along with the previous evidence of quantized winding number, zero energy modes, and
these edge states we can conclude definitively this is a topological insulator phase.

The eigenvectors of a Hamiltonian matrix are orthogonal as long as their eigenvalues
are distinct. However even if they are degenerate one can always find an orthogonal basis.
In the case of our models the calculations done here are for a finite size system which
experience finite size effects resulting in the eigenvalues not being exactly degenerate. The
finite size of the system results in hybridization of the left and right edge states which lifts
the degeneracies. The Numpy eigendecomposition routines give orthogonal eigenvectors
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Fig. 6.2 Full eigenvector wavefunctions as a function of lattice site for CII system for all four
zero energy modes. Parameters are 𝑣 = 0.5, 𝑤 = 1.5, 𝛼 = 0.1𝑗, 10 cells are represented on this
graph, with data for both the top (blue) and bottom (orange) chains.

anyway. One can find combinations of eigenvectors that aren’t as well however one would
typically not do such a thing. The wavefunctions presented are orthogonal to each other.

We note the system size (10 cells) is very small and thus the wavefunction suffers
from finite size effects, notably hybridization of the edge states. While larger systems
would be possible, using the correct numerical routines, we believe the characteristic details
(exponentially decaying edge states) would be obscured in the larger size limit.

The wavefunction shows the transition between amplitudes hosted exclusively on the
A-sublattices on the left edge and the B-sublattices hosted on the right edge. We use the
same parameters for all of the eigenvalue wavefunctions and eigenvector wavefunctions for
consistency but more importantly to do a comparative analysis of each chiral class. In the
full chain dimer limit (𝑣 = 0), we would have near isolated ends on each chain.

6.1.2 CII class models

For this model class the edge states are clearly visible in the topological phase. The
wavefunctions, Fig. 6.2, are remarkably similar to the BDI class model. It is easy to see
the symmetric nature of the edge states in all cases, whether symmetric or antisymmetric
combinations of the hybridized edge states, (a) and (d), (b) and (c). We see the transition
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Fig. 6.3 Full eigenvector wavefunctions as a function of lattice site for DIII system for all four
zero energy modes. Parameters are 𝑣 = 0.5, 𝑤 = 1.5, 𝛼 = 0.1𝑗, 10 cells are represented on this
graph, with data for both the top (blue) and bottom (orange) chains.

between the amplitudes present exclusively on the A-sites on the left edge and B-sites on the
right edge. Unfortunately the time-reversal properties of the Kramers pairs doesn’t appear
in these plots because of how the Numpy routines calculate the eigensets, they are not pure
eigenstates but linear combinations of left and right edge states due to hybridization, hence
contributions on both chains.

6.1.3 DIII class models

Similar to the previous classes, the eigenvector wavefunctions, Figs. 6.3, shows states localized
at the edges. The wavefunctions show symmetric and antisymmetric linear combinations
from both edges, on both chains. The shift in amplitudes from the natural(chiral) sublattices
A(A’,B’) on the left edge to the B(A’,B’) sublattices on the right edge is apparent.

Similar to the CII case the Kramers’ pairs, although present are not visible in the
wavefunctions due to the linear combinations of multiple eigenstates. The symmetry
properties of the model do not come out in the spectra. The (a)-(d), (b)-(c) symmetric and
antisymmetric state pairing is again present in these spectra.



6.1 Edge states and their properties 61

Fig. 6.4 Full eigenvector wavefunctions as a function of lattice site for CI system for all four
zero energy modes. Parameters are 𝑣 = 0.5, 𝑤 = 1.5, 𝛼 = 0.1, 10 cells are represented on this
graph, with data for both the top (blue) and bottom (orange) chains.

6.1.4 CI class models

Despite this class not being topological, exponentially localized edge states still arise in the
’topological’ parameter regime, Fig. 6.4. However as we noted previously these states have
no topological protection, they are merely a consequence of the parameters. Perturbing away
from a purely real interchain coupling will destroy this state. We see the symmetric and
antisymmetric pairing of states, (a) and (b), (c) and (d). The similarity of these spectra to the
previous classes lends evidence to the fact the symmetry properties of the edge states cannot
be seen in the spectra of the states.

6.1.5 Edge state calculation for AIII, BDI, and CII class models

In this subsection we will perform an analytical derivation to calculate the edge states in
order to demonstrate the symmetry properties of these states and draw conclusions about
the nature of these states. We will consider the chiral classes defined by the chiral symmetry
operator 𝐶1 = 𝑆𝑧𝜎0, the chains are coupled in the BDI and CII configuration, Fig. 4.1(a). We
will show that for this model the left edge states are localized on the A-sublattices (i.e. the
amplitude is zero on the B-sublattices). We will also show that one can smoothly deform
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through all three classes (AIII, BDI, CII) without closing the gap and the zero energy edge
states will remain intact.

The minimal lattice model can be described by a Hamiltonian giving the chain components
�̂�0 and a Hamiltonian giving the rung components �̂�1. Together this gives,

�̂�1 = �̂�0 + �̂�1 (6.1)

where �̂�0 represents the chain terms and is given by,

�̂�0 =

𝑁−1∑
𝑛𝜂

(𝑣𝑐†𝐴𝑛𝜂𝑐𝐵𝑛𝜂+𝑤𝑐
†
𝐵𝑛𝜂𝑐𝐴𝑛+1𝜂)+ ℎ.𝑐. (6.2)

where 𝜂 = 1,2 denotes the top and bottom chains, respectively, and n is the cell index. The
intra- and intercell couplings along the chains 𝑣 and 𝑤 are generically complex. The general
AIII Hamiltonian is written as,

�̂�1 =

𝑁−1∑
𝑛

𝑐†𝐴𝑛[ ®𝛼 · ®𝜎]𝑐𝐵𝑛 + 𝑐†𝐵𝑛[ ®𝜔 · ®𝜎]𝑐𝐴(𝑛+1)+ ℎ.𝑐.

®𝛼 = {𝛼𝑥 ,𝛼𝑦 ,0}, ®𝜔 = {𝜔𝑥 ,𝜔𝑦 ,0}
(6.3)

where ®𝛼 represents the rung couplings and ®𝜎 is the set of Pauli matrices. These act in the
chain basis. Setting 𝛼 couplings to be real gives the BDI topological class and imaginary
couplings corresponds to the CII class.

The minimal model, Eq. (6.3), we are interested in can be obtained by setting 𝛼𝑥 = 𝜔𝑥 = 𝛼,
𝛼𝑦 = 𝜔𝑦 = 0. In this case the interchain terms are given by,

�̂�1 = 𝛼
𝑁−1∑
𝑛𝜂

(𝑐†𝐴𝑛𝜂𝑐𝐵𝑛−𝜂+ 𝑐
†
𝐵𝑛𝜂𝑐𝐴(𝑛+1)−𝜂)+ ℎ.𝑐. (6.4)

where the strength of this interchain coupling is given by 𝛼 and is uniform along the length
of the ladder. As we have defined previously, when 𝛼 is real this Hamiltonian is symmetric
under 𝑇+ and 𝑃+ so it is in the BDI class. If 𝛼 is purely imaginary it adheres to 𝑇− and 𝑃− the
Hamiltonian is CII classed. For any case where 𝛼 is complex the Hamiltonian only has chiral
symmetry and is therefore AIII classed.

We derive the equations of motions, (see Appendix C for details), where the terms
decouple nicely, as is expected, and can be handled separately. The equations of motion of
these zero energy eigenstates are given by,

|𝑛𝐵1⟩ : 𝑎𝑛1𝑣
∗+ 𝑎𝑛+1,1𝑤+ 𝑎𝑛+1,2𝛼+ 𝑎𝑛2𝛼

∗ = 0
|𝑛𝐵2⟩ : 𝑎𝑛2𝑣+ 𝑎𝑛+1,2𝑤

∗+ 𝑎𝑛+1,1𝛼+ 𝑎𝑛1𝛼
∗ = 0

|𝑛𝐴1⟩ : 𝑏𝑛1𝑣+ 𝑏𝑛−1,1𝑤
∗+ 𝑏𝑛2𝛼+ 𝑏𝑛−1,2𝛼

∗ = 0
|𝑛𝐴2⟩ : 𝑏𝑛2𝑣

∗+ 𝑏𝑛−1,2𝑤+ 𝑏𝑛1𝛼+ 𝑏𝑛−1,1𝛼
∗ = 0

(6.5)
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To be concrete in this derivation we will consider only the left edge of a semi-infinite ladder.
Determining the right edge would give an analogous calculation and conclusions. The
general form of the wavefunction on a given site,

𝜓𝑛 =
𝑁∑

𝑛,𝑖=1,2
𝜗𝑖(−𝜆)𝑛 ®𝑢𝑖 (6.6)

consists of the linear combination of the amplitudes on both chains. Here 𝜗1,2 ∈ C represent
the prefactor of each component, 𝜆 is the eigenvalue of the recurrence matrix, Eq. (6.11), and
®𝑢𝑖 is the wavefunction component. The most general form would be a four component sum
however as we have restricted the calculation to the left edge (two sites), the sum is only over
two elements.

We will derive the eigenvalue and eigenvector components of the recurrence matrix to
construct our analytical edge state wavefunction in the following paragraphs. For the left
edge in the thermodynamic limit we expect states to be only on the A-sublattices such that
all 𝑏𝑛 coefficients should be 0 for all n. This gives us the boundary condition 𝑏0 = 0. So we
work with the |𝑛𝐵,1⟩, |𝑛𝐵,2⟩ sets. The A-site coefficients (𝑎𝑛) need to decay into the bulk
otherwise the state is unnormalizable. Here we will solve for only the A-site coefficients (i.e.
amplitudes). The A-site coefficients should decay from the left edge to zero on the right edge.
Equally the B-site amplitudes decay from the right edge to the left edge.

The solutions derived here, especially for the wavefunction of the A-sublattices, will have
zero amplitudes for all B-sublattices since we are only solving for the A-sublattices using the
assertion that in the thermodynamic limit all B-sublattices on the left side are 0. We could do
this derivation for the B-sites for completeness but the wavefunction should be identical, just
from the right edge.

The next steps are to solve the recurrence relation to gather the eigensets to build the
wavefunctions. Collecting like cell terms and expressing as a matrix,(

𝑤 𝛼

𝛼 𝑤∗

) (
𝑎𝑛+1,1
𝑎𝑛+1,2

)
= −

(
𝑣∗ 𝛼∗

𝛼∗ 𝑣

) (
𝑎𝑛,1
𝑎𝑛,2

)
(6.7)

Rearranging and simplifying, C represents the 2x2 matrix on the left side, D the same on the
right side,

®𝑎𝑛+1 = −𝐶−1𝐷®𝑎𝑛 (6.8)

We can define the recurrence matrix T, by combining C and D matrices,

®𝑎𝑛+1 = −𝑇 ®𝑎𝑛 (6.9)

where,

𝑇 =
1

|𝑤 |2 −𝛼2

(
𝑤∗𝑣∗− |𝛼 |2 𝑤∗𝛼∗−𝛼𝑣

𝑤𝛼∗−𝑣∗𝛼 𝑤𝑣− |𝛼 |2
)

(6.10)
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Solving for the eigenvalues,

𝜆1,2 =
−(2|𝛼 |2 −𝑤∗𝑣∗−𝑤𝑣)± 𝑖

√
|Ω|

2 (6.11)

where Ω is defined,

Ω= −4𝑤∗𝑣∗ |𝛼 |2 −4𝑤𝑣 |𝛼 |2 +(𝑤∗𝑣∗)2 +(𝑤𝑣)2 −2|𝑤 |2 |𝑣 |2 +4|𝑤 |2𝛼∗2 +4|𝑣 |2𝛼2 (6.12)

To be complete, we define the decay length and oscillating frequency of the edge state
wavefunction by taking the real 𝑅𝑒(𝛿) and imaginary 𝐼𝑚(𝛿) parts, respectively, of the
logarithm of the eigenvalue, 𝛿 = 𝑙𝑛(𝜆1,2).

Additionally we make the assertion that 𝜆1 = 𝜆∗
2 at the ’high symmetry points’ (i.e. time-

reversal symmetry points) where 𝛼 is purely real or imaginary, such that the wavefunctions
of these states carry symmetry properties. For this assertion to be true the sign of the square
root term needs to change and as none of the terms under the square root change this is
indicating that the sign of the square root must always be negative at the time-reversal
symmetry points. The eigenvectors ®𝑢1,2 of the transfer matrix are derived simply,

®𝑢1,2 =
(
1 𝑤𝑣−𝑤∗𝑣∗±

√
|Ω|

2(𝑤∗𝛼∗−𝛼𝑣)

)
(6.13)

Now that we have the necessary eigenvalues and eigenvectors we return to equation (6.6)
and expand,

𝜓𝐴,𝑛 =

(
𝑎𝑛,1
𝑎𝑛,2

)
= 𝜗1(−𝜆1)𝑛 ®𝑢1 +𝜗2(−𝜆2)𝑛 ®𝑢2 (6.14)

These eigenvectors represent the edge states present on the left edge and as they are
degenerate we can take any linear combination. However the choice of a symmetric and
antisymmetric combination is useful to demonstrate the properties of the edge states.

In order to do that consider 𝜗1 = ±𝜗2 and have the following definitions,

𝜓+ ⇒ 𝜗1 = 𝜗2

𝜓− ⇒ 𝜗1 = −𝜗2
(6.15)

We refine the equation to a simpler notation where the sign prefactors have been incorporated
into the eigenvalues (𝜆𝑖) and the eigenvectors ®𝑢1,2 have the basis (𝐴1, 𝐴2),

®Ψ± = (𝜆1)𝑛 ®𝑢1 ±(𝜆2)𝑛 ®𝑢2 (6.16)

The edge states are normalizable if they decay (from the left in this case) into the bulk,
i.e. |𝜆1,2 | < 1, which corresponds to the topological phase as demonstrated in the previous
sections.

The symmetry properties of the model must be reflected in the properties of the edge
states wave functions. We can demonstrate these properties analytically by studying how
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they transform under the action of time-reversal symmetry. We propose the conjectures that
for the BDI class, application of the time-reversal symmetry will transform the state back to
itself, i.e. the wavefunctions is its own time-reversed partner. For the CII class, to comply
with Kramers theorem, the state will transform to its counterpart with a ±1 prefactor. For
some arbitrary state 𝜙±,

𝐵𝐷𝐼 : 𝑇+𝜙± ∝ 𝜙± 𝑇+ = 𝑆0𝜎𝑥𝐾, (6.17)
𝐶𝐼𝐼 : 𝑇−𝜙± ∝ 𝜙∓ 𝑇− = 𝑖𝑆0𝜎𝑦𝐾 (6.18)

From figure 6.1 we know these two edge states are degenerate one can take any linear
combination, however our choice of Ψ± is useful to demonstrate the symmetry properties of
these edge states.

So then if we have the state Ψ=

(
𝑎

𝑏

)
,

𝑇+Ψ= 𝜎0𝑆𝑥𝐾

(
𝑎

𝑏

)
=

(
𝑏∗

𝑎∗

)
, 𝑇−Ψ= 𝑖𝜎0𝑆𝑦𝐾

(
𝑎

𝑏

)
=

(
−𝑏∗
𝑎∗

)
(6.19)

where 𝜎0 applies to the A, B-sublattice so nothing changes there. In the 𝑇+ (BDI) case we
would need 𝑎 = 𝑏∗. In the 𝑇− case then we need 𝑎 = −𝑏. Let us demonstrate these expressions
explicitly using the eigenvectors ®𝑢1,2,

𝑇+®𝑢1 = 𝑆0𝜎𝑥𝐾

(
1

𝑤∗𝑣∗−𝑤𝑣+𝑖
√

|Ω|
2(𝑣∗𝑎∗−𝑤𝑎)

)
(6.20)

=

(
𝑤𝑣−𝑤∗𝑣∗−𝑖

√
|Ω|

2(𝑣𝑎−𝑤∗𝑎∗)
1

)
= ®𝑢2 (6.21)

It is trivial to check that 𝑇+𝜙− = −𝜙−. Thusly 𝑇+𝜙± = ±𝜙± which is consistent with the
aforementioned BDI conjectures. By acting with 𝑇− on the eigenstates ®𝑢1 and ®𝑢2 we get,

𝑇−®𝑢1 = 𝑖𝑆0𝜎𝑦𝐾

(
1

𝑤∗𝑣∗−𝑤𝑣+𝑖
√

|Ω|
2(𝑣∗𝑎∗−𝑤𝑎)

)
(6.22)

=

(
𝑤𝑣−𝑤∗𝑣∗−𝑖

√
|Ω|

2(𝑣𝑎−𝑤∗𝑎∗)
−1

)
= −®𝑢2 (6.23)

Thus our conjectures hold for the CII model since operating on one of the eigenstates gives a
minus sign needed to transform 𝜙+ to 𝜙−. This follows from the fact that operating twice on
the state should return the negative of the original state. Therefore the characteristic feature
of the CII class model is that the edge states can be chosen to form a Kramers doublet. If
the time-reversal symmetry is broken the eigenvectors are not related to each other by any
symmetry transformation.



66 Edge states

Fig. 6.5 Amplitude and absolute value of phase for the eigenvalues of transfer matrix 𝜆1
and 𝜆2 defined in equation (6.11) with 𝑣 = 0.2, 𝑤 = 1.8, and 𝛼 = 0.1𝑒 𝑖𝜃. The phase 𝜃 of the
interchain hopping parameterizes the path between two topological classes BDI and CII.
Blue circles is 𝜆1 and red triangles is 𝜆2.

For generic complex 𝛼, which corresponds to the AIII universality class, there is no
particular relationship between 𝜆1 and 𝜆2 - meaning the amplitude and the phase will be
different. So there are two edge states with slightly different decay lengths and oscillation
wavevectors. From here we can show that one can connect BDI and CII through AIII
adiabatically via the eigenvalues of the transfer matrix, Fig. 6.5.

If one goes to one of the high symmetry points, i.e. 𝛼 is real which is the BDI class or 𝛼 is
imaginary which corresponds to the CII class we see that 𝜆1 = 𝜆∗

2. The relationship between
the values of the 𝜆1 and 𝜆2 highlights the importance of time-reversal symmetry. For BDI
each edge state is its own time-reversal partner,

𝑇+𝜙± = ±𝜙± (6.24)

For CII we see the inherent Kramers doublet,

𝑇−𝜙± = ±𝜙∓ (6.25)

The linear combination of these edge states is a general result that is valid for any complex
𝛼. One can take a continuous path from BDI to CII through AIII. The only change is the



6.1 Edge states and their properties 67

properties of the edge states. The conclusion is that if the universality class has time-reversal
symmetry, the edge will demonstrate this.

Strong rung coupling limit

Let us now briefly examine the strong interchain (rung) coupling limit. Increasing the
strength of this coupling may close the gap which causes the system to undergo a phase
transition to a different topological phase where the winding number may be different. In
the BDI case, where 𝛼 is real the gap closes when 𝑎 = ±(|𝑤 | − |𝑣 |)/2, i.e. when the coupling
becomes of the order of the gap of the uncoupled chain. The winding number changes by
1 at this transition point, as was seen in the previous chapter, since one set of edge states
is lost. When 𝛼 is imaginary, the CII case, the winding number is only determined by the
ratio |𝑣/𝑤 |. So the strongly coupled physics matches that of the weakly coupled chains, i.e.
|𝑣/𝑤 | < 1 the winding number 𝜈 = 2 and when |𝑣/𝑤 | > 1 then 𝜈 = 0.

6.1.6 Edge state calculation for DIII and CI class models

We will now turn to the second form of the chiral symmetry operator 𝐶2 = 𝑆𝑧𝜎𝑧 . This case
gives couplings between A’ and B’. The easiest lattice to make would be a standard ladder
however we found it more useful to have next-nearest neighbor connections and consider
the direct cell couplings between the chains to be zero, See Fig. 4.1(b).

A minimal model can be written,

�̂�2 = �̂�0 + �̂�2 (6.26)

where �̂�0 is the Hamiltonian for the AIII chains given by equation (5.2) and �̂�2 represents
the rung couplings given by equation (5.7). We restate it in its general form here for clarity,

�̂�2 =

𝑁∑
𝑛

𝑐†𝐴,𝑛[𝛽𝐴 · 𝜎]𝑐𝐴,𝑛+1 + 𝑐†𝐵,𝑛[𝛽𝐵 · 𝜎]𝑐𝐵,𝑛+1 + 𝑐†𝐴,𝑛[𝛿𝐴 · 𝜎]𝑐𝐴,𝑛 + 𝑐
†
𝐵,𝑛[𝛿𝐵 ¤𝜎]𝑐𝐵,𝑛 + ℎ.𝑐.

𝛽 = {𝛽𝐴/𝐵,𝑥 ,𝛽𝐴/𝐵,𝑦 ,0}, 𝛿 = {𝛿𝐴/𝐵,𝑥 , 𝛿𝐴/𝐵,𝑦 ,0}
(6.27)

We can obtain the minimal model, Eq. (6.27), by setting 𝛿𝐴/𝐵 = 0. The case of imaginary
couplings in 𝛽𝐴/𝐵 corresponds to the DIII class and real couplings gives a Hamiltonian in the
CI class.

As stated previously, when the interchain coupling 𝛽 is imaginary the model is symmetric
under 𝑇− and 𝑃+ operators which leads to the DIII universality class; if 𝛽 is real the model
has 𝑇+ and 𝑃− symmetry and therefore falls in the CI class. If 𝛽 is complex the model is in
the AIII class, as shown in the previous sections. We clarify again here that this Hamiltonian
is not the most general one could write, additional symmetrically compatible terms could
be added. The existence of zero energy edge states of the DIII model are not protected
by chiral symmetry and additional symmetries are needed, as will show in the following
derivation. See [83] for a more rigorous and elegant calculation of this derivation. We will
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find the recurrence relation and edge states using the same method as the previous section.
From equation (6.26) and a general wavefunction ansatz we obtain the equations of motion,
Eqs. (6.28), for the 𝐶2 model types, i.e. DIII and CI class models. We leave the details of the
derivation in Appendix C.

|𝑛𝐴,1⟩ : 𝑏𝑛,1𝑣+ 𝑏𝑛−1,1𝑤
∗+ 𝑎𝑛+1,2𝛽+ 𝑎𝑛−1,2𝛽

∗ = 𝜖 |𝑛𝐴,1⟩
|𝑛𝐴,2⟩ : 𝑏𝑛,2𝑣

∗+ 𝑏𝑛−1,2𝑤+ 𝑎𝑛+1,1𝛽+ 𝑎𝑛−1,1𝛽
∗ = 𝜖 |𝑛𝐴,2⟩

|𝑛𝐵,1⟩ : 𝑎𝑛,1𝑣
∗+ 𝑎𝑛+1,1𝑤+ 𝑏𝑛+1,2𝛽+ 𝑏𝑛−1,2𝛽

∗ = 𝜖 |𝑛𝐵,1⟩
|𝑛𝐵,2⟩ : 𝑎𝑛,2𝑣+ 𝑎𝑛+1,2𝑤

∗+ 𝑏𝑛+1,1𝛽+ 𝑏𝑛−1,1𝛽
∗ = 𝜖 |𝑛𝐵,2⟩

(6.28)

Unlike the previous BDI/CII case, these equations do not decouple nicely if we focus
on the natural A-B-sublattice and zero energy. However they decouple in the 𝐶2 basis, i.e.
in the chiral basis where 𝐴→ 𝐴

′, 𝐵→ 𝐵
′ on the top chain and on the bottom chain 𝐴→ 𝐵

′,
𝐵→ 𝐴

′ , see Fig. 4.1b. We convert the prefactors in equations (6.28) accordingly and we come
to a set of decoupled equations at zero energy,

𝑎′𝑛,1𝑣
∗+ 𝑎′𝑛+1,1𝑤+ 𝑎′𝑛+1,2𝛽+ 𝑎

′
𝑛−1,2𝛽

∗ = 0

𝑎′𝑛,2𝑣
∗+ 𝑎′𝑛−1,2𝑤+ 𝑎′𝑛+1,1𝛽+ 𝑎

′
𝑛−1,1𝛽

∗ = 0
(6.29)

𝑏′𝑛,2𝑣+ 𝑏′𝑛+1,2𝑤
∗+ 𝑏′𝑛+1,1𝛽+ 𝑏

′
𝑛−1,1𝛽

∗ = 0

𝑏′𝑛,1𝑣+ 𝑏
′
𝑛−1,1𝑤

∗+ 𝑏′𝑛+1,2𝛽+ 𝑏
′
𝑛−1,2𝛽

∗ = 0
(6.30)

If we think about the state vector on cell n being of the form Ψ𝑇
𝑛 =

(
𝑎′
𝑛,1 𝑎′

𝑛,2 𝑏′
𝑛,1 𝑏′

𝑛,2

)
and if we expect the solution to be in the form of plane waves then we can take the state at
cell 0 and then apply an ’evolution’ parameter that will give us the amplitude at any cell in
the system.

Thus we can define the following ansatz,

Ψ𝑛 =Ψ0𝑒
𝑖𝜆𝑛 Ψ𝑛 =

©«
𝑎′
𝑛,1
𝑎′
𝑛,2
𝑏′
𝑛,1
𝑏′
𝑛,2

ª®®®®¬
Ψ0 =

©«
𝑎′0,1
𝑎′0,2
𝑏′0,1
𝑏′0,2

ª®®®®¬
(6.31)

where the exponential 𝑒 𝑖𝜆𝑛 is the decay factor and 𝜆 is the decay rate which is essentially the
eigenvalues of the transfer matrix. If we break the vectors down further into the component
sets we are interested in,

Ψ𝑛 →Ψ
(1)
𝑛 =

(
𝑎′
𝑛,1
𝑎′
𝑛,2

)
Ψ

(2)
𝑛 =

(
𝑏′
𝑛,2
𝑏′
𝑛,1

)
(6.32)

We can analyze two components of the edge state wavefunction rather than four as these
properties will be mimiced in the other Ψ vector.

If we define 𝑍 = 𝑒 𝑖𝜆 then we can propogate our equations as above. We take the first set
of equations (6.29) and derive the recurrence relation,
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(
(𝑣∗+𝑤𝑍) (𝛽𝑍+ 𝛽∗/𝑍)
(𝛽𝑍+ 𝛽∗/𝑍) (𝑣∗+𝑤/𝑍)

) (
𝑎′
𝑛,1
𝑎′
𝑛,2

)
=

(
0
0

)
(6.33)

which we can write in the compact form,

𝑀1Ψ
1 = 0 (6.34)

Solving for the determinant with the condition 𝑑𝑒𝑡𝑀1 = 0 we can obtain the allowed values
for Z,

𝑣∗2 + 𝑤𝑣
∗

𝑍
+𝑤𝑣∗𝑍−(𝛽𝑍)2 −2|𝛽 |2 −

𝛽∗2

𝑍2 = 0 (6.35)

With some working the values for Z are,

𝑍1,2,± =

−𝑥1,2 ±
√
𝑥2

1,2 −4

2 (6.36)

where,

𝑥1 =
𝑤𝑣∗+

√
(𝑤𝑣∗)2 +4(𝑣∗𝛽)2 −8|𝛽 |2𝛽2 +4(𝑤𝛽)2 +8𝛽2

2𝛽2

𝑥2 =
𝑤𝑣∗−

√
(𝑤𝑣∗)2 +4(𝑣∗𝛽)2 −8|𝛽 |2𝛽2 +4(𝑤𝛽)2 +8𝛽2

2𝛽2

(6.37)

This gives four solutions for Z where these solutions have the relations 𝑍1+ = 1/𝑍1− and
𝑍2+ = 1/𝑍2−.

Previously we found in the BDI, CII, and AIII class models that the a’s and b’s decoupled
and the left edge only had solutions with the a’s, or there were none. For DIII we’ll find a set
of solutions with 𝑎1 and 𝑏2 and another set for 𝑎2 and 𝑏1. The general solutions have nonzero
elements everywhere - contributions on A- and B-sublattices on both chains but that can be
decomposed into the two solutions localized on 𝑎1/𝑏2 or 𝑎2/𝑏1 sites. These two solutions
will be time-reversed partners.

Using these definitions of Z we calculate the eigenvectors of the recurrence matrix (6.33),(
𝑎′1
𝑎′2

)
1
=

(
1

−(𝑣∗+𝑤𝑍)
𝛽𝑍+𝛽∗/𝑍

) (
𝑎′1
𝑎′2

)
2
=

(
1

−(𝑣∗+𝑤/𝑍)
𝛽𝑍+𝛽∗/𝑍

)
(6.38)

where the correct solutions for the left side will have |𝑍 | < 1 which correspond to 𝑍1+ and
𝑍2+. Thus the general solution for the left edge,

Ψ𝐿
𝑛 = 𝑐Ψ

(1)
0 𝑍𝑛1 + 𝑑Ψ

(2)
0 𝑍𝑛2 (6.39)

is a linear combination of the eigenfunctions Ψ1,2 and solutions for 𝑍1,2 where n is the cell
index of a system with L cells. The full solution of equation (6.26) will include terms for the
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right side (i.e. b’ factors) and be four terms. We identify the relationship between c and d by
looking at the left edge boundary condition 𝑎−1,1 = 𝑏−1,2 = 0,

Ψ𝐿
−1 = 𝑐Ψ

(1)
0 𝑍−1

1 + 𝑑Ψ(2)
0 𝑍−1

2 = 0 (6.40)

Multiplying the vectors by 𝑍𝑖 will make the calculation easier down the line,

Ψ𝑖
0 =

(
𝑍𝑖

𝐴𝑖

)
𝐴𝑖 =

−(𝑣∗+𝑤𝑍𝑖)𝑍𝑖
𝛽𝑍𝑖 + 𝛽∗/𝑍𝑖

(6.41)

We declare that the prefactors c and d will absorb the vector normalization. For cell −1 there
should be zero amplitude such that,(

0
0

)
= 𝑐Ψ1

0𝑍
−1
1 + 𝑑Ψ2

0𝑍
−1
2 (6.42)

Take the top components of Ψ,

0 = 𝑐(𝑍1)𝑍−1
1 + 𝑑(𝑍2)𝑍−1

2

0 = 𝑐+ 𝑑 𝑑 = −𝑐
(6.43)

Bottom components,
0 = 𝑐(𝐴1)𝑍−1

1 + 𝑑(𝐴2)𝑍−1
2

0 = 𝑐((𝐴1)𝑍−1
1 −(𝐴2)𝑍−1

2 )
(6.44)

For this to be true then either 𝑐 = 0 (no solution) or the parenthesed term is 0 (in the
topological phase, non-zero in the trivial phase). This would mean that 𝐴1 = 𝐴2. Or more
precisely,

−(𝑣∗+𝑤𝑍1)
𝛽𝑍1 + 𝛽∗/𝑍1

=
−(𝑣∗+𝑤/𝑍2)
𝛽𝑍2 + 𝛽∗/𝑍2

(6.45)

This equality holds true for the topological phase (|𝑣 | < |𝑤 |) but breaks in the trivial phase
(|𝑤 | < |𝑣 |), as predicted. This gives the final left edge wavefunction of,

Ψ𝑛 = 𝑐(Ψ1
0𝑍

𝑛
1 −Ψ2

0𝑍
𝑛
2 ) (6.46)

Then we have the general equation for the left edge,

Ψ𝑛 = 𝑐(Ψ1
0𝑍

𝑛
1 −Ψ2

0𝑍
𝑛
2 ) (6.47)

The full general solution is,

Ψ𝑛 = 𝛾1Ψ
1
0𝑍

𝑛
1 −𝛾2Ψ

2
0𝑍

𝑛
2 +𝛾3Ψ

3
0𝑍

𝑛
3 −𝛾4Ψ

4
0𝑍

𝑛
4 (6.48)

where the eigenvectors are,
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Ψ(1,2) =

©«
1
𝑋𝐴

0
0

ª®®®®¬
, Ψ(3,4) =

©«
0
0
1
𝑋𝐵

ª®®®®¬
(6.49)

The components 𝑋𝐴,𝐵 are given by,

𝑋𝐴 = −
−𝛽𝑍𝑖 + 𝛽∗/𝑍𝑖
𝑣∗+𝑤𝑍𝑖

(6.50)

𝑋𝐵 = −−𝛽𝑍𝑖 + 𝛽∗/𝑍𝑖
𝑣+𝑤∗𝑍𝑖

(6.51)

The coefficients 𝛾𝑖 are chosen is such a way the wavefunction goes to 0 at the boundary, i.e.
Ψ𝑛=0 = 0. These boundary conditions are satisfied for 𝛾1 = −𝛾2 and 𝛾3 = −𝛾4. These relations
imply 𝑋𝐴(𝑍1) = 𝑋𝐴(𝑍2) and 𝑋𝐵(𝑍3) = 𝑋𝐵(𝑍4). One can check the time-reversal conditions
these states must obey for the above relations to be true. If time-reversal symmetry is broken
the boundary conditions can not be satisfied. We can also show the Kramers pairs of these
edge states by noticing 𝑇−Ψ1 =Ψ3 and 𝑇−Ψ3 = −Ψ1. Equally, 𝑇−Ψ2 =Ψ4 and 𝑇−Ψ4 = −Ψ2.

This gives the general equation for a Kramers pair of states on the left edge,

Ψ± = (Ψ1
0𝑍

𝑛
1 −Ψ2

0𝑍
𝑛
2 )± (Ψ3

0𝑍
𝑛
3 −Ψ4

0𝑍
𝑛
4 ) (6.52)

Strong rung coupling limit

When the interchain coupling tends to the strong coupling limit, i.e. the order of the gap, the
gap between the bands may close. When the system is in the topological phase |𝑣 | < |𝑤 |,
increasing the interchain coupling 𝛽 one can drive the system to the nontopological trivial
phase. The reverse process doesn’t drive the trivial phase to the topological one, i.e. the gap
doesn’t close by tuning 𝛽.

Here we would like to make some crucial comments about the edge states of the DIII
model as compared to the AIII, BDI, and CII models detailed in the previous section. One
important detail is that the zero energy edge states of the DIII model are not protected solely
by chiral symmetry, other symmetries are needed. This is in contrast to the AIII,BDI, and CII
models. We will discuss this further in a later section.

In the basis (𝐴′
1 𝐴

′
2) one of the edge states can be written in the general form,

𝜙±(𝑛) = 𝜆𝑛1𝜙0,1 −𝜆𝑛2𝜙0,2 (6.53)

where 𝜆1,2 = 𝑒𝛿1,2 are complex eigenvalues with magnitudes less than 1, and 𝜙0,1(2) are
the corresponding eigenvectors, where the first index denote the cell (0) and (1,2) are the
eigenvectors of the recurrence matrix, see Appendix C. This edge state is defined and
localized on the 𝐴′ sublattice. The other edge state is the Kramers pair and is localized on
the 𝐵′ sublattice. Contrast this with the CII case in which both Kramers states are localized
on the A-sublattice.
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BDI The edge states are time-reversal symmetric, i.e. the state returns itself when
acted on by the time-reversal operator, there may be a ±1 phase factor to
account for.

CII Hosts Kramers pairs so one edge state transforms into its time-reversal
partner.

AIII While hosting zero energy edge states does not have any time-reversal
properties

DIII Will also have Kramers pairs but the sublattices change between the two
states.

CI Not topological
Table 6.1 Edge state wavefunction properties for each chiral universality class.

To be more concrete about this analysis if one perturbs slightly away from the DIII
point in phase space, i.e. 𝛽 becomes complex, there are no normalizable zero energy states
satisfying the boundary conditions. In the previous case where the AIII model ’connected’
the BDI and CII models the edge states remained intact via chiral symmetry, that doesn’t
seem to be the case with DIII and CI. The protected states require more symmetries than just
chiral. It is possible to find solutions that exponentially decay into the bulk however they
don’t satisfy the boundary conditions of the chain without splitting a unit cell. While it is
important to note the possibility of these states, we are not interested in them so we conclude
this discussion here.

6.2 General properties of edge states in chiral models

Here we will consider the general properties of edge states in chiral symmetric models
because they can be applied in a general manner. It is a very well known fact that the edge
states in the topological phase of the SSH model are localized on the A sublattice at one end
of the chain and on the B sublattice at the opposing end. This characteristic, as we will show,
continues to be true in the combined 𝐶1 type models (BDI, CII) which have nonzero winding
numbers. However when considering the 𝐶2 type models (DIII, CI) where the winding
number is zero, the edge states are slightly different. Going by the ’natural’ sublattice the left
edge will host one state on the A’-sublattice and one on the B’-sublattice. Table 6.1 gives a
summary of the properties of edge states of each universality class.

We analyze the symmetry properties of the edge states via projection operators. It is
a property of chiral symmetric models in 1D that the edge state is localized on a single
sublattice, which can be demonstrated by defining the chiral symmetry operator using
sublattice projection operators (recall Eqs. (3.1)),

𝑈𝐶 = 𝑃𝐴−𝑃𝐵 (6.54)

It is well known that the anticommutation properties of these projectors [69] will return the
negative energy state when acting on an eigenstate of the Hamiltonian, this follows from
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𝑈−1
𝐶
𝐻(𝑘)𝑈𝐶 = −𝐻(𝑘). As such if this state is in the zero energy subspace (this includes the

space of edge states) then the projection operation will remain in this subspace. From the
structure of equation (6.54), acting on a left edge state must create another edge state on the
left edge, similarly for the right edge. This is because if all the probability weight is on the
A-sublattice edge then the projection will return the A-sublattice and get rid of the rest, so to
speak. Therefore if all the weight is on an A-sublattice (left edge) going in then that’s what is
going to be come out after projection, i.e. another left edge.

Let’s take a model with a single edge state, and such a state is an eigenstate of the 𝑈𝐶

operator. This can only be true if 𝑃𝐴 |𝜙⟩ = 0 or 𝑃𝐵 |𝜙⟩ = 0. This indicates that this eigenstate
must be localized on one of the sublattices. For the edge state to be fully localized on the
edge site then the above must be true, otherwise the state is spread across the unit cell and
wouldn’t necessarily then be a zero energy edge state.

For models with more than one edge state per edge we can find linear combinations of
these states that are eigenstates of𝑈𝐶 . This is possible because, as stated above, these states
all exist within the same subspace. Thus using the same logic as above, each one must be
localized on either the A- or B-sublattice.

It is necessary for completeness to show that the edge states protected by chiral symmetry
are localized on the same sublattice. Let’s consider two edge states |𝜓1⟩ and |𝜓2⟩ (on the
same edge) which are both eigenstates of the chiral symmetry operator such that,

𝐶 |𝜓1,2⟩ = 𝛼1,2 |𝜓1,2⟩ (6.55)

where 𝛼1,2 are the eigenvalues with value ±1 because 𝑈2
𝐶
= 1. We can add a perturbation

that preserves chiral symmetry {𝑉,𝐶} =𝑉𝐶 +𝐶𝑉 = 0 and acts within the same subspace
as the eigenstates. We then have the matrix elements ⟨𝜓1 |𝑉 |𝜓2⟩ = 𝛼1𝛼2 ⟨𝜓1 |𝐶†𝑉𝐶 |𝜓2⟩ =
−𝛼1𝛼2 ⟨𝜓1 |𝑉 |𝜓2⟩. The matrix elements vanish if the edge states are the eigenstates of the
chiral operator with the same eigenvalue. Therefore, if the states are topologically protected
they must be localized on the same sublattice. The topological protection arises because even
when a (symmetry perserving) perturbation is added, like changing the edge of a sample,
the phase remains the same.

This obviously won’t be the case for DIII because the edge states are localized on different
sublattices and therefore it can’t be chiral symmetry alone that provides the topological
protection. A weak perturbation that respects chiral but breaks time-reversal symmetry
and particle-hole symmetry can hybridize the edge states, consistent with a zero winding
number. The perturbation causes the zero energy modes to become gapped, i.e. they are not
protected against a perturbation so not protected topologically.

In the single particle basis chiral symmetry is a unitary operator (no complex conjugate)
while time-reversal symmetry and particle-hole symmetry are antiunitary operators (have
complex conjugate terms). Particle-hole and chiral symmetries anticommute with the
Hamiltonian. The difference between unitary and antiunitary shows up in the topology class
if we focus on singular symmetry classes, for this case AIII (chiral symmetry only), D (𝑃+),
and C (𝑃−). The D class is a Z2 topology while the C class is trivial.
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Chiral symmetry alone topologically protects edge states only if they are on the same
sublattice. Edge states on one edge localized on different sublattices (one on the A-sublattice,
one on the B-sublattice) can not be protected by chiral symmetry alone, additional symmetries
are needed. In the case of different sublattices a weak perturbation respecting chiral symmetry
only can hybridize these edge states.

A system with 𝑃+ symmetry alone protects a single zero-energy edge state. Similar to
chiral symmetry, 𝑃+ gives 𝑃+ |𝐸⟩ ∝ |−𝐸⟩. So a zero energy edge mode remains pinned to zero
energy as long as 𝑃+ is intact. For two edge states, on the same edge, chiral symmetry will
protect both states as long as they are on the same sublattice. The 𝑃+ symmetry can’t protect
both, regardless of edge configuration. Additionally if there an odd number of edge states
then 𝑃+ alone will protect only one of those states. An even number of edge states (on one
edge) will hybridize and not be protected. A chain, one edge state per end, with only 𝑃+
symmetry will have protection with Z2 topology.

A system with only 𝑃− can’t topologically protect edge states. Using a similar argument
to how Kramers pairs occur, then we can say for 𝑃− the states come in pairs with energies,
|±𝐸⟩. One can always write a perturbation that can hybridize these states, even at 𝐸 = 0 so
this symmetry alone can’t topologically protect edge states.

With the DIII class model we can see what these symmetries look like when we put them
together (𝑃+, 𝑇−, 𝐶2). The pair of edge states, localized on different sublattices, requires
all symmetries to keep the states pinned to zero energy and unhybridized. Introducing a
generic perturbation that is chiral symmetry only respecting (breaking time-reversal and
particle-hole symmetries) will hybridize the edge states. The 𝑃+ symmetry alone will only
protect one of the two edge states. The 𝑇− symmetry enforces the Kramers pairs with same
energy and the 𝑃+ symmetry enforces states to come in pairs with ±𝐸. The only way this can
happen is with 𝐸 = 0. (Obviously having both time-reversal and particle-hole symmetries
gives chiral symmetry).

The symmetry properties we have outlined here for edge states are completely general
and can be applied any 1D chiral symmetric models.



Chapter 7

Interacting SSH model at 𝜐 = 1/4 filling

The previous chapters have dealt heavily with 4-band models, at integer filling (half-filling
in the band picture), and their topological properties in the context of topological insulator
states. We can extend this line of research by asking questions about the effects of density-
density interactions and fractional fillings on similar models. These broad questions give
rise to more specific ones about the characterization of the Zak phase [86], the mean-field
effects, and nontrivial ground states. Work by Barbarino et al [34] demonstrated topological
phases stabilized by interactions and reduced particle fraction in a BDI classed ladder model.
We build on these results here by connecting it to the SSH model and by constructing a
noninteracting version of this model via mean field theory.

The mean field theory leads nicely to the SSH4 model which we show has quantized Zak
phases in a given parameter regime. In this chapter we will show that the model presented
by Barbarino et al is easily rotated to an SSH-like chain and in doing so we construct a simple
chain model to investigate the topological properties using mean field theory and Zak phase
calculations. The ground state of this model is a Z2 classification for which the mean field
effect causes a symmetry breaking, akin to that of the original conclusions of Su, Schrieffer,
and Heeger on their model of polyacetylene. This paper investigates the physical properties
of a symmetry breaking soliton (phonon) between two possible dimerization states of a
linear chain. We use this model as motivation for replacing the soliton and investigating
the topological phases that arise when nearest neighbor interactions are added to the linear
chain model.

We will give a brief summary of the results that motivated this work then perform a
unitary transformation of the Barbarino model to a chain which is very similar to the SSH
model. The SSH model has not been studied at reduced filling fractions with interactions and
we will present compelling results to this effect. Unlike the topological insulators previously
studied, in this case we will be interested in the lowest energy states rather than the mid-gap
zero energy ones connected to the edge modes.

The Barbarino model is similar to the SSH model in that it is a series of connected unit
cells with two internal spin states, with an interaction term acting within the unit cells. In
the single particle basis at integer filling this model is a 1D ladder in the BDI universality
class that supports a topological phase. Typically interactions destabilize a topological
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phase however they showed that at fractional fillings this one-dimensional model had stable
topological phases. These states are described by density wave ground states, quantized
Wilczek-Zee phases, and degenerate entanglement spectra. Interacting models do not have a
comprehensive symmetry classification system like the universality classes such that in the
interacting regime this model is no longer classified BDI.

If we consider the single particle Hamiltonian at integer filling the model has two gapped
energy bands in the band spectrum in the topological insulator phase. In the band spectrum
perspective, reducing the particle filling fraction only partially fills the lower band permitting
conductive states to exist and the system is no longer in an insulating phase. Adding an
interaction will gap this lower band into two subbands at some critical interaction strength,
turning the system back to an insulator. This gap can be seen in the spin and charge sectors,
and in this regime the model is basically the XXZ chain [87, 88] with two degenerate ground
states. We can then think about it in terms of this, breaking the Néel ground state symmetry
with some applied field. With only the lowest band filled this amounts to a 𝜐 = 1/4 model and
a four-site unit cell, where we can think about the cells being occupied or not. This symmetry
broken state is characterized by a quantized Wilczek-Zee phase equal to 1. Additionally
there is some unconventional edge physics, however unlike many other topological insulator
states these are gapped and not hosted at zero energy.

From here we will rotate the Barbarino model to a more convenient chiral symmetric
basis and describe how the interactions create a bond density ground state in this basis. Our
goal in this chapter is then to show that these previously described topological effects arise
as a result of mean field rather than strong correlation effects.

7.1 4-band models

Similar to the procedure in the previous sections we will begin with an SSH-like chain model,
in this case with onsite potentials and density-density interactions. At a reduced filling
fraction this becomes a 4-band model, which we now have experience dealing with. While
interactions in topological insulators are still being researched we will apply a mean field
theory to take this model to the noninteracting regime and show the inherent topological
features.

These sections are motivated by the work of Barbarino et al so we start with the model
presented there, Fig. 7.1, by bringing it into a more convenient chain form. The advantage of
this form is we can utilize our understanding of the SSH model making this a more intuitive
model to work with. This method amounts to reducing the integer filling to 𝜐 = 1/4 such that
the lower band is half-filled now, then projecting onto the lower band. A gap is opened in
the bands via a density-density interaction, bringing the system to a 4-band model with
interest only in the lowest band turning it back to an insulator.

We can show that in a certain regime this rotated single particle Hamiltonian is equivalent
to the SSH model with longer range hoppings and an intracell interaction. The interaction acts
as a symmetry breaking term so the logical thing to do is perform a mean field transformation
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Fig. 7.1 Barbarino ladder model rearranged into chain form. The model has couplings 𝑡↑(↓)
between like sites and 𝐽 between different sites. The interaction𝑈 acts within the cell. There
exists an alternating onsite potential ±Δ𝜖.

to make it noninteracting. This mean field version of the chain is in essence the SSH model
with an alternating ’field’.

7.1.1 Rotation to SSH-like basis

We begin by rotating the noninteracting terms in the Hamiltonian, Eq. (7.1), unitarily to a more
convenient chain form, i.e. where the chiral operator is diagonal, forcing the Hamiltonian to
be off-diagonal. We use the Pauli matrices to show the relations between the internal states
of the unit cell (↑, ↓) and institute our own coupling notation for consistency.

The model is described by kinetic (noninteracting), �̂�𝑘𝑖𝑛 , and interacting, �̂�𝑖𝑛𝑡 , terms.
Start with the single particle Hamiltonian,

�̂� = �̂�𝑘𝑖𝑛 + �̂�𝑖𝑛𝑡 (7.1)

where,

�̂�𝑘𝑖𝑛 = Δ𝜖
𝑁∑
𝑗

𝑐†𝑗 𝜎𝑧𝑐 𝑗 +
𝑁−1∑
𝑗

𝑐†𝑗 (𝑡0𝜎0 + 𝛿𝑡𝜎𝑧 + 𝐽𝜎𝑥)𝑐 𝑗+1 + 𝑐†𝑗+1(𝑡
∗
0𝜎0 + 𝛿𝑡∗𝜎𝑧 + 𝐽∗𝜎𝑥)𝑐 𝑗 (7.2a)

�̂�𝑖𝑛𝑡 =𝑈

𝑁∑
𝑗

𝑛 𝑗↑𝑛 𝑗↓ (7.2b)

where the sums are taken over each unit cell j and coupling t is parameterized to 𝑡0 ± 𝛿𝑡. The
kinetic Hamiltonian terms, Eq. (7.2a), account for the noninteracting coupling terms t, J, and
𝛿𝜖. The interacting Hamiltonian, Eq. (7.2b), handles the intracell density-density interaction
U. We will drop the interacting term and focus on the noninteracting kinetic terms since the
SSH model is a noninteracting model. Transforming the kinetic Hamiltonian to momentum
space using the standard Fourier operators, Eq. (2.6),

�̂�𝑘𝑖𝑛(𝑘) = Δ𝜖
𝐵𝑍∑
𝑘

𝑐†
𝑘
𝜎𝑧𝑐𝑘 +

𝐵𝑍∑
𝑘

𝑐†
𝑘
(𝑡0𝜎0 + 𝛿𝑡𝜎𝑧 + 𝐽𝜎𝑥)𝑐𝑘𝑒−𝑖𝑘 + 𝑐†𝑘(𝑡

∗
0𝜎0 + 𝛿𝑡∗𝜎𝑧 + 𝐽∗𝜎𝑥)𝑐𝑘𝑒 𝑖𝑘 (7.3)
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Condensing into a more compact matrix form gives,

�̂�𝑘𝑖𝑛(𝑘)=
𝐵𝑍∑
𝑘

𝐶†
𝑘

(
Δ𝜖+ 𝑡0𝑒−𝑖𝑘 + 𝛿𝑡𝑒−𝑖𝑘 + 𝑡∗0𝑒 𝑖𝑘 + 𝛿𝑡∗𝑒 𝑖𝑘 𝐽𝑒−𝑖𝑘 + 𝐽∗𝑒 𝑖𝑘

𝐽𝑒−𝑖𝑘 + 𝐽∗𝑒 𝑖𝑘 −Δ𝜖+ 𝑡0𝑒−𝑖𝑘 − 𝛿𝑡𝑒−𝑖𝑘 + 𝑡∗0𝑒 𝑖𝑘 − 𝛿𝑡∗𝑒 𝑖𝑘

)
𝐶𝑘

(7.4)
where 𝐶†

𝑘
= {𝑐†↑ 𝑐

†
↓} and 𝐶𝑘 = {𝑐↑ 𝑐↓} are the vector of creation (annihilation) operators. This

transformation will consist of two rotations. While it would be more mathematically rigorous
to use the standard axes rotation matrices, we find it more intuitive to use this method to
show that many 2x2 Hamiltonians can be transformed to SSH(-like) forms. Firstly, passively
rotate the Hamiltonian by 𝜋/2 about the x-axis so that nothing becomes 𝜎𝑧 , i.e. so there are no
diagonal terms. The axes transform to,

𝜎𝑥 → 𝜎𝑥 (7.5a)
𝜎𝑦 → 𝜎𝑧 (7.5b)
𝜎𝑧 →−𝜎𝑦 (7.5c)
𝜎0 → 𝜎0 (7.5d)

Such that the Hamiltonian reads,

�̂�𝑘𝑖𝑛(𝑘) = −Δ𝜖
𝐵𝑍∑
𝑘

𝑐†
𝑘
𝜎𝑦𝑐𝑘 +

𝐵𝑍∑
𝑘

𝑐†
𝑘
(𝑡0𝜎0 + 𝛿𝑡𝜎𝑦 + 𝐽𝜎𝑥)𝑐𝑘𝑒−𝑖𝑘 + 𝑐†𝑘(𝑡

∗
0𝜎0 + 𝛿𝑡∗𝜎𝑦 + 𝐽∗𝜎𝑥)𝑐𝑘𝑒 𝑖𝑘 (7.6)

And the matrix form,

ℎ̂𝑘𝑖𝑛(𝑘) =
(

𝑡0𝑒
−𝑖𝑘 + 𝑡∗0𝑒 𝑖𝑘 𝑖Δ𝜖+ 𝑖𝛿𝑡𝑒−𝑖𝑘 + 𝐽𝑒−𝑖𝑘 + 𝑖𝛿𝑡𝑒 𝑖𝑘 + 𝐽∗𝑒 𝑖𝑘

−𝑖Δ𝜖− 𝑖𝛿𝑡𝑒−𝑖𝑘 − 𝐽𝑒−𝑖𝑘 − 𝑖𝛿𝑡𝑒 𝑖𝑘 + 𝐽∗𝑒 𝑖𝑘 𝑡0𝑒
−𝑖𝑘 + 𝑡∗0𝑒 𝑖𝑘

)
(7.7)

The second rotation is 𝜋/2 about z-axis,

𝜎𝑥 →−𝜎𝑦 (7.8a)
𝜎𝑦 → 𝜎𝑥 (7.8b)
𝜎𝑧 → 𝜎𝑧 (7.8c)
𝜎0 → 𝜎0 (7.8d)

Which gives the Hamiltonian,

�̂�𝑘𝑖𝑛(𝑘) = −Δ𝜖
𝐵𝑍∑
𝑘

𝑐†
𝑘
𝜎𝑥𝑐𝑘 +

𝐵𝑍∑
𝑘

𝑐†
𝑘
(𝑡0𝜎0 − 𝛿𝑡𝜎𝑥 − 𝐽𝜎𝑦)𝑐𝑘𝑒−𝑖𝑘 + 𝑐†𝑘(𝑡

∗
0𝜎0 − 𝛿𝑡∗𝜎𝑥 − 𝐽∗𝜎𝑥)𝑐𝑘𝑒 𝑖𝑘 (7.9)

Where the matrix version is,

ℎ̂𝑘𝑖𝑛(𝑘) =
(

𝑡0𝑒
−𝑖𝑘 + 𝑡∗0𝑒 𝑖𝑘 −Δ𝜖− 𝛿𝑡𝑒−𝑖𝑘 + 𝑖𝐽𝑒−𝑖𝑘 − 𝛿𝑡 𝑖𝑘 + 𝑖𝐽∗𝑒 𝑖𝑘

−Δ𝜖− 𝛿𝑡𝑒−𝑖𝑘 − 𝑖𝐽𝑒−𝑖𝑘 − 𝛿𝑡 𝑖𝑘 − 𝑖𝐽∗𝑒 𝑖𝑘 𝑡0𝑒
−𝑖𝑘 + 𝑡∗0𝑒 𝑖𝑘

)
(7.10)
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Fig. 7.2 Barbarino ladder rotated into SSH-like chain form in BDI regime. The intracell
coupling is given by 𝑣 and the intercell coupling is 𝑤 where 𝑣 = 𝛿𝜖 and 𝑤 = 2𝛿𝑡. An
interaction𝑈 acts within the unit cell.

To get full off-diagonal chiral structure set 𝑡0 = 0,

ℎ̂𝑘𝑖𝑛(𝑘) =
(

0 −Δ𝜖− 𝛿𝑡𝑒−𝑖𝑘 + 𝑖𝐽𝑒−𝑖𝑘 − 𝛿𝑡𝑒 𝑖𝑘 + 𝑖𝐽∗𝑒 𝑖𝑘
−Δ𝜖− 𝛿𝑡𝑒−𝑖𝑘 − 𝑖𝐽𝑒−𝑖𝑘 − 𝛿𝑡𝑒 𝑖𝑘 − 𝑖𝐽∗𝑒 𝑖𝑘 0

)
(7.11)

Following the rotations the operators, now in diagonal form, look like,

𝑐𝐴(𝐵) =
1√
2
(𝑐↑± 𝑐↓) (7.12)

In the BDI regime 𝐽 = 𝑖𝛿𝑡 and 𝛿𝑡 is real, reducing the Hamiltonian to,

ℎ̂𝑘𝑖𝑛(𝑘) =
(

0 −Δ𝜖−2𝛿𝑡𝑒−𝑖𝑘

−Δ𝜖−2𝛿𝑡𝑒 𝑖𝑘 0

)
(7.13)

Further, to get the full SSH model we go to the regime where 𝑣 = Δ𝜖 and 𝑤 = 2𝛿𝑡 which is
easily compared to the SSH Hamiltonian equation (2.8).

ℎ̂𝑘𝑖𝑛(𝑘) = −
(

0 𝑣+2𝛿𝑡𝑒−𝑖𝑘

𝑣+2𝛿𝑡𝑒 𝑖𝑘 0

)
(7.14)

We can redefine the unit cell in terms of an A-site and a B-site like the SSH model, see
Figure 7.2 for the lattice of the rotated chain. In the ↑↓ basis the interaction acted within the
cell and is therefore a 𝜎0 component. We saw from the rotation derivation this axis remains
constant and is not rotated in any way such that𝑈 acts within the rotated unit cell (𝐴−𝐵).

As we showed in a previous section the SSH model hosts two phases, a topological phase
with winding number 𝜈 = 1 and symmetry protected edge states, and a trivial phase of
winding number 𝜈 = 0 with no edge states. This rotated Barbarino (noninteracting) chain will
behave similarly, having a two band dispersion structure in the single particle Hamiltonian.
We see that it is an SSH chain with an interaction within the cell.

With this form we will reduce the particle fraction to 𝜐 = 1/4 and study the strong coupling
properties. We then turn to the interaction term and take a mean field approach to get
rid of this interaction in favor of an effective noninteracting Hamiltonian. This leads to an
alternating ’field’ term.
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7.1.2 Strong coupling at 𝜐 = 1/4 filling

In the previous chapters we have been working with half-filled models, i.e. both negative
energy bands are full. These models were four-site unit cell ladders acting as gapped band
insulators with topological properties. In this section we will diagrammatically examine
the lattice and energy levels, Figs 7.3, in the strong coupling limit (𝑣 << 𝑤) at 𝜐 = 1/4 filling
fraction of our SSH-like chain model from the previous section. The objective of this section
is to understand the ground states in the topological phase of this model, interpret how the
interaction acts on the system and can be modelled in a noninteracting way.

Let us briefly look at the half filled case, 𝜐 = 1/2, where there would be 1 particle per unit
cell, Fig. 7.2. In the strong coupling limit there will be two states, one with energy +𝑤 and the
other with energy −𝑤, we are only interested in the lowest energy states. It is energetically
favorable for the particles to sit on the bonds rather than the sites. Unlike the charge and
spin density waves in which the particles sit on the sites, this is a bond density wave as the
particle wavefunctions are spread across the bond Figure 7.3a. There is a single ground state
in this strong coupling picture.

In this strong coupling picture we neglect the end sites as they are higher energy and in a
macroscopic system we are interested in the bulk. In this half-filled state the particles interact
with each other via𝑈 . Turning off𝑈 , this model reverts to the SSH model. It is trivial to see
that the ground state is all the lowest energy states filled in these ’bonds’ and the interaction
doesn’t act as a symmetry breaking term. In the band spectrum picture this would look like
the SSH model. Given these characteristics we now look at the quarter filled picture (𝜐 = 1/4).

The noninteracting part of the model gives a two band spectrum with the lower band
being half filled when the model is quarter filled. The lowest energy configuration would
have every other bond filled, which leads to two possible ground state configurations.
Adding the interaction term opens a gap in the subbands taking the spectrum from two
bands to four bands, Fig. 7.3b. This interaction acts as a ground state symmetry breaking
mechanism. In the strong coupling picture the particle could sit on the inner bond in the
unit cell or the bond between cells i.e. a Z2, that depend on the sign of the interaction. For
repulsive interactions the particles would want to sit as far apart from each other as possible,
such a configuration leaves no interactions between the particles, Fig. 7.3b. In order to make
this configuration energetically favorable we need to lower the energy on the occupied bonds
and increase them for the sites we want to be unoccupied. This is achieved by adding a ’field’
modulation term to 𝑤, i.e. 𝛿𝑤.

We can think about this in terms of the XXZ chain, where there are two degenerate
ground states. At some critical field strength the Z2 symmetry breaks and a gap opens
between the ground states. In the same manner, we want to make one of these configurations
lower energy so we attach a dimerization field factors such that 𝑤→ 𝑤± 𝛿𝑤, and 𝑣→ 𝑣± 𝛿𝑣.
A nonzero dimer value breaks the Z2 symmetry, opening a gap in the spin and charge sectors.
The field causes the energy to lower on the 𝑤+ 𝛿𝑤 bonds and increase on the 𝑤− 𝛿𝑤 bonds.
Thus the energy favorability is for the particles to sit on alternating bonds resulting in a
ground state with no interactions.
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(a) SSH-like chain with repulsive interactions U with particle picture. The ground state at half-filling
has the lowest energy states filled (solid blue circles).

(b) SSH-like chain at 𝜐 = 1
4 filling with repulsive interactions U with particle picture. In this model

the energy levels are modified by ±𝛿𝑤 with every second bond being filled (solid blue dots).

(c) Reduced SSH-like chain at 𝜐 = 1
4 filling.

Fig. 7.3 Schematic evolution of the lattice and energy levels at (a) half-filling, (b) quarter-filling,
and (c) the ’bond’ picture.

Adding in the dimerization factors doubles the size of the unit cell, extending the model
to four bands. We further simplify the lattice picture by thinking about these bonds as ’sites’
creating an effective site chain, Fig. 7.3c. This gives a more intuitive image of the particle
picture in terms of occupied and unoccupied sites.

7.1.3 Mean field theory

In this section we will utilize mean field theory to reduce the interacting density-density
terms in equation (7.1) to a noninteracting average field ’felt’ by each particle. We will show
that the results presented by Barbarino et al can be produced via mean field effects. The
mean field calculations will verify our schematic derivations from the previous section. In
the context of quantum many-body physics, we will interpret the mean field approximation
as a method of replacing pairs of operators with averages [89]. The idea is that we develop a
mean field theory and then insert a given model and calculate the energy for a given field
strength. The goal is to find the model that minimizes the energy the most. The motivation
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here is we know there is some symmetry breaking action in this model so the first stop is
mean field theory to determine if the breaking is due to strong correlations or the collective
action of the interactions.

The Barbarino model has density-density interactions and for the sake of time we will
just say the mean field version of the intracell interaction term𝑈 looks like,

𝑈
∑
𝑗

𝑛 𝑗𝑛 𝑗+1 → ℎ𝑠

∑
𝑗

(−1)𝑗𝑛 𝑗 (7.15)

where this is a standard definition, [89]. We will make an educated guess as to what the
operator looks like in terms of the original c fermion operators,

𝑛 𝑗 = 𝑐
†
𝑗↓𝑐 𝑗+1↑+ 𝑐†𝑗+1↑𝑐 𝑗↓ (7.16)

In the rotated basis this looks like,

ℎ𝑠

∑
𝑗

(−1)𝑗(𝑐†
𝑗↓𝑐 𝑗+1↑+ 𝑐†𝑗+1↑𝑐 𝑗↓) = −ℎ𝑠

∑
𝑗

(−1)𝑗(𝑐†
𝑗↓𝜎𝑦𝑐 𝑗+1↑+ 𝑐†𝑗+1↑𝜎𝑦𝑐 𝑗↓) (7.17)

Equation (7.17) indicates an alternating ’applied’ field term ±ℎ which in essence extends the
original 2-site unit cell to a 4-site cell. In the strong 𝛿𝑤 limit, the chain becomes dimerized
with edge states, matching the findings in Barbarino. The Hamiltonian of which looks like,

�̂�𝑀𝐹 = 𝑣

𝑁∑
𝑛

(𝑐†𝑛𝐴𝑐𝑛𝐵+ ℎ.𝑐.)+𝑤
𝑁∑
𝑛

(𝑐†𝑛𝐵𝑐𝑛+1,𝐴+ ℎ.𝑐.)+ 𝛿𝑤
𝑁−1∑
𝑛

(−1)𝑛(𝑐†𝑛𝐵𝑐𝑛+1,𝐴+ ℎ.𝑐.) (7.18)

which gives an effective noninteracting Hamiltonian for our diagrammatic derivation. From
here we will perform a proper mean field calculation, firstly on an SSH-like chain then on a
generic 4-band model.

7.1.4 Practical Mean field theory for 4-band models

We can do a quick mean field calculation to check that our guess was correct. We derive the
mean field expectation value integrals for the 4x4 case using the interacting Barbarino chain
then feed in the noninteracting mean field version and show that our guess was correct.
Coincidently the model derived is known as the SSH4 model, in essence an SSH chain with a
four site unit cell.

We will perform a mean field calculation on a two-site unit cell to understand the
fundamentals of the process for the four-site case. If we have the two-site unit cell Hamiltonian,
although it’s not really a two-site unit cell because all the hoppings and interactions are
the same on every bond but we write it as such because we know the symmetry is going
to be broken. This is what happens in the exactly solved spin-1/2 XXZ model [90] when
the symmetry gets broken in the Néel phase, in essence the unit cell doubles in size which
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redefines the Brillouin zone. This particular two-site cell model is the XXZ model after a
Jordan-Wigner transformation [89]. We give the essentials of the derivation here and leave
the details to the appendix (D). Begin with a real space Hamiltonian with uniform hopping
𝛼 and interaction𝑈 in the kinetic and interactions terms respectively,

�̂�𝑛 = 𝛼
𝑁∑
𝑛

(𝑐†𝑛𝐴𝑐𝑛𝐵+ 𝑐
†
𝑛𝐵𝑐𝑛+1𝐴+ ℎ.𝑐.)+𝑈

𝑁−1∑
𝑛

(𝑐†𝑛𝐴𝑐𝑛𝐴𝑐
†
𝑛𝐵𝑐𝑛𝐵+ 𝑐

†
𝑛+1𝐴𝑐𝑛+1𝐴𝑐

†
𝑛𝐵𝑐𝑛𝐵) (7.19)

Converting to momentum space gives the Hamiltonian,

�̂�(𝑘) = 𝛼
𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐴
𝑐𝑘𝐵+ 𝑐†𝑘𝐵𝑐𝑘𝐴𝑒

𝑖𝑘 + ℎ.𝑐.)+𝑈
𝐵𝑍∑
𝑘𝑝𝑞

(𝑐†
𝑘𝐴
𝑐𝑘+𝑞𝐴𝑐

†
𝑝𝐵𝑐𝑝−𝑞𝐵(1+ 𝑒

−𝑖𝑞)) (7.20)

where we have parameterized 𝑘1 = 𝑘, 𝑘2 = 𝑘+ 𝑞, 𝑘3 = 𝑝, 𝑘4 = 𝑝− 𝑞 in the interacting terms.
Diagonalizing the Hamiltonian allows us to work in terms of the individual bands, such that,
𝐻 = 𝐶†

𝑘
�̃�𝐷�̃�−1𝐶𝑘 where �̃�−1𝐶𝑘 = {𝑐− 𝑐+}𝑇 and 𝐶†�̃� = {𝑐†− 𝑐†+} with − and + representing the

lower and upper bands respectively. The �̃� matrices are the eigenvectors of equation (7.20),

�̃� =

(
𝑢11 𝑢21
𝑢12 𝑢22

)
(7.21)

which are unitary such that �̃�−1 = �̃�† and are all functions of the crystal momentum k. The
first eigenvector is the first column (𝑢11 𝑢12) and the second eigenvector is (𝑢21 𝑢22). The
operators in band space are given as,

𝑐†
𝑘𝐴

= 𝑢∗11𝑐
†
−+𝑢∗21𝑐

†
+ 𝑐𝑘𝐴 = 𝑢11𝑐−+𝑢21𝑐+

𝑐†
𝑘𝐵

= 𝑢∗12𝑐
†
−+𝑢∗22𝑐

†
+ 𝑐𝑘𝐵 = 𝑢12𝑐−+𝑢22𝑐+

(7.22)

At half-filling the only nonzero terms are the (-,-) terms, and the remaining terms from each
substitution are dropped. Calculating the expectation values of the kinetic operators gives,

⟨𝑐†
𝑘𝐴
𝑐𝑘𝐵⟩ = 𝑢∗11𝑢12⟨𝑐†−𝑐−⟩ (7.23)

And the 𝑐†
𝑘𝐵
𝑐𝑘𝐴 term simply gives the complex conjugate of equation (7.23) with ⟨𝑐†−𝑐−⟩ = 1

and all other expectation values are zero. To save ourselves calculating all of the components
in the four operator interacting term we use the half-filling condition to know that the
only nonzero terms are ⟨𝑐†−𝑐−𝑐†−𝑐−⟩ and ⟨𝑐†−𝑐+𝑐†+𝑐−⟩ which occur when 𝑞 = 0 and 𝑞 = 𝑝− 𝑘,
respectively. The interacting expectation values are given by,

⟨𝑐†
𝑘
𝑐𝑘+𝑞𝑐

†
𝑝𝑐𝑝−𝑞⟩ =


|𝑢11 |2 |𝑢12 |2 𝑖 𝑓 𝑞 = 0
𝑢∗11𝑢21𝑢

∗
22𝑢12 𝑖 𝑓 𝑞 = 𝑝− 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7.24)
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where ⟨𝑐†−𝑐−𝑐†−𝑐𝑐⟩ = ⟨𝑐†−𝑐+𝑐†+𝑐𝑐⟩ = 1 and all other operator combinations have an expectation
value of zero. Assembling the mean field integrals, calculated over the Brillouin zone, for
kinetic and interacting terms,

⟨�̂�𝑘𝑖𝑛⟩ = 𝛼

∫
𝐵𝑍

[𝑢∗11𝑢22(1+ 𝑒 𝑖𝑘)+𝑢11𝑢
∗
22(1+ 𝑒−𝑖𝑘)]

𝑑𝑘

2𝜋 (7.25a)

⟨�̂�𝑖𝑛𝑡⟩ =𝑈
∫
𝐵𝑍

∫
𝐵𝑍

[2|𝑢11 |2 |𝑢12 |2 +𝑢∗11𝑢21𝑢
∗
22𝑢12(1+ 𝑒 𝑖(𝑘−𝑝))]

𝑑𝑘

2𝜋
𝑑𝑝

2𝜋 (7.25b)

As this is a completely general set of equations for a uniform hopping and interaction term
we can slot in the eigenvector components of any 2x2 Hamiltonian. We know that the mean
field version of this model (i.e. noninteracting) has uniform hoppings with an alternating
field vector within the cells which looks like 𝛿𝑤(−1)𝑛 ,

ℎ̂𝑀𝐹
1 =

(
𝛿𝑤 −𝑡(1+ 𝑒−𝑖𝑘)

−𝑡(1− 𝑒 𝑖𝑘) −𝛿𝑤

)
(7.26)

We use the eigenvector elements from the Hamiltonian, Eq. (7.26), to calculate the expectation
value integrals. In general performing the integrals analytically is not advised so we stick
to simple numerical integration using the trapezoidal rules in both one, Eq. (7.27), and two
dimensions, Eq. (7.28), [91]. Obviously one could use one of the more accurate Simpsons
rules but this one is accurate enough for our purposes.∫ 𝑏

𝑎

𝑓 (𝑥) = Δ𝑥

2 [ 𝑓 (𝑥0)+2 𝑓 (𝑥1)+2 𝑓 (𝑥2)+ · · · +2 𝑓 (𝑥𝑁−1)+ 𝑓 (𝑥𝑁 )] (7.27)∫ 𝑏

𝑎

∫ 𝑑

𝑐

𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 = Δ𝑥Δ𝑦

4 [ 𝑓 (𝑎, 𝑐)+ 𝑓 (𝑏, 𝑐)+ 𝑓 (𝑎, 𝑑)+ 𝑓 (𝑏, 𝑑)+2
∑
𝑖

𝑓 (𝑥𝑖 , 𝑐)+2
∑
𝑖

𝑓 (𝑥𝑖 , 𝑑)

+2
∑
𝑗

𝑓 (𝑎, 𝑦 𝑗)+2
∑
𝑗

𝑓 (𝑏, 𝑦 𝑗)+4
∑
𝑗

∑
𝑖

𝑓 (𝑥𝑖 , 𝑦 𝑗)]

(7.28)

where Δ𝑥 = Δ𝑦 = 𝑏−𝑎
𝑁 , since x and y span the Brillouin zone. We expect for the energy of the

system as a function of the interaction to be minimized for repulsive interactions (𝑈 < 0)
at zero field 𝛿𝑤 = 0. As expected the energy is minimized at zero field for 𝑈 < 0 and not
minimized for𝑈 > 0, Fig. 7.4.

We now turn to our 4-band model where the procedure is exactly the same as the 2x2
case simply with more terms. The kinetic and interacting terms are,
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Fig. 7.4 Energy spectrum as a function of applied field 𝛿𝑤 for attractive𝑈 < 0 and repulsive
𝑈 > 0 interactions for 2 site unit cell linear chain, Eq. (7.26), with 𝑡 = 1.0.

�̂�𝑘𝑖𝑛 = 𝛼
𝑁∑
𝑛

(𝑐†𝑛𝐴𝑐𝑛𝐵+ 𝑐
†
𝑛𝐴′𝑐𝑛𝐵′ + ℎ.𝑐.)+𝛽

𝑁−1∑
𝑛

(𝑐†𝑛𝐵𝑐𝑛𝐴′ + 𝑐†𝑛𝐵′𝑐𝑛+1𝐴+ ℎ.𝑐.) (7.29)

�̂�𝑖𝑛𝑡 =𝑈

𝑁∑
𝑛

(𝑐†𝑛𝐴𝑐𝑛𝐴𝑐
†
𝑛𝐵𝑐𝑛𝐵+ 𝑐

†
𝑛𝐴′𝑐𝑛𝐴′𝑐†𝑛𝐵′𝑐𝑛𝐵′) (7.30)

where the unit cell basis is the set {𝐴 𝐵 𝐴′ 𝐵′}. The kinetic couplings constants 𝛼 and 𝛽 act
in an alternating manner between sites, note they are unrelated to the interchain couplings
from previous chapters. The interacting coupling𝑈 acts between sites A and B, and between
A’ and B’, within the unit cell. There is no interacting term connecting adjacent unit cells.
Converting this Hamiltonian to momentum space,
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�̂�𝑘𝑖𝑛(𝑘) = 𝛼
𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐴
𝑐𝑘𝐵+ 𝑐†𝑘𝐴′𝑐𝑘𝐵′ + ℎ.𝑐.)+𝛽

𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐵
𝑐𝑘𝐴′ + 𝑐†

𝑘𝐵′𝑐𝑘𝐴𝑒
𝑖𝑘 + ℎ.𝑐.) (7.31a)

�̂�𝑖𝑛𝑡(𝑘) =𝑈
𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐴
𝑐𝑘+𝑞𝐴𝑐

†
𝑝𝐵𝑐𝑝−𝑞𝐵+ 𝑐

†
𝑘𝐴′𝑐𝑘+𝑞𝐴′𝑐†𝑝𝐵′𝑐𝑝−𝑞𝐵′) (7.31b)

Using this representation we change to a band basis, as it will be easier to project onto and
deal with just the lowest band terms. We label the four bands from lowest to highest as
1,2,3,4. We give the matrix of eigenvectors (columns),

�̃� =

©«
𝑢11 𝑢21 𝑢31 𝑢41
𝑢12 𝑢22 𝑢32 𝑢42
𝑢13 𝑢23 𝑢33 𝑢43
𝑢14 𝑢24 𝑢34 𝑢44

ª®®®®¬
(7.32)

The band basis operators are given by,

𝑐𝑘𝐴 = 𝑢11𝑐1 +𝑢21𝑐2 +𝑢31𝑐3 +𝑢41𝑐4 (7.33a)
𝑐𝑘𝐵 = 𝑢12𝑐1 +𝑢22𝑐2 +𝑢32𝑐3 +𝑢42𝑐4 (7.33b)
𝑐𝑘𝐴′ = 𝑢13𝑐1 +𝑢23𝑐2 +𝑢33𝑐3 +𝑢43𝑐4 (7.33c)
𝑐𝑘𝐵′ = 𝑢14𝑐1 +𝑢24𝑐2 +𝑢34𝑐3 +𝑢44𝑐4 (7.33d)

On to calculating the expectation values of each term. Since we are working at quarter filling
(𝜐 = 1/4) this cuts down the number of nonzero terms significantly. We will only write these
nonzero terms to save time. The only nonzero expectation value terms from the kinetic
Hamiltonian, Eq. (7.31a), involve ⟨𝑐†1𝑐1⟩,

⟨𝑐†
𝑘𝐴
𝑐𝑘𝐵⟩ = 𝑢∗11𝑢12⟨𝑐†1𝑐1⟩ (7.34a)

⟨𝑐†
𝑘𝐴′𝑐𝑘𝐵′⟩ = 𝑢∗13𝑢14⟨𝑐†1𝑐1⟩ (7.34b)

⟨𝑐†
𝑘𝐵
𝑐𝑘𝐴′⟩ = 𝑢∗12𝑢13⟨𝑐†1𝑐1⟩ (7.34c)

⟨𝑐†
𝑘𝐵′𝑐𝑘𝐴⟩ = 𝑢

∗
14𝑢11⟨𝑐†1𝑐1⟩ (7.34d)

We have also parameterized the momentums in the same way as the 2x2 case which leads to
the only nonzero interacting expectation value terms are those involving,

⟨𝑐†1𝑐1𝑐
†
1𝑐1⟩ (7.35a)

⟨𝑐†1𝑐2𝑐
†
2𝑐1⟩ (7.35b)

⟨𝑐†1𝑐3𝑐
†
3𝑐1⟩ (7.35c)

⟨𝑐†1𝑐4𝑐
†
4𝑐1⟩ (7.35d)
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All other operator combinations are zero. For 𝑞 = 0,

⟨𝑐†
𝑘𝐴
𝑐𝑘𝐴𝑐

†
𝑝𝐵𝑐𝑝𝐵⟩ = |𝑢11𝑘 |2 |𝑢12𝑝 |2⟨𝑐†1𝑐1𝑐

†
1𝑐1⟩ (7.36)

and for 𝑞 = 𝑝− 𝑘,

⟨𝑐†
𝑘𝐴′𝑐𝑘𝐴′𝑐†𝑝𝐵′𝑐𝑝𝐵′⟩ = |𝑢13𝑘 |2 |𝑢14𝑝 |2⟨𝑐†1𝑐1𝑐

†
1𝑐1⟩ (7.37)

⟨𝑐†
𝑘𝐴
𝑐𝑝𝐴𝑐

†
𝑝𝐵𝑐𝑘𝐵⟩ = 𝑢

∗
11𝑘𝑢21𝑝𝑢

∗
22𝑝𝑢12𝑘 ⟨𝑐†1𝑐2𝑐

†
2𝑐1⟩ +𝑢∗11𝑘𝑢31𝑝𝑢

∗
32𝑝𝑢12𝑘 ⟨𝑐†1𝑐3𝑐

†
3𝑐1⟩ +𝑢∗11𝑘𝑢41𝑝𝑢

∗
42𝑝𝑢12𝑘 ⟨𝑐†1𝑐4𝑐

†
4𝑐1⟩

(7.38)

⟨𝑐†
𝑘𝐴′𝑐𝑝𝐴′𝑐†𝑝𝐵′𝑐𝑘𝐵′⟩ = 𝑢

∗
13𝑘𝑢23𝑝𝑢

∗
24𝑝𝑢14𝑘 ⟨𝑐†1𝑐2𝑐

†
2𝑐1⟩ +𝑢∗13𝑘𝑢33𝑝𝑢

∗
34𝑝𝑢14𝑘 ⟨𝑐†1𝑐3𝑐

†
3𝑐1⟩ +𝑢∗13𝑘𝑢43𝑝𝑢

∗
44𝑝𝑢14𝑘 ⟨𝑐†1𝑐4𝑐

†
4𝑐1⟩

(7.39)

Then the mean field expectation value integrals are,

⟨�̂�𝑘𝑖𝑛⟩ =
∫
𝐵𝑍

[𝐴(𝑢∗11𝑢12 +𝑢∗13𝑢14 + ℎ.𝑐.)+𝐵(𝑢∗12𝑢13 +𝑢∗14𝑢11𝑒
𝑖𝑘 + ℎ.𝑐.)] 𝑑𝑘2𝜋 (7.40)

⟨�̂�𝑖𝑛𝑡⟩ =𝑈
∫
𝐵𝑍

∫
𝐵𝑍

[|𝑢11𝑘 |2 |𝑢12𝑝 |2 + |𝑢13𝑘 |2 |𝑢14𝑝 |2 +𝑢∗11𝑘𝑢21𝑝𝑢
∗
22𝑝𝑢12𝑘 +𝑢∗11𝑘𝑢31𝑝𝑢

∗
32𝑝𝑢12𝑘

+𝑢∗11𝑘𝑢41𝑝𝑢
∗
42𝑝𝑢12𝑘 +𝑢∗13𝑘𝑢23𝑝𝑢

∗
24𝑝𝑢14𝑘 +𝑢∗13𝑘𝑢33𝑝𝑢

∗
34𝑝𝑢14𝑘

+𝑢∗13𝑘𝑢43𝑝𝑢
∗
44𝑝𝑢14𝑘]

𝑑𝑘

2𝜋
𝑑𝑝

2𝜋

(7.41)

We calculate the eigenvector components from the effective chain Hamiltonian, Eq. (7.18),
we derived in the first section of this chapter,

ℎ̂(𝑘) =
©«

0 (𝑣+ 𝛿𝑣) 0 (𝑤− 𝛿𝑤)𝑒−𝑖𝑘
(𝑣+ 𝛿𝑣) 0 (𝑤+ 𝛿𝑤) 0

0 (𝑤+ 𝛿𝑤) 0 (𝑣− 𝛿𝑣)
(𝑤− 𝛿𝑤)𝑒 𝑖𝑘 0 (𝑣− 𝛿𝑣) 0

ª®®®®¬
(7.42)

and insert them into the mean field equations. The next step is to analyze the energy
minimization. The kinetic term expectation value will always be minimized at zero field
𝛿𝑤 = 0 and symmetric about this point. The interaction term will also be symmetric but not
necessarily always minimized at zero field.

We expect the energy to be minimized at zero field (𝛿𝑤 = 0) for attractive interactions
(𝑈 < 0) and the energy to be minimized at some finite field for repulsive interactions (𝑈 > 0)
Similar to the 2x2 case, we observe that the𝑈 < 0 case the energy is minimized at zero field
𝛿𝑤 = 0 but is not minimized for𝑈 > 0 at zero field, Fig. 7.5a. It is energetically favorable for
repulsive interactions, lowering the energy for increasing strength and the ground state is
best approximated at this minimal energy. We can do another check by modulating 𝑣 with
𝛿𝑣, for 𝑤 > 𝑣, Figure 7.5b. For this case the energy is always minimized at zero field, and
therefore the ground state is best approximated at zero field. We will see later in this chapter
that 𝛿𝑣 = 0 is important for calculating topological invariants.
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(a) Mean field energy as a function of the applied field 𝛿𝑤 for the case of
modulated 𝑤, with 𝑣 = 0.3 and 𝑤 = 1.7. The energy is minimized at zero
field 𝛿𝑤 = 0 for cases of attractive interaction𝑈 < 0. Repulsive interactions
𝑈 > 0 cause the energy to be minimized at a finite field 𝛿𝑤 ≠ 0.

(b) Mean field energy as a function of the applied field ℎ = 𝛿𝑣 for the case
of modulated 𝑣, with 𝑣 = 0.3 and 𝑤 = 1.7. The energy is minimized at zero
field 𝛿𝑣 = 0 for all cases of interaction𝑈 .

Fig. 7.5 Mean field energy spectrums as a function of applied field for the four-site Hamiltonian
(7.42).
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Fig. 7.6 Lattice diagram for the SSH4 model. All couplings are real valued.

7.2 SSH4 model

The mean field noninteracting chain model, Fig. 7.6, is in essence an SSH-like model with a
four-site unit cell, known as the SSH4 model. The SSH4 model in the single particle regime
is known to be in the BDI universality class with Z invariant. In the interacting picture the
topological insulator phase transitions to a charge density wave state [92]. The topological
properties have been studied via the long time dynamics [93] and in a non-Hermitian form
[94]. These properties have also been exposed using cold atom set ups and mean chiral
displacement measurements [68]. In this section we will examine this model in the reduced
filling fraction regime. We will show that this mean field version of the SSH chain host
topological states in some regime with bond density wave order and quantized Zak phase
topological indexes.

The SSH4 Hamiltonian is,

�̂�𝑆𝑆𝐻4 =

𝑁∑
𝑗

((𝑣+ 𝛿𝑣)𝑐†𝑗𝐴𝑐 𝑗𝐵+(𝑤+ 𝛿𝑤)𝑐†𝑗𝐵𝑐 𝑗𝐶 +(𝑣− 𝛿𝑣)𝑐†𝑗𝐶𝑐 𝑗𝐷)+
𝑁−1∑
𝑗

((𝑤− 𝛿𝑤)𝑐†𝑐 𝑗+1,𝐴+(𝑤− 𝛿𝑤)𝑐†𝑗+1,𝐴𝑐 𝑗𝐷)

+
𝑁∑
𝑗

((𝑣+ 𝛿𝑣)𝑐†𝑗𝐵𝑐 𝑗𝐴+(𝑤+ 𝛿𝑤)𝑐†𝑗𝐶𝑐 𝑗𝐵+(𝑣− 𝛿𝑣)𝑐†𝑗𝐷𝑐 𝑗𝐶)

(7.43)
Convert to momentum space and block diagonalize,

ℎ̂𝑆𝑆𝐻4(𝑘) =
©«

0 0 (𝑣+ 𝛿𝑣) (𝑤− 𝛿𝑤)𝑒−𝑖𝑘
0 0 (𝑤+ 𝛿𝑤) (𝑣− 𝛿𝑣)

(𝑣+ 𝛿𝑣) (𝑤+ 𝛿𝑤) 0 0
(𝑤− 𝛿𝑤)𝑒 𝑖𝑘 (𝑣− 𝛿𝑣) 0 0

ª®®®®¬
(7.44)

Where we have used the basis {𝐴 𝐴′ 𝐵 𝐵′} which brings the Hamiltonian into block off-
diagonal form. The block off-diagonal nature of the SSH4 Hamiltonian, Eq. (7.44), indicates
some chiral symmetry properties of the model. We expect similar phases as the SSH model,
i.e. a topological phase for 𝑣 < 𝑤 and a trivial phase for 𝑣 > 𝑤. In the limits that 𝑣 or 𝑤
approach 0 the bands become flat. In the limit 𝑣 = 𝑤 the upper bands have degeneracies
at the high symmetry points 𝑘 = 0,±𝜋, if the Brillouin zone is defined [−𝜋,𝜋). The band
structure for the 𝑤 > 𝑣 and 𝑣 > 𝑤 limits are identical, the upper band and lower band sets
are gapless at the 𝑘 = ±𝜋 points. Adding in the dimerizatiom opens a gap at these points.
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SSH4 - Topological invariants

Since the model is at 𝜐 = 1/4 filling we will proceed to calculate the Zak phase of the lower two
subbands. We will show that the Zak phase is quantized in one of these bands for a given
regime of the parameters. The calculations will show that the phase is not quantized for
nonzero 𝛿𝑣. Similar to the winding number, for the Zak phase [86] to be defined explicitly
the model requires inversion symmetry,

𝐼𝐻(𝑘)𝐼† = 𝐻(−𝑘) (7.45)

Spatial inversion symmetry considers the effects of spatially ’flipping’ the unit cell. In the
band structure picture this symmetry gives a mirror effect over the energy (y) axis. One
must be careful to define the inversion symmetry properly, boundaries permit gapless modes
localized at these boundaries [95]. Zak showed that the Berry’s phase can be used to label
energy bands in solids. The Zak phase refers to the Berry’s phase picked up by an electron in
a periodic potential in the presence of an externally applied time-dependent vector potential.
The Berry’s phase [96] is a geometric phase a wavefunction picks up when it is taken through
a slow adiabatic evolution in a given parameter space and is well-defined in the continuum
limit of the space. This evolution needs to be slow otherwise you may introduce excitations,
i.e. energy will be added into the system. The vector potential acts to change the Bloch
quasimomentum k adiabatically such that the gradual change allows the Hamiltonian to
start in an eigenstate and end in the corresponding eigenstate of the final Hamiltonian [97].
For a linear chain with no symmetries, the Berry’s phase can take on any value. However
in the presence of inversion symmetry, the Berry’s phase becomes quantized to only 0 or
𝜋 (modulo 2𝜋) in this case. The Zak phase is a specific iteration of the Berry’s phase using
the Brillouin zone as the continuous parameter space. The Zak phase is calculated along a
closed path in the Brillouin zone and is given by,

𝑧 = 𝑖

∮
𝐵𝑍

⟨𝑢𝑘 |𝜕𝑘 |𝑢𝑘⟩ 𝑑𝑘 (7.46)

where |𝑢𝑘⟩ are the eigenvectors of the state with momentum 𝑘 and are assumed to be smooth
and differentiable. The Zak phase is a gauge invariant quantity (modulo 2𝜋) and can be
thought of as the ’left over’ phase following a parallel transport operation around a loop of
an initial eigenstate. This formula can be connected to the band representations of space
groups. The Zak phase gets picked up because of the toroidal (cyclic) nature of the Brillouin
zone ([−𝜋/𝑎,𝜋/𝑎)) and the symmetry properties of the Bloch eigenfunctions. We can ask
some interesting questions about the Zak phase of this model, notably can we calculate
and define invariants for individual bands. It is important that there are no band-crossings
or degeneracies (single-band approximation) in the spectrum otherwise there exists an
arbitrariness about the definition of the phase for individual bands. The total phase, i.e. sum
of occupied bands, will still be quantized [98].

In the regime that 𝑤 > 𝑣 the lowest band is quantized to 1 for negative field (𝛿𝑤 < 0)
while the second band is 0, although we are looking exclusively at the lower band, Figure
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7.7a. The lower band is no longer quantized for positive field strength (𝛿𝑤 > 0) indicating a
phase transition to a trivial phase. Turning on the 𝛿𝑣 parameter disrupts this phase, Fig. 7.7b.
While the bands still appear quantized, they are not, and the system is in a topologically
trivial phase. In the regime that 𝑣 is modulated by 𝛿𝑣, Figs. 7.7c and 7.7d, the Zak phase is
no longer quantized in any bands. Thus we have the condition that 𝛿𝑣 = 0 for the Zak phase
to be quantized in either of the lower two bands.

Taken as a whole these results tell us the mean field calculations were correct in indicating
some topological features in certain regimes. The important point being that nontrivial
topological phases are arising as a result of mean field effects rather than any strongly
correlated effects.
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(a) Zak phase of the SSH4 model as a function of
the dimer parameter 𝛿𝑤 (applied field). 𝑣 = 0.3
𝑤 = 3.0 𝛿𝑣 = 0.0.

(b) Zak phase of the SSH4 model as a function of
the dimer parameter 𝛿𝑤 (applied field). 𝑣 = 0.3
𝑤 = 3.0 𝛿𝑣 = 0.05.

(c) Zak phase of the SSH4 model as a function of
the dimer parameter 𝛿𝑣. 𝑣 = 0.3 𝑤 = 3.0 𝛿𝑤 = 0.0.

(d) Zak phase of the SSH4 model as a function of
the dimer parameter 𝛿𝑣. 𝑣 = 0.3𝑤 = 3.0 𝛿𝑤 = 0.05.

Fig. 7.7 Zak phase results for SSH4 model with modulated 𝛿𝑤 (a),(b) and modulating 𝛿𝑣
(c),(d).



Chapter 8

Conclusions and outlook

In this thesis we have studied the nontrivial phases of chiral topological insulator states
in coupled SSH-like chains. The topological insulator phase arises when the interior of a
material acts as an insulator and the edges or surfaces act as an electrical conductor. The
quantum Hall effects, in the various flavors it has are considered to be topological insulator
states. The insulator part comes from the gap between the valence and conduction bands
of a material. However these states host edge modes that exist in the gap. A topological
insulator cannot be continuously transformed into a trivial one without closing this gap.
These states are robust against local symmetry preserving perturbations, one must break one
or more symmetries to alter these states. Topological insulators are an example of symmetry
protected topological state as the state is protected by one or more symmetries. Topological
insulators have been theorized since the 1980s in 1, 2 and 3-dimensions. The advantage of
working in 1D is the ease of construction with the use of optical lattice traps.

In the first part of this thesis we constructed noninteracting topological insulator ladder
models by coupling two SSH-like chains using symmetry and winding number arguments.
The hypothesis being that the topological insulator phase presented in the SSH model can
arise in a ladder model given properly designed couplings that adhere to one of the five of the
chiral universality classes. Analysis of the winding number of the prototypical topological
insulator the SSH model revealed an ambiguity in its sign. While probably known to experts,
this nuance does not seem to be published. This ambiguity was found to arise when the
individual sublattices in the unit cell are relabelled. When it comes to weakly coupling two
SSH chains together we are offered two choices of how this coupling can be defined.

In the first case, coupling chains with the same sign winding number leads to one of
the chiral classes BDI, AIII, or CII with topological index Z. In the second case coupling
chains with oppositely signed winding numbers leads to the BdG classes DIII and CI with
topological indexes Z2 and 0, respectively. The energy spectrums for BDI, AIII, CII, and DIII
all show zero energy modes in the topological phase of each model, with a phase transition
to a trivial insulator for 𝑣 = 𝑤. In the CI model the modes are not pinned to zero energy.
Analysis of the wavefunction of these zero energy modes showed states with amplitudes
localized at the edges of the ladder and exponential decay into the bulk. We showed the
chiral classes (BDI, AIII, and CII) are adiabatically connected through parameterization of the
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interchain coupling as long as chiral symmetry isn’t broken, i.e. chiral symmetry protects the
topological state. In the case of DIII and CI the protecting symmetries are more complicated.
We derived analytical expressions for the edge states in both cases. Using these analytical
expressions we demonstrated the symmetry properties of each class appear in the properties
of the edge states and give general properties of edge states for each class. We conclude that
the topological insulator state can be constructed in a ladder model given careful application
of symmetries and relative coupling strengths. The major conclusion of this section work
is the results are general an can be applied to any arbitray number of coupled chains with
chiral symmetry.

In the final chapter we constructed an interacting SSH-like model at 𝜐 = 1/4 filling and
showed the nontrivial properties of this topological state can arise as a mean field effect
rather than a strong correlation one. In the case of reduced filling the lowest band has a
quantized Zak phase in the topological regime when 𝛿𝑣 = 0. In the strong coupling picture
this model resembles the spin-1/2 XXZ chain with Z2 symmetry breaking physics. The results
from this line of research, unlike the previous set, is model specific and needs more work to
generalize.

Outlook

While we have done good work here showing the ambiguity in the winding number and
constructing classed topological insulator models using a systematic methodology there
remain open questions. Expressions for generic chiral multichain model with N coupled
chains using a combination of chiral operators is set out in [83]. We would also like to use
this methodology to create models in all of the 10 universality classes, not just the chiral ones.
We saw for the DIII class more than chiral symmetry was required to protect the edge state,
so this may be an avenue to understanding how to create the other five classes.

As the winding number can be calculated and quantized in all odd dimensions, research
has already been done to extend the methodology used in this work to 3D topological
insulators with chiral symmetry, [99].

The models presented here are well suited for a study of the effects of interactions on the
topological properties of this type of 1D systems. One can also decouple the hopping terms
in the chains, such that they are independent of each other, say 𝑣 and 𝑤 on one chain and 𝑡
and 𝑢 on the other, and investigate the various phases that arise for different parameter sets.
One can also ask about anisotropic interchain couplings where the hoppings are different
intracell and intercell or different for 𝐴−𝐴 and 𝐵−𝐵 sublattice connections in the case of
DIII and CI models.

The simplicity and power of these models should make it easy to add interactions. While
there has been much work in this area, classifying and understanding the effect of interactions
is a daunting task [100–102]. Our approach should provide a better framework on which to
develop interacting models.

An extended analysis of the mean field in the SSH4 model would provide a complete
picture of four band models at quarter filling with interactions. A study of the edge states
in these reduced filling fractions and examination of subband gap states would provide a
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complete mean field understanding. Additionally current cold atom set ups would be able to
built and test these noninteracting models. As we noted in the introduction the field of cold
atomic and trapped ion experiments is bringing these theoretical microscopic models into
the tangible realm. While the SSH model has been extensively studied [25, 24], realization of
the different universality classes has not, although this seems to be within reach with cold
atoms.

The coupled SSH chains we have described here can be considered as spinful fermion
models, where the two internal states can be considered as spins or two hyperfine states.
This provides a path to experimentally study them via spin-orbit interactions (couplings) and
some Zeeman terms accounting for the staggered amplitudes. These methods are covered in
depth in [103–108].

While there is still much research to do on the theoretical side, bringing these microscopic
models to life with experiment holds exciting prospects for the future.
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Appendix A

Proof of winding number for 2N-band
models

Consider a general 2N-band one-dimensional Hamiltonian with the prerequisite chiral
symmetry in off-diagonal form,

�̂� =

(
0 Δ̂

Δ̂† 0

)
(A.1)

In the basis that Δ̂ is diagonal,

Δ̂ =

©«

𝜖1𝑒
𝑖𝜃1 0 · · · 0

0 𝜖2𝑒
𝑖𝜃2 0 · · · 0

0 0 𝜖3𝑒
𝑖𝜃3 · · · 0

...
...

...
. . . · · · ...

0 0 · · · 0 𝜖𝑁 𝑒 𝑖𝜃𝑁

ª®®®®®®¬
(A.2)

where 𝜖𝑚 > 0. The corresponding eigenstates of Eq. (A.1) are constructed as,

Ψ±
𝑛 =

𝑒 𝑖𝛼√
2

(
𝜒𝑛

±𝑒−𝑖𝜃𝑗𝜒𝑛

)
(A.3)

where 𝜒𝑛 is the 𝑁-component unit vector with 𝜒𝑚𝑛 = 𝛿𝑚𝑛 and 𝛼 is an arbitrary phase factor.
The eigensets are {Ψ±

𝑛 , ±𝜖𝑛}. We can now construct the projector 𝑃𝑎 onto a given band a with
energy −𝑒𝑎 using Eqs. (6.54) and (A.3). For 𝑎 = 1 the projector is,

𝑃1 = (Ψ−
1 )

†Ψ−
1 =

1
2

©«

1 0 · · · −𝑒 𝑖𝜃1 · · · 0
0 0 · · · 0 · · · 0
...

...
. . .

... · · · 0
−𝑒 𝑖𝜃1 0 · · · 1 · · · 0
...

... · · · ...
...

...

0 0 · · · 0 0 0

ª®®®®®®®®®¬
(A.4)
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The nonzero elements for a given 𝑎 are 𝑃𝑎𝑎𝑎 = 𝑃𝑎+𝑁,𝑎+𝑁𝑎 = 1 and 𝑃𝑎,𝑎+𝑁𝑎 = (𝑃𝑎+𝑁,𝑎𝑎 )∗ = 𝑒 𝑖𝜃𝑎 .
Performing the sum of projectors for all negative energy (filled) bands,

𝑃 =
∑
𝑎

(Ψ−
𝑎 )†Ψ−

𝑎 =
1
2

(
I𝑁 −Δ̄
−Δ̄∗ I𝑁

)
(A.5)

where I𝑁 is the identity matrix of dimension N. The Δ̄ block is given as the diagonal matrix,

Δ̄ =

©«
𝑒 𝑖𝜃1 0 · · · 0
0 𝑒 𝑖𝜃2 · · · 0
...

...
. . .

...

0 · · · · · · 𝑒 𝑖𝜃𝑁

ª®®®®¬
(A.6)

To construct the winding number from here we follow the common Q-matrix method [30].
The Q-matrix is formed from the projector Eq. (A.5) as 𝑄 = 1−2𝑃(𝑘). This matrix has a block
off-diagonal structure which follows from the presence of chiral symmetry ({𝐶,𝑄}) and C
being block diagonal such that 𝐶 = 𝜆𝜎𝑧 where 𝜆 is some unitary matrix. The 𝑄(𝑘) matrix is
given as,

𝑄(𝑘) =
(

0 𝑞(𝑘)
𝑞(𝑘)† 0

)
(A.7)

It is trivial to see that in our representation Δ̄ = 𝑞(𝑘). Therefore the determinant of the 𝑞(𝑘)
block is,

𝑑𝑒𝑡[𝑞(𝑘)] = 𝑒𝑥𝑝[𝑖
∑
𝑗

𝜃𝑗] ≡ 𝑒 𝑖𝜙 (A.8)

We know that 𝑡𝑟[𝑞−1𝛿𝑘𝑞] = 𝛿𝑘ln 𝑑𝑒𝑡[𝑞(𝑘)] = 𝑖𝛿𝑘𝜙, the winding number can be defined,

𝜈 =
𝑖

2𝜋

∫
𝐵𝑍

𝑡𝑟[𝑞−1𝛿𝑘𝑞]𝑑𝑘 = − 1
2𝜋

∫
𝐵𝑍

𝛿𝑘𝜙𝑑𝑘 (A.9)

Expressing the phase 𝜙 via its complex components using the determinant of 𝑞(𝑘),

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛

[
Im 𝑑𝑒𝑡[𝑞(𝑘)]
Re 𝑑𝑒𝑡[𝑞(𝑘)]

]
(A.10)

From equation (A.6) we can write 𝑑𝑒𝑡[𝑞(𝑘)] = 𝑑𝑒𝑡[Δ̄(𝑘)] = Π𝑗𝜖 𝑗𝑒 𝑖𝜙. Therefore the argument
of Eq. (A.10) can be multiplied and divided by Π𝑗𝜖 𝑗 to get the final expression in terms of Δ̂,

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛

[
Im 𝑑𝑒𝑡[Δ̂(𝑘)]
Re 𝑑𝑒𝑡[Δ̂(𝑘)]

]
(A.11)

This leads nicely to a more tangible expression for calculating the winding number
without having to diagonalize the Hamiltonian, equation (2.17).



Appendix B

Deriving symmetry operators

In this appendix we derive the operators for the 𝑇+, 𝑇−, 𝑃+, and 𝑇− symmetries for our
generic ladder Hamiltonian given by equations (4.4). The operators will formed by two Pauli
matrices, one acting in the unit cell basis (𝑆𝑛) and the other acting in the chain basis (𝜎𝑛)
where is from the standard set of Pauli matrices, i.e. {0, 𝑥, 𝑦, 𝑧}. There are 16 possible operator
combinations of the form 𝑆𝑛𝜎𝑚 , we will simply state and assert the correct combination for a
given operator instead of performing the lengthy trial and error to find the correct one.

To dispel any ambiguity we list all the Pauli matrices here as they have been used
throughout the thesis,

𝜎0 =

(
1 0
0 1

)
𝜎𝑥 =

(
0 1
1 0

)
𝜎𝑦 =

(
0 −𝑖
𝑖 0

)
𝜎𝑧 =

(
1 0
0 −1

)
(B.1)

Note that the time-reversal and particle-hole symmetries are antiunitary and therefore they
square to either +1 or −1. The operators are differentiated using subscript + for the +1 and
subscript − for the −1 variants.

B.1 Time-reversal symmetry

A time-reversal invariant symmetry has the condition,

𝑇𝐻∗(−𝑘)𝑇† = 𝐻(𝑘) (B.2)

where 𝑇 is the time-reversal symmetry operator and the Hamiltonians are,

�̂�(𝑘) =
(
ℎ̂+ Δ̂(𝑘)

Δ̂†(𝑘) ℎ̂−

)
�̂�∗(𝑘) =

(
ℎ̂− Δ̂∗(−𝑘)

Δ̂𝑇(−𝑘) ℎ̂+

)
(B.3)

where ℎ̂+ is given by equation (4.1) and ℎ̂− = ℎ̂∗+.
The following subsections will derive and check the necessary conditions for the symmetry.

The operator is denoted by 𝑇 =𝑈±
𝑇
𝐾 where K is the complex conjugation operator.
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B.1.1 𝑇+ type symmetry

Given the time-reversal symmetry operation on the Hamiltonian, Eqs. (B.2) and (B.3), and
the symmetry condition 𝑇2 = +1 we derive a form for𝑈+

𝑇
that meets these requirements. For

this case the 𝜎𝑥 Pauli matrix provides the necessary chain basis operations and 𝑆0 gives the
required unit cell basis manipulations. The 𝑇+ operator is then given by,

𝑇+ =𝑈+
𝑇𝐾 = 𝑆0𝜎𝑥𝐾 (B.4)

We check this operator in the symmetry equation, Eq. (B.5),

𝑆0𝜎𝑥𝐾𝐻
∗(−𝑘)𝐾𝜎†𝑥𝑆†0 = 𝐻(𝑘) (B.5a)

𝑆0𝜎𝑥

(
ℎ̂− Δ̂∗(−𝑘)

Δ̂𝑇(−𝑘) ℎ̂+

)
𝜎†𝑥𝑆

†
0 = 𝐻(𝑘) (B.5b)

𝑆0𝜎𝑥

(
ℎ̂− Δ̂∗(−𝑘)

Δ̂𝑇(−𝑘) ℎ̂+

) (
0 𝑆0
𝑆0 0

)
= 𝐻(𝑘) (B.5c)

𝑆0𝜎𝑥

(
Δ̂∗(−𝑘)𝑆0 ℎ̂−𝑆0
ℎ̂+𝑆0 Δ̂𝑇(−𝑘)𝑆0

)
= 𝐻(𝑘) (B.5d)(

𝑆0 ℎ̂+𝑆0 𝑆0Δ̂
𝑇(−𝑘)𝑆0

𝑆0Δ̂
∗(−𝑘)𝑆0 𝑆0 ℎ̂−𝑆0

)
= 𝐻(𝑘) (B.5e)(

ℎ̂+ Δ̂𝑇(−𝑘)
Δ̂∗(−𝑘) ℎ̂−

)
= 𝐻(𝑘) (B.5f)

The operator also returns +1 when squared,

(𝑇+)2 = (𝑆0𝜎𝑥𝐾)(𝑆0𝜎𝑥𝐾)†

= (𝑆0𝜎𝑥𝜎𝑥𝑆0𝐾𝐾) = +1
(B.6)

B.1.2 𝑇− type symmetry

In this section we derive the 𝑇− operator which is necessary for the consideration of our
CII class models studied in the main text. We follow the same procedure as the previous
subsection and the operator for 𝑇− is,

𝑇− =𝑈−
𝑇𝐾 = 𝑖𝑆0𝜎𝑦𝐾 (B.7)
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The operator adheres to the time-reversal symmetry equation, Eq. (B.2),

𝑖𝑆0𝜎𝑦𝐾𝐻
∗(−𝑘)𝐾(−𝑖𝜎†𝑦𝑆†0) = 𝐻(𝑘) (B.8a)

𝑆0𝜎𝑦

(
ℎ̂− Δ̂∗(−𝑘)

Δ̂𝑇(−𝑘) ℎ̂+

)
𝜎†𝑦𝑆

†
0 = 𝐻(𝑘) (B.8b)

𝑆0𝜎𝑦

(
ℎ̂− Δ̂∗(−𝑘)

Δ̂𝑇(−𝑘) ℎ̂+

) (
0 −𝑖𝑆0
𝑖𝑆0 0

)
= 𝐻(𝑘) (B.8c)

𝑆0𝜎𝑦

(
𝑖Δ̂∗(−𝑘)𝑆0 −𝑖 ℎ̂−𝑆0
𝑖 ℎ̂+𝑆0 −𝑖Δ̂𝑇(−𝑘)𝑆0

)
= 𝐻(𝑘) (B.8d)(

𝑆0 ℎ̂+𝑆0 −𝑆0Δ̂
𝑇(−𝑘)𝑆0

−𝑆0Δ̂
∗(−𝑘)𝑆0 𝑆0 ℎ̂−𝑆0

)
= 𝐻(𝑘) (B.8e)(

ℎ̂+ −Δ̂𝑇(−𝑘)
−Δ̂∗(−𝑘) ℎ̂−

)
= 𝐻(𝑘) (B.8f)

The operator squares to −1,

(𝑇−)2 = (𝑖𝑆0𝜎𝑦𝐾)(𝑖𝑆0𝜎𝑦𝐾)†

= −(𝑆0𝜎𝑦𝜎𝑦𝑆0𝐾𝐾) = −1
(B.9)

B.2 Particle-hole symmetry

A particle-hole invariant symmetry has the condition,

𝑃𝐻∗(−𝑘)𝑃† = −𝐻(𝑘) (B.10)

where 𝑃 is the time-reversal symmetry operator and the Hamiltonians are,

�̂�(𝑘) =
(
ℎ̂+ Δ̂(𝑘)

Δ̂†(𝑘) ℎ̂−

)
�̂�∗(𝑘) =

(
ℎ̂− Δ̂∗(−𝑘)

Δ̂𝑇(−𝑘) ℎ̂+

)
(B.11)

where ℎ̂+ is given by equation (4.1) and ℎ̂− = ℎ̂∗+.
The following subsections will derive and check the necessary conditions for the symmetry.

The operator is denoted by 𝑃 =𝑈±
𝑃
𝐾 where K is the complex conjugation operator.

B.2.1 𝑃+ type symmetry

Following the preceding subsections we calculate the 𝑃+ operator and show it possesses the
necessary symmetry operators on the Hamiltonian and squares to +1. The 𝑃+ operator is
given by,

𝑃+ =𝑈+
𝑃𝐾 = 𝑆𝑧𝜎0𝐾 (B.12)
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We confirm the operator manipulates our Hamiltonian correctly,

𝑆𝑧𝜎𝑥𝐾𝐻
∗(−𝑘)𝐾(𝜎†𝑥𝑆†𝑧) = −𝐻(𝑘) (B.13a)

𝑆𝑧𝜎𝑥

(
ℎ̂− Δ̂∗(−𝑘)

Δ̂𝑇(−𝑘) ℎ̂+

)
𝜎†𝑥𝑆

†
𝑧 = −𝐻(𝑘) (B.13b)

𝑆𝑧𝜎𝑥

(
ℎ̂− Δ̂∗(−𝑘)

Δ̂𝑇(−𝑘) ℎ̂+

) (
0 𝑆𝑧

𝑆𝑧 0

)
= −𝐻(𝑘) (B.13c)

𝑆𝑧𝜎𝑥

(
Δ̂∗(−𝑘)𝑆𝑧 ℎ̂−𝑆𝑧
ℎ̂+𝑆𝑧 Δ̂𝑇(−𝑘)𝑆𝑧

)
= −𝐻(𝑘) (B.13d)(

𝑆𝑧 ℎ̂+𝑆𝑧 𝑆𝑧Δ̂
𝑇(−𝑘)𝑆𝑧

𝑆𝑧Δ̂
∗(−𝑘)𝑆𝑧 𝑆𝑧 ℎ̂−𝑆𝑧

)
= −𝐻(𝑘) (B.13e)(

−ℎ̂+ −𝑆𝑧Δ̂𝑇(−𝑘)𝑆𝑧
−𝑆𝑧Δ̂∗(−𝑘)𝑆𝑧 −ℎ̂−

)
= −𝐻(𝑘) (B.13f)

The operator squares to +1 as necessary,

(𝑃+)2 = (𝑆𝑧𝜎𝑥𝐾)(𝑆𝑧𝜎𝑥𝐾)†

= (𝑆𝑧𝜎𝑥𝜎𝑥𝑆𝑧𝐾𝐾) = +1
(B.14)

B.2.2 𝑃− type symmetry

The 𝑃− operator is given by,

𝑃− =𝑈−
𝑃𝐾 = −𝑖𝑆𝑧𝜎𝑦𝐾 (B.15)

The operator performs the necessary manipulations on our Hamiltonian,

−𝑖𝑆𝑧𝜎𝑦𝐾𝐻∗(−𝑘)𝐾(𝑖𝜎†𝑦𝑆†𝑧) = −𝐻(𝑘) (B.16a)

−𝑆𝑧𝜎𝑦
(

ℎ̂− Δ̂∗(−𝑘)
Δ̂𝑇(−𝑘) ℎ̂+

)
𝜎†𝑦𝑆

†
𝑧 = −𝐻(𝑘) (B.16b)

−𝑆𝑧𝜎𝑦
(

ℎ̂− Δ̂∗(−𝑘)
Δ̂𝑇(−𝑘) ℎ̂+

) (
0 −𝑖𝑆𝑧
𝑖𝑆𝑧 0

)
= −𝐻(𝑘) (B.16c)

−𝑆𝑧𝜎𝑦
(
𝑖Δ̂∗(−𝑘)𝑆𝑧 −𝑖 ℎ̂−𝑆𝑧
𝑖 ℎ̂+𝑆𝑧 −Δ̂𝑇(−𝑘)𝑆𝑧

)
= −𝐻(𝑘) (B.16d)

−
(
𝑆𝑧 ℎ̂+𝑆𝑧 𝑆𝑧Δ̂

𝑇(−𝑘)𝑆𝑧
𝑆𝑧Δ̂

∗(−𝑘)𝑆𝑧 𝑆𝑧 ℎ̂−𝑆𝑧

)
= −𝐻(𝑘) (B.16e)(

−ℎ̂+ 𝑆𝑧Δ̂
𝑇(−𝑘)𝑆𝑧

𝑆𝑧Δ̂
∗(−𝑘)𝑆𝑧 −ℎ̂−

)
= −𝐻(𝑘) (B.16f)
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Finally, it returns −1 when the operator is squared,

(𝑃−)2 = (−𝑖𝑆𝑧𝜎𝑦𝐾)(−𝑖𝑆𝑧𝜎𝑦𝐾)†

= (𝑆𝑧𝜎𝑦𝜎𝑦𝑆𝑧𝐾𝐾) = −1
(B.17)





Appendix C

Deriving analytical edge state
expressions

In this appendix we derive in detail the analytical expressions for the edge states of each
chiral universality class, i.e. BDI, CII, DIII, and CI.

C.1 BDI and CII class models

The minimal model Hamiltonian for the BDI and CII classes is,

�̂�1 = �̂�0 + �̂�1 =

𝑁∑
𝑛𝜂=1,2

(𝑣𝑐†𝐴𝑛𝜂𝑐𝐵𝑛𝜂+𝑤𝑐
†
𝐵𝑛𝜂𝑐𝐴𝑛+1𝜂)+𝛼

𝑁∑
𝑛𝜂=1,2

(𝑐†𝐴𝑛𝜂𝑐𝐵𝑛−𝜂+ 𝑐
†
𝐵𝑛𝜂𝑐𝐴(𝑛+1)−𝜂)

+
𝑁∑

𝑛𝜂=1,2
(𝑣∗𝑐†𝐵𝑛𝜂𝑐𝐴𝑛𝜂+𝑤

∗𝑐†
𝐴(𝑛+1)𝜂𝑐𝐵𝑛𝜂)+𝛼∗

𝑁∑
𝑛𝜂=1,2

(𝑐†𝐵𝑛−𝜂𝑐𝐴𝑛𝜂+ 𝑐
†
𝐴(𝑛+1)−𝜂𝑐𝐵𝑛𝜂)

(C.1)
where the sum n is over all unit cells N and 𝜂 sums all chains, in this case (1,2). The general
wavefunction ansatz for a two site unit cell,

|Ψ⟩ =
𝑀∑
𝑚=1

∑
𝜌=1,2

𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ + 𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ (C.2)
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Applying the Hamiltonian (Eq. (C.1)) to the general wavefunction (Eq. (C.2)),

�̂�1 |Ψ⟩ =
𝑀𝑁∑
𝑚𝑛𝜂𝜌

𝑣𝑐†𝐴𝑛𝜂𝑐𝐵𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ +𝑤𝑐
†
𝐵𝑛𝜂𝑐𝐴𝑛+1𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩

+𝛼(𝑐†𝐴𝑛𝜂𝑐𝐵𝑛−𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ + 𝑐
†
𝐵𝑛𝜂𝑐𝐴(𝑛+1)−𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩)

+𝑣∗𝑐†𝐵𝑛𝜂𝑐𝐴𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ +𝑤
∗𝑐†
𝐴(𝑛+1)𝜂𝑐𝐵𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩

+𝛼∗(𝑐†𝐵𝑛−𝜂𝑐𝐴𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ + 𝑐
†
𝐴(𝑛+1)−𝜂𝑐𝐵𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩)

+
𝑀𝑁∑
𝑚𝑛𝜂𝜌

𝑣𝑐†𝐴𝑛𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ +𝑤𝑐
†
𝐵𝑛𝜂𝑐𝐴𝑛+1𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩

+𝛼(𝑐†𝐴𝑛𝜂𝑐𝐵𝑛−𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ + 𝑐
†
𝐵𝑛𝜂𝑐𝐴(𝑛+1)−𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩)

+𝑣∗𝑐†𝐵𝑛𝜂𝑐𝐴𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ +𝑤
∗𝑐†
𝐴(𝑛+1)𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩

+𝛼∗(𝑐†𝐵𝑛−𝜂𝑐𝐴𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ + 𝑐
†
𝐴(𝑛+1)−𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩)

(C.3)

Eliminate all the zero overlap terms,

�̂�1 |Ψ⟩ =
𝑀𝑁∑
𝑚𝑛𝜂𝜌

𝑤𝑐†𝐵𝑛𝜂𝑐𝐴𝑛+1𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ +𝛼𝑐†𝐵𝑛𝜂𝑐𝐴(𝑛+1)−𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩

+𝑣∗𝑐†𝐵𝑛𝜂𝑐𝐴𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ +𝛼∗𝑐†𝐵𝑛−𝜂𝑐𝐴𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩

+
𝑀𝑁∑
𝑚𝑛𝜂𝜌

𝑣𝑐†𝐴𝑛𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ +𝛼(𝑐†𝐴𝑛𝜂𝑐𝐵𝑛−𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩

+𝑤∗𝑐†
𝐴(𝑛+1)𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ +𝛼∗𝑐†

𝐴(𝑛+1)−𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩

(C.4)

Adjust the m and 𝜌 indices in each term to match the annihilation operator indices (n and 𝜂),

�̂�1 |Ψ⟩ =
𝑁∑
𝑛𝜂

𝑎𝑛+1𝜂𝑤𝑐
†
𝐵𝑛𝜂𝑐𝐴𝑛+1𝜂 |𝑛+1𝐴𝜂⟩ + 𝑎𝑛+1−𝜂𝛼𝑐

†
𝐵𝑛𝜂𝑐𝐴(𝑛+1)−𝜂 |𝑛+1𝐴−𝜂⟩

+ 𝑎𝑛𝜂𝑣∗𝑐†𝐵𝑛𝜂𝑐𝐴𝑛𝜂 |𝑛𝐴𝜂⟩ + 𝑎𝑛𝜂𝛼
∗𝑐†𝐵𝑛−𝜂𝑐𝐴𝑛𝜂 |𝑛𝐴𝜂⟩

+
𝑁∑
𝑛𝜂

𝑏𝑛𝜂𝑣𝑐
†
𝐴𝑛𝜂𝑐𝐵𝑛𝜂 |𝑛𝐵𝜂⟩ + 𝑏𝑛−𝜂𝛼𝑐

†
𝐴𝑛𝜂𝑐𝐵𝑛−𝜂 |𝑛𝐵−𝜂⟩

+ 𝑏𝑛𝜂𝑤∗𝑐†
𝐴(𝑛+1)𝜂𝑐𝐵𝑛𝜂 |𝑛𝐵𝜂⟩ + 𝑏𝑛𝜂𝛼

∗𝑐†
𝐴(𝑛+1)−𝜂𝑐𝐵𝑛𝜂 |𝑛𝐵𝜂⟩

(C.5)

Apply operators to kets,
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�̂�1 |Ψ⟩ =
𝑁∑
𝑛𝜂

𝑎𝑛+1𝜂𝑤 |𝑛𝐵𝜂⟩ + 𝑎𝑛+1−𝜂𝛼 |𝑛𝐵𝜂⟩ + 𝑎𝑛𝜂𝑣∗ |𝑛𝐵𝜂⟩ + 𝑎𝑛𝜂𝛼∗ |𝑛𝐵−𝜂⟩

+ 𝑏𝑛𝜂𝑣 |𝑛𝐴𝜂⟩ + 𝑏𝑛−𝜂𝛼 |𝑛𝐴𝜂⟩ + 𝑏𝑛𝜂𝑤∗ |𝑛+1𝐴𝜂⟩ + 𝑏𝑛𝜂𝛼∗ |𝑛+1𝐴−𝜂⟩

(C.6)

Adjust indices in kets to prefactors,

�̂�1 |Ψ⟩ =
𝑁∑
𝑛𝜂

𝑎𝑛+1𝜂𝑤 |𝑛𝐵𝜂⟩ + 𝑎𝑛+1−𝜂𝛼 |𝑛𝐵𝜂⟩ + 𝑎𝑛𝜂𝑣∗ |𝑛𝐵𝜂⟩ + 𝑎𝑛−𝜂𝛼∗ |𝑛𝐵𝜂⟩

+ 𝑏𝑛𝜂𝑣 |𝑛𝐴𝜂⟩ + 𝑏𝑛−𝜂𝛼 |𝑛𝐴𝜂⟩ + 𝑏𝑛−1𝜂𝑤
∗ |𝑛𝐴𝜂⟩ + 𝑏𝑛−1−𝜂𝛼

∗ |𝑛𝐴𝜂⟩

(C.7)

Expand the chain sum 𝜂 (1,2),

�̂�1 |Ψ⟩ =
𝑁∑
𝑛𝜂

𝑎𝑛+1,1𝑤 |𝑛𝐵,1⟩ + 𝑎𝑛+1,2𝛼 |𝑛𝐵,1⟩ + 𝑎𝑛,1𝑣∗ |𝑛𝐵,1⟩ + 𝑎𝑛,2𝛼∗ |𝑛𝐵,1⟩

+ 𝑏𝑛,1𝑣 |𝑛𝐴,1⟩ + 𝑏𝑛,2𝛼 |𝑛𝐴,1⟩ + 𝑏𝑛−1,1𝑤
∗ |𝑛𝐴,1⟩ + 𝑏𝑛−1,2𝛼

∗ |𝑛𝐴,1⟩
+ 𝑎𝑛+1,2𝑤 |𝑛𝐵,2⟩ + 𝑎𝑛+1,1𝛼 |𝑛𝐵,2⟩ + 𝑎𝑛,2𝑣∗ |𝑛𝐵,2⟩ + 𝑎𝑛,1𝛼∗ |𝑛𝐵,2⟩
+ 𝑏𝑛,2𝑣 |𝑛𝐴,2⟩ + 𝑏𝑛,1𝛼 |𝑛𝐴,2⟩ + 𝑏𝑛−1,2𝑤

∗ |𝑛𝐴,2⟩ + 𝑏𝑛−1,1𝛼
∗ |𝑛𝐴,2⟩

(C.8)

These terms decouple nicely and can be handled separately. We are looking for the equations
of motion at zero energy, which are given by,

|𝑛𝐵,1⟩ : 𝑎𝑛,1𝑣
∗+ 𝑎𝑛+1,1𝑤+ 𝑎𝑛+1,2𝛼+ 𝑎𝑛,2𝛼∗ = 0

|𝑛𝐵,2⟩ : 𝑎𝑛,2𝑣+ 𝑎𝑛+1,2𝑤
∗+ 𝑎𝑛+1,1𝛼+ 𝑎𝑛,1𝛼∗ = 0

|𝑛𝐴,1⟩ : 𝑏𝑛,1𝑣+ 𝑏𝑛−1,1𝑤
∗+ 𝑏𝑛,2𝛼+ 𝑏𝑛−1,2𝛼

∗ = 0
|𝑛𝐴,2⟩ : 𝑏𝑛,2𝑣

∗+ 𝑏𝑛−1,2𝑤+ 𝑏𝑛,1𝛼+ 𝑏𝑛−1,1𝛼
∗ = 0

(C.9)

To be concrete in this derivation we will consider only the left edge of a semi-infinite ladder.
Determining the right edge would give an analogous calculation and conclusions. The
general form of the wavefunction on a given site n,

𝜓𝑛 =
∑
𝑖=1,2

𝜗𝑖(−𝜆)𝑛 ®𝑢𝑖 (C.10)

consists of the linear combination of the amplitudes on both chains. Here 𝜗1,2 ∈ C represent
the prefactor of each component, 𝜆 is the eigenvalue of the recurrence matrix, Eq. (6.11), and
®𝑢𝑖 is the wavefunction component. The most general form would be a four component sum
however as we have restricted the calculation to the left edge (two sites), the sum is only over
two elements.

We will derive the eigenvalue and eigenvector components of the recurrence matrix to
construct our analytical edge state wavefunction in the following paragraphs. For the left
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edge in the thermodynamic limit we expect states to be only on the A-sublattice such that all
𝑏𝑛 coefficients should be 0 for all n. This gives us the boundary condition 𝑏0 = 0. So we work
with the |𝑛𝐵,1⟩, |𝑛𝐵,2⟩ sets. The A-site coefficients (𝑎𝑛) need to decay into the bulk otherwise
the state is unnormalizable. Here we will solve for only the A-site coefficients (𝑎𝑛,(1,2)), which
should decay from the left edge to zero on the right edge. Equally the B-sublattice amplitudes
will be the reverse, decaying from the right edge to the left edge.

The next steps are to solve the recurrence relation eigensets to build the analytical
wavefunctions. Collect like cell index terms from equations (C.9),

𝑎𝑛+1,1𝑤+ 𝑎𝑛+1,2𝛼 = −(𝑎𝑛,1𝑣∗+ 𝑎𝑛,2𝛼∗)
𝑎𝑛+1,1𝛼+ 𝑎𝑛+1,2𝑤

∗ = −(𝑎𝑛,1𝛼∗+ 𝑎𝑛,2𝑣)
(C.11)

What we have produced here is a recurrence relation that gives us the coefficients for the
next cell based on the current cell. Expressed as matrices,(

𝑤 𝛼

𝛼 𝑤∗

) (
𝑎𝑛+1,1
𝑎𝑛+1,2

)
= −

(
𝑣∗ 𝛼∗

𝛼∗ 𝑣

) (
𝑎𝑛,1
𝑎𝑛,2

)
(C.12)

Rearranging and simplifying, C represents the 2x2 matrix on the left side, D the same on the
right side.

®𝑎𝑛+1 = −𝐶−1𝐷®𝑎𝑛 (C.13)

We can define the recurrence matrix T, by combining C and D matrices,

®𝑎𝑛+1 = −𝑇 ®𝑎𝑛 (C.14)

where,

𝑇 =
1

|𝑤 |2 −𝛼2

(
𝑤∗𝑣∗− |𝛼 |2 𝑤∗𝛼∗−𝛼𝑣

𝑤𝛼∗−𝑣∗𝛼 𝑤𝑣− |𝛼 |2
)

(C.15)

Calculate the eigenvalues of the transfer matrix as this will tell us the parts for each chain,(
𝑤∗𝑣∗− |𝛼 |2 −𝜆 𝑤∗𝛼∗−𝛼𝑣

𝑤𝛼∗−𝑣∗𝛼 𝑤𝑣− |𝛼 |2 −𝜆

)
(C.16)

Solve for the eigenvalues,

(𝑤∗𝑣∗−𝛼𝛼∗−𝜆)(𝑤𝑣−𝛼𝛼∗−𝜆)− (𝑤∗𝛼∗−𝛼𝑣)(𝑤𝛼∗−𝑣∗𝛼) = 0
𝜆2 −(2|𝛼 |2 −𝑤∗𝑣∗−𝑤𝑣)𝜆+ |𝑤 |2 |𝑣 |2 − |𝑤 |2𝛼 ∗2 −|𝑣 |2𝛼2 + |𝛼 |4 = 0

(C.17)

𝜆1,2 =
−(2|𝛼 |2 −𝑤∗𝑣∗−𝑤𝑣)± 𝑖

√
|Ω|

2 (C.18a)

Ω= −4𝑤∗𝑣∗ |𝛼 |2 −4𝑤𝑣 |𝛼 |2 +(𝑤∗𝑣∗)2 +(𝑤𝑣)2 −2|𝑤 |2 |𝑣 |2 +4|𝑤 |2𝛼∗2 +4|𝑣 |2𝛼2 (C.18b)
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We also define the decay length of the edge state and oscillating part of the wavefunction by
taking the real and imaginary part of the logarithm of the eigenvalue, 𝛿 = 𝑙𝑛(𝜆).

Additionally we can make the assertion that at the high symmetry points (i.e. time-
reversal symmetry points) of 𝛼 = {0,𝜋/2} then 𝜆1 = 𝜆∗

2 and vice versa. For this assertion to be
true the sign of the square root term needs to change and as none of the terms under the
square root change this is indicating that the sign of the square root must always be negative
at the time-reversal symmetry points. The eigenvectors ®𝑢1,2 of the transfer matrix are derived
via, (

𝑡 𝑢

𝑣 𝑤

) (
𝑎1
𝑎2

)
= 𝜆𝑖

(
𝑎1
𝑎2

)
(C.19)

where we have used generic variables,

𝑡𝑎1 +𝑢𝑎2 = 𝜆𝑖𝑎1 (C.20)
𝑣𝑎1 +𝑤𝑎2 = 𝜆𝑖𝑎2 (C.21)

(−𝑡
𝑢

+ 𝜆
𝑢
)𝑎1 = 𝑎2 (C.22)

Thus the two (complex) eigenvectors are,

®𝑢1,2 =
(
1 𝑤𝑣−𝑤∗𝑣∗±

√
|Ω|

2(𝑤∗𝛼∗−𝛼𝑣)

)
(C.23)

Then the most generic solution for this is, since an eigenvector can be a linear combination of
other eigenvectors,

®𝜓𝑛 =
∑
𝑖=1,2

𝜗𝑖(−𝜆)𝑛 ®𝑢𝑖 (C.24)

where 𝜗1,2 ∈ C.

𝜓𝐴,𝑛 =

(
𝑎𝑛,1
𝑎𝑛,2

)
= 𝜗1(−𝜆1)𝑛 ®𝑢1 +𝜗2(−𝜆2)𝑛 ®𝑢2 (C.25)

The 𝜗𝑠 are the contribution factors for the eigenvectors. These eigenvectors represent to
edge states present on the left edge and since they are degenerate we can take any linear
combination however the choice of a symmetric and antisymmetric combinations is useful to
demonstrate some properties of the edge states.

In order to do that consider 𝜗1 = ±𝜗2 and have the following definitions,

𝜓+ ⇒ 𝜗1 = 𝜗2

𝜓− ⇒ 𝜗1 = −𝜗2
(C.26)

Refine the equation to a simpler notation where the minus has been incorporated into the
eigenvalues (𝜆𝑖) and the eigenvectors are ®𝑢1,2 with basis (𝐴1, 𝐴2),
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®Ψ± = (𝜆1)𝑛 ®𝑢1 ±(𝜆2)𝑛 ®𝑢2 (C.27)

The edge states are normalizable if they decay (from the left in this case) into the bulk, i.e.
|𝜆1,2 | < 1, which corresponds to the topological phase.

The symmetry properties of the model must be reflected in the properties of the edge
states wave functions. We can demonstrate these properties analytically by studying how
they transform under the action of time-reversal symmetry. Then we propose the conjectures
that for the BDI class, application of the time-reversal symmetry will transform the state
back to itself. For the CII class, to comply with Kramers theorem, the state will transform to
its counterpart with a ±1 prefactor. Mathematically,

𝐵𝐷𝐼 : 𝑇+ |Ψ+⟩ = |Ψ+⟩ 𝑇+ = 𝜎0𝑆𝑥𝐾

𝑇+ |Ψ−⟩ = − |Ψ−⟩
𝐶𝐼𝐼 : 𝑇− |Ψ+⟩ = ± |Ψ−⟩ 𝑇− = 𝑖𝜎0𝑆𝑦𝐾

𝑇− |Ψ−⟩ = ± |Ψ+⟩

(C.28)

𝐵𝐷𝐼 : 𝑇+𝜙± ∝ 𝜙± 𝑇+ = 𝑆0𝜎𝑥𝐾, (C.29)
𝐶𝐼𝐼 : 𝑇−𝜙± ∝ 𝜙∓ 𝑇− = 𝑖𝑆0𝜎𝑦𝐾 (C.30)

As the two edge states are degenerate one can take any linear combination, however our
choice of Ψ± is useful to demonstrate the symmetry properties of these edge states.

So then if we have the state Ψ=

(
𝑎

𝑏

)
in the chain basis Ψ=

(
1
2

)
basis,

𝑇+Ψ= 𝜎0𝑆𝑥𝐾

(
𝑎

𝑏

)
=

(
𝑏∗

𝑎∗

)
, 𝑇−Ψ= 𝑖𝜎0𝑆𝑦𝐾

(
𝑎

𝑏

)
=

(
−𝑏∗
𝑎∗

)
(C.31)

𝜎0 applies to the A/B-sublattice so nothing changes there. In the 𝑇+ (BDI) case we would
need 𝑎 = 𝑏∗. In the 𝑇− case then we need 𝑎 = −𝑏.

Let us demonstrate these expressions explicitly using the eigenvectors ®𝑢1,2,

𝑇+®𝑢1 = 𝑆0𝜎𝑥𝐾

(
1

𝑤∗𝑣∗−𝑤𝑣+𝑖
√

|Ω|
2(𝑣∗𝑎∗−𝑤𝑎)

)
(C.32)

=

(
𝑤𝑣−𝑤∗𝑣∗−𝑖

√
|Ω|

2(𝑣𝑎−𝑤∗𝑎∗)
1

)
= ®𝑢2 (C.33)

It is trivial to check that 𝑇+𝜙− = −𝜙−. Thusly 𝑇+𝜙± = ±𝜙± which is consistent with the
aforementioned conjectures. By acting with 𝑇− on the eigenstates ®𝑢1 and ®𝑢2 we get,
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𝑇−®𝑢1 = 𝑖𝑆0𝜎𝑦𝐾

(
1

𝑤∗𝑣∗−𝑤𝑣+𝑖
√

|Ω|
2(𝑣∗𝑎∗−𝑤𝑎)

)
(C.34)

=

(
𝑤𝑣−𝑤∗𝑣∗−𝑖

√
|Ω|

2(𝑣𝑎−𝑤∗𝑎∗)
−1

)
= −®𝑢2 (C.35)

Thus our conjectures hold for the CII model since operating on one of the eigenstates gives a
minus sign needed to transform 𝜙+ to 𝜙−.

C.2 DIII and CI class models

In this section we will derive the analytical wavefunction expressions for the DIII and CI
universality class models that have 𝐶2 chiral symmetry. We follow the same procedure as
the previous section.

The corresponding Hamiltonian is given by,

�̂�2 = �̂�0 + �̂�1 =

𝑁∑
𝑛𝜂=1,2

(𝑣𝑐†𝐴𝑛𝜂𝑐𝐵𝑛𝜂+𝑤𝑐
†
𝐵𝑛𝜂𝑐𝐴𝑛+1𝜂)+𝛽

𝑁−1∑
𝑛𝜂=1,2

(𝑐†𝐴𝑛𝜂𝑐𝐴(𝑛+1)−𝜂+ 𝑐†𝐵𝑛𝜂𝑐𝐵(𝑛+1)−𝜂)

+
𝑁∑

𝑛𝜂=1,2
(𝑣∗𝑐†𝐵𝑛𝜂𝑐𝐴𝑛𝜂+𝑤

∗𝑐†
𝐴(𝑛+1)𝜂𝑐𝐵𝑛𝜂)+𝛽∗

𝑁−1∑
𝑛𝜂=1,2

(𝑐†
𝐴(𝑛+1)−𝜂𝑐𝐴𝑛𝜂+ 𝑐

†
𝐵(𝑛+1)−𝜂𝑐𝐵𝑛𝜂)

(C.36)
where the operators are summed over all cells n and chains 𝜂. We apply the Hamiltonian
(Eq. (C.36)) to the generic wavefunction,

|Ψ⟩ =
𝑀∑

𝑚𝜌=1,2
𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ + 𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ (C.37)
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where the wavefunction is summed over all unit cells m on all chains 𝜌. This gives,

�̂�2 |Ψ⟩ =
𝑀𝑁∑
𝑚𝑛𝜂𝜌

𝑣𝑐†𝐴𝑛𝜂𝑐𝐵𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ +𝑤𝑐
†
𝐵𝑛𝜂𝑐𝐴𝑛+1𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩

+𝛽(𝑐†𝐴𝑛𝜂𝑐𝐴(𝑛+1)−𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ + 𝑐†𝐵𝑛𝜂𝑐𝐵(𝑛+1)−𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩)

+𝑣∗𝑐†𝐵𝑛𝜂𝑐𝐴𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ +𝑤
∗𝑐†
𝐴(𝑛+1)𝜂𝑐𝐵𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩

+𝛽∗(𝑐†
𝐴(𝑛+1)−𝜂𝑐𝐴𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ + 𝑐

†
𝐵(𝑛+1)−𝜂𝑐𝐵𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩)

+
𝑀𝑁∑
𝑚𝑛𝜂𝜌

𝑣𝑐†𝐴𝑛𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ +𝑤𝑐
†
𝐵𝑛𝜂𝑐𝐴𝑛+1𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩

+𝛽(𝑐†𝐴𝑛𝜂𝑐𝐴(𝑛+1)−𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ + 𝑐†𝐵𝑛𝜂𝑐𝐵(𝑛+1)−𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩)

+𝑣∗𝑐†𝐵𝑛𝜂𝑐𝐴𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ +𝑤
∗𝑐†
𝐴(𝑛+1)𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩

+𝛽∗(𝑐†
𝐴(𝑛+1)−𝜂𝑐𝐴𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ + 𝑐

†
𝐵(𝑛+1)−𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩)

(C.38)

Eliminate zero overlap terms,

�̂�2 |Ψ⟩ =
𝑀𝑁∑
𝑚𝑛𝜂𝜌

𝑤𝑐†𝐵𝑛𝜂𝑐𝐴𝑛+1𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ +𝛽(𝑐†𝐴𝑛𝜂𝑐𝐴(𝑛+1)−𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩)

+𝑣∗𝑐†𝐵𝑛𝜂𝑐𝐴𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩ +𝛽∗(𝑐†
𝐴(𝑛+1)−𝜂𝑐𝐴𝑛𝜂𝑎𝑚𝜌 |𝑚𝐴𝜌⟩)

+
𝑀𝑁∑
𝑚𝑛𝜂𝜌

𝑣𝑐†𝐴𝑛𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ +𝛽(𝑐†𝐵𝑛𝜂𝑐𝐵(𝑛+1)−𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩)

+𝑤∗𝑐†
𝐴(𝑛+1)𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩ +𝛽∗(𝑐†

𝐵(𝑛+1)−𝜂𝑐𝐵𝑛𝜂𝑏𝑚𝜌 |𝑚𝐵𝜌⟩)

(C.39)

Adjust indices in the kets to match annihilation operators indices,

�̂�2 |Ψ⟩ =
𝑁∑
𝑛𝜂

𝑤𝑐†𝐵𝑛𝜂𝑐𝐴𝑛+1𝜂𝑎𝑛+1𝜂 |𝑛+1𝐴𝜂⟩ +𝛽(𝑐†𝐴𝑛𝜂𝑐𝐴(𝑛+1)−𝜂𝑎𝑛+1−𝜂 |𝑛+1𝐴−𝜂⟩)

+𝑣∗𝑐†𝐵𝑛𝜂𝑐𝐴𝑛𝜂𝑎𝑛𝜂 |𝑛𝐴𝜂⟩ +𝛽∗(𝑐†
𝐴(𝑛+1)−𝜂𝑐𝐴𝑛𝜂𝑎𝑛+1𝜂 |𝑛+1𝐴𝜂⟩)

+
𝑁∑
𝑛𝜂

𝑣𝑐†𝐴𝑛𝜂𝑐𝐵𝑛𝜂𝑏𝑛𝜂 |𝑛𝐵𝜂⟩ +𝛽(𝑐†𝐵𝑛𝜂𝑐𝐵(𝑛+1)−𝜂𝑏𝑛+1−𝜂 |𝑛+1𝐵−𝜂⟩)

+𝑤∗𝑐†
𝐴(𝑛+1)𝜂𝑐𝐵𝑛𝜂𝑏𝑛𝜂 |𝑛𝐵𝜂⟩ +𝛽∗(𝑐†

𝐵(𝑛+1)−𝜂𝑐𝐵𝑛𝜂𝑏𝑛𝜂 |𝑛𝐵𝜂⟩)

(C.40)
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Apply operators,

�̂�2 |Ψ⟩ =
𝑁∑
𝑛𝜂

𝑤𝑎𝑛+1𝜂 |𝑛𝐵𝜂⟩ +𝛽(𝑎𝑛+1−𝜂 |𝑛𝐴𝜂⟩)+𝑣∗𝑎𝑛𝜂 |𝑛𝐵𝜂⟩ +𝛽∗(𝑎𝑛+1𝜂 |𝑛+1𝐴−𝜂⟩)

+
𝑁∑
𝑛𝜂

𝑣𝑏𝑛𝜂 |𝑛𝐴𝜂⟩ +𝛽(𝑏𝑛+1−𝜂 |𝑛𝐵𝜂⟩)+𝑤∗𝑏𝑛𝜂 |𝑛+1𝐴𝜂⟩ +𝛽∗(𝑏𝑛𝜂 |𝑛+1𝐵−𝜂⟩)
(C.41)

Adjust n and 𝜂 indices,

�̂�2 |Ψ⟩ =
𝑁∑
𝑛𝜂

𝑤𝑎𝑛+1𝜂 |𝑛𝐵𝜂⟩ +𝛽(𝑎𝑛+1−𝜂 |𝑛𝐴𝜂⟩)+𝑣∗𝑎𝑛𝜂 |𝑛𝐵𝜂⟩ +𝛽∗(𝑎𝑛−1−𝜂 |𝑛𝐴𝜂⟩)

+
𝑁∑
𝑛𝜂

𝑣𝑏𝑛𝜂 |𝑛𝐴𝜂⟩ +𝛽(𝑏𝑛+1−𝜂 |𝑛𝐵𝜂⟩)+𝑤∗𝑏𝑛−1𝜂 |𝑛𝐴𝜂⟩ +𝛽∗(𝑏𝑛−1−𝜂 |𝑛𝐵𝜂⟩)
(C.42)

Expanding the chain sums (i.e. 1 for the top chain, 2 for the bottom one),

�̂�2 |Ψ⟩ =
𝑁∑
𝑛,1
𝑤𝑎𝑛+1,1 |𝑛𝐵,1⟩ +𝛽(𝑎𝑛+1−𝜂 |𝑛𝐴,1⟩)+𝑣∗𝑎𝑛,1 |𝑛𝐵,1⟩ +𝛽∗(𝑎𝑛−1,2 |𝑛𝐴,1⟩)

+
𝑁∑
𝑛,1
𝑣𝑏𝑛,1 |𝑛𝐴,1⟩ +𝛽(𝑏𝑛+1,2 |𝑛𝐵,1⟩)+𝑤∗𝑏𝑛−1,1 |𝑛𝐴,1⟩ +𝛽∗(𝑏𝑛−1,2 |𝑛𝐵,1⟩)

=

𝑁∑
𝑛,2
𝑤𝑎𝑛+1,2 |𝑛𝐵,2⟩ +𝛽(𝑎𝑛+1,1 |𝑛𝐴,2⟩)+𝑣∗𝑎𝑛,2 |𝑛𝐵,2⟩ +𝛽∗(𝑎𝑛−1,1 |𝑛𝐴,2⟩)

+
𝑁∑
𝑛,2
𝑣𝑏𝑛,2 |𝑛𝐴,2⟩ +𝛽(𝑏𝑛+1,1 |𝑛𝐵,2⟩)+𝑤∗𝑏𝑛−1,2 |𝑛𝐴,2⟩ +𝛽∗(𝑏𝑛−1,1 |𝑛𝐵,2⟩)

(C.43)

Finally we arrive at the equations of motion,

|𝑛𝐴,1⟩ : 𝑏𝑛,1𝑣+ 𝑏𝑛−1,1𝑤
∗+ 𝑎𝑛+1,2𝛽+ 𝑎𝑛−1,2𝛽

∗ = 𝜖 |𝑛𝐴,1⟩ (C.44a)
|𝑛𝐴,2⟩ : 𝑏𝑛,2𝑣

∗+ 𝑏𝑛−1,2𝑤+ 𝑎𝑛+1,1𝛽+ 𝑎𝑛−1,1𝛽
∗ = 𝜖 |𝑛𝐴,2⟩ (C.44b)

|𝑛𝐵,1⟩ : 𝑎𝑛,1𝑣
∗+ 𝑎𝑛+1,1𝑤+ 𝑏𝑛+1,2𝛽+ 𝑏𝑛−1,2𝛽

∗ = 𝜖 |𝑛𝐵,1⟩ (C.44c)
|𝑛𝐵,2⟩ : 𝑎𝑛,2𝑣+ 𝑎𝑛+1,2𝑤

∗+ 𝑏𝑛+1,1𝛽+ 𝑏𝑛−1,1𝛽
∗ = 𝜖 |𝑛𝐵,2⟩ (C.44d)

Unlike the previous BDI/CII case, these equations do not decouple nicely if we focus on the
natural A-B sublattice and zero energy. However they decouple in the 𝐶2 basis, i.e. in the
chiral basis where 𝐴→ 𝐴

′ , 𝐵→ 𝐵
′ on the top chain and on the bottom chain 𝐴→ 𝐵

′ , 𝐵→ 𝐴
′ ,

see Fig. 4.1. We convert the prefactors in equations (C.44) accordingly and we come to a set
of decoupled equations at zero energy,
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𝑎′𝑛,1𝑣
∗+ 𝑎′𝑛+1,1𝑤+ 𝑎′𝑛+1,2𝛽+ 𝑎

′
𝑛−1,2𝛽

∗ = 0

𝑎′𝑛,2𝑣
∗+ 𝑎′𝑛−1,2𝑤+ 𝑎′𝑛+1,1𝛽+ 𝑎

′
𝑛−1,1𝛽

∗ = 0
(C.45)

𝑏′𝑛,2𝑣+ 𝑏′𝑛+1,2𝑤
∗+ 𝑏′𝑛+1,1𝛽+ 𝑏

′
𝑛−1,1𝛽

∗ = 0

𝑏′𝑛,1𝑣+ 𝑏
′
𝑛−1,1𝑤

∗+ 𝑏′𝑛+1,2𝛽+ 𝑏
′
𝑛−1,2𝛽

∗ = 0
(C.46)

If we think about the state vector on cell n being of the form Ψ𝑛 =

(
𝑎′
𝑛,1 𝑎′

𝑛,2 𝑏′
𝑛,1 𝑏′

𝑛,2

)𝑇
and if we expect the solution in the form of plane waves then we can take the state amplitudes
at cell ’0’ and then apply an ’evolution’ parameter that will give us the amplitude at any cell
in the system. Thus we can define the following ansatz,

Ψ𝑛 =Ψ0𝑒
𝑖𝜆𝑛 Ψ𝑛 =

©«
𝑎′
𝑛,1
𝑎′
𝑛,2
𝑏′
𝑛,1
𝑏′
𝑛,2

ª®®®®¬
Ψ0 =

©«
𝑎′0,1
𝑎′0,2
𝑏′0,1
𝑏′0,2

ª®®®®¬
(C.47)

where the exponential is the decay factor and 𝜆 is the decay rate which is essentially the
eigenvalues of the transfer matrix. If we break the vectors down further into the component
sets we are interested in,

Ψ𝑛 →Ψ
(1)
𝑛 =

(
𝑎′
𝑛,1
𝑏′
𝑛,2

)
Ψ

(2)
𝑛 =

(
𝑎′
𝑛,2
𝑏′
𝑛,1

)
(C.48)

If we define 𝑍 = 𝑒 𝑖𝜆 then we can propogate our equations as above. Looking at the first set
of two equations, equations (C.44a) and (C.44b), and defining each as per equations (C.47)
gives the wavefunctions as a function of Z,

𝑎′0,1𝑍
𝑛𝑣∗+ 𝑎′0,1𝑤𝑍

𝑛+1 + 𝑏′0,2𝛽𝑍𝑛+1 − 𝑏′0,2𝛽∗𝑍𝑛−1 = 0

𝑎′0,1𝛽𝑍
𝑛+1 + 𝑎′0,1𝛽

∗𝑍𝑛−1 + 𝑏′0,2𝑍𝑛𝑣∗+ 𝑏′0,2𝑤𝑍𝑛−1 = 0
(C.49)

Divide out 𝑍𝑛 and consiladate into matrix form,

𝑎′0,1𝑣
∗+ 𝑎′0,1𝑤𝑍+ 𝑏′0,2𝛽𝑍+ 𝑏′0,2𝛽∗𝑍−1 = 0

𝑎′0,1𝛽𝑍+ 𝑎′0,1𝛽
∗𝑍−1 + 𝑏′0,2𝑣∗+ 𝑏′0,2𝑤𝑍−1 = 0

(𝑣∗+𝑤𝑍)𝑎′0,1 +(𝛽𝑍+𝛽∗1/𝑍)𝑏′0,2 = 0
(𝛽𝑍+𝛽∗1/𝑍)𝑎′0,1 +(𝑣∗+𝑤1/𝑍)𝑏′0,2 = 0

(C.50)

(
(𝑣∗+𝑤𝑍) (𝛽𝑍+ 𝛽∗/𝑍)
(𝛽𝑍+ 𝛽∗/𝑍) (𝑣∗+𝑤/𝑍)

) (
𝑎′
𝑛,1
𝑏′
𝑛,2

)
=

(
0
0

)
(C.51)
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This is the recurrence relation transfer matrix for DIII. The determinant gives the allowed
values for Z, and subsequently the eigenvalues of the analytical edge states. The determinant
gives,

𝑣∗2 + 𝑤𝑣
∗

𝑍
+𝑤𝑣∗𝑍−(𝛽𝑍)2 −2|𝛽 |2 − 𝛽∗2

𝑍2 = 0 (C.52)

Multiply through by 𝑍2 and rearrange,

−𝛽2𝑍4 +𝑤𝑣∗𝑍3 +𝑣∗2𝑍2 −2|𝛽 |2𝑍2 +𝑤𝑣∗𝑍−𝛽∗2 = 0 (C.53)

This can be reduced to a quadratic, if the left side is a polynomial in Z then one may write
the identity,

𝑎𝑍4 + 𝑏𝑍3 + 𝑐𝑍2 + 𝑑𝑍+ 𝑒 = 0
𝑃(𝑍)
𝑍2 = (𝑎𝑍2 + 𝑒

𝑍2 )+ (𝑏𝑍+ 𝑑

𝑍
)+ 𝑐

(C.54)

Assume 𝑎 = 𝑒 and 𝑏 = 𝑑, which should be true in our case,

𝑃(𝑍)
𝑍2 = 𝑎(𝑍2 + 1

𝑍2 )+ 𝑏(𝑍+ 1
𝑍
)+ 𝑐 (C.55)

This can be reduced to a simple quadratic by setting,

𝑥 = 𝑍+ 1/𝑍 (C.56)

Which gives,
𝑃(𝑍)
𝑍2 = 𝑎𝑥2 + 𝑏𝑥+ 𝑐 (C.57)

Solving for x gives, explicitly,

𝑥1 =
𝑤𝑣∗+

√
(𝑤𝑣∗)2 +4(𝑣∗𝛽)2 −8|𝛽 |2𝛽2 +4(𝑤𝛽)2 +8𝛽2

2𝛽2

𝑥2 =
𝑤𝑣∗−

√
(𝑤𝑣∗)2 +4(𝑣∗𝛽)2 −8|𝛽 |2𝛽2 +4(𝑤𝛽)2 +8𝛽2

2𝛽2

(C.58)

We then solve for Z by multiplying equation (C.56) by Z giving,

𝑍2 − 𝑥1𝑍+1 = 0 𝑍2 − 𝑥2𝑍+1 = 0 (C.59)
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The full solutions for Z are,

𝑍 =

−𝑥1,2 ±
√
𝑥2

1,2 −4

2

𝑍
(1)
1𝑎,𝑏 =

−𝑤𝑣∗+
√
(𝑤𝑣∗)2 +4(𝑣∗𝛽)2 −8|𝛽 |2𝛽2 +4(𝑤𝛽)2 +8𝛽2

4𝛽2 ±

√
(−𝑤𝑣

∗+
√

(𝑤𝑣∗)2+4(𝑣∗𝛽)2−8|𝛽 |2𝛽2+4(𝑤𝛽)2+8𝛽2

4𝛽2 )−4

2

𝑍
(1)
2𝑎,𝑏 =

−𝑤𝑣∗−
√
(𝑤𝑣∗)2 +4(𝑣∗𝛽)2 −8|𝛽 |2𝛽2 +4(𝑤𝛽)2 +8𝛽2

4𝛽2 ±

√
(−𝑤𝑣

∗−
√

(𝑤𝑣∗)2+4(𝑣∗𝛽)2−8|𝛽 |2𝛽2+4(𝑤𝛽)2+8𝛽2

4𝛽2 )−4

2
(C.60)

Where the superscript on the Zs indicates these solutions are for equations (C.44a) and
(C.44b), and the subscripts denote the two possible solutions for each. These allowed values
have the relations 𝑍1𝑎 = 1/𝑍1𝑏 and 𝑍2𝑎 = 1/𝑍2𝑏. Now that we have a definition for Z, can now
calculate the eigenvectors of the 2x2 transfer matrix from above where Z can be any of the
four allowed values for Z equations (C.60),(

𝑎′0,1
𝑏′0,2

)
1

=

(
1

−(𝑣∗+𝑤𝑍)
𝛽𝑍+𝛽∗/𝑍

) (
𝑎′0,1
𝑏′0,2

)
2

=

(
1

−(𝑣∗+𝑤/𝑍)
𝛽𝑍+𝛽∗/𝑍

)
(C.61)

It is trivial to see that time-reversal will turn one edge state into the other, that is,(
𝑎′
𝑛,1
𝑏′
𝑛,2

)
→

(
𝑎′
𝑛,2
𝑏′
𝑛,1

)
(C.62)

And vice-versa.



Appendix D

Mean field calculations and SSH4

Here we derive the necessary mean field equations for a two site unit cell case and then for a
four site unit cell case.

D.1 2-site unit cell case

Begin with a Hamiltonian with uniform coupling A and interaction U, and convert to
momentum space,

�̂� = 𝐴

𝑁∑
𝑛

(𝑐†𝑛𝐴𝑐𝑛𝐵+ 𝑐
†
𝑛𝐵𝑐𝑛+1𝐴+ ℎ.𝑐.)+𝑈

𝑁∑
𝑛

(𝑐†𝑛𝐴𝑐𝑛𝐴𝑐
†
𝑛𝐵𝑐𝑛𝐵+ 𝑐

†
𝑛+1𝐴𝑐𝑛+1𝐴𝑐

†
𝑛𝐵𝑐𝑛𝐵) (D.1)

= 𝐴

𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐴
𝑐𝑘𝐵+ 𝑐†𝑛𝐵𝑐𝑘𝐴𝑒

𝑖𝑘 + ℎ.𝑐.)+𝑈
𝑁∑
𝑘

(𝑐†
𝑘𝐴
𝑐𝑘𝐴𝑐

†
𝑘𝐵
𝑐𝑘𝐵)𝑒 𝑖𝑘1𝑛𝑒−𝑖𝑘2𝑛𝑒 𝑖𝑘3𝑛𝑒−𝑖𝑘4𝑛 (D.2)

= 𝐴

𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐴
𝑐𝑘𝐵+ 𝑐†𝑛𝐵𝑐𝑘𝐴𝑒

𝑖𝑘 + ℎ.𝑐.)+𝑈
𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐴
𝑐𝑘𝐴𝑐

†
𝑘𝐵
𝑐𝑘𝐵)𝛿(𝑘1 − 𝑘2 + 𝑘3 − 𝑘4) (D.3)

= 𝐴

𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐴
𝑐𝑘𝐵+ 𝑐†𝑛𝐵𝑐𝑘𝐴𝑒

𝑖𝑘 + ℎ.𝑐.)+𝑈
𝐵𝑍∑
𝑘𝑝𝑞

(𝑐†
𝑘𝐴
𝑐𝑘+𝑞𝐴𝑐

†
𝑝𝐵𝑐𝑝−𝑞𝐵(1+ 𝑒

−𝑖𝑞)) (D.4)

where we have parameterized 𝑘1 = 𝑘, 𝑘2 = 𝑘+𝑞, 𝑘3 = 𝑝, 𝑘4 = 𝑝−𝑞. Diagonalize𝐻 =𝐶†
𝑘
�̃�𝐷�̃�−1𝐶𝑘

where �̃�−1𝐶𝑘 = (𝑐−𝑐+)𝑇 with − and + representing the lower and upper bands respectively.
Also have 𝐶†�̃� = (𝑐†−𝑐†+). The �̃�s are the eigenvectors of H and are unitary such that �̃�−1 = �̃�†

and are all functions of 𝑘.

�̃� =

(
𝑢11 𝑢21
𝑢12 𝑢22

)
(D.5)

where the first eigenvector is the first column (𝑢11 𝑢12) and the second eigenvector (𝑢21 𝑢22)
in the second column. Transform the momentum space operators to the band basis,
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𝑐†
𝑘𝐴

= 𝑢∗11𝑐
†
−+𝑢∗21𝑐

†
+ (D.6)

𝑐†
𝑘𝐵

= 𝑢∗12𝑐
†
−+𝑢∗22𝑐

†
+ (D.7)

𝑐𝑘𝐴 = 𝑢11𝑐−+𝑢21𝑐+ (D.8)
𝑐𝑘𝐵 = 𝑢12𝑐−+𝑢22𝑐+ (D.9)

We are at half-filling so will only be interested in the (-,-) terms. Calculate expectation values
of the kinetic operators,

⟨𝑐†
𝑘𝐴
𝑐𝑘𝐵⟩ = (𝑢∗11𝑐

†
−+𝑢∗21𝑐

†
+)(𝑢12𝑐−+𝑢22𝑐+) (D.10)

= 𝑢∗11𝑢12𝑐
†
−𝑐−+𝑢∗11𝑢22𝑐

†
−𝑐++𝑢∗21𝑢12𝑐

†
+𝑐−+𝑢∗21𝑢22𝑐

†
+𝑐+ (D.11)

= 𝑢∗11𝑢12𝑐
†
−𝑐− (D.12)

And the 𝑐†
𝑘𝐵
𝑐𝑘𝐴 term is just the complex conjugate of above. To save ourselves calculating all

of the components in the four operator interacting term we use the half-filling condition to
know that the only nonzero terms are ⟨𝑐†−𝑐−𝑐†−𝑐−⟩ and ⟨𝑐†−𝑐+𝑐†+𝑐−⟩ which occur when 𝑞 = 0
and 𝑞 = 𝑝− 𝑘, respectively.

⟨𝑐†−𝑐−𝑐†−𝑐−⟩ =


|𝑢11 |2 |𝑢11 |2 𝑖 𝑓 𝑞 = 0
𝑢∗11𝑢21𝑢

∗
22𝑢12 𝑖 𝑓 𝑞 = 𝑝− 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(D.13)

Establish the mean field integrals for kinetic and interacting terms,

⟨�̂�𝑘𝑖𝑛⟩ = 𝐴
∫
𝐵𝑍

[𝑢∗11𝑢22(1+ 𝑒 𝑖𝑘 +𝑢11𝑢
∗
22(1+ 𝑒−𝑖𝑘)]

𝑑𝑘

2𝜋 (D.14)

⟨�̂�𝑖𝑛𝑡⟩ =𝑈
∫
𝐵𝑍

∫
𝐵𝑍

[2|𝑢11 |2 |𝑢11 |2 +𝑢∗11𝑢21𝑢
∗
22𝑢12(1+ 𝑒 𝑖(𝑘−𝑝))]

𝑑𝑘

2𝜋 (D.15)

�̂�𝑀𝐹
1 =

(
𝑐†
𝑘𝐴

𝑐†
𝑘𝐵

) (
𝛿𝑤 −𝑡(1+ 𝑒−𝑖𝑘)

−𝑡(1− 𝑒 𝑖𝑘) −𝛿𝑤

) (
𝑐𝑘𝐴

𝑐𝑘𝐵

)
(D.16)

In general performing the integrals analytically is not advised so we stick to simple numerical
integration using the trapezoidal rules in both one and two dimensions. Obviously one
could use one of the more accurate Simpsons rules but this one is accurate enough for our
purposes. ∫ 𝑏

𝑎

𝑓 (𝑥) = Δ𝑥

2 [ 𝑓 (𝑥0)+2 𝑓 (𝑥1)+2 𝑓 (𝑥2)+ · · · +2 𝑓 (𝑥𝑁−1)+ 𝑓 (𝑥𝑁 )] (D.17)
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∫ 𝑏

𝑎

∫ 𝑑

𝑐

𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 = Δ𝑥Δ𝑦

4 [ 𝑓 (𝑎, 𝑐)+ 𝑓 (𝑏, 𝑐)+ 𝑓 (𝑎, 𝑑)+ 𝑓 (𝑏, 𝑑)+2
∑
𝑖

𝑓 (𝑥𝑖 , 𝑐)+2
∑
𝑖

𝑓 (𝑥𝑖 , 𝑑)

+2
∑
𝑗

𝑓 (𝑎, 𝑦 𝑗)+2
∑
𝑗

𝑓 (𝑏, 𝑦 𝑗)+4
∑
𝑗

∑
𝑖

𝑓 (𝑥𝑖 , 𝑦 𝑗)]

(D.18)

where Δ𝑥(𝑦) = 𝑏−𝑎
𝑁 .

D.2 4-site unit cell case

Here we construct the mean field theory for a four site unit cell Hamiltonian,

�̂�𝑘𝑖𝑛 = 𝐴

𝑁∑
𝑛

(𝑐†𝑛𝐴𝑐𝑛𝐵+ 𝑐
†
𝑛𝐴′𝑐𝑛𝐵′ + ℎ.𝑐.)+𝐵

𝑁∑
𝑛

(𝑐†𝑛𝐵𝑐𝑛𝐴′ + 𝑐†𝑛𝐵′𝑐𝑛+1𝐴+ ℎ.𝑐.) (D.19)

�̂�𝑖𝑛𝑡 =𝑈

𝑁∑
𝑛

(𝑐†𝑛𝐴𝑐𝑛𝐴𝑐
†
𝑛𝐵𝑐𝑛𝐵+ 𝑐

†
𝑛𝐴′𝑐𝑛𝐴′𝑐†𝑛𝐵′𝑐𝑛𝐵′) (D.20)

Convert to momentum space,

�̂�𝑘𝑖𝑛(𝑘) = 𝐴
𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐴
𝑐𝑘𝐵+ 𝑐†𝑘𝐴′𝑐𝑘𝐵′ + ℎ.𝑐.)+𝐵

𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐵
𝑐𝑘𝐴′ + 𝑐†

𝑘𝐵′𝑐𝑘𝐴𝑒
𝑖𝑘 + ℎ.𝑐.) (D.21)

�̂�𝑖𝑛𝑡(𝑘) =𝑈
𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐴
𝑐𝑘+𝑞𝐴𝑐

†
𝑝𝐵𝑐𝑝𝑝−𝑞𝐵+ 𝑐

†
𝑘𝐴′𝑐𝑘+𝑞𝐴′𝑐†𝑝𝐵′𝑐𝑝−𝑞𝐵′) (D.22)

We label the four bands from lowest to highest as 1,2,3,4. We give the matrix of eigenvectors
(columns),

�̃� =

©«
𝑢11 𝑢21 𝑢31 𝑢41
𝑢12 𝑢22 𝑢32 𝑢42
𝑢13 𝑢23 𝑢33 𝑢43
𝑢14 𝑢24 𝑢34 𝑢44

ª®®®®¬
(D.23)

Construct the vector of operators,

𝐶𝑘 = �̃�𝐶± =

©«
𝑢11 𝑢21 𝑢31 𝑢41
𝑢12 𝑢22 𝑢32 𝑢42
𝑢13 𝑢23 𝑢33 𝑢43
𝑢14 𝑢24 𝑢34 𝑢44

ª®®®®¬
©«
𝑐1
𝑐2
𝑐3
𝑐4

ª®®®®¬
(D.24)



128 Mean field calculations and SSH4

Define the annihilation operators in terms of the basis of bands,

𝑐𝑘𝐴 = 𝑢11𝑐1 +𝑢21𝑐2 +𝑢31𝑐3 +𝑢41𝑐4 (D.25)
𝑐𝑘𝐵 = 𝑢12𝑐1 +𝑢22𝑐2 +𝑢32𝑐3 +𝑢42𝑐4 (D.26)
𝑐𝑘𝐴′ = 𝑢13𝑐1 +𝑢23𝑐2 +𝑢33𝑐3 +𝑢43𝑐4 (D.27)
𝑐𝑘𝐵′ = 𝑢14𝑐1 +𝑢24𝑐2 +𝑢34𝑐3 +𝑢44𝑐4 (D.28)

On to calculating the expectation values of each term. Since we are working at quarter filling
(𝜐 = 1/4) this cuts down the number of nonzero terms significantly. We will only write these
nonzero terms to save time. The only nonzero expectation value terms from the kinetic
Hamiltonian, Eq. (7.31a), involve ⟨𝑐†1𝑐1⟩,

⟨𝑐†
𝑘𝐴
𝑐𝑘𝐵⟩ = 𝑢∗11𝑢12⟨𝑐†1𝑐1⟩ (D.29a)

⟨𝑐†
𝑘𝐴′𝑐𝑘𝐵′⟩ = 𝑢∗13𝑢14⟨𝑐†1𝑐1⟩ (D.29b)

⟨𝑐†
𝑘𝐵
𝑐𝑘𝐴′⟩ = 𝑢∗12𝑢13⟨𝑐†1𝑐1⟩ (D.29c)

⟨𝑐†
𝑘𝐵′𝑐𝑘𝐴⟩ = 𝑢

∗
14𝑢11⟨𝑐†1𝑐1⟩ (D.29d)

We have also parameterized the momentums in the same way as the 2x2 case which leads to
the only nonzero interacting expectation value terms are those involving,

⟨𝑐†1𝑐1𝑐
†
1𝑐1⟩ (D.30a)

⟨𝑐†1𝑐2𝑐
†
2𝑐1⟩ (D.30b)

⟨𝑐†1𝑐3𝑐
†
3𝑐1⟩ (D.30c)

⟨𝑐†1𝑐4𝑐
†
4𝑐1⟩ (D.30d)

All other operator combinations are zero. For 𝑞 = 0,

⟨𝑐†
𝑘𝐴
𝑐𝑘𝐴𝑐

†
𝑝𝐵𝑐𝑝𝐵⟩ = |𝑢11𝑘 |2 |𝑢12𝑝 |2⟨𝑐†1𝑐1𝑐

†
1𝑐1⟩ (D.31)

and for 𝑞 = 𝑝− 𝑘,

⟨𝑐†
𝑘𝐴′𝑐𝑘𝐴′𝑐†𝑝𝐵′𝑐𝑝𝐵′⟩ = |𝑢13𝑘 |2 |𝑢14𝑝 |2⟨𝑐†1𝑐1𝑐

†
1𝑐1⟩ (D.32)

⟨𝑐†
𝑘𝐴
𝑐𝑝𝐴𝑐

†
𝑝𝐵𝑐𝑘𝐵⟩ = 𝑢

∗
11𝑘𝑢21𝑝𝑢

∗
22𝑝𝑢12𝑘 ⟨𝑐†1𝑐2𝑐

†
2𝑐1⟩ +𝑢∗11𝑘𝑢31𝑝𝑢

∗
32𝑝𝑢12𝑘 ⟨𝑐†1𝑐3𝑐

†
3𝑐1⟩ +𝑢∗11𝑘𝑢41𝑝𝑢

∗
42𝑝𝑢12𝑘 ⟨𝑐†1𝑐4𝑐

†
4𝑐1⟩

(D.33)

⟨𝑐†
𝑘𝐴′𝑐𝑝𝐴′𝑐†𝑝𝐵′𝑐𝑘𝐵′⟩ = 𝑢

∗
13𝑘𝑢23𝑝𝑢

∗
24𝑝𝑢14𝑘 ⟨𝑐†1𝑐2𝑐

†
2𝑐1⟩ +𝑢∗13𝑘𝑢33𝑝𝑢

∗
34𝑝𝑢14𝑘 ⟨𝑐†1𝑐3𝑐

†
3𝑐1⟩ +𝑢∗13𝑘𝑢43𝑝𝑢

∗
44𝑝𝑢14𝑘 ⟨𝑐†1𝑐4𝑐

†
4𝑐1⟩

(D.34)

Then the mean field expectation value integrals are,
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⟨�̂�𝑘𝑖𝑛⟩ =
∫
𝐵𝑍

[𝐴(𝑢∗11𝑢12 +𝑢∗13𝑢14 + ℎ.𝑐.)+𝐵(𝑢∗12𝑢13 +𝑢∗14𝑢11𝑒
𝑖𝑘 + ℎ.𝑐.)] 𝑑𝑘2𝜋 (D.35)

⟨�̂�𝑖𝑛𝑡⟩ =𝑈
∫
𝐵𝑍

∫
𝐵𝑍

[|𝑢11𝑘 |2 |𝑢12𝑝 |2 + |𝑢13𝑘 |2 |𝑢14𝑝 |2 +𝑢∗11𝑘𝑢21𝑝𝑢
∗
22𝑝𝑢12𝑘 +𝑢∗11𝑘𝑢31𝑝𝑢

∗
32𝑝𝑢12𝑘

+𝑢∗11𝑘𝑢41𝑝𝑢
∗
42𝑝𝑢12𝑘 +𝑢∗13𝑘𝑢23𝑝𝑢

∗
24𝑝𝑢14𝑘 +𝑢∗13𝑘𝑢33𝑝𝑢

∗
34𝑝𝑢14𝑘

+𝑢∗13𝑘𝑢43𝑝𝑢
∗
44𝑝𝑢14𝑘]

𝑑𝑘

2𝜋
𝑑𝑝

2𝜋
(D.36)

Use the mean field chain Eq. (7.18) Hamiltonian,

ℎ̂(𝑘) =
©«

0 (𝑣+ 𝛿𝑣) 0 (𝑤− 𝛿𝑤)𝑒−𝑖𝑘
(𝑣+ 𝛿𝑣) 0 (𝑤+ 𝛿𝑤) 0

0 (𝑤+ 𝛿𝑤) 0 (𝑣− 𝛿𝑣)
(𝑤− 𝛿𝑤)𝑒 𝑖𝑘 0 (𝑣− 𝛿𝑣) 0

ª®®®®¬
(D.37)

D.3 SSH4 model

The Hamiltonian for this is then,

�̂�𝑆𝑆𝐻4 =

𝑁∑
𝑗

((𝑣+ 𝛿𝑣)𝑐†𝑗𝐴𝑐 𝑗𝐵+(𝑤+ 𝛿𝑤)𝑐†𝑗𝐵𝑐 𝑗𝐶 +(𝑣− 𝛿𝑣)𝑐†𝑗𝐶𝑐 𝑗𝐷)+
𝑁∑
𝑗

((𝑤− 𝛿𝑤)𝑐†𝑐 𝑗+1,𝐴+(𝑤− 𝛿𝑤)𝑐†𝑗+1,𝐴𝑐 𝑗𝐷)

+
𝑁∑
𝑗

((𝑣+ 𝛿𝑣)𝑐†𝑗𝐵𝑐 𝑗𝐴+(𝑤+ 𝛿𝑤)𝑐†𝑗𝐶𝑐 𝑗𝐵+(𝑣− 𝛿𝑣)𝑐†𝑗𝐷𝑐 𝑗𝐶)

(D.38)
Convert to momentum space,

�̂�𝑆𝑆𝐻4(𝑘) = (𝑣+ 𝛿𝑣) 1
𝑁

𝐵𝑍∑
𝑘𝑘′𝑛

𝑐†
𝑘𝐴
𝑐𝑘′𝐵𝑒

−𝑖𝑘𝑛𝑒 𝑖𝑘
′𝑛 +(𝑤+ 𝛿𝑤) 1

𝑁

𝐵𝑍∑
𝑘𝑘′𝑛

𝑐†
𝑘𝐵
𝑐𝑘𝐶 𝑒

−𝑖𝑘𝑛𝑒 𝑖𝑘
′𝑛 (D.39)

+(𝑣− 𝛿𝑣) 1
𝑁

𝐵𝑍∑
𝑘𝑘′𝑛

𝑐†
𝑘𝐶
𝑐𝑘′𝐷𝑒

−𝑖𝑘𝑛𝑒 𝑖𝑘
′𝑛 +(𝑣+ 𝛿𝑣) 1

𝑁

𝐵𝑍∑
𝑘𝑘′𝑛

𝑐†
𝑘𝐵
𝑐𝑘′𝐴𝑒

−𝑖𝑘𝑛𝑒 𝑖𝑘
′𝑛

(D.40)

+(𝑤+ 𝛿𝑤) 1
𝑁

𝐵𝑍∑
𝑘𝑘′𝑛

𝑐†
𝑘𝐶
𝑐𝑘′𝐵𝑒

−𝑖𝑘𝑛𝑒 𝑖𝑘
′𝑛 +(𝑣− 𝛿𝑣) 1

𝑁
𝑐†
𝑘𝐷
𝑐𝑘′𝐶 𝑒

−𝑖𝑘𝑛𝑒 𝑖𝑘
′𝑛 (D.41)

+(𝑤− 𝛿𝑤) 1
𝑁
(
𝐵𝑍∑
𝑘𝑘′𝑛

𝑐†
𝑘𝐷
𝑐𝑘′𝐴𝑒

−𝑖𝑘𝑛𝑒 𝑖𝑘
′(𝑛+1)+ 𝑐†

𝑘𝐴
𝑐𝑘′𝐷𝑒

−𝑖𝑘(𝑛+1)𝑒 𝑖𝑘
′𝑛) (D.42)
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Sum the exponentials,

�̂�𝑆𝑆𝐻4(𝑘) = (𝑣+ 𝛿𝑣)
𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐴
𝑐𝑘𝐵+ 𝑐†𝑘𝐵𝑐𝑘𝐴)+ (𝑣− 𝛿𝑣)

𝐵𝑍∑
𝑘

𝑐†
𝑘𝐶
𝑐𝑘𝐷 + 𝑐†

𝑘𝐷
𝑐𝑘𝐶) (D.43)

+(𝑤+ 𝛿𝑤)
𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐵
𝑐𝑘𝐶 + 𝑐†𝑘𝐶𝑐𝑘𝐵)+ (𝑤− 𝛿𝑤)

𝐵𝑍∑
𝑘

(𝑐†
𝑘𝐷
𝑐𝑘𝐴𝑒

𝑖𝑘 + 𝑐†
𝑘𝐴
𝑐𝑘𝐷𝑒

−𝑖𝑘)

(D.44)

This can be brought into a block off-diagonal form by rearranging the basis such that it is
{𝐴 𝐶 𝐵 𝐷},

ℎ̂𝑆𝑆𝐻4(𝑘) =
©«

0 0 (𝑣+ 𝛿𝑣) (𝑤− 𝛿𝑤)𝑒 𝑖𝑘
0 0 (𝑤+ 𝛿𝑤) (𝑣− 𝛿𝑣)

(𝑣+ 𝛿𝑣) (𝑤+ 𝛿𝑤) 0 0
(𝑤− 𝛿𝑤)𝑒−𝑖𝑘 (𝑣− 𝛿𝑣) 0 0

ª®®®®¬
(D.45)
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