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Abstract 

Developing a geometric formulation of any biological object has a number of justifications and applications. 

Recently, we developed a universal geometric figure for describing a bird's egg in any of the possible basic 

shapes: spherical, ellipsoidal, ovoid and pyriform. The formulation proved widely applicable but had a 

number of drawbacks, including a very obvious “join” between two egg parts. To correct this, we developed 

“the Main Axiom” of the universal mathematical formula. This essentially involved corresponding the ordinate 

of the extremum of the function to half the maximum egg breadth (B), and the abscissa to the reciprocal of 

the parameter w that reflects the shift of the vertical axis to its coincidence with B. This, in turn, helped us 

develop a new, simplified mathematical model without a non-biological “join”. Experimental verification was 

performed to confirm the adequacy of the new geometric figure. It accurately described actual avian eggs of 

various shapes more closely than our previous model. To the best of our knowledge, our new, simplified, 

equation can be accepted as a standard for any bird egg that exists in nature. As a rather simple equation, it 

can be applied in broad applications. 
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Introduction 

The mathematical description of any biological object is the cornerstone of a range of academic disciplines. 

It has broad applicability beyond biology in diverse fields such as engineering, construction, art, and 

fundamental/applied modeling. The most basic shape, the sphere, occurs in nature in the form of some 

seeds and the eggs of certain birds such as owls. As such, the geometric description of a sphere is well 

known (x2 + y2 + z2 = r2 where r is the radius) and widely applied. With shapes that are regular along one 

axis (spheres and all birds eggs are examples) a three-dimensional structure can be projected onto a two-

dimensional graph. Thus, describing a sphere simplifies to that of x2 + y2 = r2 (the formula of a circle) then, 

when expressing as plottable graph, transforms as a universally applicable: 

 

2 2y x r=  −  

 

A cartesian form of the equation unlike the parametric version (when x = rcosθ, y = rsinθ) is more attractive 

to non-mathematicians because of its simplicity and ease of applicability. Similarly, an ellipsoid (3D) object 

such as an emu’s egg can be expressed as a 2D ellipse and the common formula applied: 

 

2 2

2 2
1

x y

a b
+ =

,

 

 

where a and b are the shortest and longest diameters. This transforms as: 
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Despite the inclusion of the ± function (which is absent in parametric equations) this is an equation that is 

easily applied. 

 

The mathematical formulation describing the contours of the majority of birds’ eggs has, for many decades, 

been led through the development and application of Hügelschäffer’s model. As the vast majority of global 

egg biomass is that of domestic fowl (chicken, duck, goose, quail etc.) and most other birds’ eggs are 

similarly ovoid (literally “egg shaped”) then Hügelschäffer’s model largely serves as the basis for their 

description.1–4 In its most simplistic form Hügelschäffer’s model is expressed as: 

 

22

22

48

4

2 wwxL

xLB
y

++

−
=

,

 

 

where B is the egg maximum breadth, L is the egg length, and w is the parameter that shows the distance 

between two vertical lines corresponding to the maximum breadth and the half length of the egg, L/2. 
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In order to be truly universal however, the formulation needs to extend to pyriform (cone/pear shaped) eggs 

such as those laid by guillemots, razorbills, penguins and gulls; Hügelschäffer’s model does not adequately 

describe these. Recently, we5 reported results involving the development of a universal formula for 

describing the contours of any bird’s egg, including pyriform ones. Moreover, we reported that each of the 

first three geometric figures can be easily converted into each other by introducing or excluding one of the 

key parameters, i.e., B, L or w, a process we described, for convenience, as "mathematical evolution" or 

“mathematical progression”.6 Our breakthrough publication5 introduced mathematical evolution/progression 

to pyriform eggs through the equation: 
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This caused considerable lay public and scientific interest. The article was widely circulated in international 

scientific bulletins and online media, including National Geographic España, BBC News Mundo, Science and 

Vie, Science Bulletin Kent, Sci-News, Yale Scientific, Sciences et Avenir, The Boar, Daily Mail, Frankfurter 

Allgemeine Sonntagszeitung,7–16 etc., as well as authored interviews on scientific forums.11,17–19 In addition, 

this theoretical finding served as an impetus for its implementation in diverse studies and disciplines. These 

have embraced (i) a comparative analysis of the “universal formula” with others developed before or after its 

publication;20–28 (ii) its use for deriving applied calculation formulae, e.g., for computing egg volume or 

surface area that can be successfully used in biological, zootechnical and/or other studies;29–32 (iii) 

technology developments;33,34 (iv) space research, e.g., for building egg-shaped lunar habitat structures35 

and modelling broad-line regions when studying supermassive black holes;36 (v) computer games;37 and 

even (vi) interest in its inclusion in the school curriculum in mathematics as an adapted version of our 

research.38 

 

Such unexpected, but welcome, popularity encouraged us to evaluate more seriously the universal formula 

and its ramifications. Closer examination showed that, despite a close conformation of the extremum to B/2, 

it fluctuated within ±2%. In other words, where the blunt and pointed ends meet, there were clear issues 

resolving the “join” in the two formulations of each (both individually derived by adapting Hügelschäffer's 

model). This is depicted in Fig. 1. 

 

It might be argued that this problem is not too important for practical purposes; however, it does not allow us 

to conclude that a certain clear geometric figure is created, akin, for example, to a sphere or an ellipsoid, 

that corresponds to any and every egg contour. 

 

A second problem was that the universal formula as depicted above turned out to be too cumbersome and 

difficult to apply, and this shortcoming was pointed out by a number of authors, ourselves included.18,25,26,39 

In view of this, the purpose of this study was to revise and improve our approach to the development of a 

more simplified universal formula. To achieve this, we formulated a rule called the "Main Axiom of the 

Mathematical Formula of the Bird's Egg” (hereafter the "Main Axiom"). This axiom, in essence, lies in the fact 

that the extremum of the function that describes the egg contour geometry should conform to the value of 

B/2, i.e., half the maximum diameter of the egg. To determine the extremum point, one should find the 
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derivative of the function and equate it to zero. Herewith, the solution should imply the equality of the 

argument to the value of −w, which, along with the aforementioned measures B and L, is one of the 

fundamental parameters of the universal formula and means a shift of the vertical axis until it coincides with 

the maximum diameter (Fig. 1). The theory behind this formulation is given below. 

 

Theory 

Theoretical aspects of how to stitch two halves of an egg together 

Despite a detailed study of the geometric properties of the Hügelschäffer's model,40–42 some of its properties 

have remained under-explored. For instance, if the parameter w is growing, then, when it reaches a value 

equal to half the egg length, L/2, the closed ovoid turns into a parabola.40 Since the hypothesis of 

constructing a pyriform ovoid in our previous work5 was grounded precisely on the geometric combination of 

a classical ovoid and a parabola, we tested the possibility of combining two contours built using 

Hügelschäffer's model (Fig. 1). Therewith, the ovoid (shown in blue) corresponds to the classical ovoid with 

parameters B, L and w. For the second figure (depicted in pink), the axis shift, denoted for this contour as 

wp, is equal to L/2. 

 

Then, if we remove the extra areas highlighted in yellow in Fig. 1, the contours of a classic pyriform ovoid are 

observed (Fig. 2). Even by visual inspection, however, the “join” is still obvious and clearly not observed in 

nature. 

 

In order to reconcile the two parts so that the overall profile is more biologically plausible and applicable, 

particularly at the “join”, we need to take into account how the two were derived using Hügelschäffer's 

model. We41 previously adapted the parameters of the bird's egg to describe the blunt end of the egg 

according to the following mathematical expression: 
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where, as previously stated, B is the egg maximum breadth, L is the egg length, and w is the parameter that 

reflects the distance between two vertical lines conforming to the maximum breadth and the half length of 

the egg. Formula (1) corresponds to x values within the interval [−L/2 ... −w]. 

 

At the same time, the pointed end, characterized by the interval x = [−w ... L/2], corresponds to the following 

function: 
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For Eqn2, the values of Bp and wp do not match those of B and w in Eqn1 (Fig. 1). While the parameters of 

Eqn1 can be relatively easily measured either directly on the investigated egg or on its image, the values of 

Bp and wp should be calculated. 
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To establish a probable relationship between Bp and B, we can use the condition that at the point x = −w 

where both contours coincide, with the value of the function yp being, according to the principle of the Main 

Axiom, equal to yp = yb = B/2. Substituting these data into Eqns1 and 2 and equating them, we get the 

following equation: 

 

2 2

2 2

8 4

4

p p
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L w w w
B B

L w

− +
= 

−
         (3) 

 

Calculation of the value of wp is possible only by measuring an additional parameter of the egg. Based on an 

earlier study,41 Narushin et al.5 chose the diameter that is denoted in Fig. 2 as Dp, conforming to the point x = 

L/4 and representing the most informative characteristic of the pointed end of the bird's egg. Measuring the 

Dp value will enable calculating wp. To do this, we substitute the value x = L/4 into Eqn2. Considering Eqn3 

and the fact that at this point (i.e., x = L/4), the value yp = Dp/2, we obtained the desired formula for such a 

recalculation as follows: 
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 

   (4) 

 

A detailed output of Eqn4 and verification of its correctness are given in Supplementary Material S1. 

 

The above preparatory work was thus successfully completed, and, as a result, it remained to develop a 

mechanism “stitching” mathematically two halves of the egg, with one conforming to the blunt end in the 

interval x = [−L/2 ... −w] (Eqn1) and the other conforming to the pointed end in the interval x = [−w ... L/2] 

(Eqn2). An aggregate of these functions (Eqns1 and 2) is piecewise functions,43 and one can unite this 

aggregate into one equation only under a numerical procedure. Orszulik44–46 proposed an elegant and logical 

approach to such a combination of two functions. Following this method, one of the equations is taken as the 

main one, to which the functional difference of the combined equations is mathematically added, being 

multiplied by a certain joining function. The proposed procedure logic is fully suited to the goal of stitching 

our egg halves. If we choose yb (Eqn1) as the base function, the difference (yb − yp) will characterize the 

yellow zones in Fig. 1, which we need to remove. For this purpose, we will introduce some kind of joining 

function, yj. Denoting the generalized function of the combined egg profile as y, we can write this relationship 

mathematically as follows: 

 

( )b p b jy y y y y= + −           (5) 
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According to Orszulik,46 the joining function yj varies from 0 to 1 and is most easily expressed by the 

classical sigmoid equation. However, as it turned out in the course of further mathematical transformations, 

the sigmoid has a number of disadvantages when used to connect the two halves of the egg into a single 

harmonious circuit. This concerned the limited interval validity of the exponent that is part of the sigmoid, as 

well as the transformation of its derivative under certain conditions to infinity, which prevented the 

compliance with the Main Axiom conditions. As a result, we chose the joining function as an algebraic one, 

being related to so called S-curves.47 Considering that, in our case, the inflection point of the selected S-

curve should be located on the vertical axis x = −w (Fig. 1), since it is at this point that one egg profile is 

replaced by another, we can write the joining function formula in the following general form: 

 

2( )
j j j

j

x w
y a b

c x w

+
= +

+ +
,         (6) 

 

in which aj, bj and cj are coefficients. 

 

To determine the coefficients in Eqn6, we used the following assumptions: (i) when x = -L/2, yj = 0; (ii) when 

x = L/2, yj = 1; and (iii) when x = −w, yj = ½. This allowed us to deduce the final formula of the joining function 

as follows: 

 

2

1
1

2 ( )
j

x w
y

x w

 +
 = +
 + 

         (7) 

 

A detailed derivation and analysis of Eqn7 are presented in Supplementary Material S2. Then, taking into 

account Eqns 1–3 and 7, the final form of the mathematical function that describes the contours of the egg 

(i.e., Eqn5) will be as follows: 
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   =  + − +

  + + + + − + + +   
            (8) 

 

To validate the above mathematical expression, it is necessary to make sure that it conforms to the two 

postulates formulated in the Introduction section, i.e., (i) the fulfilment of the Main Axiom and (ii) the equality 

y = B/2 when x = −w. The latter is easy enough to confirm after the appropriate substitution of x = −w in 

Eqn8. On the other hand, to confirm the Main Axiom, one needs to differentiate Eqn8, and then equate it to 

zero. If this equality is approved at the value x = −w, it can be argued that the resulting Eqn8 is adequate 

and valid. Since the resulting function (Eqn8) is rather complicated for finding the derivative, we will take as 

a basis the original Eqn5 and proceeded with the differentiation as follows: 
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( )
p jb b

j p b

y yy yy
y y y

x x x x x

   
= + − + − 

     
       (9) 

 

The solution of Eqn9 was reduced to inferring the derivatives of the component functions, yb (Eqn1), yp 

(Eqn2) and yj (Eqn7). After making the respective mathematical transformations and substitution of the value 

x = −w into the resulting equation, the conformation of Eqn8 to the Main Axiom was validated. That is, the 

extremum of the resulting function y is at the point −w on the horizontal axis. A detailed description of 

producing the derivatives and further mathematical transformations of the function y (Eqn8) can be seen in 

Supplementary Material S3. 

 

The fulfilment of all the conditions for the mathematical adequacy of the resulting model does not necessarily 

mean that it is biologically applicable. In other words, the question of its match with profiles of actual eggs 

remains. Because pyriform eggs cause the greatest complexity in their mathematical description, it was 

precisely such a contour that was chosen to evaluate the similarity (match) criterion. In this respect, the 

extreme pyriform profile was chosen, when the value wp = L/2, and the pointed end of the egg conforms to a 

parabola.40 The results of this match test are shown in Fig. 3. 

 

The resulting egg profile still has a clear and obvious join at the point x = −w and, because of that, cannot 

meet the similarity criterion, since such eggs clearly do not exist in nature. Thus, the objective of the current 

study was dedicated to not only to piecing together its two halves, but also to further removal (“smoothing”) 

of this non-biological interface. 

 

We assumed that, based on the principles of synergy, the number of options for combining profiles should 

also radically affect the quality characteristics of the resulting function. In other words, it is worth undertaking 

one more attempt to merge the egg profiles using, as a formula for the pointed end of the egg, the 

combination we have already obtained, i.e., function y in Eqn8, instead of Eqn2. Denoting the new resulting 

function as Y, and, accordingly, the new joining function as Yj, by analogy with Eqn5, we can use: 

 

( )b b jY y y y Y= + −           (10) 

 

If we substitute the value of y from Eqn5 into Eqn10, we get a more convenient formula for the Y function: 

 

( )b p b j jY y y y y Y= + −          (11) 

 

Thus, if the contour smoothing procedure can be carried out in this way, then, the synergy will conform to the 

product of the joining functions yj and Yj. 

 

Before selecting the joining function Yj, we decided to check how much its algebraic formula will affect the 

compliance with the Main Axiom, i.e., the location of the extremum of the function Y (Eqn11), for which the 

corresponding differentiation was carried out. A detailed process of differentiating the function Y (Eqn11) and 
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verifying if the extremum of the function meets the conditions of the Main Axiom is shown in Supplementary 

Material S4. 

 

The results of differentiation were most satisfactory. The form of the joining function Yj had no effect on the 

location of the extremum, which always appeared in the predicted place, i.e., conform to match x = −w. 

Inspired by the conformity of synergy process and being mindful of the goal to make the final formula as 

simple as possible, we decided to take the linear function as the basis for Yj that would be the most simple 

and suitable in subsequent calculations: 

 

j j jY A x B= + ,           (12) 

 

where Aj and Bj are coefficients to be determined. 

 

To determine the coefficients of equation (12), we used the following reasoning and assumptions. 

 

When analyzing the resulting egg profile after the first stage of combining the two halves, it looks obvious 

that smoothing will not reduce the diameter of the pointed end sharply, but gradually, presumably, in the 

interval from x = 0 to x = L/4. The latter point is one of the most informative egg variables,5 being also used 

in this study for the recalculation of wp (Eqn4), therefore, its value should remain unchanged. Then, at x = 0, 

the respective function value Y(0) should prevail the analogous meaning of yp(0) being just between two 

functions, yb(0) and yp(0) (as explained in Fig. 4) and recalculated as follows: 

 

( )(0) (0) (0) (0)p b pY y K y y= + − ,        (13) 

 

where K is a smoothing coefficient, varying from 0 to 1. 

 

Accordingly, at the point x = L/4, the value of the function Y(L/4) should be equal to the analogous meaning 

of yp(L/4). These prerequisites allowed us to obtain the final formula of the joining function Yj: 

 

2 1

2
jY x

L
= +            (14) 

 

A detailed derivation and analysis of Eqn14 are presented in Supplementary Material S5. Thus, the resulting 

function Y (Eqn11) can be written as follows: 
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Using the same extreme pyriform variant (wp = L/2) as before (Fig. 3), we tested the obtained function 

(Eqn15), the results of which are shown in Fig. 4. 

 

The resulting contour (Fig. 4) fully complies with the principles of both the Main Axiom and similarity, and it 

could be argued therefore that the theoretical investigation was successfully carried out, if not for two more 

aspects that we needed to clarify: First, this is the form of the resulting joining function, which is the 

synergistic product of yj and Yj. Based on Eqn11: 

 

2

4
1

4( )
j j

x w x L
y Y

Lx w

 + +
 = + 
 + 

        (16) 

 

The visual interpretation of Eqn16 is provided in Fig. 5. 

 

The appearance of the resulting connecting function turned out to be logical. However, it was impossible to 

predict it in advance at the first stage of combining two egg halves. As a result of which, we aimed to provide 

the second aspect, namely, to increase the simplicity and convenience of the developed egg profile formula 

to facilitate the efficient application of any scientific development. In this regard, we slightly transformed the 

components of Eqn11 whereupon it acquired the following form: 
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 (17) 

 

The variable wp in Eqn17 is calculated according to Eqn4. The resulting formula (17) is quite compact and 

suitable for subsequent programming and/or mathematical transformations since it does not contain 

polynomials. It is also simpler than our previous calculations and, mindful of the fact that the elements (x + 

w) and (L2 − 4x2) are repeated a few times, we can replace these and others with letters thus: 

 

C = x + w 

D = L2 − 4x2 

E = w − wp 

F = x + wp 

 

Then the simplified formula becomes: 
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A similar simplification can be undertaken with Eqn4 if to make the following replacement: 

 

2 2

2 2

1 4 3

3 4 1 4

p

p

D w w

B L L
A

D w

B L

    
− +         =

    
− −         

 

 

Then 

 

2 1

4
pw L A A

 
= − −  

 
          (19) 

 

The formula can thus be derived from four unknowns, L, B, w, and wp. The first three are direct egg 

measurements, the last needs to be calculated using Dp, which is the diameter at L/4. Therefore, when we 

use four measurements from the egg, L, B, w, and Dp, we can mathematically describe any egg shape. 

 

Biological aspects of what a standard egg looks like 

The question of the existence of a certain standard for a bird’s egg has occupied the minds of poultry 

scientists for decades. Indeed, by obtaining standard eggs as a result of breeding programs, it is possible to 

increase hatchability significantly, simplify the procedure for sorting eggs, unify packaging and equipment for 

technological maintenance, and optimize the egg storage process.48–53 

 

Perhaps the first to propose the parameters of a standard chicken egg were Romanoff and Romanoff.54 

They determined a number of geometric measurements that are still considered the classic geometric 

interpretation of the ideal egg-shaped ovoid, under the contours of which most poultry eggs fall. Here, we 

explored how successfully this standard can be reproduced by the universal model of the bird’s egg, i.e., Eqn17 we 

have derived. The data presented by Romanoff and Romanoff,54 as well as the image of the egg profile itself, 

allowed us to calculate and/or measure the missing parameters, in particular w and Dp, and reproduce both profiles 

using MS Excel (Fig. 6). When reproducing the contour of the standard egg of Romanoff and Romanoff,54 we also 

depicted the main criteria they presented in their image and in addition to the dimensions they indicated: dividing the 

segment into three equal parts and the angle of inclination of a certain area. 

 

The visualization of both profiles of the same egg in Fig. 6 showed an almost perfect match. Thus, we 

obtained similar results when applying different approaches to the search for a definite "egg" standard, i.e., 

(i) empirical, based on numerous measurements of many eggs, and (ii) theoretical, based on the 

development of a mathematical model of a certain geometric figure, the profile of which conforms to the main 

egg forms. 
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On the other hand, a number of eggs found in nature cannot boast of their resemblance to the standard 

counterpart (Fig. 6). However, this does not mean that they do not have their own standard profile, in other 

words, a virtual double, which they do not match. As an example, we provided an image of a chicken egg 

one of the authors found in his backyard, along with its standard profile calculated by Eqn17 (Fig. 7). For a 

better perception of this image, as well as all subsequent ones presented in this work, we unified the length 

of the eggs under the standard egg size of Romanoff and Romanoff,54 i.e., L = 5.7 cm, with the proper 

recalculation of all other measured parameters. 

 

Implementation of the biological and mathematical research outlined above inspired us to formulate the 

following questions, the answers to which could become prerequisites for possible systematics of oological 

material in terms of unifying the whole variety of their shapes: 

 

1. How accurately can the theoretical egg contour model (Eqn17 and 18) describe actual bird eggs that 

fall into different shape types, i.e., spherical, ellipsoidal, classic ovoid, and especially pyriform? 

2. To what extent do actual eggs meet their mathematical standard (Eqn17 and 18)? 

 

Methods 

Since pyriform eggs were the stumbling block in the mathematical description of egg contours,28,55 the focus 

of our research on the possibility of egg shape description using Eqn17 and its compliance with the 

geometric standard was given to this particular category. Hereby, a pyriform profile meant not a purely visual 

assessment of the degree of pear-shapedness of their pointed end, but a distinct mathematical calculation. 

 

When deducing the mathematical model of bird egg contours (Eqn17), we proceeded from the fact that the 

value of the calculated parameter wp is limited by two key points: (i) wp = w, when the pear-shaped profile 

turns into a classic egg-shaped ovoid and corresponds to the Hügelschäffer's model (Eqn1); and (ii) wp = L/2 

that conforms to the highest degree of pyriform end (Supplementary Material S1): 

 

2
p

L
w w              (20) 

 

Indeed, if we substitute the value wp = w into Eqn17, then, this universal formula is transformed into the 

Hügelschäffer's model for classical egg-shaped ovoids (Eqn1). Accordingly, if we use the value wp = L/2 in 

Eqn17, the equation responsible for describing the pointed end (Eqn2) is converted into a parabola formula 

that can be used as the extreme degree of pyriform eggs. Thus, Eqn20 is a mathematical criterion for 

conditionally classifying an egg as a pyriform one. 

 

In the course of our previous studies,6,28,29,34,41,56 we accumulated a large number of photographic and digital 

images of various eggs obtained directly by us or available in open sources. Thanks to this, we selected the 

egg images that can be classified as pyriform from 32 bird species. These were subject to subsequent 

processing and examination. A detailed listing and description of the sources from which the appropriate 

images were taken was given in Narushin et al.56 Digital and photographic images of chicken eggs were also 

used; their detailed description, along with a method for obtaining them, was laid out in Narushin et al.41 
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Since chicken eggs relate to the category of classical ovoids and, in accordance with our previous 

studies,28,41 are described by the respective Hügelschäffer's model for classical ovoids (Eqn1), three 

characteristic egg shapes were chosen for these experiments: elongated, standard and round. This sample, 

in our opinion, was sufficient to conclude that the derived egg profile formula (Eqn17) is universal. 

 

One of the goals of this work was to ensure methodically the possibility of similar and/or more narrowly 

focused studies using the universal Eqn17 without employing any sophisticated equipment or software. In 

this respect, our measurements of egg parameters B, L, and w values (in pixels), as well as processing the 

results and building standard profiles (i.e., according to Eqn17) for each investigated egg, were carried out 

using a broadly available software, such as Microsoft Office Picture Manager and Microsoft Office Excel. 

 

Results 

For better visualization of the experimental results, the images of real eggs were placed and fit onto the 

contours of their appropriate standard profile plotted according to formula (17). The length of every egg 

under study was adjusted to the size of the standard egg established by Romanoff and Romanoff,54 with L = 

5.7 cm, and all other measured parameters were recalculated in the same manner as shown in Fig. 7. 

 

Since, in order to carry out a comparative analysis of eggs of different species, shapes and sizes, it is much 

more convenient and efficient to use not the initial sizes, but their certain ratios,5,29,34 we presented numerical 

data characterizing each egg in the form of the following ratios: B/L, w/L, and Dp/B. To make it clearer what 

is the difference between the Hügelschäffer's model used to describe the blunt end, from the Hügelschäffer's 

model for the pointed end, we also gave the values of the ratio wp/L after the respective calculation of the 

value of wp according to formula (4). 

 

By way of example, Fig. 8 reflects the results for three characteristic pyriform eggs. For a more complete 

visual comparison of pyriform eggs with their standard profiles, see Supplementary Material S6. To 

demonstrate the differences between the new (Eqn17) and old5 versions of the egg profile mathematical 

model, we presented these both egg contour options in Fig. 8. 

 

For a more convenient perception and possible comparative analysis of the advantages of the new equation 

over the previous one,5 we also presented the value of the total error in describing the contours of the eggs 

shown in Fig. 8 for each of the two formulae. To estimate the degree of correspondence of each theoretical 

egg profile to the actual one, the approximating mean percentage error, ε,57 was applied: 

 

 %100
1

1 1

21 
−

= 
n

v

vv

k


,

          (21) 

 

where k is a number of x points on the horizontal axis; and v1 and v2 are the relevant values of y produced 

respectively by (1) direct measurement of the egg profile and (2) computation using the corresponding 

theoretical model. 
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When defining the egg contours of Alca torda (Fig. 8A), ε = 4.0 and 4.1, respectively for the new (Eqn17) and 

old5 models. For the eggs of Aptenodytes patagonicus (Fig. 8B), these values were ε = 2.8 and 3.2, and for 

those of Leucophaeus (Larus) atricilla (Fig. 8C), ε = 3.6 and 5.5, accordingly. 

 

Thus, the previous universal formula5 and the new one (Eqn17) quite accurately described the contours of 

various egg profiles. A more essential drawback and limiting factor in the formulae application may be the 

mismatch to the Main Axiom. This can be tested by calculating B and w that shows how much B is shifted 

from the center of the egg. In particular, the B value for the Alca torda egg (Fig. 8A) was 3.21 cm (in 

conventional sizes used for graphical interpretation of the egg contours). This value absolutely conformed to 

the true value, while the earlier universal formula5 resulted in B equal to 3.22 cm, i.e., a somewhat 

overestimated value. Similarly, the value of the parameter w also differed for the two mathematical profile 

models. If for Eqn17 it absolutely exactly coincided with the true measurement and was equal to 0.80 cm, 

use of the old formula5 led to w = 0.99 cm. Similar disproportions were noted for other eggs. The B and w 

values corresponded exactly to their true values 4.2 cm and 0.40 cm when describing the Aptenodytes 

patagonicus egg using Eqn17 (Fig. 8B), while these values based on the old formula5 were 4.3 cm and 0.48 

cm, respectively. The same discrepancy was noted for the egg profile of Leucophaeus (Larus) atricilla (Fig. 

8C). Calculated values using the new formula (Eqn17) were in agreement with the actual measurements (B 

= 3.8 cm and w = 0.44 cm), but in contrast to the values obtained using the old formula5 (B = 3.9 cm and w = 

0.48 cm, respectively). 

 

The results of a comparative analysis of chicken eggs, as representatives of the classical ovoid form, are 

given in Fig. 9. 

 

Discussion 

A circle can be perfectly described mathematically using just one measurement (the radius). An ellipse has 

just two measurements. Hügelschäffer's model produces a good egg shape using only three measurements, 

but this has proved insufficient to model all egg shapes. Our previous work5 on this topic used the 

Hügelschäffer's model as the basis for an improved model using one additional measurement, thereby 

enabling a better fit at the pointy end. Though this last model gave a very good fit for most egg shapes, not 

all the extremes of the egg shape fitted perfectly. 

 

When modelling data such as an egg shape it is clearly important to achieve a good fit – but it is possibly 

even more important that the extremities of the data are accurately described since they are the most 

influential. It is also very desirable that the model should consist of a single, complete equation; there should 

be no variable to estimate and should preferably not be a pair of parametric equations. In this article we put 

forward the Main Axiom to capture these objectives and have presented a solution to this axiom using purely 

mathematical techniques. Thus, Eqn17, together with Eqn4, provide a model that, for the first time, exactly 

describes the extremities of any avian egg. Previous models5 have provided a very good fit with the data, but 

some have not been single, complete, equations, and none have been able to provide an exact fit at the 

extremities. Accurately modelling the extremities is particularly important for an egg shape because a small 
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change in the fit at the widest point results in a large shift in its position; that is, because the slope is shallow 

at the widest point, a small variation at this point result in a large change to the value of w. 

 

The model presented in this article has been achieved using the novel technique of marrying up two shapes 

using a joining function, and smoothing the transition between the two shapes without any distortion to the 

extremes. Such an approach to modelling shapes, or indeed modelling any data, may well find valuable 

application in many other fields of mathematics and engineering. Furthermore, the type of geometric joining 

function described in this article is novel and may well inform other researchers when modelling data. 

 

Conclusion 

In summary, the model described in this article has a number of advantages as follows. (1) It models the 

extremities of the egg shape exactly (conforms to the Main Axiom) and is thus visually an improvement on 

previous models. (2) It is a single equation (not parametric) and not requiring estimation of any variables. (3) 

It is based purely on mathematics. (4) It is based on just four egg parameters and does not use high degree 

polynomials – just squares and square roots. (5) It is understandable, in that the equation consists of three 

parts, two for each shape being joined and one joining function. (6) It is applicable to any avian egg shape 

(spherical, ellipsoidal, ovoid and pyriform). (7) The novel approach described here may be used by others 

when modelling complex data. 
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Figure legends 

 

Figure 1. Combination of two Hügelschäffer's models conforming to (i) a classical ovoid with parameters B, 

L and w (blue line) and (ii) a parabolic ovoid whose axial shift corresponds to half the egg length, i.e., wp = 

L/2. 

 

Figure 2. Pear-shaped ovoid constructed by combining two Hügelschäffer's models (based on Figure 1 

above). 

 

Figure 3. Visual interpretation of y (Eqn8) as a combination of the functions yb (Eqn1) and yp (Eqn2), when 

wp = L/2. 

 

Figure 4. Visualization of the comparative analysis of the functions y (Eqn8) (blue line) and Y (Eqn15) 

(yellow line). 

 

Figure 5. The visual representation of Eqn16. 

 

Figure 6. A standard (or “ideal”) chicken egg according to Romanoff and Romanoff54 (blue line) in comparison 

with its mathematical equivalent according to Eqn17 (yellow line). 

 

Figure 7. An abnormally shaped chicken egg in comparison with its mathematical standard profile (blue line) 

plotted according to Eqn17. 

 

Figure 8. Examples of pyriform eggs as compared to their mathematical standard profiles according to 

Eqn17 (blue line). The top three eggs conform to the egg profile mathematical model according to Eqn17, 

and the bottom three eggs to Narushin et al.5 models. A. Alca torda (razorbill; 

https://www.flickr.com/photos/blackcountrymuseums/5237094139/; Black Country Living Museum; CC-BY-

NC-SA 2.0); B. Aptenodytes patagonicus (king penguin; 

https://commons.wikimedia.org/wiki/File:Manchot_royal_MHNT.jpg; Muséum de Toulouse; CC-BY-SA-3.0); 

C. Leucophaeus (Larus) atricilla (Laughing gull; 

https://commons.wikimedia.org/wiki/File:Larus_atricilla_MWNH_0343.JPG; Natural History Collections of the 

Museum Wiesbaden; CC-BY-SA-3.0). 

 

Figure 9. Chicken (Gallus gallus) eggs in comparison with their mathematical standard profiles according to 

Eqn17 (blue line). A–C, eggs were purchased from Woodlands Farm, Canterbury and Staveleys Eggs Ltd, 

Coppull, UK. 


