
Gomez, Rodolfo (2008) Verification of Timed Automata with Deadlines in
Uppaal. Technical report. UKC

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/23991/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/23991/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Computer Science at Kent

Verification of Timed Automata with Deadlines
in Uppaal

Rodolfo Gómez

Technical Report No. 02-08
June 2008

Copyright c© 2003 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

Verification of Timed Automata with Deadlines in Uppaal∗

Rodolfo Gómez

Computing Laboratory, University of Kent, United Kingdom

R.S.Gomez@kent.ac.uk

July 8, 2009†

Abstract

Timed Automata with Deadlines (TAD) are a form of timed automata that admit a more natural
representation of urgent actions, with the additional advantage of avoiding the most common form of
timelocks. We offer a compositional translation of a practically useful subset of TAD to timed safety
automata (the well-known variant of timed automata where time progress conditions are expressed
by invariants). More precisely, we translate networks of TAD to the modeling language of Uppaal,
a state-of-the-art verification tool for timed automata. We also describe an implementation of this
translation, which allows Uppaal to aid the design and analysis of TAD models.

1 Introduction

Timed automata (TA) [2] (in particular, timed safety automata [16]) are widely used as a formal lan-
guage to model real-time systems. They strike a good balance between expressiveness and tractability,
and are supported by many verification tools (e.g., Kronos [23] and Uppaal [4]).

In this paper, we focus on the representation of urgent actions, i.e., those whose execution cannot be
delayed beyond a certain time bound. In TA models of real-time systems, urgent actions are represented
indirectly by annotating automata locations with invariants. Invariants are clock constraints that
typically impose upper bounds on the delays allowed in a particular location. Hence, when no further
delay is allowed, enabled actions (i.e., those which may be executed) become urgent and must be
executed.

One disadvantage of modeling urgency with invariants is that, the passage of time may be pre-
vented even when no action is enabled at that point, giving rise to timelocks [8, 11]. Timelocks are
anomalous states where no further execution may pass time beyond a certain bound. In TA networks
(i.e., collections of concurrent, asynchronous TA), components synchronize implicitly on the passage
of time, i.e., all components must agree in the allowed delays. Hence, timelocks have a global halting
effect on executions and may prevent the exploration of interesting (e.g., erroneous) behaviors. Thus, in
general, timelocks make the verification of correctness properties unreliable. Another known limitation
of invariants is the difficulty to express certain forms of urgent behavior, such as asap-synchronization
and other forms of synchronization [20, 7], and some forms of timeouts [9].

These limitations motivated the development of Timed Automata with Deadlines (TAD) [20, 7, 8],
where deadlines replace invariants as time progress conditions. Deadlines are clock constraints as-
sociated with transitions in the automaton, which determine when the transition must be executed.

∗This research has been supported by the UK Engineering and Physical Sciences Research Council under grant
EP/D067197/1.

†This is a revised version of the original paper (June, 2008).

1

Importantly, neither internal actions nor synchronization on observable actions are made urgent un-
less they can be executed (TAD are time-reactive [6]). Hence, TAD avoid the most common form of
timelocks occurring in formal models of real-time systems, where neither actions nor delays may occur
(time-actionlocks [8]). TAD also allow a natural and concise representation of different urgency condi-
tions, including those for which invariants are not well suited. (Although, there are urgency conditions
that can be expressed with invariants but not with deadlines, e.g., actions that must occur in strictly
less than n time units.)

Unfortunately, there is little tool support for the design and verification of TAD models (with the
IF toolset being the notable exception [12]). This paper adds Uppaal [4] to the available tool support.

Our contribution. We present (to our knowledge) the first compositional translation from TAD to
TA. The translation is applicable to a practically useful subset of TAD, and generates behaviorally
equivalent Uppaal TA networks with at most linear (and reasonably small) increase in size. We
describe an implementation of this translation, which allows Uppaal to aid the design and automatic
verification of TAD models. Thus, TAD modelers will benefit from Uppaal’s user-friendly GUI, rich
modeling language, and efficient verification algorithms.

Related Work. The IF toolset and Uppaal each offer different modeling and verification environ-
ments. For instance, the IF toolset [12] verifies requirements on TAD models that are expressed in the
alternation free µ-calculus [17], or are expressed as observers (safety properties). Instead, our transla-
tion allows requirements to be expressed in the fragment of TCTL [16] that is supported in Uppaal,
and safety properties may also be specified by test automata [1].

MoDeST [13] specifications also admit deadlines. However, as far as we know, there is no tool
support for the verification of such specifications (the associated toolset, MOTOR [5], cannot perform
exhaustive verification, and assumes maximal progress of actions). Interestingly, this paper may suggest
a way to translate (a subset of) MoDeST to Uppaal TA networks.

Bornot et al. [7] suggested a way to translate TAD to TA, but the translation is not compositional
(it requires a product automaton construction) and assumes a non-standard semantics of invariants.

Barbuti and Tesei [3] proposed an extension of TA with urgent transitions, where a parameter ℓ is
used to define an interval of tolerance: urgent transitions cannot be delayed for more than ℓ time units
after they become enabled. This provides an interpretation of urgency in left-open intervals, but the
right value for ℓ must be determined by the user, depending on the case. Also, as ℓ > 0 is required,
the semantics of deadlines can only be approximated. A non-compositional translation to TA is given,
based on the region automaton [2].

Uppaal provides urgent channels to model asap-synchronization without timing constraints. Un-
fortunately, this restriction limits the applicability of urgent channels, and their use may give rise to
timelocks due to mismatched synchronization. Nonetheless, we shall see that urgent channels allows us
to obtain a compositional translation.

Paper Outline. Timed automata with deadlines are introduced in § 2. Timed automata, as supported
in Uppaal, are described in § 3. The translation is formalized in § 4 (the associated tool is also described
in this section). Section 5 generalizes the translation to more complex TAD models. Section 6 explains
how to translate TAD models with shared data variables and diagonal constraints. Conclusions and
further work are discussed in Section 7. Appendices are included to offer further details on proofs and
other elements of the translation.

2

2 Timed Automata with Deadlines

This section introduces a common form of Timed Automata with Deadlines [20], where transitions are
classified either as lazy actions (non-urgent), eager actions (urgent as soon as they are enabled), or
delayable actions (urgent on their upper bounds) [7]. Formally, we will define the model using eager
and lazy actions as the only primitives; delayable actions will be derived from these (fig. 1 (right)).

Preliminaries. Let CA = {a, b, . . .} and HA = {a?, a! | a ∈ CA} (we define complementary labels, s.t.
a! = a? and a? = a!). Let D = {lazy , eager}. Let C be the set of clocks (a clock is variable in the
non-negative reals, R+0). Let Φ be the set of clock constraints over C, s.t.

φ ∈ Φ ::= true |x ∼ c |φ ∧ φ

where x ∈ C, ∼ ∈ {<,>,=,≤,≥} and c ∈ N. A valuation is a mapping from C to R+0. Let V be
the set of valuations. Let |= denote the satisfiability of clock constraints over valuations. Let v ∈ V,
δ ∈ R and r ⊆ C. The valuation v + δ ∈ V is defined s.t. (v + δ)(x) = v(x) + δ if v(x) + δ ≥ 0, and
(v + δ)(x) = 0 otherwise, for all x ∈ C. The valuation r(v) ∈ V is defined s.t. r(v)(x) = 0 for all x ∈ r,
and r(v)(x) = v(x) for all x /∈ r.

A timed transition system [19] is a tuple (S, s0,Lab ∪ R+, T), where S is a set of states, s0 ∈ S is
the initial state, Lab is a set of action labels and T ⊆ S × Lab ∪ R+ × S is a set of transitions. Action
transitions are of the form (s, a, s′) ∈ T , a ∈ Lab. Delay transitions are of the form (s, δ, s′) ∈ T ,
δ ∈ R+.

Syntax and semantics. A timed automaton with deadlines (TAD) is a tuple A = (L, l0,Lab, T, C),
where L is a set of locations; l0 ∈ L is the initial location; Lab ⊆ CA ∪ HA is a set of labels; T ⊆
L × Φ × Lab × D × 2C × L is a set of transitions (edges) and C ∈ C is a set of clocks.

Given a transition t = (l, a, g, d, r, l′) ∈ T , l is the source location, a is the label; g is the guard; d
is the deadline; r is the reset set and l′ is the target location (resp., src(t), lab(t), g(t), d(t), r(t) and
tgt(t)). Transitions labeled with a ∈ CA (resp. a ∈ HA) will be referred to as completed actions (resp.
half actions). Transitions with deadline lazy (resp. eager) will be referred to as lazy actions (resp. eager
actions).

A TAD network is a tuple |A = 〈A1, . . . , An〉, where Ai = (Li, li,0,Labi, Ti, Ci) is a TAD (i : 1..n).
Let C =

⋃n
i=1 Ci (we say that x ∈ C is a shared clock if x ∈ Ci ∪Cj for some 1 ≤ i 6= j ≤ n; otherwise x

is a local clock). The behavior of |A is given by the timed transition system (S, s0,Lab ∪R+, T), where
S ⊆ (

∏n
i=1 Li) × V (states are denoted s =

〈
l̄, v

〉
, where l̄ ∈

∏n
i=1 Li and v ∈ V); s0 = 〈l̄0, v0〉 (s.t.

l̄0 = 〈l1,0, . . . , ln,0〉, ∀x ∈ C. v0(x) = 0); Lab ⊆ CA and T is the smallest set of transitions that satisfies
the following conditions. (We refer to elements of

∏n
i=1 Li as location vectors. We use l̄[l′i/li] to denote

substitution of l′i for li in the location vector l̄ = 〈l1, . . . , ln〉.)

1. (completed actions)
(〈

l̄, v
〉
, a,

〈
l̄ [l′i/li], ri(v)

〉)
∈ T if

(li, a, gi, di, ri, l
′
i) ∈ Ti, a ∈ CA and v |= gi

2. (synchronization)
(〈

l̄, v
〉
, a,

〈

l̄ [l′i/li][l
′
j/lj], (ri ∪ rj)(v)

〉)

∈ T if

(li, a!, gi, di, ri, l
′
i) ∈ Ti, (lj , a?, gj , dj , rj , l

′
j) ∈ Tj and v |= gi ∧ gj (i 6= j)

3. (delays)
(〈

l̄, v
〉
, δ,

〈
l̄, v + δ

〉)
∈ T if

δ ∈ R+ and for all δ′ ∈ R+0, δ′ < δ: (1) (v + δ′) 2 g(t) for all t ∈ Ti (i : 1..n) s.t. lab(t) ∈ CA,

3

T2T1T0

S2S1S0

c2 (lazy)
a?

x<=1 (eager)
a!c1

x:=0 S1S0S1S0

x==1 (eager)
a!

x:=0

x<1 (lazy)
a!

x:=0
x<=1 (delayable)
a!

x:=0

Figure 1: A TAD network (left). Delayable actions as eager/lazy actions (right).

src(t) = li and d(t) = eager ; and (2) (v + δ′) 2 g(ti)∧ g(tj) for all ti ∈ Ti, tj ∈ Tj (i, j : 1..n, i 6= j)

s.t. lab(ti) = lab(tj), src(ti) = li, src(tj) = lj and d(ti) = eager .

where
〈
l̄, v

〉
∈ S and l̄ = 〈l1, . . . , ln〉. A run is a finite or countably infinite sequence of transitions in

the timed transition system.
We say that an action is enabled (in a given state) if its source location is in the current location

vector, and its guard holds true in the current valuation. We use the term matching actions to refer
to any pair of half actions, t and t̄, s.t. t and t̄ are in different components of the network and have
complementary labels. We say that an action is executable (in a given state) if it is enabled and either
is a completed action, or is a half action and there exists an enabled matching action. Matching actions
must be executed simultaneously, and half actions cannot be executed autonomously.

Time-reactivity. Time-reactivity [6] is a desirable property of timed transition systems. This property
holds if, from any state, either time may pass or actions can be executed. The following syntactic
restriction guarantees the time-reactivity of TAD networks: For any action t, if either d(t) = eager or
there exists t̄ s.t. d(t̄) = eager , then g(t) must be left-closed.1 This restriction guarantees that delays
are prevented only when eager actions can be executed (see above the semantic rule for delays). We
assume, in this paper, that TAD networks satisfy this requirement.

Example. Figure 1 (left) shows a simple TAD network with two components, S and T, where x is a
clock, c1 and c2 are completed actions, and a! and a? are half actions. The eager action a! must be
executed in S1 asap, but not later than v(x) = 1. This means that a! will wait for a? to be offered, at
which point delays will be prevented and synchronization will occur. However, if a? is offered too late
(or not at all), the network will forever remain in S1 and a deadlock will occur, but delays will never
be prevented.

Figure 1 (right) shows how combinations of eager and lazy actions may be used to represent more
complex urgency conditions. For instance, so-called delayable actions [7] are considered urgent only
when they reach their upper bounds (their guards are assumed to be right-closed). In the figure,
delayable action a! (on the left), with guard x<=1 is represented by one lazy action with guard x<1

and one eager action with guard x==1 (on the right).

3 Timed Automata in Uppaal

Uppaal is a well-known model-checker for TA, with a rich modeling language and efficient verification
algorithms [4]. We describe below the subset of the language that suffices to represent TAD networks.

Urgent and committed locations prevent delays as soon as they are entered. In addition, whenever a
committed location is entered, action interleaving is restricted to those components that are currently
in committed locations.

1A guard g is left-closed if the interval {δ ∈ R | (v + δ) |= g} is either left-closed or left-unbounded, for all v ∈ V. v |= g.
For conjunctions of single-clock constraints, g is left-closed if x > c does not occur in g, for any x ∈ C and c ∈ N.

4

Automata synchronize on channels. Binary channels model binary and blocking synchronization
(as in TAD § 2). Broadcast channels model a kind of asymmetric one-to-many synchronization. If b is
a broadcast channel, a transition labeled with b! will be executed simultaneously with all transitions
labeled with b? (at most one transition in each component of the network). However, the output
transition (b!) may also be executed autonomously if no matching input transitions (b?) can be executed.
Urgent channels model asap synchronization, i.e., synchronization on urgent channels cannot be delayed.
Urgent channels may be either binary or broadcast. Uppaal disallows clock constraints in transitions on
urgent channels, and in input transitions on broadcast channels. (Transitions on urgent and broadcast
channels are referred to as urgent transitions and broadcast transitions, resp.).

Preliminaries. Unless stated otherwise, we will use the notation and definitions introduced in § 2.
Let Ch = {a, b, . . .} be a set of channels. SL = {a?, a! | a ∈ Ch} is the set of synchronization labels
over Ch (a! = a? and a? = a!). Synchronizing transitions will be labeled with a?, a! ∈ SL and internal
transitions will be labeled with τ . Chbin,Chbrd,Churg ⊆ Ch resp. denote binary, broadcast and urgent
channels.

Syntax and semantics. A timed automaton (TA) is a tuple
A = (L, l0,Lab, T, I, C), where L is the set of locations; l0 ∈ L is the initial location; Lab ⊆ SL∪ {τ} is
the set of labels; T ⊆ L×Lab ×Φ×2C ×L is the set of transitions; I : L → Φ is the invariant function;
and C ⊆ C is the set of clocks in the automaton. Given t = (l, a, g, r, l′) ∈ T , l is the source location, a
is the label; g is the guard; r is the reset set and l′ is the target location (resp., src(t), lab(t), g(t), r(t)
and tgt(t)). We use Lu, Lc ⊆ L to denote the subsets of urgent and committed locations in L (resp.).
We assume that invariants are either true or conjunctions of upper bounds (i.e., conjunctions of simple
constraints of the form x ∼ c, where x ∈ C, ∼∈ {<,≤}, and c ∈ N). By convention, I(l) = true for all
l ∈ Lu ∪ Lc.

A TA network is a tuple, |A = 〈A1, . . . , An〉, where Ai = (Li, li,0,Labi, Ti, Ii, Ci) is a TA (i : 1..n).
Let C =

⋃n
i=1 Ci (as in TAD networks, we admit shared clocks). The behavior of |A is given by the

timed transition system (S, s0,Lab ∪ R+, T), where S ⊆ (
∏n

i=1 Li) × V; s0 =
〈
l̄0, v0

〉
; Lab ⊆ {τ} ∪ CA

and T is the smallest set of transitions that satisfies the following conditions. (I(l̄) =
∧n

i=1 Ii(li). Lu(l̄)
and Lc(l̄) denote the sets of urgent and committed locations in l̄. Given a set of indices J , we define
gJ =

∧

j∈J gj , rJ =
⋃

j∈J rj , and we use l̄[l′J/lJ] to denote substitution of l′j for lj in l̄, for each j ∈ J .)

1. (internal transition)
(〈

l̄, v
〉
, τ,

〈
l̄ [l′i/li], ri(v)

〉)
∈ T if

(li, τ, gi, ri, l
′
i) ∈ Ti, v |= gi, ri(v) |= I

(
l̄ [l′i/li]

)
, and Lc(l̄) 6= ∅ ⇒ li ∈ Lc(l̄)

2. (broadcast output)
(〈

l̄, v
〉
, a,

〈
l̄ [l′i/li], ri(v)

〉)
∈ T if

(li, a!, gi, ri, l
′
i) ∈ Ti, a ∈ Chbrd, v |= gi, ri(v) |= I

(
l̄ [l′i/li]

)
,

Lc(l̄) 6= ∅ ⇒ li ∈ Lc(l̄) and there is no (lj , a?, gj , rj , l
′
j) ∈ Tj (i 6= j) s.t. v |= gj and (rj ∪ ri)(v) |=

I
(

l̄ [l′i/li][l
′
j/lj]

)

3. (binary sync.)
(〈

l̄, v
〉
, a,

〈

l̄ [l′i/li][l
′
j/lj], (ri ∪ rj)(v)

〉)

∈ T if

(li, a!, gi, ri, l
′
i) ∈ Ti, (lj , a?, gj , rj , l

′
j) ∈ Tj, a ∈ Chbin, v |= gi ∧ gj,

(rj ∪ ri)(v) |= I
(

l̄ [l′i/li][l
′
j/lj]

)

and Lc(l̄) 6= ∅ ⇒ {li, lj} ∩ Lc(l̄) 6= ∅

4. (broadcast sync.)
(〈

l̄, v
〉
, a,

〈
l̄ [l′i/li][l

′
J/lJ], (ri ∪ rJ)(v)

〉)
∈ T iff

(li, a!, gi, ri, l
′
i) ∈ Ti, a ∈ Chbrd, and J is the maximal set of indices s.t. J ⊆ [1..n] \ {i},

5

S2 T2T1UB

x<=1

S1 T0S0 tau! a?a!x:=0

Figure 2: Urgent channels

(lj , a?, gj , rj , l
′
j) ∈ Tj for all j ∈ J , v |= gi ∧ gJ ,

(ri ∪ rJ) (v) |= I
(
l̄ [l′i/li][l

′
J/lJ]

)
and Lc(l̄) 6= ∅ ⇒ ∃ k ∈ J ∪ {i}. lk ∈ Lc(l̄)

5. (delays)
(〈

l̄, v
〉
, δ,

〈
l̄, v + δ

〉)
∈ T if

δ ∈ R+, (v + δ) |= I(l̄), Lu(l̄) ∪ Lc(l̄) = ∅, and for all δ′ ∈ R+0, δ′ < δ: (1) (v + δ′) 2 g(t) for all
t ∈ Ti (i : 1..n) s.t. lab(t) = b!, b ∈ Churg ∩Chbrd and src(t) = li; and (2) (v + δ′) 2 g(ti)∧ g(tj) for
all ti ∈ Ti, tj ∈ Tj (i, j : 1..n, i 6= j) s.t. lab(ti) = u!, lab(tj) = u?, u ∈ Churg ∩ Chbin, src(ti) = li
and src(tj) = lj.

where
〈
l̄, v

〉
∈ S and l̄ = 〈l1, . . . , ln〉. A run is a finite or countably infinite sequence of transitions in

the timed transition system.
Delays must satisfy all component invariants, and will be prevented in urgent and committed loca-

tions, and in states where urgent transitions are enabled (either output transitions on urgent broadcast
channels or matching transitions on urgent binary channels). Note that, Uppaal adopts strong invari-
ants: transitions that would otherwise invalidate the invariant of the target state cannot be executed
(i.e., states with invalid invariants are unreachable).2

Urgent actions in Uppaal. These can be modeled with invariants, urgent or committed locations, or
urgent channels. The latter are the safest primitives, because delays are not prevented unless synchro-
nization is enabled (although, not necessarily executable). However, clock constraints are disallowed in
urgent transitions, and timelocks may occur due to mismatched synchronization.

By way of example, fig. 2 shows a simple TA network with two components, S and T, where a is
an urgent channel, tau is an urgent broadcast channel and x is a clock.3 This TA network attempts
to recreate the behavior of the TAD network of fig. 1 (left). The semantics of urgent channels ensure
that a! and a? will synchronize asap, but no later than v(x) = 1. This upper bound is expressed
by the invariant x<=1 in the auxiliary location UB (relying on Uppaal’s strong invariant semantics).
By semantics of urgent broadcast channels, the auxiliary tau! transition is executed as soon as UB is
entered (there is no need for a matching tau?-transition). However, a timelock occurs if a? is offered
when v(x) > 1; both a! and a? will be simultaneously enabled, but synchronization cannot occur
because executing a! would invalidate the invariant in UB.

4 Translating TAD networks to Uppaal TA networks

In this section, we define the compositional translation of a class of TAD networks to Uppaal TA
networks. The class of TAD networks is defined by the following syntactic conditions.

1. Eager actions do not share labels with lazy actions. This simplifies the presentation but does not
sacrifice generality, as any TAD network can be brought into this form by a syntactic transfor-
mation (see Appendix A).

2In contrast, states with weak invariants are reachable (but delays are prevented) [7].
3We omit trivial invariants (true) and τ labels (internal transitions).

6

2. Outgoing transitions in the same location are guarded on the same clock (or are trivially enabled).
Different clocks, and diagonal clock constraints, can be dealt with at the expense of more complex
translations (see § 5 and § 6).

3. If a clock x occurs in a lower bound of an eager action in component P , then no other component
Q may reset x. Also, if a clock x is reset by an upper-bounded eager action in component P ,
then x cannot occur in lower bounds of transitions in any other component Q. This restriction is
necessary to guarantee the soundness of our translation (see Appendix B).

We believe that, the restrictions enumerated above do not compromise the practical applicability of our
translation. The first restriction can be enforced on more general TAD networks by a preprocessing step
(in fact, our tool implements such preprocessing § 4.4). Also, in practice (and judging from examples
in the literature of timed automata verification) the second and third restrictions are satisfied by (or
may be naturally enforced on) a large class of models.

4.1 The translation in examples

The translation represents lazy completed actions (in the TAD network) by internal transitions (in the
resulting TA network); lazy half actions by transitions on regular channels; eager completed actions
by output transitions on urgent broadcast channels; and eager half actions by transitions on urgent
channels. Auxiliary locations and transitions will be added to ensure that urgent transitions are enabled
only when the corresponding eager actions are enabled.

The simplest case, which is illustrated by fig. 3, corresponds to locations where all eager actions are
continuously enabled (c1 and c2 are completed actions).4 More interesting is the translation of eager
actions with lower and upper bounds, illustrated by fig. 4. Auxiliary locations are introduced to “wait”
until the current valuation reaches the action’s lower bound. Then, an equivalent urgent transition is
offered. We will refer to such auxiliary locations as lb-locations. For instance, LB1 and LB2 in the TA
on the left, guarantee that a! is enabled only when v(x) ≥ 1.

In order to disable urgent transitions after the upper bound is reached, auxiliary locations are
introduced as intermediate targets with the upper bounds as invariants. We will refer to such auxiliary
locations as ub-locations. For instance, UB1, in the TA in the middle, prevents b! from being executed
when v(y) > 1.

Upper bounds in eager actions also prompt the generation of escape locations (e-locations, for
short). These auxiliary locations are added to disable an urgent transition after its upper bound has
been reached, thus avoiding possible timelocks (fig.2). For instance, E1 avoids the timelocks that would
occur in S0 if v(y) > 1 and a b?-transition were enabled at that point. Figure 4 (right) shows the
translation of eager actions with both lower and upper bounds, which requires (as expected) the use of
lb- and ub-locations.

Committed locations are used when there are outgoing eager actions with lower bounds, and the
source location may be entered with a valuation that satisfies the lower bound. For instance, if R0 is
entered when v(x) < 1, the automaton must delay in LB1 until a! can be offered; on the other hand,
if R0 is entered when v(x) ≥ 1, the automaton must offer a! immediately at LB2.

Figure 5 shows a more involved example, where there are many outgoing transitions in the same
location. The lower bounds of eager actions a! and b! are accounted for by lb-locations LB1 to
LB3. The intermediate auxiliary transitions allow the TA to pass time, enabling and disabling actions
depending on the current valuation. For instance, the purpose of the e-location E1 is to disable a!, but
it must allow the TA to offer b! eventually (hence, the TA may not remain in E1 beyond v(x) = 3).

4The translation uses tau!-transitions to model urgent internal transitions in Uppaal, where tau is a distinguished
urgent broadcast channel that does not occur as an action label in the TAD network.

7

T0

S0

Q1Q0

R1R0

T1

S1

(eager)
b!

(eager)
c2

y:=0

x>0
(lazy)

c1

x>=1 && x<3
(lazy)

a?

x:=0

T0

S0

Q1Q0

R1R0

T1

S1

b!

tau!
y:=0

x>0

x>=1 && x<3
a?

x:=0

where
chan a;

urgent chan b;

urgent broadcast chan

tau;

Figure 3: Translating lazy actions and unbounded eager actions (left: TAD, right: TA)

T0S0R1R0 T1S1
1<=z && z<2 (eager)
c!

z:=0
y<=1 (eager)
b!

y:=0
x>=1 (eager)
a!

x:=0

T0

E1

T1
LB1

z<=1

E1

S1

R0

LB1

x<=1

LB2S0R1LB2 UB1

z<2

UB1

y<=1

z<1 z>=1

z>=2

tau!
z:=0z==1

y>1

tau!
y:=0

x>=1x<1

x==1 c!b!
a!
x:=0

where
urgent chan a,b,c;

urgent broadcast chan

tau;

Figure 4: Translating bounded eager actions (top: TAD, bottom: TA)

Also, the overlap between the guards of c! and a! is reflected in the TA by offering c! from all lb-
locations where it could be enabled (LB1 and LB2). In general, transitions that represent TAD actions
have to be offered from all lb-locations and e-locations where they could be enabled.

Note that, figs. 4 and 5 show that TAD models can be more concise than behaviorally equivalent
TA models.

4.2 The translation, formally

Let |A = 〈A1, . . . , An〉 be a TAD network with lazy and eager actions. We define a compositional
translation T , s.t. |B = 〈B1, . . . , Bn〉, where Bi = T (Ai) for all i : 1..n, is an Uppaal TA network
whose behavior is equivalent to |A.

Preliminaries. |A = 〈A1, . . . , An〉, where Ai = (LA,i, lA,i,0,LabA,i, TA,i, CA,i) (i : 1..n). T =
⋃n

i=1 TA,i

and L =
⋃n

i=1 LA,i. Tea and Tla are the sets of eager and lazy actions in |A (resp.). T lb
ea , T ub

ea ⊆ Tea refer
to lower-bounded and upper-bounded eager actions. Given l ∈ L, we use T (l), Tea(l), Tla(l), T lb

ea(l) and
T ub

ea (l) to restrict the previous sets to the outgoing transitions in l, and we use xl to denote the clock
that guards all outgoing transitions in l.

Given t ∈ T , we assume g(t) = x ∈ G, with G = [lb, ub) or G = [lb, ub] for eager actions, and
G = (lb, ub), G = [lb, ub) or G = [lb, ub] for lazy actions (lb ∈ N, ub ∈ N ∪ {∞}). We use gl(t) = lb
and gu(t) = ub to denote lower and upper bounds of t; and x ∈ g(t) to denote that clock x occurs in

8

S2

S3

S1

S0

x<2 (lazy)
c!

x>=1 && x<2 (eager)
a!

x:=0

x>=3 (eager)
b!

S3

E1
x<=3

S1 S2

LB3

UB1
x<2

LB2
x<=3

LB1
x<=1

S0

x<2
c!

x<2
c!

x==3x>=2

tau!
x:=0

x==3

x>=3

b!

1<=x && x<3

a!

x==1

x<1

where
urgent chan a,b,c;

urgent broadcast chan

tau;

Figure 5: Translating multiple outgoing actions (left: TAD, right: TA)

g(t). We say that t has an upper bound (<, gu(t)) if G =
[
gl(t), gu(t)

)
, gu(t) ∈ N (resp. (≤, gu(t)) if

G =
[
gl(t), gu(t)

]
, gu(t) ∈ N). Given an upper bound u, we define the interval ι(u) s.t. ι(u) = [0, ub)

if u = (<,ub) and ι(u) = [0, ub] if u = (≤, ub). We will use the following functions on sets of upper
bounds.

min(U) = u ∈ U s.t. ∀u′ ∈ U. u ⊆ u′

next(u,U) = u′ ∈ U s.t. u ⊂ u′ and ∄ u′′ ∈ U. u ⊂ u′′ ⊂ u′

TA transitions for eager and lazy actions. Action labels in half actions are represented in |B
by channels with the same name: labels in lazy actions with non-urgent channels and labels in eager
actions with urgent channels. Lazy completed actions are represented by internal transitions. Eager
completed actions are represented by tau!-transitions, where tau is a distinguished urgent broadcast
channel that does not occur as a label in |A.

Let tj = (l, aj , gj , dj , rj , l
′) ∈ T (j : 1..|T |), and loc be a location in |B. We define upp(tj, loc) to be

the set of TA transitions that represent tj , when offered from loc.

upp(tj , loc) =







{ (loc, syncj , gj , rj , l
′) } if tj ∈ Tla

{ (loc, syncj , true, rj , l
′) } if tj ∈ Tea \ T ub

ea

{ (loc, syncj , true, ∅, ljub), (ljub, tau!, true, rj , l
′) } if tj ∈ T ub

ea

where syncj = tau! if tj is an eager completed action, syncj = τ if tj is a lazy completed action and
syncj = aj otherwise.

Auxiliary locations and transitions. For any l ∈ L, the lower bounds of eager actions in l partition
the reachable valuations of xl in l into intervals:

Γ(l) = { [0, lb1), [lb1, lb2), . . . , [lbm,∞) }

where (1) lbk < lbk+1 for all k : 1..(m − 1); (2) ∀ k : 1..m. ∃ t ∈ T lb
ea(l). gl(t) = lbk; and (3) ∀ t ∈

T lb
ea(l). ∃ k : 1..m. gl(t) = lbk.

Let ιk denote the k-th interval in the sequence, [lbk−1, lbk) for k : 1..(m + 1) (by convention, lb0 = 0
and lbm+1 = ∞). For any such interval ι, Toffer(l, ι) ⊆ T (l) is the set of transitions in l that are enabled
in ι.

Toffer(l, ι) = { t ∈ T (l) | g(t) = xl ∈ G, G ∩ ι 6= ∅ }

9

Let T ub
offer(l, ι) ⊆ Toffer(l, ι)∩ T ub

ea (l) be the subset of eager actions offered during ι, which have an upper
bound in ι.

T ub
offer(l, ι) = { t ∈ Toffer(l, ι) ∩ T ub

ea (l) | gu(t) ∈ ι }

Let UB(l, ι) denote the set of all different upper bounds of actions in T ub
offer(l, ι).

Locations in |A will be represented in |B by committed locations with the same name (unless
T lb

ea(l) = ∅). In addition, for each interval ιk, k : 1..|Γ(l)|, the translation will generate the following
auxiliary locations.

1. one lb-location, lklb;

2. one ub-location, ljub (for each tj ∈ T ub
ea (l), j : 1..|T |); and

3. one e-location, lk,u
esc (for each u ∈ UB(l, ιk)).

The translation will also generate the following auxiliary transitions.

1. from l to lklb,

2. from lklb to lk+1
lb ,

3. from lklb to lk,u
esc (for u = min(UB(l, ιk))),

4. from lk,u
esc to lk,u′

esc (for u′ = next(u,UB(l, ιk))); and

5. from lk,u
esc to lk+1

lb (for each u ∈ UB(l, ιk)).

Finally, from every lb-location and e-location (and from the initial source location, if this is not a
committed location), the translation will generate equivalent TA transitions to map the eager and lazy
actions that may be enabled in the associated intervals (using the function upp()).

Translating components. For each TAD Ai = (LA,i, lA,i,0,LabA,i, TA,i, CA,i) (i : 1..n), the translation
generates the TA Bi, which is defined as follows.

Bi = T (Ai) = (LB,i, lB,i,0,LabB,i, TB,i, IB,i, CB,i)

where:

• LB,i = LA,i ∪ Llb
A,i ∪ Lesc

A,i ∪ Lub
A,i, where

Llb
A,i = { lklb | l ∈ LA,i, k : 1..|Γ(l)| }

Lesc
A,i = { lk,u

esc | l ∈ LA,i, k : 1..|Γ(l)|, ιk ∈ Γ(l), u ∈ UB(l, ιk) }

Lub
A,i = { ljub | l ∈ LA,i, j : 1..|T |, tj ∈ T ub

ea (l) }

• Lu
B,i = ∅, Lc

B,i = {l ∈ LA,i | T lb
ea(l) 6= ∅}

• lB,i,0 = lA,i,0

• LabB,i is the smallest set of labels that satisfies the following conditions.

a ∈ LabB,i ∩ (Chbin \ Churg) if ∃ t ∈ Tla ∩ HA. lab(t) = a

u ∈ LabB,i ∩ Chbin ∩Churg if ∃ t ∈ Tea ∩ HA. lab(t) = u

tau ∈ LabB,i ∩ Chbrd ∩Churg if Tea ∩ CA 6= ∅
τ ∈ LabB,i if Tla ∩ CA 6= ∅

10

• CB,i = CA,i

• IB,i is the invariant function, which is defined as follows.

IB,i(l) = true if l ∈ LA,i \ Lc
B,i

IB,i(l
k
lb) = xl ≤ lbk if l ∈ LA,i, k : 1..|Γ(l)|, [lbk−1, lbk) ∈ Γ(l)

IB,i(l
k,u
esc) = IB,i(l

k
lb) if l ∈ LA,i, k : 1..|Γ(l)|, ιk ∈ Γ(l), u ∈ UB(l, ιk)

IB,i(l
j
ub) = xj < gu

j if l ∈ LA,i, j : 1..|T |, gj = [gl
j , g

u
j), gu

j ∈ N

IB,i(l
j
ub) = xj ≤ gu

j if l ∈ LA,i, j : 1..|T |, gj = [gl
j , g

u
j], gu

j ∈ N

• TB,i is the smallest set of transitions that satisfies the following conditions.

(l, τ, xl ∈ ιk, ∅, l
k
lb) ∈ TB,i if l ∈ LA,i, k : 1..|Γ(l)|

(lklb, τ, xl = lbk, ∅, l
k+1
lb) ∈ TB,i if l ∈ LA,i, k : 1..(|Γ(l)| − 1)

(lklb, τ, xl ∈ ιk \ ι(u), ∅, lk,u
esc) ∈ TB,i if l ∈ LA,i, k : 1..|Γ(l)|, ιk ∈ Γ(l),

u = min(UB(l, ιk))

(lk,u
esc , τ, xl ∈ ιk \ ι(u), ∅, lk,u′

esc) ∈ TB,i if l ∈ LA,i, k : 1..|Γ(l)|, ιk ∈ Γ(l),
u ∈ UB(l, ιk),
u′ = next(u,UB(l, ιk))

(lk,u
esc , τ, xl = lbk, ∅, l

k+1
lb) ∈ TB,i if l ∈ LA,i, (k : 1..|Γ(l)| − 1),

ιk ∈ Γ(l), u ∈ UB(l, ιk)
upp(t, lklb) ⊆ TB,i if l ∈ LA,i, k : 1..|Γ(l)|, ιk ∈ Γ(l),

t ∈ Toffer(l, ιk)

upp(t, lk,u
esc) ⊆ TB,i if l ∈ LA,i, k : 1..|Γ(l)|, ιk ∈ Γ(l),

u ∈ UB(l, ιk), t ∈ Toffer(l, ιk),
g(t) = xl ∈ G, G ∩ (ιk \ ι(u)) 6= ∅

upp(t, l) ⊆ TB,i if l ∈ LA,i, t ∈ T (l), T lb
ea(l) = ∅

The following theorems state the correctness and complexity of the translation (detailed proofs can be
found in Appendix B).

theorem 4.1. (Bisimulation) Let |A be a TAD network and |B = T (|A) the resulting TA network.
There exists a strongly timed bisimulation [10] between |A and |B, which abstracts over auxiliary TA
transitions.

theorem 4.2. (Linear complexity) Let |A be a TAD network and |B = T (|A) the resulting TA
network. The size of |B is proportional to the size of |A.

4.3 Verification

Correctness properties on the TAD network can be expressed as queries written in Uppaal’s require-
ment language [4] (a subset of TCTL [16]). Equivalent properties on the TA network are obtained by
substitution of equivalent locations in the original query. This is defined as follows.

Let |A = 〈A1, . . . , An〉 be a TAD network and |B = 〈B1, . . . , Bn〉 the resulting TA network. Substi-
tution of equivalent locations is given by the function θ, 5

θ(Ai.l) =
∨

({Bi.l } ∪
{Bi.l

k
lb | k : 0..|Γ(l)| } ∪

{Bi.l
k,u
esc | k : 1..|Γ(l)|, u ∈ UB(l, ιk) } ∪

{Bi.loc
j
ub | (locj

ub, tau!, true , rj , l) ∈ TB,i, loc ∈ LA,i, j : 1..|T | })

5The state formula Ai.l holds whenever Ai is currently in location l.

11

theorem 4.3. Let |A be a TAD network and |B = T (|A) the resulting TA network. For any formula
F in Uppaal’s requirement language, the following holds.

|A |= F iff |B |= F [θ(Ai.l)/Ai.l]Ai.l∈F

Proof. Follows from strong timed-bisimulation between |A and |B, and preservation of TCTL properties
by strong-timed bisimulation [21].

For instance, the property on the TAD network of Fig. 5, is action b! eventually enabled?, can
be expressed as F = ∃3 (S0 ∧ x ≥ 3). The equivalent property on the TA network is then F ′ =
∃3 ((S0 ∨ LB1 ∨ LB2 ∨ LB3 ∨ E1) ∧ x ≥ 3).

4.4 The TAD2TA tool

We implemented a tool that receives a TAD network and generates the equivalent TA network, which
can be displayed, simulated and verified in Uppaal. TAD networks themselves can be built using
Uppaal’s GUI and most of its modeling facilities (e.g., parameterized templates and data variables).
Correctness properties can be expressed in Uppaal’s requirements language, which the tool then trans-
lates to equivalent formulae in terms of the TA network (§ 4.3). Diagnostic traces are presented in terms
of the TA network, and the tool generates mappings to identify the original locations and transitions
in the TAD network (the integration with Uppaal’s simulator is subject of ongoing work).

We tested the tool on a number of TAD models, which we constructed from TA models of academic
examples (e.g., Fisher’s mutex protocol and the train-gate problem) and case studies such as [9, 23,
14, 22, 18, 15]. In general, we obtained TAD models that were conceptually simpler than the originals
(with the guarantee of being time-reactive by construction). In same cases, the TAD models were
also more faithful to the system (e.g., the behavior of some timeouts constructs, which could only
be approximated in the TA model of [9], was represented exactly in the TAD model). On the other
hand, the design of TA models may benefit from features of Uppaal that are not supported by our
translation. For instance, TAD models cannot easily express the interleaving semantics of committed
locations, and our translation disallows variables in clock constraints.

Table 1 compares the size of the TAD models with that of the generated Uppaal TA networks
(translation times were negligible). The tool implements a number of optimizations that avoid the
generation of redundant auxiliary locations and transitions (e.g., eager actions in location l, which are
guarded on clock x, admit simpler translations if x is reset whenever l is entered). In addition, graph
layout algorithms were implemented to help the visualization of generated TA networks. More details
on the tool’s architecture, its input language, and the models listed in Table 1, can be found in the
tool’s website.6

5 Multiple outgoing eager actions guarded on different clocks

This section presents a translation from Sparse TAD to TA networks in Uppaal, for the case where
actions in the same location may be guarded on different clocks (assuming, however, that all other
syntactic restrictions apply). This is rarely the case in practice, but we want to show how the translation
of § 4 can be extended to deal with more complex TAD models. The translation presented here, Tmclocks,
extends the definition of T (§ 4) to deal with multiple clocks.

For example, fig 6 (left) shows a fragment of a TAD component with two eager half actions from
L1, a! and b!, with guards x ∈ [1, 2) and y ∈ [3, 4). There is not enough information to determine

6http://www.cs.kent.ac.uk/people/staff/rsg5/TAD2TAtool/TAD2TAwpage.htm

12

Table 1: Translation of TAD models to Uppaal TA networks. |L| (|L′|) and |T | (|T ′|) denote the
number of locations and transitions in the input (output) model (resp.).

TAD model (|L|, |T |) (|L′|, |T ′|) (|L′|/|L|, |T ′|/|T |)
gbox tad.xml (65, 84) (78,102) (1.20, 1.21)
bocdpFIXED tad.xml (70, 130) (126, 189) (1.8, 1.45)
csmacd kronos tad.xml (9, 18) (27, 46) (3, 2.56)
fischer tad.xml (4, 5) (4, 5) (1, 1)
lipsync tad.xml (50, 53) (82, 97) (1.64, 1.83)
train-gate-410 tad.xml (10, 13) (15, 21) (1.5, 1.62)
zeroconffull2007 tad.xml (14, 25) (37, 66) (2.64, 2.75)
2doors tad.xml (8, 11) (11, 16) (1.38, 1.45)
bmp tad.xml (19, 30) (27, 51) (1.42, 1.7)
windcar tad.xml (7, 9) (7, 9) (1, 1)
WSN tad.xml (16, 19) (18, 26) (1.13, 1.37)
interrupt tad.xml (8, 10) (8, 10) (1, 1)
bridge tad.xml (8, 9) (8, 11) (1, 1.22)

v(x) at L1 v(y) at L1 Offer a! Offer b! Location in the TA component

< 1 < 3 × × LB1

≥ 1 < 3 X × LB2

< 1 ≥ 3 × X LB3

≥ 1 ≥ 3 X X LB4

Table 2: Relative valuations to consider in the translation of the TAD shown in Fig. 6 (left). X: the
transition must be offered. ×: the transition must not be offered. - : the location is not shown.

the relation between the values of x and y when L1 is entered, hence the translation must consider all
possibilities in order to offer the appropriate urgent transition, a! or b!, at the right time. Table 2 shows
the different possible valuations when L1 is entered. Outgoing actions are grouped w.r.t. the clocks
occurring in the their guards. For each group, the lower bounds of eager actions induce a partition of
the time-line into a sequence of consecutive intervals. Finally, the set of valuations at L1 is partitioned
according to all possible combinations of intervals (one for each clock). Every such combination is
represented in the TA by an auxiliary location (fig 6, right). As usual, we consider lb-locations to
enforce eager actions’ lower-bounds, ub-locations to enforce eager actions’ upper bounds and escape
locations to avoid timelocks due to urgent transitions.

5.1 Formal Definition

Let |A = 〈A1, . . . , An〉 be a TAD network. We define a translation, Tmclocks, which takes any component
TAD, Ai, i : 1..n, and produces an equivalent TA, B = Tmclocks(A). Notations and definitions will be
borrowed from § 4, unless stated otherwise.

Preeliminaries. We assume that |A satisfies the restrictions enumerated in § 4, except that outgoing
transitions at the same location can be guarded on different clocks (although, we assume that at most
one clock occurs in any guard). Let C(l) = {x1, . . . , x|C(l)|} be the set of clocks referred to by actions
in location l.

13

L2L1

L0

3<=y<4
(eager)

b!
1<=x<2
(eager)

a!

E4

E3

E2

E1

L3L2

L0

UBb
y<4

LB3
x<=1

UBa
x<2

LB4LB2
y<=3

LB1
x<=1 && y<=3

L1

x==1

y==3

a!

b!

x>=2 y>=4

x>=2

y>=4

y>=4

tau!tau!

b!

x<1 &&
y>=3

b!

x==1

y==3

a!

x==1 y==3

a!

x>=1 &&
y>=3

x>=1 &&
y<3

x<1 &&
y<3

where:
urgent chan a, b;

urgent broadcast chan tau;

Figure 6: Combinatorial explosion due multiple outgoing eager actions on different clocks (top: TAD,
bottom: TA)

14

The lower bounds of eager actions in l partition the reachable values of each x ∈ C(l) into a set

Γ(l, x) = {[0, lb1), [lb1, lb2), . . . , [lbm,∞)}

where (1) lbk < lbk+1 for all k : 1..(m − 1); (2) ∀ k : 1..m. ∃ t ∈ T lb
ea(l). gl(t) = lbk; and (3) ∀ t ∈

T lb
ea(l). ∃ k : 1..m. gl(t) = lbk.

Let UB(l, ι, x) be the set of distinct upper bounds of actions in T lb
ea(l), whose guards refer to x ∈ C(l)

and are satisfied in interval ι. Let s(l) = |C(l)| and s(l, h) = |Γ(l, xh)| (h : 1..s(l)). We define,

indices(l) = { (k1, . . . , ks(l)) | [lbkh−1, lbkh
) ∈ Γ(l, xh),

kh : 1..|s(l, xh)|, xh ∈ |C(l)|, h : 1..s(l) }

For any tuple of indices κ = (k1, . . . , kr) and h : 1..r, we define κh = kh (the h-th element of κ) and
ι(κ, h) = [lbκh−1, lbκh

) (the unique interval corresponding to κh). We also define the set of actions which
are offered at any ιh,

Toffer(l, κ) = {t ∈ T | g(t) = xh ∈ G, G ∈ ι(κ, h), h : 1..|s(l)| }

Let T ub
offer(l, ι, x) be the subset of urgent actions in l that are guarded on clock x and have an upper

bound in interval ι.

T ub
offer(l, ι, x) = { t ∈ Tea(l) | gu(t) ∈ ι }

As in § 4, the translation generates lb-locations to enforce eager actions’s lower bounds, ub-locations to
enforce eager actions’ upper bounds and escape locations to avoid timelocks due to urgent transitions.
These auxiliary locations, plus the necessary interconnecting auxiliary transitions, are formalized below.

For each TAD Ai = (LA,i, lA,i,0,LabA,i, TA,i, CA,i) (i : 1..n), the translation generates the TA Bi,
which is defined as follows.

Bi = T (Ai) = (LB,i, lB,i,0,LabB,i, TB,i, IB,i, CB,i)

where

• LB,i = LA,i ∪ Llb
A,i ∪ Lesc

A,i ∪ Lub
A,i, where

Llb
A,i = { lκlb | l ∈ LA,i, κ ∈ indices(l)}

Lesc
A,i = { lκ,x,u

esc | l ∈ LA,i, κ ∈ indices(l), u ∈ UB(l, ι(κ, h), x), x ∈ C(l) }

Lub
A,i = { ljub | l ∈ LA,i, tj ∈ T ub

ea (l), j : 1..|T | }

• Lu
B,i = ∅, Lc

B,i = {l ∈ LA,i | T lb
ea(l) 6= ∅}

• lB,i,0 = lA,i,0

• LabB,i is the smallest set of labels that satisfies the following conditions.

a ∈ LabB,i ∩ (Chbin \ Churg) if ∃ t ∈ Tla ∩ HA. lab(t) = a

u ∈ LabB,i ∩ Chbin ∩Churg if ∃ t ∈ Tea ∩ HA. lab(t) = u

tau ∈ LabB,i ∩ Chbrd ∩Churg if Tea ∩ CA 6= ∅
τ ∈ LabB,i if Tla ∩ CA 6= ∅

• CB,i = CA,i

15

• IB,i is the invariant function, which is defined as follows.

IB,i(l) = true if l ∈ LA,i \ Lc
B,i

IB,i(l
κ
lb) =

∧s(l)
h=1 xh ≤ lbkh

if lκlb ∈ LB,i, xh ∈ C(l), ι(κ, h) = [lbkh−1, lbkh
)

IB,i(l
κ,x,u
esc) = IB,i(l

κ
lb) if lκlb, l

κ,x,u
esc ∈ LB,i

IB,i(l
j
ub) = xj < gu

j if ljub ∈ LB,i, gj = [gl
j , g

u
j), gu

j ∈ N

IB,i(l
j
ub) = xj ≤ gu

j if ljub ∈ LB,i, gj = [gl
j , g

u
j], gu

j ∈ N

• TB,i is the smallest set of transitions that satisfies the following conditions.

1. l
τ,

∧s(l)
h=1 xh∈ι(κ,h), ∅

−−−−−−−−−−−−−−→ lκlb ∈ TB,i for all l, lκlb ∈ LB,i

2. lκlb
τ, xh=lbkh

, ∅
−−−−−−−−−→ lκ

′

lb ∈ TB,i for all lκlb, l
κ′

lb ∈ LB,i, ι(κ, h) = [lbkh−1, lbkh
)

κ = (k1, . . . , kh, . . . , kr),
κ′ = (k1, . . . , kh + 1, . . . , kr)

3. upp(t, lκlb) ⊆ TB,i for all lκlb ∈ LB,i, t ∈ Toffer(l, κ)

4. lκlb
τ, xh∈ι(κ,h)\ι(u), ∅

−−−−−−−−−−−−−→ lκ,xh,u
esc ∈ TB,i for all lκlb, l

κ,u
esc ∈ LB,i,

u = min(UB(l, ι(κ, h), xh)),
h : 1..|s(l)|

5. lκ,xh,u
esc

τ, xh∈ι(κ,h)\ι(u), ∅−−−−−−−−−−−−−→ lκ,xh,u′

esc ∈ TB,i for all lκlb, l
κ,xh,u
esc ∈ LB,i,

u′ = next(u,UB(l, ι(κ, h), xh)),
h : 1..|s(l)|

6. lκ,xh,u
esc

τ, xh=lbkh
, ∅

−−−−−−−−−→ lκ
′

lb ∈ TB,i for all lκ,xh,u
esc , lκ

′

lb ∈ LB,i,
ι(κ, h) = [lbkh−1, lbkh

),
κ = (k1, . . . , kh, . . . , kr),
κ′ = (k1, . . . , kh + 1, . . . , kr)

7. upp(t, lκ,xh,u
esc) ⊆ TB,i for all lκ,xh,u

esc ∈ LB,i,
t ∈ Toffer(l, κ),
g(t) = xq ∈ G, G ∩ ι(κ, q) 6= ∅,
h, q : 1..|s(l)|

8. upp(t, l) ⊆ TB,i for all t ∈ T (l) and l ∈ LA,i s.t. Tea(l) = ∅

5.2 Correctness and Complexity

The translation Tmclocks generates TA networks that are strongly timed bisimilar to the original TAD
networks (abstracting over the auxiliary transitions introduced by the translation). However, in this
case, the resulting TA networks may be exponentially bigger than the input TAD networks. We omit
the proofs of these claims, which can be extrapolated from those in Appendix B.

16

S1S0
x in [1,2) and var > 1
(eager)

a!

T1T0

y in [var,var+1)
(eager)

a?

y=0, var=0

S1

E1

UB1
x<2

LB2LB1
x<=1

S0

tau!

x>=2

x>=1

var>1
a!

x==1

x<1

T1

E1

UB1
y<var

LB2LB1
y<=var

T0

tau!

var=0

y >= var+1

y >= var

a?
y=0

y==var

y<var

where
int var;

urgent chan a;

urgent broadcast chan tau;

Figure 7: A translation of eager actions guarded on shared variables (top:TAD, bottom:TA)

6 Data variables and diagonal constraints

This paper has focused on simple TAD models, where communication is achieved through synchro-
nization and clock constraints refer to single clocks. However, it is not difficult to deal with richer
TAD models where actions may be guarded with shared variables and diagonal constraints (and where
shared variables can be updated as a side effect of actions). This can be done as follows.

Accommodating data variables. Uppaal allows data constraints on urgent (and non-urgent) tran-
sitions, hence the translation can accommodate guards that involve both clock and data constraints at
no extra cost. As we did for shared clocks in § 4, we require that any data variable that is updated in
some component cannot occur in the guard of any eager action of other components. The translation
is driven entirely by clock constraints on eager actions (or lazy actions with eager matches). Note that,
whenever the guard of an eager action can be expressed as a conjunction g = φc ∧ φd, where φc is a
clock constraint (where data variables may occur) and φd is a data constraint (where clock variables do
not occur), φd may simply be copied as the guard of every urgent transition that represents the eager
action.

This is illustrated in fig. 7. The S-component includes the eager action a?, which is guarded on clock
x and shared (integer) variable var. Given that var does not constrain x, the translation is driven only
by the term x in [1,2) and var>1 is simply added as a guard in the urgent transition a!. Compare
this with the translation of eager action a? in the T-component. Here var bounds the clock y and
therefore occurs in invariants and guards of auxiliary locations and transitions. The translation of both
eager actions in components S and T follows the pattern described in § 4.

As another example of the use of data variables on eager actions, fig.8 shows a TAD model of
a click-speed test. The test is meant to determine the relative speed of a person clicking a mouse.
The subject is considered to be fast (signaled with fast!) if n clicks occur in less than t time-units,
otherwise the subject is considered to be slow (signaled with slow!). Again, the translation is driven
by the clock constraints on eager actions (x<t and x>=t). As data constraints (i<n and i==n) do not
bound the clock x, the translation simply attaches these constraints as guards of urgent transitions.

17

START

TEST

i==n && x<t
(eager)
fast!

i==n && x>=t
(eager)
slow!

(eager)
start?
i=0,x=0 i<n

(eager)
click?
i++

UB1
x<t

LB2

LB1
x<=t

TESTSTART

i==n
slow!

tau!

i==n
fast!

i<n
click!

i++

i<n
click!

i++

x>=t

x==t

x<tstart!
i=0,x=0

where
int i;

urgent chan start, slow, fast;

urgent broadcast chan tau;

Figure 8: A speed test (left:TAD, right:TA)

Accommodating diagonal constraints. The translation can be applied to actions with diagonal
constraints by considering clock differences as a single clock. For instance, a constraint such as x−y > 1
can be interpreted as z > 1, where z is a fresh clock. Then, the TAD network is translated and z is
substituted with x − y in the resulting TA network, as a last step.

7 Conclusions and Future Work

We presented a compositional translation of TAD networks to Uppaal TA networks. The generated
TA networks are strongly timed-bisimilar to the TAD networks and exhibit a worst-case linear increase
in size. We described an implementation that allows Uppaal to aid the design and verification of TAD
networks. Compositionality was achieved thanks to the asap-synchronization semantics of Uppaal’s
urgent channels. In addition, the strong invariant interpretation adopted in Uppaal proved necessary
to faithfully express urgent actions with upper bounds. Asap-synchronization can also be obtained over
non-urgent channels, although not as concisely (e.g., urgent channels can be expressed by non-urgent
channels with the addition of shared Boolean variables and conditional invariants). Nonetheless, at
least in principle, similar compositional translations could be obtained for other model-checkers for TA.

As future work, we would like to obtain further integration between our TAD2TA tool and Uppaal’s
GUI. In particular, we would like to extend Uppaal’s simulator to work directly on the input TAD
network (currently, the user may only simulate the equivalent TA network). In addition, it would be
interesting to compare the syntactic translation of TAD to TA, as presented in this paper, against a
direct implementation of time-constrained urgent transitions on TA (the support for clock-constraints
on urgent transitions may be available in forthcoming Uppaal versions).

Acknowledgements. We are grateful to Howard Bowman, John H̊akansson, Frits Vaandrager and
members of his research group at Radboud University Nijmegen, and Kim Larsen and members of his
research group at Aalborg University, for fruitful discussions on this work.

References

[1] L. Aceto, P. Bouyer, A. Burgueño, and K. Larsen. The power of reachability testing for timed
automata. Theoretical Computer Science, 1-3(300):411–475, 2003.

18

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235,
1994.

[3] R. Barbuti and L. Tesei. Timed automata with urgent transitions. Acta Informatica, 40(5), March
2004.

[4] G. Behrmann, A. David, and K. Larsen. A tutorial on Uppaal. In SFM-RT 2004, LNCS 3185,
pages 200–236. Springer, 2004.

[5] H. C. Bohnenkamp, H. Hermanns, and J-P. Katoen. MOTOR: The MODEST tool environment.
In TACAS’07, LNCS 4424, pages 500–504. Springer, 2007.

[6] S. Bornot and J. Sifakis. On the composition of hybrid systems. In Hybrid Systems: Computation
and Control, LNCS 1386, pages 49–63. Springer, 1998.

[7] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In Proc. of COMPOS
1997, LNCS 1536, pages 103–129. Springer, 1998.

[8] H. Bowman. Time and action lock freedom properties for timed automata. In Proceedings of
FORTE 2001, pages 119–134. Kluwer Academic, 2001.

[9] H. Bowman, G. Faconti, J.-P. Katoen, D. Latella, and M. Massink. Automatic verification of a lip
synchronization protocol using uppaal. Formal Aspects of Computing, 10(5-6):550–575, August
1998.

[10] H. Bowman and R. Gomez. Concurrency Theory, Calculi and Automata for Modelling Untimed
and Timed Concurrent Systems. Springer, January 2006.

[11] H. Bowman and R. Gomez. How to stop time stopping. Formal Aspects of Computing, 18(4):459–
493, December 2006.

[12] M. Bozga, S. Graf, Ileana Ober, Iulian Ober, and J. Sifakis. The IF toolset. In SFM-RT 2004,
LNCS 3185, pages 237–267. Springer, 2004.

[13] P. D’Argenio, H. Hermanns, J-P. Katoen, and R. Klaren. MoDeST - a modelling and description
language for stochastic timed systems. In Proc. of PAPM-PROBMIV 2001, LNCS 2165, pages
87–104. Springer, 2001.

[14] B. Gebremichael, F. Vaandrager, and M. Zhang. Analysis of the zeroconf protocol using Uppaal.
In EMSOFT ’06, pages 242–251. ACM Press, 2006.

[15] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal modeling and analysis of an audio/video
protocol: an industrial case study using Uppaal. In IEEE Real-Time Systems Symposium, RTSS
’97, pages 2–13. IEEE Computer Society, 1997.

[16] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems.
Information and Computation, 111(2):193–244, 1994.

[17] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333–354,
1983.

[18] M. Lindahl, P. Pettersson, and W. Yi. Formal design and analysis of a gearbox controller. Software
Tools for Technology Transfer (STTT), 3(3):353–368, 2001.

19

[19] F. Moller and C. Tofts. A temporal calculus of communicating systems. In Proc. of CONCUR
1990, pages 401–415. Springer-Verlag New York, Inc., 1990.

[20] J. Sifakis and S. Yovine. Compositional specification of timed systems. In Proc. of STACS’96,
LNCS 1046, pages 347–359. Springer-Verlag, 1996.

[21] S. Tripakis and S. Yovine. The analysis of timed systems using time-abstracting bisimulations.
Formal Methods in System Design, 18(1):25–68, 2001.

[22] F. Vaandrager and A. de Groot. Analysis of a biphase mark protocol with Uppaal and PVS.
Formal Aspects of Computing, 18(4):433–458, 2006.

[23] S. Yovine. Kronos: A verification tool for real-time systems. International Journal of Software
Tools for Technology Transfer, 1(1-2):123–133, 1997.

20

A Avoiding eager/lazy synchronization

The following steps transform any TAD network with eager and lazy actions into an equivalent (bisim-
ilar) network where eager and lazy actions do not share labels.7 Let u, u′ : CA → CA be relabeling
functions, s.t. for any a ∈ CA, u(a) and u′(a) are distinct from each other and distinct from any label
used in the input TAD network.

1. Any lazy action that has only eager matches is replaced by an eager action with the same source
and target locations, label, guard and reset set.

2. All labels of eager half actions are consistently renamed. For any a ∈ CA that occurs in the label
of an eager half action, a is renamed to a fresh label u(a).8

3. For any lazy input action tl labeled with a?, s.t. there is an eager output action te labeled with
u(a)!, we add a new eager input action t′l labeled with u(a)?, with the same source and target
locations, guard and reset set as tl.

4. For any lazy output action tl labeled with a!, s.t. there is an eager action te labeled with u(a)?, we
add a new eager output action t′l labeled with u′(a)!, with the same source and target locations,
guard and reset set as tl, and a new eager output action t′e labeled with u′(a)?, with the same
source and target locations, guard and reset set as te.

Avoiding name clashes. Note that, different labels are needed (u vs u′) to avoid unwanted syn-
chronization between added input/output eager actions. The problem of using u = u′ is illustrated by
fig. 9. The TAD network (on the left) has four components, Q, R, S and T. Note that synchronization
between Q and R may occur at any time (a! and a? are lazy actions in Q and R), while both S and T will
demand synchronization to occur asap (a! and a? are eager actions in S and T). In the TAD network
in the middle, we have renamed eager actions a! and a? to ua! and ua? (assuming u(a) = ua).
But the behavior of this TAD network differs from that of the original: As soon as either S1 or T1 are
entered, delays in R0 and Q0 will be prevented because synchronization on ua is possible and urgent.
This has the side effect of enforcing urgent synchronization also between the lazy actions a! and a?. In
contrast (fig. 9, right), a correct translation ensures that different urgent channels are used to represent
synchronization between: (a) input lazy or eager actions and their output eager matches (u(a) = ua),
and (b) output lazy actions and their input eager matches (u′(a) = ua o).

A.1 Formal definition

For any set of transitions T in a TAD network, let Tla, Tea ⊆ T be the sets of all lazy and eager actions
in T , resp. Let |A = 〈A1, . . . , An〉 be a TAD network, defined as in § 2, where Ai = (Li, li,0,Labi, Ti, Ci),
i : 1..n. Let T =

⋃n
i=1 Ti. Let LE ⊆ T be the set of all lazy half actions without matching lazy actions,

LE = { t ∈ Tla | lab(t) ∈ HA ∧ ∀ t′ ∈ T. t||t′ ⇒ t′ ∈ Tea }

We define |A1 = 〈A1,1, . . . , An,1〉, where Ai,1 = (Li, li,0,Labi, Ti,1, Ci), i : 1..n, and

Ti,1 = (Ti,1 \ LE) ∪ { (l, a, g, eager , r, l′) | (l, a, g, lazy , r, l′) ∈ Ti ∩ LE }

7We do not claim these steps to be optimal.
8We say that a ∈ CA occurs in act ∈ Act if act ∈ {a, a?, a!}.

21

T0

S0

Q1Q0

R1R0

T2T1

S2S1

c2

c1

(lazy)
a!

(lazy)
a?

(eager)
a?

(eager)
a!

T0

S0

Q1Q0

R1R0

T2T1

S2S1

c2

c1

ua!

ua?

a!

a?

ua?

ua!

T0

S0

Q1Q0

R1R0

T2T1

S2S1

c2

c1

ua_o?

ua_o!

ua?

a!

a?

ua?

ua!

Figure 9: A conflict between multiple lazy actions with eager matches

Let T 1 =
⋃n

i=1 Ti,1. We define |A2 = 〈A1,2, . . . , An,2〉, where
Ai,2 = (Li, li,0,Labi, Ti,2, Ci), i : 1..n, and

Ti,2 = (Ti,1 \ { t ∈ T 1
ea | lab(t) ∈ HA }) ∪

{ (l, urg(a), g, eager , r, l′) | (l, a, g, eager , r, l′) ∈ Ti,1, a ∈ HA }

where urg(a!) = u(a)! and urg(a?) = u(a)?. Let T 2 =
⋃n

i=1 Ti,2. We define |A3 = 〈A1,3, . . . , An,3〉,
where Ai,3 = (Li, li,0,Labi, Ti,3, Ci), i : 1..n, and

Ti,3 = Ti,2 ∪
{ (l, u(a)?, g, eager , r, l′) | (l, a?, g, lazy , r, l′) ∈ Ti,2,

∃ t ∈ T 2
ea \ Ti,2. lab(t) = u(a)! } ∪

{ (l, u′(a)!, g, eager , r, l′) | (l, a!, g, lazy , r, l′) ∈ Ti,2,
∃ t ∈ T 2

ea \ Ti,2. lab(t) = u(a)? } ∪
{ (l, u′(a)?, g, eager , r, l′) | (l, u(a)?, g, eager , r, l′) ∈ Ti,2,

∃ t ∈ T 2
la \ Ti,2. lab(t) = a! }

Let normalize(|A) = |A3 as defined above.

theorem A.1. Let |A be a TAD network, defined as in § 2, and |A′ = normalize(|A). Then, the
following holds.

1. Eager and lazy actions in |A′ do not share labels. Formally, if T is the set of transitions in |A′,
then

∀ t ∈ Tea, t
′ ∈ Tla. lab(t) 6= lab(t′)

2. |A and |A′ are strongly timed-bisimilar

Proof. We will only offer an informal argument here. Consider the networks produced from |A by each
intermediate step of the transformation, |A1, |A2 and |A3 = normalize(|A), as defined above. It is easy
to see that |A1 has the same behavior than |A and all lazy actions in |A1 are either completed actions
or match both lazy and eager actions. |A2 preserves completed actions, lazy/lazy and eager/eager
synchronization. Finally, |A3 recovers synchronization between lazy input actions and eager output
actions, and between lazy output actions and eager input actions. This is achieved by adding eager
actions which are equivalent to the corresponding lazy actions.

22

T0S0R1R0 T1S1
y>0 (lazy)
c

x:=0
y<=1 (eager)
b!

y:=0
x>=1 (eager)
a!

E1

S1

R0

LB1

x<=1

T0S0R1LB2 T1UB1

y<=1y>1

tau!
y:=0

x>=1x<1

x==1
y>0
x:=0b!a!

where
urgent chan a,b;

urgent broadcast chan

tau;

Figure 10: The role of concurrent resets (top: TAD network, bottom: TA network)

B Proofs

Here we prove that the translation T , as defined in § 4, generates timed-bisimilar networks with a linear
increase in size. Notation has been borrowed from § 2, 3 and 4 (unless stated otherwise).

Restrictions on concurrent resets. Let us recall here the syntactic restrictions on clock resets that
were imposed on the input TAD networks § 4.

If a clock x occurs in a lower bound of an eager action in component P , then no other
component Q may reset x. Also, if a clock x is reset by an upper-bounded eager action in
component P , then x cannot occur in lower bounds of transitions in any other component
Q.

We mentioned that the soundness of the translation may be compromised if such restrictions were not
met by the TAD network; Figure 10 illustrates the issues.

One of the problems is related to the use of lb-locations to represent eager actions with lower bounds.
Note that, if x were concurrently reset by another component while execution is in LB2, e.g. by c in T0,
the urgent transition a! would be enabled at v(x) < 1, violating the lower bound of the original eager
action a!. Thus, the generated TA network would exhibit a behavior that is not possible in the TAD
network.

The other problem is related to the non-atomic representation of eager actions with upper bounds.
The internal transition from T0 to T1 in the TA network (which represents the lazy action c in the TAD
network) could be enabled when UB1 is entered, thus it could be executed immediately after the urgent
transition b! but before the tau! transition (which collectively, but not atomically, represent the eager
action b! in the TAD network). However, the immediate execution of c after b! is not possible in the
TAD network, because b! resets y and c has a lower bound on y. Again, the generated TA network
would not be equivalent to the TAD network.

Note that, the restrictions on clock resets guarantee that the above scenarios cannot occur.

Preliminaries. Let |A be the TAD network and |B = T (|A) the resulting TA network. Let TTSA =
(SA, s0,A,LabA ∪R+, TS,A) and TTSB = (SB, s0,B ,LabB ∪R+, TS,B) be the respective timed transition

systems. (Here, for the sake of readability, we will use s a−→ s′ to denote action transitions, s δ−→ s′ to
denote delay transitions). Let TA, TB, LA and LB be the set of all transitions and locations of |A and

23

|B, resp. Let Lub
B ⊆ LB be the set of all ub-locations in |B. For any run ρ, last(ρ) is the first state of

ρ; last(ρ) is the last state in ρ (if ρ is finite); delay(ρ) = Σ{i∈N|γi∈R+}γi is the sum of all delays in ρ;
and Edges(ρ) is the set of all automata transitions that participate in any action transition in ρ.

The equivalence between TAD and TA locations is given by the relation ≡loc ⊆ LA×LB, s.t. l ≡loc l′

iff
l′ ∈ { l } ∪

{ lklb | k : 1..|Γ(l)| } ∪

{ lk,u
esc | k : 1..|Γ(l)|, ιk ∈ Γ(l), u ∈ UB(l, ιk) } ∪

{ locj
ub | (locj

ub, tau!, true, rj , l) ∈ TB , loc ∈ LA, j : 1..|TA| }

The equivalence between TAD and TA states is given by the relation ≡state⊆ SA × SB, s.t. 〈l̄, v〉 ≡state

〈l̄′, v′〉 iff
v = R(l̄′)(v′) ∧ ∀ i : 1..n. l̄[i] ≡loc l̄′[i]

where R(l̄′) is the set of all clocks that are reset in tau!-transitions whose source locations belong to
l̄′, i.e.,

R(l̄′) =
⋃

{ r(t) | t ∈ TB , src(t) ∈ Lub
B , ∃ i : 1..n. l̄′[i] = src(t) }

Note that, two states, 〈l̄, v〉 in the TAD network and 〈l̄′, v′〉 in the TA network, are considered equiv-
alent, 〈l̄, v〉 ≡state 〈l̄′, v′〉, when their location vectors are equivalent (∀ i : 1..n. l̄[i] ≡loc l̄′[i]) and the
valuations coincide after executing all tau!-transitions from ub-locations in l̄′, if any such transition
exists (v = R(v′)). This takes into account the transient states represented by ub-locations, which
split the otherwise atomic execution of those urgent transitions in the TA network that represent eager
actions with upper bounds in the TAD network (§ 4.2).

Let ATB ⊆ TB be the set of auxiliary transitions in the TA network,

ATB = { tB ∈ TB | ∄ tA ∈ TA, lB ∈ LB. tB ∈ upp(tA, lB) } ∪

{ tB ∈ TB | ∃ l, l′ ∈ LB, j : 1..|TA|. tB = (ljub, tau!, true, rj , l
′) }

Let RB be the set of all runs exhibited by |B. Let =⇒ ⊆ SB × SB be the transition relation that
abstracts over auxiliary transitions,

s
a

=⇒ s′ iff ∃ s1, s2 ∈ SB . s τ−→ ∗s1
a−→ s2

τ−→ ∗s′ ∧
(Edges(s τ−→ ∗s1) ∪ Edges(s2

τ−→ ∗s′)) ⊆ ATB

s
δ

=⇒ s′ iff ∃ ρ ∈ RB . first(ρ) = s ∧ last(ρ) = s′ ∧
Edges(ρ) ⊆ ATB ∧ delay(ρ) = δ

The equivalence between TAD and TA transitions is given by the relation ≡edge⊆ TA × TB , s.t.,
actA ≡edge actB iff

∀ tB ∈ Edges(actB) \ ATB . ∃ tA ∈ Edges(actA), l ∈ LB . tB ∈ upp(tA, l)

Next, we introduce some auxiliary lemmas.

lemma B.1. Let sA ≡state sB. Any state s′B that is immediately reachable from sB via a sequence of
auxiliary transitions is also equivalent to sA.

∀ s′B ∈ SB. sB
τ−→ ∗s′B ∧ Edges(sB

τ−→ ∗s′B) ⊆ ATB ⇒ sA ≡state s′B

24

Proof. Let sA = 〈l̄A, vA〉 and sB = 〈l̄B , vB〉, sA ≡state sB. By definition of ≡state, ∀ i : 1..n. l̄A[i] ≡loc

l̄B [i] and vA = R(l̄B)(vB). By def. of T , from sB, a sequence of auxiliary transitions with zero accu-
mulated delay may only reach location vectors l̄′B that are equivalent to l̄A, and the clocks that are
reset in the sequence are those which are reset by tau!-transitions from ub-locations, say R′ ⊆ R(l̄B).
Then, any such l̄′B is reached with a valuation v′B = R′(vB). Hence, ∀ i : 1..n. l̄A[i] ≡loc l̄′B[i] and
vA = (R(l̄B) \ R′)(v′B) = R(l̄′B)(v′B). By definition, sA ≡state s′B.

lemma B.2. Let lA ∈ LA, tA ∈ T (lA) and v s.t. v |= g(tA). Let lB ∈ LB s.t. lA ≡loc lB. If v is reachable
in lB then tB ∈ upp(tA, lB), the TA transition that represents tA, is either offered in lB or in some
other auxiliary location that is immediately reachable from lB by a sequence of auxiliary transitions.

Proof. By definition of upp(tA, lB), g(tB) = g(tA) or g(tB) = true. By definition of T , if g(tB) = true
but g(tB) 6= g(tA), then tA must be an eager action, tB must be the urgent transition representing tA,
and I(tgt(tB)) correctly enforces the upper bound in tA (if any). Hence, a proof by contradiction must
necessarily assume that lB 6= src(tB) and that src(tB) cannot be reached immediately from lB by a
sequence of auxiliary transitions.

Then, by definition of T , lB must be an auxiliary location which may only be entered with valuations
v′ s.t. v′(xlA) > c (for some c ∈ N, c > 0), but where v(xlA) < c1 was reached in lB , after lB was entered
and while execution remained in lB. This would imply that xlA was reset by some other component
Bj , j 6= i while execution remained in lB . Note that, also by definition of T , lB implies the existence of
an eager action in lA with a lower bound on xlA . Then, there must exist a transition in Aj that resets
xlA , where xlA occurs in the lower bound of an eager action in Ai. This violates a syntactic requirement
on the TAD network (contradiction).

lemma B.3. Let sA = 〈l̄A, vA〉 ∈ SA and sB = 〈l̄B , vB〉 ∈ SB s.t. sA ≡state sB. For any TAD transition
tA that is offered in sA, the TA transition tB that represents tA is offered in some s′B = 〈l̄′B , v′B〉 that is
immediately reachable from sB via a sequence of auxiliary transitions.

Conversely, for any TA transition tB that is offered in sB, s.t. tB represents a given TAD transition
tA, tA is offered in sA.

Proof. (⇒) Let tA ∈ T (lA), where l̄A[i] = lA for some i : 1..n and vA |= g(tA). By definition of T , TA
transitions that represent TAD transitions are not offered from ub-locations. Then, w.l.o.g., consider
the state s′B = 〈l̄′B , v′B〉 that is reached from sB by executing (in any order) all the tau!-transitions
in ub-locations in sB. By definition of ≡state, l̄′B does not contain ub-locations and v′B = vA. Hence,
Lemma B.2 guarantees that a transition tB, which represents tA, will be offered at some state s′′B which
is immediately reachable from sB by a sequence of auxiliary transitions.

(⇐) Let tB ∈ T (lB), where l̄B [i] = lB for some i : 1..n, and vB |= g(tB) and r(tB)(vB) |= I(tgt(tB)),
s.t. there exists some TAD transition tA that is represented by tB. Thus, tB ∈ upp(tA, lB).

By contradiction, assume that either src(tA) /∈ l̄A or vA 2 g(tA) (i.e., tA is not offered in sA). By
definition of ≡state, ≡loc and upp(tA, lB), and because src(tB) ∈ l̄B, src(tA) ∈ l̄A. Then, it must be the
case that vA 2 g(tA).

By definition of ≡state, and because sB ≡state sA, the only difference between vB and vA is in the
value of clocks that are reset by tau!-transitions from ub-locations in l̄B . That is, vA = R(l̄B)(vB).
We show that a contradiction arises from our assumption that vB |= tB and r(tB)(vB) |= I(tgt(tB))
but vA 2 g(tA).

There are two cases to consider, depending on the form of g(tB). By definition of upp(tA, lB), either
g(tB) = g(tA) or g(tB) = true.

Case 1. Assume that g(tB) = g(tA), vB |= tB and r(tB)(vB) |= I(tgt(tB)) but vA 2 g(tA). Then g(tA)

25

must contain a lower bound n on some clock x ∈ R(l̄B) s.t. vB(x) ≥ n and x is reset by a tau!-transition
from an ub-location in some other component Bj , j 6= i. By definition of T , there must be some eager
action with upper bound in Aj, j 6= i that resets x, where x occurs in the lower bound of a transition
in Ai (tA). This violates a syntactic requirement on the TAD network (contradiction).

Case 2. Now, assume that g(tB) = true, g(tB) 6= g(tA), vB |= tB and r(tB)(vB) |= I(tgt(tB)) but
vA 2 g(tA). Note that, tB must be an urgent transition representing an eager action tA. By definition
of T , the upper bound in tA (if any) is represented by the invariant in the ub-location tgt(tB), in which
case r(tB) = ∅ (r(tA) is copied to the tau!-transition from tgt(tB)). Hence, r(tB)(vB) |= I(tgt(tB))
implies vB |= I(tgt(tB)), which implies vB |= x ≤ n for an upper bound x ≤ n in g(tA) (or vB |= x < n
for an upper bound x < n in g(tA)). In other words, vB does not invalidate the upper bound in g(tA).
In turn, because vA may differ from vB only in that vB(x) > vA(x) = 0 (for some clock x ∈ R(l̄B)),
vA does not invalidate the upper bound in g(tA). Next, we prove that vA does not invalidate the lower
bound in g(tA), either.

Assume that tA has a lower bound. By definition of T , the source location of tB must have been
entered (in the current run) in some se

B = 〈l̄eB , ve
B〉 where ve

B |= x ≥ n for a lower bound x ≥ n in
g(tA) (or ve

B |= x > n for a lower bound x > n in g(tA)). Now, if se
B is reached while traversing the

sequence of auxiliary transitions from sB to s′B , then vA = R(l̄eB)(ve
B) and there must be some eager

action with upper bound in Aj, j 6= i that resets x, where x occurs in the lower bound of a transition
in Ai (tA). This violates a syntactic requirement on the TAD network (contradiction). On the other
hand, se

B might have been reached before sB and x was reset by some transition in Bj, j 6= i, which was
executed between se

B and sB . This would imply the existence of transition in Aj that resets x, where
x occurs in the lower bound of an eager action in Ai (tA). Again, this violates a syntactic requirement
on the TAD network (contradiction).

lemma B.4. From equivalent states, |A and |B offer equivalent actions (abstracting over auxiliary
transitions in |B). Formally, sA ≡state sB implies,

1. ∀ a ∈ LabA, s′A ∈ SA. actA = sA
a−→ s′A ⇒

∃ b ∈ LabB , s′B ∈ SB. actB = sB
b

=⇒ s′B ∧ s′A ≡state s′B ∧ actA ≡edge actB

2. ∀ b ∈ LabB, s′B ∈ SB . actB = sB
b

=⇒ s′B ⇒
∃ a ∈ LabA, s′A ∈ SA. actA = sA

a−→ s′A ∧ s′A ≡state s′B ∧ actA ≡edge actB

Proof. Follows from Lemma B.3 (equivalent states offer equivalent transitions) and definition of ≡state

and ≡edge (the execution of equivalent transitions, from equivalent states, yields equivalent next states).

lemma B.5. Let sA ≡state sB. If sA
δ−→ s′A ∈ TS,A and sB

δ
=⇒ s′B ∈ TS,B for some δ ∈ R, then

s′A ≡state s′B.

Proof. Let sA = 〈l̄A, vA〉 and sB = 〈l̄B , vB〉. By definition of ≡state, vA = vB and l̄A[i] ≡loc l̄B [i]
for any i : 1..n. By definition of ≡loc, for any i : 1..n and l̄A[i] = l, lB [i] may be a location of the

form l, lklb, lk,u
esc or locj

ub (for some k : 1..|Γ(l)|, ιk ∈ Γ(l), u ∈ UB(l, ιk), loc ∈ LA, j : 1..|TA| and

(locj
ub, tau!, true , rj , l) ∈ TB).
By hypothesis, for all i : 1..n, there is a run l̄B [i] that only involves auxiliary transitions and has a

cumulative duration of δ time units. By construction of the TAD network, such a run may only lead

to some location l′ of the form l, lk
′

lb or lk
′,u′

esc (for some k′ : 1..|Γ(l)|, k′ ≥ k and u′ ∈ UB(l, ιk′)).
Now, we know that s′A = 〈l̄A, vA + δ〉 and s′B = 〈l̄′B , vA + δ〉, where l̄A[i] = l implies that l̄′B [i] = l′

as explained above (i : 1..n). Therefore, by definition of ≡state, sA ≡state s′B.

26

lemma B.6. From equivalent states, |A and |B may pass the same amount of time (abstracting over
auxiliary transitions in |B). Formally, sA ≡state sB implies,

1. ∀ δ ∈ R, s′A ∈ SA. sA
δ−→ s′A ⇒ ∃ s′B. sB

δ
=⇒ s′B ∧ s′A ≡state s′B ∧

2. ∀ δ ∈ R, s′B ∈ SB. sB
δ

=⇒ s′B ⇒ ∃ s′A ∈ SA. sA
δ−→ s′A ∧ s′A ≡state s′B

Proof. Here we will prove statement 1; the proof of statement 2 can be constructed in a similar way.
Assume that δ time units can pass from sA and lead to s′A. We will prove, by contradiction, that δ
time units can also pass from sB and lead to s′B s.t. s′A ≡state s′B, possibly along a number of auxiliary
locations.

Let sA = 〈l̄A, v〉 ≡state sB = 〈l̄B , v〉 be the equivalent states and sA
δ−→ (sA + δ) ∈ TS,A, δ ∈ R be

a delay transition in the TAD network. Then,

(†) No eager action may participate of any transition (sA + δ′) a−→ s′A ∈ TS,A, δ′ ∈ R, δ′ < δ.

By contradiction, assume that there is no equivalent delay transition in the TA network, i.e.

(‡) sB
δ

=⇒ s′B /∈ TS,B

Then, either (a) sB
δ

=⇒ s′′B ∈ TS,B for some s′′B ∈ SB s.t. (sA + δ, s′′B) /∈≡state, or (b) there are s′′B ∈ SB

and δ′ < δ s.t. sB
δ′

==⇒ s′′B ∈ TS,B and either (b.1) there is some urgent transition t that may be performed
in s′′B or (b.2) some invariant’s upper bound is satisfied in s′′B (or a committed location is in s′′B) but no
auxiliary transition is enabled in s′′B . By Lemma B.5, the case (a) is not possible. By Lemmas B.5 and

B.4, the case (b.1) implies the existence of some s′′A ∈ SA, s′′A = sA + δ′ s.t. sB
δ′

==⇒ s′′A ∈ TS,A and the
eager action represented by t may be performed in s′′A. This contradicts (†). Finally, by construction
of the TA network, case (b.2) is not possible either. Note that, we reach a contradiction by assuming
(‡); hence, the lemma holds.

Theorem 4.1 (Bisimulation) Let |A be a TAD network and |B = T (|A) the resulting TA network.
|A and |B are strongly timed-bisimilar [10].

Proof. The relation ≡state is a strong timed-bisimulation between |A and |B that abstracts over auxiliary
transitions. Formally, sA ≡state sB implies

1. ∀ a ∈ LabA, s′A ∈ SA. actA = sA
a−→ s′A ⇒

∃ b ∈ LabB, s′B ∈ SB . actB = sB
b

=⇒ s′B ∧ s′A ≡state s′B ∧ actA ≡edge actB

2. ∀ b ∈ LabB , s′B ∈ SB. actB = sB
b

=⇒ s′B ⇒
∃ a ∈ LabA, s′A ∈ SA. actA = sA

a−→ s′A ∧ s′A ≡state s′B ∧ actA ≡edge actB

3. ∀ δ ∈ R, s′A ∈ SA. sA
δ−→ s′A ⇒ ∃ s′B. sB

δ
=⇒ s′B ∧ s′A ≡state s′B

4. ∀ δ ∈ R, s′B ∈ SB . sB
δ

=⇒ s′B ⇒ ∃ s′A ∈ SA. sA
δ−→ s′A ∧ s′A ≡state s′B

This follows from Lemmas B.4 and B.6.

Theorem 4.2 (Linear complexity) Let |A be a TAD network and |B = T (|A) the resulting TA
network. The size of |B is proportional to the size of |A.

27

Proof. Let |A by represented (for the sake of a worst-case analysis) by a TAD network that satisfies
the following conditions:

• All transitions in |A are eager half actions.

• All transitions in |A in the same location have different lower bounds. Then, for every location l
with m outgoing transitions there will be m+1 lb-locations |B: lklb, k : 1..(m+1). These locations
will be reachable from l by m + 1 auxiliary transitions.

• All transitions in |A in the same location have different and strict upper bounds. Then, for every
transition tj = (l, actj , gj , dj , rj , l

′), with upper bound (<,ubj), |B will contain an ub-location ljub

(with I(ljub) < ubj) and a transition (ljub, tau!, true , rj , l
′).

• Upper bounds of transitions in |A in the same location are greater than or equal to the upper
bound of the transition with the greatest lower bound. Then, in |B, (a) the urgent transitions (as
generated by upp()) which are offered at lklb, k : 2..m, are also offered at any lqlb, q : 3..m + 1, (b)

for every transition tj with upper bound (<,ubj) there is an e-location l
m+1,(<,ubj)
esc , which offers

transitions equivalent to t′j , for all ub′j > ubj , and which connects to the next e-location l
m+1,(<,ub′j)
esc

via (l
m+1,(<,ubj)
esc , τ, xl ≥ ubj , ∅, l

m+1,(<,ub′j)
esc) (with (<,ub′j) = next((<,ubj),UB(l, ιm+1))).

Let the size of |A be given by (cl, ct), where cl is the number of locations and ct is the number of
transitions. Let out be the maximum number of outgoing transitions in any location in |A. The
number of locations in |B is bounded from above by

cl
︸︷︷︸

1

+ (ct + cl)
︸ ︷︷ ︸

2

+ ct
︸︷︷︸

3

+ ct
︸︷︷︸

4

= 2cl + 3ct

where the terms correspond to, respectively, (1) all committed (source) locations, (2) all lb-locations lklb,

(3) all ub-locations ljub and (4) all e-locations l
m+1,(<,ubj)
esc . The number of transitions in |B is bounded

from above by
(ct + cl)
︸ ︷︷ ︸

1

+ ct
︸︷︷︸

2

+ ct
︸︷︷︸

3

+ out .ct
︸ ︷︷ ︸

4

+ out .ct
︸ ︷︷ ︸

5

+ ct
︸︷︷︸

6

= cl + (2out + 4)ct

where the terms correspond to, respectively, (1) all auxiliary transitions from l to lklb, (2) all auxiliary

transitions from lklb to lk+1
lb , (3) all auxiliary tau!-transitions from ljub to the target locations, (4) an

upper bound on all urgent transitions representing the TAD transitions, copied from every lklb, (5) an
upper bound on all urgent transitions representing the TAD transitions, copied from every e-location
and (6) all auxiliary transitions from one e-location to the next.

28

