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Abstract—This letter presents a novel joint beamforming algo-
rithm for reconfigurable intelligent surfaces (RIS) in multiuser
multiple-input single-output (MISO) wireless communications.
At first, by utilizing statistical channel state information (CSI)
instead of instantaneous CSI, we significantly reduce channel
estimation overhead. Then, the optimization of beamforming
weights is accomplished using the proximal policy optimization
(PPO) algorithm, a well-established actor-critic-based reinforce-
ment learning (RL) approach. The impact of system parameters
on user sum rate is also analyzed through simulations. The results
show the PPO algorithm outperforms the existing methods by
combining beamforming techniques with statistical CSI.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RIS) consist of reflect-
ing components, each of which can be electronically adjusted
to manipulate the phase shift of incoming signals. By strate-
gically setting the phase shift of individual RIS elements,
deploying RIS between transmitting and receiving nodes can
improve transmission reliability [1].

However, previous studies have shown that the inquiry
of obtaining instantaneous channel state information (I-CSI)
results in a significant burden on using RISs [2]–[5]. Statis-
tics channel state information (S-CSI) can be used as an
alternative, which evolves more slowly and is more easily
available. In [6] and [7], only S-CSI was utilized to design
BS beamforming and RIS phase shifts. Despite their effective-
ness, the iterative optimization algorithms employed exhibit a
relatively high level of computational complexity. In recent
years, the field has seen the application of deep reinforcement
learning (RL) in RIS-aided transmission to develop solutions
with reduced computational complexity, e.g. in [8] and [9].
However, the research is still based on I-CSI.

In this letter, to improve the spectral efficiency with low
complexity, we study the joint design of the BS beamforming
and RIS phase shifts using deep RL. Specifically, the downlink
data rate of the users is derived in closed-form which is
a function of S-CSI variables including the Rician factor,
large-scale path loss, and angles of arrival and departure. The
derived data rate is then maximized with respect to active
beamforming at the BS and passive beamforming at the RIS.
Simulation results show the effectiveness of the proposed
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Fig. 1: RIS-aided multi-user MISO system

method. The main contributions of this paper are summarised
as follows:

• For multi-user MISO (MU-MISO) systems an approxi-
mated closed-form expression of the ergodic sum rate is
obtained. This leads to an optimization of a joint active-
passive beamforming design.

• The joint optimization problem is intractable due to
the nonconvex constraint and the intricate relationship
between the BS transmit beamformer and the RIS passive
beamformer. To tackle this issue, a proximal policy
optimization (PPO) based algorithm is proposed to solve
the optimization problem.

II. SYSTEM MODEL

Consider an MU-MISO communication system with a BS
of N antennas communicating with U single-antenna UEs
as shown in Fig. 1. Transmission between the BS and UEs
is assisted by a RIS equipped with M reflecting elements.
Denoting ξm as the reflection coefficient of the m-th element
of the RIS, the reflection matrix of the RIS panel can be
expressed as Ξ = diag(ξ1, . . . , ξM ) where ξm = ejϕm with
ϕm denoting the phase shift of the m-th element of the RIS.
Denote hu,0 ∈ CN×1, H1 ∈ CM×N and hu,2 ∈ CM×1 as the
direct channel from the BS to the u-th UE, from the BS to
RIS, and from the RIS to u-th UE, respectively. Hence, the
equivalent effective channel from the transmitter to the u-th
UE could be obtained as hTu ≜ hTu,0+hTu,2ΞH1. Considering
the line-of-sight (LOS) link exists between the BS and the RIS
and between the RIS and UEs, Rician distribution is used to
model these channels. The channel matrix hu,2 between the
RIS and u-th UE is represented as hu,2 =

√
δu,2κu,2

1+κu,2
h̄u,2 +√

δu,2

1+κu,2
h̃u,2 [7] where

√
δu,2 denotes the distance dependent

path-loss factor, and κu,2 denotes the Rician factor between



the RIS and the u-th UE. On the other side, the channel of the
BS-RIS link, and the channel of the link from the BS to the
u-th UE can be expressed as H1 =

√
δ1κ1

1+κ1
H̄1 +

√
δ1

1+κ1
H̃1

and hu,0 =
√

δu,0κu,0

1+κu,0
h̄u,0+

√
δu,0

1+κu,0
h̃u,0 [7] with δ1 and κ1

being the distance-dependent path-loss and Rician factor of
the BS-RIS link. δu,0 and κu,0 denote the distance-dependent
path-loss and Rician factor of the link between the BS and
the u-th UE. Furthermore, h̄u,2 = aRIS(ϕ

(RIS)
u , ψ

(RIS)
u ), where

ϕ
(RIS)
u (ψ(RIS)

u ) is the azimuth (elevation) angle of departure
(AoD) from the RIS to the u-th UE. By assuming a uniform
planar arrays (UPA) RIS with MH and MV reflecting elements
at horizontal and vertical directions, respectively (i.e., M =
MHMV), the array response vector at the RIS is given by

aRIS(ϕ
(RIS)
u ,ψ(RIS)

u ) =
1√

MHMV
[1, . . . , (1)

ej
2π
λ D(h sinϕ(i)

u sinψ(i)
u )+v cosψ(i)

u ), . . . ,

ej
2π
λ D(XH sinϕ(i)

u sinψ(i)
u )+(XV−1) cosψ(i)

u )]T ,

where λ is the wavelength and D is the distance between
antenna elements and also (h, v) is the index of a reflective el-
ement in horizontal and vertical directions, respectively. More-
over, H̄1 = aRIS(ϕ

(RIS), ψ(RIS))aBS(ϕ
(BS), ψ(BS))H where

ϕ(RIS) and ψ(RIS) are the azimuth and elevation angle of
arrival (AoA) to the RIS, and ϕ(BS) and ψ(BS) denote the
azimuth and elevation AoD from the BS to the RIS. h̄u,0 =

aBS(ϕ
(BS)
u , ψ

(BS)
u ), where ϕ(BS)

u and ψ
(BS)
u being the azimuth

and elevation AoD from the BS in the direction of the u-
th UE. With the appropriate changes in notation, the array
response vectors of the BS arrays can be written similarly
to those for the RIS. By considering the fact that there is
no spatial correlation among the antennas, the non-line-of-
sight (NLoS) components of the channels, h̃u,2, h̃u,0 and
H̃1 are independently and identically distributed (i.i.d.) com-
plex Gaussian random variables with zero mean and unit
variance. The deterministic components of the channel, i.e.,
H̄ = {h̄u,2, H̄1, h̄u,0} and the Rician factors and large-scale
path-losses of all the channels are considered as the known
statistical variables. A method for estimating these variables
can be found in [10]. Note that these S-CSI values do not
inherently contain information related to the phase shifts of
the RIS. Also, since, it is assumed that the users are static,
the variations in S-CSI and RIS phase shifts are decoupled
and operate independently of each other. Based on the above
descriptions, the received signal at the u-th UE yu ∈ C is
given by yu =

∑U
u=1

√
Puh

T
u fuxu+nu where Pu and xu are

the transmit power and signal for the u-th UE, respectively.
Furthermore, fu is the beamforming vector for the u-th UE,
and nu ∈ C is a circularly symmetric complex additive
Gaussian noise with E[nunHu ] = σ2.

III. PROBLEM FORMULATION

This paper aims to maximize the sum data rate of the
RIS-aided wireless system. Since the collection of I-CSI is
time-consuming in RIS-aided environments, the joint active
and passive beamforming is performed based on S-CSI, i.e.
angular information and Rician factors of the channels, which

are easier to measure and feedback [11]. Given the transmit
power P at the BS and equal power allocation, the ergodic
sum-rate maximization problem can be formulated as

P1 : max
Ξ,fu

U∑
u=1

E

[
log2

(
1 +

P
U f

H
u h∗

uh
T
u fu

σ2 +
P
U

∑
i̸=u f

H
i h∗

uh
T
u fi

)]
︸ ︷︷ ︸

Ru

(2)
s.t ϕm ∈ [0, 2π), m = 1, . . . ,M, (2a)

∥fu∥22 = 1, u = 1, . . . , U, (2b)

where the expectation is over a long period of channel re-
alizations. The maximization problem P1 is mathematically
intractable due to the existence of the expectation and unit
norm constraints. In order to find the optimal solution, firstly,
we will derive the expectation and find the upper bound of it.
By using Jensen’s inequality, Ru can be written as

Ru ≤ log2

(
σ2 +

P

U

U∑
i=1

fHu E
[
h∗
uh

T
u

]
fu

)

− log2

σ2 +
P

U

∑
i ̸=u

fHi E
[
h∗
uh

T
u

]
fi

 . (3)

Based on (3), the solution of the problem relies on finding
E[h∗

uh
T
u ].

Theorem 1. E[h∗
uh

T
u ] could be approximated as follows

E[h∗
uh

T
u ] ≜ Cu =

δu,0κu,0
1 + κu,0

h̄∗
u,0h̄

T
u,0 (4)

+

(
δu,0

1 + κu,0
+
Mδ1δu,2
1 + κ1

)
IN

+ ϱ1
(
h̄∗
u,0h̄

T
u,2ΞH̄1 + H̄H

1 Ξ∗h̄∗
u,2h̄

T
u,0

)
+ ϱ2aBS(ϕ

(BS), ψ(BS))HaBS(ϕ
(BS), ψ(BS))

+ ϱ3H̄
H
1 Ξ∗h̄∗

u,2h̄
T
u,2ΞH̄1,

with ϱ1 =
√

δ1δu,0δu,2κ1κu,0κu,2

(1+κ1)(1+κu,0)(1+κu,2)
, ϱ2 =

Mδu,2δ1κ1

(1+κ1)(1+κu,2)
and

ϱ3 =
δ1δu,2κ1κu,2

(1+κ1)(1+κu,2)
.

Proof. See Appendix A. ■

According to Theorem 1, Cu only depends on the channel’s
statistics. Also, the sum rate is dependent upon the active
beamforming vector at the BS and the passive beamforming
matrix at the RIS, therefore both active and passive beamform-
ers should be designed jointly. Using Theorem 1, the problem
P1 can be written as

P2 : max
Ξ,fu

U∑
u=1

log2

(
1 +

P
U f

H
u Cufu

σ2 +
∑
i ̸=u

P
U f

H
i Cufi

)
, (5)

subject to (2a), (2b). (5a)

It can be seen in P2, the new optimization problem is a
function of distance-dependent path-loss, Rician factors, and
other statistical components of the channel, and the effect of
small-scale fading has been averaged out. In the next section,
a PPO algorithm is proposed to solve problem P2.



IV. PROXIMAL POLICY OPTIMIZATION APPROACH

In this section, considering the complexity of the op-
timization problem P2, the PPO algorithm is adopted to
solve the optimization problem. PPO has been shown to
perform better than the other algorithms [12] which is a
model-free, on-policy, actor-critic and policy gradient method.
Consider an infinite-horizon discounted Markov decision pro-
cess (MDP), defined by the tuple (S,A, P, r, γ), where S
is the finite set of states, A is the finite set of actions,
P : S × A× S → R is the transition probability distribution,
r : S → R is the reward function and finally, and γ ∈ [0, 1]
is the discount factor. Furthermore, Ât is an estimator of
the advantage function at timestep t and is given by At =
Q(st, at) − V (st), where Q(., .) and V (.) are the action-
value and the value functions, respectively, and are defined
as Q(st, at) = Est+1,at+1,...

[∑∞
ℓ=0 γ

ℓr(st+1)
]

and V (st) =
Eat,st+1,...

[∑∞
ℓ=0 γ

ℓr(st+1)
]

where st+1 ∼ P (st+1|st, at).
The estimate of the advantage function in the interval t ∈
[0, T ] is given by Ât = δt+(γλ)δt+1+ · · ·+(γλ)T−t+1δT−1,
with δt = rt+γV (st+1)−V (st) and λ being a hyperparameter
which denotes the factor for the trade-off of bias and variance
for generalized advantage estimator (GAE) [12]. Then, let
ρt(θ) denote the probability ratio ρt(θ) = πθ(at|st)

πθold (at|st)
. The

PPO maximizes the following objective function

LCLIP(θ) = Êt[min(ρt(θ)Ât, clip (ρt(θ) , 1− ϵc, 1 + ϵc)Ât)]
(6)

where ϵc is a hyperparameter. The second term in the min
operator guarantees the probability ratio to be inside the
interval [1−ϵc, 1+ϵc] with the help of the clip(., ., .) function.
The clip(., ., .) saturates the variable in the first input between
the values of the second and third input. The details of the
PPO algorithm can be found in [12].

Generally, PPO is presented as an MDP with observation
and action spaces. When solving the joint active and passive
beamforming problem, the BS, RIS, and all the UEs in the
system are denoted by the environment E , while the agent is
BS which is able to control the RIS. The following are the
key PPO elements that are employed to solve the joint active
and passive beamforming problem.

1) Observation space: At each timestep t, the obser-
vation part consists of three parts. At first, it contains
the real and imaginary parts of the beamforming vector
fu, i.e., F = {Fr,Fi} with Fr = {Re(f1), . . . ,Re(fU )}
and Fi = {Im(f1), . . . , Im(fU )}. The second part is
the real and imaginary parts of the phase shifts of
the RIS, i.e., R = {Re(diag(Θ)), Im(diag(Θ))}. The
third part of the observation is C = {Cr, Ci}, where
Cr = {Re(vec(C1)), . . . ,Re(vec(CU ))} and Ci =
{Im(vec(C1)), . . . , Im(vec(CU ))}. Finally, the observation
vector at timestep t is st = {F ,R,M,N}, and the obser-
vation shape is 2NU(U + 1) + 2M .

2) Action space: At each timestep t the action space is the
vector containing the real and imaginary parts of the beam-
forming vectors for all the UEs and the real and imaginary
parts of the phase shifts of the RIS. Thus, the action shape is
2UN + 2M and the action range is [0, 2π].

Fig. 2: Environment setup

3) Reward function: At timestep t, the reward is the sum
rate of all the users, i.e., rt =

∑U
u=1Ru(t) where Ru(t) is the

rate of u-th user at time step t. The details of the proposed
PPO algorithm are presented in Algorithm 1.

Algorithm 1: PPO, Actor-Critic Style
Initialisation: Initialise time, states, actions, and

replay buffer D. ;
for episode j = 1, . . . , J do

Initialise the environment E and make the initial
state s0;

Run the policy πθold
for T timesteps ;

Compute advantage estimates Â1, . . . , ÂT ;
Optimise surrogate LCLIP(θ) w.r.t θ, with K

epochs and minibatch size M ≤ T using (6);
θold ← θ

end

V. SIMULATION RESULTS

In this section, simulation results are provided to evaluate
the performance of our proposed algorithm. In the simulation,
the deployment of the BS and the RIS is shown in Fig. 2.
Three users are randomly located at a circle with the radius of
3m. The large-scale path loss is given by δ1 = 10−3d−2.5

BR ,
δu,2 = 10−3d−3

RU and δu,0 = 10−3d−3
BU, where dBR, dRU

and dBU are the distances between BS and RIS, RIS and
the u-th UE and BS and the u-th UE, respectively. The
number of BS antennas at the horizontal and vertical axis
is 8 and 4, respectively. The RIS consists of 8 horizontal
and 4 vertical elements. The noise power density is set to
be −80dBm, and the maximum transmission power at the BS
is 10dBm. The Rician factor between BS and UEs are set to
be κu,0 = −3dB, u = 1, . . . , U and that of between BS and
RIS and RIS and UEs is κ1 = κu,2 = 10dB, u = 1, . . . , U . A
typical realization of the environment is illustrated in Fig. 2.
At the beginning of each episode, a new environment is set
as Fig. 2 with the fixed locations of the BS and RIS and
randomly generated UE positions. The hyperparameters for
the PPO algorithm are listed in Table I.

Fig. 3 shows the convergence of the PPO-based algorithm
as a function of the number of episodes. The reward curve
is obtained by the cumulative rewards obtained from each
episode, i.e., r′t =

∑T ′

t=1 rt, where T ′ is the total time
steps in each episode. It can be seen from Fig. 3 that about
500 episodes are sufficient for the PPO to be converged.



TABLE I: Hyperparameter Values for PPO

Hyperparameter Typical Value
Learning Rate (α) 0.0001
Epochs 100
Batch Size 32
Clip Parameter (ϵc) 0.2
GAE Lambda (λ) 0.95
Discount Factor (γ) 0.995
Exploration Noise Variance 0.001

Fig. 3: Reward versus training episodes

Furthermore, the PPO-based approach outperforms the A2C-
based method trained with the same reward function.

For comparing the transmit power, the agent is trained
separately with different transmit powers ranging from 0dBm
to 20dBm with steps of 5dBm. Furthermore, the Rician factors
are set to be κ1 = κu,2 = κ and κu,0 = 0. The ADMM-
based approach proposed in [7] is simulated for performance
compression since [7] is one of the first attempts to design
the active and passive beamforming based on the S-CSI
information. Also, to compare to the I-CSI-based method, the
performance of the BCD algorithm proposed in [2] is shown
in Fig. 4. It can be seen that as SNR increases, the I-CSI-based
algorithm outperforms the others, while the PPO-based S-
CSI algorithm outperforms the A2C-based and ADMM-based
algorithms. In addition, all algorithms perform significantly
better than random phase shifts of RIS and the case in the
absence of RIS.

In Fig. 5, the impact of the Rician factor on the average
sum rate is investigated by assuming κ1 = κu,2 = κ and
κu,0 = 0. It is revealed from Fig. 5 that the performance of
all the algorithms with S-CSI and I-CSI improves when the
Ricisn factor increases. For the S-CSI approach, in particular,
this is because as κ increases, the BS-RIS-users link becomes
more deterministic, which means the LoS link becomes more
dominant. It is also observed that the gap between I-CSI and
S-CSI cases eventually reaches a constant. This is because
the direct link between the BS and UEs is assumed to be
fully Rayleigh, and therefore no statistical information can be
extracted to further improve performance in high Racian fac-
tors. It is also observed that the performance of the algorithm
proposed in [2] is similar to the PPO-based approach when
the I-CSI is available at the BS. Finally, in the random phase-
shift case and in the case without RIS, the average sum rate
is insensitive to the Rician factor.

In practice, the phase shifts of the RIS are quantized, so
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the passive beamforming is done with discrete values rather
than continuous values for the phase shifters. In particu-
lar, if the RIS is quantized with q bits, the values of the
phase shifters could just take the values of the set Q =
{0, 2π2q , . . . ,

2π(2q−1)
2q }, where q is the number of quantization

bits. In Fig. 6, the effect of the RIS-UE distance on the average
sum rate of the users is shown. For finding the discrete values
of the phase shifts of the RIS, we set ξ̂i = g(ξm), where the
function g(ξm) maps the continuous phase shifts of the RIS,
ξm, to its nearest point in Q, that is

g(ξm) = ξ̂i, if |ξm− ξ̂i| ≤ |ξm− ξ̂j |,∀ξ̂i, ξ̂j ∈ Q,∀i ̸= j. (7)

For training the agent, at the environment setup of Fig. 2, the
number of users is reduced to one user and the single user
is located at the center of the cell. The BS maximum power
budget is set to be P = 5dBm and κ1 = κu,2 = 10dB and
κu,0 = −3dB where u = 1. Fig. 5 shows how the performance
of the RIS is significantly higher when the user is within close
proximity of the RIS, even with 2-bit quantized RIS; The 2-
bit quantized RIS, on the other hand, performs significantly
worse than the 3-bit quantized and the ideal case, however,
this gap can be fulfilled with 3-bits quantized RIS which has
a close performance in comparison with the ideal case with
continuous phase shifters.

TABLE II: The running time

Algorithm Train time Test time
PPO-based S-CSI 1.5 hours on GPU 2.45 seconds
ADMM-based S-CSI - 168 seconds
BCD-based I-CSI - 345 seconds
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Table II displays the runtime performance comparison of
the PPO algorithm, accompanied by the ADMM and BCD
algorithms. As depicted in II, the PPO algorithm trains once
and exhibits rapid responsiveness in designing active and
passive beamformers. In contrast, both ADMM and BCD
algorithms necessitate a fresh run for each problem config-
uration, resulting in significantly longer execution times for
each channel realization when compared to the efficiency of
the PPO approach.

VI. CONCLUSION

In this letter, we present a PPO-based algorithm for joint
active and passive beamforming in RIS-aided multiuser MISO
systems. Leveraging S-CSI, we jointly optimized beamforming
vectors at the BS and phase shifts at the RIS. Moreover, our
proposed algorithm exhibits rapid convergence. Notably, 3-
bit quantization of the RIS suffices to achieve performance
parity with continuous phase shifts of the RIS. Additionally,
the PPO method boasts significantly lower time complexity in
comparison to iterative methods.

APPENDIX A

The calculation of E[h∗
uh

T
u ], begins with finding h∗

uh
T
u

where hTu ≜ hTu,0 + hTu,2ΞH1

h∗
uh

T
u = h∗

u,0h
T
u,0︸ ︷︷ ︸

A

+h∗
u,0h

T
u,2ΞH1︸ ︷︷ ︸
B

+HH
1 Ξ∗h∗

u,2h
T
u,0︸ ︷︷ ︸

C

+HH
1 Ξ∗h∗

u,2h
T
u,2ΞH1︸ ︷︷ ︸

D

. (8)

Since h̃u,2, h̃u,0 and H̃1 are independently distributed com-
plex Gaussian random matrices with zero mean and unit vari-
ance, E[h̃u,2] = 0M×1,E[h̃u,0] = 0N×1 and E[H̃1] = 0M×N .
Next, E[A] is derived as follows

E[A] = E
[
δu,0κu,0
1 + κu,0

h̄∗
u,0h̄

T
u,0

]
+ E

[
δu,0

1 + κu,0
h̃∗
u,0h̃

T
u,0

]
(9)

+ E

[√
δu,0κu,0
1 + κu,0

√
δu,0

1 + κu,0
h̄∗
u,0h̃

T
u,0

]

+ E

[√
δu,0κu,0
1 + κu,0

√
δu,0

1 + κu,0
h̃∗
u,0h̄

T
u,0

]

The second and the third term of (9) is zero, the first term is
a constant and the last term is the definition of the covariance
matrix, E[A] =

δu,0κu,0

1+κu,0
h̄∗
u,0h̄

T
u,0 +

δu,0

1+κu,0
IN . By the same

approach and noting that for a Gaussian distributed zero mean
and unit variance matrix X ∈ CP×Q, E[XHZX] = tr(Z)IQ
and with some simple calculations the remaining terms could
be calculated and listed as follows

E[B] =

√
δ1δu,0δu,2κ1κu,0κu,2

(1 + κ1)(1 + κu,0)(1 + κu,2)
h̄∗
u,0h̄

T
u,2ΞH̄1 (10)

E[C] =

√
δ1δu,0δu,2κ1κu,0κu,2

(1 + κ1)(1 + κu,0)(1 + κu,2)
H̄H

1 Ξ∗h̄∗
u,2h̄

T
u,0

(11)

E[D] =
Mδ1δu,2
1 + κ1

IN +
Mδu,2δ1κ1

(1 + κ1)(1 + κu,2)
(12)

aBS(ϕ
(BS), ψ(BS))HaBS(ϕ

(BS), ψ(BS))

+
δ1δu,2κ1κu,2

(1 + κ1)(1 + κu,2)
H̄H

1 Ξ∗h̄∗
u,2h̄

T
u,2ΞH̄1

Finally, by summing up all the terms, the result will be
obtained which completes the proof.
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