
Fennell, Christopher, Mauger, Alexis R. and Hopker, James G. (2023) Inter-day 
reliability of heart rate complexity and variability metrics in healthy highly active 
younger and older adults.  European Journal of Applied Physiology, 124 (5). 
pp. 1409-1424. ISSN 1439-6319. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/103906/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1007/s00421-023-05373-3

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/103906/
https://doi.org/10.1007/s00421-023-05373-3
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


European Journal of Applied Physiology 

Page 1 of 21 
 

Inter-day reliability of heart rate complexity and variability metrics in healthy highly 1 
active younger and older adults. 2 
 3 
Original Investigation 4 
 5 

Christopher R. J. Fennell, Alexis R. Mauger, James G. Hopker, 6 
 7 
 8 

School of Sport and Exercise Sciences, University of Kent, Canterbury, Kent, England. 9 
 10 
 11 
Corresponding Author. Mr Christopher Fennell; School of Sport and Exercise Sciences, 12 
University of Kent, Chipperfield Building, Canterbury, Kent, CT2 7PE, UK. Email: 13 
crjf3@kent.ac.uk  14 
 15 
 16 
Running head: Inter-day reliability of HRV metrics 17 
 18 

ORCID ID 19 

Christopher RJ Fennell: 0000-0002-3797-6299  20 

Alexis R Mauger: 0000-0001-6685-5800  21 

James G Hopker: 0000-0002-4786-7037 22 
 23 
 24 
Abstract word count: 249 25 
Text-only word count: 5668 26 
Number of figures and tables: Figures 3 & Tables 5 27 
References: 59 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 

mailto:crjf3@kent.ac.uk


European Journal of Applied Physiology 

Page 2 of 21 
 

ABSTRACT  47 
Purpose. To investigate the inter-day reliability of time-domain, frequency-domain, and nonlinear HRV metrics 48 
in healthy highly active younger and older adults. The study also assessed the effect of age on the HRV metrics.  49 
 50 
Methods. Forty-four older adults (34M, 10F; 59 ± 5 years; V̇O2peak = 40.9 ± 7.6 ml.kg-1.min-1) and twenty-two 51 
younger adults (16M, 6F; 22 ± 4 years; V̇O2peak = 47.2 ± 12.8 ml.kg-1.min-1) attended the laboratory. Visit one 52 
assessed aerobic fitness through an exercise test. In visits two and three, participants completed a 30-minute supine 53 
RR interval measurement to derive the HRV metrics. 54 
 55 
Results. The younger group (YG) and older group (OG) demonstrated poor to good day-to-day relative and 56 
absolute reliability for all HRV metrics (OG, ICCs = 0.33 to 0.69 and between day CVs = 3.8 to 29.2%); YG, 57 
ICCs = 0.37 to 0.93 and between day CVs = 3.5 to 36.5%). There was a significant reduction in ApEn (P < 0.001), 58 
SampEn (P = 0.031), RMSSD (P < 0.001), SDNN (P < 0.001), LF power (P < 0.001) and HF power (P < 0.001), 59 
HRV metrics with ageing. There was no significant effect of age the complexity metrics DFA a1 (P = 0.107), a2 60 
(P = 0.147) and CI-8 (P = 0.493).  61 
 62 
Conclusion. HRV metrics are reproducible between days in both healthy highly active younger and older adults. 63 
There is a decline in linear and nonlinear HRV metrics with age, albeit there being no age-related change in the 64 
nonlinear metrics, DFA a1, a2 and CI-8. 65 
 66 
 67 
KEYWORDS: complexity; ageing; reproducibility; heart rate. 68 
 69 
ABBREVIATIONS 70 

ANOVA Analysis of variance 
ANS Autonomic nervous system 
ApEn Approximate entropy 
CI-8 Complexity index under 8 scales 
CV Coefficient of variation 
DFA Detrended fluctuation analysis 
HF High frequency power 
HRV Heart rate variability 
ICC2,1 Intraclass correlation coefficient 
IET Incremental exercise test 
LF Low frequency power 
LOA Limits of agreement 
MDC Minimal detectable change 
MSE Multiscale entropy 
OG Older group 
RMSSD Root mean square of successive differences between normal RR intervals 
SampEn Sample entropy 
SDNN Standard deviation of normal RR intervals 
SD2 Standard deviation of points along the line of identity of the Poincare plot 
SEM Standard error of measurement  
V̇O2peak Peak oxygen uptake 
V̇E/V̇O2 Ventilatory equivalent of oxygen 
V̇E/V̇CO2 Ventilatory equivalent of carbon dioxide 
YG Younger group 

 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 



European Journal of Applied Physiology 

Page 3 of 21 
 

1. INTRODUCTION 79 
Biological systems produce dynamic nonlinear outputs that are measurable across time, such as the variable 80 
fluctuations in the beat-to-beat (RRi) of the heart (Lipsitz & Goldberger 1992; Peng et al. 1995). The apparent 81 
“chaotic looking” behaviour of the fluctuations in an RR interval time series is accepted to contain meaningful 82 
structural richness; which can be assessed by using methods derived from nonlinear dynamics that can quantify 83 
the complexity (i.e., degree of self-similarity of fluctuations over multiple orders of temporal magnitude; Peng et 84 
al. 1995) and entropy (i.e., the regularity or randomness of the fluctuations; Richman & Moorman 2000) of the 85 
RR interval signal. While traditional linear time-domain methods provide a measure of variability between 86 
successive RR intervals, frequency-domain methods provide an estimation of the absolute or relative power of 87 
the RR interval signal (Shaffer & Ginsberg 2017).  88 
 89 
Together the time-domain, frequency-domain, and nonlinear heart rate variability (HRV) metrics reflect the global 90 
functioning of the autonomic nervous system (ANS) through the interplay of sympathetic and parasympathetic 91 
activity at the sinus node (Task force 1996; Schwab et al. 2003). From a health-related and clinical perspective, a 92 
notable increase or decrease in heart rate complexity and variability away from an individual’s optimal range, 93 
may be indicative of an increased risk of sudden death, or adverse cardiac events such as arrythmias, myocardial 94 
infarcts, postural hypotension, and congestive heart failure (Kleiger et al. 1987; Goldberger et al. 1988; Lipsitz 95 
1989; La Rovere et al. 1998; Stein et al. 2005). Moreover, research has shown a higher HRV to be positively 96 
associated with working memory (Mosley et al. 2018), cognitive performance (Hansen et al. 2004), emotional 97 
regulation (Williams et al. 2015) and incidence of depression (de la Torre-Lugue et al. 2016). 98 
 99 
Research utilising a wide variety of HRV metrics has shown that during wakeful rest, both heart rate complexity 100 
(Kaplan et al. 1991; Iyengar et al. 1996; Pikkujamsa et al. 1999; Beckers et al. 2006; Voss et al. 2015) and 101 
variability (Jensen-Urstad et al. 1997; Umetani et al. 1998; Goff et al. 2010; Hernandez-Vicente et al. 2020) 102 
progressively decrease from early adulthood through to older age in healthy individuals. The World Health 103 
Organisation projects the number of people in the world over 60 years of age to increase from 1 billion (as of 104 
2020) to 1.4 billion by 2030 and 2.1 billion by 2050 (data from who.int). Given the potentially negative 105 
physiological and psychological implications associated with a decrease in heart rate complexity and variability, 106 
it is pertinent there is continued research into the utility of HRV in older adults. 107 
 108 
Previous research has assessed the intra and inter-day reliability of a few specific time-domain, frequency-domain 109 
(Al Haddad et al. 2011; Cipryan & Litschmannova 2013; Uhlig et al. 2020) and nonlinear HRV metrics (Maestri 110 
et al. 2007a). However, to the authors knowledge the inter-day reliability of the nonlinear HRV metrics has yet to 111 
be assessed in a homogenous group of healthy older adults. The current study therefore sought to extend upon the 112 
current literature investigating the reliability of HRV metrics, with the primary aim to provide new data on the 113 
day-to-day reliability of a range of HRV metrics in healthy active younger and older adults. The study also sought 114 
to assess the effect of age on HRV.  115 
 116 
2. METHODS  117 
2.1. Participants 118 
Sixty-six healthy individuals (50 male; 16 female) were recruited to participate in the study. Participants were 119 
divided into two age groups, the younger group (YG) were aged 18 to 30 years (N = 22; 16M, 6F) and the older 120 
group (OG) were aged 50 to 70 years (N = 44; 34M, 10F).  121 
 122 
All participants were regular exercisers, having performed above the World Health Organisation guidelines (i.e., 123 
2.5 to 5 hours of moderate exercise per week; Bull et al. 2020) for ³ 2years. All participants were recruited to be 124 
closely matched for physical activity levels and exercise capacity. Participants were required to be non-obese, 125 
non-smokers, have no known or signs/symptoms of cardiovascular, neuromuscular, renal, or metabolic conditions 126 
and not be taking medications or dietary supplements that would affect cardiac function. The study was completed 127 
with full ethical approval of the University of Kent Research Ethics Committee (Proposal number: 21_2020_21), 128 
according to Declaration of Helsinki standards. All participants provided written informed consent prior to testing. 129 
 130 
2.2. Experimental Design  131 
Each participant completed three visits to the laboratory at the same time of day (±1 hour) between the hours of 132 
8am and 4pm (AM visits, YG N = 8 and OG N = 21; PM visits, YG N = 14 and OG N = 23). Visit one involved 133 
participant screening, laboratory familiarisation, and an incremental exercise test (IET) to determine aerobic 134 
fitness. At visits two and three, participants completed the 30-minute supine resting RR interval measurement to 135 
derive the HRV metrics. 136 
 137 
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Visits were conducted on non-concurrent days (with a minimum gap of 2 full days and maximum gap of 5 days 138 
between visits) and participants were instructed to refrain from any exercise in the day prior to testing and intense 139 
exercise in the two days prior. Participants were instructed to arrive euhydrated and in a post-prandial state, having 140 
eaten at least 4-hours prior to testing. Participants were told to not consume caffeine within 8-hours and alcohol 141 
within 24-hours of testing. 142 
 143 
2.3. Preliminary measurements and incremental exercise testing (visit one) 144 
At visit one prior to exercise testing all participants provided written informed consent, completed a health 145 
questionnaire and the long form international physical activity questionnaire (Craig et al. 2003). Resting blood 146 
pressure, participant height, body mass and body composition were then measured, after which the participants 147 
completed a cycling IET to determine markers of aerobic fitness.  148 
 149 
The IET protocol was performed on an electro-magnetically braked ergometer (Excalibur Sport, Lode BV, 150 
Groningen, The Netherlands). Participants completed a 10-minute warm-up at 50 W, after which the required 151 
cycling power output increased by 25 W every minute (i.e., 1 W every 2.4 s) until they reached volitional 152 
exhaustion (operationally defined as a cadence of < 60 revolutions/min for > 5 s, despite strong verbal 153 
encouragement).  154 
 155 
During the IET, respiratory gas exchange data were assessed using online breath-by-breath gas analysis 156 
(Metalyzer 3B; CORTEX Biophysik GmbH, Leipzig, Germany). Prior to all testing the gas analyser was 157 
calibrated according to the manufacturer recommendations using with ambient air and known concentrations of 158 
oxygen and carbon dioxide. The bidirectional turbine (flow meter) was calibrated with a 3-litre calibration syringe. 159 
 160 
The participant’s peak oxygen uptake (V̇O2peak) was assessed as the highest oxygen uptake that was attained during 161 
a 1-minute period in the test. Participants gas exchange threshold was determined as the breakpoint in carbon 162 
dioxide production and oxygen consumption (i.e., the point at which the carbon dioxide production begins to 163 
increase out of proportion to the oxygen consumption). This breakpoint also coincided with the increase in both 164 
ventilatory equivalent of oxygen (V̇E/V̇O2) and end-tidal pressure of oxygen with no concomitant increase in 165 
ventilatory equivalent of carbon dioxide (V̇E/V̇CO2; Beaver et al. 1986; Pallares et al. 2016). The respiratory 166 
compensation point was determined as an increase in both the V̇E/V̇O2 and V̇E/V̇CO2 and a decrease in partial 167 
pressure of end-tidal carbon dioxide (Whipp et al. 1989; Lucia et al. 1999).  168 
 169 
2.4. Measurement of RR intervals (visits two and three) 170 
For collection of RR intervals participants were in a supine resting position, in a temperature-controlled room set 171 
at 20 C. The room was kept dark and quiet, and participants were instructed not to verbalise throughout the 172 
measurement and breathe freely at their normal resting rate. Before the 30-minute RR interval measurement 173 
commenced, an initial 20-minute supine rest period was carried out to ensure participants were at complete rest 174 
and their heart rates were stable. 175 
 176 
To collect the RR intervals participants wore a Polar H10 heart rate monitor with a Pro Strap (Polar Electro Oy, 177 
Kempele, Finland), which has been shown to provide strong agreement and comparable RR interval signal quality 178 
to conventional ECG devices (Gilgen-Ammann et al. 2019; Schaffarczyk et al. 2022). The elastic electrodes of 179 
the Pro Strap were moistened, and the strap lengthened to fit around the participant’s chest circumference as 180 
described by the manufacturer. The RR intervals were acquired at 1000 Hz via the Elite HRV application (Elite 181 
HRV, Asheville, NC, USA) on a mobile device positioned directly next to the participant. The RR intervals were 182 
then exported as a text file for processing and analysis offline in MATLAB.  183 
 184 
2.5. RR interval data pre-processing 185 
All RR interval time series were pre-processed to exclude artifacts and outliers. RR intervals less than 0.2 s and 186 
greater than 2.0 s were removed. Secondly, RR intervals that differed from the mean of the surrounding 40 RR 187 
intervals by more than 20% were excluded.  188 
 189 
The number of RR interval artifacts and outliers from all RR interval time series on Day 1 were: YG, 19.6 ± 20.5 190 
RR intervals or 1.12 ± 1.24% (range 0.05 to 4.33%) of total RR intervals and OG, 7.5 ± 10.6 RR intervals or 0.46 191 
± 0.64% (range 0.00 to 2.65%) of total RR intervals and Day 2: YG, 16.3 ± 15.9 RR intervals or 0.94 ± 0.94% 192 
(range 0.00 to 3.03%) of total RR intervals and OG, 6.7 ± 12.1 RR intervals or 0.42 ± 0.76% (range 0.00 to 4.10%) 193 
of total RR intervals.  194 
 195 
2.6. Heart rate complexity - nonlinear metric analysis 196 



European Journal of Applied Physiology 

Page 5 of 21 
 

2.6.1. Approximate and Sample entropy 197 
Approximate entropy (ApEn; Pincus 1991) and sample entropy (SampEn; Richman & Moorman 2000) quantify 198 
the conditional probability that a template length of m and m + 1 data points is repeated during the time series 199 
within a tolerance of r (set at a % of the time series SD). SampEn differs from ApEn, as it avoids counting self-200 
matches by taking the logarithm after averaging, thus reducing the inherent bias existing within the ApEn 201 
calculation.   202 
 203 
In the current study template length was set at m = 2 and tolerance r = 0.2 of the SD of the RR interval time series, 204 
for both ApEn and SampEn analysis (Kaplan et al. 1991). ApEn was calculated as shown by equation [1] and 205 
SampEn by equation [2], where N is the number of data points in the time series, m is the length of the template, 206 
Ai is the number of matches of the ith template of length m + 1 data points, and Bi is the number of matches of 207 
the ith template of length m data points: 208 
 209 

[1]	𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = 	
1

𝑁 −m 2 𝑙𝑜𝑔
𝐴!
𝐵!

"#$

!%&

 210 

 211 
 212 

[2]	𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = 	−	log=
∑ 	𝑁	 − 𝑚										𝑖	 = 	1				𝐴!
∑𝑁	 − 	𝑚𝑖	 = 	1 		𝐵!

@ 213 

 214 
2.6.2. Detrended fluctuation analysis 215 
The detrended fluctuation analysis (DFA) algorithm was used, as outlined by Peng et al. (1994), to measure the 216 
fractal scaling of the RR interval time series. The DFA algorithm allows for the detection of long-range 217 
correlations embedded in seemingly non-stationary physiological time series data. The RR interval time series is 218 
first integrated, using equation [3]: 219 
 220 

[3]	𝑦(𝑘) 	= 	2(𝑅𝑅'	

)

'%&

−	𝑅𝑅EEEE), 𝑘	 = 	1, . . . , 𝑁	 221 

 222 
The integrated time series are then divided into boxes of equal length, n. Within each box length n, a least squares 223 
line is fitted to the data, yn(k) denotes the trend in each box. The integrated time series y(k) is then detrended by 224 
subtracting the local trend, yn(k), within each box. The root-mean-square fluctuation of the integrated and 225 
detrended time series is calculated by equation [4]: 226 
 227 

[4]	𝐹(𝑛) = 	I
1
𝑁 2	[𝑦(𝑘) 	−	𝑦*	(𝑘)]+	

"

)%&

					 228 

 229 
The DFA computation [4] is repeated across all box sizes to provide a relationship between F(n), the average 230 
fluctuation as a function of box size, and the box size, n, the number of RR interval data points in a box. The slope 231 
of the double log plot, log F(n) vs log n, determines the scaling exponent a. DFA a was calculated with box sizes 232 
ranging from 4 to ≤ 64 data points. DFA a1 was calculated over box sizes of 4 ≤ n ≤ 16 data points (i.e., scaling 233 
exponent calculated over short time scales) and DFA a2 was calculated over box sizes of 16 ≤ n ≤ 64 data points 234 
(i.e., scaling exponent calculated over long time scales), as used previously by Peng et al. (1995).  235 
 236 
The DFA produces a scaling exponent a. An a = 0.5 indicates that the value of one RR interval is completely 237 
uncorrelated from any previous values (i.e., unpredictable white noise; indicative of a very rough time series). An 238 
a = 1.5 indicates Brown noise and a loss of long-range correlations (i.e., a smooth output with long term memory). 239 
While an a of 1.0 (i.e., 1/f or pink noise) is suggestive of a physiological output of high complexity, that is 240 
statistically self-similar with long range-correlations (Peng et al. 1995). Figure 1A presents an example raw RR 241 
interval time series and 1B presents the integrated time series with the least-squares fit “trend” line plotted for 242 
box sizes of 64 data points.  243 
 244 

[Figure 1 here] 245 
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 246 
2.6.3. Multiscale entropy 247 
Multiscale entropy (MSE) analysis was performed as outlined by Costa et al. (2002) providing a measure of 248 
complexity of time series over multiple scales. The MSE analysis overcomes limitations of SampEn and ApEn 249 
which only measure the regularity of time series data on one scale, and therefore do not capture the structural and 250 
dynamical behaviour of the time series.     251 
 252 
From the one-dimensional discrete time series, {c1,…., cI,…., cN}, a coarse-grained time series were constructed, 253 
{y(t)}, determined by the scale factor, t, according to equation [5]: 254 
 255 

[5]		𝑦(𝜏)𝑗 = 	
1
𝜏 	 2 𝜒!,

'-

!#('#&)-0&

		1 ≤ 	𝑗	 ≤ 𝑁/𝜏 256 

 257 
 258 
At one scale, the time series {y(1)} is the original time series of sample length. The length of the coarse-grained 259 
time series is equal to the length of the original time series divided by the scale factor, t. The SampEn for each 260 
coarse-grained time series is calculated and plotted against the scale factor, t, producing a MSE curve. The 261 
SampEn of each coarse-grained time series was computed using equation [2] and a template length m = 2 and r = 262 
0.2 of the SD of the RR interval time series. The area under the MSE curve were calculated from scales 1 to 8 263 
using equation [6] and is defined as the complexity index (CI-8) with higher CI values indicating greater 264 
complexity of the physiological signal.  265 
 266 

[6]	𝐶𝐼	 = 	2 𝑆𝑎𝑚𝑝𝐸𝑛(𝑖)
-

!	%&
 267 

 268 
2.6.4. Poincare plot SD2 269 
Poincare plots of RR interval times series were produced by plotting each RR interval as a function of the previous 270 
RR interval (Woo et al. 1992). Poincare plots were then analysed with an ellipse fitting procedure to derive the 271 
metrics SD1 (the standard deviation of the points perpendicular to the line of identity) and SD2 (the standard 272 
deviation along the line of identity; Brennan et al. 2001). Only SD2 was reported as SD1 is identical to RMSSD 273 
(Shaffer & Ginsberg 2017). 274 
 275 
2.7. Heart rate variability – linear metric analysis 276 
2.7.1. Time-domain metrics 277 
The time-domain measures of heart rate variability quantify the amount of variability present within the RR 278 
interval time series.  279 
 280 
The root mean square of successive differences between normal RR intervals (RMSSD) was calculated using 281 
equation [7]: 282 
 283 

[7]	𝑅𝑀𝑆𝑆𝐷	 = 	I
1

𝑁	 − 	1 2 	(𝑅𝑅*0& −	𝑅𝑅*	)+
"	#	&

*%&

 284 

 285 
The standard deviation of normal RR intervals (SDNN) was calculated using equation [8]: 286 
 287 

[8]	𝑆𝐷𝑁𝑁	 = 	I
1

𝑁	 − 	1 2 	(𝑅𝑅* −	𝑅𝑅EEEE)+
"	

*%&

 288 

 289 
The RMSSD and SDNN metrics were reported in milliseconds and natural logarithm transformed values, 290 
LnRMSSD and LnSDNN.  291 
 292 
2.7.2. Frequency-domain metrics 293 
The frequency-domain measures of heart rate variability provide an estimate of spectral power in frequency bands. 294 
The power spectrum was estimated using a parametric autoregressive based model, with the absolute power in 295 
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the low frequency power (LF) band (0.04 – 0.15 Hz) and high frequency power (HF) band (0.15 – 0.4 Hz) 296 
calculated, along with the LF/HF ratio. The absolute power in the LF and HF band is reported in ms2 and natural 297 
logarithm transformed values (Ln).   298 
 299 
2.8. Statistical analysis 300 
Data are presented as individual values or mean ± SD (unless specified otherwise). Statistical analyses were 301 
conducted using IBM SPSS Statistics 29 (IBM, Armonk, New York, USA). Visual inspection of Q-Q plots and 302 
Shapiro-Wilk statistics were used to check whether data were normally distributed. 303 
 304 
Day-to-day reliability of all heart rate complexity and variability metrics was assessed through a two-way random 305 
intraclass correlation coefficient (ICC2,1) for absolute agreement, standard error of measurement (SEM), minimal 306 
detectable change (MDC) and Bias (being mean difference between day 1 and day 2). Upper and lower 95% limits 307 
of agreement (LOA) were calculated as the mean of differences between days ± 1.96 x the standard deviation of 308 
the differences. Between day coefficient of variations (CVs) of all HRV metrics were calculated by dividing the 309 
SD of both days’ measurement by the mean of both days measurement and multiplying by one hundred. Between 310 
participant CVs for all HRV metrics were calculated by dividing the SD of all participant measurement by the 311 
mean of all participant measurement and multiplying by one hundred. Paired samples t-tests were used to assess 312 
whether a significant difference in the complexity and variability metrics were present between days for each age 313 
group.  314 
 315 
Based on the ICCs, relative reliability was defined as: poor = ICC < 0.5, moderate = ICC ³ 0.5 to < 0.75, good = 316 
ICC ³ 0.75 to < 0.90 and excellent = ICC ³ 0.90 (Koo & Li 2016). 317 
 318 
Hedges’ g effect sizes and the 95% confidence intervals were calculated to assess the differences between the two 319 
age groups (YG vs. OG) HRV metrics and interpreted as: 0.2 to 0.5 small effect, 0.5 to 0.8 medium effect, ≥ 0.8 320 
large effect (Cohen 1992). 321 
 322 
Multiple linear regressions were performed to estimate the effect of participant age, sex and V̇O2peak on all heart 323 
rate complexity and variability metrics. Males were set as the baseline reference level; therefore, positive beta 324 
coefficients indicate that being female will likely result in a higher value.   325 
 326 
The significance level was set at P < 0.05 in all cases. 327 
 328 
3. RESULTS 329 
3.1. Participant characteristics and anthropometrics 330 
Data from forty-four older adults (34M; 10F) and twenty-two younger adults (16M; 6F) were included in the 331 
analysis. Table 1 presents participant anthropometrics and IET data.  332 
 333 

[Table 1 here] 334 
 335 

3.2. Reliability of heart rate complexity and variability-based metrics 336 
Based upon the ICCs the OG demonstrated poor reliability for the CI-8 and SD2 metric, moderate reliability for 337 
the RMSSD, SDNN, LnRMSSD, LnSDNN, LF(ms2), HF(ms2), LF(log), HF(log), ApEn, SampEn, DFA a, DFA 338 
a1 and DFA a2 metrics, and good reliability for the LF/HF metric (Table 2). By comparison, the YG demonstrated 339 
poor reliability for the ApEn, SampEn and SD2 metrics, moderate reliability for the LnSDNN, LF (ms2), LF(log), 340 
DFA a2 and CI-8 metrics, good reliability for the RMSSD, SDNN, LnRMSSD, HF(ms2), HF(log), LF/HF and 341 
DFA a metrics and excellent reliability for the DFA a1 metric (Table 3).  342 
 343 

[Table 2 here] 344 
[Table 3 here] 345 

 346 
3.3. Effect of age, sex and V̇O2peak on heart rate complexity 347 
There was a significant reduction in the ApEn (P < 0.001; Figure 2E), SampEn (P = 0.031; Figure 2F) and SD2 348 
(P < 0.001; Figure 2H) metrics with ageing (Table 5). There was no significant effect of age on the CI-8 (P = 349 
0.493; Figure 2G; Table 5). 350 
 351 

[Figure 2 here] 352 
 353 
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There was no significant effect of age on the DFA a1 (P = 0.107; Figure 3B) and DFA a2 (P = 0.147; Figure 3C) 354 
metrics (Table 5). The DFA a metric was significantly increased with ageing (P = 0.029; Figure 3A). 355 
 356 
There was a significant effect of sex (P = 0.028), but not or V̇O2peak (P = 0.822) on DFA a1, with females 357 
presenting with lower values. There was no significant effect of sex or V̇O2peak on the ApEn, SampEn, DFA a, 358 
DFA a2, CI-8 and SD2 metrics (P > 0.05; Table 5). 359 
 360 

[Figure 3 here] 361 
 362 
3.4. Effect of age, sex and V̇O2peak on heart rate variability  363 
There was a significant reduction in RMSSD (P < 0.001; Figure 2A), SDNN (P < 0.001; Figure 2B), LF power 364 
(P < 0.001; Figure 2C) and HF power (P < 0.001; Figure 2D) metrics with ageing (Table 5).  365 
 366 
There was no significant effect of sex or V̇O2peak on all linear HRV metrics (P > 0.05; Table 5).  367 
 368 

[Table 4 here] 369 
[Table 5 here] 370 

 371 
4. DISCUSSION 372 
4.1. Reliability of heart rate complexity and variability metrics 373 
The current study provides new inter-day reliability data for a range of widely utilised time-domain, frequency-374 
domain and nonlinear HRV metrics in healthy highly active younger and older adults. The primary findings of 375 
this investigation reveal all linear HRV metrics in both the younger adult and older adult groups to exhibit 376 
moderate to good inter-day reliability, as indicated by ICCs ranging from 0.56 to 0.88 (Tables 2 & 3). Similarly, 377 
the majority of nonlinear HRV metrics demonstrated moderate to excellent inter-day reliability with ICCs ranging 378 
from 0.55 to 0.93 (Tables 2 & 3). There were exceptions however, with ApEn, SampEn and SD2 metrics of the 379 
YG, and the SD2 metric of the OG exhibiting poor relative reliability, as shown by ICCs of less than 0.50 (Tables 380 
2 & 3). This variability in the inter-day reliability of HRV metrics can likely be attributed to the sensitivity of the 381 
ANS and the influence of various individual internal and external factors that can be challenging to control 382 
(Fatisson et al. 2016).  383 
 384 
It has been suggested that the assessment of test-retest reliability should not rely solely on ICCs (Weir et al. 2005). 385 
This viewpoint is supported by the current study, with the ApEn, SampEn and CI-8 HRV metrics displaying ICCs 386 
ranging from 0.37 to 0.69, indicating poor to moderate relative reliability (Tables 2 & 3). However, these metrics 387 
exhibited low SEM values (ranging from 0.06 to 0.20) and low between day CVs (ranging from 2.95% to 7.65%), 388 
which suggests high absolute retest reliability. This apparent contradiction can be explained by the homogeneous 389 
population recruited and low between participant CVs for these specific metrics, leading to low relative but high 390 
absolute reliability (Atkinson & Nevill 1998; Weir 2005). In contrast, the SD2 metric showed both low relative 391 
reliability (ICCs ranging from 0.33 to 0.44) and low absolute reliability (between day CVs of 18.13% to 20.42% 392 
and SEM values of 17.43 to 60.00). Similarly, the frequency-domain metrics LF, HF, and LF/HF also exhibited 393 
low absolute reliability (Tables 2 & 3). These findings indicate that specific HRV metrics may present significant 394 
challenges when used to detect intervention/treatment effects or individual changes over time. Consequently, the 395 
HRV metrics with low relative and absolute reliability may not be suitable in specific research contexts, especially 396 
those with limited sample sizes or small intervention/treatment effects. 397 
 398 
ICCs and SEM of the SampEn and DFA metrics for both age groups in the current study are comparable to those 399 
reported by Maestri et al. (2007a) who examined HRV inter-day reliability in healthy adults with a mean age of 400 
38 years (range 26 to 56 years). Accordingly, the LnRMSSD, LnSDNN, LnLF, and LnHF metrics of both age 401 
groups produced similar ICCs to those reported for healthy young students aged between 18 and 39 years (Uhlig 402 
et al. 2020), in addition to comparable between day CVs and SEM to healthy trained young adults (aged 21.5 ± 403 
1.4 years; Al Haddad et al. 2011). The corroboration between reliability studies improves confidence in the 404 
expected retest error of HRV metrics. However, it also emphasises the high level of variance in certain HRV 405 
metrics (i.e., LF, HF, LF/HF and SD2), as well as the difficulty facing researchers in sufficiently powering studies 406 
which are utilising HRV measurements across multiple visits and/or during longitudinal studies.  407 
  408 
The study builds upon previous HRV reliability research providing inter-day reliability data for short-term resting 409 
HRV measurements for younger and importantly older adults across a range of widely utilised HRV metrics. The 410 
reliability data in tables 2 and 3 provides a resource for researchers to reference when calculating sample sizes for 411 
future HRV studies with healthy adult participants. Importantly, given the disparity in the reliability of different 412 
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HRV metrics (ICCs, 0.33 to 0.93; Between day CVs, 2.9 to 36.5; Tables 2 & 3), study sample size is recommended 413 
to be based upon the chosen metric with the lowest reliability to reduce the likelihood of a type I or type II error 414 
across all metrics. In addition, the reliability statistics also allow for the assessment of whether there is a true 415 
intervention effect or individual change in HRV metrics within a study and not just a result of biological and 416 
measurement error. 417 
 418 
4.2. Effect of age, sex and V̇O2peak on heart rate complexity and variability 419 
The current study findings demonstrate a significant age-related decline in linear (RMSSD, LnRMSSD, SDNN, 420 
LnSDNN, LF, HF) and nonlinear (ApEn, SampEn and SD2) HRV metrics (Table 4 & 5; Figure 2), corroborating 421 
the findings of a broad body of literature which has assessed the effect of age on heart rate complexity and 422 
variability (Kaplan et al. 1991; Iyengar et al. 1996; Jensen-Urstad et al. 1997; Umetani et al. 1998; Pikkujamsa et 423 
al. 1999; Beckers et al. 2006; Goff et al. 2010; Voss et al. 2015; Hernandez-Vicente et al. 2020). An age-related 424 
decrease in both the linear and nonlinear HRV metrics is expected, primarily driven by alterations in the ANS, 425 
characterised by a decline in parasympathetic activity and an increase in sympathetic drive (Seals & Esler 2000).  426 
 427 
Despite age-related differences in all other HRV metrics, there was no significant effect of age on the nonlinear 428 
DFA a1 and a2 metrics (Table 5; Figures 3B & 3C). Mean DFA a1 and a2 values were close to 1.0 (i.e., 1/f or 429 
pink noise), indicative of a healthy physiological signal of high complexity that is exhibiting both short and long-430 
range fractal-like correlations (Peng et al. 1995). These findings are comparable to previous research which also 431 
found no age-related difference in the DFA a1 and a2 metric (Vuksanovic & Gal 2005; Schmitt & Ivanov 2007; 432 
Wiersema et al. 2022). Seminal research exploring the effect of age on the fractal behaviour of RR interval time 433 
series observed healthy older adults (a2 = 0.75 ± 0.17) to have a significant decline in long-range fractal 434 
correlations, in comparison to healthy younger adults (a2 = 0.99 ± 0.10; Iyengar et al. 1996). The mean age of 435 
the older group in the study of Iyengar et al. (1996) was greater than the older group of the current study (74 years 436 
vs 59 years), which may partly explain the difference in findings between the studies, as well as the high activity 437 
levels of the older participants of the current study. It is important to note that despite recruiting a homogenous 438 
sample, several participants did produce a1 and a2 values closer to 0.5 and 1.5 (Figures 3B & 3C). Such between 439 
participant variation is expected, occurring to differing extents for all HRV metrics (Tables 2 & 3) and highlights 440 
the importance of also accounting for the inter-individual variability of HRV metrics when seeking to understand 441 
the utility of HRV in different populations.  442 
 443 
The findings of the current study demonstrate no significant age-related change in the nonlinear CI-8 metric 444 
(Figure 2G; Table 5). Like the DFA a1 and a2 metrics, the CI-8 metric captures the structural and dynamical 445 
behaviour of the RR interval time series over multiple scales (Costa et al. 2002). Accordingly, the complexity 446 
(DFA and CI-8) of the study participants’ RR interval time series is suggestive of their cardiovascular systems 447 
ability to adapt to physiologic perturbations and respond quickly to challenges to maintaining homeostasis (Peng 448 
et al. 2009; Manor & Lipsitz 2013). The mixed findings of the effect of age on different HRV metrics highlights 449 
the necessity of employing multiple heart rate complexity and variability metrics when analysing RR interval 450 
times series. If only specific time-domain, frequency-domain or non-linear HRV metrics are utilised, studies may 451 
fail to capture different linear and nonlinear aspects of the signal, therefore potentially missing important 452 
information on cardiac interval dynamics. However, the choice and combination of HRV metrics by 453 
researchers is also likely to be dependent on the research context; with different HRV metrics better 454 
suited to capturing specific properties and/or changes in cardiac interval dynamics, in addition to the 455 
redundancy of combining HRV metrics which measure similar HRV properties (Maestri et al. 2007b).  456 
 457 
The current study included male (N = 50) and female (N = 16) participants. Sex differences in HRV are well 458 
documented and are influenced by physiological, hormonal, and neural factors (Koenig & Thayer 2016). 459 
Moreover, sex-related differences in HRV may be more pronounced in younger adults, when compared to older 460 
adults (Maria et al. 2023). It should be noted that the current study did not control for menstrual cycle phase or 461 
hormone changes due to the menopause, which are known to effect HRV (Aubert et al. 2003; Maria et al. 2023). 462 
Sex did not significantly predict the HRV metrics in the current study, except for the DFA a1 metric (Table 5). 463 
The significant effect of sex indicates that females present with lower a1 value in comparison to males. Such 464 
differences in a1 is suggestive of a notable change in the short-range fractal correlation properties of HRV and 465 
an alteration in sympathetic and vagal activation (Tulppo et al. 2005).  466 
 467 
While sex was not significantly predictive of the HRV metrics, the beta coefficients indicate a trend towards 468 
females having higher values in HRV metrics primarily associated with parasympathetic activity (i.e., HF power 469 
and RMSSD) in comparison to males. There is evidence to support an increase in parasympathetic modulation (as 470 
indicated by absolute HF power) in females compared to males (Koenig & Thayer 2016). However, evidence is 471 
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argued to be inconclusive with heterogeneity in study findings, likely emanating from differences in study 472 
methodology and analysis methods (Maria et al. 2023).  473 
 474 
Aerobic physical activity has been shown to have positive effects on measures of HRV in both younger and older 475 
adults, when compared to sedentary age matched individuals, through enhanced autonomic balance, improved 476 
baroreflex sensitivity and cardiac adaptations (Aubert et al. 2003). To capture the effect of inherent biological 477 
ageing on HRV (i.e., individuals unaffected by sedentary behaviour or underlying pathologies) all participants of 478 
the current study were recruited to be in full health and regular exercisers closely matched for physical activity 479 
levels and aerobic fitness (Table 1). Although the YG did present with a higher absolute aerobic fitness as 480 
measured by V̇O2peak (YG V̇O2peak = 3.5 ± 1.0 L.min-1 vs. OG V̇O2peak = 3.0 ± 0.8 L.min-1), V̇O2peak was not 481 
significantly predictive of any HRV metric (Table 5).  482 
 483 
4.3. Limitations 484 
The current study only assessed the reliability of HRV metrics derived from short-term RR interval measurements 485 
in healthy active younger and older adults during free-breathing wakeful supine rest. Due to the sensitivity of the 486 
ANS to various external and internal factors (Fatisson et al. 2016), caution is advised when extrapolating the 487 
reliability data reported herein to HRV metrics derived from RR interval measurements performed under different 488 
conditions. The current study was limited to the assessment of inter-day reliability and did not assess the intra-489 
day reliability of the HRV metrics. Given the sensitivity of the ANS, it is probable the inter-day variation in HRV 490 
largely reflects biological error, whereas intra-day variation in HRV would likely provide a closer insight into the 491 
measurement error.  492 
 493 
The current study assessed a range of time-domain, frequency-domain and nonlinear HRV metrics, which are 494 
extensively studied and widely accepted to provide valuable information regarding ANS function in ageing, 495 
between sexes and in athletes (Koenig & Thayer 2016; Shaffer & Ginsberg 2017; Lundstrom et al. 2023). 496 
However, it is important to highlight that the study does not provide a comprehensive list of available HRV 497 
metrics. Notably, the study did not include HRV metrics from the major families of symbolic dynamics, 498 
predictability, and empirical mode decomposition (Maestri et al. 2007b). Researchers should specifically consider 499 
using the symbolic dynamic metric, one variation pattern (1VP) and empirical mode decomposition metric, 500 
IMAI2. The IVP and IMAI2 metrics have been shown to provide additive predictive value independent to clinical 501 
predictors when assessing chronic heart failure patients (Maestri et al. 2007b) and detect experimentally induced 502 
changes in autonomic cardiovascular regulation in healthy individuals (Guzzetti et al. 2005).  503 
 504 
The nonlinear HRV metric, ApEn, was included in the current study as a metric from the entropy family, which 505 
can assess the irregularity or randomness of an RR interval time series (Pincus 1991). However, the calculation 506 
of ApEn presents notable limitations due to its self-matching that may affect its interpretation (Richman & 507 
Moorman 2000). ApEn exhibits sensitivity to data length, particularly in cases of short data sequences such as RR 508 
interval time series, leading to potentially biased results due to its reliance on pattern identification within the 509 
arbitrarily specified tolerance parameter, “r”. Moreover, ApEn's susceptibility to self-matching can cause relative 510 
inconsistencies; meaning if the ApEn of a time series is higher than another time series, it should remain higher 511 
under all conditions, however, it does not always remain higher (Richman & Moorman 2000). Despite ApEn 512 
demonstrating high absolute retest reliability, researchers are advised to account for these limitations when using 513 
ApEn for HRV analysis.  514 
 515 
4.4. Conclusion 516 
The current findings show that widely used HRV metrics derived from short-term (30-minutes) RR interval 517 
measurements are reproducible between days in healthy, highly active younger and older adults. However, there 518 
is a disparity in the inter-day reliability of different HRV metrics, with certain metrics presenting with a higher 519 
level of variance (i.e., LF, HF, LF/HF and SD2). Both linear and nonlinear HRV metrics capture different aspects 520 
of cardiac interval dynamics; therefore, researchers should not exclude metrics based solely on their reliability. 521 
Instead, studies should be designed appropriately based upon the chosen HRV metrics to increase the probability 522 
of detecting a true effect. This also study extends upon previous research by demonstrating a significant age-523 
related decline in the majority of linear and nonlinear HRV metrics assessed. However, the participants’ sex and 524 
V̇O2peak did not significantly influence the HRV metrics.  525 
 526 
 527 
 528 
 529 
 530 
 531 
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 749 
 750 
 751 
FIGURE CAPTIONS 752 
Fig. 1. (A) Example raw RR interval time series; (B) The integrated RR interval time series, with the least-squares 753 
fit representing the “trend” in each box (red lines) and the vertical lines indicating the box size of n = 64 data 754 
points. The RR interval data presented produced a DFA a = 1.04 (DFA a calculated over box sizes 4 to ≤ 64; 755 
data were from a younger male participant aged 18 years).  756 
 757 
Fig. 2. Comparisons between the younger and older groups complexity and variability metrics (A) Root mean 758 
square of successive differences between normal RR intervals; (B) Standard deviation of normal RR intervals; 759 
(C) Low frequency power; (D) High frequency power; (E) Approximate entropy; (F) Sample entropy; (G) 760 
Complexity index under 8 scales; (H) Standard deviation of points along the line of identity of the Poincare plot 761 
(* P < 0.05; ** P < 0.001; Data points are the mean of both days for each individual participant). 762 
 763 
Fig. 3. Comparisons between the younger and older groups detrended fluctuation analysis metrics (A) DFA a 764 
(box sizes 4 to ≤ 64 data points); (B) DFA a1 (box sizes of 4 ≤ n ≤ 16 data points); (C) DFA a2 (box sizes of 765 
16 ≤ n ≤ 64 data points; * P < 0.05; Data points are the mean of both days for each individual participant). 766 
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Table 1 Participant characteristics, anthropometrics and 
IET data (mean ± SD) 

 OG YG 
N 44 (34M; 10F) 22 (16M; 6F) 
Age (years) 58.6 ± 5.1 21.9 ± 3.7 

Height (cm) 173.8 ± 8.6 177.3 ± 9.8 
Mass (kg) 72.3 ± 12.1 74.1 ± 12.1 
Fat Mass (%) 22.0 ± 7.2 16.1 ± 9.1 

Lean Body Mass (%) 78.0 ± 7.2 83.9 ± 9.1 

Lean Body Mass (kg) 56.3 ± 10.1 61.9 ± 10.9 

Lean Body Mass Index (kg.m2) 18.5 ± 2.1 19.3 ± 1.9 

Systolic BP (mmHg) 130.6 ± 7.9 126.1 ± 6.0 

Diastolic BP (mmHg) 80.3 ± 9.6 73.4 ± 7.8 

Absolute V̇O2peak (L.min-1) 3.0 ± 0.8 3.5 ± 1.0 

Relative V̇O2peak (ml.kg-1.min-1) 40.9 ± 7.6 47.2 ± 12.8 

Power at V̇O2peak (W) 277.2 ± 68.2 318.1 ± 94.4 

Relative V̇O2 at GET (ml.kg-1.min-1) 27.2 ± 6.7 31.5 ± 10.3 
Power at GET (W) 162.1 ± 47.7 193.0 ± 71.6 
Relative V̇O2 at RCP (ml.kg-1.min-1) 34.3 ± 7.1 38.4 ± 10.9 

Power at RCP (W) 215.3 ± 56.6 242.4 ± 80.3 

Exercise time per week (hours) 9.9 ± 4.7 13.2 ± 4.8 

MET hours per week 85.9 ± 49.4 104.1 ± 52.4 

Abbreviations: OG = older group; YG = younger group; BP = blood pressure; 
V̇O2peak = peak oxygen uptake; V̇O2 = oxygen uptake; GET = gas exchange 
threshold; RCP = respiratory compensation point; MET = metabolic equivalents. 
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Table 2 Older group day-to-day reliability of RR interval complexity and variability metrics. 

  Between 
Day CV 

(%) 

Between 
Participant 

CV (%) 

 
 

 
ICC2,1 

 
SEM 

 
MDC 

 
Bias 

SD 
Bias 

Lower 
95% 
LOA 

Upper 
95% 
LOA 

  
P 

HR (bpm)  
 

4.36 11.64  
 

0.79 
 

2.89 8.00 -0.20 4.08 -8.21 7.80  0.74 

RRi (s)  4.13 11.81  0.83 0.05 0.15 <0.01 0.08 -0.15 0.15  0.83 

RMSSD (ms)  17.25 44.11  0.61 10.70 29.66 0.71 15.13 -28.95 30.37  0.76 

LnRMSSD  5.09 11.92  0.57 0.28 0.77 0.01 0.39 -0.76 0.77  0.89 

SDNN (ms)  14.8 28.0  0.62 10.06 27.88 -4.09 14.23 -31.97 23.79  0.06 

LnSDNN  3.77 6.74  0.53 0.19 0.52 -0.08 0.26 -0.60 0.44  0.05 

LF (ms2)  29.22 83.08  0.69 349.65 969.18 -84.91 494.48 -1054.09 884.27  0.28 

HF (ms2)  28.91 87.28  0.65 239.02 662.54 30.81 338.03 -631.72 693.35  0.53 

LF (Ln)  4.87 10.86  0.69 0.39 1.07 -0.16 0.55 -1.24 0.91  0.06 

HF (Ln)  5.80 14.73  0.62 0.53 1.46 -0.03 0.74 -1.49 1.42  0.79 

LF/HF (ratio)  27.07 112.92  0.88 1.16 3.23 -0.25 1.65 -3.48 2.97  0.33 

ApEn  2.95 6.45  0.60 0.06 0.17 -0.02 0.09 -0.18 0.15  0.27 

SampEn  7.57 14.10  0.65 0.17 0.48 0.04 0.24 -0.44 0.51  0.31 

DFA a  7.76 13.95  0.55 0.10 0.27 -0.02 0.14 -0.29 0.25  0.34 

DFA a1  9.60 19.88  0.55 0.14 0.39 -0.05 0.20 -0.44 0.34  0.13 

DFA a2  8.78 16.40  0.57 0.11 0.31 -0.01 0.16 -0.32 0.30  0.67 

CI-8  6.08 9.93  0.43 1.37 3.78 0.15 1.93 -3.64 3.93  0.61 

SD2  18.13 42.61  0.33 17.43 48.30 1.31 24.64 -46.99 49.61  0.74 

Abbreviations: RMSSD = root mean square of successive differences of normal RR intervals; SDNN = standard deviation of normal RR intervals; 
LF = absolute power in low frequency band; HF = absolute power in high frequency band; ApEn = approximate entropy; SampEn = sample entropy; 
DFA = detrended fluctuation analysis CI-8 = complexity index under 8 scales;  SD2 = standard deviation of points along the line of identity of the 
Poincare plot; CV = coefficient of variation; ICC = intraclass correlation coefficient; MDC = minimal detectable change; LOA = limits of agreement. 



European Journal of Applied Physiology 

Page 18 of 21 
 

 865 
 866 

 867 
 868 
 869 
 870 
 871 
 872 
 873 
 874 
 875 
 876 
 877 
 878 
 879 
 880 
 881 
 882 
 883 

              

Table 3 Younger group day-to-day reliability of RR interval complexity and variability metrics. 

  Between 
Day CV 

(%) 

Between 
Participant 

CV (%) 

 
 

 
ICC2,1 

 
SEM 

 
MDC 

 
Bias 

SD Bias Lower 
95% 
LOA 

Upper 
95% 
LOA 

  
P 

HR (bpm)  
 

6.23 13.92  
 

0.67 4.97 13.77 1.14 7.03 -12.63 14.91  0.46 

RRi (s)  6.22 13.75  0.71 0.08 0.21 -0.01 0.11 -0.22 0.20  0.69 

RMSSD (ms)  17.88 46.46  0.81 15.48 42.91 -3.44 21.89 -46.35 39.47  0.47 

LnRMSSD  4.42 11.29  0.79 0.22 0.60 -0.03 0.31 -0.63 0.58  0.70 

SDNN (ms)  18.96 39.05  0.64 24.18 67.02 -0.73 34.19 -67.75 66.29  0.92 

LnSDNN  4.34 8.08  0.59 0.24 0.67 0.03 0.34 -0.64 0.70  0.68 

LF (ms2)  30.72 72.82  0.56 1186.69 3289.34 -370.70 1678.23 -3660.04 2918.64  0.31 

HF (ms2)  36.48 91.22  0.75 1015.31 2814.30 -230.05 1435.87 -3044.35 2584.25  0.46 

LF (Ln)  4.43 9.68  0.72 0.41 1.13 -0.03 0.58 -1.16 1.11  0.83 

HF (Ln)  5.38 13.38  0.78 0.45 1.24 -0.04 0.63 -1.28 1.20  0.77 

LF/HF (ratio)  24.58 71.85  0.80 0.54 1.50 0.04 0.77 -1.46 1.54  0.80 

ApEn  3.52 5.33  0.37 0.07 0.18 -0.003 0.09 -0.18 0.18  0.87 

SampEn  7.65 12.74  0.49 0.20 0.55 -0.10 0.28 -0.64 0.45  0.11 

DFA a  6.42 16.69  0.84 0.06 0.18 -0.02 0.09 -0.20 0.16  0.35 

DFA a1  6.52 22.86  0.93 0.08 0.21 -0.005 0.11 -0.21 0.21  0.88 

DFA a2  8.98 17.68  0.69 0.10 0.26 -0.04 0.13 -0.30 0.22  0.17 

CI-8  7.48 13.56  0.69 1.59 4.41 -0.82 2.25 -5.22 3.59  0.10 

SD2  20.42 64.69  0.44 60.00 166.32 -10.77 84.86 -177.09 155.54  0.45 

Abbreviations: RMSSD = root mean square of successive differences of normal RR intervals; SDNN = standard deviation of normal RR intervals; LF = 
absolute power in low frequency band; HF = absolute power in high frequency band; ApEn = approximate entropy; SampEn = sample entropy; DFA = 
detrended fluctuation analysis CI-8 = complexity index under 8 scales; SD2 = standard deviation of points along the line of identity of the Poincare plot; CV 
= coefficient of variation; ICC = intraclass correlation coefficient; MDC = minimal detectable change; LOA = limits of agreement. 
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Table 4 Mean HRV metrics for age groups and effect size comparisons. 
  

YG 
N = 22 

 

 
OG 

N = 44 
 

 Hedges’ 
g 

Hedges’ 
g 

Lower 
95% CI 

Hedges’ 
g 

Upper 
95% CI 

HR (bpm) 61.75±75 
 

54.24±6.28  1.12 0.57 1.66 

RRi (s) 
 

1.00±0.14 
 

1.13±0.13  1.03 0.49 1.57 

RMSSD (ms) 72.56±33.64 38.60±16.95  1.51 0.93 2.08 

LnRMSSD 4.18±0.45 3.56±0.38  1.52 0.95 2.10 

SDNN (ms) 
 

97.40±38.16 58.40±16.33  1.66 1.08 2.25 

LnSDNN 4.51±0.33 4.03±0.24  1.77 1.17 2.36 

LF (ms2) 2197.61±1445.90 763.81±582.24  1.48 0.91 2.05 

HF (ms2) 1958.89±1692.68 431.53±345.17  1.49 0.92 2.07 

LF (Ln) 7.45±0.67 6.39±0.64  1.62 1.04 2.20 

HF (Ln) 7.17±0.91 5.73±0.76  1.75 1.16 2.34 

LF/HF ratio 1.71±1.16 2.71±2.97  -0.39 -0.91 0.12 

ApEn 1.54±0.08 1.48±0.10  0.82 0.29 1.35 

SampEn 2.16±0.28 2.01±0.28  0.57 0.05 1.09 

DFA a 0.93±0.15 1.01±0.14  -0.64 -1.16 -0.12 

DFA a1 0.97±0.22 1.05±0.21  -0.43 -0.95 0.09 

DFA a2 0.94±0.17 1.01±0.17  -0.46 -0.98 0.05 

CI-8 18.36±2.25 18.13±1.52  0.12 -0.39 0.64 

SD2 110.84±29.67 49.21±10.08  1.87 1.27 2.48 

Abbreviations: YG = younger group; OG = older group; HR = heart rate; RRi = time between two 
successive R-waves of an ECG; RMSSD = root mean square of successive differences between 
normal RR intervals; SDNN = standard deviation of normal RR intervals; LF = absolute power in 
low frequency band; HF = absolute power in high frequency band; ApEn = approximate entropy; 
SampEn = sample entropy; DFA = detrended fluctuation analysis; CI-8 = complexity index under 
8 scales;  SD2 = standard deviation of points along the line of identity of the Poincare plot;  data 
are mean ± SD of both days measurements. 
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Table 5 Multiple linear regression model statistics. 
 Overall Regression  

Model 
 Age 

(years) 
Sex 

(M/F) [F] 
V̇O2peak  

(L.min-1) 
 

 Adjusted  
R2 

 

F 
(3, 62) 

P  b 
 [95% CI] 

t 
P 

b 
 [95% CI] 

t 
P 

b 
 [95% CI] 

t 
P 

HR (bpm) 
 
 

0.267 8.884 <0.001  -0.236 
[-0.335, -0.138] 

4.800 
<0.001 

-0.091 
[-5.518, 5.336] 

0.034 
0.973 

-2.121 
[-4.896, 0.653] 

1.528 
0.135 

RRi (s) 
 
 

0.197 6.305 <0.001  0.003 
[0.001, 0.005] 

4.033 
<0.001 

-0.002 
[-0.108, 0.103] 

0.044 
0.965 

0.032 
[-0.002, 0.086] 

1.167 
0.248 

RMSSD (ms) 
 
 

0.362 13.270 <0.001  -0.853 
[-1.188, -0.519] 

5.097 
<0.001 

15.550 
[-2.915, 34.010] 

1.683 
0.097 

2.107 
[-7.332, 11.550] 

0.446 
0.657 

LnRMSSD 
 
 

0.347 12.520 <0.001  -0.015 
[-0.021, -0.009] 

4.980 
<0.001 

0.255 
[-0.083, 0.592] 

1.509 
0.136 

0.051 
[-0.121, 0.223] 

0.592 
0.556 

SDNN (ms) 
 

0.379 14.230 <0.001  -1.019 
[-1.375, -0.662] 

5.721 
<0.001 

1.126 
[-18.520, 20.770] 

0.115 
0.909 

1.736 
[-8.309, 11.780] 

 

0.345 
0.731 

LnSDNN 
 
 

0.412 16.190 <0.001  -0.012 
[-0.017, -0.008] 

5.986 
<0.001 

0.022 
[-0.206, 0.250] 

0.196 
0.846 

0.035 
[-0.081, 0.152] 

0.603 
0.549 

LF (ms2) 
 
 

0.303 9.998 <0.001  -35.730 
[-51.200, -20.270] 

4.624 
<0.001 

-7.820 
[-862.100, 846.500] 

0.018 
0.985 

114.200 
[-328.400, 556.800] 

0.517 
0.608 

HF (ms2) 
 
 

0.353 12.280 <0.001  -41.560 
[-57.410, -25.700] 

5.246 
<0.001 

404.900 
[-470.800, 1281.000] 

0.925 
0.359 

-75.550 
[-529.200, 378.100] 

0.333 
0.740 

LF (Ln) 
 
 

0.367 13.000 <0.001  -0.026 
[-0.036, -0.016] 

5.129 
<0.001 

-0.158 
[-0.724, 0.407] 

0.559 
0.578 

0.099 
[-0.194, 0.392] 

0.675 
0.502 

HF (Ln) 
 
 

0.431 16.620 <0.001  -0.037 
[-0.049, -0.024] 

5.913 
<0.001 

0.449 
[-0.243, 1.143] 

1.298 
0.199 

0.052 
[-0.307, 0.411] 

0.289 
0.773 

LF/HF ratio 
 
 

0.064 2.425 0.075  0.023 
[-0.016, 0.061]  

1.187 
0.239 

-1.921 
[-4.035, 0.192] 

1.819 
0.074 

-0.442 
[-1.537, 0.654 

0.807 
0.423 

ApEn 
 
 

0.202 6.478 <0.001  -0.002 
[-0.003, -0.001] 

3.917 
<0.001 

0.008 
[-0.057, 0.073] 

0.243 
0.809 

-0.023 
[-0.056, 0.012] 

1.366 
0.177 

SampEn 
 
 

0.122 4.003 0.001  -0.004 
[-0.008, -0.0004] 

2.203 
0.031 

0.132 
[-0.073, 0.337] 

1.291 
0.202 

-0.032 
[-0.137, 0.073] 

0.611 
0.544 

DFA a 
 
 

0.142 4.573 0.005  0.002 
[0.0002, 0.004] 

2.242 
0.029 

-0.079 
[-0.187, 0.029] 

1.469 
0.147 

0.017 
[-0.038, 0.072] 

0.621 
0.537 

DFA a1 
 
 

0.167 5.350 0.002  0.002 
[-0.0005, 0.005] 

1.635 
0.107 

-0.171 
[-0.323, -0.019] 

2.245 
0.028 

0.009 
[-0.069, 0.086] 

0.226 
0.822 

DFA a2 
 
 

0.020 1.443 0.239  0.002 
[-0.0006, 0.004] 

1.469 
0.147 

-0.035 
[-0.162, 0.091] 

0.557 
0.579 

0.018 
[-0.047, 0.082] 

0.551 
0.584 

CI-8 
 
 

-0.026 0.457 0.714  -0.009 
[-0.038, 0.018] 

0.689 
0.493 

-0.207 
[-1.746, 1.332] 

0.269 
0.788 

-0.369 
[-1.156, 0.418] 

0.937 
0.352 

SD2 
 
 

0.482 20.230 <0.001  -1.501 
[-1.933, -1.070] 

6.969 
<0.001 

8.167 
[-15.650, 31.980] 

0.686 
0.495 

-8.328 
[-20.670, 4.012] 

1.350 
0.182 

Abbreviations: V̇O2peak = peak oxygen uptake; HR = heart rate; RRi = time between two successive R-waves of an ECG; RMSSD = root mean square of successive 
differences between normal RR intervals; SDNN = standard deviation of normal RR intervals; LF = absolute power in low frequency band; HF = absolute power 
in high frequency band; ApEn = approximate entropy; SampEn = sample entropy; DFA = detrended fluctuation analysis; CI-8 = complexity index under 8 scales;  
SD2 = standard deviation of points along the line of identity of the Poincare plot;  data are mean ± SD of both days measurements. 
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Table 5 Continued. 
 Age x Sex Age x V̇O2peak Sex x V̇O2peak 

 
 b 

 [95% CI] 
 

t 
P 

b 
 [95% CI] 

t 
P 

b 
 [95% CI] 

t 
P 

HR (bpm) 
 
 

0.144 
[-0.1564, 0.445] 

0.961 
0.341 

0.116 
[-0.039, 0.271] 

1.489 
0.142 

-6.782 
[-15.070, 1.507] 

1.637 
0.107 

RRi (s) 
 
 

-0.003 
[-0.009, 0.003] 

0.993 
0.325 

-0.002 
[-0.005, 0.001] 

1.123 
0.266 

0.123 
[-0.039, 0.286] 

1.513 
0.136 

RMSSD (ms) 
 
 

-0.998 
[-1.989, -0.007] 

2.015 
0.049 

-0.190 
[-0.703, 0.323 

0.742 
0.461 

16.900 
[-10.410, 44.210] 

1.238 
0.221 

LnRMSSD 
 
 

-0.013 
[-0.032, 0.006] 

1.364 
0.178 

-0.003 
[-0.012, 0.007] 

0.528 
0.599 

0.173 
[-0.349, 0.696] 

0.662 
0.511 

SDNN (ms) 
 
 

-0.026 
[-1.138, 1.085] 

0.048 
0.962 

-0.094 
[-0.669, 0.481] 

0.327 
0.745 

26.260 
[-4.367, 56.890] 

1.716 
0.092 

LnSDNN 
 
 

< 0.001 
[-0.013, 0.013] 

0.030 
0.976 

< -0.001 
[-0.007, 0.006] 

0.155 
0.877 

0.280 
[-0.077, 0.637] 

1.568 
0.122 

LF (ms2) 
 
 

-14.900 
[-61.150, 31.360] 

0.645 
0.522 

-15.950 
[-40.280, 8.387] 

1.313 
0.194 

1273.000 
[-3.202, 2548.000] 

1.998 
0.050 

HF (ms2) 
 
 

-34.490 
[-82.220, 13.250] 

1.447 
0.153 

-3.728 
[-28.840, 21.380] 

0.2970 
0.767 

551.800 
[-764.800, 1869.000] 

0.839 
0.405 

LF (Ln) 
 
 

-0.003 
[-0.034, 0.028] 

0.178 
0.859 

-0.004 
[-0.021, 0.012] 

0.536 
0.594 

0.925 
[0.074, 1.775] 

2.117 
0.034 

HF (Ln) 
 
 

-0.020 
[-0.059, 0.018] 

1.054 
0.297 

-0.002 
[-0.022, 0.018] 

0.201 
0.841 

0.267 
[-0.801, 1.335] 

0.501 
0.618 

LF/HF ratio 
 
 

-0.025 
[-0.145, 0.094] 

0.421 
0.676 

-0.029 
[-0.092, 0.034] 

0.925 
0.359 

1.150 
[-2.144, 4.443] 

0.699 
0.487 

ApEn 
 
 

0.002 
[-0.001, 0.006] 

1.259 
0.213 

0.001 
[-0.001, 0.003] 

1.302 
0.198 

-0.065 
[-0.166, 0.035] 

1.300 
0.199 

SampEn 
 
 

-0.007 
[-0.019, 0.004] 

1.262 
0.212 

-0.001 
[-0.007, 0.005] 

0.353 
0.726 

0.070 
[-0.249, 0.389] 

0.439 
0.662 

DFA a 
 
 

0.005 
[-0.001, 0.113] 

1.724 
0.089 

0.001 
[-0.002, 0.004] 

0.629 
0.532 

0.006 
[-0.161, 0.173] 

0.072 
0.943 

DFA a1 
 
 

0.009 
[0.001, 0.018] 

2.244 
0.029 

0.001 
[-0.004, 0.005] 

0.289 
0.773 

0.129 
[-0.098, 0.357] 

1.135 
0.261 

DFA a2 
 
 

0.001 
[-0.006, 0.009] 

0.389 
0.698 

0.001 
[-0.003, 0.005] 

0.514 
0.609 

 

-0.097 
[-0.297, 0.103] 

0.971 
0.336 

CI-8 
 
 

-0.033 
[-0.120, 0.054] 

0.769 
0.445 

-0.008 
[-0.053, 0.037] 

0.337 
0.738 

1.458 
[-0.939, 3.856] 

1.217 
0.229 

SD2 
 
 

-1.281 
[-2.577, 0.016] 

1.979 
0.053 

-0.148 
[-0.830, 0.534] 

0.436 
0.665 

-9.758 
[-45.520, 26.000] 

0.547 
0.587 

Abbreviations: V̇O2peak = peak oxygen uptake; HR = heart rate; RRi = time between two successive R-waves of an ECG; 
RMSSD = root mean square of successive differences between normal RR intervals; SDNN = standard deviation of normal 
RR intervals; LF = absolute power in low frequency band; HF = absolute power in high frequency band; ApEn = 
approximate entropy; SampEn = sample entropy; DFA = detrended fluctuation analysis; CI-8 = complexity index under 8 
scales;  SD2 = standard deviation of points along the line of identity of the Poincare plot;  data are mean ± SD of both days 
measurements. 


