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A new Bayesian model for contagion and interdependence

Aubrey Poona and Dan Zhub

aOrebro University, €Orebro, Sweden; bMonash University, Clayton, VIC, Australia

ABSTRACT
We develop a flexible Bayesian time-varying parameter model with a
Leamer correction to measure contagion and interdependence. Our pro-
posed framework facilitates a model-based identification mechanism for
static and dynamic interdependence. We also allow for fat-tails stochastic
volatility within the model, which enables us to capture volatility clustering
and outliers in high-frequency financial data. We apply our new proposed
framework to two empirical applications: the Chilean foreign exchange
market during the Argentine crisis of 2001 and the recent Covid-19 pan-
demic in the United Kingdom. We find no evidence of contagion effects
from Argentina or Brazil to Chile and three additional key insights com-
pared to Ciccarelli and Rebucci 2006 study. For the Covid-19 pandemic
application, our results convey that the United Kingdom government was
largely ineffective in preventing the importation of Covid-19 cases from
European countries during the second wave of the pandemic.

KEYWORDS
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contagion; fat-tails;
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1. Introduction

Since the seminal work by Sharpe (1964) and Grubel and Fadner (1971), there has been an exten-
sive empirical literature on measuring contagion, and this has also coincided with a series of
financial and currency crises, such as the 1997 Asian Financial Crisis (AFC), 2001 Argentine cur-
rency crisis, and the recent 2010 European debt crisis, that have occurred during the last two dec-
ades. However, as Dungey et al. (2005) pointed out, a range of methodologies within the
literature is used to measure contagion. In particular, Rigobon (2002) argues that one has to
jointly model the presence of both heteroscedasticity and omitted variable bias, where an import-
ant regressor is excluded from the model, to measure contagion correctly.

Modeling heteroscedasticity and omitted variable bias jointly is difficult in a classical frame-
work. However, in a Bayesian framework, allowing for stochastic volatility and implementing a
prior for correction for omitted variable bias can simultaneously account for heteroscedasticity
and omitted variable bias in any particular model. Ciccarelli and Rebucci (2006) (hereafter we
denote as CR) exploit this fact and estimate a Bayesian time-varying parameter model to measure
contagion and interdependence in the joint presence of heteroscedasticity and omitted variables.
Similarly, Caporin et al. (2018) estimate a Bayesian quantile regression with heteroscedasticity to
analyze contagion in the bond yields for major eurozone countries.

Both CR and Guidolin et al. (2019) uses a Bayesian time-varying parameter model to measure
contagion and interdependence. In both these studies, within this framework, they note that con-
tagion can be detected as temporary extreme variation in the model’s parameters, while constant
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and smoothing changing parameters can be interpreted as interdependencies between markets or
countries. However, these studies’ approaches to detecting contagion are very ad hoc since they
assume the model parameters evolve smoothly without taking any temporary shifts or breaks in
the data. In contrast, we introduce a Bernoulli distributed mixture innovation intercept term
within the state equation of the time-varying coefficients in our proposed new framework. The
inclusion of this mixture innovation intercept term will allow our proposed new model to detect
any sudden temporary changes or instabilities in the data. Furthermore, we can directly infer the
posterior probabilities of the discrete states that govern the changes in this intercept term over
time, which can be interpreted as a probability measure signal for the presence of contagion
within the data.

This article extends the CR Bayesian time-varying parameter model to the non-centered par-
ameterization state space framework of Fr€uhwirth-Schnatter and Wagner (2010) to measure con-
tagion and interdependence. Our contribution is four-fold. First, the Leamer prior that CR
implements to correct omitted variables bias can be easily adapted and simplified into a non-cen-
tered parameterization state-space framework. Second, our new model with the non-centered par-
ameterization framework allows us to distinguish between static and dynamic interdependence, a
new contribution to the contagion literature. Third, as mentioned above, we extend the standard
time-varying parameter framework by introducing a Bernoulli distributed mixture innovation
intercept term within the state equation of the time-varying coefficients to capture the presence
of contagion. Lastly, the new model that we proposed is far more flexible than the CR model. For
example, CR assumes a restrictive assumption where a single variance drives the parameters’
time-variation. In contrast, in our proposed framework, the time-variation in each parameter is
driven by their idiosyncratic variance. In addition, we also improve upon CR heteroscedasticity
assumption by allowing for stochastic volatility with fat-tails errors, which will enable us to cap-
ture any volatility clustering and outliers commonly present in high-frequency financial data.

Since the seminal paper by Fr€uhwirth-Schnatter and Wagner (2010), many econometric appli-
cations have employed the use of the non-centered parameterization state-space framework. Chan
(2019) uses the proposed framework for specification testing for time-varying parameter models
with stochastic volatility. More recently, both Chan (2019) and Huber et al. (2021) have imple-
mented the non-centered parameterization framework in a large time-varying parameter VAR
framework due to the framework additional flexibility for allowing shrinkage in these models.
Also, the non-centered parameterization framework can be used to reduce the number of latent
states in a large time-varying parameter VAR model, as proposed by Chan et al. (2020).

To show that our new proposed framework can detect contagion and interdependence, we
undertake a simulation study. First, we estimate our new proposed model on two data generating
processes (DGPs) in the presence of contagion. The first DGP consists of a fully specified model.
The second DGP has the same features as the first DGP, except that a critical regressor is
excluded from the model to account for the omitted variable bias. In both DGPs, we find that
the estimated time-varying parameters using our proposed method track the actual simulated
parameters very closely. Furthermore, we find that the estimated time-varying parameters for
both DGPs display virtually the same dynamics. In addition, we also find that the posterior prob-
ability for the discrete states of the mixture innovation intercept term peaks during the period
when a sudden temporary change occurs in the data. Therefore, these two pieces of evidence
highlight that our proposed framework with Leamer correction can detect contagion (sudden
temporary change) within the data and control for omitted variable bias when an important
regressor is excluded from the model.

We estimate our new proposed framework on two empirical applications: the Chilean foreign
exchange market during the Argentine crisis in 2001 (which CR undertook) and the recent
Covid-19 pandemic in the United Kingdom (UK). Regarding the first empirical application, we
found no evidence of contagion effect from Argentina or Brazil to Chile, which contradicts the
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findings of CR. In addition, we found three additional key insights using our proposed frame-
work compared to CR. First, we found that including stochastic volatility in the model is import-
ant as it captures the high volatility during periods of crisis. Second, we found evidence of
dynamic interdependence between Chile and Brazil, and lastly, static interdependence between
Chile and copper, and both the Argentine and Brazilian medium-term interest rates.

For the second empirical application, we found evidence of dynamic interdependencies of
Covid-19 cases between the UK and six European countries. This suggests that the UK govern-
ment was largely ineffective in preventing the importation of Covid-19 cases from abroad.
Furthermore, the mandatory hotel quarantine policy should have been implemented earlier in the
first wave of the Covid-19 pandemic. Lastly, we also found possible evidence of contagion effects
of Covid-19 cases from both Spain and Portugal, which are highly popular tourist destinations
for UK travelers.

The rest of the article is organized as follows. Section 2 discusses the Bayesian model with
Leamer correction as specified in CR. Section 3 presents the new proposed framework. Section 4
discusses the Bayesian estimation of our new proposed model. Section 5 presents the results from
the simulation study. Section 6 illustrates our new proposed framework through two empirical
applications: the Chilean foreign exchange market during the Argentine crisis in 2001, and the
recent Covid-19 pandemic in the UK. Lastly, section 7 concludes.

2. A Bayesian model with Leamer correction

CR specifies a time-varying parameter model with a correction for omitted variable bias and het-
eroskedastic fat-tail errors. Their model is:

yt ¼ xtbt þ xtb
c
t þ �t , �t � t�ð0,r2t Þ, (1)

bt ¼ bt�1 þ gt , gt � Nð0,/IkÞ, (2)

bct ¼ bct�1 þ gct , g
c
t � Nð0,/IkÞ, (3)

where the bct is the time-varying parameter that takes into consideration or corrects for omitted
variable bias. Specifically, they implement a Leamer prior (Leamer and Leamer 1978, Chapter 9)
on (1):

b0 � Nðb̂OLS, V̂OLSÞ, (4)

bc0 � Nð0, kV̂OLSÞ, (5)

k � IGðl, nÞ: (6)

Intuitively, from (4)–(6), the Leamer prior is a prior on the initial condition, and this suggests
that both bt and bct should exhibit the same dynamics but different starting points or values. In
particular, k is the key variance-ratio that determines the amount of correction needed in the
model. However, they do mention that if this variance-ratio k is small, then there is a possibility
contagion is detected when there are none and vice versa. Therefore, they recommend practi-
tioners to set a higher prior value of k if they believe their model is highly misspecified and lower
the prior value of k if they are less uncertain about their model. From their empirical application,
they state that k can be implicitly interpreted as a value-added measure to the model. For
instance, if the model is highly misspecified and fits the data very poorly, then this would require
high values of k and vice versa.
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3. New empirical methodology

The main issue with the model in (1) is the number of explanatory variables is now doubled, and this
could lead to a large amount of parameter uncertainty, especially in a time-vary parameter frame-
work. The framework proposed by CR can easily be adapted and simplified into a non-centered par-
ameterization state space framework of Fr€uhwirth-Schnatter and Wagner (2010). Specifically, we
propose:

yt ¼ xtbþ xtb
c þ xtX~bt þ �t , �t � Nð0, dtehtÞ, (7)

~bt ¼ lt þ ~bt�1 þ gt , gt � ð0, IkÞ, (8)

lt � stNð�l1,Vl1Þ þ ð1� stÞNð�l2,Vl2Þ, (9)

st ¼
(
1 with a probability q

2 with a probability 1� q

q � Bða0, b0Þ,
where t ¼ 1, :::,T:, st is a discrete state for a particular t, xt is the 1� k row vector of regressors,
b and bc are k� 1 column vector of time-invariant uncorrected and corrected regression coeffi-
cients respectively, and X ¼ diagðx1, :::,xkÞ: We also incorporate a Bernoulli distributed mixture
innovation intercept term lt within the state equation of the time-vary regression coefficients ~bt:
The inclusion of this mixture innovation intercept term is to allow ~bt to capture any sudden tem-
porary changes or instabilities in the data, which can be interpreted as a signal for the presence
of contagion within the data. Furthermore, the Leamer prior can be similarly specified as:

b � Nðb̂OLS, V̂OLSÞ, (10)

bc � Nð0, kV̂OLSÞ, (11)

~b0 � Nð0, kV̂OLSÞ, (12)

k � IGða1, b1Þ: (13)

The Leamer correction was initially designed to correct an omitted variable bias within a
standard linear regression model. It is for this reason; we implement the Leamer correction on
the time-invariant part xtbþ xtb

c of the non-centered parameterization model in (7). This time-
invariant part can be loosely interpreted as the static version of the standard linear regression
model. We also follow a similar strategy to Ciccarelli and Rebucci (2006) and implement the
Leamer correction on the initial condition ~b0 of the time-varying parameters. Therefore, in the
presence of no correction in the model, ~b0 ¼ bc ¼ 0 and the time-vary parameters will be sum-
marized as bt ¼ bþ X~bt: However, with correction, the time-varying parameters will be bct ¼
xtbþ xtb

c þ xtX~bt: In effect, our omitted variable bias correction affects both the time-invariant
and time-varying coefficients of the regression. Implicitly, our non-centered parameterization spe-
cification is very similar to CR specification in that they should exhibit the same dynamics but
different starting points. For example, CR model specification is denoted in (1), which is defined
as yt ¼ xtbt þ xtb

c
t þ �t: In terms of our specification denoted in (7), xtðbc þ X~btÞ and xtðbþ

X~btÞ are loosely similar to CR terms of xtb
c
t and xtbt , respectively. The notable difference is that

the extra xtb
c and xtb terms in our specification will result in the different starting values of the

estimated time-varying parameters compared to CR specification.
Furthermore, the key variance ratio k is unchanged and can still be interpreted as the amount of

correction needed in the model. There are two main differences between our framework and CR
framework. First, we do not need to estimate an additional Tk corrected parameters; only additional k
corrected parameters are estimated. Second, our model framework is more flexible, for instance, in (2)
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and (3), CR assumes the time-variation in all the parameters are driven by a single variance /, which
is a very restrictive assumption. However, in our framework, the variance xi that controls the time-
variation, are idiosyncratic across each individual parameter. Finally, CR assumes the error distribu-
tions of the model (1) follows student-t errors to take into account the presence of outliers and fat-tails
in high frequency financial data. We improve upon this specification, and for model (7), we allow for
student-t or fat-tails stochastic volatility in the error distribution. Specifically, the stochastic volatility
follows a standard AR(1) process with a constant mean:

ht ¼ lh þ qht�1 þ ft , ft � Nð0,r2hÞ, (14)

and following Chan and Hsiao (2014), the student-t distribution follows

dtj� � IGð�=2, �=2Þ, (15)

where � is the degree of freedom parameter and has a uniform prior of

� � Uð0, ��Þ: (16)

Many empirical studies have documented the importance of the inclusion of stochastic volatil-
ity in a time-series model. For example, Chan and Eisenstat (2018) found that models with sto-
chastic volatility provide superior in-sample fit (higher marginal likelihood) than models with a
homoscedastic variance. Clark and Ravazzolo (2015) also found a similar conclusion in an out-of-
sample forecasting context. Also, it is highly likely that a large sudden temporary shift (contagion)
in the data will be persistent. This phenomenon is called volatility clustering, which can only be
captured in the stochastic volatility models.

Another popular feature within the empirical literature is to model stochastic volatility with a
fat-tails distribution. For example, both Chan (2020) and Cross and Poon (2016) show that mod-
els with fat-tails stochastic volatility provide superior out-of-sample forecasting performances
than standard stochastic volatility models. Also, recently Carriero et al. (2021) showed that mod-
eling stochastic volatility with a fat-tails distribution is useful in capturing outliers in times of
extreme instabilities. The inclusion of the fat-tails stochastic volatility in the model is especially
important when applying our framework to the recent UK covid-19 pandemic.

To complete the model specification, we assume independent prior distributions for r2h �
IGðah, ShÞ, xi � Nð0,VxiÞ, lh � Nð0,VlhÞ, h0 � Nð0, r2h

ð1�qÞÞ and q � Nð0,VqÞ1ðjqj < 1Þ:
Equations (7)–(16) are estimated using standard MCMC methods and we use Chan and Jeliazkov
(2009) precision based methods. We set the following hyper-parameters for our empirical applica-
tion: �l1 ¼ �l2 ¼ 0, Vl1 ¼ 10, Vl2 ¼ 5, a0 ¼ 50, b0 ¼ 1000, a1 ¼ 2:5, b1 ¼ 12:5, �� ¼ 50, ah ¼
5, Sh ¼ :04, Vxi ¼ 0:2, Vlh ¼ 1 and Vq ¼ 1:

4. Bayesian estimation

In this section, we provide the details of estimation for our non-centered parameterization model
with Leamer correction. For notational convenience, we can stack y ¼ ðy1, :::, yTÞ0, b ¼
ðb1, :::, bkÞ0, bc ¼ ðbc1, :::, bckÞ0, ~b ¼ ð~b0

1, :::, ~b
0
TÞ0, s ¼ ðs1, :::, sTÞ0, l ¼ ðl1, :::,lTÞ0, h ¼

ðh1, :::, hTÞ0, d ¼ ðd1, :::, dTÞ0 and h ¼ ðr2h, lh, q, h0, ~b0Þ0: Given the model in (7) - (15), we can
obtain the posterior draws by sequentially sampling from:

1. ð~bjy, b,bc, h, d,X, �, h, k, s,l, qÞ;
2. ðb, bc,Xjy, ~b, h, d, �, h, k, s,l, qÞ;
3. pðkjy, b, bc, ~b, h,X, �, d, h, s,l, qÞ;
4. pðljy, b, bc, ~b, h,X, �, d, h, k, s, qÞ;
5. pðsjy, b, bc, ~b, h,X, �, d, h, k,l, qÞ;
6. pðqjy, b, bc, ~b, h,X, �, d, h, k, s, lÞ;
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7. pðhjy, b, bc, ~b, d,X, �, h, k, s,l, qÞ;
8. pðdjy, b, bc, ~b, h,X, �, h, k, s,l, qÞ;
9. pð�jy, b,bc, ~b, h,X, d, h, k, s,l, qÞ;
10. pðhjy, b, bc, ~b, h,X, �, d, k, s,l, qÞ;

Step 4 to 6 are standard results derived from a Gaussian mixture model. Step 7 to 10 are also
relatively straightforward, and all the conditional posteriors can be found in Chan and Hsiao
(2014). We leave the details to the Appendix. Here we focus on the first three steps.

To implement Step 1, we can rewrite (7) as:

y ¼ Xbþ Xbc þ Z~b þ �, � � Nð0,RÞ, (17)

where R ¼ diagðd1eh1 , :::, dTehT Þ,

X ¼
x1
..
.

xT

2
64

3
75, Z ¼

Xx1 0 � � � 0

0 Xx2 . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 XxT

2
66664

3
77775 :

Next, we can stack the state equation (8) over t ¼ 1, :::,T :

H~b ¼ a~b þ g, g � Nð0, ITkÞ, (18)

where a~b ¼ ðl1 þ ~b0, l2, :::, lTÞ0,

H ¼

Ik 0 0 � � � 0
�Ik Ik 0 � � � 0

0 �Ik Ik . .
.

0
..
. . .

. . .
.

0
0 � � � 0 �Ik Ik

2
6666664

3
7777775
,

and H is a first-difference band matrix with a determinant of jHj ¼ 1: It then follows that ~b �
Nð�a~b , ðH0HÞ�1Þ, where �a~b ¼ H�1a~b : Thus, combining (17) and (18), and using standard linear
regression results, we have the conditional posterior:

ð~bjy, b, bc, h, d,X, �, k, h,lÞ � Nð~̂b,K�1
~b
Þ, (19)

where

K~b ¼ H0H þ Z0R�1Z, ~̂b ¼ K�1
~b
ðZ0R�1ðy� Xb� XbcÞ þH0H�a~bÞ: (20)

Since the precision matrix K~b is a band matrix, one can sample from ð~bjy, b, bc, h, d,X, �, h, lÞ
efficiently using the algorithm in Chan and Jeliazkov (2009).

To implement Step 2, let’s define x ¼ ðx1, :::,xkÞ0 and we can rewrite (17) as

y ¼ Xbþ Xbc þ ~Zxþ �, � � Nð0,RÞ, (21)

where

~Z ¼
x1~b1

..

.

xT~bT

2
664

3
775,

and we can further stack (21) into

ECONOMETRIC REVIEWS 811



y ¼ ~Xcþ �, � � Nð0,RÞ, (22)

where

c ¼
b
bc

x

2
4

3
5, ~X ¼ X X ~Z

� �
:

Thus, we can combine (22) with the priors specified in section 3, and using the standard linear
regression results, the conditional posterior:

ðcjy, ~b, h, d, �, k, h, lÞ � Nðĉ,K�1
c Þ, (23)

where

Kc ¼ V�1
c þ ~X

0
R�1 ~X , ĉ ¼ K�1

c ð~X 0
R�1y þ V�1

c acÞ, (24)

where Vc ¼ blkdiagðV̂OLS, kV̂OLS,Vx1 , :::,VxkÞ and ac ¼ ðb̂OLS, 01�2kÞ0: Similarly, the precision
matrix Kc is a band matrix, one can sample from ðcjy, ~b, h, d, �, k, hÞ efficiently using the algo-
rithm in Chan and Jeliazkov (2009).

To implement Step 3, we can combine (10) - (12) and the conditional posterior:

ðkjy, b,bc, ~b, h,X, �, d, h,lÞ � IGð�a1, �b1Þ, (25)

where

�a1 ¼ a1 þ k, �b1 ¼ b1 þ 1
2
ðbc0V�1

OLSb
c þ ~b

0
0V

�1
OLS

~b0Þ: (26)

5. Simulation study

In this section, we undertake a simulation study to investigate the reliability of our proposed
framework in capturing contagion and the correction of the omitted variable bias. Specifically, we
consider a data generating process (DGP) structure of

yt ¼ Xtbt þ �t , �t � Nð0, ehtÞ, (27)

ht ¼ ht�1 þ vt , vt � Nð0,r2hÞ, (28)

bt ¼ lt þ bt�1 þ gt , gt � Nð0,XÞ, (29)

where t ¼ 1, :::, 600, bt ¼ ðb1, t , :::, b5, tÞ0, X ¼ diag ðr2b, r2b, r2b,r2b4 ,r2b5Þ and lt ¼ ðl1, t , :::, l5, tÞ0:
The regressor matrix consist of Xt ¼ ð1, ~x1, ~x2, ~x3, 0:9~x3 þ ztÞ0 and each regressors ~x1, ~x2, ~x3 �
Uð0, 1Þ are drawn from a standard uniform distribution. For the fifth regressor, we generate it
from 0:9~x3 þ zt , zt � Nð0, 1Þ, and this particular structure is imposed to take into account the
omitted variable bias problem when we estimate our proposed model without the fourth regressor
of ~x3: To simulate a contagion episode, we allow for a sudden temporary change in the state
equation of (29) for the second and third regressors, that is we assume l2, 200 ¼ 4, and l2, 400 ¼
l3, 350 ¼ �4: For all the other time periods, we assume lt ¼ 0: Finally, we assume all the regres-
sors have a dynamic independence relationship with yt, where we set r2h ¼ r2b ¼ r2b4 ¼ r2b5 ¼
0:01, and for the periods between t¼ 400 to T¼ 600, we set r2b4 ¼ r2b5 ¼ 0:5:

We estimate our proposed framework on two DGPs. For the first case, we estimate our model
on the DGP described exactly above, which we denote as the Full-information model. For the
second case, we estimate our model on a DGP where the fourth regressor is excluded from the
regressor matrix, Xt ¼ ð1, ~x1, ~x2, 0:9~x3 þ ztÞ0, and all other the DGP assumptions are the same.
Therefore, we denote this (omitted variable bias) case as the Limited-information model. Figure 1
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plots the posterior median estimates of bt against the actual DGP simulated parameters. In panel
A, it is clearly evident that the estimated bt parameters of the full-information model track their
corresponding simulated DGP parameters very closely and can capture any sudden temporary
changes that occur in the data. Panel B plots the estimated bt parameters of the limited-informa-
tion model where the fourth regressor is excluded from the model. Similarly, the estimated bt
parameters track their actual counterpart very closely too. For example, the estimated parameter

Figure 1. Posterior estimates of the bt. (a) Panel A: Full-information model and (b) Panel B: Limited-information model.
Notes: The thick blue line is the posterior median of the estimated parameters and the shaded blue area is the associated 68%
credible intervals. The black line represents the actual simulated DGP parameters.
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for the fifth regressor, b5, t , displays virtually the same dynamics as their estimated counterpart in
the full-information model. Therefore, this highlights that our proposed framework with the
Leamer correction can also control for omitted variable bias.

Figure 2 plots the posterior mean of Pðst ¼ 1j�Þ for the intercept term in each of the bt
parameters state equation of (29). It is clearly evident that these probabilities peak during the
period when a sudden temporary change occurs. For example, in the third regressor, b3, t , a sud-
den temporary change occurs at t ¼ 350, and the associated estimated posterior probability of
Pðs3, t ¼ 1j�Þ is close to one at this period of time. Therefore, the posterior mean of Pðst ¼ 1j�Þ

Figure 2. Posterior means estimates of the Pðst ¼ 1j�Þ: (a) Panel A: Full-information model and (b) Panel B: Limited-informa-
tion model.
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can also provide us with a probability measure signal of the presence of contagion within
the data.

In sum, the simulation study shows that our proposed framework can detect contagion (sud-
den temporary change) within the data and control for omitted variable bias when an important
regressor is excluded from the model.

6. Empirical applications

In this section, we apply the proposed framework to measure contagion and interdependence on
two empirical applications: the Chilean foreign exchange market during the Argentine currency
in 2001, using the exact dataset from CR, and the recent Covid-19 pandemic on the UK. In
Forbes and Rigobon (2000), they define contagion as the “change of shift in the cross-market
linkages following a shock in one or more markets,” and interdependence as “a strong association
between two markets, both before and after a shock in market.” In terms of our time-varying par-
ameter framework, contagion can be identified as an extreme variation (or temporary change) of
the model’s parameters and interdependence between two countries or markets can be character-
ized either static or dynamic. Coefficients that display smooth time-varying dynamics can be con-
sidered as dynamic interdependence where two countries’ markets interaction evolves over time.
On the other hand, constant (or time-invariant) coefficients can be interpreted as static inter-
action between two countries markets over time; we define this as static interdependence.
Therefore, based on these two definitions, we can identify dynamic interdependence between two
countries or markets by examining the posterior distribution of xi. For example, let’s consider a
simple example between two countries exchange rates:

ei, t ¼ bej, t þ bcej, t þ xj
~btej, t þ �t , (30)

where ei, t and ej, t are countries i and j exchange rate respectively. For instance, if the posterior
density for xj has little mass around zero, this means that there is evidence of time-variation for
~bt , and a high probability of dynamic interdependence between countries’ i and j markets.
However, if the posterior density for xj has a large mass around zero, this implies no evidence of
time-variation for ~bt , and potentially, either static interdependence or contagion could occur
between country’s i and j markets.

6.1. Chile Foreign exchange market application

In this section, we replicate the exact empirical application as undertaken by CR, but using our
new proposed non-centered parameterization framework. We want to investigate whether our
new proposed framework yields similar results as in their paper and provides any additional
insights to their results. CR finds two key results from their empirical application. First, they find
strong evidence of interdependence between Chile and Brazil and some evidence of contagion
from Argentina to Chile. In their empirical application, they use daily financial data from June 2,
1999, to January 31, 2002. For our application, we only focus on their full-information model,
which is specified as the following:

DLet ¼ b0, t þ b1, tDLet�1 þ b2, tmt�1 þ b3, tDmt�1 þ b4, tDi
CHL
t�1 þ b5, tst�1

þ b6, tDLct þ b7, tDLbt þ b8, tDLe
EU
t þ b9, tDi

AR
t þ b10, tDf

AR
t

þ b11, tDi
BR
t þ b12, tDf

BR
t þ b13, tDLe

BR
t þ �t ,

(31)

where D represents the first difference operator, L represents the natural logarithmic transform-
ation and et is the Chilean peso/dollar spot exchange rate. There are three types of factors in
(31): domestic, regional and global. The domestic factors include Chilean short-term interest rate
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differential mt, Chilean long-term interest rate differential iCHLt and the Chilean stock market dif-
ferential st. The regional factors include: Argentine long-term interest rate differential iARt ,
Argentine medium-term interest rate differential f ARt , Brazilian long-term interest rate differential
iBRt , Brazilian medium-term interest rate differential f BRt and Brazilian spot exchange rate eBRt :
Lastly, the global factors include: copper spot price ct, semiconductors spot price bt and the Euro
spot exchange rate eBRt : For more details about the data, please see the data appendix of CR.

Equation (31) can rewritten into the non-centered parameterization model of (7) and the find-
ings from our proposed framework are reported in the next subsection.

6.1.1. Empirical results
In this section, we show that our new proposed framework finds no evidence of contagion effects
from Argentina or Brazil to Chile. We also illicit three new additional insights that are not cap-
tured in CR study. We first examine Figs. 3 and 4, which reports the posterior densities for k
and � of the two models. We find that most of the posterior mass for k is centered below 10 and
this result is consistent with CR where they also find low values of k in the full information
model. For the degree of freedom parameter �, majority of the posterior mass are centered above
10, which suggested the SV errors are closed to normality, and there is no evidence fat-tail events
presence in the data.

The first key insight we find from our proposed framework, compared to CR, is that the sto-
chastic volatility estimates, reported in Fig. 5, exhibit peaks in their volatility during the
Argentine’s economic crisis of late 2001. Also, there are numerous small peaks in the volatility
over the sample period. This results highlights the importance of including stochastic volatility in
the model as it shows that high-frequency financial data are susceptible to idiosyncratic shocks
across time and captures high volatility during periods of crises.

For the second key insight, our new proposed framework allows us to distinguish between
static and dynamic interdependence, which CR model cannot. Figure 6 reports the posterior
density of xi for selected regression coefficients. The majority of the posterior density of xi have
a large mass centered around zero, which suggest there is no evidence of time-variation and
dynamic interdependence. However, the posterior densities of xDiBRt

and xDLeBRt
, for the regression

coefficients on both the Brazilian long-term interest rate differential and the spot exchange rate,

Figure 3. Posterior density for k.

816 A. POON AND D. ZHU



have a large proportion of fat-tail mass. Thus, this suggest there is evidence of time-variation in
these parameters, and more importantly, evidence of dynamic interdependence between Chile
and Brazil.

Figure 7 reports the corresponding posterior estimates of the time-varying regression coeffi-
cients and it corroborates the findings that we found in the posterior densities in Fig. 6. For
example, except for the coefficients on the Brazilian long-term interest rate differential and the
Brazilian spot exchange rate, majority of the time-varying regression coefficients are not statistic-
ally significant and have no evidence of time-variation as they include zero in their credible inter-
vals. Also, the reported coefficients on the Brazilian long-term interest rate differential and the

Figure 4. Posterior density for �.

Figure 5. Posterior estimates for exp ðht=2Þ and the shaded area represents the 68% credible intervals.
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spot exchange rate display very smooth dynamics over-time and no sudden temporary breaks;
this result is consistent with dynamic interdependence definition.

The third key insight we found is that the coefficients on the copper and both the Argentine and
Brazilian medium-term interest rate differential, reported in Fig. 7, display smooth time-varying
dynamics and in some instance, have their credible interval temporary from zero at a point in time.
However, as shown in Fig. 6, the posterior densities of xi for these coefficients have large mass cen-
tered around zero. Therefore, this suggests that copper and both the Argentine and Brazilian
medium-term interest rates play a static interdependent role on the Chilean foreign exchange market.

We also report the posterior means of Pðst ¼ 1j�Þ for lt of the state equation of (29) in Fig. 8,
and it is clearly evident there are no pronounce peaks in the posterior probabilities in all the

Figure 6. The posterior densities of xi.
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regression coefficients across time. Therefore, we can conclude that is no evidence of contagion effects
from Argentine or Brazil to Chile. This result contradicts CR findings where they found some evi-
dence of contagion from Argentina to Chile. The main reason that we found no evidence of conta-
gion effect could be due to our more flexible modeling choice compared to the CR. In CR they
assume all the time-varying parameters are driven by one state variance, and this is a very restrictive
assumption. In our proposed framework, all the time-varying parameters are driven by their corre-
sponding idiosyncratic state variance, and for majority of the case, we found very little time-variation
in all the parameters. Thus, this implies that the restrictive assumption imposed by CR in their model
could be overestimating the contagion effect from Argentina to Chile.

In sum, our proposed new framework finds no evidence of contagion effect from Argentina or
Brazil to Chile, which contradicts the findings of CR. We also found three key additional insights
using our proposed framework compared to CR. First, we found that the inclusion of the

Figure 7. The estimated time-varying regression coefficients. The shaded area represent the 68% credible interva1.
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stochastic volatility in the model is important as it captures the high volatility during periods of
crises. Second, we found evidence that the interdependence between Chile and Brazil are
dynamic. Lastly, we found evidence of static interdependence between Chile and copper, and
both the Argentine and Brazilian medium-term interest rates.

6.2. Covid-19 pandemic in the United Kingdom

In this section, we apply our proposed framework to investigate the recent Covid-19 pandemic in
the UK. Specifically, we model the relationship of

Figure 8. Posterior mean estimates of the Pðst ¼ 1j�Þ:
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COVID19UKt ¼ b1t þ b2tCOVID19
ITA
t þ b3tCOVID19

GER
t þ b4tCOVID19

FRA
t þ b5tCOVID19

ESP
t

þ b6tCOVID19
POL
t þ b7tCOVID19

POR
t þ b8tCOVID19

SWE
t þ �t ,

(32)

where COVID19it is the i – th country’s growth rate of the cumulative number of confirmed cases
given in a day. We follow Ding et al. (2021), and calculate the growth rate of the cumulative
number of confirmed cases as ln ð1þ Cumulative CasesitÞ � ln ð1þ Cumulative Casesit�1Þ: For
our regressors, we consider seven European countries that have close ties with the UK. They are
Italy, Germany, France, Spain, Poland, Portugal and Sweden. We use daily data gathered from
the John Hopkins University Covid-19 database, and it spans from June 2, 2020, to September
22, 2021.

6.2.1. Empirical results
We first plot the posterior densities of k and � in Figs. 9 and 10, respectively. The posterior
median of k is about 23, and the associated 68% credible interval is between 13 and 45. This rela-
tively high number for k is not surprising given that we have only included seven European
countries in our model. Therefore, the Leamer correction within our proposed framework is cor-
recting for this omitted variable bias. Lastly, the posterior median for � is about 37, which suggest
that the SV errors are close to normality, and there is no evidence of fat-tails event presence in
Covid-19 data.

Figure 11 plots the posterior estimates of the stochastic volatility. It is evident that the peaks
in the volatility appear to occur during the second wave of the Covid-19 pandemic in the UK.
The first peak in volatility during October 2020 could result from the UK government easing
restrictions in August 2020, while the second peak in volatility during January 2021 is likely
driven by the rapid spread of the new alpha (or Kent) variant in December 2020. This result indi-
cates that discovering a new Covid-19 variant strain seems to induce a high uncertainty level
within Covid-19 cases. In other words, shocks to Covid-19 cases are more pronounced during the
emergence of a new strain.

Figure 9. Posterior density for k.
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We plot the posterior densities of xi for all the regression coefficients in Fig. 12. Except for
Italy, all the six European countries have a large portion of non-zero mass within their posterior
density. Thus, there is clear evidence of time-variation within these country’s coefficients. To
investigate further, we plot the corresponding posterior estimates of the time-varying regression
coefficients in Fig. 13, which corroborates the findings in Fig. 12. Therefore, we can conclude
that there is evidence of dynamic interdependence of Covid-19 cases between the UK and these
six European countries, given that majority of each country’s coefficient displays smooth time-
varying dynamics. These results seem to suggest that border restrictions enforced by the UK gov-
ernment were largely ineffective in preventing the importation of Covid-19 cases from these six

Figure 10. Posterior density for �.

Figure 11. Posterior estimates for exp ðht=2Þ and the shaded area represents the 68% credible intervals.
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European countries, and the mandatory hotel quarantine policy should have been implemented
earlier in the first wave of the Covid-19 pandemic.

From Fig. 13, both Spain and Portugal display a sudden temporary change in their coefficients
during October 2020 and January 2021, respectively. We report the posterior means of Pðst ¼
1j�Þ for lt of the state equation of (29) in Fig. 14. We can see that the posterior probabilities of
these two countries do indeed peak at these two dates. Therefore, we can conclude that there
may be evidence of contagion effects of Covid-19 cases from both Spain and Portugal to the UK.
This result is highly plausible given that both Spain and Portugal are highly popular tourist desti-
nations for UK travelers.

Figure 12. The posterior densities of xi.

Figure 13. The estimated time-varying regression coefficients. The shaded area represent the 68% credible interva1.
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7. Conclusion

We have developed a flexible Bayesian time-varying parameter model with Leamer correction
within a non-centered parameterization framework to measure contagion and interdependence.
The simulation study shows that our new proposed framework can detect contagion and correct
the omitted variable bias when a significant regressor is excluded from the model. We apply our
new proposed framework to two empirical applications: the Chilean foreign exchange market
during the Argentine crisis in 2001 and the recent Covid-19 pandemic in the UK. We found that
our new proposed framework finds no evidence of contagion effects from Argentina or Brazil to
Chile, which contradicts the findings of CR. In addition, we found three additional key insights
compared to CR.

Regarding the Covid-19 pandemic in the UK, using our proposed framework, we found evi-
dence that the UK government was largely ineffective in preventing the importation of Covid-19
cases from abroad, and there is evidence of contagion effects of Covid-19 cases from both Spain
and Portugal, which are highly popular tourist destinations for UK travelers. For future work, it
would be interesting to extend the non-centered parameterization framework with Leamer correc-
tion to a VAR framework and apply it to macroeconomic applications, such as infla-
tion modeling.

Appendix

A.1. Model specification

To implement Step 4, let us first define T1 ¼
PT

t¼1 1ðst ¼ 1Þ and T2 ¼ T � T1: Next, it is easy show that when st
¼ 1, the conditional posterior for lt ¼ ~l1 is

ð~l1j�Þ � Nðl̂1,Kl1 Þ,
where Kl1 ¼ ðX0

l1
Xl1 þ V�1

l1
Þ�1 and l̂1 ¼ Kl1 ðX0

l1
�~bt þ V�1

l1
�l1Þ: Note here Xl1 is a T1 � 1 column vector of ones,

and �~bt ¼ ð~b0 � ~b1, :::, ~bT�1 � ~bTÞ0: A similar logic is also applied to derive the conditional posterior of ð~l2j�Þ
when st ¼ 2.

Figure 14. Posterior mean estimates of the Pðst ¼ 1j�Þ:
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To implement Step 5, it is straightforward to show that

Pðst ¼ 1j�Þ ¼ Nð�~bt , ~l1, 1Þq
Nð�~bt , ~l1, 1Þqþ Nð�~bt , ~l2, 1Þð1� qÞ ,

Thus,

Pðst ¼ 2j�Þ ¼ 1� Pðst ¼ 1j�Þ:
We simulate st with a success probability qt ¼ Pðst ¼ 1j�Þ, we first obtain a draw from standard uniform distri-

bution, u � Uð0, 1Þ: If u < qt , then we set st ¼ 1; otherwise we set st ¼ 2. Finally for Step 6, the conditional pos-
terior for ðqj�Þ � Bða0 þ T1, b0 þ T2Þ:

To implement Step 7, we first transform the model (7) to be ~y ¼ D�1
2ðy� Xb� Xbc � Z~bÞ, where D�1

2 ¼
diag d

�1
2

1 , :::, d
�1

2
T

� �
: Then,

ð~yj�Þ � Nð0, SyÞ,
where Sy ¼ diagðeh1 , :::, ehT Þ: Therefore, we can directly apply the Kim et al. (1998) auxiliary mixture sampler with
precision based methods, as described in Chan and Hsiao (2014), to simulate ðhj�Þ:

To implement Step 8, since d1::::, dT are conditionally independent given the model parameters and the data,
we can sample each of them sequentially. In fact, we have:

ðdtj�Þ � IG

�
� þ 1
2

,
� þ ðyt � xtb� xtb

c � xtX~btÞ2
2

�
,

To implement Step 9, we follow the methodology govern in Chan and Hsiao (2014). To draw the degree of
freedom parameter �, we first derive the log-density log pð�jdÞ from (15) and the prior assumption of (16), where

log ð�jdÞ / T�
2
log ð�=2Þ � T logCð�=2Þ � �

2
þ 1

� �XT
t¼1

log dt � 0:5
XT
t¼1

d�1
t þ c, (33)

where 0 < � < �� and c is normalizing constant. It is easy to check that the first and second derivatives of the log-
density with respect to � are given by

d log ð�jdÞ
d�

¼ T
2
log ð�=2Þ � T

2
� T

2
Wð�=2Þ � 0:5

XT
t¼1

log dt � 0:5
XT
t¼1

d�1
t , (34)

d2 log ð�jdÞ
d�2

¼ T
2�

� T
4
W0ð�=2Þ, (35)

where WðxÞ ¼ d
dx logCðxÞ and W0ðxÞ ¼ d

dxWðxÞ are respectively the digamma and trigamma functions. Since first
and second derivatives can be evaluated quickly, we can maximize the log pð�jdÞ using the Newton-Raphson
method and obtain the mode and the negative hessian evaluated at the mode, denoted �̂ and K� , respectively.
Then, we implement an independence chain Metropolis-Hastings step with a proposal distribution of Nð�̂ ,K�1

� Þ:
Lastly, to implement Step 10, except for ðqj�Þ, all the conditional posteriors are standard and straightforward:

ðr2hj�Þ � IG ah þ T
2
, Sh þ

PT
t¼1ðht � lh � qht�1Þ2

2

� �
,

ðlhj�Þ � Nðl̂h ,DlÞ,
where Dl ¼ ðV�1

lh
þ X0

lXl

r2h
Þ�1, l̂h ¼ Dl V�1

lh
l0 þ X0

lzl
r2h

� �
, Xl ¼ ð1, :::, 1Þ0 is a T � 1 vector and

zl ¼ ðh1 � qh0, h2 � qh1, :::, ht � qht�1Þ0:
ðh0j�Þ � Nðĥ0,Dh0 Þ,

where Dh0 ¼
�

q2

r2h
þ ð1�qÞ

r2h

��1
and ĥ0 ¼ Dh0

h1�lh
r2h

� �
:

ð~b0j�Þ � Nð~̂b0 ,D~b0
Þ,

where D~b0
¼ ððkVOLSÞ�1 þ IkÞ�1 and ~̂b0 ¼ D~b0

~b1:
To simulate ðqj�Þ, we follow Chan and Hsiao (2014) and use a Metropolis-Hastings step to draw q:

pðqj�Þ / pðqÞgðqÞ exp � 1
2r2h

XT
t¼1

ðht � lh � qht�1Þ2, (36)

where gðqÞ ¼ ð1� q2Þ12 exp ð� 1
2r2h

ð1� q2Þh20Þ and pðqÞ is the truncated normal given in section 3 of the article.
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