University of

'Sl Kent Academic Repository

Spyropoulou, Maria-Zafeiria and Bentham, James (2023) Scaling priors for
intrinsic Gaussian Markov random fields applied to blood pressure data. Statistica
Neerlandica . ISSN 0039-0402.

Downloaded from
https://kar.kent.ac.uk/103701/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1111/stan.12330

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY-NC (Attribution-NonCommercial)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) ‘Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/103701/
https://doi.org/10.1111/stan.12330
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Received: 13 October 2022

Revised: 12 September 2023

Accepted: 12 October 2023

DOI: 10.1111/stan.12330

ORIGINAL ARTICLE

WILEY

Scaling priors for intrinsic Gaussian Markov
random fields applied to blood pressure data

Maria-Zafeiria Spyropoulou!

!School of Sport and Exercise Science,
University of Kent, Canterbury, UK
2School of Statistics, Mathematics, and
Actuarial Science, University of Kent,

| James Bentham?

An Intrinsic Gaussian Markov Random Field (IGMRF)
can be used to induce conditional dependence in
Bayesian hierarchical models. IGMRFs have both a pre-

Canterbury, UK . . . : ;
B cision matrix, which defines the neighborhood structure

Correspondence of the model, and a precision, or scaling, parameter.
Maria-Zafeiria Spyropoulou, School of
Sport and Exercise Science, University of
Kent, Canterbury CT2 7FS, UK.

Email: mzs@kent.ac.uk

Previous studies have shown the importance of select-
ing the prior for this scaling parameter appropriately for
different types of IGMREF, as it can have a substantial

impact on posterior estimates. Here, we focus on cases
Funding information
Vice-Chancellor’s Research Scholarship,

University of Kent

in one and two dimensions, where tuning of the prior is
achieved by mapping it to the marginal SD of an IGMRF
of corresponding dimensionality. We compare the effects
of scaling various IGMRFs, including an application to
real two-dimensional blood pressure data using MCMC
methods.
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1 | INTRODUCTION

Intrinsic Gaussian Markov Random Fields (IGMRFs) are used widely as prior distributions in
Bayesian hierarchical models, particularly for modeling spatial or temporal data, as they cap-
ture conditional dependence through their precision matrices (Rue & Held, 2005). We examine
one- and two-dimensional IGMRFs, where the latter can capture dependence between a pair of
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variables at multiple time points. IGMRFs are of various types, and can be specified to induce
particular neighborhood structures for the precisions, either by varying weights, introducing cer-
tain behavior at boundaries or within the precision matrix, or by considering different sets of
neighbors (Terzopoulos, 1988).

We present results for the two-dimensional case that generalize previous work in one dimen-
sion on scaling different types of field. In that case, an IGMRF was used as the prior for capturing
non-linear trends, with a hyperprior for the precision parameter (Serbye & Rue, 2014); we
select priors for precision parameters so that the same degree of scaling is applied to bivari-
ate data as in the one-dimensional case. We have shown previously that models can be fitted
to two-dimensional blood pressure data using MCMC algorithms (Spyropoulou, 2023a). In the
work of Simpson, Rue, Riebler, Martins, and Serbye (2017), penalized complexity (PC) priors are
presented; these are priors that can be vague, weakly, or strongly informative depending on the
tuning of the scaling parameter. PC priors are defined in terms of four principles, which provide
beneficial properties such as invariance to reparameterization, a connection with Jeffreys’ prior,
and robustness to the flexibility parameter chosen by the user. However, we suggest a prior that is
not restricted to any principle and is also invariant to reparameterization. In this paper, we show
that scaling requires particular care in two dimensions, where differences in behavior between
IGMRFs may be larger than in a single dimension.

The paper is structured as follows. Section 2 describes the behavior of IGMRFs in one and
two dimensions, while Section 3 describes the mapping between the precision parameter and the
marginal SD for two-dimensional IGMRFs. Analyses using real two-dimensional blood pressure
data are presented in Section 4, with a discussion of our findings and suggestions for future work
in Section 5.

2 | USE OFIGMRFS AS PRIORS
2.1 | Motivation

Blood pressure is bivariate, with measurements comprising systolic and diastolic values (SBP and
DBP, respectively). Although a realistic one-dimensional model of trends in mean SBP or DBP
at national level is available (Danaei et al., 2011; Finucane, Paciorek, Danaei, & Ezzati, 2014),
it cannot make estimates for both variables simultaneously, and no information is captured on
interactions between them. We have developed a two-dimensional extension, including analo-
gous terms to the original model (Spyropoulou, 2023b). Specifically, a vector y,,; of the means of
SBP, DBP, and their interaction, indexed by age group h and study i in country j, is assumed to be
distributed.

Vii ~ N@jig +bjti + iy, + Xif + v,(zn) + €, SDiyi/nh,i + 7). 1

The model includes country-level linear intercepts and slopes, a;; and by, time-varying
nonlinear terms, w;,, covariate effects B, terms in age y;, study-specific random effects e;,
age-varying study-specific random effects wy,; with mean equal to zero corresponding to rf, and
noise €y, assumed iid Gaussian. Lastly, SDfu. /nn; expresses the variance for age group & in study i
with a sample size of ny, ;. In the earlier work, a one-dimensional second-order IGMRF was used as
a prior for the w;;; terms, which we have extended to the two-dimensional case including changes
in the degree of scaling applied.
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2.2 | IGMREFs of one and two dimensions

We begin by comparing the behavior of one-dimensional first-order and second-order IGMRFs
with the two-dimensional second-order case (Rue & Held, 2005). An IGMRF can be defined as

w(w) = @)y " R(QI) 2 exp(—3 (@ - W' QM - ). @)

Let Q be an n X n symmetric positive semi-definite matrix with rank n—k > 0 (Rue &
Held, 2005), where k and n denote the order of the IGMRF and the total number of nodes, respec-
tively. |Q|* expresses the generalized determinant of the Q precision matrix taking the product of
the n — k nonzero eigenvalues, Serbye and Rue (2014). Then u = (uy, Uy, ... , u,)T is an improper
GMREF of rank n — k with parameters (u, Q). The vector u is represented by a graph G = (V,E)
where V represents vertices or nodes and E represents edges or the connections between nodes
such that

Qj#0= {ijl€E, Vi#] (3)

The n nodes define the dimensionality of the covariance matrix, where for n nodes we have
n X n dimensions in the precision matrix. Considering 4 = 0 and focusing on the structure of Q,
Equation (2) is written as:

#(@)  (1QI)"? exp(~u’Qu). @

As described previously by Rue and Held (2005), for a vector of observations u of length n, the
one-dimensional first-order model assumes independent increments

AUy = Ugg —Us ~ N0, A7), s=1,..,n—1, (5)

with joint density
n-1
- A
(n-1)/2 _4 _ 2
a(u]ld) « A exp< ZSZEI(usH Us) > (6)

Writing Equation (6) in a more compact form we have:
x(u]A) < A/ exp(—%(Du)TDu>
o AD/2 exp(—%u”Pu)

x A=D/2 exp(—%uTQ u), (7)

where D expresses differences within u, with P = DD and Q = AP; D and Q are defined as

1 -1 1 -1
1 -1 -1 2 -1

D= 1 -1 , Q=iAP=1 -1 2 -1

1 -1 -1 1
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The second-order model assumes independent increments and joint density

AUy = Ugy — 2Ugyy + Us ~ N(0,47Y), s=1,...,n=2. (8)
1 n-2

m(u|d) oc ATV exp<—5 D (s = 251 + us>2>. ©)
s=1

The compact form for the second-order equivalent is:

2 A) & A2/ exp(—%uT/lP u>. (10)
with
1 -2 1
1 -2 1 2 5 -4 1
1 -2 1 1 -4 6 -4 1
] T R
1 -2 1 1 -4 5 -2
1 -2 1

In two dimensions, a second-order model constructed on a torus assumes independent
two-dimensional second-order increments (Rue & Held, 2005), and for variables indexed d and s
we have

2 _ 2 2
Aoud,s = (A(l,o) + A(o’l))ud,s

= Ud+2,s — 2Md+1,s + zud,s - 2ud,s+1 + Ud s+2

= Udprs — Mgs + Ug1s + Uaser + Udsa ~ N(0,471), 11
with joint density
inl_l n,—1
m(u|d) o Amxm=3/2 exp<—5 D DAY guas+ Afo’l)udﬁf), (12)
d=2 s=2

where n; and n, represent the total number of nodes for each variable.

Our models are time-varying, so the assumption of an IGMRF on a torus is not appropriate,
and the two-dimensional second-order density in this case (Yue & Speckman, 2010) has the more
complex form

n;—1n,-1

_ A
(u|d) o A2 exp(—i DD (Aduasy + (A} + (Agty, 1}
d=2 s=2

ny
+ {Aszuyp, P+ {A4un1,n2}2 + Z({Asud,l}z + {Aéud,nz}z)
d=2

+ ) (A 5} + {Asunl,s}%). (13)

s=2
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A special case of (13) arises when the variables have the same number of nodes, that is,
n=n; =n,

n-1n-1
2_ A
x(u|4) o< A®I/2 exp<—52 D {A2uas)? + (Arura } + (At )
d=2 s=2
n n
+H{Asurn ) + (Agttnn)? + ) ({Asar ) + {Aan)?) + ) (A} + {Asun,s}%).
d=2 §s=2
(14)
The compact form for the second-order equivalent will be:
2 A) « A2/ exp(—%uT/lpu), (15)
with Q defined as (Spyropoulou, 2023b; Yue & Speckman, 2010)
6 -5 1 -5 2
-5 12 -6 1 2 =7 2
1 -6 12 -6 1 2 =7 2
A= | A=
1 -6 12 -5 2 =7 2
1 -5 6 2 =5
Az = diag(1,1,1,1,1).
12 -7 1 -6 2
-7 20 -8 1 2 -8 2
1 -8 20 -8 1 2 -8 2
A4— > A5=
1 -8 20 -7
: 2 -8 2
1 -7 12 2 -6
A, A, A,
A, Ay As A;
A; As A, A5 A;

AP = j’ . . . . . : (16)

A; As A, A,
A; A, A

For each Q, as the dimensionality of the matrices increases, the central row is repeated.

In summary, in each case we have time-varying nonlinear effects u ~ N0, (AP)7!). They
follow an IGMRF with structure matrix, P, and precision parameter, 4, which is always a scalar
(Yue & Speckman, 2010).
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3 | SPECIFYING HYPERPRIORS FOR TWO-DIMENSIONAL
IGMRFS

IGMRFs have structure matrices and marginal variances that change depending on their type.
Hyperpriors need to be chosen and assigned appropriate ranges for particular models based on
their structure, particularly their dimensionality and numbers of nodes (Serbye & Rue, 2014). For
our model, we need to scale A appropriately for a two-dimensional second-order IGMRF with
boundaries, and given that blood pressure data from national-level surveys are available from
around 1980, we consider models with up to 40 nodes. Here, we derive reference SDs and use
them to select appropriate values for specific hyperpriors.

3.1 | Reference SD
We can describe an IGMRF using an alternative definition where

CHUDE 17)

Here, X} is the diagonal element of the covariance matrix in position i. For the standard normal
distribution, we have

uVi~ N(0,P), Acdw) = (18)
Therefore for A = 1, we have
01y, (W) = Zj. (19)
Combining the results in (17) and (19), we have
oiw) = 2718 = Aoy (). (20)

This implies that for any fixed precision 4, the marginal SD of the components of a Gaussian
vector u can be expressed as a function of A (Serbye & Rue, 2014) by

oaw) = Aoy w), i=1, ... ,n (1)

For a given IGMRF u with random precision 4, we can calculate a reference SD for fixed A =1,
and then approximate the marginal SD for each component of u by Serbye and Rue (2014)

o) & A op(m), i=1,...,n. (22)
The reference SD is calculated using the geometric mean, an appropriate measure for a set of

positive numbers (Serbye & Rue, 2014). The reference SD for u in the one-dimensional case is
then

1+ 1wl .
Orep(1) = exp<z 2 log a{,lzl}(ui)) = exp(EZ 5 log Zii>, (23)
i=1

i=1
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where X values express the diagonal elements of the generalized inverse matrix £* = Q™"
calculated when A = 1. Specifically, this is calculated as Q! = IT"A™'I', where I are the eigen-
vectors and A the eigenvalues of Q when A = 1. Since Q and X* are both »n x n dimensional for
one-dimensional IGMRFs, the n diagonal values are used to calculate the geometric mean.

We extend the calculation of 6,.¢(u) to two-dimensional second-order IGMRFs. The precision
matrix is now (n; X 1) X (n; X ny) dimensional, where n; and n, are the total number of nodes
for the first and second variables, respectively. The scaling is no longer for n; or n, values, but
their product n; X n,, with a special case when n = n; = n,

n? n?
1 1 1 *
Orf(0) = exp(EZ log auzl}(ui)> = eXp(ﬁZE log Eii)‘ (24)
i=1 i=1

Again, X denotes the diagonal elements of the generalized inverse matrix X* = Ql=r'A"r
for A = 1. The precision matrix Q, and therefore £*, is n? x n?> dimensional, hence there are n?
elements in the diagonal.

It has been shown previously in Serbye and Rue (2014) that using 100 nodes, the reference
SDs in one dimension are o.f(1) = 3.89 and oyer(u) = 41.39 for the first-order and second-order
cases, respectively; applying the result in (24), we find that o(u) = 7.24 for the two-dimensional
second-order case for 100 nodes in each dimension. As shown in Figure 1, the behavior by node
of the marginal SDs also varies substantially between the three IGMRFs. For a particular hyper-
prior, larger variances would be allowed for the one-dimensional second-order IGMRF than its
two-dimensional equivalent, and both would have larger variances than the one-dimensional
first-order case. Equivalently, to allow the same variance we need to impose an upper limit on the
marginal SD

mmw>unm<—i—<i>=m (25)
Gfef(u) v

where «a is a fixed small probability (Serbye & Rue, 2014). By assigning a hyperprior to A(arzef(u))‘l,
the interpretation of the hyperprior remains the same for the different models.

These results complement others (Lindgren & Rue, 2008; Lindgren, Rue, & Lindstrém, 2011),
where k equally sized subintervals are created between original nodes u;, u,, ..., to give equidis-
tant nodes u’l, u’z, ”1/c+1' In the first-order one-dimensional case, the precision using the new
nodes is (kA)~!, for the second-order equivalent, the precision using the new nodes is (k31)71,
and finally, for the second-order two-dimensional IGMREF, the precision using the new nodes is
K*)L.

3.2 | Specifications using Gaussian hyperpriors

Applying a Gaussian hyperprior, the upper limit expressed in probabilistic form in (25) is

boz ) \!/?
U= (F’l(a,u,1)> ’ (26)

where F~1(-) denotes the quantiles of the Gaussian distribution (Serbye & Rue, 2014). Analyti-
cally, the calculations are presented in (A1) shown also in (Spyropoulou, 2023b). For a given value
of a, we can then interpret the mean and SD parameters, ;4 and b, in terms of this upper limit.
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FIGURE 1 Marginal SDs of one-dimensional first-order and second-order Serbye and Rue (2014), and
two-dimensional second-order intrinsic Gaussian Markov random fields, calculated using fixed precision 4 = 1.
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To recalculate hyperpriors for different IGMRFs, we can use the same mean parameter u for
each model and calculate a new SD parameter. By using the upper limit provided in (26), the new
SD parameter is expressed as

U*FYa, u,1
bnew = +ﬂ) (27)
0, (W)

ref
We see that the new value of the SD in (27) depends on Grzef’ which captures the precision matrix
for a specific type of IGMREF. It is then only necessary to recalculate the SD parameter, b, to account
for the different shapes and sizes of the graph for a specific IGMRF (Serbye & Rue, 2014). This
can be done for the three types of IGMRF considered using

2 2 2
O'ref(urwl) O-ref(uVWZ) O'ref(urwl )
o brw2D = brWZ X > o berD = brwl X > -

0, (Unw2) 0, (Uni2p) 0,f(@ni2p)

(28)

brwz = brwl X

Here, rwl and rw2 refer to the one-dimensional first- and second-order IGMRFs (Serbye &
Rue, 2014), and rw2D to the two-dimensional second-order IGMREF.

3.3 | Types of two-dimensional second-order IGMRFs

While trends in single risk factors for noncommunicable diseases are increasingly well under-
stood, there has been little analysis of bivariate or multivariate distributions even though inter-
actions are of substantial health importance. To provide a guide for researchers applying these
types of models to real data, we compare IGMRFs with fixed order but different numbers of nodes
and boundary conditions, and IGMRFs of varying order and dimensionality. We do so firstly for
two-dimensional second-order IGMRFs with four structure matrices: Torus 1 and Torus 2 (Rue &
Held, 2005; Thon, Rue, Skrovseth, & Godtliebsen, 2012), and Bound 1 (Yue & Speckman, 2010)
and Bound 2 (Terzopoulos, 1988). Torus 1 has a structure matrix defined on a torus, while Torus 2
has a similar structure matrix but with boundaries at its four corners, u 1, Upn, .1, U1 n,s Un, n,- BOUNd
1 and Bound 2 have boundary effects and induce the same neighbors in the structure matrix for
each node, but give different weightings to these neighbors. For our application to time-varying
mean blood pressure data and for similar applications, the bounded IGMRFs are appropriate and
should be used.

In Table 1, we see that Torus 2 consistently has the smallest reference SD, with the changes in
each IGMREF being similar proportionally when the number of nodes is increased. Bound 2 has
the largest reference SD, followed by Bound 1, which we used in our two-dimensional model of
blood pressure (Spyropoulou, 2023b). These findings show that it is clearly necessary to scale the
hyperparameter each time the precision matrix or number of nodes is changed, especially when
boundary conditions are introduced.

Table 2 shows the effect of changing the order or dimensionality of the IGMRFs. For small
numbers of nodes, the one-dimensional first-order random walk has the largest reference SD.
However, this increases slowly with the number of nodes, and for 10 nodes or more there is a
consistent pattern, with the one-dimensional second-order random walk having the largest ref-
erence SDs, while the two-dimensional second-order random walk behaves more similarly to the
one-dimensional first-order random walk. These results emphasize the importance of scaling the
hyperparameter when dimensionality or order is changed.
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TABLE 1 Reference SDs o, for second-order two-dimensional intrinsic Gaussian Markov random fields.

Nodes
5
6
8
10
12
14
16
18
20
25
30
40

Torus 1

0.30
0.35
0.44
0.54
0.63
0.73
0.82
0.93
1.02
L2
1.51
2.00

Torus 2
0.05
0.06
0.08
0.09
0.11
0.12
0.14
0.16
0.17
0.21
0.25
0.33

Bound 1

0.41
0.48
0.62
0.76
0.90
1.04
1.19
1.33
1.47
1.83
2.19
291

Bound 2
0.53
0.63
0.81
1.00
1.19
1.39
1.58
1.77
1.96
2.44
2.92
3.88

TABLE 2 Reference SDs, o, for one-dimensional first-order and second-order intrinsic Gaussian Markov
random fields (IGMRFs), and two-dimensional second-order IGMRFs.

Nodes
5
6
8
10
12
14
16
18
20
25
30
40

Oref(Ury1)
0.85
0.94
1.09
1L.227)

Oref(Urw2)

0.53
0.65
0.96
1.35
1.75
2.20
2.68
3.19
3.73
5.20
6.82
10.49

Oref(Ury2p)
0.41
0.48
0.62
0.76
0.90
1.04
1.19
1.33
1.47
1.83
2.19
2.91

4 | APPLICATION TO BLOOD PRESSURE DATA

We compare hyperprior scaling for one- and two-dimensional second-order IGMRFs using blood
pressure data (Spyropoulou, 2023b). The scaling varies both by dimensionality and the number
of nodes, corresponding to the number of years considered. The hyperpriors must be set for each
of the four precision parameters, Ac, Ar, 45, and Ag, that are used at different levels of a Bayesian
hierarchical model, with countries nested in regions, super-regions and the globe. When using 40
years of data, we calculate the following values
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Oref(Ww2) = 10.49 Oref(W2p) = 2.91. (29)

The distribution under consideration for the country-level precision parameter is A. ~ N (u, b),
with u and b parameters that are assigned the values

u=7, b=2 a=0.00l. (30)

Here, b is the adjusted parameter to which we must apply the correct scaling. From (29) and (30),
the upper bounds for the one-dimensional and two-dimensional second-order IGMRFs are

o b\
2T\ F (a1, 1) -

1/2
Uniap = bornan) | =208 (31)
w2D = F @) = 2.08.

Gamma quantiles have no negative values, so to reproduce earlier results (Serbye & Rue, 2011)
using a Gaussian rather than a Gamma distribution, we need to proceed as if we have truncation
below at zero. It has been shown (Gelman, 2006; Lunn, Spiegelhalter, Thomas, & Best, 2009; Roos
& Held, 2011) that overfitting is common using Gamma priors and so a half-Gaussian prior for
the SD is suggested as a suitable alternative. By taking the median, we have

median(Upyz, Umop) = U = 4.79. (32)

The new SD parameters for the hyperpriors are:

U’ FYa, u,1
g = S @D
o-ref(uVWZ)
U?FYa, pu,1
Bruap = # = 10.59. (33)
0, {(Wmw2p)
Alternatively, knowing by, = 0.81,
O-?ef(uVWZ)
berD = brw22— = 10.59.
O-ref(uVWZD)

We also observe clear patterns as the adjusted parameter, b, is varied. In earlier work on blood
pressure modeling (Danaei et al., 2011), the SD of a one-dimensional second-order IGMREF, b,
was set to 3. In the case of five nodes, scaling makes this equivalent to 5.01 for the two-dimensional
case, byop, while the adjusted parameter, b, is also equal to 3, as shown in Table 3. We can see
variations in the tuning of b1, by, and byyyp as the number of nodes changes, and in particular
cases, they each coincide with the adjusted parameter b. For example, we see that the adjusted
parameter, b is equal to b,,,; when the number of nodes is 10; for five nodes, the adjusted parameter
is equal to bn;; for 30 nodes, the adjusted parameter is equal to bny,p. Table 4 shows the scaling
applied to SDs for a model with 11 nodes. With an adjusted parameter b = 0.90, scaling 4. gives
0.53 and 1.84 for the one- and two-dimensional second-order models, respectively, for example.
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TABLE 3 Scaling SD parameters as the adjusted parameter b and number of nodes are varied.

b=1 b=2 b=3
Nodes bya b2 byw2p bya byy» brw2p b by byw2p
5 0.39 1.00 1.67 0.78 2.00 3.34 1.17 3.00 5.01
6 0.48 1.00 1.84 0.96 2.00 3.67 1.43 3.00 5.49
8 0.78 1.00 2.40 1.55 2.00 4.80 2.33 3.00 7.19
10 1.00 0.82 2.58 2.00 1.63 5.16 3.00 245 7.74
12 1.00 0.59 2.22 2.00 1.17 4.43 3.00 1.76 6.65
14 1.00 0.43 1.94 2.00 0.87 3.89 3.00 1.30 5.83
16 1.00 0.33 1.70 2.00 0.67 3.40 3.00 1.00 5.09
18 1.00 0.27 1.54 2.00 0.53 3.08 3.00 0.80 4.62
20 1.00 0.22 1.40 2.00 0.43 2.80 3.00 0.65 4.20
25 1.00 0.14 1.12 2.00 0.28 2.25 3.00 0.42 3.37
30 1.06 0.10 1.00 2.11 0.21 2.00 3.17 0.31 3.00
40 1.40 0.08 1.00 2.80 0.15 2.00 4.20 0.23 3.00
50 1.74 0.06 1.00 3.48 0.12 2.00 5.23 0.18 3.00
100 3.46 0.03 1.00 6.93 0.06 2.00 10.39 0.09 3.00

TABLE 4 Scaling SD parameters for one- and two-dimensional intrinsic Gaussian Markov random fields
with 11 nodes.

y) b by b2 brw2p
Ae 0.90 0.77 0.53 1.84
Ar 1.20 1.03 0.71 2.45
As 1.59 1.36 0.94 3.24
Ag 3.55 3.04 2.10 7.24

Together, these results allowed us to apply the same degree of smoothness in the two-dimensional
second-order case as in the earlier work, scaling b,,,p correctly given the variation in the blood
pressure data.

5 | SUMMARY AND FUTURE WORK

We have shown the importance of correct scaling of hyperpriors for precision parameters in
IGMREFs. This scaling varies with the dimensionality, order, and size of the IGMRFs, and also
depends strongly on the structure of the precision matrices. We have presented general results
in two dimensions, and specific applications to one- and two-dimensional models of blood pres-
sure using real data.The implementation of the calculations was carried out using R, with the
code being publicly available online (Spyropoulou, 2023a) for both the one- and two-dimensional
cases.
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Future work could include applying PC priors, which are invariant to transformations, to
the precision parameter for two-dimensional random effects (Simpson et al., 2017) which cor-
responds to a second-order IGMRF, with u ~ A'(0, A71P~1). However, specific steps would need
to be made as the priors need to be specified using the four principles defined for PC priors
(Simpson et al., 2017) and also to refer to a covariance matrix of a bivariate nature. In addition,
a model can have two types of random effects, constructed, and unconstructed. Therefore, they
can have dependent precision parameters, and so a joint bivariate or multivariate distribution
should express this dependence (Simpson et al., 2017). For the two-dimensional second-order
IGMREF, the precision parameter is univariate but we could investigate the use of multivariate
PC priors, which have the property that no further scaling is required as the number of nodes
is varied.
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