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Abstract: Effective measurement of system resilience provides a comprehensive understanding of 

the system’s characteristics. However, little research has been devoted to the resilience of a technical 

system that is affected by both the degradation process of the system and the external shocks. In 

addition, existing studies have mainly evaluated the resilience of systems without considering 

competing risks, and rarely investigated the transient resilience evaluation subjected to the interaction 

of shocks and maintenance. In this paper, a new resilience model is proposed for the systems under 

competing risks. The paper first introduces  a competing risk model to depict the failure modes of the 

single-component system, and then  uses semi-Markov processes  to describe the state transition 

process when the system suffers the attacks of multiple shocks. Then, according to the multi-state 

division of the system,  a resistibility index, an absorbability index and a recoverability index are 

proposed and the overall resilience is then introduced. Considering that the system needs to meet the 

reliability requirement, constrained by limit budget for maintenance, a reliability and cost-based 

resilience model is proposed. Finally, the case of a radar system subjected to shocks of one type and 

multiple types of shocks is given to illustrate the concept developed in this paper. 

Keywords:  Competing risks; Resilience; System reliability; Condition-based maintenance; Semi-

Markov process 

1. Introduction 

Engineered systems should be able to not only withstand external shocks such as natural or man-

made disasters, but also recover quickly to the working condition from the disasters. High resilience 

has become an indispensable requirement for many modern systems in the face of threats posed by 

increasingly severe operating environment such as extreme weather. Resilience is often defined as 

the ability of a system to resist, mitigate, and recover quickly from potential disruptions [1]. Failures 

of single-component systems are usually due to a combination of internal causes (aging, wear) and 

 
* Suggested citation: Hongyan Dui, Yaohui Lu, Shaomin Wu, Competing risks-based resilience approach for multi-state 

systems under multiple shocks, Reliability Engineering & System Safety, DOI: 10.1016/j.ress.2023.109773. 
† Corresponding author. duihongyan@zzu.edu.cn. Tel: (86) 371- 67781582, Fax: (86) 371- 67781582. 

mailto:duihongyan@zzu.edu.cn


2 

external causes (shocks). Failures can be caused by internal factors such as deterioration and external 

shocks, which are competing risks [2], [3]. The presence of multiple failure causes on single-

component systems make the relevant research a huge challenge and it therefore still an open research 

problem in quantifying the resilience of single-component systems. 

Some research effort has been devoted towards the modeling the resilience for systems with under 

multiple failure modes, or competing risks. For example, Che et al. [4] developed a general reliability 

model for micro-engines affected by natural degradation and random shocks. Feng et al. [5] proposed 

a method based on a degradation-shock competing failure process to predict the life of a drill bit. Lyu 

et al. [6] believed that dependent competition failures include three types of failure, which are aging 

failure, and two types of sudden failure caused by random shocks. Wang et al. [7] proposed a 

competing failure model based on extreme shock damage. Ye et al. [8] proposed a new competing 

failure model for automated manufacturing systems to study the complex interactions of machine 

failure, product quality, etc. Wang et al. [9] addressed the problem of correlated probabilistic 

competing risks in system reliability analysis. Lyu et al. [10] proposed a new generalized surface wear 

model through combining the correlated competing failure processes. 

Some research efforts have been made to the modeling of resilience. In terms of resilience for 

multi-state systems, Zeng et al. [11] developed a framework for resilience analysis of multi-state 

energy systems under extreme event shocks. Tan et al. [12] proposed four resilience metrics to 

evaluate the resilience of multi-state systems from different perspectives of resilience. Dhulipala et 

al. [13] proposed a Markov process-based model for multi-state systems under external shocks to 

model system resilience. Xu et al. [14] proposed a resilience-based component importance ranking 

method for multi-state systems from the perspective of the system recovery process after multi-shock 

events. Wang et al. [15] enhanced the overall resilience of multi-state interdependent infrastructure 

networks under uncertain disruption scenarios by solving the preparedness planning problem. 

In terms of resilience for systems under multiple shocks, Cai et al. [16] proposed a resilience 

assessment method combining Markov models and dynamic Bayesian networks for systems under 

multiple shocks. Wu et al. [17] developed a Markov process-based resilience assessment framework 

considering internal degradation and external shocks. Tang et al. [18] investigated the resilience of 

rail transit systems under multiple disturbance events. Iannacone et al. [19] proposed a unified 

formulation for the degradation and recovery of infrastructure systems after multiple shocks to 

quantify its resilience over time. Yan and Dunnett [20] evaluated the resilience of nuclear power plants 
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under aging and multiple shock events using the petri model. Cadini et al. [21] developed a Monte 

Carlo simulation program to evaluate the resilience of grid systems under extreme shock events. Liu 

et al. [22] proposed a few operational proactive strategies to improve system resilience under extreme 

shocks. Yodo et al. [23] developed a dynamic Bayesian network to evaluate the resilience of complex 

systems under shocks. 

In terms of the application of resilience management, Dong et al. [24] proposed a comprehensive 

resilience index to evaluate transportation networks from the perspective of reliability and stability. 

Ferrario et al. [25] used resilience to analyze the characteristics of power networks to improve their 

recovery ability after multiple shocks. Taghizadeh et al. [26] proposed a probabilistic framework for 

evaluating the resilience of transportation networks during medical emergency situations. Panteli et 

al. [27] defined the key resilience characteristics that a power system should have and gave strategies 

to enhance resilience. Mahmoud et al. [28] developed a framework to comprehensively measure 

healthcare system resilience. Chen et al. [29] proposed a framework for assessing supply chain 

reliability and resilience. Magoua and Li [30] added the human factor to resilience research to provide 

accurate solutions for improving the resilience of critical infrastructure systems. Panteli and 

Mancarella [31] proposed a conceptual framework on resilience and evaluated the resilience of 

electrical power systems. Zhao et al. [32] developed a resilience assessment framework using the 

hidden Markov model and investigated the resilience of the water supply system in Shanghai. Gao et 

al. [33] proposed a resilience-oriented service restoration approach for microgrid systems. Talukder 

et al. [34] measured the resilience of the power system by quantifying the stability level of the power 

system. Ma et al. [35] used node protection strategies to improve the robustness and resilience of a 

network. 

Existing literature has studied the resilience of systems after damage occurs, however, there are 

still knowledge gaps. First, the damage to systems in the existing literature is often assumed to be 

caused by external shocks (e.g., [16], [18], [21][23]), which does not apply to systems subjected to 

both internal and external shocks. Therefore, a competing risk model should be introduced to 

complement the causes of system damage, which aligns with the reality and makes the resilience 

model more complete. Second, existing literature has rarely investigated the transient resilience 

evaluation of systems subjected to the interaction of shocks and maintenance (e.g., [11], [14], [15]). 

These two knowledge gaps motivate us to conduct the current research work. 

In this paper, we classify random shocks into four types and propose a condition-based maintenance 
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strategy. Besides, semi-Markov processes are used to describe the state transition process of the 

system under shocks and maintenance. Then, an overall resilience index is proposed to measure the 

resilience of the system based on the ability of the system to resist, absorb and recover from external 

shocks. Third, the existing literature mainly evaluates system resilience and little has studied 

approaches to enhance system resilience (e.g., [24], [26], [28], [29], [31][34]). Therefore, a reliability 

and cost-based resilience optimization model is proposed. A solution is provided for improving the 

resilience under the available resources. The feasibility of the proposed resilience optimization model 

is demonstrated in the case study of a radar system subjected to shocks of one type and multiple types 

of shocks, respectively.  

The remaining of this paper is as follows. In Section 2, multi-state systems are analyzed based on 

competing risks and condition-based maintenance. Section 3 describes semi-Markov models for 

multi-state systems under multiple shocks. The resilience optimization model under reliability and 

cost constraints is presented in Section 4. In Section 5, cases of a radar system subjected to shocks of 

one type and multiple types of shocks are given. Finally, Section 6 closes the paper. 

Nomenclature 

𝑆𝑖 Performance state, 𝑖 = 0,1,2,3,4 

𝑁(𝑡) Number of shocks to the system in [0, 𝑡] 

𝑊𝑖 Shock intensity, 𝑖 = 1,2, … ,𝑁(𝑡) 

𝐷𝑖 Shock threshold, 𝑖 = 1,2,3 

𝑀𝑆1 Preventive maintenance 

𝑀𝑆2 Corrective maintenance 

𝑀𝑆3 Special maintenance 

𝑍𝑌(𝑡) Total degradation 

𝑀 Degradation threshold 

𝑍(𝑡) Natural degradation 

𝛼 Degradation volume at the initial moment 

𝛽𝑖 Degradation rate 

𝑌(𝑡) Total degradation volume of the random shock 

𝑌𝑗 Degradation value of the 𝑗th random shock 

𝐹𝑖 Performance value 

𝑷𝟎 Initial state vector 

𝑇𝑖𝑚𝑒𝑖 Moment of state transition probability 

𝑝𝑖𝑗(𝑡) Probability of transition from 𝑆𝑖 to 𝑆𝑗 at moment 𝑡 

𝐹̅(𝑡) Performance value at moment 𝑡 

𝑷(𝑡) State transition probability matrix 

𝑃𝑖(𝑡) Probability of being in state 𝑆𝑖 

𝑇{𝑍(𝑡)≤𝑀} The time when the system is not fully aged in [0, 𝑡] 
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𝑅(𝑡) System reliability 

𝑅0 Minimum reliability to meet basic operating requirements 

𝑚𝑖,𝑗 Direct loss, 0 ≤ 𝑖 < 𝑗 ≤ 3 

𝑛𝑖 Unit time indirect loss 

𝐶𝑅(𝑡) Base cost when 𝑅(𝑡) = 𝑅𝑚𝑖𝑛 

𝐶𝑚(𝑡) Direct cost 

𝐶𝑛(𝑡) Indirect cost 

𝐶𝑘(𝑡) Maintenance cost 

𝐶(𝑡) Total cost 

𝐶𝑏𝑑 Maximum budget cost 

𝑃𝑟𝑡 Resistibility 

𝑃𝑎𝑛 Absorbability 

𝑇𝑟𝑦 Total time of maintenance 

𝑇𝑖 Cumulative time that the system stays in state 𝑆𝑖 in [0, 𝑡] 

𝑇𝑠𝑑 Maximum maintenance time 

𝑃𝑟𝑦 Recoverability 

𝑃𝑜𝑙 Overall resilience 

2 Multi-state systems considering competing risks and maintenance strategies 

The performance state of a single-component system is divided into five parts, which are the normal 

working state 𝑆0, the slight damaged state 𝑆1, the severe damaged state 𝑆2, the fault state 𝑆3, and the 

fully aged state 𝑆4 [36], [37]. 

Suppose the system is subjected to a shock. When the shock intensity 𝑊𝑖 is greater than the shock 

threshold 𝐷𝑖  (𝐷1 ,𝐷2 ,𝐷3 ), the performance state of the system changes from the high-performance 

state to the low performance state (e.g., from 𝑆0 to 𝑆1). A shock with high intensity causes a jump of 

the performance state of the system to transition (e.g., from 𝑆0 to 𝑆3). With different thresholds of the 

shock, the shock is classified into four levels: Level I for 0 ≤ 𝑊𝑖 ≤ 𝐷1; Level II for 𝐷1 ≤ 𝑊𝑖 ≤ 𝐷2; 

Level III for 𝐷2 ≤ 𝑊𝑖 ≤ 𝐷3; and Level IV for 𝑊𝑖 ≥ 𝐷3. Shocks not only bring degradation to the 

system, but also accelerate the natural degradation of the system. The higher the shock intensity level 

is, the greater the impact on the natural degradation of the system, and the more obvious the effect of 

aggravating the system degradation. 

The degradation of the system due to natural aging will only cause the system performance state to 

change to the fully aging state (i.e., 𝑆4). The degradation caused by shocks will only make the system 

performance state to change to the low performance state (i.e., 𝑆1, 𝑆2, 𝑆3), not to the fully aging state 

(i.e., 𝑆4). 

In this paper, ordinary maintenance is considered as imperfect maintenance, which cannot bring the 
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system to the best working condition (i.e., 𝑆0 ). rrdinary maintenance is divided into preventive 

maintenance 𝑀𝑆1 and corrective maintenance 𝑀𝑆2. When the system is at 𝑆2 (severe damage state), 

preventive maintenance will be carried out to change its state from 𝑆2 (severe damage state) to 𝑆1 

(slight damage state) after the maintenance. When the system is at 𝑆3  (fault state), corrective 

maintenance will be performed to change its state from 𝑆3 (fault state) to 𝑆1 (slight damage state). 

For single-component systems, during the time when preventive maintenance or corrective 

maintenance is carried out, shocks do not attack the system but the system still ages. Special 

maintenance 𝑀𝑆3 is the replacement of parts that have fully aged. Special maintenance is the direct 

replacement of old parts with new parts, so that the single-component system can change from state 

𝑆4 (fully aged state) to 𝑆0 (normal working state). Fig. 1 is the state transition process under shocks 

and maintenance. 

 

Fig. 1. State transition process of damage and maintenance. 

Random shocks not only change the state of the system but also aggravate the performance of the 

system. Therefore, the total degradation 𝑍𝑌(𝑡)  of the system during [0, 𝑡]  is the sum of the 

degradation due to natural aging and the degradation due to random shocks. When the system 

degradation volume is greater than the degradation threshold 𝑀, the system state changes to the fully 

aged state 𝑆4 , and the parts need to be replaced at this time. Fig. 2 gives the process and the 

corresponding state transition process of a system subjected to multiple shocks of different intensity, 

resulting in damage to the system. 
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Fig. 2. System damage and state transition process under multiple shocks. 

From Fig. 2, the system undergoes natural degradation within (0,  𝑡1). At time 𝑡1, the shock level 

is I, which will accelerate the system degradation, but the system state does not change. During (𝑡1, 

𝑡2), the system undergoes natural degradation. At time 𝑡2, the shock intensity is at level II, at which 

a shock accelerates the degradation of the system, and the system state changes from 𝑆0  (normal 
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working state) to 𝑆1  (slight damage state). At time 𝑡4 1 , the system degradation reaches the 

degradation threshold 𝑀, and the system state changes from 𝑆1 (slight damage state) to 𝑆4 (fully aged 

state), at which time it needs to be replaced with new parts, i.e., 𝑀𝑆3  (special maintenance). 

(𝑡4 2 − 𝑡4 1) is the time required to replace the new parts. At 𝑡 , the shock intensity is level IV, 

causing the system state to change from 𝑆0 (normal working state) to 𝑆3 (fault state). (𝑡 − 𝑡 ) is the 

time to perform 𝑀𝑆2 (corrective maintenance), and the system state changes from 𝑆3 (fault state) to 

𝑆1 (slight damage state) after the maintenance is completed. At 𝑡 , the shock intensity is level II, at 

which a shock can cause the system state to change from 𝑆1  (slight damage state) to 𝑆2  (severe 

damage state). When the severe damage state is reached, 𝑀𝑆1 (preventive maintenance) is performed, 

causing the system state to change from 𝑆2  (severe damage state) to 𝑆1  (slight damage state). 

(𝑡 − 𝑡 ) is the time required for preventive maintenance. 

To simplify the problem, the internal natural degradation is assumed to be a linear model [38], [39], 

and the same applies to other distribution models for calculation. The natural degradation of the 

system at time 𝑡 is defined as 

𝑍(𝑡) = 𝛼 + 𝛽𝑖𝑡, (1) 

where 𝛼 is the degradation volume of the system at the initial moment and 𝛽𝑖 is the rate of system 

degradation. Since shocks increase the rate of system degradation, 𝛽𝑖 can be defined as 

𝛽𝑖 = (1 +
𝑊𝑖

𝐷1 + 𝐷2 + 𝐷3
3

)

𝑁(𝑡)

, (2) 

where 𝑁(𝑡) is the number of shocks to the system in [0, 𝑡], and 𝑊𝑖 is the shock intensity of the 𝑖th 

shock. 

The degradation of the random shock is 𝑌(𝑡) = ∑ 𝑌𝑗
𝑁(𝑡)
𝑗=1  , where 𝑌𝑗  denotes the degradation value 

of the 𝑗th random shock and is assumed to follow the normal distribution ~ 𝑁(𝜇𝑦, 𝜎𝑦
2). The total 

degradation of the system at time 𝑡 is defined as 

𝑍𝑌(𝑡) = 𝑍(𝑡) + 𝑌(𝑡), (3) 

where 𝑍(𝑡) is the natural degradation and 𝑌(𝑡) is the degradation due to random shocks. 

3 A series of semi-Markov models for multi-state systems under multiple shocks and 

maintenance  

As aforementioned, the set of performance states of the single-component system is 𝑆 =
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{𝑆0, 𝑆1, 𝑆2, 𝑆3, 𝑆4}. Let 𝐹𝑖 denote the corresponding performance value of the system in performance 

state 𝑆𝑖, then the corresponding performance level is denoted by 𝐹 = {𝐹0, 𝐹1, 𝐹2, 𝐹3, 𝐹4}. The system 

in state 𝑆0 is the normal operating state and the system performance 𝐹0 is the best. The performance 

of the system in states 𝑆3 (fault state) and 𝑆4 (fully aged state) are zero. The performance values of 

the system in states 𝑆1 and 𝑆2 are between 𝐹0 and 𝐹3, and 𝐹1 > 𝐹2. The performance vector of the 

system is 𝑭 = [𝐹0, 𝐹1, 𝐹2, 𝐹3, 𝐹4]. 

A new system starts working with its initial state  𝑆0 (𝑡 = 0), and the probability of the system 

sojourning in state 𝑖 is denoted by 𝐸𝑖, then 𝑃(𝑋(0) = 𝑆0) = 1. Therefore, the initial state vector of 

the system can be defined as 𝑷𝟎 = [𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4] = [1,0,0,0,0] . 𝑇𝑖𝑚𝑒𝑖  (𝑖 = 1,2,3,4,5 ) denotes 

the moment of state transition. 𝑇𝑖𝑚𝑒0  indicates the moment of the system starting work, i.e., 

𝑇𝑖𝑚𝑒0 = 0 . The whole degradation process is divided into several time intervals, and each time 

interval represents the sojourn time of that state after a state transition. For example, (𝑇𝑖𝑚𝑒1 −

𝑇𝑖𝑚𝑒0)  represents the sojourn time in state 𝑆0 . The sojourn time (𝑇𝑖𝑚𝑒3 − 𝑇𝑖𝑚𝑒2)  in state 𝑆2 

represents the time of preventive maintenance. The sojourn time (𝑇𝑖𝑚𝑒4 − 𝑇𝑖𝑚𝑒3)  in state 𝑆3 

indicates the time of corrective maintenance. The sojourn time (𝑇𝑖𝑚𝑒 − 𝑇𝑖𝑚𝑒4) in state 𝑆4 indicates 

the time required to replace new parts. 

Since the level of the random shocks and the maintenance process are different, resulting in the 

time the system stays in each state may follow any distribution. Therefore, the semi-Markov process 

is used in this paper. Since the occurrence of a shock is random, the damage rate caused by each shock 

may be different. Besides, the diversity of maintenance ways leads to different maintenance 

effectiveness for each maintenance. Therefore, the effect of multiple external shocks and maintenance 

processes on the system can be described by semi-Markov processes. Based on the Markov 

characterization emphasized by the semi-Markov process, the next state is jointly determined by the 

current state, the corresponding sojourn time and transition probability, regardless of the past state or 

sojourn time [40] [41], i.e., 

𝑃(𝑋𝑛+1 = 𝑆𝑗 ,  𝑇𝑛+1 ≤ 𝑡 | 𝑋𝑛 = 𝑆𝑖, … , 𝑋2, 𝑋1;  𝑇𝑛, … , 𝑇2, 𝑇1) 

= 𝑃(𝑋𝑛+1 = 𝑆𝑗 ,  𝑇𝑛+1 ≤ 𝑡 | 𝑋𝑛 = 𝑆𝑖), (4) 

where 𝑋𝑛 denotes the last state of the system and 𝑋𝑛+1 denotes the current state of the system. 

Let the state transition probability 𝑝𝑖𝑗(𝑡) represent the probability of the system changing from state 

𝑆𝑖 to state 𝑆𝑗 at moment 𝑡, where 𝑝𝑖𝑗(𝑡) = 𝑃(𝑋𝑛+1(𝑡) = 𝑆𝑗 | 𝑋𝑛(0) = 𝑆𝑖). 
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Using the total probability formula and the definition of expectation, the performance 𝐹̅(𝑡) of the 

system at moment 𝑡 can be derived, and the calculation procedure is shown in Eq. (5). 

𝐹̅(𝑡) = ∑(∑𝑃(𝑋(0) = 𝑆𝑗)

𝑁

𝑗=1

𝑃(𝑋(𝑡) = 𝑆𝑖|𝑋(0) = 𝑆𝑗))

𝑁

𝑖=1

𝐹𝑖 

= 𝑷𝟎𝑷(𝑡)𝑭
𝑇 ,                                                            (5) 

where 𝑷(𝑡) is the state transition probability matrix. 

The state transition probability matrix 𝑷(𝑡)  is defined by the kernel matrix 𝚽(𝑡) , Φ𝑖𝑗(𝑡) =

𝑃(𝑋𝑛+1 = 𝑆𝑗,  𝑇𝑛+1 ≤ 𝑡 | 𝑋𝑛 = 𝑆𝑖). The mathematical calculation of the transition probability matrix 

is performed using the Markov-renew equation. 

𝑷(𝑡) = 𝑾(𝑡) + ∫ 𝚽′(𝜏)
𝑡

0

𝑷(𝑡 − 𝜏)𝑑𝑡, (6) 

where 𝑾(𝑡) = (𝑊𝑖,𝑗(𝑡)), 𝑊𝑖,𝑗(𝑡) = 𝛿𝑖,𝑗(1 − ∑ 𝑎𝑖,𝑗(𝑡)
𝑚
𝑗=0 ) and 𝛿𝑖,𝑗 is a Kronecker function. 

In a semi-Markov process, the kernel matrix 𝚽(𝑡) controls the next state of the system and the time 

is the sojourn time in the current state before making the next transition. The kernel matrix should 

satisfy the following conditions. 

lim
𝑡→∞

∑Φ𝑖𝑗(𝑡) = 1

𝑁

𝑗=1

. (7) 

The transition model of system states based on the damage degradation and maintenance recovery 

is shown in Fig. 3. 

 

Fig.3. Multi-state transition model for degradation and recovery. 

In Fig. 3, 𝑝𝑖𝑗(𝑖 = 0,1,2; 𝑗 = 1,2,3; 𝑖 < 𝑗) denotes the probability of state transition due to shock, 

and different levels of the shock intensity result in different state transition. 𝑝𝑖4(𝑖 = 0,1,2,3) denotes 

𝑆0 𝑆1 𝑆2 𝑆3 𝑆4

𝑝01 𝑝12 𝑝23

𝑝24𝑝14𝑝04

𝑝02

𝑝03

𝑝13

𝑝21

𝑝31

𝑝40

𝑝34
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the probability of the state transition due to aging. 𝑝21 denotes the probability of the state transition 

due to preventive maintenance. 𝑝31 denotes the probability of the state transition due to corrective 

maintenance, and 𝑝40 denotes the probability of the state transition due to special maintenance.  

The system can be considered to be in the best performance state at the initial state, so the row 

vector of state probabilities 𝑷𝟎 = [𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4] = [1,0,0,0,0].  The probability of the system 

sojourning in each state at any moment is defined as 

𝑃𝑖(𝑡) =∑𝑝𝑗𝑖(𝑡)

𝑖

𝑗=0

− ∑ 𝑝𝑖𝑗(𝑡)

 

𝑗=𝑖+1

. (8) 

The sum of the probabilities of each state satisfies 

∑𝑃𝑖(𝑡) = 1

 

𝑖=0

. (9) 

4 Resilience approach under the interaction of damage and maintenance 

Improving system reliability to meet task requirements incurs reliability-associated costs. 

Degradation in system performance due to shocks and aging incurs performance-degradation-

associated costs, and the maintenance process incurs maintenance-associated costs. In reality, the 

upper limit of each cost expenditure of the system is fixed. Therefore, the various cost of a single-

component system is less than the upper limit of cost. 

4.1 Reliability and cost constraints 

Two conditions need to be satisfied for a system to remain in the working condition. First, the 

system is not fully aged, i.e., it is 𝑍(𝑡) ≤ 𝑀. The probability 𝑃(𝑍(𝑡) ≤ 𝑀) that the system is not fully 

aged on [0, 𝑡] can be expressed as the ratio of the time that it is not fully aged to the total time t, as 

shown in Eqs. (10), (11) and (12). 

𝑇{𝑍(𝑡)≤𝑀} = ∫ ℶ{𝑍(𝑡) ≤ 𝑀} 𝑑𝑢
𝑡

0

, (10) 

ℶ{𝑍(𝑡) ≤ 𝑀} = {
1, 𝑖𝑓 𝑍(𝑡) ≤ 𝑀
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (11) 

𝑃(𝑍(𝑡) ≤ 𝑀) =
𝑇{𝑍(𝑡)≤𝑀}

𝑡
. (12) 

In Eq. (12), 𝑇{𝑍(𝑡)≤𝑀} indicates the time when the system is not fully aged. Second, shocks did not 

cause the system to fail. For the second condition, we use the probability of the system sojourning in 

state 𝑆0 (normal working state), state 𝑆1 (slight damage state), and state 𝑆2 (severe damage state) to 

measure. The system works with low performance even though it is damaged in states 𝑆1 and 𝑆2. 

Therefore, the reliability of the multi-state system is defined as 
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𝑅(𝑡) = 𝑃(𝑍(𝑡) ≤ 𝑀){𝑃(𝑋(𝑡) = 𝑆0) ∪ 𝑃(𝑋(𝑡) = 𝑆1) ∪ 𝑃(𝑋(𝑡) = 𝑆2)}, (13) 

where 𝑅(𝑡)  denotes the reliability of the system at moment 𝑡 . To guarantee that the system can 

maintain the basic working needs, the reliability of the system needs to satisfy 

𝑅(𝑡) ≥ 𝑅0, (14) 

where 𝑅0 indicates the minimum value of reliability that needs to be achieved for a single-component 

system to meet basic operating requirements. 

As discussed, costs include the cost of shock losses, maintenance costs, and the costs spent to meet 

basic reliability needs. Losses due to shocks include direct losses due to shocks and indirect losses 

due to low performance operation. The direct loss due to shocks relates the intensity of the shocks, 

and the indirect loss due to shocks is related to how long the system lasts in a low performance state. 

Maintenance costs include costs of preventive maintenance, corrective maintenance , and special 

maintenance.  

The system undergoes a change from performance state 𝑆𝑖 to state 𝑆𝑗 (0 ≤ 𝑖 < 𝑗 ≤ 3) during the 

shock damage phase, and the process incurs a direct loss of 𝑚𝑖,𝑗. 

{
𝑚𝑖,𝑗 > 0, 𝑖𝑓 𝑖 < 𝑗

𝑚𝑖,𝑗 = 0, 𝑖𝑓 𝑖 ≥ 𝑗
 . (15) 

The system also incurs maintenance costs during the maintenance phase, which are inversely 

proportional to the maintenance time by a factor of 𝑘𝑖  (𝑖 = 2,3,4). 

In addition, there are periods during the damage and maintenance process when the system operates 

in the low performance state. The system operates in the low performance state 𝑆𝑖, compared to the 

optimal performance state operation in terms of reduced revenue, i.e., indirect losses, determined by 

the unit time loss 𝑛𝑖  and the duration of the maintenance process 𝑇𝑖 . The costs incurred by the 

maintainable multi-state system during the damage and maintenance processes are shown in Fig. 4. 

 

Fig. 4. Cost analysis diagram for multi-state system. 

The relationship between the cost of a component and its reliability can be obtained from experience 

𝑆0 𝑆1 𝑆2 𝑆3 𝑆4
𝑚01 𝑚12 𝑚23

𝑚02

𝑚03

𝑚13

𝑘2
𝑘3

𝑘4

𝑛1 𝑛2 𝑛3 𝑛4
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or from data on similar components. However, in many cases, such data are unreliable. In this paper, 

the cumulative distribution function (cdf) of cost with respect to reliability in [42] is assumed to give 

the cost spent to satisfy the basic reliability needs. 

𝐶𝑅(𝑡) = 𝑐𝑅𝑒
[(1 𝑓)

𝑅(𝑡)−𝑅𝑚𝑖𝑛
𝑅𝑚𝑎𝑥−𝑅(𝑡)

]
, (16)

where 𝑐𝑅  is the base cost when 𝑅(𝑡) = 𝑅𝑚𝑖𝑛 , and 𝑓  denotes the feasibility that reliability can be 

improved, 𝑓 = [0,1] . 𝑅𝑚𝑖𝑛  is the minimum acceptable reliability and  𝑅𝑚𝑎𝑥  is the maximum 

acceptable reliability. 

Let 𝐶(𝑡) denote the total cost incurred by the system in [0, 𝑡], which can be defined as 

𝐶(𝑡) = (𝐶𝑚(𝑡) + 𝐶𝑘(𝑡) + 𝐶𝑛(𝑡)) + 𝐶𝑅(𝑡) 

= (∑ ∑ 𝑚𝑖,𝑗
3
𝑗=0 ∙ 𝑁𝑖,𝑗(𝑡) + ∑ 𝑘𝑖 ∙

1

𝑇𝑖

4
𝑖=2 + ∑ 𝑛𝑖 ∙ 𝑇𝑖

4
𝑖=1

3
𝑖=0 )

+𝑐𝑅𝑒
[(1 𝑓)

𝑅(𝑡)−𝑅𝑚𝑖𝑛
𝑅𝑚𝑎𝑥−𝑅(𝑡)

]
. (17)

In Eq. (17), 𝐶𝑚(𝑡), 𝐶𝑘(𝑡),  and 𝐶𝑛(𝑡) denotes the direct loss due to shocks, the maintenance cost of 

the system, and the indirect loss due to shocks, respectively. 𝑁𝑖,𝑗(𝑡) denotes the number of the system 

moving from state 𝑆𝑖 to state 𝑆𝑗 from time 0 to time 𝑡. 𝑇𝑖 denotes the cumulative time that the system 

stays in state 𝑆𝑗 from  0 to 𝑡, which can be defined as 

𝑇𝑖 = ∫ ζ{𝐹(𝑢) = 𝐹𝑖} 𝑑𝑢
𝑡

0

, (18) 

ζ{𝐹(𝑢) = 𝐹𝑖} = {
1, 𝑖𝑓 𝐹(𝑢) = 𝐹𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (19) 

where 𝐹(𝑢)  denotes the performance value of the system at moment 𝑢  and 𝐹𝑖  denotes the 

performance value of the system at state 𝑆𝑖. 

The total cost incurred during the operation of the system in [0, 𝑡] cannot exceed the maximum 

budget cost 𝐶𝑏𝑑, i.e., 

𝐶(𝑡) ≤ 𝐶𝑏𝑑. (20) 

4.2 Resilience objectives 

Resilience is a capability characteristic presented by a system in response to various perturbations 

and shocks, i.e., the ability of a system to resist, absorb and recover from external shocks from natural 

or man-made events [43]. In this paper, an overall resilience index will be proposed to measure the 

resilience of the system in three aspects: resistibility index, absorbability index, and recoverability 

index. Fig. 5 shows the correspondence between the three resilience indexes and the state of the 

system after multiple shocks in Fig. 2. 
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Fig. 5. Correspondence between resilience index and system state under multiple shocks. 

1) Resistibility index 

A system’s resistibility is the probability that the system maintains its normal working state under 

random external shocks. In other words, a system with a high resistibility can operate at the best 

performance state after a random shock without the need for maintenance. The resistibility 𝑃𝑟𝑡 of a 

system, which is the probability that the system maintains the state 𝑆0 on [0, 𝑡], is defined by 

𝑃𝑟𝑡 = 𝑃{𝑋(𝜑) = 𝑆0, ∀𝜑 ∈ (0, 𝑡)}, (21) 

where 𝑋(𝜑) denotes the performance state of the system at the moment 𝜑. 

It is not hard to see that 0 ≤ 𝑃𝑟𝑡 ≤ 1. When 𝑃𝑟𝑡 = 0, the system has zero resistibility and is in the 

critical collapse state. When 𝑃𝑟𝑡 = 1, the system can resist all external shocks and is in the operating 

state with the best performance. The larger the value of 𝑃𝑟𝑡, the better the resistibility of the system. 

2) Absorbability index 

Absorbability refers to the ability of the system to absorb the impact of shocks, and after the shocks 

disappear, the system can return to its the best performance state without causing system failure or 

malfunction. In this paper, a shock is considered to have caused failure or malfunction to the system 

and to change the system state to a fault state or a fully aged state. The absorbability of a system 

should be reflected in the system state in {𝑆0, 𝑆1, 𝑆2} after the shock, which keeps the system at an 

operating state, the absorbability is noted as 𝑃𝑎𝑛. 

𝑃𝑎𝑛 = 𝑃{𝑋(𝜑) = 𝑆
𝑎, ∀𝜑 ∈ (0, 𝑡), 𝑆𝑎 = {𝑆0, 𝑆1, 𝑆2}}. (22) 

It is easy to see that 0 ≤ 𝑃𝑎𝑛 ≤ 1. When 𝑃𝑎𝑛 = 0, the system has zero absorbability and a shock 

will make the system stop working. When 𝑃𝑎𝑛 = 1, the system can absorb all external shocks and 

protect the continuous work. The larger the value of 𝑃𝑎𝑛, the better the absorbability of the system. 
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3) Recoverability index  

Recoverability refers to the ability of a system to return to a high-performance operating state within 

a specified time after being damaged by a shock. The recovery time of the system is the preventive 

maintenance time in state 𝑆2, the corrective maintenance time in state 𝑆3, and the special maintenance 

time in state 𝑆4. Therefore, the recovery time for high performance is defined as 

𝑇𝑟𝑦 = 𝑇2 + 𝑇3 + 𝑇4, ∀𝜑 ∈ (0, 𝑡), (23) 

where 𝑇2, 𝑇3 and 𝑇4 denote the total time of the three maintenance durations, respectively, which are 

calculated according to Eqs. (18) and (19). The specified maximum maintenance time is 𝑇𝑠𝑑, and 𝑇𝑠𝑑 

is a function related to the number of impacts, impact strength, and damage rate.  

𝑇𝑠𝑑 = 𝑓(𝑁(𝑡),𝑾, 𝜷), (24) 

where 𝑁(𝑡)  is the number of impacts in  [0, 𝑡] , 𝑾  is the shock intensity matrix, and 𝛽  is the 

degradation rate matrix, and the three correspond to each other. The recoverability is defined as 

𝑃𝑟𝑦 =
𝑇𝑠𝑑 − 𝑇𝑟𝑦

𝑇𝑠𝑑
. (25) 

It is easy to see that 0 ≤ 𝑃𝑟𝑦 ≤ 1. When 𝑃𝑟𝑦 = 0, the system has zero recoverability. After shocks, 

the system maintenance time is longer. When 𝑃𝑟𝑦 = 1 , the system has been in high performance 

operation, no maintenance is needed, The larger the value of 𝑃𝑟𝑦, the better the recoverability of the 

system.  

4) rverall Resilience 

To better measure the overall resilience of the system, we propose an overall resilience index based 

on the established resistibility index, absorbability index, and recoverability index to 

comprehensively evaluate the resilience of the system. The overall resilience 𝑃𝑜𝑙 is defined as 

𝑃𝑜𝑙 = √𝑃𝑟𝑡 × 𝑃𝑎𝑛 × 𝑃𝑟𝑦
3 , (26)

where 𝑃𝑟𝑡 , 𝑃𝑎𝑛 , and 𝑃𝑟𝑦  denote resistance resilience, absorption resilience, and recoverability, 

respectively. The overall resilience is obtained by utilizing the multiplication of the three resilience 

indexes which can reflect the level of coordination of the three resilience indexes.  

It is easy to see that 0 ≤ 𝑃𝑜𝑙 ≤ 1. When 𝑃𝑜𝑙 = 0, the system has no resilience. When 𝑃𝑜𝑙 = 1, the 

overall resilience of the system is very good, and all the resilience indexes are in the best condition. 

The larger the value of 𝑃𝑜𝑙, the better the overall resilience of the system. 

Therefore, the resilience optimization model of the single-component system under certain working 

capacity and limited cost constraints is defined as 

{
𝑚𝑎𝑥 ∶ 𝑃𝑜𝑙 = √𝑃𝑟𝑡 × 𝑃𝑎𝑛 × 𝑃𝑟𝑦

3  

 𝑅(𝑡) ≥ 𝑅0
𝐶(𝑡) ≤ 𝐶𝑏𝑑

. (27) 

The overall resilience of the system for 𝑃𝑜𝑙 = 1 is the maximization objective. 𝑇0, 𝑇1, 𝑇2, 𝑇3, 𝑇4 are 
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the independent variables for system resilience optimization, and the constraints are reliability and 

cost constraints. 

Therefore, the resilience framework for a single-component system is shown in Fig. 6. 

 

Fig. 6. System resilience optimization model based on a competing risk and condition-based maintenance. 

5 Case study 

A radar’s main function is to monitor and detect enemy and enemy aircraft movements. Its failures 

are mainly caused by external shock failures and usage aging of the motor components within the 

system. Therefore, it can be viewed as a single-component equipment system subjected to competing 

risks.  

The parameters of the radar system are set as follows. The performance state of the radar system 

and the corresponding performance values are shown in Table 1. The threshold values of the shock 
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intensity are 𝐷1 = 5, 𝐷2 = 15, 𝐷3 = 30. The radar system is intact at the initial moment, so the initial 

performance degradation of internal natural degradation 𝛼 = 0 . It is assumed that the time of 

complete aging of the radar without any shock is 6 years, so the degradation threshold is 𝑀 =

365 × 6 = 2190. The frequency of shocks to the radar system obeys the Poisson distribution with 

rate parameter 𝜆 = 8.22 × 10 3. If the 𝑗th random shock type is level I, the amount of degradation is 

𝑌𝑗   ~ 𝑁(50, 102) . If the 𝑗 th random shock type is level II, the amount of degradation is 𝑌𝑗   ~ 

𝑁(100, 202). If the 𝑗th random shock type is level III, the amount of degradation is 𝑌𝑗  ~ 𝑁(150, 302). 

If the 𝑗th random shock type is level IV, the amount of degradation is 𝑌𝑗  ~ 𝑁(200, 402). The reliability 

of satisfying the basic operating capability is 𝑅0 = 0.75 . The cost of satisfying the minimum 

reliability is 𝑐𝑅 = 500. The direct cost due to the shock is 𝑚0,1 = 100, 𝑚0,2 = 250, 𝑚0,3 = 450,

𝑚1,2 = 150, 𝑚1,3 = 350, 𝑚2,3 = 200. 𝑘2 = 1000, 𝑘3 = 2000, 𝑘4 = 3000. The indirect cost per 

unit time due to low performance is 𝑛1 = 3, 𝑛2 = 4, 𝑛3 = 5, 𝑛4 = 5. The budget cost for one year is 

𝐶𝑏𝑑 = 4000. The time interval between shocks satisfies Δ𝑇~𝐸𝑥𝑝(0.01). The transition time between 

the states obeys the Weibull distribution. When the shock type is at level II, the cumulative 

distribution function (cdf) of 𝑆0→𝑆1 is 𝐹0,1
II (𝑡) = 1 − 𝑒 (0.01 𝑡)

2
, the cdf of 𝑆1→𝑆2 is 𝐹1,2

II (𝑡) = 1 −

𝑒 (0.01 𝑡)
3
, and the cdf of 𝑆2→𝑆3 is 𝐹2,3

II (𝑡) = 1 − 𝑒 (0.01𝑡)
3.5

. When the shock type is at level III, the 

cdf of 𝑆0→𝑆2 is 𝐹0,2
III(𝑡) = 1 − 𝑒 (0.021𝑡)

2.3
, the cdf of 𝑆1→𝑆3 is 𝐹1,3

III(𝑡) = 1 − 𝑒 (0.02𝑡)
2.5

, the cdf of 

𝑆2→𝑆3 is 𝐹2,3
III(𝑡) = 1 − 𝑒 (0.02𝑡)

3.5
. For the shock type level IV, the cdf of 𝑆0→𝑆3 is 𝐹0,3

IV(𝑡) = 1 −

𝑒 (0.03𝑡)
2.5

 , the cdf of 𝑆1 → 𝑆3  is 𝐹1,3
IV(𝑡) = 1 − 𝑒 (0.03𝑡)

3
 , the cdf of 𝑆2 → 𝑆3  is 𝐹2,3

IV (𝑡) = 1 −

𝑒 (0.03𝑡)
3.5

 . For preventive maintenance, the cdf of 𝑆2 → 𝑆1  is 𝐹2,1
𝑀𝑆1(𝑡) = 1 − 𝑒 (0.0 𝑡)

2
 . For 

corrective maintenance, the cdf of 𝑆3→𝑆1 is 𝐹3,1
𝑀𝑆2(𝑡) = 1 − 𝑒 (0.031𝑡)

2
. For special maintenance, the 

cdf of 𝑆4 →𝑆0  is 𝐹4,0
𝑀𝑆3(𝑡) = 1 − 𝑒 (0.01𝑡)

3
 . The initial state vector is 𝑷𝟎 = [𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4] =

[1,0,0,0,0]. To simplify the calculation, we assume that 𝑇𝑠𝑑 = 50 ∗ 𝑛𝑀𝑆1 + 80 ∗ 𝑛𝑀𝑆2 + 15 ∗ 𝑛𝑀𝑆3. 

𝑛𝑀𝑆1  , 𝑛𝑀𝑆2  , and 𝑛𝑀𝑆3  are the number of occurrences of preventive maintenance, corrective 

maintenance, and special maintenance, respectively. The time unit is one day.  

Table 1. Performance values for each state of the radar system  

Performance state State meaning The value of performance 

𝑆0 Normal state 𝐹0 = 1 

𝑆1 Slight damaged state 𝐹1 = 0.7 

𝑆2 Severe damaged state 𝐹2 = 0.3 

𝑆3 Fault state 𝐹3 = 0 
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𝑆4 Fully aged state 𝐹4 = 0 

When there is only one type of shocks, we assume that the shock intensity level is II and the shock 

intensity 𝐷 = 10 . Assume that the system receives the first shock at 𝑡 = 30  day. Therefore, the 

probability of the system in each state from 0~30 days is 𝑷𝟎(30) = [𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4] = [1,0,0,0,0]. 

The degradation volume of the radar system under multiple shocks with maintenance in 1 year is 

simulated, as shown in Fig. 7. The resilience of the radar system is simulated. The resilience curves 

of multiple stages are stitched together to obtain the resilience of the radar system under shocks of 

one type with reliability and cost constraints in 1 year, as shown in Fig. 8. 

 

Fig. 7. Degradation volume of radar system under shocks of one type. 

 

Fig. 8. Resilience of the radar system under shocks of one type. 

According to Fig. 7, the radar system suffered three shocks in one year. The total degradation of 

the system did not exceed the degradation threshold 𝑀 in 1 year, i.e., the radar system did not undergo 

fully aged. From Fig. 7 and Fig. 8, the radar system suffered two shocks in 30~182.632 days. The 

resilience of the system reached the minimum value of 0.285 at day 182.632. The radar system was 

in a severe damage state 𝑆2  at 182.632 days, so preventive maintenance was carried out and the 

resilience of the system increased. rn days 197.557 to 224.648, the system was not shocked and the 
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resilience remained the same. rn day 224.648, the system received a third shock, the system 

resilience decreased, and the system performance state changed from 𝑆1  to 𝑆2 . Subsequently, the 

system underwent preventive maintenance again, the system resilience increased, and the system 

performance state improved to 𝑆1. 302.556 days later, the system did not receive shocks, and the 

system resilience remained unchanged. 

Under one type of shocks, the cost and reliability of the system’s optimal resilience at the special 

points (the shock occurs, maintenance begins, and maintenance ends, etc.) are analyzed, as shown in 

Table 2. 

Table 2. Cost and reliability at special points under shocks of one type 

Time Events Reliability Cost Resilience 

30 First shock occurs 1 100 1.000 

128.435 Second shock occurs 0.896 495.305 0.463 

182.632 End of the second shock 0.750 1512.093 0.285 

182.632 First 𝑀𝑆1 occurs 0.750 1512.093 0.285 

197.557 End of the first 𝑀𝑆1 0.873 1623.870 0.498 

224.648 third shock occurred 0.873 1855.143 0.498 

277.631 End of the third shock  0.754 2066.115 0.314 

277.631 Second 𝑀𝑆1 occurs 0.754 2066.115 0.314 

302.556 End of the second 𝑀𝑆1 0.906 2205.935 0.497 

365 End 0.906 2393.267 0.497 

When there are multiple types of shocks, it is assumed that the probability of occurrence of the 

three types of shocks II, III, and VI are the same, and the corresponding shock intensities are 10, 25, 

and 35, respectively. Assuming that the time when the system first suffers a shock is 𝑡 = 30. The 

degradation volume of the radar system under multiple shocks with maintenance in 1 year is simulated, 

as shown in Fig. 9. The resilience of the radar system is simulated. The resilience curves of multiple 

stages are stitched together to obtain the resilience of the radar system under multiple types of shocks 

with reliability and cost constraints in 1 year, as shown in Fig. 10. 
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Fig. 9. Degradation volume of radar systems under multiple types of shocks. 

 

Fig. 10. Resilience of the radar system under multiple types of shocks. 

According to Fig. 9, the radar system is subjected to shocks of three types and their levels are IV, 

II, and III. The radar system degrades to the degradation threshold on day 306.576, and special 

maintenance is carried out at this time. From Fig. 10, after the radar system suffers a shock of level 

IV, the system state changes from 𝑆0 to 𝑆3. Subsequently, corrective maintenance 𝑀𝑆2 is performed, 

and the system state changes to 𝑆1 on day 78.980. Between days 78.980 and 126.833, the radar system 

does not receive any shock and the system’s resilience does not change. rn day 126.833, the radar 

system receives a level II shock, the system resilience decreases, and the performance state changes 

to 𝑆2. Subsequently, preventive maintenance 𝑀𝑆1 occurs, and the system state returns to 𝑆1. rn day 

232.546, the system receives a level III shock, the system performance decreases, and the 

performance state changes to the 𝑆3 , followed by failure maintenance 𝑀𝑆2 . rn day 306.576, the 

system degrades to the degradation threshold and the performance state changes to 𝑆4. Subsequently, 

special maintenance is performed and the system performance state changes to 𝑆0 . The system 

resilience returns to 1. 

The cost and reliability of the system optimal resilience under multiple types of shocks are analyzed 

at the special points (the shock occurs, maintenance begins, and maintenance ends, etc.), as shown in 
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Table 3. 

Table 3. Cost and reliability at special points under multiple types of shocks 

Time Events Reliability Cost Resilience 

30 First shock occurs 1 450 1 

58.571 End of the first shock 0.847 592.855 0.661 

58.571 First 𝑀𝑆2 occurs 0.847 592.855 0.661 

78.980 End of the first 𝑀𝑆2 0.926 792.896 0.756 

126.833 Second shock occurs 0.926 942.896 0.756 

172.619 End of the second shock 0.793 1126.040 0.514 

172.619 𝑀𝑆1 occurs 0.793 1126.040 0.514 

189.286 End of 𝑀𝑆1 0.885 1252.707 0.618 

232.546 Third shock occurs 0.885 1602.708 0.618 

274.667 End of the third shock 0.75 2547.819 0.365 

274.667 Second 𝑀𝑆2 occurs 0.75 2547.819 0.365 

303.238 End of the second 𝑀𝑆2 0.871 2760.675 0.503 

306.576 𝑀𝑆3 occurs 0.871 3060.675 0 

315.575 End of 𝑀𝑆3 0.856 3439.040 1 

365 End 0.856 3439.040 1 

6 Conclusions and future work 

This paper developed a resilience optimization model for a single-component system, which differs 

from an ordinary system in that its failure modes considered in this paper originates from either 

external shocks or its own natural aging. Therefore, a competing risk model was introduced to 

describe the failure process of the single-component system. Considering that shocks of different 

intensities aggravate system aging to different degrees, random shocks were classified into four types 

of shocks, and condition-based maintenance strategies were proposed, i.e., preventive maintenance, 

corrective maintenance, and special maintenance. It also considered that the replacement of new parts 

as special maintenance, which takes a certain amount of time, is more in line with the realistic time 

delay caused by the re-purchase of new parts due to insufficient inventory. The system is assumed a 

multiple state system. Semi-Markov processes were used to describe the state transition process of 

the system under the interaction of multiple shocks and maintenance. The paper proposed a 

resistibility index, an absorbability index, and a recoverability index and then proposed an overall 

resilience index. Since the system needs to meet the reliability and cost constraints required for proper 

operation, a reliability and cost-based resilience optimization model was proposed. A solution was 
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provided for the system to improve the resilience under the available resources. Finally, the feasibility 

of the proposed resilience optimization model was demonstrated by giving separate examples of radar 

system subjected to shocks of one type and multiple types of shocks. 

There are several research directions worth exploring in future research. First, it is possible to 

investigate the occurrence of shocks during system maintenance. This paper assumed that no shocks 

occur during maintenance, but in real situations, this may be the case. Second, the role of maintenance 

can be specified, such as maintenance can improve the system’s ability to resist shocks, or 

maintenance can accelerate the recovery of the system. 
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