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Hippocampal neurons code individual 
episodic memories in humans

Luca D. Kolibius    1,2,3  , Frederic Roux3, George Parish    3, Marije Ter Wal    3, 
Mircea Van Der Plas    2,3, Ramesh Chelvarajah3,4, Vijay Sawlani4, 
David T. Rollings4, Johannes D. Lang5, Stephanie Gollwitzer5, Katrin Walther    5, 
Rüdiger Hopfengärtner5, Gernot Kreiselmeyer5, Hajo Hamer5, 
Bernhard P. Staresina    6,7, Maria Wimber    2,3, Howard Bowman3,8 & 
Simon Hanslmayr    2,3 

The hippocampus is an essential hub for episodic memory processing. 
However, how human hippocampal single neurons code multi-element 
associations remains unknown. In particular, it is debated whether each 
hippocampal neuron represents an invariant element within an episode  
or whether single neurons bind together all the elements of a discrete 
episodic memory. Here we provide evidence for the latter hypothesis.  
Using single-neuron recordings from a total of 30 participants, we show  
that individual neurons, which we term episode-specific neurons, code 
discrete episodic memories using either a rate code or a temporal firing 
code. These neurons were observed exclusively in the hippocampus. 
Importantly, these episode-specific neurons do not reflect the coding of a 
particular element in the episode (that is, concept or time). Instead, they 
code for the conjunction of the different elements that make up the episode.

Episodic memory refers to our ability to reinstate the what, where and 
when of past experiences1. This ability is thought to depend on the  
reinstatement of neural activity that was present at memory encoding2.  
It is undisputed that the hippocampus plays an integral role in episodic 
memory processing3–5 and the binding of multimodal information6. 
However, how it codes episodic memories remains controversial.

One important open question is whether neurons in the hippo
campus code for specific elements or an entire episode. Concept  
neurons in the hippocampus fire in response to specific invariant  
elements independent of the context in which they are presented7–10. 
One contemporary idea is that the diverse elements that make up  
an episode are coded by the simultaneous activity of a set of  
these concept neurons11,12 or by expanding the selectivity of existing 

concept neurons13. According to this framework, when you are sitting 
in your favourite coffee shop with your best friend, one set of concept 
neurons might code for the coffee shop and a separate set for your 
friend (Fig. 1a).

Alternatively, single units in the hippocampus might sparsely 
encode a specific set of elements within an individual episode and act 
as pointers to cortical modules during memory reinstatement. Accord-
ing to this so-called indexing theory14,15, the entire episode with your  
friend in the coffee shop is represented by a set of hippocampal neurons  
(Fig. 1a). Unlike concept neurons, these episode-specific neurons 
(ESNs) would fire in response to the conjunction of all the diverse 
information within an episode and not in response to individual con-
tent elements. Despite computational models pointing towards the  
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Importantly, these ESNs would code for the conjunctive ele-
ments present within an episode and would not be tuned to individual  
elements within the episode. The existence of ESNs does not preclude 
concept neurons from participating in episodic memory process-
ing. However, investigating the role of concept neurons in episodic 
memories goes beyond the scope of this work. As control analyses, 
we investigated whether this firing activity can be explained by a  
firing response to specific invariant elements, as occurs in concept 
neurons9, or by a time preference, as occurs in time cells (TCs)20,21.

existence of ESNs16–19, to this day there is no evidence for such a  
sparse conjunctive code in humans.

In the present work, we provide support for the existence of  
this content-agnostic episodic memory code implemented through 
ESNs. We leveraged intracranial microwire recordings to inves-
tigate the firing patterns of neurons in the human hippocampus  
and hypothesized that a significant number of hippocampal neurons 
would reinstate their firing rate within a specific episode (that is, fire 
during encoding and retrieval).
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Fig. 1 | Difference between indexing theory and concept-neuron-based 
hippocampal coding of episodic memories, and procedures for Experiments 
1 and 2. a, Left, the indexing theory proposes that hippocampal neurons 
represent a conjunctive code, acting as pointers to various elements of an 
episode (the smell of the coffee, your friend, the background music, the café 
and so on) rather than directly coding for the elements themselves14. Right, 
concept neurons in the hippocampus are thought to code for specific elements 
or concepts7–9. Within this framework, a group of neurons collectively code an 
episodic memory, with each neuron representing a specific element involved 
in that episode (that is, a neuron coding for the coffee, another neuron coding 
for your friend and so on11,12). It is important to note that one index or one 
concept is likely to be coded by an assembly of neurons, not a single neuron. 
b, Procedure for Experiment 1. The participants imagined a vivid episode with 
an animal cue and two associate images (two faces, two places or a face and 

a place), rated its plausibility, and later recalled the associated images when 
cued with the animal cue. The experiment was self-paced, and each episode was 
learned and tested once. This approach is suitable for investigating episodic 
memory as originally defined by Tulving in 197229. Following each encoding 
block of roughly 20 episodes, the participants performed a short distractor 
task. The pink areas represent the time windows used for subsequent analyses 
(Methods). c, Procedure for Experiment 2. Left, the memory task was largely 
the same as in Experiment 1 (b), but events had one cue and one associate image 
(both an animal, a face or a place). Right, after the memory task, the participants 
performed a memory-free visual tuning task where previously shown stimuli 
were presented multiple times in quick succession. This approach has 
traditionally been used to identify putative concept neurons. The original  
images have been replaced due to copyright issues.
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Results
We analysed recordings from two separate experiments (Experiment 1:  
585 neurons in the hippocampus, 16 participants, 7 female, mean  
age 36.125 years, from 26 to 53 years; Experiment 2: 216 neurons in the 
hippocampus, 14 participants, 7 female, mean age 33.857 years, from 
19 to 58 years) where the participants were implanted with stereotactic 
Behnke–Fried depth electrodes in the hippocampus (Supplementary 
Fig. 1), while they performed a memory association task (Fig. 1b,c).

During the encoding phase of Experiment 1, the participants cre-
ated a vivid mental story consisting of an animal cue and two associate 
images (two faces, two places or a face and a place). By contrast, Experi-
ment 2 consisted of one cue and one associate image (both an animal, 
face or place). The encoding and recall phases of the experiment were 
interleaved with a short distractor task where the participants had 
to judge whether a series of 15 numbers were odd or even. The dis-
tractor phase lasted between 22.43 s and 224.52 s (median duration, 
42.19 s). During the recall phase, the animal cue was presented again, 
and the participants were asked to retrieve the associate image(s). 
The experiments were self-paced, and every episode was learned and 
retrieved only once. The participants correctly recalled on average 
68.38% (s.e. = 4.64%) of episodes in the first experiment (Supplemen-
tary Table 1) and on average 65.63% (s.e. = 4.45%) of episodes in the 
second experiment (Supplementary Table 2). This is substantially 
more than would be expected by chance (16.7% and 25%, respectively).

Identifying ESNs
For every neuron, we determined the firing rate during each episode 
at encoding and retrieval. We then z-scored the firing rate across all  
encoding and retrieval episodes and excluded all later forgotten 
episodes. This was done independently for encoding and retrieval 
to account for general differences in firing rates. We measured 
episode-specific firing reinstatement as the product of the standard-
ized firing rates at encoding and retrieval (Fig. 2a).

Using an episode-shuffling procedure, we generated a distribution 
of reinstatement values expected by chance. A neuron was considered 
an ESN if (1) the empirical reinstatement value exceeded the 99th 
percentile of the shuffled distribution for at least one episode and  
(2) the standardized firing rate for encoding and retrieval of that  
episode each exceeded 1.645 (Pright-tailed < 0.05). The second criterion 
prevented the identification of ESNs that would excessively fire at  
only one phase of the task (that is, encoding or retrieval).

It could be argued that ESNs identified in this manner could reflect 
the firing of cells tuned to the image of the animal cue rather than 
the conjunction of all elements, since the cue is episode-unique and 
presented during encoding and retrieval. To address this issue, in 
Experiment 1, we excluded neurons that showed a significant firing 
increase during the first second after the encoding of the animal cue 
for episodes that were later reinstated (Methods). This procedure 
has traditionally been used to identify putative concept neurons7–9. 
Using this approach, we identified a significant number of hippocam-
pal ESNs in Experiment 1 (136 out of 585 neurons (23.25%); P < 0.001; 
permutation test; Fig. 2b). Comparable results are obtained when  
(1) adding up the standardized firing rate between encoding and 
retrieval instead of multiplying them (E and R ≥ 1.645; reinstatement, 
E + R) (125 ESNs; P < 0.001), (2) increasing the minimum standardized 
firing rate from z = 1.645 to z = 2.6 (E and R ≥ 2.6; reinstatement, E × R) 
(29 ESNs; P < 0.001) and (3) using a different reinstatement measure 
that normalizes the encoding-and-retrieval product by their absolute 
difference (E and R ≥ 1.645; reinstatement, (E × R)/|E − R|) (53 ESNs; 
P < 0.001). This reinstatement measure has the important advantage 
of considering the similarity between the encoding and retrieval  
firing rates.

In Experiment 1, 117 of 136 ESNs (86.03%) coded for a single  
episode, whereas the rest coded for multiple episodes. Two example  
ESNs are shown in Fig. 3. These ESNs are unlikely to be concept  

cells tuned to the animal cue as the firing rate during encoding  
reaches its maximum only after the presentation of the associate  
stimulus (Fig. 4).

Note that the proportion of neurons that can be classified as ESNs 
is proportional to the number of events learned and retrieved (the  
same is the case for concept neurons). This is because we apply the 
threshold derived from the first permutation test to all episodes, 
without family-wise error correction. It is therefore not suitable for 
determining the sparseness of the hippocampal code. However, the 
proportion of ESNs of all recorded neurons is useful as an estimation 
of how many ESNs we can expect in future analyses.

It is crucial to understand that this α-level inflation does not  
extend to the group-level permutation test, where the same number  
of tests are applied to randomly shuffled data. We have added a 
simulation using random values as spike rates and using circularly  
shuffled spike times to show that there is no inflation of the α error 
at the group level at which we interpret our findings (Methods and  
Supplementary Fig. 2).

ESNs are suggested to reflect a unique coding mechanism of  
the hippocampus14,15. In line with this, we did not find a significant  
number of ESNs in the parahippocampus (15 out of 104 neurons; 
P = 0.5396; permutation test). However, it should be noted that all 
104 parahippocampal neurons originate from only five different 
microwire bundles over 14 sessions in five different participants, 
and therefore these results (albeit in line with the indexing theory) 
should be interpreted with caution. The second experiment did not 
contain a significant number of ESNs in the parahippocampus (3 out of  
25 neurons; P = 0.1199).

To conclude, we found a significant number of ESNs in the hippo
campus but not in the parahippocampus. The analysis approach we 
used to identify ESNs is robust to deviations in the parameter space.

ESNs do not code for the content/visual properties of images
Traditionally, visually responsive neurons have been identified  
using the repeated presentation of a stimulus. In the above analysis, 
we presented the animal cue only once, which is suboptimal for  
ruling out concept neurons tuned to the animal cue. To ameliorate this 
shortcoming, in Experiment 2 we added a visual tuning task (Fig. 1c)  
after the memory association task. During the visual tuning task, images 
from the memory task were repeatedly shown in quick succession. 
This approach is widely used to identify putative concept neurons  
that respond to one of the images independently of any memory  
processes (for example concept neurons, see Supplementary Fig. 3)7–9. 
When excluding concept neuron activity in this independent dataset, 
we replicated our previous results and identified a significant number  
of ESNs (38 out of 216 neurons (17.59%); P = 0.0053; permutation test; 
Fig. 2c). In Experiment 2, 34 of 38 ESNs (89.47%) coded for a single  
episode, whereas the rest coded for multiple episodes.

However, traditional concept neuron detection methods might  
be too conservative to identify weakly tuned concept neurons. To 
address this concern, we drastically reduced the threshold of what con-
stitutes a concept neuron—that is, lowering the uncorrected threshold 
from P = 0.0005 to P = 0.05—which increased the number of concept 
neurons from 58 to 155 (out of 216 neurons). During a typical tuning 
task, an average of 108.7 (minimum, 80; maximum, 156) different 
images are shown, and each image is tested for visual tuning. There is 
no correction for multiple testing, rendering a threshold at P < 0.05 
very liberal.

Remarkably, incorporating this liberal threshold to exclude 
potential concept neurons had little effect on the number of ESNs, 
which remained almost unchanged (36 out of 216 neurons (16.67%); 
P = 0.0025; permutation test). It is conceivable that some images that 
are presented during the visual tuning task act as cues that reactivate 
some ESNs. These reactivated ESNs would then be erroneously rejected 
as concept neurons. However, in practice, only four potential ESNs 
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were excluded on the basis of the visual tuning task (six when lowering 
the concept neuron threshold). We suspect that ESNs were not reacti-
vated during the visual tuning task because the participants were not 
instructed to actively retrieve memories and thus may not have been in 
a “retrieval mode”22,23. Tulving first proposed this concept in 198324,25, 
referring to the cognitive state that occurs when we actively attempt 
to remember something. Being in a retrieval mode increases the likeli-
hood that a memory cue successfully triggers memory retrieval. None-
theless, we cannot rule out that in some cases ESNs were reactivated 

during the visual tuning task and subsequently rejected. However, this 
would only make our analysis for identifying ESNs more conservative.

ESNs are limited to later remembered episodes
We have so far demonstrated that ESNs reinstate their firing  
rate when remembering a unique episode. This reinstatement  
cannot be explained by the semantic content or visual properties 
of the used image, which strengthens the notion that ESNs code for 
memories. In line with this, we did not find a significant number of 
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Fig. 2 | Analysis schematic and number of ESNs identified in Experiments 1 
and 2. a, A schematic for identifying ESNs. The plot shows the z-scored firing 
rate on the y axis for ten simulated episodes on the x axis colour-coded for 
encoding and retrieval (purple and orange, respectively). The transparent bars 
encompassing encoding and retrieval indicate the product of encoding and 
retrieval firing rates, which is used as the measure of episode-specific firing 
reinstatement. The dashed red line shows the threshold (derived from a shuffling 
procedure; Methods). Because of the way ESNs are defined, they are required to 
fire substantially above their average firing rate during encoding and retrieval, 

which rules out neurons that generally show an increased firing rate during 
remembered episodes. b, Identified ESNs during Experiment 1. Left, the number 
of ESNs that showed significant firing reinstatement to at least one episode (dark 
blue) and the number of neurons that showed no firing reinstatement (green). 
Right, the number of ESNs expected by chance and the empirical number of ESNs 
(136 out of 585 neurons; P < 0.001; one-sided permutation test). c, Same as b but 
for Experiment 2. Of a total of 216 hippocampal neurons, we identified 38 ESNs 
(P = 0.0053; one-sided permutation test).
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miss-ESNs when limiting our analysis to later forgotten episodes 
(15 out of 585 neurons (2.56%); P = 0.4229; permutation test). How-
ever, this result could stem from a lower number of forgotten events 
(Supplementary Table 1). To counter this bias, we equalized event 
numbers between later remembered and later forgotten events 
for every neuron by randomly sampling (with replacement) later 
remembered events as many times as participants forgot an event. 
If any of the sampled events were later reinstated, we considered 
this neuron a miss-ESN under the null hypothesis. By repeating this 
procedure 10,000 times, we generated a distribution of how many 
miss-ESNs were expected if the numbers of later remembered and 
later forgotten events were equal. This analysis did not result in a 
significantly lower empirical number of miss-ESNs than hit-ESNs 
(P = 0.7032; bootstrapping test). To conclude, we did not find a sig-
nificant number of ESNs when restricting our analysis to episodes 
that were forgotten. However, when considering that fewer episodes 

were forgotten than remembered, there was no difference in the 
number of hit-ESNs and miss-ESNs.

Identification of temporal ESNs
The previous identification of ESNs relied on a rate code—that is, the 
standardized mean firing rate during one episode at encoding and 
retrieval. We have adapted this analysis to identify neurons that rein-
state a temporal pattern of firing. For every neuron, we considered 
the spiking activity from six seconds before until one second after the 
response during encoding and retrieval (the first and last second were 
later excluded to avoid edge artefacts).

By convolving each spike with a Gaussian kernel (standard 
deviation, 100 ms; length, ±300 ms; peak normalized to 1), we cre-
ated a measure of the instantaneous firing rate. Because we do not 
know the exact times when an episode is encoded or retrieved, we 
cross-correlated this episode-specific instantaneous firing rate during 
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associate images for reinstated episodes (indicated by the black arrows). c, Spike 
density plot for reinstated episodes. Note that the experiment is self-paced and 
episode length varies. d, 2D histogram of the waveshape of that particular unit47. 
e–h, Same as a–d but for a different example ESN. The original images have been 
replaced due to copyright issues.
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encoding and retrieval and considered the maximum value as the  
reinstatement value. We repeated this process after shuffling the 
encoding and retrieval episode order 1,000 times and took the 99th 
percentile as a threshold for the empirical reinstatement value.  
If the empirical reinstatement value reached this threshold, we con-
sidered the neuron a temporal ESN (tESN; Supplementary Fig. 4). In 
the next step, we randomly drew for each neuron one of the previ-
ously calculated permutations. If these permuted values reached 
or exceeded the threshold, the neuron was considered a tESN under 
the null hypothesis. We repeated this process 1,000 times to build a 
null distribution against which we compared our empirical number 
of tESNs. We found a significant number of empirical tESNs in Experi-
ment 1 (100 out of 585 neurons (17.09%); P = 0.016). For Experiment 2, 
we further excluded all episodes in which the given neuron showed 
significant visual tuning (Methods). With this additional constraint, 
we found a significant number of tESNs in Experiment 2 (40 out of  
216 neurons (18.52%); P < 0.01).

We employed a permutation test to assess the degree of overlap 
between episodes reinstated by a rate code (ESNs) and those reinstated 
by a temporal code (tESNs). Specifically, for each neuron we shuffled 
the identity of whether an episode was reinstated or not and compared 
the overlap in the shuffled dataset with the empirical overlap (that is, 
whether an episode reinstated using a rate code was also reinstated 
using a temporal code and vice versa). Our analysis revealed a signifi-
cant overlap in Experiment 1 (Experiment 2), with 20.25% (26.19%) of all 
episodes reinstated by ESNs also being reinstated by tESNs, and 25.81% 
(24.44%) of all episodes reinstated by tESNs also being reinstated by 
ESNs (both P < 0.001).

We then tested the validity of this analysis using random spike 
times. We generated these random spike times by first rounding  
the empirical spike times to the nearest integer and then drawing an 
equal number of pseudorandom integer values from a discrete uniform 
distribution between the first and last empirical spike times. We did not 
find a significant number of tESNs in either experiment (both P > 0.2). 
We next repeated the analysis using 500 surrogate datasets. These 
datasets were created by segmenting all spike times into episodes 
in the order they occurred and then circularly shuffling them. The 
results of this analysis indicated that the percentage of significant tESN 
identifications was below the 5% threshold (4.18%), providing further 
evidence of the credibility and reliability of our analysis.

In conclusion, we show in two separate experiments a significant 
number of neurons that reinstate an event-specific temporal firing 
pattern during successful memory retrieval.

ESNs do not code for time
Recent studies in humans have shown that some hippocampal neu-
rons code specific time points invariant across repetitions, which are 
referred to as TCs20,21. We investigated whether our dataset contains 
such TCs using a method similar to that employed by Umbach et al.21. 
Due to the self-paced nature of our experiment, each encoding block 
varied in length. To accommodate this, we used both the unaltered 
block length and a normalized block length within one recording 
session (Methods). Of all 585 recorded cells, 12 (normalized) and 10 
(non-normalized) fulfilled the criteria of TCs, which is below chance 
level (P > 0.9; permutation test). Critically, there was no significant 
overlap between neurons that behaved like TCs and ESNs (P > 0.3; per-
mutation test).

ESNs show a wider waveshape than other neurons
We found some evidence that the spike waveshapes of ESNs are wider 
than those of other units (Supplementary Fig. 5a; P = 0.0563 with data 
from Experiment 1 and P = 0.0121 with data from both experiments 
combined; both independent-samples t-test), possibly indicating  
that ESNs are physiologically different from other neurons. In the 
hippocampus, a wider waveshape has previously been associated 
with excitatory cells26, therefore suggesting that ESNs are predomi-
nantly excitatory neurons. There was no significant difference in the 
spike height or Fano factor between ESNs and other neurons (unpaired 
t-tests; all P > 0.3; Supplementary Figs. 5b and 6).

Neurons are mostly single neurons and not multi-units
Although we tried to separate multi-units into single neurons as well 
as possible during the spike sorting procedure (Methods), some units 
might still represent activity from multiple neurons. We thus employed 
the method outlined by Tankus and colleagues27 to classify units into 
single units and multi-units, using the inter-spike interval and spike 
waveshape variability as objective criteria. In the first experiment, 
373 out of 585 units (63.76%) were classified as single units (95/136 
ESNs (69.85%)), while in the second experiment, 132 out of 216 units 
(61.11%) were classified as single units (20/38 ESNs (52.63%)). If we limit 
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Fig. 4 | Firing rate of ESNs during reinstated and non-reinstated episodes. 
Firing rate of ESNs (n = 136) from cue onset until five seconds later during 
memory encoding (left) and retrieval (right). We utilized a bootstrapping 
method to ensure an equal number of reinstated and non-reinstated episodes 
for each ESN, followed by a computation of the cluster-based permutation test46. 

The proportion of iterations that contained a significant cluster at a specific 
time point is represented by the greyscale inset at the bottom of each plot. The 
coloured shaded areas represent the s.e.m. that was calculated across all ESNs. 
We ensured an equal number of reinstated and non-reinstated episodes per ESN 
while calculating the s.e.m. using a bootstrapping method.
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our analysis to neurons that satisfy these stringent criteria for putative 
single neurons, we still find a significant number of ESNs in the first 
experiment (95 out of 373 single neurons; P < 0.001) and a number of 
ESNs trending towards significance in the second experiment (21 out 
of 132 single neurons; P = 0.0714).

Discussion
Using an associative episodic memory paradigm in human epilepsy 
patients, we identified hippocampal neurons that are active during 
the initial encoding of a unique episode and later reinstate their firing 
rate when successfully remembering the same episode. We term these 
neurons ESNs. The activity of these neurons could not be explained 
by a firing rate increase towards specific images or time points. These 
results were replicated across two independent experiments and were 
robust against variations in how reinstatement was measured as well 
as changes in the hyperparameter space.

Previous studies have demonstrated that concept neurons 
increase their firing rate during memory retrieval when the image 
they are tuned to is part of the memory10,13. We used two approaches 
to ensure that the ESNs we identified are not concept neurons that 
selectively respond to visual elements or semantic concepts. First, in 
Experiment 1, we excluded ESNs that were visually responsive to the 
presentation of the animal cue at encoding. Second, following the 
episodic memory task in Experiment 2, the participants completed 
a visual tuning task using all previously presented stimuli. This is 
a standard method to identify putative concept neurons7–9,13 and 
allowed us to exclude episodes where a neuron showed a visual tun-
ing to either the cue or the associate image. Using this approach, we 
replicated our results from Experiment 1 in a new sample of patients 
and found a significant number of ESNs while also verifying that these 
neurons do not selectively respond to visual elements or semantic 
concepts. Importantly, this finding was robust even when we drama
tically reduced the threshold of what constitutes a concept neuron. 
Taken together, these analyses reinforce the argument that ESNs are 
memory related.

The existence of ESNs does not exclude concept neurons from 
playing a role in episodic memory processes. Concept neurons might 
code the semantic aspect of an episode (that is, the general concept 
of ‘coffee shop’). However, according to the indexing theory14,15,  
hippocampal neurons that perform this indexing function should  
have no initial tuning and are allocated to a specific episode during 
memory formation (that is, the coffee shop in a specific setting). The 
behaviour of ESNs would be consistent with such an indexing function 
and may add crucial event-specific information to an episode, which 
concept neurons cannot encode themselves.

We found a significant number of ESNs when excluding potential 
multi-units in the first experiment. However, in the second experiment, 
we obtained only a statistical trend for a significant number of ESNs. 
This was probably because this restriction resulted in too few single 
neurons in the second experiment, thus reducing statistical power.

Because we do not know the exact time points when episodes are 
encoded or retrieved, we used a rate code approach in the first instance 
for these analyses (that is, averaging the number of spikes over a time of 
interest and encoding and retrieval). In addition, we present evidence 
for a reinstatement of a temporal firing code, which we uncovered by 
shifting the instantaneous firing rate (that is, the spike times convolved 
with a Gaussian kernel) using a cross-correlation. Interestingly, we 
found a significant overlap of episodes that were coded both by tESNs 
and ESNs. This suggests that in many cases, a temporal firing code 
can still be identified through a rate code analysis. In some cases, we 
detected a reinstated episode using either a rate code or a temporal 
code alone. It is possible that hippocampal neurons employ two distinct 
coding mechanisms, or we may have missed certain spikes in some 
instances, resulting in the inability to identify either firing code, which 
is an interesting question for future studies.

The indexing theory proposes that this coding mechanism is 
unique to the hippocampus. In line with this, we did not find a signifi-
cant number of ESNs in the parahippocampus. However, these findings 
are based on a relatively small sample size and should be considered 
preliminary. Future studies are needed to ascertain the regional speci-
ficity of ESNs to the hippocampus.

We did not find a significant number of ESNs when restricting 
our analysis to later forgotten episodes. However, there was no sig-
nificant difference between the number of ESNs when considering 
later remembered and later forgotten events. This suggests that hip-
pocampal neural reinstatement might occur without behavioural 
memory retrieval. This could be due to downstream processing being 
disrupted (that is, due to interference or selective attention). Alterna-
tively, it is possible that in some cases during memory encoding the 
participants created an episodic memory that did not incorporate 
the presented associate stimuli. While retrieval would lead to neural 
reinstatement, the participants would not be able to choose the cor-
rect associate images. Another possible explanation for this finding 
is that a relatively fewer number of forgotten episodes led to an insuf-
ficient power to detect a significant number of ESNs that code for later 
forgotten episodes.

TCs are neurons that invariantly fire at specific, reoccurring time 
points20,21. We did not find a significant number of TCs in our study, and 
there was no significant overlap between TCs and ESNs. This might be 
because the self-paced nature of the task introduced too much time 
variation between too few learning blocks to uncover TC dynamics. 
However, the absence of TCs in our paradigm corroborates ESNs as 
independent from TCs.

We found that ESNs have a wider waveshape than other neurons, 
which suggests that they are physiologically different from other single 
neurons. Specifically, the broader waveshape of ESNs suggests that 
they are probably excitatory cells26. Alternatively, it is possible that 
ESNs and neurons with a narrower waveshape are located in different 
hippocampal subfields. Unfortunately, with the current methods, we 
lack the precision to designate neurons to individual subfields28.

One limitation of the current study is that every event was 
encoded and retrieved only once. However, the very nature of epi-
sodic memories is one-shot learning and the ability to subsequently 
perform mental time travel. Any neural substrate that supports this 
function must occur after a single bout of learning and subsequent 
retrieval of a single episode. Our method honours this fundamental 
characteristic, which is the defining feature of episodic memory as 
originally stated by Endel Tulving29. Arguably, a repeated design would 
have allowed for a more reliable ESN identification. However, each 
memory reactivation leads to a transient plasticity of the memory trace 
until it is reconsolidated again. During this time window, profound 
changes in the neurons that code for the initial memory trace might 
occur30. To avoid this potential confound, every episode is learned and 
retrieved only once in the present experiments. The stability of ESNs 
over repeated reactivations and extended periods therefore remains 
an interesting topic of research for future studies.

Our results are consistent with previous studies using func-
tional MRI that have shown item-specific activity reinstatement in 
the hippocampus31,32 where similar representations are associated 
with distinct activity patterns33,34. These findings are suggestive of 
an episode-specific neural code, which is consistent with our results. 
However, due to the coarse resolution of functional MRI, these previ-
ous results cannot disambiguate whether this event-specific code is 
driven by a population of event-specific concept neurons or whether 
it is driven by a population of event-specific indexing neurons. We here 
provide evidence for the latter.

Previous intracranial work has identified a multitude of different 
neurons that detect episode boundaries and event onsets35 as well as 
novelty or familiarity36–39. Recent work showed that this is a generic 
signal that can be observed across the brain and is not unique to the 
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hippocampus39. These cell types generally fired not specifically to a par-
ticular episode but instead across many episodes36–38. Previous research 
quantified neural firing reinstatement during scene encoding and 
recognition by considering the activity of all recorded neurons (that is, 
population activity)35. In contrast, the vast majority of ESNs identified in 
our experiments coded for a single episode, and we demonstrated that 
neural reinstatement takes place at the single-neuron level. In line with 
our findings, recent work identified a sparse and item-specific memory 
recognition signal that was unique to the hippocampus39. Importantly, 
we expect that an episode is coded by an assembly of ESNs from which 
we sampled only one due to the limited number of neurons that can be 
recorded with the currently available methods.

Our findings are in line with previous work showing that episodic 
memories in the hippocampus are coded in a sparse, distributed 
way40,41. However, there are various reasons why we refrain from making  
any claims regarding sparsity in the present study. A neural code can 
be sparse in two ways40. A neural code can be population sparse, which 
is the case when a low percentage of neurons respond to a given stimu-
lus. It can also be lifetime sparse, which refers to a low percentage of 
stimuli that a given neuron responds to. On the one hand, we artifi-
cially induced lifetime sparsity (and by extension population spar-
sity) because we (1) standardized the firing rate during encoding and 
retrieval and then (2) multiplied these two values. On the other hand, 
we drastically reduced the sparsity because we tested for reinstate-
ment at each episode without correcting for multiple comparisons. It 
is very important to understand that while this leads to α-level inflation 
at the level of the neuron, this does not extend to the group level at 
which we interpret our findings. We have confirmed that our analy-
sis does not have a bias towards positive findings using a simulation  
(Supplementary Fig. 2). Unfortunately, that also means that in the pre-
sent study we have to refrain from making any claims regarding lifetime 
sparsity. Although most ESNs reinstate only a single episode, some code 
more than one. We expect that episodic memories are represented 
in the hippocampus as neural assemblies of single neurons and not 
individual neurons. It is thus plausible that a subset of neurons within 
a neural assembly coding for memory A are also part of an assembly 
that codes for memory B. This coding mechanism is more efficient, as 
a partial overlap between neural assemblies reduces the number of 
required assemblies.

In conclusion, we found neurons in the hippocampus that show 
firing reinstatement in response to a specific conjunction of elements 
within a unique episode. These ESNs did not fire in response to indi-
vidual concepts (concept neurons) or to specific, reoccurring time 
points (TCs). We propose that during memory formation an assembly 
of ESNs acts as a pointer or index that initially binds the elements of an 
episode together, in line with the indexing theory14,15,17. The reactivation 
of this pointer allows ESNs to reinstate the episodic memory previously 
encoded. Importantly, because ESNs reinstate unique episodes, they 
contain a time and content component. However, rather than reflect-
ing the underlying coding mechanism, this time and content aspect 
necessarily emerges from the conjunctive code of an episode that is 
unique in content and time.

Methods
Procedure of Experiment 1
During the encoding phase of Experiment 1, the participant associ-
ated a cue with two other stimuli. For each episode, the cue was a new 
picture of an animal. The stimuli could be pictures of places, faces 
of famous persons or both. Every picture was shown only once. Two 
seconds after the animal cue was presented, the associate stimuli were 
shown, while the animal cue remained on the screen. The participant 
was asked to create a vivid imaginary story involving the cue and the 
two stimuli. This part of the experiment was self-paced. The task con-
tinued once the participant rated the plausibility of the imaginary story  
(plausible/implausible).

After the encoding phase, the participant performed a distractor 
task to rule out working-memory effects. During the distractor task, 
the participant had to indicate whether a random number (up to two 
digits) that appeared serially on the screen was odd or even. After each 
response, the participant received feedback indicating a correct or 
incorrect response. This task consisted of 15 trials.

During the retrieval phase, all cues from the previous encoding 
phase were presented sequentially in pseudorandom order. Each animal 
cue was presented for two seconds, and the participant was tasked with 
retrieving the corresponding images. The participant was then asked 
how many associated images they remembered (none, one or two). 
The participants had as much time to respond as they required. If the 
participant indicated that they remembered one or two images, they 
then were asked to select two pictures from an array of four pictures 
(two targets and two distractors that consisted of pictures from the 
previous encoding block, which were associated with a different cue).

The experiment ended after the retrieval phase if the total runtime 
exceeded 40 minutes or if the participant asked to abort the experi-
ment. Otherwise, the experiment continued with the next encoding 
block. The encoding block initially consisted of 20 episodes but could 
be adjusted depending on the cognitive abilities of the participant. If 
the hit rate fell below 66.25%, fewer episodes were shown for the next 
block; more episodes were shown if the hit rate surpassed 73.75%.

The participants performed the memory task on a laptop com-
puter (Experiment 1: Toshiba Tecra W50, 60 Hz refresh rate; Experiment 
2: Lenovo L390 Yoga, 60.01 Hz refresh rate) while either seated in a chair 
next to their bed or their hospital bed.

Procedure of Experiment 2
The second experiment was based on the first experiment with the 
following adaptations: the participants were presented with one cue 
image (depicting an animal/place/face of a famous person) and only 
one associate image (depicting an animal/place/face). During retrieval, 
the participants were asked whether they remembered the associate 
image, and they had to choose the correct associate from an array of 
four pictures (one target and three distractors that consisted of pictures  
from the previous encoding block, which were associated with a  
different cue). The experiment was terminated upon request or when 
the runtime at the end of a retrieval block exceeded 30 minutes.

Visual tuning task procedure
In Experiment 2, the memory task was followed by a visual tuning task. 
During this tuning task, every image that was shown during the preced-
ing memory task was displayed. Each image was shown six times in 
pseudorandom order on the screen for a duration of one second. The 
inter-image interval was jittered between 500 ms and 550 ms. To ensure 
attention, the participants had to categorize the image as an animal,  
a place or a face using the arrow keys on the keyboard.

Participants
For Experiment 1, eight patients were recorded in the Queen Elizabeth 
Hospital Birmingham (Birmingham, UK) (4 female; mean age, 36.25 years;  
from 26 to 49 years) and eight patients in the Universitätsklinikum  
Erlangen (Erlangen, Germany) (3 female; mean age, 36.125 years; from 
26 to 53 years). For Experiment 2, 14 patients were recorded in the  
Universitätsklinikum Erlangen (Erlangen, Germany) (7 female;  
mean age, 33.857; from 19 to 58 years). The patients did not receive 
compensation for their participation.

Ethical approval
Ethical approval was granted by the National Health Service Health 
Research Authority (15/WM/0219) and the Ethik-Kommission of 
the Friedrich-Alexander Universität Erlangen-Nürnberg (142_12 B). 
Informed consent was obtained in accordance with the Declaration 
of Helsinki.
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Behavioural analysis
For the analysis of the first experiment, we considered an episode a  
hit if the participant correctly identified both stimuli. We considered 
an episode a miss if the participant either indicated no remembrance  
of any stimuli or did not remember either stimulus correctly. The 
participants correctly recalled on average 68.38% (s.e. = 4.64%) of 
the episodes in the first experiment (Supplementary Table 1) and on 
average 65.63% (s.e. = 4.45%) of the episodes in the second experiment 
(Supplementary Table 2). This is substantially more than would be 
expected by chance (16.7% and 25%, respectively).

Statistical analysis
All statistical analyses were conducted using MATLAB v.R2020a-2022b 
(MathWorks) on a computer running Windows 10 Enterprise. Fur-
thermore, the following programs were used: Statistics and Machine 
Learning Toolbox (v.11.7), Fieldtrip (v.20220403), SPM (v.12) and Wave_
Clus (v.3). Electrode localization was done with the help of MRIcron 
(v.1.0.20190902) and visualized using Surf Ice (v.1.0.20201102). The 
significance threshold for all statistical tests was set at 0.05. Unless 
specified otherwise, all permutation tests were implemented with 
N = 10,000 random draws.

Co-registering
For all but one participant, a pre-operational T1-weighted MRI  
scan was co-registered with a post-operational scan and normal-
ized in Montreal Neurological Institute space using SPM12. For one  
participant, a post-operational CT scan was used instead of a 
post-operational MRI scan. Each microelectrode was localized within 
the hippocampus, within the parahippocampus or outside of both 
brain structures through visual inspection of an individual MRI  
(Supplementary Fig. 1). Only activity from microwires in Behnke–Fried 
electrodes assigned to the hippocampus was analysed in the main 
analysis of the current study. Neurons in the parahippocampus were 
analysed in an independent follow-up analysis.

Recording system and electrodes
The participants were implanted with one to eight (see Supplementary 
Tables 1 and 2 for an overview) depth electrodes of the Behnke–Fried 
type with microwire bundles (Ad-Tech Medical Instrument Corpo-
ration) to localize epileptic foci. The electrode location was deter-
mined by clinical need. These single-use electrodes are made from 
platinum, have a diameter of 1.3 mm and allow for simultaneous macro- 
and microcontact recordings. Platinum has a high impedance for 
lower-frequency and a low impedance for higher-frequency bands. It 
is therefore suitable for picking up local extracellular action potentials. 
The microcontacts extended radially past the endpoint of the macro 
depth electrode, and each contained eight high-impedance microwires 
(38 μm diameter) and one low-impedance microwire that is typically 
used for referencing.

The electrodes were connected to an ATLAS system (Neuralynx) 
running Cheetah software v.1.1.0 (Neuralynx) consisting of CHET-10-A 
pre-amplifiers and a Digital Lynx NX amplifier and recorded with a 
sampling rate of either 32,000 Hz (in Birmingham) or 32,768 Hz (in 
Erlangen). Upon acquisition, an analogue bandpass filter from 0.1 Hz to 
9,000 Hz was applied. All experiments were presented using MATLAB 
v.2015a-2018a (MathWorks) with Psychophysics Toolbox v.3.

Spike detection and spike sorting
In the following paragraphs, we outline the process used to filter the 
raw data, detect spike timestamps, extract features of the waveshape 
and cluster spike waveshapes into putative single neurons using the 
wave_clus toolbox. For a more in-depth description of the wave_clus 
algorithm, the reader is referred to Chaure et al42.

The unfiltered signal included both the local field potential and 
the action potentials of individual neurons. Action potentials are 

characterized by a very steep and transient amplitude in the signal. 
To extract these spikes, we first applied zero-phase filtering using a 
second-order bandpass elliptic filter in the range of 300–3,000 Hz. The 
resulting signal contained the information of the so-called spike band.

Next, we segmented the continuous filtered data into epochs of 
five minutes. Segmenting the continuous data into smaller epochs 
had the advantage that noise in the signal did not increase the detec-
tion threshold for the whole recording and instead was limited to the 
segment in which it occurred42.

Spike detection was performed separately for positive and nega-
tive deflections. Once a spike was identified, 64 data points around the 
spike maximum were extracted. This corresponds to a 2 ms window at 
a sampling rate of 32,000 Hz. The spike peak was aligned to the 20th 
sampling point. To avoid misalignment of the spike, the waveshape was 
first up-sampled to 320 data points using cubic spline-interpolated 
waveforms and then down-sampled again42.

On the basis of the extracted spike waveform, features were  
computed using a four-scale multiresolution decomposition with a 
Haar wavelet. This results in 64-wavelet coefficients for each spike. 
The ten most significant coefficients were identified using a Lilliefors 
test and used for the clustering procedure42.

Non-parametric clustering in the feature space was performed 
using superparamagnetic clustering. Superparamagnetic clustering 
grouped spike waves into clusters on the basis of nearest-neighbour 
interactions43. Template-matching in Euclidian space was performed 
to assign unclassified waveforms to one of the identified clusters. The 
resulting clustering solution was then manually inspected and further 
optimized by rejecting artefact clusters, splitting clusters that repre-
sented multi-unit activity and merging clusters that probably stemmed 
from the same neural source. See Supplementary Figs. 5 to 7 for an 
overview of the spike width, the spike height, the Fano factor and the 
firing rate separately for ESNs and all other single units.

Identification of ESNs
For every single unit, we determined the number of spikes within 
each episode. During encoding, spikes from the onset of the associ-
ate images (two seconds after the cue onset—that is, when the whole 
information of the episode was present) until the end of the episode 
were considered. During the retrieval phase, spikes from the cue onset 
until the time point at which the participants indicated how many 
images they remembered were considered. We chose this time win-
dow because an episode could be reinstated following cue presenta-
tion, while after the response the participants were presented with an 
array of images that could have induced single-unit firing. Because the 
experiment was self-paced and longer episodes trivially contained 
more spikes, the firing rate (in hertz) was computed for each episode 
and single unit. In the next step, we z-scored this firing rate per single 
unit within all encoding episodes and retrieval episodes separately. 
Afterwards, we excluded all episodes that were later forgotten (for 
hit-ESNs) or that were later remembered (for miss-ESNs). Only sessions 
with at least eight episodes after this restriction were considered for 
further analysis. We then multiplied this standardized firing rate for 
encoding and retrieval episodes elementwise to gain an indicator for 
the reinstatement of firing for each episode (Fig. 2a).

To estimate a threshold at which episode-specific firing rein-
statement occurs on a single-unit level, we permuted the order of 
the encoding episodes and recomputed the elementwise product 
of the shuffled episode series. We repeated this permutation step 
10,000 times and stored all output values. The 99th percentile of 
these pooled values was then used as a threshold for firing reinstate-
ment. As an additional constraint, z-scored firing during encoding 
and retrieval each had to exceed 1.645 (Pright-tailed < 0.05) to make sure 
the elementwise product was not predominantly driven by a high 
firing rate in one of the two phases alone (that is, either encoding 
or retrieval). This procedure allowed us to threshold, but we do 
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not have family-wise error-corrected statistical significance at the 
single-unit level (there is no α inflation at the group level; ‘Simulation 
of ESN identification’). Furthermore, we assume that single units fire 
independently. To ensure that concept neurons tuned to the animal  
cue were not falsely interpreted as ESN activity, we excluded ESNs 
that showed a significant firing increase in response to the animal 
cue at encoding using the method described under ‘Identification of 
putative concept cells’.

Alternative reinstatement measures are explored in the Results 
under ‘Identifying ESNs’ and include (1) adding up the standardized 
firing rates between encoding and retrieval instead of multiplying 
them (E and R ≥ 1.645; reinstatement, E + R), (2) increasing the minimum 
standardized firing rate from z = 1.645 to z = 2.6 (E and R ≥ 2.6; rein-
statement, E × R) and (3) using a different reinstatement measure that 
normalizes the encoding-and-retrieval product by their absolute dif-
ference (E and R ≥ 1.645; reinstatement, (E × R)/|E − R|), thereby taking  
into account the similarity in the standardized firing rate between 
encoding and retrieval.

In the second step, we calculated whether the number of ESNs  
(as identified in the above procedure) was above chance level. We 
did this by randomly choosing one of the permutations calculated in  
the first step for every single unit and checking whether it would be  
classified as an ESN under the same criteria outlined above. This 
approach is similar to a set-level effect in SPM44. This process was 
repeated 10,000 times, and the total number of single units that would 
be classified as an ESN in every single iteration of this process was used 
to build a distribution against which we compared our empirically 
discovered number of ESNs.

Simulation of ESN identification
We created a simulation using random pseudo-spike rates to deter-
mine whether our ESN analysis pipeline contains a bias towards false 
positive results. To create this simulation, we simulated the firing rate 
of 585 single neurons during 40 encoding and 40 retrieval trials by 
randomly drawing from a standard uniform distribution in the open 
interval of 0 to 1. These values were first multiplied by a variance factor 
that cycled from 2 to 5 and then z-scored independently for encoding 
and retrieval. Just as in the main ESN analysis, we computed a reinstate-
ment value for each trial by multiplying the two standardized synthetic 
firing rates. Next, we created a threshold by permuting the encoding 
and retrieval trial order 10,000 times while recomputing the shuffled 
reinstatement value. The 99th percentile was used as a threshold, while 
the empirical standardized pseudo-firing rate had to be at least 1.645 
during encoding and retrieval. If these criteria were met, we considered 
the neuron an ESN.

We then computed the second-order (group-level) permutation 
test by drawing a random first-order permutation for every single 
neuron and contrasted these values with the single-neuron-specific 
threshold. If the shuffled values satisfied the criteria for ESNs (that is, 
encoding and retrieval standardized pseudo-firing rates at or above 
1.645 and a reinstatement value above the neuron-specific thresh-
old), we considered the single neuron an ESN under the null distribu-
tion. By repeating this step 10,000 times, we created a distribution  
under the H0 against which we could compare our initial random 
values. We repeated this entire process 1,000 times for each level of 
variance (2 to 5).

Because our initial pseudo-spikes were just random values, we 
expected 5% of all repetitions to yield a significant number of ESNs at 
any level of variance. If there was a bias, then more than 5% of all repe
titions would contain a significant number of ESNs. As evidenced by 
Supplementary Fig. 2, this was not the case for any level of variance.

To ensure the robustness of our analysis approach, we repeated 
the ESN identification analysis using 500 surrogate datasets. These 
datasets were generated by segmenting all spike times into all available 
episodes in the order they occurred and then circularly shuffling them. 

The results of this analysis revealed that the percentage of significant 
ESN identifications was 1.8%, which is well below the 5% threshold. 
These findings provide additional evidence for the credibility and 
reliability of our analysis.

Identification of putative concept cells
We followed the method outlined in Mormann et al.7,8 to detect 
significant single-unit responses towards images. To this end, the 
1,000 ms period after the stimulus onset was divided into 19 over-
lapping 100 ms bins. The spike counts of each bin over all presenta-
tions of an image were compared to the 500 ms baseline periods 
before stimulus onset for all images in the session using a two-tailed 
Mann–Whitney U-test. We used the Simes procedure to correct for 
multiple comparisons45. We performed this test twice, once with 
the commonly used threshold of P < 0.0005 and again with a liberal 
threshold of P = 0.05.

Identification of tESNs
The analysis to identify neurons that showed a temporal firing rein-
statement for specific episodes closely followed the outline described 
in ‘Identification of ESNs’. For every neuron, we considered the spiking 
activity from six seconds before until one second after the response 
during encoding and retrieval (the first and last second were later 
excluded to avoid edge artefacts). We set a minimum threshold of ten 
spikes per trial and ten trials per neuron to enter the analysis. These 
thresholds were chosen to avoid artificially high cross-correlations due 
to low numbers of spikes, and to have enough trials for the randomiza-
tion procedure. We then convolved each spike with a Gaussian kernel 
(standard deviation, 100 ms; length, ±300 ms; peak normalized to 1), 
creating a measure of instantaneous firing rate.

A main problem with comparing neural time courses between 
encoding and retrieval is that we do not know the time point at which 
an episode was encoded or retrieved. We therefore cross-correlated 
the instantaneous firing rate during encoding with the instantaneous 
firing rate during the corresponding retrieval trial (maximum lag  
of ±2.5 s). The maximum value of this sequence served as our empiri-
cal reinstatement value. We then shuffled the encoding and retrieval 
order and recomputed this reinstatement value 1,000 times. The 99th 
percentile of these values was used as a threshold. If the empirical 
reinstatement value reached this threshold, we considered the neu-
ron a tESN. In the next step, for each neuron we randomly drew one 
of the permutations we had calculated previously. Neurons whose 
permuted values reached or exceeded the threshold were considered 
tESNs under the null hypothesis. We repeated this process 1,000 times 
to build a null distribution against which we compared our empirical 
number of tESNs.

For Experiment 2, we further excluded all trials in which the given 
neuron showed a significant visual tuning using the methodology 
outlined under ‘Identification of putative concept cells’.

To evaluate the extent of trial overlap between rate code (ESNs) 
and temporal code (tESNs) reinstated trials, we used a permutation 
test. The trial identity (reinstated versus non-reinstated) was shuffled 
within each neuron, and the resulting overlap values were compared 
with the empirical overlap. The analysis showed a significant overlap 
between rate code and temporally reinstated episodes in Experiment 
1 and Experiment 2 (P < 0.001). We tested the validity of this analysis 
by repeating the same analysis using random spike times. We gener-
ated these random spike times by first rounding the empirical spike 
times to the nearest integer and then drawing an equal number of 
pseudorandom integer values from a discrete uniform distribution 
between the first and last empirical spike times. We next followed a 
similar approach to ensure the robustness of our analysis in the tESN 
identification as outlined in ‘Simulation of ESN identification’, whereby 
we repeated the analysis using 500 surrogate datasets. These data-
sets were created by segmenting all spike times into episodes in the  
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order they occurred and then circularly shuffling them. Upon analysis, 
the results indicated that the percentage of significant tESN identifica-
tions was below the 5% threshold (4.18%), providing further evidence 
of the credibility and reliability of our analysis.

Spike density calculation
To produce the visualizations in Fig. 4, we extracted spikes from one 
second before the cue onset until five seconds after the cue onset for 
each episode. Binary spike times were convolved with a 100 ms Gauss-
ian kernel (length, ±300 ms; peak normalized to 1) to create a 
time-resolved signal of spike activity. We computed the average firing 
rate over time for all episodes (ep) during the baseline (BL) period 
1,000 ms preceding the animal cue ( ̄xBL). We then z-scored the spike 
activity during the episode (xep,t) using the standard deviation (s.d. ( ̄xBL)) 
and mean ( ̄x̄BL) across all pre-cue baseline periods (equation (1)). To 
account for instances where no spiking activity occurred during the 
baseline period, 0.1 (ref. 13) was added to the standard deviation. Epi-
sodes were then split into reinstated and non-reinstated episodes. 
Firing rates for each episode type (reinstated or non-reinstated) were 
then averaged over ESNs:

zep,t =
xep,t − ̄x̄BL

s.d. ( ̄xBL) + 0.1
(1)

We employed a bootstrapping technique (N = 100 random draws) 
to ensure that the numbers of reinstated and non-reinstated episodes 
were the same for each ESN. Next, we performed a computation of the 
s.e.m. and the cluster-based permutation test46. The greyscale insets 
at the bottom of Fig. 4 show the proportion of iterations that had a 
significant cluster at a specific time point.

Identification of TCs
We defined the beginning of an encoding block as the most salient 
event. On the basis of Umbach and colleagues21, we then extracted all 
spikes within each block and convolved them with a 251 ms Gaussian 
kernel (width factor, 2.5). This created a block number × time points 
matrix. For our first analysis, we cut each encoding block into 40 
equally sized bins, thereby normalizing block duration. We then used 
a Kruskal–Wallis test to determine whether any of the 40 bins signifi-
cantly differed from each other.

We then performed a circular shifting permutation test to cal-
culate whether we found a significant number of TCs. This is done by 
shifting a random number of values from the beginning of the vector 
to the end. This shifting was imposed on each block separately and 
repeated N = 10,000 times for every single unit. In a second test, the 
block length was determined by the longest block, and shorter blocks 
were filled up with NaNs values. This resulted in no normalization 
of time between blocks. The rest of the procedure was the same as 
described in the previous paragraph.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data analysed in this manuscript are available to download on 
Figshare (https://doi.org/10.6084/m9.figshare.14905317).

Code availability
The code used in this manuscript is available to download on Figshare 
(https://doi.org/10.6084/m9.figshare.14905317).
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