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A B S T R A C T

The growing number of mobile devices over the past few years brings a large amount of personal information,
which needs to be properly protected. As a result, several mobile authentication methods have been developed.
In particular, behavioural biometrics has become one of the most relevant methods due to its ability to
extract the uniqueness of each subject in a secure, non-intrusive, and continuous way. This article presents
SwipeFormer, a novel Transformer-based system for mobile subject authentication by means of swipe gestures
in an unconstrained scenario (i.e., subjects could use their personal devices freely, without restrictions on
the direction of swipe gestures or the position of the device). Our proposed system contains two modules:
(i) a Transformer-based feature extractor, and (ii) a similarity computation module. Mobile data from the
touchscreen and different background sensors (accelerometer and gyroscope) have been studied, including
in the analysis both Android and iOS operating systems. A complete analysis of SwipeFormer is carried out
using an in-house large-scale database acquired in unconstrained scenarios. In these operational conditions,
SwipeFormer achieves Equal Error Rate (EER) values of 6.6% and 3.6% on Android and iOS respectively,
outperforming the state of the art. In addition, we evaluate SwipeFormer on the popular publicly available
databases Frank DB and HuMIdb, achieving EER values of 11.0% and 5.0% respectively, outperforming
previous approaches under the same experimental setup.
1. Introduction

The increasing number of mobile devices in recent years has made
them part of our daily lives. As a consequence, mobile devices have
become datahubs, including sensitive data as personal or financial
details (Delgado-Santos, Stragapede, Tolosana, Guest, Deravi, & Vera-
Rodriguez, 2022). Therefore, the security and protection of them
through robust and subject-friendly methods are of vital importance
(Melzi, Rathgeb, Tolosana, Vera-Rodriguez, & Busch, 2022). Motivated
by this fact, biometrics have become one of the most popular authenti-
cation methods in mobile devices. In particular, behavioural biomet-
rics, such as gait (Delgado-Santos, Tolosana, Guest, Deravi, & Vera-
Rodriguez, 2023; Delgado-Santos, Tolosana, et al., 2022), keystroke
dynamics (Stragapede, Vera-Rodriguez, Tolosana, Morales, Acien, &
Le Lan, 2023; Stragapede et al., 2022), touchscreen gestures (Fier-
rez, Pozo, Martinez-Diaz, Galbally, & Morales, 2018; Tolosana, Vera-
Rodriguez, Fierrez, & Ortega-Garcia, 2020), and on-line handwritten
signature (Tolosana, Vera-Rodriguez, Gonzalez-Garcia, et al., 2022),
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among others, have shown remarkable results in operational condi-
tions. These authentication techniques provide passive and continuous
protection without the need for the subject to perform any specific
activity (Patel, Chellappa, Chandra, & Barbello, 2016).

Among the different behavioural biometric traits, keystroke dy-
namics or mouse dynamics have been traditionally more accurate
than touchscreen biometrics. This is because touchscreen gestures,
such as swipe or tap, usually consist of simple and short interactions,
with a considerable intra-subject variability, making the authentication
task more challenging (Stragapede et al., 2022). Nevertheless, the
applicability of robust authentication methods based on touchscreen
biometrics is crucial to further improve the security of mobile devices
in a continuous way, as most of the time our interaction is based on
simple tap and swipe gestures (Frank, Biedert, Ma, Martinovic, & Song,
2012).

This article presents SwipeFormer, a novel mobile touchscreen ver-
ification system based on Transformers that overcomes some of the
drawbacks presented in the literature. Transformers are Deep Learning
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Fig. 1. Graphical representation of SwipeFormer, the proposed mobile touchscreen biometric verification system based on Transformers. 𝑁 — total number of subjects; 𝑋𝑒 —
Enrolled swipe sequences; 𝑋𝑡 — Test swipe sequences; 𝑓 (𝑋𝑒) — Enrolled feature vector; 𝑓 (𝑋𝑡) — Test feature vector; T. — Touch; Acc. — Accelerometer; Gyr. — Gyroscope.
(DL) models with an encoder–decoder architecture that have recently
achieved impressive results in many fields (e.g., machine translation,
computer vision, time series prediction, etc.) due to their extensive
modelling skills (Tay, Dehghani, Bahri, & Metzler, 2022). The main
advantages of these architectures compared to Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) are: (i) all
sequences are processed in parallel being feed-forward models; (ii) the
self-attention mechanism is implemented on long distance sequences;
(iii) more effective training is performed by processing all samples in
one batch; and (iv) the entire sequence is taken care of at once, without
compressing the previously seen information (Vaswani et al., 2017).

In particular, our proposed touchscreen verification system
processes unconstrained (a.k.a. in-the-wild) swipe gestures in a
free-direction environment (in contrast to popular touchscreen biomet-
ric systems that only consider swipe gestures in a specific direction,
i.e., horizontal and vertical), considering therefore more challenging
and universal scenarios. Fig. 1 provides a graphical representation of
SwipeFormer, comprising both learning and inference stages. First,
in the learning stage, the feature extractor module based on a novel
Transformer architecture is trained with the development data acquired
from the touchscreen and the background sensors of the mobile device.
Subsequently, the final evaluation dataset is tested using the simi-
larity computation module, which provides a final score comparison
(inference stage).

The main contributions of this article are:

• An in-depth analysis of state-of-the-art swipe verification ap-
proaches in mobile scenarios, detailing key public databases and
results.

• The proposal of SwipeFormer, a novel touchscreen biometric
verification system based on Transformers. To the best of our
knowledge, this is the first study that explores the potential of
Transformers for mobile touchscreen biometrics. Fig. 2 provides a
graphical representation of the feature extractor based on a novel
Transformer architecture. Subsequently, for the final similarity
computation, different approaches are analysed, i.e., Euclidean
2

distance, Shrunk Covariance, Kernel Density Estimation (KDE),
Gaussian Mixture Model (GMM), One-C lass SVM (OC-SVM), and
Binary SVM (B-SVM).

• An exhaustive experimental framework is carried out using an
in-house database collected in real operational conditions (in-the-
wild). To the best of our knowledge, this is the first study that
analyses unconstrained touchscreen gestures, achieving promis-
ing results. In addition, we show how the different data sources
(i.e., touchscreen and background sensors) contribute to the sys-
tem performance and the differences among the two most popular
operating systems (i.e., Android and iOS). Under this challenging
scenario, SwipeFormer is able to achieve impressive Equal Error
Rate (EER) values of 6.6% and 3.6% on Android and iOS, re-
spectively, showing that the proposed model is more robust in
comparison with recent approaches.

• A validation of the proposed SwipeFormer using the popular pub-
licly available databases collected under constrained conditions:
Frank DB (Frank et al., 2012) and HuMIdb (Acien, Morales, Fier-
rez, Vera-Rodriguez, & Delgado-Mohatar, 2021). SwipeFormer
achieves EER values of 11.0% and 5.0% on Frank DB and Hu-
MIdb, respectively, outperforming previous state-of-the-art ap-
proaches.

• We make our experimental framework available to the research
community in order to advance mobile touchscreen research.1

The remainder of the article is organised as follows: Section 2 sum-
marises previous works on touchscreen swipe verification on mobile
devices. Section 3 describes the architecture of SwipeFormer, includ-
ing the Transformer-based feature extractor module and the different
similarity computation approaches. Then, in Section 4 the main char-
acteristics of the different databases are included, while in Section 5
the experimental setups are described in detail. Section 6 contains the
experimental results of SwipeFormer and comparison with the state of

1 https://github.com/BiDAlab/SwipeFormer

https://github.com/BiDAlab/SwipeFormer
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the art. Finally, the conclusions and future research lines are included
in Section 7.

2. Related work

Authentication based on touchscreen biometrics recognises a subject
through touch gestures performed on a mobile device screen. Swipe
gestures are the most common tasks in touchscreen verification (Frank
et al., 2012). Table 1 provides a chronological overview of the main
touchscreen verification systems in the literature based on swipe ges-
tures, together with their key aspects. One of the main obstacles in this
area, apart from the difficulty of the task itself, is the lack of publicly
available databases, as each study usually collects its own data (Lamb,
Millar, & Fuentes, 2020). In addition, another problem, is the hetero-
geneity of the settings in each study, making a fair comparison very
difficult. We analyse next the key aspects of the area.

Initially, two authentication modalities can be distinguished in this
field: continuous and non-continuous. In the first one, continuous au-
thentication, a subject is verified for a period of time while perform-
ing gestures on the touchscreen. One of the first studies in the field
was (Frank et al., 2012), presenting the public Frank Database with
touchscreen data from 4 different android devices and a total of 41
subjects. The authors proposed a system based on the extraction of 30
handcrafted features and One-Class Support Vector Machine (OC-SVM)
classifier, achieving performances between 0.00% EER and 4.00% EER
with up to 11 swipes per subject. Furthermore, a subject can also
be identified in a non-continuous way, where data are collected be-
forehand and authentication is performed afterwards (Serwadda et al.,
2013). In that study the authors also considered touchscreen data,
obtaining performances between 10.50% and 17.20% EER with 28
handcrafted features and Logistic Regression.

In addition to the authentication method, the scenario in which
the data are acquired is also crucial. Mainly we can distinguish two
groups, constrained and unconstrained (a.k.a. in-the-wild) scenarios.
In the constrained scenario, the subjects perform a task where data
are analysed in a restricted way, i.e., only accepting in one direction
the gestures (vertical or horizontal) and/or position of the device
(portrait/landscape) (Frank et al., 2012; Serwadda et al., 2013; Xu
et al., 2014). On the contrary, in the unconstrained scenario, the data
are collected while the subjects use the device freely (Bo et al., 2014;
Feng et al., 2014).

In the past few years, the research community has focused on the
manual extraction of an optimal set of features from the touchscreen,
and their subsequent input into a Machine Learning (ML) model used
as a classifier for the verification task. The most popular classifier was
One-Class Support Vector Machine (OC-SVM) (Frank et al., 2012). The
authors in Saravanan et al. (2014) were able to achieve 97.90% and
96.80% accuracies using a Google Nexus 4 Phone and a Google Nexus 7
Tablet, considering a constrained scenario. Applying the same classifier,
in Lu and Liu (2015) the authors achieved 0.03% False Acceptance Rate
(FAR) and 0.05% False Rejection Rate (FRR) with a private database.
Furthermore, the public HMOG database containing data from the
touchscreen and background motion sensors (accelerometer, gyroscope
and magnetometer) was presented in Sitová et al. (2015). The au-
thors achieved 8.50% EER using the OC-SVM classifier. In addition,
Logistic Regression (Serwadda et al., 2013), Dynamic Time Warping
(DTW) (Feng et al., 2014), k-Nearest Neighbours (k-NN) (Antal et al.,
2015; Feng et al., 2014) or Random Forest (RF) (Kumar et al., 2016;
Mahbub et al., 2016; Saravanan et al., 2014; Shen et al., 2015; Syed
et al., 2019) were also broadly used. Another classifier that has been
widely used is Binary Support Vector Machine (B-SVM) introduced
in Xu et al. (2014). The difference with the previous classifiers is that
it needs to be trained using both genuine and impostor data, unlike
the previous classifiers which only genuine data are considered. The
authors obtained EER values lower than 1% over a private database ac-
quired using only one device and under the continuous authentication
3

scenario.
Fig. 2. Graphical representation of the Transformer-based Feature Extractor. 𝑋 — Input
swipe sequence; 𝑋𝑓 — Input swipe sequence in the frequency domain; 𝑓 (𝑋) — Feature
ector; GRE — Gaussian Range Encoding; f — Frequency transformation; 𝑇 ×, F ×

Number of layers of each type; 1D-CNN — One Dimension Convolutional Neural
etwork.

Due to the improvements presented by B-SVM, this classifier has
een applied by many studies (Fierrez, Pozo, et al., 2018; Incel et al.,
021; Sharma & Enbody, 2017; Wang et al., 2017). Using each study
heir own touchscreen data and experimental protocol, the authors
chieved 7.00% EER, 80.0% Area Under Curve (AUC) and 2.60% EER,
espectively. Moreover, studies based on ML demonstrate how adding
xtra features from the background sensors of the device to the original
ouchscreen features improves the performance (Acien, Morales, Vera-
odriguez, Fierrez, & Tolosana, 2019; Bo et al., 2014; Sitová et al.,
015). For example, in Siirtola et al. (2018) the authors achieved on
he HMOG database a 7.00% EER when combining touchscreen and
ccelerometer data.

In recent years, advancements in Deep Learning (DL) techniques
ave led to the utilisation of feed-forward Artificial Neural Networks
ANN) as classifiers. Notably, in a study conducted in Zaliva et al.
2015), a private touchscreen database was used in a constrained
cenario, achieving an impressive 99.96% F1-Score using 70% of the
ata to train. In this work, the authors included two hidden layers,
onsisting of 50–75 and 30 neurons, respectively. The output layer of
he network was equipped with a logistic sigmoid activation function.
o preprocess the data and enhance the performance of the classifier,
rincipal Component Analysis (PCA) was applied, reducing the data’s
imensionality. Furthermore, the authors in Meng, Wang, et al. (2018)
chieved notable results in an unconstrained scenario using a private
ouchscreen database. Their approach yielded an impressive Average
rror Rate (AER) of 2.40%. The proposed model in their work com-
ined Particle Swarm Optimisation (PSO) with an RBFN (Radial Basis
unction Network) classifier, which consisted of three layers: an input
ayer, a hidden layer, and an output layer. Notably, in the hidden
ayer, each unit adopted a radial activation function, contributing to the
odel’s effective representation and classification capabilities. These

indings highlight the potential of utilising PSO and RBFN-based clas-
ifiers in touch-based interaction systems, yielding promising results in
nconstrained scenarios. In addition, LSTM architectures have shown to
e well-suited for the task. In Mao et al. (2022) the authors proposed
1D-CNN-BiLSTM model that combines the strengths of CNNs and

idirectional LSTMs. The model includes a single convolutional layer
ith ReLU activation to extract relevant features from the input data.
bidirectional LSTM layer is then employed to capture contextual

nformation in both directions. The model was trained and evaluated
sing 10-fold cross-validation, ensuring robustness and generalisation.



Expert Systems With Applications 237 (2024) 121537P. Delgado-Santos et al.
Table 1
Summary of state-of-the-art approaches presented in the literature for mobile touchscreen biometric verification based on swipe gestures. CA — Continuous Authentication; C —
Constrained; U-Unconstrained; T. — Touch, Acc. — Accelerometer; Gyr. — Gyroscope; Mag. — Magnetometer; x — x axis; y — axis; p — pressure; t — timestamp; RNN (LSTM)
— Recurrent Neural Network (Long Short-Term Memory); CNN — Convolutional Neural Network; BiLSTM — Bidirectional LSTM; OC-SVM — One-Class Support Vector Machine;
B-SVM — Binary SVM; DTW — Dynamic Time Warping; k-NN — k Nearest Neighbours; RF — Random Forest; ANN — Artificial Neural Network; IF — Isolation Forest; EM —
Expectation Maximisation Clustering; GMM — Gaussian Mixture Model; Eucl. Dist. — Euclidean Distance; Shrunk Cov. — Shrunk Covariance; KDE — Kernel Density Estimation;
EER — Equal Error Rate; FAR — False Acceptance Rate; FRR — False Rejection Rate; AUC — Area Under Curve; AER — Average Error Rate.

Study Database
(Public)

CA Scenario
(C/U)

Device N. of
subjects

Features Dimension
feature
vector

Sessions System Authentication
Data/Subject

Best performance [%]

Feature
Extractor

Classifier/
Distance

Frank et al.
(2012)

✓ ✓ C
HTC Droid Inc.
Google Nexus One
Google Nexus S
Samsung Galaxy S

41 T. (x, y, p, t,
area) 30 2 (≥ 1 week) Handcrafted OC-SVM 11 swipes 0.0–4.0 (EER)

Serwadda,
Phoha, and
Wang (2013)

✓ ✗ C Google Nexus S 191 T. (x, y, p, t,
area) 28 2 Handcrafted Logistic

Regression
80 swipes 10.5–17.2 (EER)

Xu, Zhou,
and Lyu
(2014)

✗ ✓ C Samsung Galaxy S2 28 T. (x, y, p, t,
area) 37 6 Handcrafted B-SVM

5 swipes
(cross-
validation)

< 1 (EER)

Feng, Yang,
Yan, Tapia,
and Shi
(2014)

✗ ✓ U
Samsung Galaxy S3
Samsung Galaxy S4
Google Nexus 4

23 (+100
test)

T. (x, y, t) 6 3 Handcrafted DTW + k-NN 200 swipes 90.0 (Accuracy)

Bo et al.
(2014)

✗ ✓ U HTC EVO 3D
Samsung Galaxy S3 10 (+

90 test)

T (x, y, p, t),
Acc.,
Gyr.

5 1 day data Handcrafted OC-SVM 3 swipes 1 swipe: 23.0 (FAR)
12 swipes: 0.0 (FAR)

Saravanan,
Clarke, Chau,
and Zha
(2014)

✗ ✓ C
Google Nexus 4
Phone
Google Nexus 7
Tablet

10 (+
10 test)

T. (x, y, p, t) 4 – Handcrafted OC-SVM + RF – Phone: 97.9 (Accuracy)
Tablet: 96.8 (Accuracy)

Zaliva,
Melicher,
Saha, and
Zhang
(2015)

✗ ✗ C Samsung Galaxy S4 14 T. (x, y, z,
area) 24 15 min Handcrafted ANN 5 swipes 99.96 (F1-Score)

Lu and Liu
(2015)

✗ ✓ C Personal 60 T. (x, y, p, t,
area) 14 1 month Handcrafted OC-SVM 100 swipes 0.03 (FAR)

0.05 (FRR)

Zhang, Patel,
Fathy, and
Chellappa
(2015)

✗ ✗ C iPhone 5S 50 T. (x, y, p, t,
area) 27 3 Handcrafted KDTGR random 80

swipes

11 swipes: 2.91 (EER)
Frank DB: 3.10 (EER)
Serwadda DB: 1.73 (EER)

Antal, Bokor,
and Szabó
(2015)

✓ ✓ C 4 Android devices 71 T. (x, y, p, t,
area) 15 1 month Handcrafted k-NN 100 swipes

1 swipe:
65.0 (Accuracy)
20 swipes:
100.0 (Accuracy)

Shen, Zhang,
Guan, and
Maxion
(2015)

✗ ✓ C Samsung Galaxy
N7100 Samsung
Galaxy
N9002 Huawei
Ascend Mate

71 T. (x, y, p, t,
area) 22–27 3 Handcrafted RF 640 swipes 11 swipes: 1.8 (EER)

Sitová et al.
(2015)

✓ ✓ C Samsung Galaxy S4 100

T. (x, y, p, t,
area)
Acc. (x, y, z)
Gyr. (x, y, z)
Mag. (x, y, z)

71 4 Handcrafted OC-SVM ≥ 80 swipes (2
sessions)

8.5 (EER)

Mahbub,
Sarkar, Patel,
and
Chellappa
(2016)

✓ ✓ U Google
Nexus 5

48 T. (x, y, p, t) 24 2 months Handcrafted RF 70% swipes 6 swipes: 22.1 (EER)

Sharma and
Enbody
(2017)

✗ ✓ C Google
Nexus 7

42 T. (x, y, p, t,
area) 7 40 min Handcrafted B-SVM random 80

swipes
7.0 (EER)

Wang, Yu,
Mengshoel,
and Tague
(2017)

✗ ✓ U Google
Nexus 2
Google
Nexus 4
Google
Nexus 7

20 T. (x, y, p, t,
area) 59 4 (1 per

device)
Handcrafted B-SVM 75% swipes 80.0 (AUC)

Kumar,
Phoha, and
Serwadda
(2016)

✗ ✓ U Personal 28 T. (x, y, p, t,
area) 5 4-7 days Handcrafted RF 50% swipes 99.33 (Accuracy)

Filippov,
Iuzbashev,
and Kurnev
(2018)

– ✓ C – 20 T. (x, y, t,
area) 10 1 month Handcrafted IF 2000 swipes 7.5 (FAR) 6.4 (FRR)

Siirtola,
Komulainen,
and
Kellokumpu
(2018)

– ✓ C Samsung Galaxy S4 100 T. (x, y, p, t,
area) Acc. (x, y, z)211 4 Handcrafted EM 50% swipes HMOG DB (Read and

walk): 7.0 (EER)

(continued on next page)
4
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Table 1 (continued).
Study Database

(Public)
CA Scenario

(C/U)
Device N. of

subjects
Features Dimension

feature vector
Sessions System Authentication

Data/Subject
Best

performance [%]
Feature
Extractor

Classifier/
Distance

Fierrez, Pozo,
et al. (2018)

✓ ✗ C – Frank DB:
41 Serwadda
DB: 191
Antal DB: 71
UMDAA-02: 48

All DB: T. (x,
y, p, t, area) 28 Frank DB: 2

Serwadda DB:
2 Antal DB: 71
UMDAA-02: 2
months

Handcrafted B-SVM + GMM 40 swipes Frank DB
intra-session: 3.1
(EER) Frank DB
inter-session: 8.1
(EER) Serwadda
DB intra-session:
3.3 (EER)
Serwadda DB
inter-session:
10.7 (EER) Antal
DB intra-session:
2.6 (EER)
UMDAA-02
intra-session: 3.6
(EER)

Meng, Wang,
Wong, Wen,
and Xiang
(2018)

✗ ✗ U Google
Nexus 1

48 T. (x, y, t) 21 20 Handcrafted ANN 60% sessions 2.4 (AER)

Meng, Li, and
Wong (2018)

✗ ✗ U Google
Nexus 1

60 T. (x, y, p, t,
area) 9 30 Handcrafted SVM 67% sessions 4.7 (AER)

Syed,
Helmick,
Banerjee, and
Cukic (2019)

✗ ✗ C Samsung
Tab 210’’
Samsung Tab
27’’ Samsung
S3 HTC EVO
4G LTE

31 T. (x, y, p, t,
area) 18 8

(2-3 weeks)
Handcrafted RF 50% swipes 3.80 (EER)

Acien,
Morales, Vera-
Rodriguez,
and Fierrez
(2020)
HuMIdb

✓ ✗ C Personal
(Android)

600 T. (x, y, p) 64 ≤ 5
(≥ 1 day)

Handcrafted
+ LSTM

Eucl. Dist. 70% swipes 13.00 (EER)

Incel et al.
(2021)

✗ ✓ C Samsung
Galaxy S9
Xiaomi Mi8

45 T. (x, y, p)
Acc. (x, y, z)
Gyr. (x, y, z)
Mag. (x, y, z)

54 ≤ 3 (same day) Handcrafted B-SVM 80% (5-fold
cross-
validation)

3.50 (EER)

Mao et al.
(2022)

✓ ✓ C Android 100 Acc. (x, y, z)
Gyr. (x, y, z)
Mag. (x, y, z)

57 ≤ 24 Handcrafted CNN-BiLSTM 90% (10-fold
cross-
validation)

0.53 (EER)

SwipeFormer
(2023)

✓ ✗ U Personal Android:
232 iOS:
232

T. (x, y, area)
Acc. (x, y, z
Gyr. (x, y, z)

64 2
(≥ 1 week)

Transformer Eucl. Dist.
Shrunk Cov.
KDE GMM
OC-SVM
B-SVM

50% swipes In-House DB:
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The results highlight the effectiveness of the 1D-CNN-BiLSTM model
in touch-based interaction systems. Lastly, in Acien et al. (2020), a
Siamese RNN with two LSTM layers was introduced. The model learns
to project embedding vectors to differentiate touch patterns from the
same and different subjects. By computing the Euclidean distance be-
tween embedding vectors, a performance of 13.00% EER was achieved
by training the model with 70% of each subject’s swipes. In addition,
the authors presented a publicly available database, HuMIdb (Acien
et al., 2021).

Finally, for completeness, we include in Table 1 the results achieved
by our proposed system, SwipeFormer. It is important to highlight
that, unlike previous approaches in the literature that consider intra-
session variability in their best-case scenario (Fierrez, Pozo, et al.,
2018; Zhang et al., 2015), we follow the inter-session experimental
protocol proposed in Fierrez, Pozo, et al. (2018) where enrolment and
test samples are from different sessions in time (different days), being
a more realistic and challenging scenario for behavioural biometrics.
The results achieved demonstrate the potential of recent Transformer
architectures for the task of mobile touchscreen swipe verification.
In addition, we also analyse for the first time in the literature the
real performance of swipe biometrics in operational conditions using
Android and iOS devices. Also, we consider an unconstrained sce-
nario with swipe gestures performed freely in terms of the position
of the devices (portrait/landscape) and direction of the swipe gestures
(vertical/horizontal).

3. Proposed system: SwipeFormer

Fig. 1 provides a general representation of SwipeFormer, our pro-
5

posed touchscreen verification system for mobile scenarios. First, time t
sequences from the touchscreen and background sensors (i.e., ac-
celerometer and gyroscope) are captured and introduced as the input of
the system (𝑋). Subsequently, SwipeFormer consists of two modules: (i)

feature extractor based on a novel Transformer architecture, trained
n the learning stage with a development dataset; and (ii) a similarity
omputation module, which provides the final similarity scores using
n evaluation dataset based on subjects not seen in the learning stage
inference stage). The specific details of each module are described
ext.

.1. Feature extractor

Fig. 2 shows a graphical representation of the Transformer-based
eature extractor trained in the learning stage, based on a novel ar-
hitecture. The original Transformer, known as Vanilla Transformer,
as introduced by Vaswani et al. (2017) for machine translations. That
rchitecture showed impressive results, paving the way for research
n other fields such as time sequences (Delgado-Santos et al., 2023;
tragapede, Delgado-Santos, et al., 2022). Despite this, Transformers
ave numerous drawbacks that have been addressed in the literature.
ome of the amendments presented are reducing complexity, includ-
ng periodicity-based dependencies, or time-depending encoding (Tay
t al., 2022).

To overcome some of these disadvantages in the touchscreen bio-
etric scenario, our proposed Transformer comprises two parallel mod-
les: (i) a Temporal Module, which extracts features in the temporal
omain; and (ii) a Frequency Module, which extracts discriminative
eatures in the frequency domain. Although in Zhang et al. (2022)

he authors demonstrate that models of attention in various domains
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Fig. 3. Graphical representation of the Gaussian range encoding. PDF: Probability
Density Function.

(i.e., temporal and frequency) are considered equivalent when exposed
to linear conditions, the study also demonstrates the various behaviours
exhibited in different domains.

Analysing the Temporal Module first, the input swipe sequence 𝑋
with 𝐿 time samples is shaped by a Gaussian Range Encoding (GRE)
(See Fig. 3). In line with the idea presented by Li et al. (2021), the
GRE is included beforehand to preserve the temporal information. Each
position 𝑖 of the input swipe sequence 𝑋 is modelled by the Probability
Density Functions (PDFs) of 𝐺 learnable Gaussian distributions. Then,
the PDFs are L1-normalised and combined into a vector. After this, the
PDFs are computed at 𝐺 learnable ranges. Finally, the GRE output, 𝑋′,
s the matrix multiplication of the PDFs, 𝛽, and the range embeddings

of the input swipe sequence 𝑋:
′ = 𝑋 + 𝛽𝐸 (1)

ollowing the GRE, the Temporal Module contains a sequential stack
f 𝑇 layers. Each layer contains two sub-layers: (i) a multi-head self-
ttention mechanism, and (ii) a one-dimensional multi-scale swipe CNN
reated specifically for this task. First, the multi-head self-attention
echanism obtains dependencies on the swipe sequence without hav-

ng a window size limit. This allows all samples from a swipe sequence
o be connected to each other. The result of the self-attention mecha-
ism is the weighted summation of the values 𝑉 in accordance with the
ot-product of the queries 𝑄 and the matching keys 𝐾 (Vaswani et al.,
017):

ttention(𝑄,𝐾, 𝑉 ) = SoftMax(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 (2)

where 𝑑𝑘 is the dimension of the queries 𝑄 and keys 𝐾, and
√

𝑑𝑘 is
a scaling factor that enables flatter gradients. The output of the sub-
layer is the concatenation of applying the self-attention mechanism to
𝐻 independent heads. As a result, the output has the same dimension
as the input sequence, 𝐿. Then, the one-dimensional multi-scale swipe
CNN comprises three convolutional layers with ReLU activations and
different kernel sizes. A batch normalisation and a dropout layer are
introduced in between. In addition, each sub-layer is followed by a
residual connection and a layer normalisation (Add & Norm in Fig. 2).

Considering the Frequency Module, the input swipe sequence 𝑋 is
represented in the frequency domain by a discrete Fourier transforma-
tion 𝑋𝑓 . After this, a GRE is included to preserve frequency informa-
tion. Following an identical architecture to the Temporal Module, the
6

Frequency Module contains the same two sub-layers: (i) a multi-head e
self-attention mechanism, and (ii) a one-dimensional multi-scale swipe
CNN. Each sub-layer is also followed by a residual connection and a
layer normalisation (Add & Norm in Fig. 2).

After the Time and Frequency Modules, a one-dimensional convo-
lutional block is included similar to Delgado-Santos et al. (2023). The
features extracted by each module are concatenated and fed into a
dense layer with sigmoid activation, obtaining the output vector 𝑓 (𝑋):

(𝑋) = [CNN(𝑓𝑡(𝑋));CNN(𝑓𝑓 (𝑋))] (3)

here 𝑓𝑡(𝑋) and 𝑓𝑓 (𝑋) are the extracted features from the Temporal
nd Frequency Modules respectively.

.2. Similarity computation

The feature vectors extracted from the enrolled 𝑓 (𝑋𝑒) and test 𝑓 (𝑋𝑡)
wipe sequences are introduced in the similarity computation module
o obtain the final similarity score as described in Fig. 1. Six different
pproaches are considered at inference stage: (i) Euclidean distance, (ii)
hrunk Covariance, (iii) KDE, (iv) GMM, (v) OC-SVM, and (vi) B-SVM.

.2.1. Euclidean distance
A popular and simple approach widely used in biometrics as it does

ot require any training. It simple compares the similarity between
eature vectors based on the subtraction. Euclidean distance calculates
he distance between 𝑓 (𝑋𝑒) and 𝑓 (𝑋𝑡):

(𝑋𝑒, 𝑋𝑡) =
√

(𝑓 (𝑋𝑒) − 𝑓 (𝑋𝑡))2 (4)

.2.2. Shrunk covariance
Shrunk Covariance reduces the ratio between the smallest and the

argest eigenvalues of the empirical covariance matrix finding the l2-
enalised Maximum Likelihood Estimator of the covariance matrix.
his matrix is commonly used to model the statistical relationships
mong the features extracted from biometric samples. The Shrunk
ovariance is fitted for each subject and tested with samples from the
ame subject (genuine), and from other subjects in the final evaluation
ataset (impostor).

.2.3. Kernel density estimator (KDE)
This estimator applies kernel smoothing for probability density esti-

ation. KDE is a flexible and powerful tool for analysing and modelling
iometric trait distributions, enabling a good understanding of data.
ach estimator is trained on data from a single subject and tested on
enuine and impostor samples.

.2.4. Gaussian mixture model (GMM)
The Gaussian Mixture Model shapes the feature vector from a sub-

ect into a series of Gaussians in a probabilistic way with Expectation–
aximisation (EM) algorithm. GMM is well-known method in biomet-

ics as it can represent complex, multi-modal distributions, capture
ntra-class variability, and reduce dimensionality. For the final evalua-
ion, the model is tested with samples from the same subject (genuine),
nd from other subjects in the final evaluation dataset (impostor).

.2.5. One-class support vector machine (OC-SVM)
A specific SVM classifier is trained per subject. This configuration

ay be suitable for many application scenarios as it only considers data
rom the genuine subject, mapping the data into a high-dimensional
eature space where a linear decision boundary can effectively separate
he target class from outliers. In the one-class configuration only the
nrolled samples of the subject are considered to train the SVM.
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Table 2
Summary of the main characteristics of the databases considered in this study together with their experimental setup. T. — Touch, Acc. — Accelerometer, Gyr. — Gyroscope; x
— x axis; y — axis; p — pressure.

Database Subjects Device Sessions Features Length swipes

In-House Android: 232
iOS: 232

Free (Android
& iOS)

2 (≥ 1 week)
T. (x, y, t, area)
Acc. (x, y, z)
Gyr. (x, y, z)

Android: 30
iOS: 10

Frank DB (Frank et al., 2012) 41

HTC Droid Inc.
Google Nexus One
Google Nexus S
Samsung Galaxy S

2 (≥ 1 week) T. (x, y, p, t, area) 50

HuMIdb (Acien et al., 2021) 600 Free (Android) ≤ 5 (≥ 1 day)

T. (x, y, t, p, area)
Acc. (x, y, z)
Gyr. (x, y, z)
...

100
3.2.6. Binary support vector machine (b-SVM)
In the case of B-SVM, a subject-specific SVM classifier is trained.

In contract to OC-SVM, one classifier is trained using both enrolled
samples of the subject and also samples of other subjects (from the
development dataset) used as impostor. In cases where genuine and
impostor samples are available for training, it is a very powerful
classifier as it provides strong generalisation, is robust to overfitting
and there are few parameters to adjust.

4. Databases description

Three different databases have been considered in the experimental
framework of this study. These databases contain touchscreen data
extracted from mobile devices while performing swipe gestures. In par-
ticular, we consider an in-house collected database together with two
public databases widely used in the literature. In each database, differ-
ent acquisition conditions and mobiles devices are considered (e.g. sam-
pling rate, screen size). The main characteristics of the databases
together with the experimental setup in this study are reported in
Table 2.

• In-House Database: This database comprises 464 subjects. For
each swipe gesture acquired, we have the corresponding infor-
mation of the touchscreen, accelerometer, and gyroscope sensors.
The subjects were required to authenticate themselves in real-
world, unconstrained (not supervised) settings. This scenario al-
lowed subjects to use their personal devices freely, performing the
gestures in their preferred way, location, and timing. In addition,
there were no restrictions in terms of the position of the device
(portrait or landscape) and the direction of the gestures (vertical
or horizontal). As a result, this database considers real operational
conditions, unlike previous swipe databases in the field. The data
were collected using each subject’s personal smartphone (Android
and iOS) over a period of one year, with a minimum one-week gap
between at least two sessions. To comply with the General Data
Protection Regulation (GDPR) from the European Commission, in-
formation related to the device specifications (only the operating
system), demographics, and statistics were not collected.

• Frank Database (Frank et al., 2012): This database contains
swipe data from 41 subjects. Touchscreen data were collected
from 4 different Android devices (HTC Droid Inc, Google Nexus
One, Google Nexus S, and Samsung Galaxy S) while subjects were
comparing images and reading text under constrained conditions.
All devices are in portrait orientation. At least 2 sessions per
subject separated by 1 week were collected.

• HuMI Database (Acien et al., 2021): This database is the largest
public mobile touchscreen database available in the literature.
Data were collected from 600 subjects in a human-mobile inter-
action using the touchscreen and different background sensors
(e.g., linear accelerometer, accelerometer, and gyroscope, among
7

Table 3
Hyperparameters configuration.

Temporal Module
Gaussians in GRE (G) = 20
Temporal Layers (T) = 9
Temporal Heads (H) = 20

Frequency Module
Gaussians in GRE (G) = 20
Frequency Layers (F) = 9
Frequency Heads (H) = 20

Temporal + Frequency Modules Feature Vector Size (S) = 64

others). Data were collected using an Android app while subjects
performed 8 simple tasks (i.e., keystroke, swipe, tap, audio, and
draw a number) on their own devices under constrained condi-
tions. The number of acquisition sessions per subject is 5 or fewer,
with at least 1 day in between.

5. Experimental setup

5.1. Feature extractor hyperparameters

The best architecture and hyperparameters of the proposed Trans-
former have been selected using only the development dataset of the
in-house database. This selection has been carried out manually, based
on trial and error. Table 3 provides an overview of the key hyperpa-
rameters of SwipeFormer. Both Temporal and Frequency modules have
the same structure, the only difference is the Fast Fourier Transform
(FFT) included in the Frequency Module with an output size of 𝑠 =
𝐿 − 1, where 𝐿 is the length (number of samples) of each input swipe
sequence. The Gaussian range encoding includes 𝐺 = 20 Gaussian
distributions. After them, the Temporal Module comprises 𝑇 = 9 layers,
and the Frequency Module contains 𝐹 = 9 layers. Each layer includes
𝐻 = 10 heads. Subsequently, in each module the multi-scale swipe CNN
comprises 3 convolutional layers with 𝐿 units each, and kernel sizes
1, 3, and 5, respectively. In addition, the convolutional layers include
ReLU activation functions, followed by dropout layers with a rate of
0.1. Finally, 2 convolutional layers with 𝐿 units each, ReLU activation
functions, and kernel sizes of 512 and 256 are included at the end of
each module. The final output vector 𝑓 (𝑋) contains 𝑆 = 64 features as
a result of concatenating the output of the modules fed into the dense
layer with a sigmoid activation.

5.2. System details

The Transformer-based feature extractor is trained in the learning
stage. The triplet loss strategy is employed for the training, including a
Euclidean distance with a margin of 𝛼 = 1.0 for each triplet comparison.
Each triplet consists of three swipe gestures (containing each swipe
the corresponding information related to the touchscreen, accelerom-

eter, and gyroscope sensors): (i) anchor (belonging to an enrolled
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Table 4
Comparison of the performance in EER (%) achieved by the proposed SwipeFormer with different similarity computation approaches in our in-house database (Android and iOS
devices). Eucl. Dist. — Euclidean Distance; Shrunk Cov. — Shrunk Covariance; T. — Touch; Acc. — Accelerometer; Gyr — Gyroscope.

Method Databases

Feature
extractor

Similarity
computation

Android iOS

T. T., Acc., Gyr. T. T., Acc., Gyr.

SwipeFormer

Eucl. Dist. 12.3 12.1 13.9 13.7
Shrunk Cov. 13.0 11.9 9.0 11.2
KDE 7.8 7.5 7.9 8.5
GMM 10.4 10.8 8.6 8.1
OC-SVM 8.7 7.6 8.3 9.9
B-SVM 6.9 6.6 5.3 3.6

Fierrez, Pozo, et al. (2018) 43.4 43.2 35.1 34.8

Acien et al. (2020) 18.1 17.7 15.3 14.7
subject), (ii) positive (belonging to the same subject considered in the
anchor), and (iii) negative (belonging to a different subject). Triplets
are randomly formed using the subjects and swipes gestures included
in the training dataset, following the guidelines explained before for
the anchor, positive, and negative samples. The Adam optimiser with a
learning rate of 0.001 is used. Furthermore, a stop condition is included
for the training: if the feature extractor does not improve the validation
loss for 10 epochs, the training stops.

In the inference stage, the evaluation of SwipeFormer includes
different similarity computation approaches. The Shrunk Covariance
and KDE are evaluated with the Mahalanobis distance; and GMM with
diagonal covariance. In addition, KDE uses a Guassian kernel and a
bandwidth of 0.9. OC-SVM and B-SVM contain an RBF kernel with
= 0.5.

.3. Experimental protocol

Next, we describe the experimental protocol details considered in
he study. The specifications of each database and stage (learning and
nference) are included.

.3.1. Experiment 1: In-house database
The first experiment analyses the performance of SwipeFormer

sing the in-house database. Data from the touchscreen (x, y, area),
ccelerometer (x, y, z), and gyroscope (x, y, z) are included. Two
xperiments are considered, one for Android and one for iOS operating
ystems, considering in both the same experimental protocol.

In each experiment, the learning stage consists of 190 subjects,
48 of which belong to the train dataset and 42 to the validation
ataset. Regarding the inference stage, the 42 remaining unseen sub-
ects are included in the evaluation dataset. Regarding the learning
tage, the training dataset contains in total 18,066 triplets and the
alidation dataset includes 3,778. Each swipe of each subject represents
he anchor of a triplet, the positive pair is randomly selected from
nother swipe of the same subject, and the negative pair from a random
wipe of another subject of the training/validation dataset. Regarding
he inference stage, for each subject the final verification scores are
btained comparing 5 enrolled swipes from the first session with 10 test
wipes from the last session (genuines) and with 10 swipe from other
ubjects (impostors). Finally, the Android subset contains a sequence
ength 𝐿 = 30 while the iOS subset 𝐿 = 10.

5.3.2. Experiment 2: Frank and humi databases
To validate the potential of SwipeFormer, the proposed architec-

ture has been evaluated and compared with the literature using two
popular publicly available databases: (i) Frank DB (Frank et al., 2012),
which is one of the first public databases in the literature, and (ii)
HuMIdb (Acien et al., 2021), which is the largest public database in
8

the field, acquired recently in unconstrained scenarios.
First, in the Frank DB, 33 subjects are included in the development
dataset (learning stage) while the remaining 8 subjects are included
for the final evaluation (inference stage). Data from the touchscreen
(x, y, area) are included. For the learning stage, the training dataset
includes 11,694 triplets and the validation dataset contains 3,365. All
swipes have 𝐿 = 50 samples. In order to provide a fair comparison with
the literature, we follow the same (inter-session) experimental protocol
considered in Fierrez, Pozo, et al. (2018) for the inference stage. It is
important to highlight that, unlike previous approaches in the literature
that consider intra-session variability (Fierrez, Pozo, et al., 2018; Zhang
et al., 2015), we follow an inter-session experimental protocol where
enrolment and test samples are from different sessions in time (different
days), being a more realistic and challenging scenario for behavioural
biometrics. For each subject, one session is used for enrolment while
the other one is used for test as genuine. Regarding impostor scores,
swipes from other random subjects are used as impostor. It is important
to highlight that, contrary to previous approaches in the literature
such as Fierrez, Pozo, et al. (2018), SwipeFormer considers a more
universal scenario, without specifying the model the particular swipe
directions (vertical, horizontal, etc.) or position of the device (portrait
or landscape). Therefore, we consider in the analysis more challenging
scenarios.

In addition, for HuMIdb, we replicate the experimental protocol
considered in Acien et al. (2020). In particular, the right-swipe gestures
between tasks are included in this study. Data from the touchscreen (x,
y, p) are considered. Specifically, 424 subjects are used in the learning
stage (24,430 triplets for training and 5,946 triplets for validation),
while the remaining 178 unseen subjects are part of the final evaluation
(inference stage). All swipes have a length of 𝐿 = 100 samples.
Finally, for the inference stage, we consider the first 5 swipes per
subject as enrolled swipes, and the last 10 genuine swipes for testing.
Furthermore, 10 random swipes from other subjects are included as
impostor swipes for testing.

6. Experimental results

6.1. Experiment 1: In-house database

Table 4 shows the results of SwipeFormer in terms of EER (%)
for the Android and iOS evaluation datasets and for the different
similarity computation configurations considered: Euclidean distance,
Shrunk Covariance, KDE, GMM, OC-SVM, and B-SVM. Two different
feature configurations are studied: (i) including the touchscreen and (ii)
the combination of touchscreen and background sensors (accelerom-
eter and gyroscope). In addition, to provide a better comparison of
SwipeFormer with the state of the art, we include in the table the results
achieved by recent approaches in the literature, i.e., Acien et al. (2020)
and Fierrez, Pozo, et al. (2018).
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Fig. 4. DET curves and EER (%) achieved by the proposed SwipeFormer and other state-of-the-art approaches in the literature in our in-house database (Android and iOS). T. —
Touch, Acc. — Accelerometer, Gyr — Gyroscope.
Analysing the results with Euclidean distance, SwipeFormer achieves
EER values of 12.3% for touchscreen and 12.1% for touchscreen and
background sensors (relative EER improvement of 1.7%) in the Android
configuration; and 13.9% for touchscreen and 13.7% for touchscreen
and background sensors (relative EER improvement of 1.4%) in the iOS
configuration. These results demonstrate how background sensors on
mobile devices can provide additional information (e.g. the uniqueness
of the device used and held by the subject).

In addition, we analyse the performance of different similarity
computation configurations with the best feature configuration (touch-
screen and background sensors) in the Android configuration. Com-
pared with Euclidean distance, other approaches improve this result in
terms of ERR with relative improvements of 1.70%, 38.00%, 10.70%,
37.20%, 45.50% for Shrunk Covariance, KDE, GMM, OC-SVM, and B-
SVM respectively. These results prove that training each SVM with
both genuine (from the enrolled subject) and impostor (from other
subjects) swipes, more accurate verification is achieved than with the
other configurations.

Furthermore, an analysis of the iOS configuration shows similar
behaviour. Our proposed SwipeFormer with the best feature configu-
ration (touchscreen and background sensors) and Euclidean distance
achieves an ERR of 13.70%, while other similarity computation ap-
proaches relatively improve this result in terms of EER (Shrunk Covari-
ance: 18.20%, KDE: 38.00%, GMM: 41.00%, OC-SVM: 27.70%, B-SVM:
73.70%). These results demonstrate how classifiers such as SVM are
able to separate the different classes (genuine and impostor) with a
higher margin, achieving better performance.

In addition, as can be seen in Table 4, it is interesting to remark
that the iOS configuration reaches in general better performance than
the Android configuration, achieving in the best case a relative im-
provement of 45.50% (3.60% EER vs. 6.60% EER). We hypothesise
that this improvement achieved on iOS can be produced due to all
devices are from the same company (Apple), using similar high-quality
accelerometer and gyroscope sensors, contrary to the Android case that
contains very different smartphone models in terms of sensors. The
quality and calibration of the sensors, and the device’s overall design
and hardware integration has been studied in Franček, Jambrošić,
Horvat, and Planinec (2023).

Finally, for completeness, Fig. 4 shows the Detection Error Trade-Off
(DET) curves of the proposed SwipeFormer and the previous touch-
screen biometric systems, (Acien et al., 2020; Fierrez, Pozo, et al.,
2018), in the two configurations studied (Android and iOS). The best
feature configuration is analysed by combining the touchscreen and the
background sensors (accelerometer and gyroscope). Overall, we can see
a similar behaviour in both configurations, where SwipeFormer with
the B-SVM approach outperforms (Fierrez, Pozo, et al., 2018) with a rel-
ative improvement in terms of EER of 158.10% and 89.70% in Android
9

and iOS respectively. A similar trend is observer for Acien et al. (2020)
with an EER relative improvement of 62.70% in Android and 75.50% in
iOS. These results show how the correct classifier, such as SVM, helps to
better adapt the features extracted by the Transformer to each specific
subject. This is consistent with related works that have shown subject-
adaptation (Fierrez, Morales, Vera-Rodriguez, & Camacho, 2018) to be
very useful in behavioural biometrics (Fierrez-Aguilar, Garcia-Romero,
Ortega-Garcia, & Gonzalez-Rodriguez, 2005).

6.2. Experiment 2: Frank and humi databases

Fig. 5 shows the DET curves and the EER results obtained in Acien
et al. (2020) and Fierrez, Pozo, et al. (2018) systems, and the proposed
SwipeFormer on the public available databases Frank and HuMIdb.
All experiments in each database have the same experimental proto-
cols. Furthermore, B-SVM is considered in the similarity computation
module of SwipeFormer.

This experiment proves the robustness of the features extracted
by our proposed SwipeFormer. Overall, it can be observed how
SwipeFormer outperforms previous state-of-the-art approaches in dif-
ferent databases under the same experimental protocol. In particular,
for the Frank database (Frank et al., 2012), SwipeFormer achieves an
EER of 11.30% in comparison with the 43.60% EER obtained with Fier-
rez, Pozo, et al. (2018) and 25.00% with Acien et al. (2020) (relative
improvements of 74.80% and 56.00% respectively). In addition, for
HuMIdb (Acien et al., 2021), SwipeFormer obtains an EER of 5.60%
while Acien et al. (2020) and Fierrez, Pozo, et al. (2018) approaches
achieve 43.10% and 13.00% EERs respectively (relative improvements
of 88.40% and 61.50%).

The results obtained highlight the significant potential of the pro-
posed Transformer for several reasons. Firstly, the incorporation of GRE
allows to introduce in each sample details about its relative position
with respect within the sequence, increasing the complexity of the ex-
tracted information. Finally, the adoption of a two-stream architecture
(Temporal and Frequency Modules) facilitates the extraction of distinct
features, obtaining a more complete representation of each sample.

6.3. Deployment on real scenarios

This section analyses the time consumption of the proposed
SwipeFormer. It is important to highlight that the training of
SwipeFormer, like most DL models, is typically carried out off-line on
powerful computers or servers with dedicated GPUs. As indicated in
Fig. 1, this corresponds to the training stage. Once the model is trained
using large-scale databases, it can be deployed in real-time applications
for feature extraction, also known as the inference stage. In addition,
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Fig. 5. DET curves and EER (%) achieved by the proposed SwipeFormer and other state-of-the-art approaches in the literature, i.e., Acien et al. (2020) and Fierrez, Pozo, et al.
2018). The best configuration of the touchscreen and background sensors (accelerometer and gyroscope) is analysed.
t is important to remark that there are various options for storing
nd running DL models. For instance, the DL model can be stored on
remote server, which receives input data from the mobile device,

alculates the score or prediction, and then sends it back to the mobile
evice to make a decision based on the obtained result. This approach
llows the computational burden to be shifted to the server, leveraging
ts higher processing capabilities, while the mobile device primarily
andles input/output communication and decision-making based on
he received scores or predictions.

Therefore, in this section we analyse the time consumption of
wipeFormer in the inference stage, simulating the final application
cenario. All experiments are carried out using PyTorch with an Intel
Core i7-12700K processor and an NVIDIA GeForce RTX 3090 graphics
ard. For reproducibility reasons, we consider in this analysis the
ublicly available databases Frank DB and HuMIdb. Regarding the
rank DB, SwipeFormer achieves a significantly reduction in time, only
.11 ms per comparison (on average), surpassing the models presented
y Fierrez, Pozo, et al. (2018) with 567.88 ms and Acien et al. (2020)
ith 7.66 ms. Similarly, in the case of HuMIdb, SwipeFormer outper-

orms previous state-of-the-art approaches with a time of 0.34 ms per
omparison (on average), compared to 3.39 ms and 7.61 ms achieved
y Acien et al. (2020) and Fierrez, Pozo, et al. (2018), respectively.
hese results demonstrate that SwipeFormer not only improves recog-
ition accuracy but also excels in terms of time efficiency compared to
revious approaches.

. Conclusions and future work

The present study has introduced SwipeFormer, a novel touchscreen
erification system based on Transformers. To the best of our knowl-
dge, this is the first attempt to apply Transformers to touchscreen
iometrics.

SwipeFormer consists of two modules: (i) a feature extractor based
n a Transformer architecture, trained with the development data
cquired from the touchscreen and the background sensors of the
obile device in the learning stage; and (ii) a similarity computation
odule (Euclidean distance, Shrunk Covariance, KDE, GMM, OC-SVM,

nd B-SVM), which provides a final verification with a evaluation
ataset (inference stage). SwipeFormer contains two modules (Tempo-
al and Frequency) with a GRE, multi-head self-attention mechanism,
nd CNNs.

Two experiments are carried out considering an in-house database
ollected under unconstrained conditions and two of the most popular
ublic databases in touchscreen biometric verification collected under
onstrained conditions (Frank DB and HuMIdb). For the publicly avail-
ble databases, the same experimental protocol proposed in the litera-
ure was considered. Regarding the experimental results, SwipeFormer
10
outperforms state-of-the-art systems in all databases, achieving EER of
3.60%, 11.30%, and 5.00% in our in-house database, Frank DB, and
HuMIdb respectively.

Future work will explore and analyse Transformers in
other behavioural biometric modalities such as handwritten signature
(Tolosana, Vera-Rodriguez, et al., 2022) or electrocardiograms (Melzi,
Tolosana, & Vera-Rodriguez, 2022). Furthermore, the study of the
ageing effect on touchscreen biometrics (Tolosana, Vera-Rodriguez,
Fierrez, & Ortega-Garcia, 2019). Finally, future work will try to improve
the performance of SwipeFormer considering DL models for the syn-
thesis of data such as Variational Autoencoders (VAEs) or Generative
Adversarial Network (GAN). These approaches can significantly im-
prove one- and few-shot learning scenarios as demonstrated in Tolosana
et al. (2021).
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