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ARTICLE

Replanting unproductive palm oil with smallholder
plantations can help achieve Sustainable
Development Goals in Sumatra, Indonesia
Ariadna Fosch 1,2,3,4✉, Guilherme Ferraz de Arruda 1,3, Alberto Aleta 2,4, Adrià Descals5,6,

David Gaveau 7,8, Courtney Morgans 9, Truly Santika10, Matthew J. Struebig 9, Erik Meijaard 9,11,12✉ &

Yamir Moreno 1,2,3,4✉

Oil palm (Elaeis guinensis) is a controversial crop. To assess its sustainability, we analysed the

contribution of different types of plantations (smallholder, industrial and unproductive)

towards meeting six Sustainable Development Goals. Using spatial econometric methods and

data from 25,067 villages in Sumatra, Indonesia, we revealed that unproductive plantations

are associated with more cases of malnutrition, worsened school access, more air pollution

and increased criminality. We also proposed a strategy for sustainable palm oil expansion

based on replanting unproductive plantations with either industrial or smallholder palm oil.

Smallholder replanting was beneficial for five Goals (Zero poverty, Good health, Quality

Education, Environmental preservation and Crime reduction), while the same intervention

only improved two Goals in the industrial case (Zero poverty and Quality Education). Our

appraisal is relevant to policymakers aiming towards the 2030 Agenda, organisations plan-

ning oil palm expansion, and retailers or consumers concerned about the sustainability of oil

consumption.
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In 2015, all United Nations Member States adopted the 2030
Agenda for Sustainable Development, an urgent call for action
to all countries to achieve sustainable development by 20301.

The Sustainable Development Goals (SDGs) are at the core of the
initiative - 17 guiding principles encompassing economic growth,
environmental protection, global peace, access to healthcare, basic
education and others that should be followed by all countries to
aim towards a more sustainable future. Since its adoption, many
public and private organisations have also relied on the SDGs to
evaluate the sustainability of their activities. Nonetheless, this
analysis can be challenging, especially when the activities eval-
uated can have complex outcomes for many different develop-
ment dimensions. Palm oil production in tropical countries is a
typical example of such complex interactions between different
SDGs2.

The palm oil industry is frequently criticised due to environ-
mental and social impacts3–5. Specifically, for contributing to air
and water pollution6, biodiversity loss7 and a decline in social
well-being in neighbouring communities due to land use conflict
and labour exploitation8. However, palm oil production is also an
important vehicle for economic growth and poverty alleviation
with recent large-scale impact evaluations emphasising the trade-
offs associated with the industry’s influence on the SDGs7,9. As
global demand for vegetable oils increases from 201 to 307 mil-
lion tones (Mt) by 20504,10, identifying the role of palm oil
production in achieving the multifaceted elements of the SDGs
will become crucial to guide policymakers towards more sus-
tainable production systems, given its relatively low land
requirements compared to other oil crops4.

As the largest worldwide palm oil producer, Indonesia provides
the ideal case study to evaluate the contribution of palm oil to the
SDGs11,12. The Indonesian economy has thrived through palm oil
production, with 17% of Indonesia’s agricultural gross domestic
product in 2014 depending on this crop13,14. However, its
expansion has been associated for many years with deforestation,
ecological damage and a mix of positive and negative social
outcomes3–5,9,11,15. The Indonesian scenario is even more com-
plex when considering the heterogeneity between the industrial
and smallholder palm oil production profiles. Industrial planta-
tions tend to be large, with thousands of hectares of land dedi-
cated to the monoculture of palm oil. Smallholder plantations, on
the other hand, are typically smaller –<25 hectares according to
government definition – although wealthy individuals can
sometimes own several hundred hectares. They also tend to
exhibit a more heterogeneous spatial pattern, where palm oil is
often mixed with other crops or land dedicated to other uses16,17.
The differences between both production profiles could also entail
discrepancies in their ecological footprint18 and the socio-
economic characteristics of the villages where they are located.

In this study, we evaluate the differences between smallholder
and large-holder industrial plantations through the perspective of
the SDGs. The analysis relies on spatial econometric models to
reveal correlations between the socio-economic characteristics of
the villages in the region of Sumatra (Indonesia) and their land
dedicated to different palm oil production profiles (active
industrial plantations, active smallholder plantations and two
types of unproductive plantations). To characterise the con-
tribution of each production system to the SDGs, we explore the
differences in seven SDG indicators if the unproductive
(damaged) plantations in Sumatra were replanted through a
smallholder or an industrial profile. Our analysis reveals how
successfully replanting damaged plantations with smallholder
palm oil exhibits more beneficial outcomes toward most SDGs
than its industrial equivalent. However, smallholder palm oil
production is also responsible for most unproductive (damaged)
plantations (72% of the total damaged land has smallholder

tenure), which indicates the need for careful planning and addi-
tional policies to ensure the viability of the replanting strategy.
Our appraisal could be relevant for policymakers and stake-
holders aiming to complete the 2030 Agenda in the context of
palm oil production in Indonesia.

Results
Socio-economic differences between palm oil production sys-
tems. Palm oil production can play a major role in the socio-
economic development of the villages in which is produced.
However, it is still unclear how these impacts could vary
depending on the production profile used for its production. To
this end, we combined two datasets describing, respectively, the
socio-economic characteristics of the villages of Sumatra (Indo-
nesia) and their total area dedicated to palm oil plantations,
classified by their type of ownership (industrial/smallholder) and
production status (young, mature and unproductive damaged or
unproductive but possibly replanted)16,17. See Methods section
for a more detailed description.

We aggregated the palm oil data into four production profiles:
active industrial palm oil, active smallholder palm oil, unproduc-
tive damaged plantations and unproductive but possibly
replanted plantations (see Methods for more details). Then, we
estimated the socio-economic characteristics significantly asso-
ciated with each profile through two types of spatial regression
analysis. The Spatial Durbin Model (SDM)19, a global spatial
dependency model and the Spatial Durbin Error Model
(SDEM)19, a local-dependency variant. Both models produced
broadly consistent results (see Supplementary Tables 5–8).

Unproductive (damaged) plantations are significantly asso-
ciated with more cases of malnutrition, crime, air pollution and a
higher distance to primary education centres (see Fig. 1). These
socio-economic characteristics are detrimental to SDG 2 (Zero
hunger), SDG 4 (Quality education), SDG 15 (Life on land) and
SDG 16 (World peace). Damaged plantations are also positively
correlated with more healthcare facilities and more types of credit
facilities, two features that are beneficial respectively for SDG 3
(Good Health and well-being) and SDG 8 (Economic growth).
Nevertheless, these positive associations are not unique to
unproductive (damaged) land. They were also observed in the
case of active smallholder plantations, which could indicate that
such infrastructures are built during the early stages of plantation
development and remain after their failure. These characteristics
differ from the ones observed for unproductive (but possibly
replanted) areas. In that case, we observe fewer negative effects
overall and slight beneficial outcomes for poverty reduction.

Villages with industrial or smallholder plantations share some
common characteristics compared to non-oil palm producing
villages: they are less associated with natural disasters and tend to
have fewer households receiving Surat Keterangan Tidak Mampu
(SKTM) poverty letters. These letters are issued to families below
the national poverty level to facilitate access to essential resources
such as fuel, healthcare or education20. Prior studies have already
reported a positive influence of palm oil production on poverty
alleviation9,11. In our case, these beneficial economic outcomes
are only observed for villages with active plantations from both
profiles and for possibly replanted areas, which highlights the
negative role of damaged plantations in sustainable development.

Additionally, we found that several characteristics distinguish
villages with smallholder and industrial plantations. Those with a
smallholder profile are associated with more credit facilities and
cases of malnutrition, while in the case of industrial land, the
reduced distance to primary schools is one of the main
differential traits. The diversity observed in both production
profiles evidences the need to evaluate their sustainability
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separately. This is especially relevant for planning interventions
over land use, as the same intervention could entail different
sustainability outcomes depending on the village’s predominant
production system.

Counterfactual analysis. With the global increase in vegetable oil
demand and related environmental impacts of agricultural
expansion, it is crucial to develop strategies to increase palm oil
production while maintaining Indonesia’s efforts toward net zero
deforestation21. With damaged palm oil plantations having
multiple detrimental outcomes on sustainable development,
replanting them could be a key strategy for sustainable palm oil
expansion. Nevertheless, it is still unclear whether smallholder or
industrial palm oil is better at maximising the beneficial outcomes
for the SDGs. We, therefore, implemented a counterfactual ana-
lysis to estimate the change in seven SDG indicators if all
unproductive (damaged) plantations were replanted through an
industrial or smallholder profile. The seven indicators used for
the counterfactual analysis span six different development goals
(see Methods for the selection criteria). These are SDG 1 (Zero
poverty): log(num. SKTM poverty letters), SDG 3 (Healthcare
and Well-being): Num. healthcare facilities, SDG 4 (Quality
Education): log(dist. primary school) and log(dist. junior-high
school), SDG 9 (Industry, innovation and infrastructure): log(dist.
nearest market), SDG 15 (Life on land): percentage of village area
covered by forest, SDG 16 (Peace and Justice): number of dif-
ferent types of crime.

The counterfactual analysis followed the pipeline described in
Fig. 2. The SDM model was trained seven times, using each SDG
indicator as the dependent variable y and all the village
characteristics (socio-economic and palm oil production features)
as independent features X. The trained models were used to
predict the expected change in the SDG indicators if all
unproductive (damaged) land in Sumatra was replanted with
either industrial or smallholder plantations.

The predictions obtained for each SDG indicator can be
visualised as the counterfactual maps shown in Supplementary
Fig. 2. These maps provide a detailed description of the location
and magnitude of the changes produced in the SDGs, but they do
not indicate how the intervention affects the well-being of local
communities. For example, removing one hospital from a village

without other healthcare facilities might have a more drastic
impact on the villager’s well-being than the same change in a
village with other healthcare centres.

To contextualise the results in terms of the village’s well-being,
we defined a deprivation threshold for each SDG indicator using
the reference values proposed in the Indonesian Village
Development Goals (Indeks Pembangunan Desa)22 (see Methods
section for more details). Interventions that induce a change from
a deprived state to a non-deprived state or vice-versa will be
considered highly positive or highly negative contributors to the
SDGs, as they drastically affect the well-being of the villages. If the
intervention does not induce a change in the deprivation state, it
will only be considered a moderate influence, regardless of the
magnitude of the change observed. Finally, interventions where
no changes in the SDG indicators are induced, are considered
neutral interventions. Using these criteria, the counterfactual
maps were translated into Fig. 3, which summarises the effects of
both interventions across all villages.

Replanting unproductive (damaged) plantations is associated
with a positive contribution towards SDG 1 for both production
profiles. The smallholder strategy resulted in a slightly more
beneficial outcome, as it is associated with highly positive effects
for more than 27% of the villages where the counterfactual was
applied. In the case of SDG 3, replanting unproductive land with
industrial plantations was associated with a reduction in the
number of hospitals, a negative influence on the SDG, while
smallholder expansion is positively impacting the objective. This
outcome must be further validated as the apparent lack of medical
coverage in industrial plantations could be because some
company-owned health facilities may not be included in the
socio-economic data.

For SDG 4 both production profiles have mainly negative
outcomes towards reducing the distance to junior-high schools.
However, the industrial strategy seems to result in more beneficial
effects towards improving the distance to primary school centres.
Thus, in this case, promoting industrial plantations could be
more beneficial overall for SDG 4, also because similar to health
care, many companies provide schooling for children of their
workforce23.

Increasing industrial plantations is also associated with a small
reduction in forest coverage, leading to a moderately negative
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Fig. 1 Significant total spatial impacts for different palm oil production profiles. The profiles evaluated are: unproductive (damaged) plantations,
unproductive (but possibly replanted) plantations, active industrial palm oil and active smallholder palm oil. Positive spatial impacts indicate a positive
correlation between village land and the socio-economic characteristic involved, while negative spatial impacts indicate negative correlations (see Methods
for a formal description of the spatial impacts metric). Grey panels indicate not statistically significant associations (p-value > 0.05). The spatial impacts
were estimated using the SDMmodel trained as described in the Methods section, which resulted in a Nagelkerke’s pseudo− R259 between 0.38− 0.63 for
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outcome for SDG 15. Contrarily, replanting unproductive
(damaged) land with smallholder plantations correlates with
increased forest coverage levels, which is favourable for environ-
mental protection. Though this outcome may seem counter-
intuitive, it may result from the negative association between
damaged land and SDG 15. Since palm oil replanting reduces the
amount of damaged land, it is expected that a correlation analysis
would interpret it as a positive outcome for SDG 15. However,
this does not imply a causal relationship between both effects.
Replanting unproductive (damaged) plantations is associated
with negative outcomes for SDG9, for which both interventions
induced an increase in the distance to the nearest market. This
could result in oil palm development displacing local production
and trade of goods usually supplied to local markets, such as
fruits. Finally, for SDG 16, we identified that the interventions are
associated with an increase in the number of different types of

crime or a decrease in crime variability depending on the village
where it is implemented.

Overall, replanting damaged plantations was more beneficial
when implemented through a smallholder profile than its
industrial equivalent. Smallholder replanting was beneficial for
SDGs 1, 3 and 15 and it exhibited mixed effects for SDGs 16 and
4 (positive effect for primary schools and negative for junior-high
schools). Meanwhile, industrial replanting only presented syner-
gistic associations with SDG 1 and one facet of SDG 4 (primary
school). This last association was the only one more beneficial in
the industrial replanting scenario than in the smallholder case.
Interestingly, both counterfactual scenarios were not compatible
with the progress of SDG 9 and SDG 4, in the case of the junior-
high school indicator. This revealed the presence of a trade-off
effect between the intervention proposed and the achievement of
some development goals.

Fig. 2 Structure of the counterfactual analysis. A complete description of the pipeline can be found in the Methods section. The SDG icons are property of
the United Nations, reprinted for informational purposes in accordance with ref. 67 (all rights reserved).
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The findings demonstrate the intricate nature of the connec-
tions between an intervention and the SDGs. An identical
intervention can yield positive outcomes for certain indicators
while having negative effects on others, leading to various
synergistic or trade-off relationships with the development goals.

Province analysis. To assess the scale dependency of the findings,
we repeated the counterfactual analysis for each of the ten pro-
vinces in Sumatra individually (see Supplementary Figs. 3-12).
We then estimated the production profile that yielded the most
favourable and detrimental outcomes for each province and
compared it to the results observed for the entire island.

The results presented in Table 1 confirmed the trends observed
in the study for all of Sumatra. Replanting by smallholders was
associated with the most beneficial outcomes for the SDGs across
all provinces. The only exception was the case of SDG 4 (for the
primary school indicator), where industrial replanting consis-
tently outperformed smallholder replanting across the regions
evaluated. This analysis also revealed consistent results in their
trade-off effects, as replanting damaged plantations also entailed
detrimental outcomes for SDG 9 across all provinces.

In general, the proposed counterfactual approach enabled us to
differentiate between two seemingly similar interventions con-
cerning palm oil usage. This tool could allow policy-makers to
make more informed decisions to achieve sustainable palm oil
development. However, it is crucial to recognise that the
interplays described by the counterfactual evaluation are condi-
tional on successfully transforming unproductive terrains into
active plantations. Thus, guaranteeing the viability of the
replanted plantations is of utmost importance for the sustain-
ability of the strategy.

Sumatran villages tend to have more unproductive (damaged)
plantations associated with smallholder tenure than with
industrial palm oil (see Fig. 4). In terms of total area, 72.5% of
the total unproductive damaged land is associated with the
smallholder production profile (calculation in the Supplementary
Methods). It is crucial to identify the mechanism behind the
increased failure rate of smallholder plantations. Whether it is
caused by sub-optimal soil and planting materials24; or if indeed
smallholder producers sometimes lack the capital or knowledge to
make plantations thrive24. This could reveal if replanting
damaged plantations with a smallholder profile is indeed

sustainable by itself, or if other supplementary programs (e.g.,
educational, economic, etc.) should also be introduced to increase
its effectiveness.

Discussion
The sustainability of palm oil production is frequently called into
question, especially by commentators in high-income countries.
This criticism focuses strongly on the environmental impacts of
oil palm but it is less clear the extent to which negative impacts on
the environment are balanced by positive impacts elsewhere. This
is at the core of sustainable development considerations. The
SDGs are intended to be targeted simultaneously, resulting in
positive outcomes for all these objectives. In reality, trade-offs are,
however, likely to occur. Here we have analysed the extent to
which oil palm development in Indonesia, the world’s largest
palm oil producer, results in synergies and trade-offs between
different SDGs, and how this varies in different production
profiles. This analysis provides a basis for a better understanding
of the overall impact of oil palm on sustainable development and
also a way to steer future developments that maximise positive
outcomes and minimise negative ones.

Oil palm expansion, if indeed sought by the Indonesian gov-
ernment, should preferably occur on existing agricultural land, or
in areas where previous attempts to cultivate oil palm have been
ineffective25. Replanting failed or poorly performing plantations
with smallholder palm oil was associated with beneficial effects
for poverty, healthcare provision, terrestrial environments, pri-
mary education access and in some villages crime variability
reduction. This indicates a synergistic association between the
proposed intervention and SDGs 1, 3, 4, 15 and 16. Meanwhile,
industrial replanting only entailed beneficial outcomes for edu-
cation and poverty (SDGs 4 and 1). These outcomes are quite
consistent across all provinces and would indicate that small-
holder production may be more beneficial for the SDGs than
industrial plantations.

However, we also observed that 72,5% of unproductive
(damaged) land in Sumatra was associated with smallholder
tenure. The beneficial outcomes of the intervention proposed are
conditional on transforming unproductive land into viable
plantations. Thus, it is crucial to ensure the replanted areas do not
fail again after the intervention. To this end, policymakers should
invest in comprehending the mechanism behind the increased

Table 1 Summary of the palm oil production system with the most beneficial and detrimental effects in all provinces of Sumatra.

"S” indicates that smallholder production has the largest (positive or negative) influence on the SDG indicators. “I” indicates that industrial production is the one with the greatest (positive or negative)
influence on the SDG indicators. “I/S” indicates that both production systems exhibit the same positive or adverse effects. Missing values ("−”) indicate cases where no positive or negative associations
are found. The geographical location of each province can be found in Supplementary Fig. 1. The SDG icons are property of the United Nations, reprinted for informational purposes in accordance with ref.
67 (all rights reserved).
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failure rate of smallholder production to determine if it is linked
to land quality or management issues.

Both mechanisms are often difficult to differentiate. Peatlands
and hilly areas are sub-optimal for oil palm, the former because of
low pH and low productivity (and high fertiliser needs), the latter
because of potential lack of water and soil erosion26,27. These are
often marginal lands where aspiring farmers might try to start a
plantation, but if the costs for generating good yields are too high
they abandon it5. Complicating this is the fact that many small-
holders opt for low-input low-output systems28 that can generate
similar profits to more intensively managed plantations but may
have higher failure rates (i.e., the cost of walking away from a
plantation is lower when investments have been low). Palm oil
can also fail due to natural factors, like the presence of diseases,
fire29 or floods30. In that case, it is necessary to comprehend why
some landowners may not be rapidly re-purposing plantations
after their failure. This could be linked to land speculation
practices31,32, contested land ownership, insufficient funding, or
the lack of technical skills to re-purpose the plantation. Overall,
comprehending the causes behind plantation failure could reveal
the locations most suitable for the replanting strategy proposed
and whether supplementary policies (educational programs or
financial/technical support) are required to maximise its success
chances.

Even if replanting damaged plantations with smallholder palm
oil could aid sustainable development in Sumatra, these conclu-
sions should not be directly extrapolated to other areas. The
region of Sumatra is in a more advanced stage of oil palm
development compared to other parts of Indonesia, such as
Kalimantan and Papua16. Additionally, it is also the region with
the largest amount of unproductive plantations, making it an
ideal scenario to test the replanting strategy. If there is interest in
assessing the sustainability of similar interventions in other
Indonesian regions, or other countries, the whole counterfactual
analysis should be repeated using adequate data.

Despite its caveats, our study provides valuable insights for
government authorities and policy-makers involved in planning

oil palm and other monocultural plantation crops. We offer the
possibility of evaluating simultaneously the impact of an inter-
vention over seven different SDG indicators, revealing some of
the existing synergies and trade-offs among them. With adequate
data, this approach could be expanded to evaluate all 17 SDGs,
providing a handy tool to evaluate the sustainability of palm oil
production as a whole. Moreover, bringing together land cover,
production scale and socio-economic indicators is an important
step towards improving understanding of how agricultural
development can have the greatest positive SDG impacts and
avoid negatively affecting people, especially those in forest
environments.

Our study also opens new lines of research in different fields.
For example, it could be used as a hypothesis-generating tool to
design on-site sociological studies. A similar approach combining
data-driven models and experimental studies is starting to be
used in SDG assessment33. However, to the best of our knowl-
edge, it has not yet been applied in the context of palm oil
research. Complementing our study with household surveys
could reveal the causal linkages behind the correlations identified
in this study. It could also shed some light on the impacts of palm
oil expansion on the villages’ minority groups.

The model proposed could also be used to test other types of
interventions in palm oil use. For example, there would be value
in studying the social and environmental benefits of reforesting
damaged plantations. This could help clarify if less intensive land
uses (agroforestry cultivation) would be preferred in unproduc-
tive plantations with poor-quality soils. Another interesting
counterfactual scenario could be assessing the impact of climate
change on sustainable palm oil production. Tropical production
areas are predicted to become drier and hotter34, causing
alterations in rainfall patterns and water stress. This makes oil
palm more prone to pest and disease outbreaks, potentially
reducing its yields. Other risks include sea-level rise in coastal
production areas, especially on peat soils35, and increased
wildfires36. These changes will likely influence interplays between
palm oil production and the SDGs and should be modelled
specifically to guide sustainable policies.

Other lines of research could be directed towards improving
the quality of the data used in this analysis. The socio-economic
data for 2018 was obtained from the Village Potential Survey
(PODES) survey, an Indonesian survey of village well-being with
a much higher spatial resolution than the one usually reported in
the SDG Global Database (the United Nation’s official country-
wide SDG reports)37. However, it only contains a small subset of
variables that can be used as SDG indicators, only providing
partial insight into each goal. For example, the use of the distance
to education centres as a proxy indicator for SDG 4, does not
capture other facets of this goal like the quality of the education
provided. Improving the resolution of the socio-economic data
could allow us to better characterise the SDGs from a multi-
dimensional perspective.

Regarding the palm oil dataset, our study would significantly
benefit from an improved ownership categorisation. The binary
differentiation between smallholder and industrial plantations
could be masking different sustainability outcomes between
smallholders with different characteristics. This categorisation
also disregards whether the owner resides in the same village
where the plantation is located. However, we worked under the
assumption that many of the costs and benefits of palm oil accrue
irrespective of the owner’s residence (e.g. ecological impacts). We
also chose not to incorporate palm oil trade as a predictor in our
analysis, despite its role in driving palm oil production through
international and national demand. Estimating the influence of
demand on individual villages would require extensive surveys to
gather specific data, and we believe that palm oil demand does

Main producer unproductive 
(damaged) land

Smallholder

Industrial

Both

No damaged land

Missing data

Fig. 4 Distribution of unproductive (damaged) land in Sumatra by type of
plantation. Villages coloured according to the production profile
responsible for most damaged land in each village. Blue for smallholder
plantations, red for industrial plantations and yellow if the percentage of
village area covered by unproductive (damaged) land is the same for both
profiles (occurring in very few villages). Villages without damaged land are
coloured in white, while missing data is coloured in grey.
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not have a distinct impact on the SDG indicators at the village
level beyond its influence on palm oil production itself.

Our study also provides some methodological improvements to
ease the introduction to the field of spatial econometrics for
researchers in the palm oil community. The use of spatial data in
palm oil research has thrived in recent years3,16,17,26,38. However,
few studies have decided to follow spatial econometric approaches
to evaluate the sustainability of palm oil plantations26. Instead,
the main focus has been on assessing the impacts of interventions
retrospectively. This approach is very useful for describing the
causal effects of an intervention but it does not take advantage of
the spatial nature of the data3,7,39. The use of spatial regression
models offers the possibility for predictive evaluation, which
could be a very valuable tool for policy-makers planning new
interventions. To facilitate the use of spatial regression models in
sustainability research we have improved the model selection
pipeline described in ref. 40, which was one of the most complete
approaches towards model selection in spatial econometrics.

Overall, we hope this study can open the door to more research
exploring the environmental and social interests of oil produc-
tion. The current analysis and methodological approach also
allow for future comparison between the SDG impacts of dif-
ferent vegetable oil crops, such as soybean, rapeseed/canola,
coconut, peanut or sunflower. All these crops have different oil
yields and thus land requirements and come with different sus-
tainability profiles because of their different geographical location.
The trade-offs and synergies between different crops and pro-
duction profiles have never been analysed, making it impossible
to compare their sustainability meaningfully. The current study
thus provides a first methodological step towards such a global
assessment of the sustainability of vegetable oil production.

Methods
Data. We relied on high-spatial-resolution data from 26,505
villages in Sumatra describing four different palm oil production
situations, the area of forest and the socio-economic character-
istics of each village. The land use data was generated by com-
bining two satellite-derived datasets from refs. 17,41 and refs. 16,42,
which also specifies their type of ownership (smallholder or
industrial). The approach used to classify the plantation’s own-
ership relies on their differences in size, land homogeneity and
infrastructure development and it is further described in
the Supplementary Methods.

References 17,41 used radar and optical images (Sentinel-1 and
Sentinel-2) to detect the area covered by closed-canopy oil palm
plantations in 2019. These plantations are already productive,
generally when oil palm is older than 3 years. On the other hand,
refs. 16,42 used historical optical images (Landsat) to identify the
year when the land was cleared to plant oil palm (between 2001
and 2019). This analysis considers all land cleared for palm oil
production, including immature, damaged and failed plantations;
and thus surpasses the estimated extent of the closed-canopy
plantations. By combining the two datasets above with an
additional analysis of recent replanting (from Sentinel-2 images)
we generated the following four plantation classes: 1) mature oil
palm corresponds to land cleared for oil palm before 2017 and
detected as closed-canopy oil palm in 2019; 2) young oil palm is
the land cleared for oil palm after 2017 (inclusive) and not
detected as closed-canopy oil palm in 2019; unproductive oil
palm corresponds to land cleared for oil palm before 2017 and is
not closed canopy in 2019; 4) possibly replanted plantations is the
land cleared for oil palm before 2017, is not closed-canopy in
2019, but is detected cleared between 2017 and 2019 if the
normalised difference vegetation index from Sentinel-2 images
presented a sharp decrease during 2017-2019. “Possibly replanted

plantations” can be interpreted as failed or damaged plantations
established before 2017, cleared and replanted during 2017–2019.
We specified separately the four production classes for each
production profile (industrial and smallholder), resulting in the
eight different types of palm oil plantations detailed in
Supplementary Table 2.

To measure the forest area in 2019 at the village level we
combined a map of the “primary” forest extent in 200043 and an
annual forest loss map ref. 44. The forest cover for the year 2000
was produced by including intact and degraded primary forest
types described in ref. 43. This map was updated to 2019 using the
forest change maps in ref. 44. Areas of forest in 2000 cleared
between 2001 and 2018 were marked “cleared previously” and
removed in the updated 2019 forest map.

For our regression analysis, the village area occupied by the
eight plantation classes and the forest coverage was reported
relative to the total village area. Absolute land units were only
used for the estimation of the total percentage of
unproductive land.

The socio-economic characteristics of the Indonesian villages
were obtained from the PODES for 201811. PODES is a national
survey carried out by the Indonesian Central Bureau of Statistics
every 2–4 years and includes more than 100 questions about the
economic, social and environmental characteristics of Indonesian
villages. We selected questions of most relevance to the SDGs and
synthesised response variables into 27 features, 6 describing
general village characteristics and 21 reflecting different indica-
tors directly related to the SDGs. While the PODES survey was
conducted in 2018, the oil palm datasets were created for 2019.
The datasets have a one-year mismatch, but this mismatch is
negligible because the oil palm plantation area does not change
substantially from year to year.

SDG indicators. SDG indicators are quantifiable characteristics
that reflect the progress towards achieving each development
goal. Using the “Global indicator framework for the SDGs”45, we
identified seven features in our dataset associated with some
objectives of the SDGs:

● Zero poverty: SDG 1, is dedicated to poverty eradication
“End poverty in all its forms everywhere”45. More precisely,
objective 1.2 in ref. 45 states, “By 2030, reduce at least by
half the proportion of men, women and children of all ages
living in poverty in all its dimensions according to national
definitions”. The closest indicator in the PODES dataset is
the number of SKTM poverty letters. SKTM poverty letters
have already been used as a proxy for poverty in other
studies20,46,47, and they reflect a poverty alleviation system
created by the Indonesian government to fight against
national poverty. SKTM letters are issued to families below
the national poverty level to facilitate access to essential
resources such as fuel, healthcare, or education20. As such,
they should provide a good proxy to determine the amount
of poverty present in each village (see Supplementary
Methods for a correlation analysis between poverty letters
and income). The number of poverty letters is negatively
associated with SDG 1 as the objective of this SDG is to
reduce the number of poor families;

● Good health and well-being: objective 3.8 states the need to
“Achieve universal health coverage”45. Therefore, we have
relied upon the number of healthcare facilities as an
indicator for SDG 3. This indicator is positively associated
with SDG 3 since increasing the number of hospitals is
beneficial to the development goal;

● Quality education: SDG 4 considers access to primary and
secondary education45. In this case, two variables were
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considered as SDG indicators, the distance to primary
schools (km) and the distance to junior-high schools.
Improving access to education facilities is crucial to ensure
that all youth achieve literacy and numeracy, as proposed
in objective 4.6 of the SDGs45. Both indicators exhibit a
negative association with the development goal, as the
distance to education centres needs to be reduced to
improve this objective;

● Industry, innovation and infrastructure: SDG 9 has been
represented using the distance to the nearest market.
Objective 9.1 states the need to promote the creation of
resilient infrastructures that help to develop local commu-
nities and their economy45. The most related indicator in
the PODES dataset was the distance to the nearest market
(km), which exhibits a negative association with the SDG it
represents;

● Life on land: for SDG 15, which addresses environmental
protection, we have relied on the percentage of village area
covered by forest as the SDG indicator. This feature is
directly proposed in the Global indicator framework of the
SDGs as an indicator for objective 15.1 “Ensure the
conservation, restoration and sustainable use of terrestrial
and inland freshwater ecosystems and their services, in
particular, forests”45. The indicator is positively associated
with the SDG;

● Peace and Justice: for Goal 16 “Promote peaceful and
inclusive societies for sustainable development”45, we have
relied on the number of different types of crimes as the
SDG indicator. This variable indicates the variety of crimes
occurring in a village and was used as a proxy for
criminality. Achieving world peace requires a reduction of
criminality; thus our indicator is negatively associated with
the SDG.

Note that the signs of the associations between the indicators
and the SDGs play a major role in interpreting the positive and
negative effects. Increasing one indicator does not always
translate into beneficial outcomes for the SDG they represent.

The choice of SDG indicators was influenced by the
methodological prerequisites of the spatial models utilised. The
spatial econometric models used are designed to use continuous
variables as their dependent feature. Consequently, we exclusively
selected indicators of a similar nature as our SDG indicators.

Preprocessing. The dataset contains continuous, discrete, cate-
gorical and binary variables. Thus, the preprocessing differed for
each type of feature. Categorical variables were transformed into
binary “dummy” variables through a one-hot-encoding
approach48. In the process, one dummy variable for each cate-
gorical feature was removed to avoid perfect colinearity between
the rest of the variables. Some other features were preprocessed to
remove potential colinearities. The number of core natural dis-
asters was subtracted from the total number of natural disasters to
create an independent variable describing only low-incidence
disasters. Also, the “village’s main source of income” was com-
bined with the feature describing the “village’s main agricultural
product” to avoid the colinearity between them. Given the non-
normal distribution of some variables, we applied a log trans-
formation to bring them closer to normality. For each feature x,
the transformation logðx þ 1Þ was applied. The discarded features
are detailed in the Supplementary Methods.

Finally, 1,438 villages were removed from the analysis either
because of missing data or due to inconsistencies between the
number of families and the number of poverty letters issued. The
final dataset (after filtering) contains data for 25,067 villages in
Sumatra and is described in Supplementary Table 1.

Model selection. Through the use of the Global Moran’s I (MI)49

we unveiled the presence of significant spatial clustering in all the
features of our dataset and the residuals of the OLS regression, see
Supplementary Table 3. Thereby, we relied on spatial regression
models for the analysis. This methodology has been widely used
in spatial econometrics, where it is common to observe that the
geographical location of the samples can affect their
characteristics50–52.

To determine the preferred spatial regression model for the
analysis, we followed the pipeline described in Fig. 5. This
pipeline is based on the approach described in ref. 40, but it was
expanded to evaluate the Spatial Lagged X model (SLX) and the
Manski model. The pipeline starts from the OLS model and
evaluates the need to include spatial dependency in the dependent
variable y or in the error term ε through the use of the Lagrange
multiplier (LM)53 and the Robust Lagrange Multiplier (RLM)54.
Both tests are based on the residuals of the OLS model and follow
a chi-squared distribution with one degree of freedom40. Suppose
the hypothesis is rejected in favour of one type of dependency (p-
value ≤ 0.05), the pipeline is continued only using spatial
regression models with the preferred type of dependency,
respectively the Spatial Autoregressive model (SAR) and the
Spatial Error model (SEM), see ref. 19 for a formal description of
these models. If both models are identified as significant, the
pipeline is continued for both types of models.

The SAR and SEM models can be expanded by including
spatial dependency in the independent features X, which results
in the SDM and the SDEM. We relied on the Likelihood ratio
(LR) to evaluate if this extension is needed. Using the LR it is
possible to test if the SDM and SDEM can be simplified to their
nested versions SAR and SEM, respectively. The LR was also used
to evaluate if the SDM and SDEM models could be simplified into
the Spatial Lagged X model (SLX)19, a model only considering
spatial dependency over the independent features. A significant
LR (p-value ≤ 0.05) indicates that the H0 assuming that the
complex model can be simplified to its nested version is rejected,
thus the complex model is preferred. Contrarily if the test is not
significant, the simplified version is preferred. If both models
cannot be simplified they are both recommended for the
sustainability analysis.

Finally, we evaluate if the SDM or SDEM models capture the
whole spatial dependency in the data through the MI on the
residuals of both regressions. If the residuals of the regressions are
still spatially correlated, the preferred model is a model
considering all types of spatial dependency, the Manski model55.
More details regarding the application of the pipeline to our
dataset are available in the Supplementary Methods.

Spatial Durbin Model. The primary analysis was performed
using the Spatial Durbin Model, which is defined as

y ¼ αIN þ Xβþ ρWy þWXθ þ ε; ð1Þ

for a model with N spatial units and K features. The term y is an
N × 1 vector describing the dependent variable for all the spatial
units in the dataset. The αIN term is a constant vector of
dimensions N × 1 that reflects the model’s intercept. The term Xβ
describes the dependency on the exogenous explanatory variables,
where X is the N × K matrix describing independent features, and
β is its K × 1 coefficient vector. The spatial auto-regressive term
ρWy introduces spatial dependency over y by assuming that W is
the N ×N weight matrix describing the connectivity pattern
between spatial units and ρ is the scalar parameter reflecting the
strength of spatial dependence. Similarly, the term WXθ describes
the spatial dependency over the independent features, and the
K × 1 vector θ reflects its associated parameters. Finally, the N × 1
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disturbance vector ε contains independent, normally distributed
terms with a vector mean zero (N × 1), and constant variance,
(σ2)19. The SDM model is regarded as a global spatial dependency
model, as the presence of the spatial lag term (ρWy) causes that
changes applied in a specific location to propagate through the
wholeWmatrix affecting the N-order neighbours recursively19,53.

The spatial influence between samples (villages in this case)
was defined through an adjacency matrix (Aij) created using a
queen contiguity criteria53, in which villages are only considered
neighbours if they share a common point along their borders. Aij

was row-normalised to build the weight matrix (W), defining the
strength of the association between villages19. The spatial weights
matrix was decomposed into 30 power of traces using Monte
Carlo Markov Chain simulations to reduce the computational
burden of the simulations19. Both models were implemented in R
4.2.1 using the package spatialreg (version 1.2-1)56. Sparse
Cholesky decomposition was used to compute the Jacobian of
the W matrix (method ‘Matrix’ in the same package)56.

Spatial impacts. The marginal contribution of each independent
feature (xk) in spatial regression models is described by an N ×N
matrix (where N is the number of samples), describing the
expected change in the y of all locations when xk is modified. To
ease the interpretation of the results, the marginal contribution
matrices can be transformed into the direct, indirect and total
spatial impacts19. We report the average of the diagonal elements
in the matrix as the direct impact, and it can be interpreted as the
average change in y in a location when their own xk is increased
by 1 unit. The average for the off-diagonal effects can be inter-
preted as the influence of a change on their neighbouring loca-
tions, and it is reported as the indirect impact (or spatial spillover
effect). Finally, summing both effects we obtain the total spatial
impact and it describes the average influence of modifying xk
across all spatial units19,40. We estimated the significance of the
spatial impacts numerically using the regression coefficients and
the covariance matrix to perform 10,000 estimations of the
impact measures19. For our analysis, we only considered the
features with statistically significant direct, indirect and total
impacts (p-value ≤ 0.05) as significant associations.

We would like to remark that the associations identified by the
spatial models should not be interpreted as causal outcomes but
as the spatially averaged contribution of each feature x to
estimating the dependent variable y.

Prediction. In-sample prediction in spatial regression models
allows estimating the expected value of y (ŷ) when the indepen-
dent variables are modified in the same locations where the model
was trained. There are two possible predictors for spatial
regression models the “trend” and the “trend-corrected” pre-
dictors, refer to ref. 57 for more detailed definitions. In models
with spatial auto-correlation (ρWy), the trend-corrected predictor
provides more accurate estimations than the “trend” model.
Thereby, the counterfactual analysis for the SDM model was
performed using the “trend-corrected” predictor while for the
SDEM model the “trend” predictor was used instead.

Quality metrics. To validate the goodness of fit of the models, we
evaluated several statistical metrics. First, we report two different
pseudo-R2 metrics, a pseudo-R2 adjusted using Ezekiel’s
correction58 and the Nagelkerke’s (NK) pseudo-R259. Pseudo-R2

cannot be interpreted as an OLS R2, they can only be used as a
model selection metric to compare models trained with the same
dependent and independent variables. Other metrics for model
selection are the Akaike and Bayesian Information Criteria (AIC
and BIC respectively)60,61. We also evaluated the model’s accu-
racy in describing the spatial dependency in the data. To this end,
we estimated the MI49 on the residuals (ε) of the regressions. If
the spatial regression model accurately characterises the spatial
dependency between samples, we expect that the residuals are
spatially uncorrelated and have a non-significant (p-value > 0.05)
MI49. Finally, we relied on the Normalised Root Mean Squared
Error (NRMSE) as a goodness-of-fit metric. The prediction error
was estimated using the difference between the real value for the
dependent variable (y) and the in-sample predicted variable (ŷ),
using the “trend-corrected” predictor for the SDM model and the
“trend” estimator for the SDEM57. This measure was transformed

Fig. 5 Schematic representation of the model selection pipeline. The pipeline is based on the approach proposed by ref. 40, but it extends it by also
evaluating the Spatially Lagged X and the Manski models. The pipeline relies on the LM, the LR and theMI to identify an adequate spatial regression model
for each regression. The pipeline should be applied by starting from the OLS model and only progressing to the next model if the test meets the significance
condition indicated on the arrow. The preferred model (or models) is identified when it is not possible to advance further in the pipeline.
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into the Root Mean Squared Error by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i¼1ðyi � ŷiÞ2

N

s

; ð2Þ

where N is the number of villages and ðyi � ŷiÞ is the prediction
error described before62. The RMSE was normalised by dividing it
by the range of the dependent variable y63, as shown in

NRMSE ¼ RMSE
maxðyÞ �minðyÞ : ð3Þ

Sustainability of different production profiles. For this analysis,
we aggregated the palm oil production data into four independent
production profiles: active smallholder plantations, active indus-
trial plantations, unproductive (damaged) plantations and
unproductive (but possibly replanted) plantations. We considered
an “active plantation” the sum of young and mature plantations
for that production profile. Contrarily, the two “unproductive
land” profiles were defined respectively as the sum of industrial
and smallholder land for each class. Note that the four production
profiles are considered independent because their sum does not
reflect the totality of the village area, only the area dedicated to
palm oil production.

We estimated the socio-economic characteristics significantly
associated with each production profile by training four SDM
models with the data for each production profile as the dependent
variable y and all the socio-economic variables from PODES as
independent features X. The complete list of exogenous variables
used can be found in the Supplementary Methods. For this analysis,
the dummy variables describing the “village’s main source of income”
was excluded to avoid colinearity between villages reporting palm oil
as primary income and villages with a high palm oil coverage.

The significant associations identified for the four regression
modes were reported using the total spatial impacts. Additionally,
several statistical quality metrics were reported for each model
trained (refer to the Quality metrics section).

Counterfactual analysis. The counterfactual analysis was
implemented following the structure described in Fig. 2. Seven
regressions (SDM model) were trained using each SDG indicator
as the dependent variable and the socio-economic and palm oil
production features as the dependent variables (see Supplemen-
tary Methods for more details). To avoid perfect colinearity, when
estimating SDG 15, variables describing village location, forest use
and forest dependency were excluded from the analysis.

The counterfactual scenario proposed evaluates the influence
on the SDGs of replanting all damaged plantations through a
smallholder or an industrial profile. Thus, the percentage of land
dedicated to unproductive (damaged) plantations (industrial+
smallholder) was transferred to the young smallholder or young
industrial categories, respectively.

The effect of the counterfactual was quantified by computing
the difference between the dependent variable ŷ predicted after
the intervention with the value predicted when the intervention is
not applied. Before estimating the difference between both
scenarios, the predictions obtained for each SDG indicator were
bounded to reflect the characteristics of each type of variable. For
all SDG indicators, the predictions were lower-bounded to zero,
and only the percentage of forest coverage (indicator for SDG 15)
was upper-bounded to 100%.

The effects produced by the counterfactual analysis were
contextualised by determining their influence on the well-being of
the villages affected. For each SDG indicator, a deprivation
threshold was defined according to the values indicated by Village
Development goals (Indek Pembangunan Desa)22. These values

define the minimum levels required to consider that the village is
not deprived of that socio-economic characteristic. The following
list describes the thresholds selected.

● SKTM poverty letters: villages with more than 10% of the
population with SKTM poverty letters are considered
deprived of this indicator;

● Number of healthcare facilities: villages without healthcare
facilities are considered deprived of this indicator.

● Distance to primary school: villages without a primary
school (distance to nearest primary school > 0 km) are
considered deprived of this indicator;

● Distance to junior-high school: villages with more than
3 km to the closest junior-high school are considered
deprived of this indicator;

● Distance to market: villages with more than 10 km to the
nearest market are considered deprived of this indicator;

● Percentage forest coverage: villages without forest coverage
(0% of the village covered by forest) are considered
deprived of this indicator. Note that the Multidimensional
Poverty Index does not consider Forest Coverage as an
indicator; thus, the threshold was defined as strictly as
possible;

● Number of different types of crime: Villages with more
than 3 different types of crime are considered deprived of
this indicator.

These thresholds were used to estimate the deprivation status
for each village and SDG before and after the intervention of the
counterfactual. Interventions causing a village to change from a
deprived to a non-deprived state are classified as highly positive,
while interventions causing the transition from a non-deprived to
a deprived status are labelled as highly negative. Contrarily,
interventions that have some impact on the SDG indicator but do
not induce a transition between deprivation states are only
regarded as moderately positive or negative interventions, as they
modify the SDG indicator, but this is not translated into changes
in village well-being. Finally, in villages where replanting
damaged plantations did not change the SDG indicators, the
intervention is considered to have a neutral effect.

Province analysis. For this analysis, Sumatra was divided into the
ten provinces shown in Supplementary Fig. 1. The counterfactual
analysis was repeated using the same trained models as for the
previous analysis but assuming that only the unproductive
plantations in the region evaluated are being replanted. The
impact on village well-being of the regional interventions was
evaluated using the thresholds described in the previous section.

The results for the counterfactual analysis in ten provinces are
shown in Supplementary Figs. 3–12. However, we summarised
them in a table describing the most beneficial and detrimental
profile for each region (Table 1). The beneficial production profile
for each region was estimated by selecting the interventions with
the highest amount of villages with positive outcomes (highly
pos.+ moderate pos.) effects for each SDG indicator. The most
negative outcome was selected accordingly. The production
profile with the highest magnitude (positive/negative) is reported
using the following abbreviations: “I” if industrial plantations or
“S” for smallholder plantations, “I/S” if the percentage of positive
and negative outcomes is equivalent for both production profiles,
and “–” if no outcomes are observed.

Data availability
The palm oil plantation data was obtained by combining the datasets refs. 17 and 16,
which can be freely accessed via the following databases refs. 41 and 42. The geometries
used to generate the maps were extracted from the following sources: Indonesia
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(obtained with the preprocessed socio-economic data), Malaysia64, Thailand65 and
Singapore66. A data usage license for the PODES data can be requested and purchased
from the Indonesian Bureau of Statistics via https://pst.bps.go.id. Because of this, it is not
possible to upload a minimal dataset on a public repository. However, we have uploaded
the output from the trained regression models to the following public GitHub repository
AFosch/Figs_PalmOil_SDGs. This data can be used to obtain some of the figures shown
in the manuscript.

Code availability
The code to generate the figures can be found in the following GitHub repository
AFosch/Figs_PalmOil_SDGs. The code used to train the regression models is available
upon request.
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