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Abstract

This thesis examines the application and comparison of a set of widely adopted

parametric and non-parametric approaches in forecasting the realisation of risk mea-

sures, such as volatility. In chapter 2, implied correlation is extracted from options

and utilised to predict realised correlation after decomposition and re-grouping. I

also attempt to forecast market return using the re-organized signal. Starting from

chapter 3, I focus on parametric models, more specifically, the observation-driven

models represented by GARCH and score-driven models (GAS). The observation-

driven models are extensively constructed upon assumptions on innovation terms.

Their predictive power concerning realised volatility is evaluated and compared. In

addition, the performance of GAS and GARCH models is also compared to implied

volatility comprehensively. In chapter 4, I propose to construct GAS models with

shifted Gamma (SG-GAS) and shifted negative Gamma (SNG-GAS) innovations

for option pricing. Corresponding GARCH models and the Black-Scholes model are

built as as benchmarks for comparison. It appears that both GAS models outper-

form the other models. The superiority of SG-GAS and SNG-GAS is mainly driven

by their ability to price out-of-the-money options accurately.
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Chapter 1

Introduction

This thesis is composed of three essays on forecasting and option pricing. In the

first two essays, emphasis is placed on parametric and non-parametric approaches

for predicting realised correlation, market returns and volatility. In the last essay, a

parametric approach is applied for option pricing.

Correlation plays a crucial role in finance as an essential measure of dispersion

between assets within a basket. In chapter 2, I investigate the predictive power of the

average expected correlation between component stock returns that can be extracted

from corresponding options plus those written on the index. The predictive power

of implied correlation against realised correlation and market returns over a variety

of horizons is documented in Driessen et al. (2012), Faria et al. (2022), Hollstein

et al. (2018) and Bernales and Valenzuela (2016).

A series of studies have been conducted to inspect the specific channels through

which implied correlation works to predict future market returns. For example,

Buraschi et al. (2014) propose that correlation risk is priced because it relates to

investors’ disagreement about the future state of the market. Buss et al. (2017)

document that implied correlation is connected with market returns via its link to
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non-diversifiable market risk. Buss et al. (2019) suggests that the forecasting power

of implied correlation stems from its ability to act as a procyclical state variable

that can predict macroeconomic variables and financial risks. It is also reported

by Buss et al. (2019) that the forecasting ability of implied correlation is driven by

the interplay between its three main determinants, implied market variance, implied

idiosyncratic variance and the dispersion of implied market betas. More recently,

Bernales and Valenzuela (2016) found that changes in implied correlation tend to

cause changes in market volatility and consequently result in changes in the equity

premium.

The motivation of this chapter is to discover an alternative channel via which implied

correlation forecasts future market returns. More specifically, the innovative part of

this chapter is that, in an adaptive sense, the time series of implied correlation is

decomposed and re-grouped to form low-frequency and high-frequency components.

The relation between the informational content of different components and future

market returns at different horizons is investigated. My research is closely connected

with Buss et al. (2019) and Branger et al. (2021), who also study the determinants

of implied correlation. However, while determinants in previous studies are found to

be observable market variables, such as implied market variance, this chapter is the

first study to focus on extracted components that are representative of different fre-

quencies. Naturally, these components can be recognised as proxies of expectations

from different groups of investors with distinct investment horizons.

The technology I adopt for the decomposition of implied correlation is called Em-

pirical Mode Decomposition (EMD) (Huang et al., 1998). It is not dependent on as-

sumptions on the structure of implied correlation, and it can decompose the original

implied correlation time series into components with significantly different proper-

ties. It is natural to think that the high-frequency component captures short-term

fluctuations while the low-frequency component works better in capturing long-term

trends.
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This chapter makes several contributions to existing literature. First, I document

that the previously reported predictive power of implied correlation over future real-

isations is predominantly driven by its low-frequency component, which is indicated

by consistently higher R-squares in predictive regressions than using either the orig-

inal time series of implied correlation or its high-frequency component.

Second, I find that the forecasting ability of implied correlation concerning market

returns is driven by interactions between its components of different frequencies.

overlapping predictive regressions indicate that The predictive power of implied cor-

relation to short-term market returns stems mainly from the informational content

of the high-frequency component. On the contrary, as longer forecasting horizons

are considered, the low-frequency component dominates. More importantly, it can

be observed that the combination of both components is a more efficient predictor of

market returns consistently across horizons. This indicates that the decomposition

of the informational content of implied correlation is beneficial. These findings are

valid after controlling for fundamental variables that predict market returns, as in

Goyal and Welch (2008); Fereira and Santa-Clara (2011).

Third, I document that decomposing implied correlation can improve the out-of-

sample predictability of market returns. More specifically, I find that components of

implied correlation outperform implied correlation itself at corresponding forecasting

horizons. However, while components are found to outperform in certain scenarios,

the benchmark of the historical average is relatively challenging to beat.

In chapter 3, I shift to the parametric methods for volatility modelling and fore-

casting. I adopt two classes of trending observation-driven models to capture the

characteristics of the market returns. The first model is Generalised Autoregressive

Conditional Heteroskedasticity (GARCH), which enables the variance of the error

term to be time-varying. The second model I apply is the Dynamic Conditional

Score (DCS) model, or the score-driven model. As the DCS model is quite compa-
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rable to the GARCH model, another name for the DCS model is the Generalised

Autoregressive Score (GAS) model. In the rest part of this thesis, the score-driven

model is referred to as the GAS model.

This chapter is motivated by the fact that while most of the existing literature

in volatility modelling proposes to model financial returns within the framework of

GARCH models, GAS models, with appealing features, are less frequently discussed

in the application of volatility modelling. Instead of GARCH, it is proposed in this

chapter to predict realised volatility within the framework of GAS models. The GAS

models are empirically found to have a less extreme response to abnormal shocks in

observations and hence are expected to produce fewer extreme volatility forecasts

compared to GARCH models. This property is valuable, as the observed large

absolute returns might be caused by the fat-tailed nature of the financial returns

distribution.

In this study, I make various assumptions on the distribution of the innovation term

that brings randomness into the index returns process. More specifically, GARCH

models with normal (GARCH), shifted Gamma (SG-GARCH and SNG-GARCH),

shifted inverse Gaussian (SIG-GARCH and SNIG-GARCH), shifted Weibull (SNW-

GARCH), t-location and scale (TLS-GARCH) and Logistic (LOG-GARCH) innova-

tions are constructed using market returns time series, represented by the Dow Jones

Industrial Average (DJIA) index. Following identical assumptions on the distribu-

tion of innovation terms, corresponding GAS models are constructed as comparisons

to GARCH models. This chapter contributes to the existing literature by imple-

menting comprehensive comparisons between the performance of GARCH and GAS

models in volatility forecasting.

Through the comparisons, several findings are documented. First, generally, GARCH

models tend to perform better in volatility forecasting than GAS models. Such su-

periority is reflected by both higher descriptive R2 from regressing realised volatility
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onto model-based predictions and lower prediction errors.

Second, it is documented that while GARCH dominates GAS in most cases, the

TLS-GAS model, among all candidate models, tends to have the lowest prediction

error at the daily forecasting horizon. Considering that TLS-GAS has a slope closer

to 1 and that its R2 is on the same level as the other top performers, it can be

asserted that TLS-GAS models have the overall best performance in forecasting

realised volatility at the daily horizon.

Third, I find that at daily and weekly forecasting horizons, GARCH models out-

perform corresponding GAS models in explaining the realised volatility in most

scenarios. The pattern stays unchanged for forecasting accuracy. At the monthly

horizon, the superior performance of GARCH against GAS seems to be weakened.

Fourth, using a sub-sample covering the 2007-2008 financial crisis, I find that while

the GARCH models still have higher descriptive R2 from Mincer-Zarnowitz regres-

sions in most cases, GARCH and GAS tend to have comparable performance at

forecasting horizons longer than one day. It is also documented that SNW-GAS has

the overall best performance in predicting realised volatility at daily horizons during

the market turmoil.

Fifth, by comparing the predictive power of model-based volatility predictions to

that of option-implied volatility, I find that implied volatility consistently outper-

forms model-based volatility predictions in describing movements of realised volatil-

ity. This is consistent with Becker et al. (2007) and Becker and Clements (2008).

However, regarding forecasting accuracy, both Implied Volatility (IV) and Model-

Free Implied Volatility (MFIV) have inferior performance than model-based volatil-

ity predictions.

The motivation of chapter 4 is similar to that of chapter 3. In terms of pricing

options via Monte Carlo simulation approach, the framework of GARCH is a natural

5



candidate. In comparison, GAS models draw relatively less attentions in this field.

Instead of having closed-form solutions, Duan (1995) and Duan (1999) propose to

model the underlying price process with the GARCH model. The GARCH process

is risk-neutralised under the framework of the locally risk-neutral valuation rela-

tionship (LRNVR) before being used to simulate the dynamics of underlying prices,

which is used to compute the expected payoffs. Instead of LNRVR, the Esscher

transform is adopted in Christoffersen et al. (2006) for risk-neutralisation due to its

capability to handle non-Gaussian innovations.

My study is connected to this strand of literature. The innovative part of this chap-

ter is that, instead of building GARCH models, GAS models with shifted Gamma

innovation (SG-GAS and SNG-GAS) are constructed for option valuation via a sim-

ulation approach. The Gamma innovation term is chosen because of its capability to

account for skewness exhibited in financial returns (Tong et al., 2004). The Esscher

transform is adopted for risk-neutralisation.

One attractive feature of the GAS model is that the time-varying parameter that

drives the updating equation is not necessarily the variance of the innovation term.

Instead, it is usually connected with variance, for example, the scale parameter.

Most importantly, I find that if appropriate innovation terms are selected, the GAS

model tends to be more accurate when the market is in turmoil. This further

supports the empirical findings in the previous chapter.

The primary finding of this study is that, in terms of pricing accuracy measured

by the Mean Absolute Percentage Error (MAPE), the GAS models with shifted

Gamma innovation (SG-GAS) and shifted negative Gamma innovation (SNG-GAS)

significantly dominate other competing models, including the BS model, GARCH

model with normal innovation (GARCH) and GAS model with normal innovation

(GAS).
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Using sub-samples before, during and after the 2007-2008 financial crisis, it is also

documented that the superior performance of SG-GAS and SNG-GAS models is

even more significant in a normal market environment. However, during the finan-

cial crisis,the GAS models with Gamma innovations, while still outperforming the

BS model, no longer have the best performance during the unprecedented market

turmoil. Instead, models with normal innovation (GARCH and GAS) tend to have

better performance during this period of massive market uncertainty. Furthermore,

the GAS model significantly dominates its GARCH counterpart with a lower pre-

diction error.

To find out the source of the outperformance of proposed GAS models, the option

valuation performance of all models is evaluated across a range of moneyness and a

variety of time to maturity. It can be observed that the superior pricing performance

of SG-GAS and SNG-GAS is mainly due to their ability to more accurately price

Deep Out-of-the-Money (dOTM) options, while these two models have the worst

performance on pricing near-the-money options. It is also documented that SG-GAS

and SNG-GAS models perform better in pricing options with longer maturities.

I attempt to find out the source of improved performance of SG-GAS and SNG-GAS

in pricing Out-of-the-Money (OTM) options by designing a series of Monte Carlo

simulation studies. It is documented that, under Q, the density implied by the

SNG-GAS model has fatter tails compared to that implied by the GARCH model

with normal innovations. Such a pattern can be consistently observed for density

simulated 30 days to 360 days from the present. Such behaviour of the SNG-GAS

model indicates that it tends to have higher predictions over tail risk, which is

related to the price of OTM options. Consequently, SG-GAS and SNG-GAS models

are capable of better estimating OTM options prices.

Finally, in chapter 5, I discuss and conclude the findings of all three essays and

limitations, based on which potential future research directions are proposed.
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Chapter 2

The informational content of

implied correlation

2.1 Introduction

Option prices reflect the expectations of market participants about future underly-

ing price movements. According to Bates (1991), option prices contain information

that is not fully captured by historical prices. This is consistent with the point

proposed by Buss and Vilkov (2012) that option prices respond more rapidly to

market shocks than the underlying stocks. It is natural to consider that informa-

tion extracted from option prices can be utilised to predict future market returns.

Such measures include (but are not limited to) implied variance and other higher

moments, which can be estimated from equity options or index options. Apart from

these, the average pairwise correlation between assets in the market can be extracted

using both individual stock options and index options. This chapter focuses on the

predictive power of option-implied correlation.

The correlation between assets has been vital in finance for a long time. Changes in
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2.1. INTRODUCTION

correlation are negatively connected to the consumption and investment opportunity

set, as a higher correlation means lower diversification benefits and higher market

volatility. Therefore, it is essential to understand how to measure, model and analyse

the correlation structure between assets to improve asset pricing, portfolio alloca-

tion, and risk management. In this chapter, I inspect the informational content of

option-implied correlation at different frequency levels. Emphasis is placed on un-

derstanding whether decomposing the information contained in implied correlation

can improve its predictive power over market returns.

The recent literature has been paying increasing attention to the predictive power of

implied correlation, i.e. the average expected correlation between asset returns that

can be inferred from index options and options written on the constituent stocks.

More specifically, Driessen et al. (2012), Faria et al. (2022), Hollstein et al. (2018) and

Bernales and Valenzuela (2016) show that implied correlation can efficiently predict

market returns for horizons of up to one year. Intuitively, since option-implied

information is forward-looking by construction, implied correlation reflects market

participants’ expectations of realised correlations in the future. As a result, implied

correlation tends to outperform other predictors in forecasting realised correlation.

In addition to its role in predicting its realisations and, thus, market returns, the

implied correlation has been found to contain significant information in various other

contexts. For example, Driessen et al. (2009) find that correlation risk is priced in

the cross-section of index and individual option returns. Buss and Vilkov (2012) use

implied correlation to construct option-implied estimates of market betas, which are

more accurate predictors of realised betas than historical estimates. Kempf et al.

(2015) use implied correlation to obtain more efficient estimators of the covariance

matrix, leading to significant improvements in portfolio optimisation. Kelly et al.

(2016) extract implied correlation from options on sector indices and individual

stocks to measure the implicit government guarantee for the financial sector during

the 2007-2009 crisis.
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2.1. INTRODUCTION

Several alternative frameworks have been proposed to explain the specific channels

via which implied correlation is related to future market returns. For instance,

Buraschi et al. (2014) argue that correlation risk is priced because it relates to

investors’ disagreement about the future state of the market. Buss et al. (2017) pro-

pose that implied correlation predicts market returns via its link to non-diversifiable

market risk, as opposed to diversification risk. Buss et al. (2019) suggests that the

forecasting power of implied correlation stems from its ability to act as a pro-cyclical

state variable that can predict macroeconomic variables and financial risks. In this

context, Buss et al. (2019) show that the forecasting power of implied correlation is

driven by the interplay between its three main determinants, namely implied mar-

ket variance, implied idiosyncratic variance and the dispersion of implied market

betas. Furthermore, Bernales and Valenzuela (2016) suggest that implied correla-

tion changes induce market volatility, ultimately leading to changes in the equity

premium. Branger et al. (2021) argues that the correlation risk premium contains

a premium associated with continuous stock price movements and a separate pre-

mium associated with co-jumps, with the former predicting market returns at longer

horizons and the latter at shorter horizons.

I contribute to this strand of the literature by exploring an alternative channel

through which implied correlation could predict future market returns. In particular,

I decompose the time series of implied correlation into a low-frequency and a high-

frequency component, and I examine how the specific informational content of each

component relates to future market returns at different horizons. My research is

more closely associated with Buss et al. (2019) and Branger et al. (2021), who also

study the determinants of implied correlation. However, while these previous studies

examine a set of determinants that constitute observable market variables, such as

implied market variance, this chapter is the first to focus on extracting components

that refer to different frequencies. These components are representatives of different

groups of investors and are reflections of various expectations of investors from these
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groups.

One advantage of the frequency decomposition is that it avoids imposing strong

assumptions about the correlation structure and its relationship to other market

variables. More importantly, though, the resulting components naturally inherit

distinct properties from the original time series, with the high-frequency compo-

nent capturing short-term fluctuations and the low-frequency component capturing

longer-term trends. Therefore, it would be reasonable to expect that a frequency

decomposition could explain why implied correlation’s predictive power is commonly

found to vary considerably across different forecasting horizons. The most robust

finding of my study is that the high-frequency component of implied correlation is

the most efficient predictor of market returns for shorter horizons. In comparison,

the low-frequency component performs better for longer horizons.

The empirical analysis is based on the expected average correlation implied by op-

tions written on the S&P500 index and its constituent stocks, with the sample

period ranging from 1996 to 2020. Similarly to Driessen et al. (2009), I observe a

substantial correlation premium, which is generally larger for longer maturities. To

disaggregate the informational content of implied correlation, I apply the Empirical

Mode Decomposition (EMD) (Huang et al., 1998) to extract several oscillations with

different frequencies from the original time series, which I then use to construct a

low-frequency and a high-frequency component.

This study makes several empirical contributions to the literature. First, I find that

the previously documented predictive power of implied correlation over future re-

alised correlation is driven predominantly by the former’s low-frequency component,

which results in consistently higher R-squared in predictive regressions than using

either the original time series of implied correlation or its high-frequency compo-

nent. The superior performance of the low-frequency component is observed across

forecasting horizons from one to six months, and it is the strongest for the 3-month

11
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horizon (where the R-squared increases from 22% to 34% when I replace implied

correlation with its low-frequency component).

Second, I show that the predictive power of implied correlation over future market

returns is driven by the interaction between its two components. To this end, I esti-

mate predictive regressions of market returns against several combinations of implied

correlation and its frequency-based components. I estimate these predictive regres-

sions in an overlapping fashion as in Driessen et al. (2012) across several forecasting

horizons ranging from one day to one year while controlling for the correlation risk

premium, the index’s model-free implied variance, and the Bollerslev et al. (2009)

variance risk premium. The predictability of market returns at short horizons stems

primarily from the informational content of the high-frequency component, which

consistently outperforms the original time series of implied correlation and the low-

frequency component as a predictor. This superior forecasting performance of the

high-frequency component is observed for forecasting horizons of one day up to one

month. For instance, at the 1-month horizon, replacing implied correlation with

its high-frequency component in the predictive regression more than doubles the

R-squared from 4.6% to 10.2%.

As I move towards longer forecasting horizons of up to twelve months, the low-

frequency component starts dominating as the primary source of predictive power.

In this sense, the empirical findings support the intuitive notion that the high-

frequency component contains significant information about short-term fluctuations,

which can improve the forecastability of market returns at short horizons. In con-

trast, the low-frequency component reflects longer-term trends that relate to future

returns over longer horizons. Importantly, combining both components consistently

results in a more efficient forecast of market returns than that provided by the orig-

inal series, highlighting the merits of disaggregating the informational content of

implied correlation. Although consistent across all forecasting horizons, this im-

provement in forecasting power is more pronounced for shorter horizons of up to
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three months. This finding is particularly important since market returns are typi-

cally more difficult to forecast in the short term than in the longer term.

I also examine non-overlapping forecasts where I include several fundamental vari-

ables shown to efficiently predict market returns (Goyal and Welch, 2008; Fereira

and Santa-Clara, 2011). The improvement in R-squared from decomposing implied

correlation is more marginal after accounting for these commonly used predictors

of the equity premium. Nevertheless, the high-frequency component remains a ro-

bust predictor at shorter horizons, where it outperforms the original time series,

while the low-frequency component outperforms at the most extended 12-month

horizon. Consistent with my earlier findings, using both components in the place of

implied correlation results in higher R-squared across all forecasting horizons, with

the improvement being more noticeable for relatively shorter horizons.

Finally, I present evidence that decomposing implied correlation improves the out-

of-sample predictability of market returns. More specifically, I find that each com-

ponent outperforms implied correlation at specific forecasting horizons that match

the nature of its informational content. When evaluated against the benchmark

of the historical average, the high-frequency component results in an out-of-sample

R-squared of 3.6% at the 1-month horizon, which is substantially higher than the

0.1% produced by implied correlation and highly significant based on the Clark-West

test (Clark and West, 2007). For longer horizons, the low-frequency component has

the highest out-of-sample R-squared (reaching 11.2% at the 12-month horizon, com-

pared to 3.4% when using implied correlation), although statistically beating the

historical average benchmark becomes more difficult.

The rest of the chapter is organised as follows. Section 2.2 introduces the existing

literature on option implied information. Section 2.3 presents the data sources and

the construction of the main variables used in the empirical analysis. Section 2.4

describes how the Empirical Mode Decomposition approach is applied to construct
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the two components of implied correlation, while Section 2.5 reports the results of

predictability regressions for realised correlation. Section 2.6 discusses the empirical

results on the predictability of market returns, and Section 2.7 concludes.

2.2 Methodology

2.2.1 Implied Volatility

There is extensive literature on option-implied information, with option-implied

volatility, in particular, having attracted significant attention. In my study, implied

volatility is one of the building blocks of implied correlation. The latter is often

attached to indices and can be estimated using options written on the index and its

constituents.

In terms of the methods for extracting option implied volatility, it was originally

obtained by backing up from Black-Scholes Model using at-the-money options, pro-

vided other inputs are given. The most important innovation comes from the the-

oretical result of Carr and Madan, Demeterfi et al. (1999b) and Britten-Jones and

Neuberger (2000), who obtain implied volatility by exploiting option prices only,

without relying on any formula. This approach is thus not restricted by unrealis-

tic assumptions imposed by models like the Black-Scholes Model, and the implied

volatility estimated using this method is called model-free implied volatility. CBOE

applied this model-free method to develop the VIX or the ”fear gauge”. Subsequent

approaches for computing model-free implied volatility were developed based on this

starting point.

One of the most popular methods for calculating implied volatility is proposed by

Britten-Jones and Neuberger (2000). This volatility is again independent of any

option pricing model. Instead, it comes from the no-arbitrage principle. Britten-
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Jones and Neuberger (2000) show that, in a risk-neutral world, underlying assets’

volatility can be computed as the integral of call option prices with respect to strike

prices. Jiang and Tian (2005) later made this approach more straightforward to

implement by providing a discrete approximation to the Britten-Jones & Neuberger

formula, in which strikes are continuous. Jiang and Tian (2005) compare the pre-

dictive capability of the Black-Sholes model implied volatility to model-free implied

volatility. Model-free implied volatility is inferred from the entire set of traded op-

tions. Intuitively, it should be able to reflect more information than its counterpart

implied by the Black-Scholes model.

Introduced by Martin (2011) and Martin (2016), another way of computing implied

variance is utilising simple variance swaps. Buss et al. (2019) adopt this method to

compute implied variances, to compute implied correlation extracted from S&P 500

index and investigate the predictive power of implied correlation. To be consistent

with existing literature, in my study, the implied correlation data set is obtained

from Vilkov’s website directly. A detailed discussion of the empirical methodology

for computing implied volatility can be found in the data and main variables section.

2.2.2 Implied Correlation

As the main variable of interest in my study, option implied correlation has been

found in several studies to contain useful information. The implied correlation was

first discussed in the currency market. Consider the US dollar, British Pounds and

Japanese Yen. From the triangular arbitrage in the FX market, it can be shown

that the correlation between currency pairs can be estimated by variances of these

currencies, which can be estimated from option prices. Application of this result is

well discussed in Campa et al. (1998) and Lopez and Walter (2000).

Regarding the equity market, Driessen et al. (2009) document that implied correla-

15



2.2. METHODOLOGY

tion within the market index can be obtained by combining index options prices and

prices of options written on constituent stocks. They show that implied correlation

has strong explanatory power even though it is a biased prediction of realised corre-

lation. CBOE applies a similar method to release the daily implied correlation index

based on S&P 500. Driessen et al. (2009) find that the high price of correlation risk

can explain the whole index variance premium. Buss and Vilkov (2012) use implied

correlation and factor betas to predict future factor betas and find that implied cor-

relation is the most efficient and unbiased predictor of beta. DeMiguel et al. (2013)

apply the combination of implied volatility, skewness, correlation and variance risk

premium to portfolio selection. They document that implied skewness and variance

risk premium help substantially increase the Sharp ratio and certainty equivalent

return. Härdle and Silyakova (2011) record that the correlation of a basket of stocks

is a vital risk factor. It describes the strength of correlation among the stocks in the

basket and thus is a measure of the level of diversification.

An interesting topic on the application of option implied correlation is investigating

market return predictability using implied correlation or related factors. Intuitively,

a higher correlation indicates higher non-diversifiable risk, and it is natural for in-

vestors to demand a higher risk premium. In other words, directly or indirectly,

the implied correlation should be positively related to market returns. Such predic-

tive power is discussed in Driessen et al. (2009), Cosemans (2011) and Faria et al.

(2022). Buss et al. (2019) trace the economic rationale behind the predictability of

implied correlation by checking the predictive power of its determinants to future

financial and macroeconomic risks. Implied correlation is empirically found to be

significant in predicting future market returns. Yet, it is not the only option-implied

variable that can be used to forecast future market returns. Bollerslev et al. (2009),

Drechsler and Yaron (2011) and Bollerslev et al. (2014) depict that the variance

risk premium is a robust predictor of market returns for horizons up to one quarter.

Furthermore, Fan et al. (2022) reports a long-term predictive power of variance risk
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premium components.

Another topic that draws extensive attention is correlation risk and its application.

With the existence of correlation risk, Buraschi et al. (2010) discuss optimal port-

folio selection. Chang et al. (2011) and Buss and Vilkov (2012) attempt to measure

systematic risk with option implied correlation. Piatti (2015) documents that corre-

lation risk premium originated from market participants’ different views about the

likelihood of systematic disasters in the future. Muller, Mueller et al. (2017) focuses

on correlations risk embedded in foreign exchange markets.

2.2.3 Decomposition of Information

It is widely agreed that oscillations of asset returns in the financial market are de-

termined by multiple factors, such as macro-economy according to Bansal et al.

(2014), the sentiment of investors according to Seo and Kim (2015) and oscillations

in relevant markets. These factors make the market more complicated. Some stud-

ies attempt to decompose financial time series to better grasp their characteristics.

Barndorff-Nielsen et al. (2004) and Barndorff-Nielsen (2005) decompose variance

time series into continuous and discrete jump parts. Chen and Ghysels (2011) sep-

arate volatility into one part driven by good news and another part stimulated by

bad news. Both studies document an improvement in prediction accuracy. Feunou

et al. (2017) and Mete Kilic (2018) scrutinise the predictability of variance risk pre-

mium from a decomposition perspective. They decompose variance risk premiums

into upside semi-variance risk premiums and downside semi-variance risk premiums.

Bollerslev et al. (2015) show that the predictive power of variance risk premium can

be attributed to jump tail risk.

However, none of these decomposition approaches is able to decompose financial

time series into components that can be referred to as proxies of investors with dif-
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ferent investment horizons. Intuitively, market participants with varying investment

horizons might be represented by series with different frequencies. More specifically,

high-frequency components of financial time series should perform better in describ-

ing investors with shorter investment horizons. On the contrary, low-frequency com-

ponents should better capture the expectations or actions of investors with longer

investment horizons. Technologies in signal processing have been discussed and

applied well in the field of social science studies. Among these technologies, the

Empirical Mode Decomposition (EMD) proposed by Huang et al. (1998) is an effec-

tive one.

EMD has been extensively applied in the field of signal processing after it was

proposed. It also has wide application in analysing non-linear and non-stationary

series in the natural sciences, engineering and computing. However, in financial

studies, relatively less attention has been paid to EMD. Most existing studies that

employ EMD tend to look at commodities markets. In these studies, emphasis

is generally placed on event study and making forecasts. Featured studies that

correspond to these two aspects include Zhang et al. (2008) which decompose three

crude oil price series into several independent intrinsic modes with frequencies from

high to low. These modes are reconstructed to form a fluctuating component, a slow-

varying component and a trend component via a fine-to-coarse approach. Economic

meanings are assigned to these three components as short-term oscillations caused by

supply-demand disequilibrium or some other market arbitrage activities, the impact

of a significant event shock, and a long-term trend, respectively. As a result, the

daily crude oil price can be regarded as a composition of a trend price, a significant

event price, plus a fluctuation. Another EMD-based event study by Zhang et al.

(2009) adopted EMD to analyse responses of crude oil prices to extreme events, such

as the Persian Gulf War in 1991 and the Iraq War in 2003. They follow the fine-

to-coarse method to reconstruct intrinsic mode functions and find that the entire

impact of an extreme event can be concluded by one or several dominant modes.

18



2.2. METHODOLOGY

Regarding the predictability of commodity prices, Yu et al. (2008) adopt EMD-based

neural network methodology to forecast crude oil prices. West Texas Intermediate

(WTI) crude oil spot price and Brent crude oil spot price are decomposed into

intrinsic modes in the first stage. Then a three-layer feed-forward neural network

(FNN) model was constructed to model each mode. The predictions of all modes

are used as inputs to an adaptive linear neural network (ALNN). As a result, an

ensemble output of the crude oil price series is produced. Yu et al. (2008) find that,

generally, the EMD-based methodology outperforms its counterpart, such as single

ARIMA or single FNN, with the lowest RMSE and highest D statistic. Other studies

that involve the application of EMD include Hua and Jiang (2015), which forecast

gold prices using their EMD-obtained lagged components, and Hua et al. (2018), by

applying EEMD to decompose the original returns series into the high frequency,

low frequency and trend components, propose an option pricing model based on

the hybrid generalised autoregressive conditional heteroskedastic (hybrid GARCH)-

type model. Their empirical results indicate that this novel model significantly

outperforms M-GARCH and Black–Scholes models. It can be concluded from Hua

et al. (2018) that decomposing information is consistently helpful in reducing option

pricing errors.

According to Yu et al. (2008), EMD has several advantages. First, the decomposition

is objective, and the extraction of each sub-part of data is only determined by the

original data itself. Second, it helps obtain the trending term and several Intrinsic

Mode Function (IMF), resulting in a finer decomposition. Finally, it is more intuitive

and can be generally applied. This is a significant advantage compared to Fast

Fourier Transformation and Wavelet Analysis, which are subject to the restriction

that the data to be decomposed must be stationary. With the application of EMD, I

attempt to find out the best proxies of expectations of short-term investors and long-

term investors. These proxies are time series formed by intrinsic mode functions.
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2.3 Data and Main Variables

2.3.1 Implied volatility

To estimate implied correlations, the first step is to obtain implied volatility for both

the S&P 500 index and its constituent stocks. Although the model-free method for

estimating implied volatility I discussed in previous sections is probably the most

frequently applied, Buss et al. (2019) adopted simple variance swaps, as introduced

by Martin (2011) and Martin (2016), to construct the daily implied variance for

options.

Given that the prices of call options and put options, denoted by C0,t and P0,t, are

observable at all strikes denoted by K, the forward price is determined by equalising

C0,t(K) = P0,t(K). Under the assumption that the stock is non-dividend paying,

F0,T is equal to S0e
rt, where r denotes the risk-free rate. Note that under such

conditions, the denominators are increasing as time evolves; also note that if the

interest rate is assumed to be zero, the denominators are all equal. (Martin, 2011,

2016) choose V such that there is no money paid or received at the initiation. He

shows that, as ∆ approximates 0, the ’fair’ swap variance can be calculated by

V =
2erT

F 2
0,T

{∫ F0,T

0

P0,T (K)dK +

∫ ∞

F0,T

C0,T (K)dK

}
(2.1)

and the payoff on such a simple variance swap can be replicated by taking both static

and dynamic positions in call options, put options and the underlying. It appears

that the structure of this expression is quite similar to that proposed by Britten-

Jones and Neuberger (2000). 1 However, as stated in Buss et al. (2019), using

a different approach to estimate model-free implied volatility does not affect their

1Another popular method for estimating implied volatility is proposed by Britten-Jones and
Neuberger (2000). Assuming that the no-arbitrage principle is valid and both the dividend rate
and risk-free interest rate are equal to zero, in the risk-neutral world, implied volatility can be
calculated using the formula
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results. Given the same option price data, estimated implied volatility and hence

implied correlation should contain identical information and thus have identical

predictive power. It is worth mentioning that, while the method in Britten-Jones and

Neuberger (2000) is probably the most popular way of computing implied volatility

in a model-free sense, and I follow this approach in the next chapters, the method

in Martin (2011) and Martin (2016) is adopted in Buss et al. (2019) for implied

volatility (and hence implied correlation) estimations.

2.3.2 Implied correlation

Implied correlation was first discussed for the currency market. However, it is much

more frequently studied in the equity market. Driessen et al. (2009) and Skintzi

and Refenes (2004) introduce implied correlation under the risk-neutral measure,

with the later literature referring to it as equicorrelation. Such average implied

correlation is model-free and can be calculated by

ICt =
σ2
I,t −

∑N
i=1 ω

2
i,tσ

2
i,t∑N

i=1

∑
i′ ̸=i ωi,tωi′,tσi,tσi′,t

(2.2)

where σ2
I,t is index’s model-free option-implied variance at t, σ2

i,t is the model-free

implied variance of stock i at time t, and ωi,t is weight of component stock i at time

t. As in Buss et al. (2019) expression (2.2) is used to compute implied correlations.

Since each input implied volatility is model-free, the estimated term structure of

implied correlation is also regarded as model-free and is thus denoted by ICs. Note

that since MFIV estimations are conducted under the Q-measure, the implied cor-

EQ [V0,T ] = 2erT

[∫ F0.T

0

P (K,T )

K2
dK +

∫ ∞

F0.T

C(K,T )

K2
dK

]
where EQ is expected variance over period [0, T ] in the risk-neutral world, F is the underlying’s

forward price at time zero, P (K,T ) and C(K,T ) are prices of call options and put options written
on the same underlying with an identical time to maturity. Finally, K denotes the strike price,
while T denotes the option’s time-to-maturity.

21



2.3. DATA AND MAIN VARIABLES

relations calculated are risk-neutral as well.

The empirical analysis is implemented on the option-implied correlation extracted

from S&P500 index and its constituents from January 1996 to December 2020. The

implied correlation (IC) series is computed following the methodology presented

in Buss et al. (2019) using index options and options written on the constituent

stocks, and it refers to the risk-neutral expected average correlation among the

index’s components. To be consistent with the existing literature, I obtain the

S&P500 implied correlation directly from the website of Grigory Vilkov.2 The data

set includes time series of IC across several standardised maturities (30, 90, 180,

and 360 days).

2.3.3 Realised correlation

I follow Skintzi and Refenes (2004) to estimate Realised Correlation (RC) as

RCt =

∑
1<i<j<N ωi,tωi,tCorri,j,t∑

1<i<j<N ωi,tωi,t

(2.3)

where Corri,j,t represents the Pearson correlation coefficient between stock i and

stock j at time t. The Correlation Risk Premium (CPR) is just the difference

between implied and realised correlations.

2.3.4 Control Variables

The time series of the S&P500 index returns and the 1-month T-Bill rate (used

as a proxy for the risk-free rate) are obtained from Bloomberg. I also include a

set of control variables in the market returns predictive regressions. These control

variables have been shown to have significant predictive power over the equity re-

2The link of Grigory Vilkov’s website is https://www.vilkov.net/codedata.html.
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turns (for a more detailed discussion of these factors and their predictive ability,

see Goyal and Welch, 2008) and they can be obtained from the website of Amit

Goyal. More specifically, the set of control variables includes the Book-to-Market

Ratio (BM), T-Bill Rates (TB), AAA-Rated Corporate Bonds Yields (AAA), BAA-

Rated Corporate Bonds Yields (BAA), Inflation (INFL), Long-Term Yield (LTY),

Net Equity Expansion (NEE), Long-Term Rate of Return (LTR), Corporate Bond

Returns (CBR), and the S&P 500 Index Variance (SVAR). 3

Figure 2.1 plots the time series of the 30-day implied and realised correlation among

the components of the S&P500 index during the period January 1996 to December

2020, while Table 2.1 presents a set of summary statistics for Implied Correlation

(IC), Realised Correlation (RC) and the correlation risk premium (CRP = IC−RC)

for maturities of 30, 60 and 90 days. I confirm the existence of a premium for cor-

relation risk. This is indicated by the fact that implied correlation tends to be

predominantly higher than corresponding realised correlation, which is consistent

with the findings in Driessen et al. (2009). For instance, the mean 30-day implied

correlation is equal to 0.37, compared to a mean realised correlation of 0.32. I also

observe a term premium in implied correlation, which means that implied correla-

tion is consistently higher for those extracted from options with longer maturities.

More specifically, while the mean 30-day implied correlation is 0.37, the 90-day and

180-day ICs are 0.41 and 0.44, respectively. On the contrary, a similar term pre-

mium does not appear to be present in realised correlation, which tends to be fairly

constant on average across different horizons.

3Predicting market return is a wide-ranging topic. Versatile factors that predict market return
are being proposed constantly. To be consistent with the fashion of studies in this strand, I stick
to the most commonly used factors in existing literature that are closely connected to this chapter.
Other factors with predictive power to market return, such as business cycle and historical average
return, are not included for consistency concern.

23



2.3. DATA AND MAIN VARIABLES

Figure 2.1: Implied correlation versus realised correlation
Notes: This Figure plots the time series of implied correlation and realised correlation among the components of the

S&P500 index. Implied correlation is computed via the Driessen et al. (2012) methodology using options with 30

days to maturity, while the realised correlation time series refers to the cross-sectionally weighted average of pairwise

realised correlations among the constituent stocks. The sample period runs from January 1996 to December 2020.

Table 2.1: Summary statistics of implied and realised correlation

30 days 90 days 180 days
IC RC CRP IC RC CRP IC RC CRP

mean 0.37 0.32 0.05 0.42 0.32 0.09 0.44 0.33 0.11
median 0.36 0.29 0.06 0.41 0.31 0.10 0.44 0.31 0.12
st.dev 0.13 0.15 0.11 0.11 0.13 0.09 0.10 0.12 0.09
min 0.12 0.04 -0.40 0.14 0.06 -0.20 0.17 0.10 -0.21
max 0.89 0.86 0.46 0.86 0.80 0.49 0.75 0.73 0.47
skew 0.60 0.76 -0.38 0.20 0.87 -0.08 -0.12 0.90 -0.39
kurt 0.24 0.18 0.81 0.09 0.83 0.70 0.15 0.75 0.55

5th prctile 0.19 0.11 -0.15 0.23 0.14 -0.06 0.25 0.16 -0.05
95th prctile 0.60 0.62 0.23 0.60 0.60 0.24 0.61 0.61 0.25

Notes: This Table reports a set of summary statistics for the time-series of implied correlation (IC), realised correlation
(RC) and the difference between them (CRP ) for the components of the S&P500 index. Implied correlation is
computed via the Driessen et al. (2012) methodology using options with maturities of 30, 90 and 180 days, while
the respective realised correlation time series refers to the cross-sectionally weighted average of pairwise realised
correlations among the constituent stocks. The summary statistics reported include the mean, median, standard
deviation, minimum, maximum, skewness, and kurtosis, as well as the 5th and 95th percentiles. The sample period
runs from January 1996 to December 2020.
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2.4 Implied Correlation Decomposition

The decomposition of the implied correlation time series into a low-frequency and

high-frequency component is based on the Empirical Mode Decomposition (EMD)

technique. First proposed by Huang et al. (1998), the EMD is an adaptive tech-

nique that uses the Hilbert-Huang transform to decompose a time series into a small

number of oscillatory functions termed Intrinsic Mode Function (IMF). The EMD

technique considers the original time series as high-frequency oscillations being su-

perimposed on low-frequency oscillations so that IMFs can be extracted based on

the principle of local scale separation. Every IMF needs to satisfy two conditions,

namely (1) the number of extrema and zero-crossings are the same or, at most, differ

by one, and (2) they are symmetric with respect to a local zero mean.

The EMD is applied as an adaptive process where several IMFs cj(t) are iteratively

extracted from a time-series x(t) according to a pre-specified sifting procedure until

the last residual term rn(t) = x(t) −
∑n

j=1 cj(t) becomes a monotonic function or

has at most one local extremum. At that final iteration, the EMD technique cannot

extract another IMF, and the original time series can be expressed as the sum of

extracted IMFs plus the final residual term. This process begins by extracting the

IMF with the highest frequency and then proceeds by iteratively extracting IMFs

with the next highest frequency from the differences between the original time series

and the extracted IMFs until no further IMF is contained in the residual term.

In my empirical analysis, I employ the sifting procedure described in Yu et al. (2008)

and Zhang et al. (2009) to extract IMFs from the time series of implied correlation

IC. The sifting procedure can be described as in appendix A.4

Once the sifting process is complete, the implied correlation time series can be rep-

resented as the sum of the n extracted Intrinsic Mode Functions ci(t), i = 1, 2, ..., n

4See Yu et al. (2008) and Zhang et al. (2009) for a more detailed discussion on the implemen-
tation of the EMD algorithm.
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plus the residual term res(t) as

IC(t) =
n∑

i=1

ci(t) + res(t) (2.4)

The EMD technique has certain advantages compared to more traditional decom-

position techniques, such as Fourier transform and wavelet analysis. First, EMD

is more flexible in terms of allowing for the decomposition of non-stationary time

series, compared to the relatively more rigid traditional approaches, which require

stationarity. Hence, EMD can decompose a non-stationary time series into compo-

nents that are locally stationary and oscillating around zero. Second, each IMF is

associated with a specific oscillation period and, by extension, with a specific time

scale. As a result, the EMD approach can address multi-scaling issues that can pose

a particular challenge in forecasting exercises (Di Matteo, 2007). Third, EMD does

not require a base filter function to be determined before decomposition, which can

be a fairly challenging requirement in wavelet analysis.5

When I apply EMD on the time series of 30-day implied correlation, I extract a

total of nine IMFs cj plus the trending term res.6 Figure 2.2 plots the time series

of these IMFs and the trending term extracted from the 30-day implied correlation,

with IMFs plotted in descending order of frequency. I then re-group the extracted

IMFs to create a high-frequency and a low-frequency component of implied corre-

lation. More specifically, I construct the High-Frequency Component (ICH) as the

sum of the first five (highest-frequency) IMFs. In comparison, the Low-Frequency

Component (ICL) is computed as the sum of the last four (lowest-frequency) IMFs.7

5EMD has been extensively used for the analysis of non-linear and non-stationary series in the
natural sciences, engineering and computing. However, this technique has yet to receive equivalent
attention in finance research. Some notable exceptions include Yu et al. (2008) and Zhang et al.
(2009) who use EMD to forecast crude oil prices, Hua and Jiang (2015) who forecast gold prices
using their EMD-obtained lagged components, and Hua et al. (2018) who apply EMD in option
pricing.

6The specific number of IMFs that EMD extracts varies across the different IC time series that
refer to options with different maturities (i.e. 30, 90, 180, and 360 days).

7I have also explored the informational content of implied correlation components that have
been constructed according to the Zhang et al. (2009) fine-to-coarse technique. This approach
results in a somewhat different re-grouping of the IMFs, with the two components are given as
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The reconstruction of implied correlation into high- and low-frequency components

by aggregating different IMFs allows us to identify the informational content of the

original time series that corresponds to different time scales, particularly in terms

of distinguishing between short-term and long-term effects.

Figure 2.2: Intrinsic Mode Functions of implied correlation
Notes: This Figure plots the time-series of Intrinsic Mode Functions cj (IMFs) and the residual term res that have

been extracted from the time-series of 30-day implied correlation using the Empirical Mode Decomposition approach

of Huang et al. (1998). The IMFs are plotted in descending order of frequency, with the residual term plotted on

the bottom subplot. The sample period runs from January 1996 to December 2020.

As can be seen from Figure 2.3, the time series of ICH is relatively similar to

that of the implied correlation series IC. This high-frequency component exhibits

volatility clustering and, more generally, seems to track very closely the short-term

fluctuations of the original time series. In contrast, the time series of ICL is much

smoother than those of IC and ICH. As such, the low-frequency component ap-

pears to track the larger and more ”permanent” fluctuations of the implied corre-

lation series. In other words, the high-frequency oscillations in ICH provide useful

information about the influence of irregular events that tend to have a short-term or

medium-term impact on implied correlation. On the other hand, the low-frequency

ICH =
∑6

j=1 cj and ICL =
∑9

j=7 cj . The subsequent empirical results on the predictability of
realised correlation and market returns are qualitatively similar to, albeit not as strong as, those
presented in the paper. I omit these additional results for brevity, but they are available upon
request.
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oscillations that are included in ICL can be thought of as reflecting information

about more extreme events that have a long-term impact on the original series,

potentially by leading to structural breaks (see also Zhang et al., 2009, 2008).

Figure 2.3: Components of implied correlation
Notes: This Figure plots the time series of implied correlation and its components. The implied correlation series

has been decomposed into its Intrinsic Mode Functions (IMFs) using the Empirical Mode Decomposition approach

of Huang et al. (1998). The upper subplot depicts the time series of 30-day implied correlation IC. The bottom left

subplot depicts the time series of the low-frequency component ICL, given as the sum of the trending term plus

the last two IMFs. The bottom right subplot depicts the time series of the high-frequency component ICH, given

as the sum of the first two IMFs. The sample period runs from January 1996 to December 2020.

As a preliminary examination of how each component contributes to the informa-

tional content of implied correlation, I run simple daily regressions of IC separately

against ICL and ICH as below.

ICh
t = α + βICHh

t + ϵ (2.5)

ICh
t = α + βICLh

t + ϵ (2.6)

Where h stands for the horizon of IC that takes values of 30, 90 and 180. As

shown in Table 2.2, both components are highly significant when used to explain

the original time series of implied correlation, suggesting that both low-frequency

and high-frequency oscillations are likely to be informative. However, it is also clear
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that the high-frequency component captures the largest proportion of the variance

of implied correlation across all three maturities. More specifically, at the 30-day

maturity ICL explains around 38% of the daily variation in implied correlation,

while the respective figure for ICH is 58%.

Table 2.2: Regressions of implied correlation against its components

30 days 90 days 180 days
constant 0.3762 0.4112 0.4182 0.4137 0.4417 0.4440

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
ICL 0.9453 1.0195 1.0135

(0.00) (0.00) (0.00)
ICH 0.9645 0.9942 0.9896

(0.00) (0.00) (0.00)
R2

Adj 37.7% 58.0% 17.0% 81.1% 11.4% 79.9%

Notes: This Table reports the results from daily regressions of implied correlation IC against its low-frequency
component (ICL) and its high-frequency component (ICH). Implied correlation is computed via the Driessen et al.
(2012) methodology using options with maturities of 30, 90 and 180 days. Implied correlation has been decomposed
into ICL and ICH using the Empirical Mode Decomposition approach of Huang et al. (1998). The Table reports
the estimated coefficients, the associated p-values (in brackets) and the Adjusted R-squared. Statistical significance
is based on Newey and West (1987) heteroscedasticity and autocorrelation consistent standard errors. The sample
period runs from January 1996 to December 2020.

The difference between the explanatory power of the two components is even more

pronounced when I consider longer maturities. For example, regressing IC against

its high-frequency component ICH results in an R2 of 82% at the 90-day maturity,

compared to only 17% when using the low-frequency component ICL. This is

consistent with Zhang et al. (2009), who document that the information contained

in the original time series might be completely subsumed by one or several dominant

intrinsic mode functions from EMD.

2.5 Realised Correlation Predictability

The empirical analysis begins with exploring the predictive ability of implied cor-

relation over subsequent realised correlation. The aim is to understand the infor-

mational content of implied correlation and its components. More specifically, I

perform predictive regressions of realised correlation RC against lagged values of re-

alised correlation, implied correlation IC, and low- and high-frequency components

of implied correlation, denoted by ICL and ICH, respectively. For each forecasting
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horizon from 30 days to 180 days, the predictive regressions can be described by

below equations.

RCt+h = α + βRCt + ϵt+h (2.7)

RCt+h = α + βICt + ϵt+h (2.8)

RCt+h = α + β1RCt + β2ICt + ϵt+h (2.9)

RCt+h = α + β1RCt + β2ICLt + ϵt+h (2.10)

RCt+h = α + β1RCt + β2ICHt + ϵt+h (2.11)

RCt+h = α + β1RCt + β2ICt + β2ICLtϵt+h (2.12)

RCt+h = α + β1RCt + β2ICt + β2ICHtϵt+h (2.13)

RCt+h = α + β1RCt + β2ICLt + β2ICHtϵt+h (2.14)

Where h denotes the forecasting step size ranging between 30 and 180.

Table 2.3 reports the results of these predictive regressions, with Panels A, B and

C referring to horizons of 30, 90 and 180 days, respectively.8

When using 30-day predictors, I find that the predictive power over realised cor-

relation can be substantially increased by predicting with implied correlation. As

a comparison, when lagged values of realised correlation are the only predictor, it

fails to outperform its implied counterpart. In particular, I document that 32% of

the variation in RC can be explained by IC, and the R2 of the bivariate predictive

regression where lagged RC is set as the predictor is only 21%. I also find that both

lagged RC and IC are positively related to realised correlation, with the associated

coefficients being highly significant. This is consistent with the results in Driessen

8I use daily data to estimate these predictive regressions for multi-day prediction horizons
(namely for realised correlations that are observed over the subsequent 30, 90 and 180 calendar
days). Therefore, statistical inference is based on Newey andWest (1987) autocorrelation consistent
standard errors, with the number of lags determined by the number of overlapping observations
(for example, 21 lags in the case of the 30-day horizon).
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et al. (2012). However, my empirical results provide stronger support for the in-

formational content of implied correlation than those reported by Driessen et al.

(2012), who find that 30-day RC and IC have approximately the same predictive

power over subsequent realised correlation (with the R2 in bivariate predictive re-

gressions being equal to 37% and 36%, respectively). Furthermore, when both RC

and IC are used as predictors in a bivariate regression, the resulting R2 increases

marginally to 33% compared to when using only IC, suggesting that the informa-

tional content of implied correlation is not only higher than, but it also subsumes

to a large extent, that of lagged realised correlation.

Table 2.3: Realised correlation predictability

Panel A: 30 days
constant 0.1734 0.0659 0.0641 0.0028 0.1714 0.0026 0.0026 0.0026

(0.00) (0.00) (0.00) (0.61) (0.00) (0.64) (0.64) (0.64)
RC 0.4608 0.1360 0.1146 0.4659 0.0824 0.0824 0.0824

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IC 0.6876 0.5746 0.1776 0.7760

(0.00) (0.00) (0.00) (0.00)
ICL 0.7450 0.5984 0.7760

(0.00) (0.00) (0.00)
ICH -0.0509 -0.5984 0.4116

(0.06) (0.00) (0.00)
R2

Adj 21.2% 32.1% 33.1% 37.3% 21.2% 37.8% 37.8% 37.8%

Panel B: 90 days
constant 0.1892 0.1010 0.1098 0.3730 0.1845 0.4705 0.0635 0.3686

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
RC 0.4186 0.1993 -0.0592 0.4289 -0.0240 0.1243 -0.0484

(0.00) (0.00) (0.00) (0.00) (0.14) (0.00) (0.00)
IC 0.5364 0.3608 -0.2448 0.5229

(0.00) (0.00) (0.00) (0.00)
ICL 0.7559 0.9356 0.7454

(0.00) (0.00) (0.00)
ICH -0.1962 -0.4482 -0.0780

(0.00) (0.00) (0.00)
R2

Adj 17.7% 20.1% 22.0% 34.1% 18.7% 35.1% 26.0% 34.2%

Panel C: 180 days
constant 0.1967 0.1534 0.1716 0.2943 0.1946 0.3491 0.1553 0.2907

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
RC 0.4110 0.3531 0.1539 0.4146 0.1817 0.3275 0.1619

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IC 0.3996 0.0994 -0.1380 0.1523

(0.00) (0.00) (0.00) (0.00)
ICL 0.3754 0.4520 0.3678

(0.00) (0.00) (0.00)
ICH -0.1347 -0.1872 -0.1033

(0.00) (0.00) (0.00)
R2

Adj 16.6% 10.7% 16.9% 21.1% 17.1% 21.5% 17.8% 21.4%

Notes: This Table reports the results of predictive regressions of realised correlation (RC) on lagged realised corre-
lation, implied correlation (IC), the low-frequency component of implied correlation (ICL) and the high-frequency
component of implied correlation (ICH). Implied correlation is computed via the Driessen et al. (2012) methodology
using options with maturities of 30, 90 and 180 days, with the results presented in Panels A, B and C, respectively.
The corresponding realised correlation time series refers to the cross-sectionally weighted average of pairwise realised
correlations among the constituent stocks. Implied correlation has been decomposed into ICL and ICH using the
Empirical Mode Decomposition approach of Huang et al. (1998). The Table reports the estimated coefficients, the
associated p-values (in brackets) and the Adjusted R-squared. Statistical significance is based on Newey and West
(1987) heteroscedasticity and autocorrelation consistent standard errors, with the number of lags given by the number
of overlapping observations. The sample period runs from January 1996 to December 2020.
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I also find that the incremental predictive ability of implied correlation decreases at

the 90-day horizon, while it effectively disappears at the even longer 180-day horizon.

As can be seen from Panel B of Table 2.3, using the 90-day implied correlation in

bivariate predictive regressions results in an R2 of 20%, compared to an R2 of 18%

when using lagged RC as the single predictor. Using both lagged RC and IC further

improves the predictive power to 22%, with the coefficient of implied correlation

remaining positive and highly significant. In contrast, the results reported in Panel C

indicate that the 180-day IC has a substantially lower predictive power (R2 = 11%)

than that of lagged realised correlation (R2 = 17%) in bivariate regressions, and it

fails to improve the predictive power in bivariate regressions.

Importantly, my results highlight that the low-frequency implied correlation com-

ponent ICL has a significantly higher predictive power over realised correlation

relative to that of the more noisy IC. At the 30-day horizon, using ICL in bivariate

regressions increases the R2 to 37%, compared to 33% when using the original IC

series. The ICL component remains a significant predictor resulting in a high R2

when I also include either IC or ICH in the predictive regression, with the R2, in

this case, reaching 38%. This improvement in RC predictability is even bigger at

the 90-day horizon, where the R2 increases from 22% when using IC to 34% when

using ICL in bivariate regressions. Finally, at the longest 180-day horizon, using

the low-frequency component ICL in bivariate regressions results in an R2 of 21%,

compared to 17% when using IC.

In contrast, the high-frequency component ICH is not found to have any incremental

predictive power over realised correlation at any horizon. For instance, using the 30-

day ICH in bivariate predictive regression results in an insignificant slope coefficient

(p-value is 0.06) and an R2 of 21%, which is approximately equal to that obtained

when using only the lagged RC as a predictor. More generally, including ICH in

the predictive regressions produces negative slope coefficients across all horizons and

results in R2s that are roughly equal to (or, on occasion, lower than) those obtained

32



2.6. MARKET RETURN PREDICTABILITY

from regressions that include only IC and/or ICL.

In summary, my empirical results suggest that the previously documented ability of

implied correlation to forecast future realised correlation can be attributed primarily

to the informational content of its low-frequency component. The high-frequency

component of implied correlation, on the other hand, does not seem to have a

significant contribution in terms of forecasting power. In this sense, I show that

the previously reported forecastability of realised correlation using option-implied

information stems mainly from effectively predicting long-term trends rather than

short-term fluctuations.

2.6 Market Return Predictability

2.6.1 Predictability Regressions

Bollerslev et al. (2009) were among the first studies to show that information ex-

tracted from index options can substantially improve the predictability of aggregate

market returns. More specifically, Bollerslev et al. (2009) find that the Variance

Risk Premium (VPR) (computed as the difference between implied and realised

index variance) can explain a substantial proportion of subsequent excess index re-

turns, particularly at the quarterly horizon. At the same time, Driessen et al. (2009)

show that the variance risk premium that characterises the cross-section of stock re-

turns can be attributed primarily to priced correlation risk. Following this line of

thought, Driessen et al. (2012) find that implied correlation can further improve the

predictability of market returns in excess of the information already contained in the

(Bollerslev et al., 2009) variance risk premium. The role of correlation in forecasting

market returns is further supported by the empirical findings of Pollet and Wilson

(2010), who report that the average realised correlation has a significant forecasting
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power over S&P500 index returns.

Motivated by these empirical findings on the predictability of market returns using

implied correlation, I proceed by exploring the relative informational content of

the latter’s low-frequency and high-frequency components. Similarly to Bollerslev

et al. (2009) and Driessen et al. (2012), I run simple linear regressions of S&P500

index returns against a set of lagged predictors. In particular, my set of predictors

includes the Driessen et al. (2009) 30-day implied correlation IC, the correlation risk

premium CRP , the 30-day model-free implied index varianceMFIV , the Bollerslev

et al. (2009) Variance Risk Premium V RP (computed as MFIV minus the realised

index variance given by the sum of high-frequency squared index returns), as well

as the low- and high-frequency components of the 30-day implied correlation (ICL

and ICH, respectively).

Similarly to Driessen et al. (2012), I begin the analysis by performing these predictive

regressions in an overlapping fashion, i.e. I regress the daily observations of excess

market returns that have been compounded over several multi-day horizons against

the set of lagged predictors that have been observed on every day of my sample

period. I control for the resulting autocorrelation issues by computing Newey and

West (1987) autocorrelation-consistent standard errors, with the number of lags

given by the number of overlapping observations in every case (for example, I use

21 lags when forecasting 1-month market returns). The predictive regressions are

implemented following equations below.

rMKT
t−t+h = α + βICt + ϵt+h (2.15)

rMKT
t−t+h = α + βCRPt + ϵt+h (2.16)

rMKT
t−t+h = α + βMFIVt + ϵt+h (2.17)

rMKT
t−t+h = α + βV RPt + ϵt+h (2.18)
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rMKT
t−t+h = α + β1ICt + β2CRPt + β3MFIVt + β4V RPt + ϵt+h (2.19)

rMKT
t−t+h = α + β1CRPt + β2MFIVt + β3V RPt + β4ICLt + ϵt+h (2.20)

rMKT
t−t+h = α + β1CRPt + β2MFIVt + β3V RPt + β4ICHt + ϵt+h (2.21)

rMKT
t−t+h = α + β1CRPt + β2MFIVt + β3V RPt + β4ICLt + β5ICHt + ϵt+h (2.22)

Table 2.4 presents the results of these predictive regressions for forecasting horizons

of one day, one week and one month, while Table 2.5 presents the respective results

for longer forecasting horizons of three, six and twelve months.

At the 1-day horizon, all predictors have significant slope coefficients in bivariate

regressions. Consistent with the results in Driessen et al. (2012), implied correlation

is found to be positively related to future market returns. However, even though

IC is a statistically significant predictor of market returns, with an R2 of 0.2% it

appears to explain less variation than that explained by V RP , which has an R2 of

0.5% when used as a single predictor, furthermore, including the first four predictors

(IC, CRP , MFIV , and V RP ) jointly in the same specification results in an R2

that is substantially higher (1.1%) than that obtained from any of the bivariate

regressions.

Importantly, I find that decomposing implied correlation improves the predictability

of market returns. More specifically, replacing IC with its low-frequency compo-

nent ICL in the extended regression specification increases the R2 from 1.1% to

1.4%, while using the high-frequency component ICH in a similar fashion further

increases the R2 to 1.9%. In fact, the highest forecasting power is obtained when

using both components in the place of the original IC series, with an associated

R2 of 2.0%. Overall, isolating the effect of short-term and long-term fluctuations in

implied correlation almost doubles the proportion of market returns variation that

can be explained relative to using the original implied correlation series, although
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Table 2.4: Market return predictability

Panel A: 1-day horizon
I II III IV V VI VII VIII

constant -0.0014 0.0002 -0.0003 0.0002 -0.0010 -0.0015 -0.0003 -0.0008
(0.01) (0.39) (0.18) (0.32) (0.06) (0.00) (0.23) (0.02)

IC 0.0045 0.0003
(0.00) (0.87)

CRP 0.0031 -0.0012 -0.0007 -0.0039 -0.0034
(0.04) (0.47) (0.68) (0.02) (0.05)

MFIV 0.0153 0.0246 0.0340 0.0173 0.0236
(0.00) (0.00) (0.00) (0.00) (0.00)

V RP 0.0309 0.0445 0.0469 0.0416 0.0433
(0.00) (0.00) (0.00) (0.00) (0.00)

ICL -0.0061 -0.0038
(0.00) (0.02)

ICH 0.0183 0.0168
(0.00) (0.00)

R2
Adj 0.2% 0.1% 0.3% 0.5% 1.1% 1.4% 1.9% 2.0%

Panel B: 1-week horizon
constant -0.0048 0.0010 0.0001 0.0010 -0.0043 -0.0039 0.0004 -0.0006

(0.00) (0.01) (0.87) (0.00) (0.00) (0.00) (0.50) (0.39)
IC 0.0172 0.0080

(0.00) (0.01)
CRP 0.0114 -0.0055 -0.0024 -0.0152 -0.0141

(0.00) (0.10) (0.47) (0.00) (0.00)
MFIV 0.0375 0.0574 0.0981 0.0401 0.0531

(0.00) (0.00) (0.00) (0.00) (0.00)
V RP 0.1183 0.1544 0.1652 0.1461 0.1496

(0.00) (0.00) (0.00) (0.00) (0.00)
ICL -0.0178 -0.0080

(0.00) (0.02)
ICH 0.0760 0.0729

(0.00) (0.00)
R2

Adj 0.8% 0.2% 0.4% 1.9% 3.3% 3.6% 6.2% 6.3%

Panel C: 1-month horizon
constant -0.0129 0.0048 0.0047 0.0052 -0.0144 -0.0021 0.0068 0.0079

(0.00) (0.00) (0.00) (0.00) (0.00) (0.07) (0.00) (0.00)
IC 0.0520 0.0505

(0.00) (0.00)
CRP 0.0326 -0.0081 0.0047 -0.0293 -0.0306

(0.00) (0.20) (0.44) (0.00) (0.00)
MFIV 0.0468 0.0210 0.1438 0.0239 0.0082

(0.00) (0.27) (0.00) (0.13) (0.66)
V RP 0.2563 0.2813 0.3147 0.2723 0.2681

(0.00) (0.00) (0.00) (0.00) (0.00)
ICL -0.0201 0.0097

(0.00) (0.12)
ICH 0.2156 0.2194

(0.00) (0.00)
R2

Adj 2.0% 0.6% 0.2% 2.5% 4.6% 3.6% 10.2% 10.3%

Notes: This Table reports the results of predictive regressions of S&P500 index returns on a set of explanatory
variables, namely implied correlation (IC), the difference between implied and realised correlation (CRP ), model-free
implied variance (MFIV ), the variance risk premium (V RP ) computed as implied variance minus realised variance,
the low-frequency component of implied correlation (ICL), and the high-frequency component of implied correlation
(ICH). All implied variables have been computed using options with 30 days to maturity, while realised correlation
and realised variance are also computed over 30-day periods. The predictive regressions are estimated using daily data
of overlapping market returns compounded over several forecasting horizons (one day, one week and one month). The
Table reports the estimated coefficients, the associated p-values (in brackets) and the Adjusted R-squared. Statistical
significance is based on Newey and West (1987) heteroscedasticity and autocorrelation consistent standard errors,
with the number of lags given by the number of overlapping observations. The sample period runs from January 1996
to December 2020.
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the forecasting power remains relatively low at the shortest forecasting horizon of

one day.

The results are even stronger when I examine market returns predictability at the

1-week horizon (Panel B of Table 2.4). For instance, regressing market returns

against the lagged IC (along with the other three predictors) results in a significantly

positive slope and an R2 of 3.3%, which is considerably higher than that obtained

from the 1-day predictive regressions. Replacing implied correlation with its low-

frequency component improves the forecasting power to some extent, with the R2

increasing to 3.6%. More interestingly, though, the corresponding improvement is

substantially higher when I replace IC with the high-frequency component ICH, in

which case the R2 of the predictive regression almost doubles to 6.2%.

When I move to 1-month predictive regressions (Panel C of Table 2.4), the results

provide even stronger support for the role of the high-frequency component but less

so with respect to the low-frequency one. When replacing IC with ICL in the

multivariate predictive regressions, the R2 actually drops from 4.6% to 3.6%. In

contrast, replacing IC with ICH results in the R2 more than doubling to 10.2%,

while the forecasting power when using both components in the same specification

is even higher (albeit only marginally) at an R2 of 10.3%.

The superior forecasting performance of the high-frequency component compared

to that of the low-frequency component persists until the 3-month horizon, but

it seems to disappear after that. As can be seen from Panel A of Table 2.5, the

predictive regression’s R2 is much higher when using ICH compared to ICL (12.3%

vs 7.6%), although using the original IC series results in a slightly higher R2 (12.5%)

compared to using either of its components. Nevertheless, using both ICL and ICH

in the same specification still results in the highest forecasting power among the

competing specifications, with an R2 of 15.4% at the 3-month horizon. In contrast,

the high-frequency component loses its significance and forecasting power at the
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longer horizons of six and twelve months, while the low-frequency component does

relatively better, and it even outperforms IC at the longest 12-month horizon. More

specifically, at the 6-month horizon, the R2 of using ICL is more than double that

of using ICH (11.6% vs 5.7%). Furthermore, with an R2 of 12.8% the original

IC series outperforms both components when the latter are used separately, but

combining both ICL and ICH in the same specification still produces the highest

R2. Finally, the results from the 12-month predictive regressions suggest that it is

the low-frequency component that is driving the predictive power at this longest

horizon, as it is found to result in the highest R2 (11.3%) compared to using either

the original IC (10.8%) or the high-frequency component ICH (5.0%).

To further illustrate the two components’ relative performance, Figure 2.4 plots the

R2 obtained from regressing market returns against IC, ICL, ICH and ICL−ICH

jointly, across horizons ranging from 1 to 252 trading days. Additionally, Figure 2.5

plots these R2 values in a pairwise sense. In each subplot, IC is compared to

one of its components or the latter’s combination. Obviously, the high-frequency

component of implied correlation results in the highest R2 in the short- and medium-

term, outperforming the original IC series and ICL roughly until the 3-month

horizon. However, the forecasting power of the low-frequency component starts to

rise substantially when I move to horizons of more than 50 calendar days, with the

associated R2 rising above that of ICH at a horizon of around 80 calendar days and

that of IC for horizons longer than 200 calendar days.

The above findings highlight some important features of the well-documented fore-

casting power of implied correlation over market returns. I confirm that implied

correlation has a significant incremental predictive ability in excess of the informa-

tion already contained in other option-implied predictors. However, while implied

correlation remains a very significant and informative predictor of market returns at

horizons ranging from one day to one year, the source of this predictability varies.

For shorter horizons of up to three months, the high-frequency component of implied
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Table 2.5: Market return predictability - Longer horizons

Panel A: 3-month horizon
constant -0.0427 0.0133 0.0169 0.0160 -0.0511 0.0140 0.0153 0.0320

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IC 0.1643 0.1953

(0.00) (0.00)
CRP 0.1055 -0.0010 0.0362 -0.0069 -0.0284

(0.00) (0.92) (0.00) (0.50) (0.01)
MFIV 0.0599 -0.1531 0.0721 0.0619 -0.1729

(0.02) (0.00) (0.02) (0.02) (0.00)
V RP 0.6007 0.5415 0.6051 0.5827 0.5225

(0.00) (0.00) (0.00) (0.00) (0.00)
ICL 0.0920 0.1478

(0.00) (0.00)
ICH 0.3373 0.3966

(0.00) (0.00)
R2

Adj 7.2% 2.1% 0.1% 4.8% 12.5% 7.6% 12.3% 15.4%

Panel B: 6-month horizon
constant -0.0749 0.0300 0.0259 0.0361 -0.0812 0.0401 0.0140 0.0513

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IC 0.3001 0.3176

(0.00) (0.00)
CRP 0.1592 0.0283 0.0752 0.0829 0.0353

(0.00) (0.06) (0.00) (0.00) (0.02)
MFIV 0.3144 -0.1114 0.0372 0.4111 -0.1153

(0.00) (0.01) (0.39) (0.00) (0.01)
V RP 0.5460 0.4768 0.5284 0.6093 0.4766

(0.00) (0.00) (0.00) (0.00) (0.00)
ICL 0.3045 0.3386

(0.00) (0.00)
ICH 0.1151 0.2477

(0.00) (0.00)
R2

Adj 10.7% 2.2% 1.3% 1.8% 12.8% 11.6% 5.7% 13.0%

Panel C: 12-month horizon
constant -0.0906 0.0647 0.0539 0.0774 -0.0918 0.0772 0.0343 0.0862

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
IC 0.4434 0.4298

(0.00) (0.00)
CRP 0.2551 0.1246 0.1830 0.2191 0.1512

(0.00) (0.00) (0.00) (0.00) (0.00)
MFIV 0.5972 -0.0490 0.0789 0.6996 -0.0434

(0.00) (0.49) (0.23) (0.00) (0.54)
V RP 0.3765 0.2147 0.2692 0.4073 0.2276

(0.00) (0.02) (0.00) (0.00) (0.01)
ICL 0.4685 0.4961

(0.00) (0.00)
ICH 0.0091 0.1993

(0.83) (0.00)
R2

Adj 9.9% 2.5% 2.1% 0.4% 10.8% 11.3% 5.0% 11.6%

Notes: This Table reports the results of predictive regressions of S&P500 index returns on a set of explanatory
variables, namely implied correlation (IC), the difference between implied and realised correlation (CRP ), model-free
implied variance (MFIV ), the variance risk premium (V RP ) computed as implied variance minus realised variance,
the low-frequency component of implied correlation (ICL), and the high-frequency component of implied correlation
(ICH). All implied variables have been computed using options with 30 days to maturity, while realised correlation
and realised variance are also computed over 30-day periods. The predictive regressions are estimated using daily
data of overlapping market returns compounded over several forecasting horizons (three, six and twelve months). The
Table reports the estimated coefficients, the associated p-values (in brackets) and the Adjusted R-squared. Statistical
significance is based on Newey and West (1987) heteroscedasticity and autocorrelation consistent standard errors,
with the number of lags given by the number of overlapping observations. The sample period runs from January 1996
to December 2020.
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Figure 2.4: R-squared of market predictability regressions
Notes: This Figure plots the R2 from predictive regressions of market returns against a number of predictors,

namely implied correlation (IC), the low-frequency component of implied correlation (ICL), and the high-frequency

component of implied correlation (ICH). All predictive regressions also include a set of control predictors, namely

the difference between implied and realised correlation (CRP ), model-free implied variance (MFIV ), and the

variance risk premium (V RP ) computed as implied variance minus realised variance. All implied variables have

been computed using options with 30 days to maturity, while realised correlation and realised variance are also

computed over 30-day periods. The predictive regressions are estimated using daily data of overlapping market

returns compounded over several forecasting horizons, ranging from 1 to 252 days. The sample period runs from

January 1996 to December 2020.
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Figure 2.5: R-squared of market predictability regressions
Notes: This Figure plots the R2 from predictive regressions of market returns against a number of predictors,

namely implied correlation (IC), the low-frequency component of implied correlation (ICL), and the high-frequency

component of implied correlation (ICH). All predictive regressions also include a set of control predictors, namely

the difference between implied and realised correlation (CRP ), model-free implied variance (MFIV ), and the

variance risk premium (V RP ) computed as implied variance minus realised variance. All implied variables have

been computed using options with 30 days to maturity, while realised correlation and realised variance are also

computed over 30-day periods. The predictive regressions are estimated using daily data of overlapping market

returns compounded over several forecasting horizons, ranging from 1 to 252 days. The sample period runs from

January 1996 to December 2020.
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correlation outperforms both the original series and the low-frequency component,

consistent with the intuition that factors with short-term influences are more rel-

evant when forecasting short-term market returns. In contrast, the low-frequency

component dominates when forecasting market returns at horizons of six months or

longer, indicating that identifying long-term trends in the predictor is substantially

more informative when forecasting long-term market returns.

2.6.2 Controlling for Fundamentals

I proceed by examining the extent to which implied correlation and its components

remain significant predictors of market returns after controlling for a set of funda-

mental variables that have been previously shown to contain important information

about subsequent market returns. To this end, I estimate predictive regressions of

market returns against IC, ICL, and ICH, while also incorporating in the spec-

ification the fundamental variables proposed by Goyal and Welch (2008). More

specifically, Goyal and Welch (2008) show that a particular combination of funda-

mental variables can explain a substantial proportion of subsequent market returns.

Therefore, I augment the predictive regressions with the same set of fundamentals,

namely the Book-to-Market Ratio (BM), T-Bill Rates (TB), AAA-Rated Corporate

Bonds Yields (AAA), BAA-Rated Corporate Bonds Yields (BAA), Inflation (INFL),

Long-Term Yield (LTY), Net Equity Expansion (NEE), Long-Term Rate of Return

(LTR), Corporate Bond Returns (CBR), and the S&P 500 Index Variance (SVAR).

I perform predictive regressions of market returns that have been compounded over

several different horizons (namely one, three, six and twelve months) against implied

correlation, its components, and the fundamental variables. Since the fundamen-

tals are available at a monthly frequency, I sample market returns and the set of

predictors at the end of each month instead of every day, as in subsection 2.6. The
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regression equations, with or without controlling fundamentals, are listed below and

rMKT
t−t+m = α + βICt + ϵt+m (2.23)

rMKT
t−t+m = α + βICLt + ϵt+m (2.24)

rMKT
t−t+m = α + βICHt + ϵt+m (2.25)

rMKT
t−t+m = α + β1ICLt + β2ICHt + ϵt+m (2.26)

rMKT
t−t+m = α + CTRLt + ϵt+m (2.27)

rMKT
t−t+m = α + CTRLt + β11ICt + ϵt+m (2.28)

rMKT
t−t+m = α + CTRLt + β11ICLt + ϵt+m (2.29)

rMKT
t−t+m = α + CTRLt + β11ICHt + ϵt+m (2.30)

rMKT
t−t+m = α + CTRLt + β11ICLt + β12ICHt + ϵt+m (2.31)

where

CTRLt =β1BMt + β2TBt + β3AAAt + β4BAAt ++β5INFLt + β6LTYt+

β7NEEt + β8LTRt + β9CBRt + β10SV ARt + ϵt+m

(2.32)

The regression results are reported in Table 2.6.

Similarly to my earlier results using daily returns (reported in Tables 2.4 and 2.5),

I find that the forecasting power of implied correlation generally increases with the

length of the forecasting horizon. For instance, the R2 of monthly bivariate regres-

sions of market returns against the lagged IC is only 1.6% at the 1-month horizon,

compared to 10.7% at the 6-month horizon. Notably, the results from monthly

regressions confirm the incremental forecasting power of the high-frequency compo-

nent of implied correlation for short-term and medium-term forecasting horizons.

More specifically, using ICH instead of IC in bivariate predictive regressions in-
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Table 2.6: Market return predictability - Controlling for fundamentals

Panel A: 1-month horizon
constant -0.0110 0.0047 0.0056 0.0041 -0.0045 -0.0263 -0.0113 -0.0151 -0.0231

(0.16) (0.63) (0.03) (0.67) (0.97) (0.80) (0.91) (0.88) (0.82)
IC 0.0458 0.0856

(0.02) (0.00)
ICL 0.0051 0.0040 0.0399 0.0464

(0.84) (0.87) (0.24) (0.16)
ICH 0.1144 0.1144 0.1241 0.1266

(0.00) (0.00) (0.00) (0.00)
control no no no no yes yes yes yes yes
R2

Adj 1.6% 0.0% 4.1% 3.8% 3.5% 7.3% 3.6% 7.7% 8.1%

Panel B: 3-month horizon
constant -0.0428 0.0049 0.0162 0.0024 0.0249 -0.0385 0.0058 -0.0054 -0.0280

(0.00) (0.78) (0.00) (0.88) (0.88) (0.81) (0.97) (0.97) (0.86)
IC 0.1627 0.2488

(0.00) (0.00)
ICL 0.0396 0.0368 0.1112 0.1290

(0.37) (0.37) (0.04) (0.01)
ICH 0.3683 0.3678 0.3640 0.3705

(0.00) (0.00) (0.00) (0.00)
control no no no no yes yes yes yes yes
R2

Adj 7.4% 0.0% 14.6% 14.6% 18.4% 29.7% 19.3% 31.0% 32.4%

Panel C: 6-month horizon
constant -0.0691 -0.0151 0.0351 -0.0170 -0.0490 -0.1301 -0.0813 -0.0860 -0.1225

(0.00) (0.55) (0.00) (0.47) (0.82) (0.52) (0.71) (0.68) (0.55)
IC 0.2830 0.3066

(0.00) (0.00)
ICL 0.1456 0.1385 0.1898 0.2092

(0.02) (0.02) (0.01) (0.00)
ICH 0.5213 0.5182 0.3943 0.4048

(0.00) (0.00) (0.00) (0.00)
control no no no no yes yes yes yes yes
R2

Adj 10.7% 1.4% 13.5% 14.8% 37.7% 45.6% 39.2% 44.5% 46.3%

Panel D: 12-month horizon
constant -0.0680 -0.0832 0.0777 -0.0845 -0.8568 -0.9246 -0.9385 -0.8581 -0.9420

( 0.03) (0.03) (0.00) (0.02) (0.01) (0.00) (0.00) (0.01) (0.00)
IC 0.38 0.23

(0.00) (0.00)
ICL 0.4334 0.4292 0.4000 0.4016

(0.00) (0.00) (0.00) (0.00)
ICH 0.3168 0.3072 0.0135 0.0333

(0.01) (0.01) (0.90) (0.75)
control no no no no yes yes yes yes yes
R2

Adj 8.6% 6.6% 1.9% 8.4% 42.2% 43.9% 45.3% 42.0% 45.1%

Notes: This Table reports the results of predictive regressions of S&P500 index returns on a set of explanatory
variables, namely implied correlation (IC), the low-frequency component of implied correlation (ICL), and the high-
frequency component of implied correlation (ICH). All implied variables have been computed using options with 30
days to maturity. In addition to the implied correlation and its components, the set of predictors also includes the
fundamental variables from Goyal and Welch (2008). More specifically, these control variables include the dividend-
price ratio, default yield spread, Treasury-bill rate, long-term yield, book-to-market, net equity expansion, dividend
yield, stock variance, term spread, inflation, and corporate bond returns. The predictive regressions are estimated
using end-of-month observations, with non-overlapping market returns compounded over several forecasting horizons
(one, three, six and twelve months). The table reports the estimated coefficients, the associated p-values (in brackets)
and the Adjusted R-squared. Statistical significance is based on Newey and West (1987) heteroscedasticity and
autocorrelation consistent standard errors. The sample period runs from January 1996 to December 2019.
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creases the R2 from 1.6% to 4.1% at the 1-month horizon. A similar improvement

in forecastability is obtained at the 3-month horizon (from 7.4% to 14.6%) and the

6-month horizon (from 10.7% to 13.5%).

At the same time, the low-frequency component of implied correlation is again found

to contain very little information about future market returns at short horizons.

Using ICL in bivariate monthly regressions results in R2s that are markedly lower

than those obtained when using the original IC series. For example, at the 1-month

and 3-month horizons, the R2 is effectively equal to 0% when using ICL, compared

to R2s when using IC of 1.6% and 7.4%, respectively. At the 6-month horizon, ICL

seems to have some predictive power over market returns, but with an R2 of 1.4%,

this is substantially lower than that of IC (10.7%) or ICH (13.5%). However, I find

that ICL is actually more informative than ICH at the longest 12-month horizon,

with R2s of 6.6% vs 1.9%, respectively. Nevertheless, the original IC series remains

the most informative at this longest horizon, with an R2 of 8.6%.

I confirm that the Goyal and Welch (2008) fundamentals have a significant forecast-

ing power over market returns, especially at longer horizons. In particular, regress-

ing market returns against these fundamental variables results in R2s that range

from 3.5% at the 1-month horizon to 42.2% at the 12-month horizon. These R2s

are substantially higher than those obtained when only using option-implied vari-

ables as predictors, with the exception of the 1-month horizon where either implied

correlation component seems to be more informative than the set of fundamentals

alone.

Furthermore, the significant predictive ability of option-implied variables remains

after controlling for fundamentals, consistent with the results in Driessen et al.

(2012). In fact, I find that using both implied correlation (or its components)

and the Goyal and Welch (2008) fundamentals in predictive regressions can result

in a markedly higher R2 compared to using only one type of predictor, especially
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at short-term and medium-term forecasting horizons. More specifically, at the 1-

month horizon, the highest R2 is obtained when the set of predictors includes the

fundamentals and both implied correlation components (8.1%), followed by using

the fundamentals and only the high-frequency component (7.7%). To put this into

context, this R2 is more than double compared to what would have been obtained

when using only the well-established Goyal and Welch (2008) fundamentals (3.5%).

The results are similar at the 3-month horizon, with the highest R2 obtained when

using the fundamentals and both implied correlation components (32.4%), followed

by that obtained when using the fundamentals and ICH (31.0%). At these short-

term horizons, the low-frequency component ICL seems to contain relatively little

information in terms of forecasting future market returns, being consistently out-

performed by the high-frequency component as well as by the original IC series.

Interestingly, though, adding ICL to the set of predictors still results in a higher

R2 than only using fundamentals, highlighting the general importance of implied

information in forecasting market returns.

Consistent with the findings introduced above, I find that the informational con-

tent of the high-frequency component diminishes as I move to longer forecasting

horizons. At the 6-month horizon, adding ICL to the set of fundamental predictors

results in an R2 of 11.6%, which is noticeably higher than that obtained when adding

ICH (5.7%). Moreover, while the original IC series outperforms each of its com-

ponents when controlling for fundamentals (R2 = 12.8%), using both components

still produces the highest R2 across all candidate specifications (13.0%). The results

are very similar at the 12-month horizon, with ICL outperforming ICH (11.3% vs

5.0%) and using both components resulting in the highest R2 (11.6%).

Overall, my findings confirm that decomposing implied correlation can significantly

improve the predictability of market returns, even after controlling for fundamen-

tal variables that have been shown to contain important information. The high-
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frequency component of implied correlation can forecast market returns more ef-

ficiently than the original series in the short- and medium-term, potentially by

providing “cleaner” information about short-term influences. In contrast, the low-

frequency component appears to be more efficient in capturing longer-lived, more

“permanent” effects, and in any case, replacing the original series of implied correla-

tion with its two components results in significantly higher predictability of market

returns at horizons ranging from one month to one year.

2.6.3 Crisis Periods

Implied variables have been shown to be particularly informative during crisis peri-

ods (see for instance Kempf et al., 2015). One reason could be that information flows

are usually higher during crises, which makes historical information less relevant and

favours implied information which is based only on current data. Another reason

could be that crisis periods are often characterised by more pronounced information

asymmetry, with informed investors being more likely to exploit their private infor-

mation by trading in the options market relative to the spot market (Chakravarty

et al., 2004). Therefore, option prices are expected to be more informative during

crisis periods, compared to normal periods when they are expected to have a smaller

advantage over historical information.

To better understand the forecasting performance of implied correlation and its

components, I turn my attention to the two major crises that are contained in my

sample period. The first crisis is the burst of the dot-com bubble, which I define

as having begun in March 2000 (when the NASDAQ lost around 9% of its value

in the space of just six days) and having ended in April 2003. The second is the

global financial crisis, which I define as having started in June 2007 (when issues

about Bear Stearns became public) and ended in December 2009.9 I re-estimate

9I use the same beginning and end for each crisis period as in Baule et al. (2015). The results
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the monthly predictive regressions of market returns against implied correlation,

its components and the set of fundamental variables separately for each of the two

crisis periods. Table 2.7 reports the results for forecasting horizons of one and three

months.

As can be seen from Panel A of Table 2.7, decomposing implied correlation was

even more important during the dot-com bubble burst. At the 1-month horizon,

using the original IC series as a single predictor in bivariate regression results in an

R2 of only 0.3%. However, replacing IC with its high-frequency component ICH

results in a very substantial increase of the R2 to 6.7%. Similarly to the results

in the full sample, the low-frequency component ICL does not seem to have any

significant explanatory power over future market returns at this short-term horizon.

When I control for the Goyal and Welch (2008) fundamentals, the high-frequency

component remains an essential predictor of market returns, resulting in a markedly

higher R2 compared to the one obtained when using the original IC series (16.4%

vs 7.3%).

The results are even stronger when I move to the longer 3-month forecasting hori-

zon. More specifically, using the high-frequency component in bivariate predictive

regressions results in an R2 of 56.5%, compared to only 9.2% when using IC. In-

corporating the set of fundamental variables further increases the predictive power,

reaching a maximum of 79.5% when both components are used in the same specifi-

cation (compared to 57.4% when the fundamentals are combined with IC).

The results for the global financial crisis are again more robust than those obtained

in the full sample, albeit somewhat weaker than those obtained in the dot-com

bubble burst period. As seen from Panel B of Table 2.7, at the 1-month horizon,

the original implied correlation series outperforms both components when used as

the single predictor. However, after accounting for the set of fundamental variables,

remain qualitatively the same when I use alternative definitions of crisis periods (omitted for brevity
but available upon request).
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using either component results in a markedly higher R2 compared to using IC, while

using both components results in the highest R2 among all specifications (60.2%,

compared to 48.1% when using IC). Finally, the results are qualitatively similar at

the 3-month horizon, where using both ICL and ICH in the place of IC increases

the R2 from 80.9% to 86.7%.

Table 2.7: Market return predictability - Crisis periods

Panel A: Dotcom bubble burst
1-month horizon
constant -0.0353 -0.0100 -0.0137 -0.0146 -5.1345 -5.9916 -3.5491 -5.5834 -4.5133

(0.15) (0.39) (0.11) (0.21) (0.04) (0.03) (0.16) (0.06) (0.10)
IC 0.0703 -0.2556

(0.30) (0.37)
ICL 0.0209 -0.0105 -1.7856 -2.0757

(0.81) (0.90) (0.73) (0.05)
ICH 0.2546 0.2581 -0.0959 -0.2610

(0.07) (0.07) (0.07) (0.34)
control no no no no yes yes yes yes yes
R2

Adj 0.3% 0.0% 6.7% 4.0% 8.0% 7.3% 4.6% 16.4% 16.2%

3-month horizon
constant -0.1092 -0.0416 -0.0411 -0.0461 -8.9599 -6.2996 -5.7079 -4.2191 -2.6322

(0.00) (0.02) (0.00) (0.00) (0.00) (0.03) (0.02) (0.09) (0.20)
IC 0.2148 0.7303

(0.04) (0.02)
ICL -0.0112 -0.0532 -3.3425 -2.6195

(0.93) (0.53) (0.00) (0.00)
ICH 1.0014 1.0085 0.9360 0.7461

(0.00) (0.00) (0.00) (0.00)
control no no no no yes yes yes yes yes
R2

Adj 9.2% 0.0% 56.6% 55.7% 46.6% 57.4% 66.6% 67.6% 79.5%

Panel B: Global financial crisis
1-month horizon
constant -0.0954 -0.0086 -0.0153 -0.0215 -1.5240 -3.7816 -9.2317 -5.0927 -7.9651

(0.12) (0.50) (0.23) (0.16) (0.67) (0.18) (0.01) (0.07) (0.02)
IC 0.1761 0.5546

(0.14) (0.00)
ICL 0.0175 0.1248 -2.7646 -1.5227

(0.91) (0.44) (0.00) (0.09)
ICH 0.1598 0.2032 0.5279 0.3248

(0.18) (0.13) (0.00) (0.06)
control no no no no yes yes yes yes yes
R2

Adj 4.1% 0.0% 2.9% 1.5% 8.3% 48.1% 52.9% 55.1% 60.2%

3-month horizon
constant -0.3443 -0.0298 -0.0446 -0.0720 11.1759 6.8866 0.1817 4.9102 1.1814

(0.01) (0.28) (0.09) (0.02) (0.04) (0.09) (0.96) (0.19) (0.76)
IC 0.6538 0.7886

(0.01) (0.00)
ICL 0.1780 0.5748 -3.6424 -2.1493

(0.58) (0.08) (0.00) (0.07)
ICH 0.4944 0.7117 0.7471 0.4182

(0.05) (0.01) (0.00) (0.09)
control no no no no yes yes yes yes yes
R2

Adj 19.4% 0.0% 10.4% 17.5% 65.9% 80.9% 84.6% 84.3% 86.7%

Notes: This Table reports the results of predictive regressions of S&P500 index returns on a set of explanatory
variables, namely implied correlation (IC), the low-frequency component of implied correlation (ICL), and the high-
frequency component of implied correlation (ICH). The predictive regressions are estimated in two subsamples of
crisis periods, namely the dot-com bubble burst (March 2000 to April 2003) and the global financial crisis (June 2007
to December 2009). All implied variables have been computed using options with 30 days to maturity. In addition to
the implied correlation and its components, the set of predictors also includes the fundamental variables from Goyal
and Welch (2008). More specifically, these control variables include the dividend-price ratio, default yield spread,
Treasury-bill rate, long-term yield, book-to-market, net equity expansion, dividend yield, stock variance, term spread,
inflation, and corporate bond returns. The predictive regressions are estimated using end-of-month observations, with
non-overlapping market returns compounded over two forecasting horizons (namely, one and three months). The
Table reports the estimated coefficients, the associated p-values (in brackets) and the Adjusted R-squared. Statistical
significance is based on Newey and West (1987) heteroscedasticity and autocorrelation consistent standard errors.
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Overall, these results highlight an interesting distinction between normal periods and

crisis periods. Even though decomposing implied correlation significantly increases

the predictability of market returns in the full sample, this improvement seems to

be substantially more pronounced during crisis periods.

2.6.4 Out-of-Sample Predictability

Goyal and Welch (2008) show that, although several variables have been found to

have significant forecasting power over market returns in-sample, this does not al-

ways translate to out-of-sample predictability too. Therefore, I proceed by exploring

the out-of-sample forecasting ability of implied correlation and its low-frequency and

high-frequency components. I adopt a recursive monthly forecasting scheme, with

an initial estimation period of 36 months (from January 1996 to December 1998),

leaving the period from January 1999 to December 2020 for the out-of-sample eval-

uation.

Starting from January 1999, I produce a forecast of market returns for a given month

via the traditional approach of estimating a recursive predictive regression of market

returns against a particular predictor (with the initial 36-month estimation period

expanding at each iteration). More specifically, I estimate the following bivariate

predictive regression

rt−h→t = β0 + β1xt−h + ϵt (2.33)

where rt−h→t denotes the market returns computed during the holding period [t −

h, t], xt−h denotes the predictor observed at time t − h, and ϵt is a random error

term. This regression is estimated separately for each predictor, namely for IC,

ICL and ICH.10 I recursively construct out-of-sample forecasts of market returns

10I focus on the predictive performance of single predictors in order to avoid issues of overfitting
and model selection (see also Buss et al., 2019), as my emphasis is primarily on the relative
predictive ability of implied correlation and its components. I leave the evaluation of multivariate
forecasting schemes and forecast combinations for future research.
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at [t, t + h] by estimating the regression in (2.33) during the expanding estimation

period and then using the in-sample estimated coefficients β̂0 and β̂1 as well as the

value of the predictor at time t. This standard approach ensures that out-of-sample

forecasts are free from any look-ahead bias since they only use observations that

were available when the forecast was produced. The above forecasting exercise is

performed separately for forecasting horizons h of 1, 3, 6 and 12 months.

I evaluate the forecasting performance of each predictor by comparing its predictive

power against that of a benchmark model. I adopt the natural benchmark of the

historical average market returns computed during the estimation period, which

Campbell and Thompson (2008) and Goyal and Welch (2008) find to significantly

outperform a large set of commonly used predictors out-of-sample. To measure the

out-of-sample forecasting performance, I rely on the commonly used out-of-sample

R-squared (R2
OS), given by the Mean Square Forecast Error (MSFE) of the candidate

model relative to that of the benchmark model as follows.

R2
OS = 1− MSFEm

MSFEb

(2.34)

where MSFEm and MSFEb denote the MSFE of model m and that of the bench-

mark model, respectively. In this setting, a particular model m outperforms the

benchmark model if the former’s R2
OS is positive. Statistical significance is assessed

via the Clark and West (2007) test, with the null hypothesis being that model m

produces a higher MSFE than the benchmark, against the alternative hypothesis

that model m produces a lower MSFE. Table 2.8 reports the R2
OS and the p-value

from the Clark and West (2007) test of each model against the historical average

benchmark across forecasting horizons of 1, 3, 6 and 12 months.

The first thing to notice is that implied correlation outperforms the historical average

benchmark at the 1-month and 12-month horizons (with out-of-sample R-squared of
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0.1% and 3.4%, respectively) but fails to deliver a positive R2
OS at the intermediate

horizons of 3 and 6 months. Moreover, the Clark and West (2007) test indicates

that IC’s superior out-of-sample performance relative to the benchmark is signifi-

cant only at 10% for the 1-month horizon and insignificant for the longer 12-month

horizon. Overall, I find limited evidence of implied correlation being a consistently

superior predictor of market returns out-of-sample relative to the historical average

benchmark.

Table 2.8: Market return predictability - Out-of-sample R-squared

historical average
1 month 3 month 6 month 12 month

IC 0.1% -3.6% -3.2% 3.4%
(0.07) (0.89) (0.74) (0.17)

ICL -1.7% -2.3% 0.3% 11.2%
(0.66) (0.45) (0.30) (0.10)

ICH 3.6% -17.5% -13.1% -1.0%
(0.00) (1.00) (1.00) (0.84)

Notes: This Table reports the out-of-sample predictive ability of forecasts of S&P500 index returns using a set of
predictors, namely implied correlation IC, its low-frequency component ICL and its high-frequency component ICH.
Implied correlation is computed via the Driessen et al. (2012) methodology using options with maturities of 30 days.
Each forecasting model is based on recursive monthly regressions of market returns against each lagged predictor
separately. Forecasts are produced separately for horizons of one, three, six and twelve months. The Table reports
the out-of-sample R-squared (R2

OS), as well as the associated Clark and West (2007) p-values (in brackets). The
expanding estimation period starts at 36 months (January 1996 to December 1998), and the out-of-sample evaluation
period runs from January 1999 to December 2020.

In contrast, the two components of implied correlation are found to be more efficient

predictors of market returns compared to the original series at specific horizons

that match the nature of their informational content. More specifically, the high-

frequency component produces a positive and highly significant R2
OS (3.6% with a

(Clark and West, 2007) p-value of 0.00) at the shortest 1-month horizon. Given that

the out-of-sample R-squared of IC at the 1-month horizon was substantially lower

(0.1%) and only marginally significant, while that of ICL was negative (-1.7%),

it appears that the predictability of short-term market returns can be significantly

improved by extracting the information about short-term fluctuations contained in

the high-frequency component of implied correlation and discarding the information

about longer-term trends contained in the low-frequency component.

As I move towards longer forecasting horizons, the performance of ICH worsens,

as evidenced by negative values for the R2
OS. At the same time, the performance of
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the low-frequency component begins to improve, producing positive out-of-sample

R-squared at the 6-month and 12-month horizons (0.3% and 11.2%, respectively).

However, even though the R2
OS of the low-frequency component increases with the

forecasting horizon, the (Clark and West, 2007) test generally fails to reject the null

that the respective MSFE is lower than that of the benchmark model. For instance,

the R2
OS of ICL takes its highest value of 11.2% at the longest 12-month horizon,

but the (Clark and West, 2007) p-value of 0.10 suggests that this outperformance

of the historical mean benchmark is only marginally statistically significant. 11

Overall, the out-of-sample evaluation provides additional support for the notion

that disaggregating the information contained in implied correlation can lead to a

significant improvement in the predictability of market returns.

2.7 Conclusion

A growing literature has been emerging on the informational content of option-

implied correlation, especially its ability to predict market returns at various hori-

zons accurately. In this chapter, I explore the source of this informational content.

In particular, I show that the predictive ability of implied correlation is driven by

the interaction between its low-frequency and high-frequency components.

Theoretically, a frequency decomposition can disaggregate implied correlation into

information that refers to different time scales. The high-frequency component is

expected to capture short-lived effects on the time series of implied correlation. In

contrast, the low-frequency component is likely to pick up more “permanent” fluc-

tuations. Empirically, I provide strong evidence that the high-frequency component

11I have also evaluated the out-of-sample forecasting performance of IC and its two components
relative to one another by using each predictor in turn as the benchmark model (the full results are
unreported for brevity, but they are available upon request). Consistent with my earlier findings,
the ICH-based forecast significantly outperforms the IC-based forecast (R2

OS = 3.5%) and the
ICL-based forecast (R2

OS = 5.3%) at the shortest 1-month horizon. Moreover, ICL significantly
outperforms IC (R2

OS = 8.1%) and ICH (R2
OS = 12.1%) at the longest 12-month horizon.
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drives the predictive ability of implied correlation at short horizons and the low-

frequency component at longer horizons. More importantly, decomposing implied

correlation leads to substantial improvements in the predictability of market re-

turns, especially at shorter horizons where forecasting market returns tends to be

more challenging. This improvement in market returns predictability is robust to

controlling for a wide set of option-implied and fundamental variables, and it is also

documented out-of-sample.

My proposed decomposition of implied correlation has several potential applications,

and it can be used to motivate future research. An obvious practical application is

in forecasting market variables such as index returns, where the specific forecasting

horizon could inform the selection of a particular component in order to reduce

noise and improve forecasting accuracy. Another application is in optimal portfolio

selection in the presence of correlation risk, with the source of which potentially

depending on the specific investment horizon. Another interesting direction for

future research is to explore whether each component is associated with a different

premium in the cross-section of stock and option returns.
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Chapter 3

Volatility Forecasting with

GARCH/GAS Models

3.1 Introduction

3.1.1 Observation-driven Models

Volatility modelling and forecasting play a critical role in the finance literature. As

a measure for quantifying market risk, volatility is very important in practice. The

establishment of financial policies strongly relies on the expectations of volatility

in the future. Volatility is also helpful in measuring the sentiment of investors.

Furthermore, accurate prediction of volatility leads to improved portfolio construc-

tion. Therefore, volatility modelling and forecasting have been an ongoing topic for

decades. It is always beneficial to consider and develop more efficient models for

volatility.

There are plenty of studies in the literature on volatility forecasting. In terms of

discrete volatility models, one of the most influential families of models is the Autore-
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gressive Conditional Heteroskedasticity (ARCH) models proposed by Engle (1982)

and its generalised version Generalised Autoregressive Conditional Heteroskedas-

ticity (GARCH) submitted by Bollerslev (1986). The GARCH models are advan-

tageous partly in their ability to capture the time-varying property of volatility.

However, standard GARCH models have limited capability in characterising the

negative skewness and excess kurtosis that are commonly observed in financial re-

turns time series. This motivates the explosive growth of studies in extensions of

GARCH models. One crucial extension lies in the distribution of asset returns. Ac-

cording to Bollerslev (1987), distributions with heavier tails, such as the Student’s t

distribution, can accommodate the excess kurtosis. Another candidate with a simi-

lar feature is the Generalised Error Distribution (GED) proposed by Nelson (1991).

However, GARCH models specified with these distributions still need to be revised

to characterise the negative skewness simultaneously (Nelson, 1991). A solution to

this is to introduce asymmetry. This can be realised by either incorporating the

”leverage effects” as in Glosten et al. (1993) or simply assuming that the error term

follows some skewed distribution, such as the Inverse Gaussian distribution as in

Christoffersen et al. (2006).

Volatility forecasting using time-varying parameters models has attracted more and

more attention in past years. These models are advantageous because of their su-

periority in characterising series dynamics. The drivers of time-varying parameters

in these models, by Cox et al. (1981), can be either parameters themselves (pa-

rameter driven), for example, the state space models, see Durbin and Koopman

(2012); Koopman et al. (2000); Saavedra et al. (2020), or empirical observations

(observation driven).

In this chapter, I focus on comparing the performance of trending observation-driven

models in the application of forecasting volatility of financial time series. The ARCH

models and its generalisation GARCH models are effective models for volatility

modelling and forecasting. The GARCH models are advantageous partly due to
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their ability to capture the time-varying property of volatility. Another advantage

of the GARCH model is that it is flexible and extendable. Ever since the GARCH

model was proposed, more than one hundred variations that take into consideration

different features of observations have been developed. However, the GARCH model

is one of many candidates with these appealing characteristics. In recent years,

another time-varying parameter model in which the score of the predicted density

is adopted as the driver of parameter updating has been becoming increasingly

popular. Proposed by Creal et al. (2012) and Harvey (2013), this model is referred

to as the Generalised Autoregressive Score (GAS) model, Dynamic Conditional Score

(DCS) model, or simply score-driven model. It can be shown that, under specific

conditions, the GAS model reduces to the well-established GARCH model. In other

words, the GARCH models are nested and are special cases of score-driven models.

Theoretically, there are a few main advantages to applying score-driven models in

volatility modelling. First, according to Creal et al. (2012) and Harvey (2013),

existing models, such as the stochastic volatility models in Shephard (2005), are

not capable of taking into consideration the shape of predicted conditional densities

of input data. The GAS models were then developed to bridge this gap. Second,

since the updating mechanism of GAS models is driven by conditional scores, the

estimation of time-varying parameters can be implemented directly using Maximum

Likelihood Estimation (MLE). Third, the GAS models are more flexible in that one

can make different assumptions on the distribution of innovation terms. Although

the same can be done on GARCH models, the superiority of GAS models is expected

to become more significant when it comes to non-Gaussian scenarios.

3.1.2 Model-free volatility forecasting

Option-implied information has been widely discussed. One of the most popular

applications of option-implied information is volatility forecasting, where volatility
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predictions computed using option prices are often compared to forecasts from his-

torical underlying prices. Christensen and Prabhala (1998), Fleming (1998), and

Ederington and Guan (2002) provide empirical evidence that option-implied volatil-

ity is a more accurate forecast compared to volatility computed from historical asset

prices. Furthermore, Andersen (2000) and Andersen et al. (2003) found that option-

implied volatility outperforms high-frequency realised volatility in forecasting future

realised volatility. Jiang and Tian (2005), Giot and Laurent (2007) and Blair et al.

(2010) verified this empirically for the US stock market.

Regarding the methods for extracting option implied volatility, it was initially ob-

tained by backing up from the Black-Scholes Model using At-the-Money (ATM) op-

tions, provided other inputs are given. The most important innovation comes from

the theoretical result of Carr and Madan, Demeterfi et al. (1999b) and Britten-Jones

and Neuberger (2000), who obtain implied volatility by exploiting option prices only,

without relying on any model. Such an approach is thus not restricted by unreal-

istic assumptions imposed in models like the Black-Scholes Model, and the implied

volatility estimated using this method is called the Model-Free Implied Volatility

(MFIV). This model-free method was applied by the CBOE to develop the VIX.

Later approaches for computing model-free implied volatility were developed based

on this starting point. An extensive literature review in implied volatility was con-

ducted by Poon and Granger (2003). They found that, among 34 studies, 26 indicate

that option implied volatility outperforms historical averages, and 17 out of 18 stud-

ies indicate superior forecasting performance of option implied volatility compared

to GARCH model forecasts.

Here I list a few representative studies in volatility forecasting. Liang et al. (2020)

construct Realised Volatility (RV) using intra-day high-frequency data from eight

stock markets over the world and document that Implied Volatility (IV) is more

powerful in predicting future realised volatility. It is also reported that IV signifi-

cantly improves the forecasting accuracy of RV through horizons from 1 day to one
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month. This finding is also confirmed in Kambouroudis et al. (2016). Another study

by Martin et al. (2021) extends the framework of the realised GARCH model by

introducing VIX, in addition to RV, into the model system. A robust increment in

prediction accuracy is documented. Kourtis et al. (2016) adopts a sample containing

indices data across ten countries and concludes that implied volatility is preferred

for forecasting at the monthly horizon. At the daily horizon, it is the HAR model

that dominates. In all circumstances, GARCH models are less powerful in volatility

forecasting.

An interesting study by Becker et al. (2007) finds that, as the number of paramet-

ric models adopted increases, no incremental information can be detected in implied

volatility proxied by VIX. This means that parametric models completely anticipate

changes in volatility, and introducing implied volatility does not improve anticipa-

tion accuracy. Following this study, Becker and Clements (2008) propose to apply a

combination of model-based predictors, confirming the combination model’s domi-

nance. The superiority of model-based predictors with respect to implied volatility is

once again verified. Focusing on index option implied volatility, in addition to mak-

ing comparisons between parametric models in volatility modelling, another purpose

of this study is to inspect whether implied volatility conveys additional information

than model-based volatility predictors.

The most important market of interest for volatility forecasting is the equity mar-

ket. Many studies have been done in this field, and most agree that option-implied

volatility provides valuable information for predicting future volatility in the stock

market. Harvey and Whaley (1992) showed that implied volatility helps produce

accurate forecasts. However, no arbitrage can be locked on, which is consistent with

the market efficiency hypothesis. Canina and Figlewski (1993) document that im-

plied volatility cannot predict future volatility by applying the binomial tree model

and taking dividend adjustment and the possibility of early exercise into considera-

tion. Fleming et al. (1995) included an earlier version of VIX from Whaley (1993)
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into their study and found that although implied volatility yields biased forecasts, it

is still helpful to some extent. Christensen and Prabhala (1998) showed that volatil-

ity implied by the Black-Scholes model outperforms historical volatility, Fleming

(1998) used a modified binomial tree model to reveal that forecasts made by implied

volatility are upward biased. Blair et al. (2010) utilised the VIX method to compute

implied volatility and showed that such implied volatility contains all information.

Thus, no incremental information can be obtained from intra-day high-frequency

data.

Jiang and Tian (2005) made some improvements based on Britten-Jones and Neu-

berger (2000) and found that model-free implied volatility subsumes the information

in the BS implied volatility. Ang et al. (2006) attempted to predict the cross-section

of stock returns using implied volatility calculated using the VIX approach and

found that shocks in VIX are a priced factor with the negative price of risk.

All these papers set implied volatility as the predictor to predict future volatility.

Some other studies, such as Bollerslev et al. (2009), Bekaert et al. (2013), Zhou

(2018) used the Variance Risk Premium (VPR), which is extracted as the difference

between option implied variance (under Q measure) and realised variance (under P

measure), to predict the equity risk premium. They found that the VRP is useful

in predicting equity risk premiums.

Rather than index options implied volatility Chiras and Manaster (1978), Beckers

(1981), and Lamoureux and Lastrapes (1993) focus on the implied volatility of

individual stocks, almost all of their studies found that implied volatility better

predicts future volatility. Swidler and Wilcox (2002) found that individual implied

volatility outperforms historical models in predicting the volatility of bank stocks.

More generally, Banerjee et al. (2007) document the predictive power of implied

volatility in forecasting returns of characteristic-based portfolios. Diavatopoulos

et al. (2008) detected a strong and positive link between idiosyncratic volatility and
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future cross-sectional stock returns.

3.1.3 The distribution of financial returns

Ever since it was proposed by Bollerslev (1986), the error term in the GARCH model

is assumed to be normally distributed. However, plenty of empirical studies indicate

that it is not necessary that financial returns are normally distributed. Instead,

asset returns are often skewed and tend to have heavy tails and excess kurtosis.

It is beneficial to take such behaviour into account in the process of constructing

volatility models. Under the framework of GARCH models, a few studies have

focused on making different non-Gaussian assumptions on the distribution of error

terms. For example, Bollerslev (1987) document that distributions with heavy tails,

such as Student’s t distribution, are useful in capturing excess kurtosis observed in

financial returns. Another heavy-tailed distribution is adopted in Nelson (1991),

known as the Generalised Error Distribution (GED).

However, the fatter-tailed distributions mentioned above are not capable of account-

ing for skewness. According to Nelson (1991) and Glosten et al. (1993), such asym-

metry can be well explained by models that consider the leverage effect. The GJR-

GARCH model proposed by Glosten et al. (1993) has a structure such that the

volatility responds differently to positive shocks and negative shocks, and hence

the leverage effect is incorporated. Another way to introduce skewness into mod-

elling volatility is to assume that the innovation term follows skewed distributions,

such as normal inverse Gaussian distribution; see, for example, Forsberg and Boller-

slev (2002) and Stentoft (2006), inverse Gaussian distribution Christoffersen et al.

(2006), shifted Gamma distribution Tong et al. (2004), generalised error distribution

Duan (1999), z-distribution Lanne (2003) and Lanne and Pentti (2007), and α-stable

distribution Menn and Rachev (2005). Apart from these univariate distributions,

mixture distributions have been becoming increasingly popular in practice. For in-
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stance, Badescu et al. (2008) propose an error term that follows a mixture normal

distribution. Motivated by the paradigm of making assumptions on the distribution

of the error term, in this study, I attempt to construct a series of score-driven models

with different error terms.

3.1.4 Contributions

Quite a few studies that investigate volatility modelling and forecasting using fi-

nancial returns are within the framework of GARCH models. This study is closely

connected to this strand of the literature. While variations of GARCH models are

being proposed constantly, this chapter proposes to characterise and predict realised

volatility within the framework of score-driven models or the GAS models. GAS

models are empirically found to have more reasonable responses to abnormal shocks

in observations, and they are expected to be more suitable frameworks for modelling

financial returns that are distributed in a fat-tailed fashion.

This chapter contributes to the existing literature on volatility forecasting by con-

structing a series of GARCH and GAS models with differently distributed innovation

terms, and by implementing comprehensive comparisons between the performance

of GARCH and GAS models in volatility forecasting.

The most prominent finding of this study is that GARCH models tend to have

better performance in volatility forecasting than GAS models in most cases. This

is indicated by both higher descriptive R2 from regressing realised volatility onto

predictions and lower forecasting errors. It is also documented that the TLS-GAS

models have the overall best performance in forecasting realised volatility at the

daily horizon. Taking a general comparison between GARCH and GAS, it can be

concluded that GARCH outperforms GAS at daily and weekly horizons and that

the outperformance becomes weaker at the monthly horizon.
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Using a sub-sample that covers the 2007-2008 financial crisis, it can be observed that,

while the GARCH models still have higher descriptive R2 metrics in most cases and

across all forecasting horizons, the GAS models tend to have lower forecasting errors

in most cases (5 out of 8) at the daily horizon. At weekly and monthly horizons,

the previously reported higher accuracy of GARCH models seems to be weakened.

It can be concluded that when the market is experiencing significant uncertain-

ties, GAS models with reasonably selected innovation terms might work better in

financial returns modelling, as GAS models are theoretically expected to have lower

forecasting errors due to their less fierce reaction to large changes in observations.

This is a very useful property, especially in modelling and forecasting volatility of

financial returns during market turmoils, as it is likely that the large value is ob-

served due to the heavy-tailed nature of the financial returns data set instead of

actual increases in volatility.

Following Becker et al. (2007) and Becker and Clements (2008), the last target of this

study is to extensively investigate whether observation-driven models, represented

by GARCH and GAS models, provide more information about volatility than option

prices. To this point, I document that implied volatility consistently outperforms

model-based volatility predictions in terms of explaining realised volatility. How-

ever, regarding prediction accuracy, both IV and MFIV are found to have inferior

performance than GARCH/GAS-based volatility forecasts.

The rest parts of this chapter are organised as follows: Section 3.2 introduces and de-

rives GARCH models in which the innovation terms are assumed to follow Gaussian

distributions and a variety of non-Gaussian distributions. The corresponding GAS

models are derived and illustrated. In this section, I also introduce the Implied

Volatility (IV) and the Model-Free Implied Volatility (MFIV) and the approach

for obtaining them. Section 3.3 introduces all data sets used in this chapter. In

Section 3.5, I interpret and analyse predicted volatility from both GARCH and

63



3.2. MODEL-BASED VOLATILITY

GAS models. Then a series of statistical tests are conducted to identify superior-

ity and check whether shifting from GARCH to GAS improves forecast accuracy.

The comparisons between GARCH and GAS, as well as the comparisons between

volatility from observation-driven models and model-free implied volatility, are all

implemented over different horizons from one day up to one month. I take a further

step into inspecting forecasting performance by testing on sub-sample periods of

market turmoil. Section 3.6 concludes.

3.2 Model-based volatility

In this section, I first introduce the framework of the widely used GARCH model.

This is followed by an illustration of the mechanism of the GAS model. Based on

various assumptions on the distribution of innovation terms, I derive corresponding

GARCH and GAS models. More specifically, the error terms are assumed to follow

a normal distribution, Shifted Gamma Distribution (SG), Shifted Negative Gamma

Distribution (SNG), Shifted Inverse Gaussian Distribution (SIG), Shifted Negative

Inverse Gaussian Distribution (SNIG), Shifted Weibull Distribution (SW), Student’s

t Location and Scale Distribution (TLS), and Logistic Distribution (LOG). I also

show that, under some conditions, the GAS model can be converted into the GARCH

model.

3.2.1 GARCH Models

As the most representative time-varying parameter model, the GARCH model and

its variants are frequently applied in volatility modelling. Prior to GARCH, the

ARCH model was first proposed by Engle (1982) for the purpose of predicting con-

ditional variances. The conditional variance in an ARCH(p) model depends on p
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order-lagged squared errors. The model can be written down as

yt = µt + ξt (3.1)

ht = ω +

p∑
i=1

αiξ
2
t−i. (3.2)

where yt is the time series of variable of interest, µt is a mean value process, ξ is

called the innovation term or the error term, ht represents the conditional variance

of ξ (hence y) that changes over time, ω stands for some constant term, and αi are

corresponding coefficients of squared lagged terms of ξ, denoted by ξt−i.

The ARCH models are capable of capturing some features of volatility, such as

volatility clustering (Bera and Higgins, 1993). However, it still has an obvious

disadvantage. As widely known, volatility exhibits strong dependency even after

long lags. As documented by Abdalla (2012), it can be challenging to estimate a

large number of ARCH parameters due to a large number of lagged terms. One

significant advantage of the GARCH model is that it avoids the long-lag structure

of ARCH models. The GARCH model can be described by the equation below

yt = µt + ξt (3.3)

ht = ω +

p∑
i=1

αiξ
2
t−i +

q∑
j=1

βjht−j. (3.4)

where p and q are number of lags applied with respect to ξt and ht, and βj are

coefficients of lagged variance terms ht−j. The rest of the variables are defined

identically as in Equation (3.3) above.

In the application of option pricing, a critical property of the GARCH model is that

it is non-Markovian (Duan, 1995). More specifically, the GARCH volatility (hence

the GARCH option prices) depends on the information set at present and in the

past. This forms the foundation of dynamically making one step ahead volatility
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forecast. The GARCH model, when first proposed, was still inadequate to capture

some commonly seen features in financial returns time series, such as the asymmet-

ric responses to positive and negative shocks from these returns. Plenty of GARCH

extensions have been developed to account for such an effect. Another problematic

part of the GARCH model is that the innovation term ξ is not necessarily normally

distributed. In fact, returns series tend to be leptokurtic. According to Bollerslev

(1987) and Baillie and Bollerslev (1989), the normality assumption fails to accom-

modate such behaviour of financial asset returns. Tong et al. (2004), within the

GARCH framework, propose to assume that the innovation terms ξ follow a shifted

Gamma distribution, as it has the ability to capture the skewness of stock returns.

3.2.2 GAS Models

As proposed by Creal et al. (2012), the Generalised Autoregressive Score (GAS)

models are often referred to as Dynamic Conditional Score (DCS) models. They offer

a framework for accommodating the time-varying property of parametric models.

The idea is very straightforward. Denote the conditional density of observation yt by

p(yt|ft), where ft is some time-varying parameter that determines the distribution

of yt. ft is assumed to update following:

ft+1 = ω + αSt∇t + βft (3.5)

∇t =

[
∂ ln p (yt | ft)

∂ft

]
(3.6)

where ∇t is the score of ln p (yt | ft). St is a function used for scaling the score of the

log observation density. The model is innovative in that it uses the scaled score to

drive the time-varying parameter ft. In other words, it connects the dynamics of ft

to all the parameters of the conditional density p(yt|ft). It is easy to see that in the

GARCH models, the shape of shock density does not matter. It is worth mentioning
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that based on the model above, additional lag structures and other dynamics can

be easily added to the transition equation for ft+1.

The scaling matrix St is usually denoted as:

St = I−d
t (3.7)

where It is the information matrix of the observation’s log density, and d ∈ {0, 1
2
, 1}

is referred to as the scaling coefficient. If d = 1, the scaling matrix is equal to the

variance of the score of ln p (yt | ft) (Creal et al., 2012)1.

St = I−1
t = −Et

[
∇t∇T

t

]−1
(3.8)

In practice, ft is often re-parameterised in order to guarantee positiveness during the

parameter estimation process. In this chapter, I apply the logarithmic link function

onto ft, such that f ′
t = ln ft. The GAS updating process of the re-parameterised

time-varying parameters f ′
t is then

f ′
t+1 = ω + αS ′

t∇′
t + βf ′

t (3.9)

Denote the function that maps ft to f
′
t by g(·), its Jacobian is

Jt =
∂g (ft)

∂(ft)
=

1

ft
(3.10)

Following Creal et al. (2012), if the scaling coefficient d = 1 and the logarithmic

link function is applied for re-parameterisation of ft, it can be shown that the linked

1In my study, It is calculated by taking the second-order derivative of ln p (yt | ft) with respect
to ft, as they are equivalent given that the log-density is twice differentiable.
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scaled score S ′
t∇′

t in (3.9) is equal to:

S ′
t∇′

t = JtI−1
t ∇t (3.11)

In this chapter, (3.11) is utilised across all GAS models to calculate the linked scaled

scores, which are components of the updating equation (3.9).

In terms of option pricing using GAS models, the working paper by Lin and Yu

(2017) made a very beneficial attempt. It is also the only study I could find in

the literature of this field so far. In their paper, a GAS model with generalised

hyperbolic innovations is proposed. Such innovation terms are capable of dealing

with features of financial returns like conditional skewness and fat tails. As a result,

the so-called ”volatility smile” is implied by the model. It is worth mentioning

that an additional leverage effect is incorporated into this model as well. With the

GAS representation of returns dynamics under P, the model can be estimated by

Maximum Likelihood Estimation (MLE). This is followed by the change of measure,

usually implemented by methods like the Esscher Transform is applied.

Before I proceed to the construction of GARCH and GAS models, I introduce the

process used to describe stock price evolution and the corresponding mean equation

µt I adopt in my study. Recall that the process of the variable of interest can be

expressed by (3.3), where µt is some mean process and (3.3) is called the mean

equation of the GARCH model. µt can have different specifications, such as ARMA

structure. In this study, I stick to another common choice of µt used in Duan (1995),

the GARCH-in-Mean (GIM) model.

To start, suppose that the evolution of asset price can be described by the stochastic

differential equation below:

St = St−1 exp

(
r + λ

√
ht −

1

2
ht + ξt

)
(3.12)
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where r is the risk-free rate, λ is a constant coefficient, and usually is a proxy of the

unit price of risk.

Taking logs on both sides:

ln

(
St

St−1

)
= r + λ

√
ht −

1

2
ht + ξt (3.13)

The left-hand side is the logarithmic returns of an asset. Denote it by yt; the mean

equation is finally obtained as:

yt = r + λ
√
ht −

1

2
ht + ξt (3.14)

Equation (3.14) hereafter is applied as the mean equation for both GARCH and

GAS models to be derived in my study, while their updating equations are pretty

differentiated.

3.2.3 Normal innovation

I depart from the simplest case, where the innovation term ξt is normally distributed

over time. Note that although ξt ∼ N (0, ht) by assumption, according to (3.14), the

mean value of stock returns yt is still time-varying. The conditional density function

of stock returns can be written down as follows:

fξt(y) =
1√
2πht

e

(
−y2

2ht

)
(3.15)

As a consequence, the stock returns have a mean of r+λ
√
ht− 1

2
ht+ξt and variance

of ht. It is straightforward to calculate the log density of ξt as:

ln fξt(y) = −1

2
ln 2πht −

y2

2ht
(3.16)
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The log density is needed in parameter estimation via maximum likelihood estima-

tion (MLE). Conveniently, ht is already part of the updating equation. This means

that when ht is updated each time, the value of log density is updated accordingly.

As a result, optimisations for parameter estimation are straightforward. Another

application of log density lies in the construction of the GAS model. Recall that

in the GAS model, instead of updating variance ht as in a GARCH system, some

factor is specified to be time-varying. The variance in GAS models can be linked

to the factors by the property of the assumed distribution of error terms. When ξt

is normally distributed, the factor that drives the updating of the GAS system is

naturally ht. One beneficial part of the GAS model is its capability to apply link

functions to its time-varying factors. It is common sense that volatility (or vari-

ance) cannot be negative. However, within the parameter estimation process, the

positiveness of ht may not be guaranteed. Link functions under such circumstances

can be used to fix this. In my study, logarithmic link functions are applied for all

GAS models to ensure the positiveness of variance in each iteration of the optimi-

sation process. More specifically, I assume that f ′
t = g(ft) = lnht. Clearly, g(·) is a

mapping from ht to f
′
t , and the latter is the factor finally adopted in the updating

equation. Calculating the partial difference of g(·) with respect to ht, the Jacobian

of link function g(·) is:

J (ht) =
∂g (ht)

∂ht

=
∂ lnht
∂ht

=
1

ht

(3.17)

From log-density function (3.16), the score of the normal distribution can be calcu-

lated as:

∇t =
∂ ln fξt(y)

∂ht

=
y2

2h2t
− 1

2ht

(3.18)
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The information matrix can be computed as:

I−1
t = −Et

[
∇t∇T

t

]−1

= 2h2t

(3.19)

With (3.17), (3.18) and (3.19), by equation (3.11), the linked scaled score function

can be derived as:

S ′
t∇′

t = JtI
−1
t ∇t (3.20)

Until now, the components for constructing a GAS system have been obtained. The

GAS (1,1) model with Gaussian innovation (GAS) in my study can be written down

as follows:

yt = r + λ
√
ht −

1

2
ht + ξt, ξt ∼ N(0, ht) (3.21)

f ′
t = lnht (3.22)

f ′
t+1 = ω + AS ′

t∇′
t +Bf ′

t (3.23)

It is easy to see that the corresponding GARCH (1,1) model with Gaussian innova-

tion term (GARCH) can be described by:

yt = r + λ
√
ht −

1

2
ht + ξt, ξt ∼ N(0, ht) (3.24)

ht+1 = ω + Aξ2t +Bht (3.25)

It is noteworthy that, in terms of the GAS model above, if the link function is

not applied, it is straightforward that ft = ht and hence Jt = 1. The scaled score

function is reduced to:

St = I−1
t ∇t

=

(
y2

2h2t
− 1

2ht

)
2h2t

= ξ2t − ht

(3.26)
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While the mean equation stays unchanged, equation (3.25) reduces to:

ht+1 = ω + A
(
y2 − ht

)
+Bht

= ω + Aξ2t + (B − 1)ht

(3.27)

Obviously, when the innovation term is normally distributed, the GARCH model is

nested in the GAS model, and the latter converts to the former if no link function

is applied.

3.2.4 Shifted Gamma innovation

The skewed behaviour of stock returns can be captured by the GARCH model

with shifted Gamma innovation (Tong et al., 2004). It is natural to consider how

the shifted Gamma innovation works in the framework of the GAS model. It is

noteworthy that for non-Gaussian distributions like the Gamma distribution, its

support lies within yt ∈ (0,∞). This makes it impossible for us to model stock

returns using Gamma innovation directly, as returns can be negative. Following

Tong et al. (2004) and Zhu and Ling (2015), a shifted Gamma innovation is adopted

in modelling instead. The subsequent application of the GAS model with shifted

Gamma innovation (SG-GAS) and the corresponding GARCH model (SG-GARCH)

follows a similar procedure.

Suppose that Yt ∼ G(a, b0), where a and b0 stand for the shape parameter and scale

parameter of the Gamma distribution. The probability density function of Yt is:

fYt(y) =
1

Γ(a)ba0
ya−1e

− y
b0 (3.28)

From the property of the Gamma distribution, the mean and variance of Yt are given

by:

µY = ab0 (3.29)
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and

hY = ab20 (3.30)

Note that in the SG-GAS model, the scale parameter b0 is set to be a time-varying

factor, and thus it is the driver of the updating equation. For simplicity, I have

omitted subscripts t. Now let

ξt =
√
ht

(
Yt − ab0√

ab20

)
(3.31)

Clearly, the shifted innovation process ξt has zero mean and variance ht. Substitute

ξt back into (3.14):

yt = r + λ
√
ht −

1

2
ht + ξt

= r + λ
√
ht −

1

2
ht −

√
aht +

1

b0

√
ht
a
Yt

(3.32)

By the scaling property of Gamma distribution, 1
b0

√
ht

a
Yt still follows a Gamma

distribution. The shape parameter a stays unchanged while the scale parameter

changes to
√

ht

a
. Thus define 1

b

√
ht

a
Yt = ξ∗t ∼ G(a, bt).

From (3.28), the log-density of the shifted innovation term ξ∗t is given by:

ln fξ∗t (y) = (a− 1) ln y − y

bt
− ln Γ(a)− a ln bt (3.33)

Hence, by setting the scale parameter b as the driver of updating the equation, the

score function can be calculated as below:

∇t =
∂ ln fξ∗t (y)

∂bt

=
y

b2t
− a

bt

(3.34)
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The logarithmic link function is once more applied so that the driver factor ft is:

f ′
t = ln bt (3.35)

Hence the Jacobian can be computed as:

Jt (bt) =
∂g (bt)

∂bt

=
∂ ln bt
∂bt

=
1

bt

(3.36)

The scaling matrix is computed as follows:

I−1
t = −Et[∇t∇T

t ]
−1

= b2t/a

(3.37)

With the linked scaled score S ′
t∇′

t = JtI
−1
t ∇t, the SG-GAS model is constructed as:

yt = r + λ
√
ht −

1

2
ht −

√
aht + ξ∗t , ξ∗t ∼ G(a, bt) (3.38)

f ′
t = ln bt (3.39)

f ′
t+1 = ω + AS ′

t∇′
t +Bf ′

t (3.40)

The corresponding SG-GARCH model can be described by:

yt = r + λ
√
ht −

1

2
ht −

√
aht + ξ∗t , ξ∗t ∼ G(a, bt) (3.41)

ϵt = −
√
aht + ξ∗t (3.42)

ht+1 = ω + Aϵ2t +Bht (3.43)

Note that while the mean value of ξ∗t is ab > 0, ϵt has zero means, and thus it is

reasonable to be used in building the GARCH model.
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The GAS model with shifted negative Gamma innovation (SNG-GAS) is constructed

following an identical procedure. The only difference is that ξ∗t in SNG-GAS is

assumed to follow a negative Gamma distribution. In other words, −ξ∗t ∼ G(a, bt).

The specification of the SNG-GAS model is the same as SG-GAS. The construction

of SNG-GARCH and SG-GARCH follows identical procedures.

3.2.5 Shifted Inverse Gaussian innovation

Christoffersen et al. (2006) propose a GARCH model with inverse Gaussian inno-

vation to characterise index returns and document the outperformance of the IG-

GARCH model in pricing out-of-the-money put options. Inspired by this study, I

construct the GAS model with shifted inverse Gaussian innovation (SIG-GAS) and

shifted negative inverse Gaussian innovation (SNIG-GAS). Like the Gamma distri-

bution, the support of inverse Gaussian distribution is yt ∈ (0,∞). This makes it

impossible for us to model stock returns using Gamma innovation directly, as returns

can be negative. Following an identical method as in the SG-GAS model above, let

Yt ∼ IG(µ0, k0), where IG(µ0, k0) stands for inverse Gaussian distribution with a

mean of µ0 and shape parameter k0. The probability density function of Yt is:

fYt(y) =

√
k0

2πy3
exp

(
−k0(y − µ0)

2

2µ2y

)
(3.44)

By the property of inverse Gaussian distribution, the variance of Yt is:

hY =
µ3
0

k0
(3.45)

Different from the SG-GAS model, where the scale parameter is time-varying, in
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the SIG-GAS model, the shape parameter k is set to be the driving factor. Let

ξt =
√
ht

Yt − µ0√
µ3
0

k0

 (3.46)

Substitute ξt back into (3.14):

yt = r + λ
√
ht −

1

2
ht + ξt

= r + λ
√
ht −

1

2
ht −

√
htk0
µ0

+

√
htk0
µ3
0

Yt

(3.47)

Following the scaling property of inverse Gaussian distribution,
√

htk0
µ3
0
Yt still fol-

lows an inverse Gaussian distribution with scaled parameters. Denote the updated

innovation term by ξ∗t ∼ IG(µ, kt).

The log-density of ξ∗t is given by:

ln fξ∗t (y) =
ln kt
2

− ln(2π (y)3)

2
− kt (y − µ)2

2µ2y
(3.48)

Calculating its derivative with respect to kt, the score function is given below:

∇t =
∂ ln fξ∗t (y)

∂kt

=
1

2kt
− (y − µ)2

2µ2y

(3.49)

The scaling matrix is obtained by taking the second-order derivative

I−1
t = −Et[∇t∇T

t ]
−1

= 2k2t ;

(3.50)

Similar to the SG-GAS example above, it is easy to see the Jacobian of the SIG-GAS
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model is equal to 1
kt
. The SIG-GAS model is constructed as follows:

yt = r + λ
√
ht −

1

2
ht −

√
htkt
µ

+ ξ∗t , ξ∗t ∼ IG(µ, kt) (3.51)

f ′
t = ln kt (3.52)

f ′
t+1 = ω + AS ′

t∇′
t +Bf ′

t (3.53)

The corresponding SIG-GARCH model can be constructed as below:

yt = r + λ
√
ht −

1

2
ht −

√
htkt
µ

+ ξ∗t , ξ∗t ∼ IG(µ, kt) (3.54)

ϵt = −

√
htkt
µ

+ ξ∗t (3.55)

ht+1 = ω + Aϵ2t +Bht (3.56)

To develop the GAS model with shifted negative inverse Gaussian innovation (SNIG-

GAS) and corresponding SNIG-GARCH, simply assume that −ξ∗t ∼ IG(µ, kt).

3.2.6 Shifted Weibull innovation

The Weibull distribution and its variations have been applied in finance for years.

For example, Mittnik and Rachev (1993) document that Weibull distribution domi-

nates other stable distributions in modelling asset returns. Chen and Gerlach (2013)

find that a two-sided Weibull distribution performs more favourably in predicting

conditional Value-at-Risk, and such superiority stays unchanged during the finan-

cial crisis. Silahli et al. (2019) utilises a two-sided Weibull distribution to estimate

the Value-at-Risk of the cryptocurrency portfolio and find that the proposed model

significantly outperforms the other competitors. Wang et al. (2018) incorporate

two-sided Weibull distribution into the framework of realised GARCH models and
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document the outperformance of the proposed model in volatility modelling and tail

risk forecasting. Rachev and SenGupta (1993) adopt Laplace-Weibull mixtures in

modelling price changes in real estate in France. In the framework of GAS mod-

els, Creal et al. (2012) includes Weibull distribution into an extensive Monte Carlo

study and document that the GAS models, as member of observation-driven models,

outperform the others in terms of prediction accuracy.

Another reason for which I consider Weibull distribution in this study is that one of

the main purposes is to find out superior models for financial returns, which tend to

be fat-tailed. To this point, the Weibull distribution is potentially a good candidate,

as one of its appealing properties is that when the shape parameter k is between 0

and 1, it is a desirable heavy-tailed distribution for financial modelling.

Let Yt ∼ W (θ0, k), where θ0, and k are scale and shape parameters respectively.

The probability density function of Yt is:

fYt(y) =
k

θ0

(
y

θ0

)k−1

e−(y/θ0)k (3.57)

By the property of Weibull distribution, the mean and variance of Yt are:

µY = θ0Γ(1 + 1/k) (3.58)

and

hY = θ20

[
Γ

(
1 +

2

k

)
−
(
Γ

(
1 +

1

k

))2
]

(3.59)

Setting the scale parameter as the driving factor and following an identical process

as above, the mean equation of stock returns yt is given by:

yt = r + λ
√
ht −

1

2
ht + ξt

= r + λ
√
ht −

1

2
ht −

√
htΓ(1 + 1/k)√

u
+

√
ht

θ0
√
u
Yt

(3.60)
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where u = Γ
(
1 + 2

k

)
−
(
Γ
(
1 + 1

k

))2
. Let ξ∗t =

√
ht

θ
√
u
Yt ∼ W (θt, k) denote the shifted

Weibull innovation, its log-density is:

ln fξ∗t (y) = ln k + (k − 1) ln y − k ln θt −
(
y

θt

)k

(3.61)

The score function of ξ∗t is computed as:

∇t =
∂ ln fξ∗t (y)

∂θt

=
k

θt

((
y

θt

)k

− 1

) (3.62)

The information matrix is computed as:

I−1
t = −Et[∇t∇T

t ]
−1

= (
θt
k
)2;

(3.63)

Analogous to the SG and SIG cases, the Jacobian of the SW-GAS model is equal

to 1
θt
. By (3.11), the linked scaled score is obtained, and the SW-GAS model is

constructed as follows:

yt = r + λ
√
ht −

1

2
ht −

√
htΓ(1 + 1/k)√

u
+ ξ∗t , ξ∗t ∼ W (θt, k) (3.64)

u = Γ

(
1 +

2

k

)
−
(
Γ

(
1 +

1

k

))2

(3.65)

f ′
t = ln θt (3.66)

f ′
t+1 = ω + AS ′

t∇′
t +Bf ′

t (3.67)

The corresponding SW-GARCH model can be constructed as below:

yt = r + λ
√
ht −

1

2
ht −

√
htΓ(1 + 1/k)√

u
+ ξ∗t , ξ∗t ∼ W (θt, k) (3.68)
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ϵt = −
√
htΓ(1 + 1/k)√

u
+ ξ∗t (3.69)

ht+1 = ω + Aϵ2t +Bht (3.70)

By assuming that −ξ∗t ∼ W (θt, k), SNW-GAS and SNW-GARCH models are con-

structed. In this study, I only adopt the GAS/GARCH model with SNW innovation,

as it appears that models with SW innovation do not fit our data well and charac-

terise volatility reasonably.

3.2.7 T-location and Scale innovation

Bollerslev (1987) adopts Student’s t distribution in the construction of the GARCH

model to account for excess kurtosis of financial returns. Since then, as one can-

didate of heavy-tailed distributions, Student’s t distribution has been widely used

in financial modelling. In my study, I apply t location-scale distribution to con-

struct TLS-GAS and TLS-GARCH models. It is convenient that the support of

t location-scale distribution is yt ∈ (−∞,+∞). Hence assumption can be made

directly on ξt, and no more shifting operations are needed. The density function of

the t location-scale distribution is:

fYt(y) =
1

√
sνB

(
1
2
, ν
2

) (1 + (yt − µ)2

sν

)−ν+1
2

(3.71)

where s and ν are the scale parameter and degree of freedom parameter, respectively,

and B(·) is the Beta function. Let ξt ∼ T (µ, st, ν), fixing µ = 0, the variance of ξt is

equal to st
ν

ν−2
. Let the scale parameter st be the time-varying factor, the log-density

of ξt is:

ln fξt(y) = −1

2
ln νst − lnB

(
1

2
,
ν

2

)
−
(
ν + 1

2

)
ln

(
1 +

(y − µ)2

stν

)
(3.72)
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The score function and the information matrix for scaling of ξt are:

∇t =
∂ ln fξt(y)

∂st

= −ν st − (y − µ)2

2st
(
νst + (y − µ)2

) (3.73)

and

I−1
t = −Et

[
∇t∇T

t

]−1

=
(2s2t (ν + 3))

ν

(3.74)

Same as above, the Jacobian and the linked scaled scores of TLS-GAS are 1
st

and

S ′
t∇′

t = JI−1
t ∇t. With these components, the TLS-GAS model and TLS-GARCH

models can be written down as follows:

yt = r + λ
√
ht −

1

2
ht + ξt, ξt ∼ T (µ, st, ν) (3.75)

f ′
t = ln st (3.76)

f ′
t+1 = ω + AS ′

t∇′
t +Bf ′

t (3.77)

and

yt = r + λ
√
ht −

1

2
ht + ξt, ξt ∼ T (µ, st, ν) (3.78)

ϵt = ξt (3.79)

ht+1 = ω + Aϵ2t +Bht (3.80)

3.2.8 Logistic innovation

Another member of heavy-tailed distributions is the logistic distribution. Assuming

logistic innovations, I create LOG-GAS and LOG-GARCH models. The probability
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density function of logistic distribution is:

fYt(y) =
e−(y−µ)/s

s (1 + e−(y−µ)/s)
2 (3.81)

where s and µ are scale parameter location parameters, respectively. Let ξt ∼

L(µ, st), assume that µ = 0, the variance of ξt is
s2tπ

2

3
. Setting the scaling coefficient

d = 0, the log density of ξt and its linked score function are given by:

ln fξt(y) = − y

st
− ln st − 2 ln(1 + e

− y
st ) (3.82)

and

S ′
t∇′

t =
y

st
− 1− 2ye

− y
st

st(1 + e
− y

st )
(3.83)

The LOG-GAS and corresponding LOG-GARCH models are constructed as follows:

yt = r + λ
√
ht −

1

2
ht + ξt, ξt ∼ L(µ, st) (3.84)

f ′
t = ln st (3.85)

f ′
t+1 = ω + AS ′

t∇′
t +Bf ′

t (3.86)

and

yt = r + λ
√
ht −

1

2
ht + ξt, ξt ∼ L(µ, st) (3.87)

ϵt = ξt (3.88)

ht+1 = ω + Aϵ2t +Bht (3.89)

An overview of these GARCH/GAS models illustrated above can be found in Table

3.1, where the mean equations and link functions that distinguish models are listed.
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3.3. IMPLIED VOLATILITY

3.3 Implied volatility

As one of the main aims of this study, the performance of observation-driven GAS

and GARCH models in volatility forecasting is compared to that implied by op-

tions prices. I attempt to explore whether parametric models in this study provide

additional information compared to options. In this section, I introduce two method-

ologies applied in extracting expected volatility from options.

The first approach is quite straightforward. The Black-Scholes model can be used

inversely to estimate volatility, where ATM option prices are utilised as the inputs.

This is also the starting point of research on option implied volatility, as well as

other implied information.

On the basis of studies by Breeden and Litzenberger (1978); Derman (1994); Dupire

(1994); Neuberger (1994); Carr and Madan; Demeterfi et al. (1999a), Britten-Jones

and Neuberger (2000) propose to compute the model-free implied volatility. This

volatility is independent of any option pricing model and hence is not constrained

by unrealistic assumptions on underlying assets. This is appealing, as popular ana-

lytical option pricing models, such as the Black-Scholes model, are founded upon a

series of problematic assumptions, such as that of constant volatility.

Demeterfi et al. (1999a), Britten-Jones and Neuberger (2000) claim that, in a risk-

neutral world, underlying assets’ volatility is integral of call option prices with re-

spect to strike prices. Jiang and Tian (2005) later made this approach easier to

apply in a discrete strike setting and compare the predictive capability of the BS

model implied volatility to model-free implied volatility. Model-free implied volatil-

ity is a direct inspection of options market efficiency. It is inclusive of all types of

options. Intuitively, it should be able to reflect more information that the Black-

Scholes model implied volatility. Following Demeterfi et al. (1999a), Britten-Jones

and Neuberger (2000), assuming that the no-arbitrage principle is valid and both
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3.3. IMPLIED VOLATILITY

dividend rate and risk-free interest rate are equal to zero, in a risk-neutral world,

estimate MFIV using the formula

EQ [V0,T ] = 2erT

[∫ F0,T

0

P (K,T )

K2
dK +

∫ ∞

F0,T

C(K,T )

K2
dK

]
(3.90)

where EQ [V0,T ] is the expected variance over period [0, T ] in the risk-neutral world,

F0,T is underlying’s forward price at time zero, C(K,T ) and P (K,T ) are prices of

call options and put options written on same underlying with an identical time to

maturity. Finally, K stands for strike prices. All inputs on RHS of Equation (3.90)

can be obtained and substituted instantly, except for F0,T . Inspired by CBOE’s

method, for each trading day, define K0,T as the strike price of the ‘closest-to-the-

money’ call option or put option. In other words, K0,T is the strike price of the

option whose moneyness is closest to one. To realise this with minimum error, I

pick the option with a delta closest to 0.5 in absolute value. Since the market delta

is given in our data set, this can be done directly. After selecting K0,T for each day,

I compute F0,T as the forward price of K0,T in risk-neutral world.

F0,T = erTK0,T (3.91)

In most cases, F0,T helps separate call option prices and put option prices exactly.

Intuitively, the two integral parts in Equation (3.90) will be calculated using put

option prices that are lower than F0,T and call option prices that are larger than

F0,T on a daily basis. In this way, only out-of-the-money options are used in the

computations of implied volatility via Equation (3.90). The reason is that OTM

options are typically more liquid in the market and thus tend to be more informative.

In practice, Equation (3.90) will be discretised to be computable. One problem

during the implementation is then the limited number of option prices and strike

prices. Even without applying filters to original options data, only a few observations

of option prices and strike prices are available for each day. In order to obtain
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sufficient pairs of option prices and strike prices to approximate integrals in Equation

(3.90), it is necessary to fit implied volatility curves (the volatility smile) on each

day across a linear space of strikes. The importance of doing so is presented by

Jiang and Tian (2007).

The method for fitting implied volatility smile was first proposed by Shimko (1993).

Option prices are first translated into implied volatility using the Black-Scholes

Model. A continuous function that bridges implied volatility and the strike price is

then estimated. Finally, such functions are used to extend ranges of strike prices

and corresponding option prices, which are not observable. Malz (1997a) and Malz

(1997b) used option delta, instead of strike prices, as the X-axis variable when fitting

the implied volatility curve. In terms of curve fitting methods, both Malz (1997b)

and Shimko (1993) applied low-order polynomials. As an alternative, Campa et al.

(1998) introduced the spline approach. Based on these studies, Bliss and Pani-

girtzoglou (2002) developed the natural spline method for fitting implied volatility

curves. Apart from spline methods, Taylor et al. (2010) propose a constrained

weighted optimisation method for calibration of volatility curve parameters.

In this study, I select strike prices as the independent variable again implied volatil-

ity. Fitted curves reflect relationships between implied volatility and strike prices.

Following Bliss and Panigirtzoglou (2002), I adopt the natural spline method for im-

plied volatility curve fitting. According to Jiang and Tian (2005), although MFIV

is advantageous in that it is not constrained by any models and unrealistic assump-

tions, two types of errors-the truncation error and discretisation error-may still occur

during computation. Jiang and Tian (2005) point out that, when doing integrals

with respect to strike prices, if Kmin < F0 − 2σF0 and Kmax > F0 + 2σF0, the trun-

cation error is negligible. It is also noteworthy that discontinuity also brings errors.

Such discretisation error can be narrowed down by applying smaller and smaller

dK in Equation (3.90). When dK < 0.35σF0, this error is negligible. Following

Jiang and Tian (2007) and out of discretion concern, I create 500 equally spaced
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logarithmic strike prices above lnF0,T and, correspondingly, 500 equally spaced log-

arithmic strike prices below lnF0,T . Hence 1001 strike prices and associated option

prices are estimated for each time to maturity on each trading day. By doing so,

both conditions mentioned above are strictly met. Hence our estimations of MFIV

should be accurate. Figure 3.1 depicts the plots of ATM option implied volatility

(IV) and corresponding model-free implied volatility (MFIV).

By implementing the procedures above, I obtain implied volatility of the underlying

on each day and across a variety of maturities. The next step is to compute 30-day

implied volatility via interpolation. For instance, on a specific trading day, there

are multiple times to maturity for each option. To compute the implied volatility of

that day, I estimate a far-term implied variance, whose time to maturity is longer

than 30 days, and a near-term implied variance, whose time to maturity is shorter

than 30 days. These two implied variances reflect the market’s expectation of future

variance of underlying over the coming near term and far term. Our purpose is to

estimate the 30-day implied volatility, which can be obtained by interpolation using

both near-term and far-term implied variances.

MFIV30 =

√(
Tnσ2

n

Tf − 30

Tf − Tn
+ Tfσ2

f

30− Tn
Tf − Tn

)
365

30
(3.92)

where Tn and Tf are near-term and far-term time to maturity, while σ2
n and σ2

f are

corresponding implied variances respectively. In this study,MFIV30 is the predictor

of realised volatility I use in comparison to parametric model-based predictors.

87



3.4. METHODOLOGY

Figure 3.1: IV vs MFIV
Notes: This figure plots a time series of implied volatility, represented by IV (blue line) and MFIV

(red line) over a full sample between 01/2001 and 12/2017. While the former is obtained using

ATM options, the latter is calculated in a model-free fashion. In both cases, implied volatility is

annualised.

3.4 Methodology

3.4.1 Data

In the construction of GAS and GARCH models, I mainly employ daily data of the

Dow Jones Industrial Average (DJIA) index between 04/01/1997 and 21/04/2022,

obtained from Bloomberg. In both parametric volatility modelling with GAS and

GARCH models and implied volatility estimation, the risk-free rate is proxied by

3-month T-bill rates, which are downloaded from the website of the Federal Reserve

Banks of St Louis. It is less cost-effective to compute implied volatility, as a large

amount of option data is required. Due to limited access to options data, the esti-

mated implied volatility ranges between 04/01/1996 and 31/12/2017. This means

that for the purpose of GAS and GARCH modelling and evaluating, a longer sample

is adopted, while for calculating implied volatility and making comparisons between

parametric models and implied volatility, a shorter sample is applied.
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The application of the DJIA index in GAS and GARCHmodelling is straightforward.

I simply take the logarithmic returns as the training set. Together with risk-free rate

time series, a five-year window (1260 observations) is used to dynamically model

volatility (or variance), and thus one-step ahead prediction is made step by step

after each model fitting.2 I consider predicting horizons from one day up to one

month. For both GAS and GARCH models, one-step-ahead analytical predictions

are available. However, when it comes to multi-step ahead predictions, the ways

I adopt for GAS and GARCH vary. For GARCH models, it can be shown that

multi-step forecasting can still be analytical. The equation below is used to realise

it:

hn = ω + (A+B)hn−1, n > 1 (3.93)

Where A and B are coefficients of the disturbance term and lagged variance term in

the GARCH variance updating equation. It is clear that this analytical forecasting

is a point estimation of future variance. On the contrary, for GAS models, as in

Ardia et al. (2019), multi-step prediction is usually in the form of density forecast

via simulation approaches. For each 5-step ahead and 22-step ahead prediction to

be made with GAS models, 5000 simulated paths of driver factors are generated. As

a result, we obtain a distribution of the driver factor, which can be converted into

a distribution of volatility via the link function. The mean value of the volatility

distribution is computed as the volatility prediction at one week and one month

forecasting horizons.

The last step before computing IV and MFIV is option data processing. First, I

set several filters to drop problematic or less relevant option data. First, I naturally

discard option data with negative implied volatility since negative volatility indicates

2Note that the fitting of GARCH models is in a rolling window sense. This is different from
the recursive fitting process in chapter 2. The reason is that the fitting of the GARCH model only
inputs historical returns, and consequently, output predictions correspond to specific return series.
It is more like a function between historical returns and predictions. In chapter 2, the fitting is done
by regressing market returns onto predictors. Both historical information and future realisations
are involved. The prediction is implemented recursively with each fitted linear model.
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problematic option prices, which is not capable of providing useful information in

estimating MFIV. Second, following Britten-Jones and Neuberger (2000), I only use

out-of-the-money (OTM) options data for computing MFIV. In practice, I keep call

option data whose delta is smaller than 0.5 and put option data whose delta is

larger than -0.5. Third, since an option with zero bid price is often a companion

of abnormal volatility, I drop option data with zero bid price. Finally, in order to

calculate the 30-day model-free implied volatility, I keep option data with a maturity

longer than seven days and shorter than 30 days for interpolation.

Figure 3.2: Realised Volatility
Notes: This figure plots the time series of realised volatility ranging between 01/2001 and 04/2022.

It is computed using 5-min intra-day high-frequency data and is obtained directly from the Ox-Man

realised volatility library.

Finally, to evaluate the predictive power of each model, I compare model-predicted

volatility to realised volatility (RV) through a series of metrics. The realised volatil-

ity is computed using 5-min intra-day index data, which is obtained from the Ox-

Man realised volatility library.3. The time series of RV and parametric model pre-

dicted volatility are plotted in Figures 3.2 and 3.3. Across all eight assumptions

on the distribution of innovation terms, the red lines plot the GAS model predicted

volatility, while the blue lines plot the GARCH model predictions. Correspondingly,

3The realised volatility is computed using high-frequency intra-day data and can be down-
loaded from the website of Ox-Man Institute of Quantitative Finance. https://oxford-
man.ox.ac.uk/resources/the-realised-library/
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Figure 3.3: GARCH and GAS model-based Volatility Forecast
Notes: This figure depicts comparisons between predictions made by GARCH and GAS models

with identically distributed innovations terms. With each GARCH/GAS model, five years’ ob-

servations are utilised to fit models at each point in time, and one step ahead forecast is made

dynamically to form the time series.

summary statistics of both RV and all parametric model predicted volatility can be

found in Table 3.2. An analysis of this table will be conducted in the next section.

Table 3.2: Summary statistics of predicted volatility

Panel A: GARCH models
Avg. Max. Min. Med. 5th 25th 75th 95th

RV 0.1356 1.4742 0.0220 0.1110 0.0489 0.0778 0.1614 0.2987
Normal 0.1600 1.4485 0.0663 0.1359 0.0817 0.1056 0.1841 0.3102

SG 0.1607 1.4700 0.0687 0.1367 0.0823 0.1061 0.1853 0.3114
SNG 0.1594 1.4477 0.0672 0.1351 0.0816 0.1050 0.1838 0.3105
SIG 0.1600 1.4466 0.0633 0.1360 0.0819 0.1054 0.1843 0.3102
SNIG 0.1593 1.4678 0.0671 0.1352 0.0815 0.1051 0.1834 0.3096
SNW 0.1647 1.5479 0.0680 0.1394 0.0891 0.1100 0.1896 0.3154
TLS 0.1609 1.4419 0.0603 0.1369 0.0797 0.1055 0.1862 0.3117
LOG 0.1596 1.4179 0.0611 0.1360 0.0786 0.1045 0.1851 0.3083

Panel B: GAS models
Avg. Max. Min. Med. 5th 25th 75th 95th

RV 0.1356 1.4742 0.0220 0.1110 0.0489 0.0778 0.1614 0.2987
Normal 0.1584 1.0588 0.0650 0.1385 0.0838 0.1085 0.1808 0.2981

SG 0.1498 0.7110 0.0341 0.1387 0.0760 0.1085 0.1774 0.2524
SNG 0.1499 0.6769 0.0353 0.1408 0.0683 0.1059 0.1814 0.2619
SIG 0.1579 1.0596 0.0656 0.1382 0.0839 0.1084 0.1801 0.2966
SNIG 0.1580 1.1244 0.0657 0.1381 0.0834 0.1081 0.1804 0.2984
SNW 0.1651 1.0748 0.0565 0.1438 0.0855 0.1138 0.1926 0.3123
TLS 0.1377 1.0395 0.0423 0.1199 0.0638 0.0895 0.1632 0.2594
LOG 0.1604 1.1869 0.0556 0.1394 0.0763 0.1057 0.1873 0.3065

Notes: This table reports summary statistics of realised volatility (RV) and model-based predictions. More specifically,
for each entity, its average, maximum, minimum, and median, together with its 5th, 25th, 75th and 95th percentiles,
are displayed. The statistics of GARCH models are reported in panel A, while those of GAS models are reported in
panel B.
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3.4.2 Model evaluation

An extensive model evaluation is conducted in this study. Each series of predicted

volatility from parametric or non-parametric methods is not only compared to its

realisations but also to each of its counterparts. The most straightforward compar-

ison is made by running univariate regressions. More specifically, I run the Min-

cer–Zarnowitz regressions Mincer and Zarnowitz (1969) described by the equation

below:

RVt,t+k = α + βP̂V t,t+k + ϵt (3.94)

where RVt,t+k is the realised volatility k days from t, and P̂ V t,t+k stands for the

corresponding predicted volatility using information available until t.

Generally speaking, volatility predicted by a model is more informative if the inter-

cept α is closer to zero and the slope β, to one. As the predicted volatility is less

biased. In the extreme case of zero alpha and a unit beta, the forecast is unbiased

in a statistical sense. In terms of R-square, higher R2 (or, equivalently, a low sum of

squared residuals) would indicate the efficiency and accuracy of the forecast volatil-

ity series. The results of Mincer-Zarnowitz regressions for forecasting horizons from

1 day up to 1 month are reported in Table 3.3.

The R-squared values from univariate regressions are reasonable measures of how

well the realised volatility can be described by each model prediction. However, it

might be that, while the trends and changes in volatility can be better captured by

some model predictions, and thus result in higher R-squared values, the predicted

volatility can be significantly biased in terms of its value. In fact, it can be shown

from the nature of GAS and the model that compared to GAS, the GARCH model

tends to overestimate volatility. This is because the application of score functions in

GAS models makes the dynamics of volatility respond more mildly to large changes

in index returns yt. This is quite an appealing property in financial modelling, as
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outliers of index returns might simply originate from its heavy-tailed nature instead

of actual increases in realised volatility. It is necessary to inspect how models perform

in terms of prediction accuracy. To realise this, I adopt the Mean Absolute Errors

(MAE) to evaluate each model prediction. The MAE is computed as:

MAE =

∑n
t=1

∣∣∣RVt − P̂ V t

∣∣∣
n

(3.95)

As a robust loss function to noise in volatility modelling, the Quasi-Likelihood

(QLIKE) function is widely utilised in practice. In addition to the MAE, the ac-

curacy of model predictions is also evaluated using QLIKE that can be computed

as:

QLIKE =
1

τ

τ∑
t=1

[
ln
(
P̂ V t:t+k

)
+
RVt:t+k

P̂ V t:t+k

]
(3.96)

where τ is equal to the number of volatility predictions/realised volatility and k

represents the forecasting horizon. I compute the MAE and QLIKE values of each

model and report them in Table 3.4 and 3.5, respectively. A detailed discussion of

the table is placed in the next section.

The evaluations so far are implemented between model predictions and realisation

directly. Given the fact that different models yield different estimates of volatility,

I am also interested to know if these differences are significant. In other words, it

is beneficial to investigate whether forecast errors from each candidate model are

statistically different from other candidates. To conduct pairwise comparisons, I

employ the out-of-sample R-squared (R2
os), that can be calculated as:

R2
os = 1− MAEm

MAEbmk

(3.97)

whereMAEm is the absolute prediction error from each model. Each time, I fix one

of the candidate models as the benchmark and MAEbmk and compute R2
os. In this

way, pairwise comparisons between all models are conducted.

93



3.4. METHODOLOGY

Table 3.3: Mincer-Zarnowitz regressions over horizons - full sample

Panel A: GARCH modles
1 day 5 days 22 days

α β R2 α β R2 α β R2

Normal 0.0058∗∗∗ 0.8113∗∗∗ 0.6069 0.0244∗∗∗ 0.7801∗∗∗ 0.4654 0.0805∗∗∗ 0.5808∗∗∗ 0.1639
SG 0.0059∗∗∗ 0.8068∗∗∗ 0.6060 0.0249∗∗∗ 0.7707∗∗∗ 0.4645 0.0808∗∗∗ 0.5677∗∗∗ 0.1598
SNG 0.0062∗∗∗ 0.8116∗∗∗ 0.6090 0.0242∗∗∗ 0.7826∗∗∗ 0.4718 0.0788∗∗∗ 0.5948∗∗∗ 0.1739
SIG 0.0057∗∗∗ 0.8123∗∗∗ 0.6072 0.0242∗∗∗ 0.7814∗∗∗ 0.4660 0.0802∗∗∗ 0.5830∗∗∗ 0.1651
SNIG 0.0065∗∗∗ 0.8099∗∗∗ 0.6091 0.0246∗∗∗ 0.7798∗∗∗ 0.4723 0.0778∗∗∗ 0.6049∗∗∗ 0.1782
SNW 0.0007 0.8189∗∗∗ 0.6190 0.0188∗∗∗ 0.7924∗∗∗ 0.4830 0.0738∗∗∗ 0.5838∗∗∗ 0.1898
TLS 0.0098∗∗∗ 0.7818∗∗∗ 0.5971 0.0298∗∗∗ 0.7102∗∗∗ 0.4476 0.0836∗∗∗ 0.4639∗∗∗ 0.1525
LOG 0.0091∗∗∗ 0.7924∗∗∗ 0.5999 0.0280∗∗∗ 0.7420∗∗∗ 0.4564 0.0810∗∗∗ 0.5340∗∗∗ 0.1699

Panel B: GAS modles
1 day 5 days 22 days

α β R2 α β R2 α β R2

Normal −0.0091∗∗∗0.9135∗∗∗ 0.5843 −0.0162∗∗∗0.9744∗∗∗ 0.4517 −0.0088∗∗ 0.9477∗∗∗ 0.2040
SG −0.0379∗∗∗1.1585∗∗∗ 0.5289 −0.0267∗∗∗1.0907∗∗∗ 0.3676 0.0082∗ 0.8642∗∗∗ 0.1333
SNG −0.0297∗∗∗1.1022∗∗∗ 0.5206 −0.0175∗∗∗1.0176∗∗∗ 0.3476 0.0194∗∗∗ 0.7566∗∗∗ 0.1110
SIG −0.0096∗∗∗0.9191∗∗∗ 0.5852 −0.0176∗∗∗0.9861∗∗∗ 0.4557 −0.0145∗∗∗0.9882∗∗∗ 0.2100
SNIG −0.0083∗∗∗0.9108∗∗∗ 0.5825 −0.0115∗∗∗0.9422∗∗∗ 0.4495 0.0255∗∗∗ 0.7168∗∗∗ 0.1625
SNW −0.0121∗∗∗0.8947∗∗∗ 0.5713 −0.0119∗∗∗0.9071∗∗∗ 0.4002 0.0062 0.8155∗∗∗ 0.1418
TLS 0.0031∗ 0.9619∗∗∗ 0.5996 0.0086∗∗∗ 0.7808∗∗∗ 0.4545 0.0296∗∗∗ 0.6507∗∗∗ 0.2111
LOG 0.0019 0.8334∗∗∗ 0.6009 0.0050∗∗ 0.8167∗∗∗ 0.4654 0.0293∗∗∗ 0.6682∗∗∗ 0.2133

Notes: This table reports results from Mincer-Zarnowitz regressions over forecasting horizons from one day to one
month. A full sample is adopted to dynamically obtain predictions using parametric models and realised volatility
is regressed against these predictions. For each regression, intercept α, slope β and goodness of fit R2 are reported.
Statistics of GARCH models are reported in panel A, and those of GAS models are reported in panel B.

Table 3.4: MAE values over horizons - full sample

Panel A: GARCH modles
Daily Weekly Monthly

Normal 4.6233 4.5307 6.3048
SG 4.6553 4.5590 6.2501
SNG 4.5782 4.4956 6.2182
SIG 4.6173 4.5338 6.2840
SNIG 4.5750 4.4957 6.1774
SNW 4.8495 4.6385 5.9549
TLS 4.6955 4.7907 5.9812
LOG 4.6211 4.6356 6.0952

Panel B: GAS modles
Daily Weekly Monthly

Normal 4.6380 5.1164 5.9481
SG 4.8680 5.3146 6.0821
SNG 4.9071 5.4573 6.4317
SIG 4.6109 5.0848 5.9237
SNIG 4.6464 5.1250 6.0029
SNW 4.9551 5.5627 6.4441
TLS 3.8626 5.4237 6.4014
LOG 4.6943 5.2415 6.1922

Notes: This table reports the mean absolute errors (MAE) between each observation-driven model-based prediction
and realised volatility over the full sample. The MAEs are computed at horizons from one day to one month, and
the MAE values are multiplied by 100 for easier comparisons. MAEs of GARCH models are reported in panel A and
those of GAS models are reported in panel B.
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Table 3.5: Quasi-likelihood values over horizons - full sample

Panel A: GARCH modles
Daily Weekly Monthly

Normal -1.0917 -1.0800 -0.4991
SG -1.0910 -1.0804 -0.5461
SNG -1.0926 -1.0807 -0.5221
SIG -1.0918 -1.0799 -0.4852
SNIG -1.0927 -1.0802 -0.3839
SNW -1.0854 -1.0779 0.3737
TLS -1.0913 -1.0782 -0.8738
LOG -1.0926 -1.0793 -0.7554

Panel B: GAS modles
Daily Weekly Monthly

Normal -1.0877 -1.0670 -1.0322
SG -1.0718 -1.0506 -1.0175
SNG -1.0715 -1.0489 -1.0125
SIG -1.0884 -1.0677 -1.0327
SNIG -1.0875 -1.0672 -1.0318
SNW -1.0805 -1.0576 -1.0199
TLS -1.1017 -1.0647 -1.0278
LOG -1.0897 -1.0679 -1.0311

Notes: This table reports the quasi-likelihood of each model-based prediction against realised volatility over the full
sample. The quasi-likelihood is robust to noise contained in volatility and is computed at horizons from one day
to one month. More negative quasi-likelihood values indicate superior out-of-sample performance. The statistics of
GARCH models are reported in panel A, and those of GAS models are reported in panel B.

Clearly, R2
os > 0 indicates that the candidate model performs better than the bench-

mark, and vice versa. When R2
os = 1, the candidate model predicts volatility per-

fectly. The values of R2
os are reported in Tables 3.6, 3.7 and 3.8. To inspect the

statistical significance of the outperformance of each model against the other candi-

dates, the Clark-West (CW) tests (Clark and West, 2007) are implemented and the

statistics are reported in bold below associated R2
os entries.

MAE, QLIKE and R2
os are evaluations of one single approach in terms of its forecast-

ing ability. However, I also care about whether the errors between the two forecasts

are statistically different. To this end, I additionally adopt the Diebold–Mariano

(DM) test (Diebold and Mariano, 1995). Taking into consideration possible au-

tocorrelations, Newey–West standard errors are computed. I report statistics of

DM tests and CW tests over forecasting horizons from one day to one month in
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3.4. METHODOLOGY

Tables B.1, B.2 and B.3 in appendix B.

An efficient model for volatility forecasting should have stable performance through

different market environments. However, as in the international comparisons of

Kourtis et al. (2016), all competing models, including parametric volatility models

and implied volatility, suffered significantly weakened performance during the 2008

financial crisis. It is beneficial to inspect how the models work during market tur-

moils. Therefore, using a sub-sample ranging from 09/2007 to 03/2019 and following

an identical procedure as in the full sample case, I also report and evaluate model

performance during the financial crisis in Tables 3.9, 3.10, 3.11, B.4, B.5 and B.6 in

appendix B.

As introduced above, while most studies indicate that the predictive power of implied

volatility is superior compared to those of model-based volatility forecasts, some

others suggest the opposite. Becker et al. (2007) and Becker and Clements (2008)

generally document that the informational content of implied volatility is nested in

the parametric model forecast as more parametric models are applied or combined.

The above procedure is implemented to investigate the informational content of the

observation-driven models in this study and implied volatility represented by IV

computed using ATM options and MFIV. The empirical results are presented in

Tables 3.15, 3.16, 3.17, B.7, B.8 and B.9 in appendix B.
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3.5. EMPIRICAL RESULT ANALYSIS

3.5 Empirical result analysis

3.5.1 Full sample

A full sample is adopted to train all GARCH and GAS models and make compar-

isons between them. From Table 3.2, it is easy to see that while GARCH models

generally tend to yield higher volatility forecasts compared to those of GAS models,

both parametric models overestimate realised volatility in the future, which aver-

ages 0.1356. However, it is noteworthy that the mean (0.1377) and median (0.1199)

values of the TLS-GAS model are very close to realised volatility. This potentially

indicates the superiority of the TLS-GAS model. Apart from that, the maximum val-

ues of predicted volatility from GAS models are significantly lower than those from

GARCH models, which is consistent with our previous analysis, which shows that

GAS responds less fiercely to large changes in index returns compared to GARCH.

From the Mincer-Zarnowitz regression results in Table 3.3, it can be observed that,

at the daily horizon, if measured by R2, the SNW-GARCH model has the best

performance overall, with R2 of 61.90%, indicating shifted negative Weibull could be

a good candidate for the innovation term in volatility modelling. Moreover, the slope

of TLS-GAS is 0.9619, which is much closer to 1 compared to other competitors,

plus that its R2 is on the same level as SNW-GAS, so it can be deduced that TLS-

GAS outperforms the others in volatility modelling and forecasting at the daily

horizon. Generally, R2 of GAS models tend to be slightly lower than those of

GARCH models at the daily horizon. This is also the case at the weekly horizon,

where SNW-GARCH still has the highest R2. At the weekly horizon, the slopes of

GAS models are significantly closer to 1 compared to those of GARCH models. At

the monthly horizon, in most cases, R2 significantly increases from GARCH to GAS,

indicating that GAS, while not necessarily outperforming in volatility forecasting,

could be a better model for the purpose of option pricing, as most options tend to
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3.5. EMPIRICAL RESULT ANALYSIS

have a maturity longer than one month.

The R2 measures how well the RVs can be described by model-based forecasts,

while prediction accuracy is equally important in volatility forecasting. Hence, I

further inspect the accuracy of model prediction by computing mean absolute errors

(MAE). The MAEs in Table 3.4 indicate strong outperformance of the TLS-GAS

model in terms of prediction accuracy at the daily horizon, with an MAE of 3.86.

This is consistent with its lower Quasi-likelihood of -1.10. More importantly, it

can be observed that the MAE of TLS-GARCH-based predictions are 4.70, which

means that if the innovation term is appropriately selected, the accuracy of model

predictions can be improved from GARCH to GAS.

However, for weekly and monthly horizons, it is not the case. From Table 3.4, it is

clear that at the weekly horizon, TLS-GAS, with MAE of 5.42, no longer has the best

performance and that GARCH models consistently have lower prediction errors than

GAS. At the monthly horizon, it is hard to identify domination between GARCH

and GAS models, as GARCH is found to have lower prediction errors than GAS in 4

out of 8 scenarios (GARCH with SNG, SNW, TLS and LOG innovations terms). It

is noteworthy that according to the quasi-likelihood values reported in Table 3.5, it

is likely that GAS model-based volatility forecasts tend to work better in describing

realised volatility than GARCH at the monthly horizon. This is indicated by the

fact that the GAS model predictions have lower quasi-likelihood statistics below -1,

while the statistics of GARCH are all above -1.

Tables 3.6, 3.7 and 3.8 show out-of-sample R2 (R2
os) of any two model-based RV

predictions over different horizons. Corresponding Clark-West test statistics are

reported in bold below each entry of out-of-sample R2. Obviously, at the daily

horizon, the domination of the TLS-GAS model is once again confirmed, and this

is evidenced by positive R2
os (ranging between 0.16 against SNIG-GARCH and 0.22

against SNW-GAS) against all the other models. Consistently, it can be observed
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3.5. EMPIRICAL RESULT ANALYSIS

that GARCH models tend to outperform GAS in most cases. At the weekly horizon,

the dominance of GARCH models becomes stronger. When the GARCH models are

evaluated against corresponding GAS models with identical innovation terms, all R2
os

are found to be positive. It is also noteworthy that SNG-GARCH and SNIG-GARCH

models are found to dominate all the other models at the weekly horizon. At the

monthly horizon, I find that the dominance of GARCH models becomes weaker.

In 4 out of 8 cases, GAS models outperform corresponding GARCH models. It

is also noticeable that at the monthly horizon, SIG-GAS consistently outperforms

the corresponding SIG-GARCH model. In fact, the SIG-GAS model is found to

dominate all parametric models with R2
os ranging from 0.01 (against SNIG-GAS) to

0.08 (against SNW-GAS).

It is worth mentioning that, for multi-step ahead forecasting, the methodologies

applied for GARCH and GAS models are different. As introduced in the previous

section, while the GARCH models have analytical solutions for making multi-step

predictions, a simulation approach is adopted in order to make forecasts of realised

volatility within the framework of GAS models. Therefore, it could be more in-

formative to look at the model evaluations at the daily horizon, as the forecasting

results are more comparable.

The findings above indicate that TLS-GAS, SNG-GARCH and SNIG-GARCH, SIG-

GAS, in terms of prediction accuracy, tend to dominate other competitors at the

daily, weekly and monthly horizons, respectively. However, I also care about whether

one model indeed makes predictions that are statistically different from the others.

Therefore, I apply the DM test to inspect whether forecasting errors from a model

are statistically different from those from other candidate models in a pairwise fash-

ion. From Panel A of Table B.1, it is clear that the TLS-GAS model has significant

DM statistics (ranging between -7.26 and -4.69) against all the other models. This

means that the predictions of realised volatility made by the TLS-GAS model are

not only more accurate than those made by other candidate models but also statis-
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3.5. EMPIRICAL RESULT ANALYSIS

tically better than other predictions. Additionally, I implement CW tests in order

to inspect the relative outperformance between any two models. Consistently, it can

be observed that the TLS-GAS model, with CW statistics ranging between 3.56 and

8.29, tends to have significantly lower comparative forecasting errors against other

models, indicating its dominance at the daily horizon again.

Similarly, at the weekly horizon, SNG-GARCH and SNIG-GARCH models, while

dominating other models in prediction accuracy, are found to make statistically

different forecasts compared to other models. The pairwise DM statistics of these

two model-based predictions against others are highly significant in most cases (both

predictions tend to be statistically different from others in 10 out of 15 scenarios).

The CW test results suggest that SNG-GARCH and SNIG-GARCH outperform

other models with relatively lower prediction errors in most cases (13 out of 15 cases

for both models).

At the monthly horizon, the SIG-GAS model, with relatively lower mean average

prediction error and R2
os, is found to produce statistically different predictions com-

pared to others in 13 out of 15 cases (GAS and SNIG-GAS are exceptions). In

fact, it can be found from the CW statistics that SIG-GAS tend to have relatively

inferior performance, indicated by higher forecasting errors, compared to GAS and

SNIG-GAS.

3.5.2 Crisis period

With the above evaluations based on the full sample, GARCH models are found

to outperform at shorter forecasting horizons, while they tend to have a similar

performance to GAS at the monthly horizon. I am also interested in how GARCH

and GAS perform during sub-periods in which the market experiences greater un-

certainty. Therefore, utilising a sub-sample during the 2007-2009 financial crisis, I
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3.5. EMPIRICAL RESULT ANALYSIS

inspect how GARCH and GAS models perform during market turmoil. From Ta-

ble 3.9, it can be instantly observed that SNW-GAS has the highest R2 (68.32%),

followed by SNG-GAS (63.07%) and SG-GAS (62.69%), indicating superiority of

these models in describing the movements of market returns during crisis time. The

outperformance of SNW-GAS continues at the weekly horizon with R2 of 53.23%

and disappears at the monthly horizon. The regression results are consistent with

corresponding MAE values and Quasi-loglikelihood values reported in Table 3.10

and 3.11, where SNW-GAS has the lowest forecasting errors at both daily (6.05)

and weekly (7.01) horizons. Note that the forecasting errors of the SNW-GARCH

model at these horizons are 6.99 and 7.37 at daily and weekly horizons, which are

consistently higher than SNW-GAS.

Table 3.9: Mincer-Zarnowitz regressions over horizons - crisis

Panel A: GARCH modles
1 day 5 days 22 days

α β R2 α β R2 α β R2

Normal 0.0061 0.8988∗∗∗ 0.5932 0.0270∗∗ 0.8579∗∗∗ 0.4923 0.1210∗∗∗ 0.5978∗∗∗ 0.1668
SG 0.0066 0.9010∗∗∗ 0.5949 0.0274∗∗ 0.8618∗∗∗ 0.4985 0.1222∗∗∗ 0.6012∗∗∗ 0.1715
SNG 0.0058 0.8998∗∗∗ 0.6006 0.0249∗∗ 0.8632∗∗∗ 0.5037 0.1139∗∗∗ 0.6218∗∗∗ 0.1808
SIG 0.0066 0.9010∗∗∗ 0.5961 0.0273∗∗ 0.8620∗∗∗ 0.4979 0.1167∗∗∗ 0.6265∗∗∗ 0.1835
SNIG 0.0063 0.8995∗∗∗ 0.6027 0.0268∗∗ 0.8610∗∗∗ 0.5023 0.1174∗∗∗ 0.6198∗∗∗ 0.1806
SNW 0.0022 0.9016∗∗∗ 0.6164 0.0198∗ 0.8736∗∗∗ 0.5122 0.1014∗∗∗ 0.6766∗∗∗ 0.1846
TLS 0.0055 0.8781∗∗∗ 0.5957 0.0240∗∗ 0.8281∗∗∗ 0.4956 0.1093∗∗∗ 0.5661∗∗∗ 0.1821
LOG 0.0116 0.8554∗∗∗ 0.5762 0.0317∗∗∗ 0.8038∗∗∗ 0.4755 0.1156∗∗∗ 0.5553∗∗∗ 0.1766

Panel B: GAS modles
1 day 5 days 22 days

α β R2 α β R2 α β R2

Normal -0.0143 1.0430∗∗∗ 0.5871 -0.0003 1.0188∗∗∗ 0.4857 0.0747∗∗∗ 0.7962∗∗∗ 0.1762
SG -0.0025 1.2743∗∗∗ 0.6269 0.0110 1.2383∗∗∗ 0.4793 0.0554∗∗∗ 1.1063∗∗∗ 0.1777
SNG −0.0173∗ 1.3676∗∗∗ 0.6307 -0.0146 1.4042∗∗∗ 0.4711 0.0136 1.3923∗∗∗ 0.1365
SIG -0.0154 1.0506∗∗∗ 0.5895 -0.0035 1.0336∗∗∗ 0.4921 0.0729∗∗∗ 0.8099∗∗∗ 0.1744
SNIG -0.0019 0.9745∗∗∗ 0.5700 0.0101 0.9518∗∗∗ 0.4762 0.0815∗∗∗ 0.7404∗∗∗ 0.1737
SNW −0.0474∗∗∗1.1762∗∗∗ 0.6832 −0.0515∗∗∗1.2616∗∗∗ 0.5323 0.0607∗∗ 0.9281∗∗∗ 0.0879
TLS 0.0154 0.9534∗∗∗ 0.5639 0.0416∗∗∗ 0.7426∗∗∗ 0.4335 0.1263∗∗∗ 0.4475∗∗∗ 0.1498
LOG 0.0269∗∗∗ 0.7855∗∗∗ 0.5345 0.0412∗∗∗ 0.7390∗∗∗ 0.4476 0.1312∗∗∗ 0.4307∗∗∗ 0.1397

Notes: This table reports results from Mincer-Zarnowitz regressions over forecasting horizons from one day to one
month. A sub-sample during the 2007-2008 financial crisis is adopted to obtain predictions using parametric models
dynamically, and realised volatility is regressed against these predictions. For each regression, intercept α, slope β
and goodness of fit R2 are reported. Statistics of GARCH models are reported in panel A, and those of GAS models
are reported in panel B.
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Table 3.10: MAE values over horizons - crisis

Panel A: GARCH modles
Daily Weekly Monthly

Normal 7.0330 7.4891 9.6913
SG 6.9538 7.3428 9.5196
SNG 6.9463 7.3116 9.2683
SIG 6.9338 7.3459 9.2982
SNIG 6.8974 7.2754 9.3493
SNW 6.9865 7.3686 8.9788
TLS 7.2678 7.7690 9.3518
LOG 7.3273 7.8098 9.4937

Panel B: GAS models
Daily Weekly Monthly

Normal 6.5771 7.1804 8.9468
SG 7.1151 7.7145 9.4614
SNG 7.2443 8.0477 9.8829
SIG 6.5459 7.1053 8.9268
SNIG 6.7938 7.3437 8.9867
SNW 6.0468 7.0128 9.5403
TLS 6.7364 8.6847 10.8902
LOG 7.7809 8.5491 10.7816

Notes: This table reports the mean absolute errors (MAE) between each observation-driven model-based prediction
and realised volatility over a sub-sample that covers the 2007-2008 financial crisis. The MAEs are computed at
horizons from one day to one month, and the MAE values are multiplied by 100 for easier comparisons. MAEs of
GARCH models are reported in panel A, and those of GAS models are reported in panel B.

105
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Table 3.11: Quasi-likelihood values over horizons - crisis

Panel A: GARCH modles
Daily Weekly Monthly

Normal -0.5229 -0.5063 -0.3573
SG -0.5237 -0.5083 -0.3607
SNG -0.5240 -0.5101 -0.3973
SIG -0.5239 -0.5087 -0.3826
SNIG -0.5247 -0.5098 -0.3767
SNW -0.5240 -0.5075 0.1458
TLS -0.5215 -0.5077 -0.4257
LOG -0.5203 -0.5068 -0.4117

Panel B: GAS modles
Daily Weekly Monthly

Normal -0.5248 -0.5071 -0.4240
SG -0.4921 -0.4686 -0.3635
SNG -0.4846 -0.4621 -0.3487
SIG -0.5253 -0.5086 -0.4231
SNIG -0.5216 -0.5056 -0.4263
SNW -0.5333 -0.5121 -0.3919
TLS -0.5163 -0.4857 -0.4181
LOG -0.5149 -0.4957 -0.4151

Notes: This table reports the quasi-likelihood of each model-based prediction against realised volatility over a sub-
sample that covers the 2007-2008 financial crisis. The quasi-likelihood is robust to noise contained in volatility and
is computed at horizons from one day to one month. More negative quasi-likelihood values indicate superior out-of-
sample performance. The statistics of GARCH models are reported in panel A and those of GAS models are reported
in panel B.

The pairwise R2
os, together with corresponding Clark-West test statistics are re-

ported in Table 3.12 and 3.13 suggest that SNW-GAS dominate all the other mod-

els at daily and weekly horizons with positive R2
os against all the other candidates.

From the DM test results in Table B.4, it is obvious that SNW-GAS also makes sta-

tistically different predictions. However, from Table B.5, it can be found that SNW-

GAS-based predictions are not significantly different from others in most cases. The

relative outperformance of SNW-GAS is confirmed again by the CW statistics. At

daily and weekly horizons, CW statistics of SNW-GAS are found to be highly signif-

icant over all the other models. It is also noteworthy that, during the crisis period,

the TLS-GAS model has a performance only second to SNW-GAS. This is evidenced

by the fact that the R2
os of SNW-GAS against TLS-GAS is the lowest (0.10).
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At the monthly horizon, it is observed again that the SIG-GAS model tends to dom-

inate all the other models with the lowest MAE of 8.93. The positive pairwise R2
os

values against all the other models once more indicate the dominance of SIG-GAS at

the monthly horizon. It is indicated by the DM statistics that predictions from SIG-

GAS are significantly different from 11 out of 15 model-based predictions. Finally,

from the CW statistics, it can be observed that SIG-GAS-based predictions tend to

have lower forecasting errors than 13 out of 15 parametric model-based predictions

(the exceptions are again GAS and SNIG-GAS, consistent with the results in the

full sample).

It seems that we still have not obtained sufficient evidence to support that GARCH

overwhelmingly dominates GAS across all horizons, or the opposite, during the finan-

cial crisis period. However, it is clear that during market turmoil, the GAS models

outperform their GARCH counterparts in most cases at daily horizons, and they

tend to have comparable performance to GARCH models at weekly and monthly

horizons. It is also documented that, at the daily horizon, for models with spe-

cific innovations like Gaussian, SIG, SNIG, SNW and TLS, the predictive power is

greatly improved from GARCH to GAS. This underlines the importance of correctly

choosing the innovation term’s distribution in the process of volatility modelling and

forecasting. If the error term is better specified, GAS may have greater potential to

more accurately predict volatility when uncertainty in the market is high.

3.5.3 Comparison to IV

As introduced in Section 3.1, quite a few studies make comparisons between the

performance of parametric model-based volatility forecast and implied volatility. To

this end, in this chapter, I also examine how the observation-driven models perform

in volatility forecasting compared to implied volatility. The implied volatility is

calculated using options data between 04/01/1996 and 31/12/2017, therefore, a
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different sample period is applied for making comparisons between model-based

volatility forecast and implied volatility. I depict comparisons between MFIV and

GAS model-based volatility forecast in Figure 3.4. The comparison between MFIV

and GAS models is plotted in Figure 3.5.

Figure 3.4: MFIV vs GARCH
Notes: This figure plots the comparison between MFIV and predictions made by all GARCH

models. At each point in time, MFIV is computed as 30 days ahead prediction in a model-free

sense, and GARCH models are fitted on a rolling window basis using 5 years’ observations.

From the Mincer-Zarnowitz regressions in Table 3.15, it is straightforward to see the

domination of IV (R2 = 0.66) and MFIV (R2 = 0.64) in describing the movement

of realised volatility. The superiority of IV and MFIV becomes more significant at

longer forecasting horizons. For example, at the daily horizon, the R2 of MFIV is

around 4% higher than that of GARCH, while at the monthly horizon, this num-

ber increases to 10%. This indicates that, at longer forecasting horizons, implied

volatility is a better candidate for capturing the dynamic trends of realised volatility.

However, in terms of prediction accuracy, it can be another story. IV and MFIV are

not necessarily the best performers.

The MAE values in Table 3.16 indicate that TLS-GAS, with a prediction error of

3.88, is still the best performer among all competitors at the daily horizon. Generally

speaking, it can be observed that parametric models tend to have higher forecasting
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3.5. EMPIRICAL RESULT ANALYSIS

Figure 3.5: MFIV vs GAS
Notes: This figure plots the comparison between MFIV and predictions made by all GAS models.

At each point in time, MFIV is computed as 30 days ahead prediction in a model-free sense, and

GAS models are fitted on a rolling window basis using 5 years’ observations.

Table 3.15: Mincer-Zarnowitz regressions over horizons - including IV

Panel A: Implied volatility
1 day 5 days 22 days

α β R2 α β R2 α β R2

IV −0.0365∗∗∗1.0177∗∗∗ 0.6580 −0.0195∗∗∗0.9172∗∗∗ 0.5341 0.0133∗∗∗ 0.7228∗∗∗ 0.3311
MFIV −0.0430∗∗∗0.9861∗∗∗ 0.6401 −0.0251∗∗∗0.8876∗∗∗ 0.5184 0.0091∗∗∗ 0.6989∗∗∗ 0.3212

Panel B: GARCH modles
1 day 5 days 22 days

α β R2 α β R2 α β R2

Normal −0.0092∗∗∗0.9200∗∗∗ 0.6090 0.0097∗∗∗ 0.8826∗∗∗ 0.4986 0.0673∗∗∗ 0.6800∗∗∗ 0.2214
SG −0.0096∗∗∗0.9200∗∗∗ 0.6096 0.0090∗∗∗ 0.8836∗∗∗ 0.4991 0.0667∗∗∗ 0.6804∗∗∗ 0.2187
SNG −0.0086∗∗∗0.9201∗∗∗ 0.6120 0.0095∗∗∗ 0.8826∗∗∗ 0.5046 0.0644∗∗∗ 0.6975∗∗∗ 0.2353
SIG −0.0093∗∗∗0.9209∗∗∗ 0.6094 0.0096∗∗∗ 0.8830∗∗∗ 0.4981 0.0667∗∗∗ 0.6826∗∗∗ 0.2225
SNIG −0.0091∗∗∗0.9227∗∗∗ 0.6135 0.0093∗∗∗ 0.8826∗∗∗ 0.5048 0.0619∗∗∗ 0.7194∗∗∗ 0.2432
SNW −0.0115∗∗∗0.9077∗∗∗ 0.6152 0.0070∗∗∗ 0.8520∗∗∗ 0.5149 0.0478∗∗∗ 0.7396∗∗∗ 0.2873
TLS −0.0076∗∗∗0.9099∗∗∗ 0.6087 0.0100∗∗∗ 0.8615∗∗∗ 0.4954 0.0662∗∗∗ 0.6299∗∗∗ 0.2280
LOG −0.0059∗∗∗0.9002∗∗∗ 0.6020 0.0124∗∗∗ 0.8534∗∗∗ 0.4905 0.0680∗∗∗ 0.6361∗∗∗ 0.2301

Panel C: GAS models
1 day 5 days 22 days

α β R2 α β R2 α β R2

Normal −0.0178∗∗∗0.9787∗∗∗ 0.5784 −0.0197∗∗∗0.9937∗∗∗ 0.4728 −0.0219∗∗∗1.0090∗∗∗ 0.2620
SG −0.0328∗∗∗1.1205∗∗∗ 0.5192 −0.0234∗∗∗1.0601∗∗∗ 0.3924 0.0002 0.9066∗∗∗ 0.1700
SNG −0.0235∗∗∗1.0541∗∗∗ 0.5056 −0.0131∗∗∗0.9792∗∗∗ 0.3623 0.0123∗∗∗ 0.7933∗∗∗ 0.1410
SIG −0.0189∗∗∗0.9897∗∗∗ 0.5815 −0.0213∗∗∗1.0067∗∗∗ 0.4786 −0.0287∗∗∗1.0557∗∗∗ 0.2709
SNIG −0.0157∗∗∗0.9655∗∗∗ 0.5788 −0.0155∗∗∗0.9637∗∗∗ 0.4770 0.0182∗∗∗ 0.7473∗∗∗ 0.2039
SNW −0.0131∗∗∗0.9054∗∗∗ 0.5573 −0.0128∗∗∗0.9088∗∗∗ 0.4231 −0.0087∗ 0.8936∗∗∗ 0.1877
TLS -0.0012 0.9936∗∗∗ 0.5822 0.0043∗ 0.8177∗∗∗ 0.4747 0.0247∗∗∗ 0.6765∗∗∗ 0.2616
LOG -0.0006 0.8575∗∗∗ 0.5792 0.0045∗ 0.8198∗∗∗ 0.4782 0.0238∗∗∗ 0.6884∗∗∗ 0.2635

Notes: This table reports results from Mincer-Zarnowitz regressions over forecasting horizons from one day to one
month. A sample of option prices between 01/1996 and 12/2017 is used to estimate IV and MFIV. Corresponding
historical DJIA returns are adopted to obtain predictions using parametric models dynamically. realised volatility
is regressed against these predictions. For each regression, intercept α, slope β and goodness of fit R2 are reported.
Statistics of IV and MFIV are reported in panel A, statistics of GARCH predictions are reported in panel B, and
statistics of GAS predictions are reported in panel C.
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accuracy compared to implied volatility. At the daily horizon, the former models

are found to have forecasting errors between 3.88 and 4.98, which are significantly

lower than those from IV and MFIV (with MAEs of 4.95 and 5.86 respectively). It

is also the case for IV and MFIV at weekly and monthly forecasting horizons, where

both implied volatility are consistently found to have prediction errors higher than

those from GARCH models.

The R2
os values in Table 3.18 confirm the domination of TLS-GAS in terms of fore-

casting accuracy at the daily horizon, with all positive R2
os values. More importantly,

the inferior performance of implied volatility against parametric model-based volatil-

ity forecasts is once again verified. It is also worth pointing out that IV seems to

have higher forecasting accuracy compared to MFIV across all horizons. This find-

ing is supported by positive R2
os of IV against MFIV (15.55%, 13.70% and 11.25%

for daily, weekly and monthly horizons). At weekly and monthly horizons, it turns

out that the SNG-GARCH and SNW-GARCH models dominate all the other mod-

els, including IV and MFIV. It is noteworthy that the strongest outperformance is

found to be between TLS-GAS and MFIV, with R2
os of 0.34. It can be concluded

so far that implied volatility tends to have lower forecasting accuracy compared to

parametric models at horizons from one day up to one month.

For robustness concerns, I additionally implement DM and CW tests. The results are

reported in Table B.7, B.8 and B.9. From the DM tests, it can be easily observed

that, at the daily horizon, IV is statistically different from model-based forecasts

in 6 out of 16 cases, while MFIV forecasts are statistically different from almost

all parametric model-based predictions (The only exception is SNW-GAS). At the

weekly horizon, IV is significantly different from model-based forecasts in 12 out of

16 cases, and MFIV is found to be different from all model-based predictions. At

the monthly horizon, IV is different from 13 out of 16 competing predictions, and

for MFIV, this ratio is 9 out of 16.
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The CW test is helpful in identifying the model that has relatively lower forecasting

errors. The statistics from CW tests generally indicate consistency with previous

findings that implied volatility tends to have lower prediction accuracy. When IV

and MFIV are set as benchmarks, it is clear that model-based predictions are con-

sistently found to have lower forecasting errors compared to implied volatility.

Table 3.16: MAE values over horizons - including IV

Panel A: Implied volatility
Daily Weekly Monthly

IV 4.9517 5.4253 6.2678
MFIV 5.8631 6.2866 7.0622

Panel B: GARCH models
Daily Weekly Monthly

Normal 4.4901 4.3514 5.8452
SG 4.5093 4.3632 5.8058
SNG 4.4471 4.3212 5.7147
SIG 4.4835 4.3555 5.8180
SNIG 4.4428 4.3249 5.6364
SNW 4.7165 4.5554 5.1585
TLS 4.4976 4.4671 5.6493
LOG 4.4955 4.4268 5.7121

Panel C: GAS modles
Daily Weekly Monthly

Normal 4.5758 5.0338 5.9337
SG 4.8807 5.2717 6.0610
SNG 4.9770 5.4685 6.4406
SIG 4.5432 4.9961 5.9042
SNIG 4.5936 5.0364 5.9991
SNW 4.9238 5.4893 6.4307
TLS 3.8805 5.1932 6.2912
LOG 4.6620 5.1598 6.2025

Notes: This table reports the mean absolute errors (MAE) between each realised volatility and parametric and non-
parametric predictions made by GARCH/GAS and IV/MFIV. The sample adopted ranges between 01/1996 and
12/2017. The MAEs are computed at horizons from one day to one month, and the MAE values are multiplied by
100 for easier comparisons. MAEs of IV and MFIV are reported in panel A, MAEs of GARCH models are reported
in panel B and those of GAS models are reported in panel C.
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Table 3.17: Quasi-likelihood values over horizons - including IV

Panel A: Implied volatility
Daily Weekly Monthly

IV -1.0722 -1.0591 -1.0361
MFIV -1.0488 -1.0372 -1.0168

Panel B: GARCH models
Daily Weekly Monthly

Normal -1.0812 -1.0768 -0.7148
SG -1.0807 -1.0769 -0.7342
SNG -1.0820 -1.0776 -0.7551
SIG -1.0813 -1.0767 -0.6986
SNIG -1.0821 -1.0773 -0.6341
SNW -1.0752 -1.0761 -0.4201
TLS -1.0815 -1.0743 -0.8937
LOG -1.0817 -1.0753 -0.8516

Panel C: GAS models
Daily Weekly Monthly

Normal -1.0764 -1.0582 -1.0282
SG -1.0613 -1.0446 -1.0113
SNG -1.0585 -1.0403 -1.0056
SIG -1.0772 -1.0591 -1.0289
SNIG -1.0759 -1.0585 -1.0278
SNW -1.0697 -1.0493 -1.0145
TLS -1.0899 -1.0592 -1.0250
LOG -1.0783 -1.0598 -1.0267

Notes: This table reports the quasi-likelihood of IV and MFIV against realised volatility over the full sample. As
comparisons, the quasi-likelihood of model-based predictions against RV is also reported. The sample adopted ranges
between 01/1996 and 12/2017. The quasi-likelihood is robust to noise contained in volatility and is computed at hori-
zons from one day to one month. More negative quasi-likelihood values indicate superior out-of-sample performance.
The statistics of IV and MFIV are reported in panel A, the statistics of GARCH models are reported in panel B and
those of GAS models are reported in panel C.

115



3.5. EMPIRICAL RESULT ANALYSIS

T
ab

le
3.
18
:
O
u
t-
of
-s
am

p
le
R

2
at

d
ai
ly

h
or
iz
on

-
in
cl
u
d
in
g
IV

G
A
R
C
H

G
A
S

N
o
rm

a
l

S
G

S
N
G

S
IG

S
N
IG

S
N
W

T
L
S

L
O
G

N
o
rm

a
l

S
G

S
N
G

S
IG

S
N
IG

S
N
W

T
L
S

L
O
G

IV
M
F
IV

N
o
rm

a
l

0
.0
0

-0
.4
3

0
.9
6

0
.1
5

1
.0
5

-5
.0
4

-0
.1
7

-0
.1
2

-1
.9
1

-8
.7
0

-1
0
.8
4

-1
.1
8

-2
.3
1

-9
.6
6

1
3
.5
8

-3
.8
3

-1
0
.2
8

-3
0
.5
8

N
a
N

-0
.5
1

4
.5
4

1
.5
0

4
.7
8

-2
.6
3

0
.6
9

-0
.2
5

0
.7
0

4
.9
2

4
.9
1

0
.8
9

-0
.1
7

2
.4
3

6
.1
4

-1
.4
9

5
.0
2

1
.9
4

S
G

0
.4
3

0
.0
0

1
.3
8

0
.5
7

1
.4
7

-4
.5
9

0
.2
6

0
.3
1

-1
.4
7

-8
.2
4

-1
0
.3
7

-0
.7
5

-1
.8
7

-9
.1
9

1
3
.9
4

-3
.3
9

-9
.8
1

-3
0
.0
2

3
.0
6

N
a
N

5
.3
9

3
.3
2

5
.8
0

-2
.5
3

1
.1
3

0
.0
2

0
.7
8

4
.9
1

4
.8
9

0
.9
6

-0
.0
1

2
.4
0

6
.2
5

-1
.1
6

5
.0
1

1
.8
8

S
N
G

-0
.9
7

-1
.4
0

0
.0
0

-0
.8
2

0
.1
0

-6
.0
6

-1
.1
4

-1
.0
9

-2
.9
0

-9
.7
5

-1
1
.9
2

-2
.1
6

-3
.3
0

-1
0
.7
2

1
2
.7
4

-4
.8
3

-1
1
.3
5

-3
1
.8
4

-3
.4
9

-4
.4
4

N
a
N

-2
.9
5

2
.0
7

-4
.3
1

-0
.7
7

-0
.9
6

0
.3
7

4
.7
4

4
.7
4

0
.5
5

-0
.5
8

2
.2
9

5
.7
7

-2
.2
1

4
.8
3

1
.7
0

S
IG

-0
.1
5

-0
.5
8

0
.8
1

0
.0
0

0
.9
1

-5
.2
0

-0
.3
2

-0
.2
7

-2
.0
6

-8
.8
6

-1
1
.0
1

-1
.3
3

-2
.4
6

-9
.8
2

1
3
.4
5

-3
.9
8

-1
0
.4
4

-3
0
.7
7

0
.6
4

-1
.4
1

4
.0
6

N
a
N

5
.3
4

-2
.9
8

0
.5
1

-0
.3
6

0
.6
5

4
.7
9

4
.8
0

0
.8
2

-0
.2
0

2
.3
8

5
.9
7

-1
.5
7

4
.9
7

1
.9
0

S
N
IG

-1
.0
6

-1
.5
0

-0
.1
0

-0
.9
2

0
.0
0

-6
.1
6

-1
.2
3

-1
.1
9

-2
.9
9

-9
.8
6

-1
2
.0
2

-2
.2
6

-3
.3
9

-1
0
.8
3

1
2
.6
6

-4
.9
3

-1
1
.4
5

-3
1
.9
7

-3
.4
3

-4
.4
6

-0
.2
6

-3
.7
2

N
a
N

-4
.4
2

-1
.3
5

-1
.2
2

0
.3
5

4
.7
2

4
.7
1

0
.5
4

-0
.6
8

2
.2
5

5
.6
0

-2
.4
8

4
.7
4

1
.5
5

S
N
W

4
.8
0

4
.3
9

5
.7
1

4
.9
4

5
.8
0

0
.0
0

4
.6
4

4
.6
9

2
.9
8

-3
.4
8

-5
.5
2

3
.6
7

2
.6
1

-4
.4
0

1
7
.7
2

1
.1
5

-4
.9
9

-2
4
.3
1

5
.5
0

5
.1
0

7
.1
1

5
.7
3

6
.8
8

N
a
N

4
.0
1

2
.2
7

2
.7
7

5
.4
9

5
.4
1

2
.9
7

1
.9
8

2
.8
1

7
.7
4

1
.1
5

5
.2
1

1
.6
0

T
L
S

0
.1
7

-0
.2
6

1
.1
2

0
.3
1

1
.2
2

-4
.8
7

0
.0
0

0
.0
5

-1
.7
4

-8
.5
2

-1
0
.6
6

-1
.0
1

-2
.1
3

-9
.4
7

1
3
.7
2

-3
.6
5

-1
0
.1
0

-3
0
.3
6

1
.4
8

1
.1
4

2
.3
7

1
.6
8

3
.0
0

-0
.8
5

N
a
N

-0
.5
3

1
.2
4

4
.4
8

4
.4
7

1
.3
9

0
.4
2

2
.4
3

5
.2
8

-2
.1
8

4
.5
8

1
.7
9

L
O
G

0
.1
2

-0
.3
1

1
.0
8

0
.2
7

1
.1
7

-4
.9
2

-0
.0
5

0
.0
0

-1
.7
9

-8
.5
7

-1
0
.7
1

-1
.0
6

-2
.1
8

-9
.5
3

1
3
.6
8

-3
.7
0

-1
0
.1
5

-3
0
.4
2

1
.2
0

1
.0
9

1
.4
9

1
.2
6

1
.7
2

0
.2
3

1
.0
3

N
a
N

1
.3
0

4
.2
4

4
.2
3

1
.3
9

0
.7
2

2
.4
1

4
.3
9

-0
.5
2

4
.2
8

2
.0
3

N
o
rm

a
l

1
.8
7

1
.4
5

2
.8
1

2
.0
2

2
.9
1

-3
.0
7

1
.7
1

1
.7
6

0
.0
0

-6
.6
6

-8
.7
7

0
.7
1

-0
.3
9

-7
.6
0

1
5
.1
9

-1
.8
8

-8
.2
1

-2
8
.1
3

2
.7
7

2
.7
1

3
.0
4

2
.8
0

3
.0
3

2
.1
1

2
.6
5

2
.3
2

N
a
N

5
.5
0

5
.6
3

4
.9
8

1
.1
3

1
.4
5

5
.4
0

2
.0
7

4
.5
7

2
.5
4

S
G

8
.0
0

7
.6
1

8
.8
8

8
.1
4

8
.9
7

3
.3
6

7
.8
5

7
.8
9

6
.2
5

0
.0
0

-1
.9
7

6
.9
2

5
.8
8

-0
.8
8

2
0
.4
9

4
.4
8

-1
.4
5

-2
0
.1
3

6
.8
3

6
.8
0

6
.8
3

6
.7
9

6
.8
1

6
.1
2

6
.5
6

6
.5
5

7
.6
8

N
a
N

1
.5
0

7
.7
7

7
.2
1

5
.5
9

9
.1
9

6
.5
0

7
.1
2

5
.4
7

S
N
G

9
.7
8

9
.4
0

1
0
.6
5

9
.9
1

1
0
.7
3

5
.2
3

9
.6
3

9
.6
7

8
.0
6

1
.9
3

0
.0
0

8
.7
2

7
.7
0

1
.0
7

2
2
.0
3

6
.3
3

0
.5
1

-1
7
.8
1

6
.3
0

6
.2
7

6
.3
0

6
.2
7

6
.2
9

5
.7
1

6
.0
8

6
.1
0

7
.0
6

3
.6
9

N
a
N

7
.1
5

6
.6
3

5
.6
1

8
.3
5

5
.9
2

6
.7
4

5
.1
5

S
IG

1
.1
7

0
.7
5

2
.1
2

1
.3
1

2
.2
1

-3
.8
2

1
.0
0

1
.0
5

-0
.7
2

-7
.4
3

-9
.5
5

0
.0
0

-1
.1
1

-8
.3
8

1
4
.5
9

-2
.6
2

-8
.9
9

-2
9
.0
5

2
.2
8

2
.2
1

2
.5
6

2
.3
1

2
.5
8

1
.7
1

2
.2
5

1
.9
4

-0
.4
8

5
.2
2

5
.4
2

N
a
N

0
.7
5

1
.1
7

4
.9
8

1
.7
3

4
.2
9

2
.3
1

S
N
IG

2
.2
5

1
.8
3

3
.1
9

2
.4
0

3
.2
8

-2
.6
8

2
.0
9

2
.1
4

0
.3
9

-6
.2
5

-8
.3
5

1
.1
0

0
.0
0

-7
.1
9

1
5
.5
2

-1
.4
9

-7
.8
0

-2
7
.6
4

3
.5
4

3
.4
2

3
.8
9

3
.5
1

3
.8
8

2
.2
4

3
.1
2

2
.5
1

2
.1
3

6
.5
4

6
.4
6

2
.8
8

N
a
N

2
.2
1

8
.6
5

2
.3
2

5
.4
6

3
.2
1

S
N
W

8
.8
1

8
.4
2

9
.6
8

8
.9
4

9
.7
7

4
.2
1

8
.6
5

8
.7
0

7
.0
7

0
.8
8

-1
.0
8

7
.7
3

6
.7
1

0
.0
0

2
1
.1
9

5
.3
2

-0
.5
7

-1
9
.0
8

2
.6
5

2
.6
1

2
.7
0

2
.6
4

2
.7
0

2
.4
2

2
.6
7

2
.6
5

2
.5
7

2
.3
4

2
.3
4

2
.5
9

2
.6
1

N
a
N

3
.5
6

2
.5
7

2
.2
5

1
.5
7

T
L
S

-1
5
.7
1

-1
6
.2
0

-1
4
.6
0

-1
5
.5
4

-1
4
.4
9

-2
1
.5
4

-1
5
.9
0

-1
5
.8
5

-1
7
.9
2

-2
5
.7
7

-2
8
.2
5

-1
7
.0
8

-1
8
.3
8

-2
6
.8
8

0
.0
0

-2
0
.1
4

-2
7
.6
0

-5
1
.0
9

3
.3
4

3
.3
9

3
.4
4

3
.3
8

3
.4
8

3
.4
7

3
.1
5

2
.7
1

2
.8
9

5
.5
6

5
.6
3

3
.0
0

2
.5
3

4
.5
4

N
a
N

2
.4
8

6
.3
1

5
.9
1

L
O
G

3
.6
9

3
.2
8

4
.6
1

3
.8
3

4
.7
0

-1
.1
7

3
.5
3

3
.5
7

1
.8
5

-4
.6
9

-6
.7
6

2
.5
5

1
.4
7

-5
.6
1

1
6
.7
6

0
.0
0

-6
.2
1

-2
5
.7
6

2
.5
2

2
.4
6

2
.6
5

2
.5
3

2
.6
8

2
.0
6

2
.3
7

2
.1
7

2
.6
2

4
.4
2

4
.4
0

2
.6
9

2
.2
6

3
.2
4

4
.4
7

N
a
N

4
.0
6

2
.5
0

IV
9
.3
2

8
.9
3

1
0
.1
9

9
.4
6

1
0
.2
8

4
.7
5

9
.1
7

9
.2
1

7
.5
9

1
.4
3

-0
.5
1

8
.2
5

7
.2
3

0
.5
6

2
1
.6
3

5
.8
5

0
.0
0

-1
8
.4
1

6
.6
4

6
.5
4

6
.8
8

6
.6
8

6
.8
9

5
.2
2

6
.3
3

5
.7
8

6
.2
8

6
.2
1

6
.2
3

6
.5
2

5
.9
8

5
.3
4

1
0
.3
0

5
.4
1

N
a
N

-1
0
.4

M
F
IV

2
3
.4
2

2
3
.0
9

2
4
.1
5

2
3
.5
3

2
4
.2
2

1
9
.5
6

2
3
.2
9

2
3
.3
3

2
1
.9
6

1
6
.7
6

1
5
.1
1

2
2
.5
1

2
1
.6
5

1
6
.0
2

3
3
.8
2

2
0
.4
9

1
5
.5
5

0
.0
0

1
0
.7
2

1
0
.6
6

1
0
.8
8

1
0
.7
1

1
0
.8
9

9
.5
5

1
0
.2
8

9
.8
7

1
0
.7
7

9
.8
4

9
.6
1

1
0
.9
4

1
0
.5
4

8
.7
7

1
3
.2
9

9
.7
6

1
2
.8
6

N
a
N

N
o
te
s
:
T
h
is

ta
b
le

re
p
o
rt
s
o
u
t-
o
f-
sa
m
p
le

R
-s
q
u
a
re
d

R
2 o
s
fr
o
m

p
a
ir
w
is
e
co

m
p
a
ri
so
n
s
b
et
w
ee
n

a
n
y
tw

o
m
o
d
el
-b
a
se
d

p
re
d
ic
ti
o
n
s,

in
cl
u
d
in
g
IV

a
n
d

M
F
IV

,
a
t
d
a
il
y
fo
re
ca

st
in
g
h
o
ri
zo

n
.

A
ss
o
ci
a
te
d
st
a
ti
st
ic
s
fr
o
m

C
la
rk
-W

es
t
te
st
s
a
re

re
p
o
rt
ed

in
b
o
ld

b
el
o
w

ea
ch

en
tr
y
o
f
R

2 o
s
.
T
h
e
re
su

lt
s
a
re

o
b
ta
in
ed

u
si
n
g
a
sa
m
p
le

th
a
t
ra
n
g
es

b
et
w
ee
n
0
1
/
1
9
9
6
a
n
d
1
2
/
2
0
1
7
.
V
er
ti
ca

ll
y,

G
A
R
C
H

m
o
d
el
s
a
re

se
t
a
s
b
en

ch
m
a
rk
s
in

th
e
fi
rs
t
8
ro
w
s,

a
n
d
G
A
S
m
o
d
el
s
a
re

se
t
a
s
b
en

ch
m
a
rk
s
in

th
e
la
st

8
ro
w
s.

P
o
si
ti
v
e
st
a
ti
st
ic
s
in
d
ic
a
te

th
e
re
la
ti
v
e
o
u
tp

er
fo
rm

a
n
ce

o
f
m
o
d
el
s

a
g
a
in
st

th
e
b
en

ch
m
a
rk
s.

116



3.5. EMPIRICAL RESULT ANALYSIS

T
ab

le
3.
19
:
O
u
t-
of
-s
am

p
le
R

2
at

w
ee
k
ly

h
or
iz
on

-
in
cl
u
d
in
g
IV

G
A
R
C
H

G
A
S

N
o
rm

a
l

S
G

S
N
G

S
IG

S
N
IG

S
N
W

T
L
S

L
O
G

N
o
rm

a
l

S
G

S
N
G

S
IG

S
N
IG

S
N
W

T
L
S

L
O
G

IV
M
F
IV

N
o
rm

a
l

0
.0
0

-0
.2
7

0
.6
9

-0
.0
9

0
.6
1

-4
.6
9

-2
.6
6

-1
.7
3

-1
5
.6
8

-2
1
.1
5

-2
5
.6
7

-1
4
.8
1

-1
5
.7
4

-2
6
.1
5

-1
9
.3
5

-1
8
.5
8

-2
4
.6
8

-4
4
.4
7

N
a
N

1
.3
7

3
.7
0

1
.5
8

3
.3
6

1
.8
3

-0
.2
5

-0
.4
2

0
.6
3

3
.5
9

3
.4
4

0
.7
5

0
.1
8

2
.0
0

0
.3
6

-0
.6
7

4
.7
4

3
.5
1

S
G

0
.2
7

0
.0
0

0
.9
6

0
.1
8

0
.8
8

-4
.4
0

-2
.3
8

-1
.4
6

-1
5
.3
7

-2
0
.8
2

-2
5
.3
3

-1
4
.5
0

-1
5
.4
3

-2
5
.8
1

-1
9
.0
2

-1
8
.2
6

-2
4
.3
4

-4
4
.0
8

2
.0
1

N
a
N

3
.9
4

1
.5
5

3
.3
5

1
.4
4

-0
.3
4

-0
.4
6

0
.4
2

3
.4
7

3
.3
1

0
.5
4

-0
.0
4

1
.8
4

0
.1
3

-0
.9
1

4
.5
8

3
.2
7

S
N
G

-0
.7
0

-0
.9
7

0
.0
0

-0
.7
9

-0
.0
9

-5
.4
2

-3
.3
8

-2
.4
4

-1
6
.4
9

-2
2
.0
0

-2
6
.5
5

-1
5
.6
2

-1
6
.5
5

-2
7
.0
3

-2
0
.1
8

-1
9
.4
1

-2
5
.5
5

-4
5
.4
8

-1
.0
9

-2
.3
4

N
a
N

-1
.7
5

1
.4
6

0
.7
1

-1
.4
4

-1
.1
7

0
.2
1

3
.3
8

3
.2
4

0
.3
3

-0
.3
2

1
.7
4

-0
.3
9

-1
.4
1

4
.4
3

3
.1
4

S
IG

0
.0
9

-0
.1
8

0
.7
9

0
.0
0

0
.7
0

-4
.5
9

-2
.5
6

-1
.6
4

-1
5
.5
7

-2
1
.0
3

-2
5
.5
5

-1
4
.7
1

-1
5
.6
3

-2
6
.0
3

-1
9
.2
3

-1
8
.4
6

-2
4
.5
6

-4
4
.3
4

2
.2
2

1
.4
4

3
.7
3

N
a
N

3
.2
1

1
.5
5

-0
.2
6

-0
.4
5

0
.6
4

3
.4
4

3
.3
1

0
.7
5

0
.2
1

1
.9
1

0
.4
0

-0
.7
5

4
.6
1

3
.4
5

S
N
IG

-0
.6
1

-0
.8
9

0
.0
9

-0
.7
1

0
.0
0

-5
.3
3

-3
.2
9

-2
.3
6

-1
6
.3
9

-2
1
.8
9

-2
6
.4
4

-1
5
.5
2

-1
6
.4
5

-2
6
.9
2

-2
0
.0
8

-1
9
.3
0

-2
5
.4
4

-4
5
.3
6

0
.0
4

-0
.8
1

1
.4
7

-0
.4
9

N
a
N

0
.4
4

-1
.0
8

-0
.9
6

0
.1
1

3
.3
0

3
.1
5

0
.2
5

-0
.4
4

1
.6
1

-0
.4
7

-1
.5
4

4
.4
2

3
.0
2

S
N
W

4
.4
8

4
.2
2

5
.1
4

4
.3
9

5
.0
6

0
.0
0

1
.9
4

2
.8
2

-1
0
.5
0

-1
5
.7
2

-2
0
.0
5

-9
.6
7

-1
0
.5
6

-2
0
.5
0

-1
4
.0
0

-1
3
.2
7

-1
9
.1
0

-3
8
.0
0

3
.5
8

3
.4
5

4
.0
9

3
.4
6

4
.0
5

N
a
N

2
.1
1

1
.7
5

0
.7
8

3
.7
4

3
.4
0

0
.9
3

0
.0
9

1
.2
9

-0
.4
4

-1
.2
3

3
.6
8

1
.0
5

T
L
S

2
.5
9

2
.3
3

3
.2
7

2
.5
0

3
.1
8

-1
.9
8

0
.0
0

0
.9
0

-1
2
.6
9

-1
8
.0
1

-2
2
.4
2

-1
1
.8
4

-1
2
.7
4

-2
2
.8
8

-1
6
.2
5

-1
5
.5
1

-2
1
.4
5

-4
0
.7
3

2
.8
4

2
.6
9

3
.3
9

2
.8
7

3
.6
0

2
.4
7

N
a
N

0
.3
0

1
.1
3

3
.3
0

3
.1
5

1
.1
9

0
.7
3

1
.8
8

0
.2
2

-1
.1
3

4
.2
4

2
.8
8

L
O
G

1
.7
0

1
.4
4

2
.3
9

1
.6
1

2
.3
0

-2
.9
0

-0
.9
1

0
.0
0

-1
3
.7
1

-1
9
.0
9

-2
3
.5
3

-1
2
.8
6

-1
3
.7
7

-2
4
.0
0

-1
7
.3
1

-1
6
.5
6

-2
2
.5
6

-4
2
.0
1

1
.7
2

1
.6
4

1
.8
8

1
.6
8

2
.0
6

1
.8
4

0
.8
9

N
a
N

1
.2
4

3
.1
6

3
.0
5

1
.2
7

0
.9
5

1
.9
3

0
.8
7

-0
.1
5

3
.9
9

3
.0
7

N
o
rm

a
l

1
3
.5
6

1
3
.3
2

1
4
.1
6

1
3
.4
7

1
4
.0
8

9
.5
0

1
1
.2
6

1
2
.0
6

0
.0
0

-4
.7
3

-8
.6
4

0
.7
5

-0
.0
5

-9
.0
5

-3
.1
7

-2
.5
0

-7
.7
8

-2
4
.8
9

6
.8
6

6
.7
8

6
.9
9

6
.8
1

6
.8
4

5
.8
8

5
.1
1

4
.8
4

N
a
N

4
.0
8

3
.5
6

3
.0
5

2
.3
1

0
.3
8

2
.7
0

2
.1
1

4
.2
3

1
.7
7

S
G

1
7
.4
6

1
7
.2
3

1
8
.0
3

1
7
.3
8

1
7
.9
6

1
3
.5
9

1
5
.2
6

1
6
.0
3

4
.5
1

0
.0
0

-3
.7
3

5
.2
3

4
.4
6

-4
.1
3

1
.4
9

2
.1
2

-2
.9
1

-1
9
.2
5

6
.9
1

6
.8
2

6
.8
7

6
.8
2

6
.8
0

6
.3
5

6
.3
2

6
.4
8

6
.2
1

N
a
N

-0
.7
8

6
.3
3

6
.1
1

4
.2
6

5
.5
2

5
.3
7

6
.0
1

4
.7
6

S
N
G

2
0
.4
3

2
0
.2
1

2
0
.9
8

2
0
.3
5

2
0
.9
1

1
6
.7
0

1
8
.3
1

1
9
.0
5

7
.9
5

3
.6
0

0
.0
0

8
.6
4

7
.9
0

-0
.3
8

5
.0
3

5
.6
5

0
.7
9

-1
4
.9
6

6
.5
7

6
.4
9

6
.5
3

6
.5
1

6
.4
8

5
.9
7

6
.0
7

6
.2
5

6
.0
3

4
.9
3

N
a
N

6
.1
3

5
.8
4

4
.6
9

5
.2
6

5
.1
4

5
.8
5

4
.5
9

S
IG

1
2
.9
0

1
2
.6
7

1
3
.5
1

1
2
.8
2

1
3
.4
3

8
.8
2

1
0
.5
9

1
1
.3
9

-0
.7
5

-5
.5
2

-9
.4
6

0
.0
0

-0
.8
1

-9
.8
7

-3
.9
5

-3
.2
8

-8
.5
9

-2
5
.8
3

6
.2
8

6
.1
8

6
.4
2

6
.2
3

6
.2
5

5
.2
7

4
.5
8

4
.3
4

-0
.9
1

3
.7
5

3
.2
4

N
a
N

1
.0
1

-0
.1
6

2
.1
8

1
.5
9

3
.8
0

1
.3
2

S
N
IG

1
3
.6
0

1
3
.3
7

1
4
.2
0

1
3
.5
2

1
4
.1
3

9
.5
5

1
1
.3
0

1
2
.1
0

0
.0
5

-4
.6
7

-8
.5
8

0
.8
0

0
.0
0

-8
.9
9

-3
.1
1

-2
.4
5

-7
.7
2

-2
4
.8
2

6
.8
3

6
.7
0

6
.9
3

6
.7
9

6
.7
3

5
.5
3

4
.9
4

4
.6
5

2
.1
2

4
.6
8

4
.1
9

2
.5
4

N
a
N

1
.1
4

2
.3
6

1
.6
1

4
.1
4

1
.5
0

S
N
W

2
0
.7
3

2
0
.5
1

2
1
.2
8

2
0
.6
5

2
1
.2
1

1
7
.0
1

1
8
.6
2

1
9
.3
5

8
.3
0

3
.9
6

0
.3
8

8
.9
9

8
.2
5

0
.0
0

5
.3
9

6
.0
0

1
.1
7

-1
4
.5
2

5
.1
7

5
.1
2

5
.2
1

5
.1
3

5
.1
6

4
.7
3

4
.9
6

5
.0
4

3
.8
5

2
.9
7

2
.5
7

3
.8
5

3
.8
8

N
a
N

3
.7
1

3
.7
6

3
.2
5

2
.2
0

T
L
S

1
6
.2
1

1
5
.9
8

1
6
.7
9

1
6
.1
3

1
6
.7
2

1
2
.2
8

1
3
.9
8

1
4
.7
6

3
.0
7

-1
.5
1

-5
.3
0

3
.8
0

3
.0
2

-5
.7
0

0
.0
0

0
.6
4

-4
.4
7

-2
1
.0
5

6
.1
7

6
.1
5

6
.3
9

6
.2
3

6
.4
2

5
.4
1

5
.9
8

5
.7
9

3
.6
2

4
.4
3

4
.0
8

3
.6
3

3
.4
7

3
.1
7

N
a
N

3
.5
0

4
.7
4

2
.7
7

L
O
G

1
5
.6
7

1
5
.4
4

1
6
.2
5

1
5
.5
9

1
6
.1
8

1
1
.7
1

1
3
.4
2

1
4
.2
0

2
.4
4

-2
.1
7

-5
.9
8

3
.1
7

2
.3
9

-6
.3
9

-0
.6
5

0
.0
0

-5
.1
5

-2
1
.8
4

6
.8
3

6
.8
4

7
.1
4

6
.9
8

7
.1
9

5
.7
2

6
.9
3

6
.6
2

3
.4
0

4
.0
2

3
.7
2

3
.3
9

3
.2
5

2
.8
4

3
.3
0

N
a
N

4
.6
3

2
.5
7

IV
1
9
.7
9

1
9
.5
8

2
0
.3
5

1
9
.7
2

2
0
.2
8

1
6
.0
4

1
7
.6
6

1
8
.4
0

7
.2
2

2
.8
3

-0
.8
0

7
.9
1

7
.1
7

-1
.1
8

4
.2
8

4
.8
9

0
.0
0

-1
5
.8
7

9
.3
0

9
.1
4

9
.4
0

9
.1
7

9
.3
8

8
.2
7

8
.3
7

8
.0
6

6
.0
1

5
.0
8

4
.4
0

6
.0
8

5
.9
8

3
.5
9

5
.7
4

5
.0
4

N
a
N

-1
1
.6

M
F
IV

3
0
.7
8

3
0
.5
9

3
1
.2
6

3
0
.7
2

3
1
.2
0

2
7
.5
4

2
8
.9
4

2
9
.5
8

1
9
.9
3

1
6
.1
4

1
3
.0
1

2
0
.5
3

1
9
.8
9

1
2
.6
8

1
7
.3
9

1
7
.9
2

1
3
.7
0

0
.0
0

1
2
.4
5

1
2
.3
4

1
2
.5
7

1
2
.3
6

1
2
.6
3

1
2
.2
2

1
1
.7
3

1
1
.4
8

9
.8
8

8
.0
6

7
.2
4

9
.9
3

1
0
.0
0

7
.3
4

1
0
.3
4

9
.6
4

1
3
.9
5

N
a
N

N
o
te
s
:
T
h
is

ta
b
le

re
p
o
rt
s
o
u
t-
o
f-
sa
m
p
le

R
-s
q
u
a
re
d
R

2 o
s
fr
o
m

p
a
ir
w
is
e
co

m
p
a
ri
so
n
s
b
et
w
ee
n
a
n
y
tw

o
m
o
d
el
-b
a
se
d
p
re
d
ic
ti
o
n
s,

in
cl
u
d
in
g
IV

a
n
d
M
F
IV

,
a
t
th

e
w
ee
k
ly

fo
re
ca

st
in
g
h
o
ri
zo

n
.

A
ss
o
ci
a
te
d
st
a
ti
st
ic
s
fr
o
m

C
la
rk
-W

es
t
te
st
s
a
re

re
p
o
rt
ed

in
b
o
ld

b
el
o
w

ea
ch

en
tr
y
o
f
R

2 o
s
.
T
h
e
re
su

lt
s
a
re

o
b
ta
in
ed

u
si
n
g
a
sa
m
p
le

th
a
t
ra
n
g
es

b
et
w
ee
n
0
1
/
1
9
9
6
a
n
d
1
2
/
2
0
1
7
.
V
er
ti
ca

ll
y,

G
A
R
C
H

m
o
d
el
s
a
re

se
t
a
s
b
en

ch
m
a
rk
s
in

th
e
fi
rs
t
8
ro
w
s,

a
n
d
G
A
S
m
o
d
el
s
a
re

se
t
a
s
b
en

ch
m
a
rk
s
in

th
e
la
st

8
ro
w
s.

P
o
si
ti
v
e
st
a
ti
st
ic
s
in
d
ic
a
te

th
e
re
la
ti
v
e
o
u
tp

er
fo
rm

a
n
ce

o
f
m
o
d
el
s

a
g
a
in
st

th
e
b
en

ch
m
a
rk
s.

117
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3.6 Conclusion

In this study, I explore a variety of assumptions on the distribution of innovation

term ξt that brings randomness into the index returns process. Driven by the vari-

ance of the innovation term, at each point in time, GARCH models are constructed

to make the returns have different types of distributions so that the returns are char-

acterised by corresponding GARCH processes. The GAS model has been receiving

increasing attention in recent years. Also known as conditional score models, they

are observation based and can be converted into GARCH models under specific con-

ditions. Following identical assumptions on the distribution of innovation terms, a

series of GAS models are constructed as comparisons to GARCH models.

The emphasis in this study is placed on evaluating the predictive power of both types

of parametric models in forecasting realised volatility. Additionally, the performance

of implied volatility is compared to that of parametric models. The most prominent

contribution of this study is that it is proposed in this chapter to model and predict

volatility within the framework of GAS models. With a variety of assumptions

on innovation terms, a series of observation-driven GARCH and GAS models are

fitted, and extensive comparisons between the performance of GARCH and GAS

are conducted so that the first systematic evaluation of these two representative

observation-driven models is implemented in this study, from which several new

findings are documented.

First, I find that GAS models tend to have lower predictions of realised volatil-

ity compared to those produced by GARCH models. More importantly, TLS-GAS

predictions on average are closer to RVs compared to other model-based predic-

tions. Second, while the SNW-GARCH model is found to be a better candidate

for describing the movement of market returns, the TLS-GAS model seems to be

the overall best performer in predicting RV at the daily horizon. Third, it can be

observed that while descriptive R2 of GAS models are generally lower than GARCH
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3.6. CONCLUSION

models at daily and weekly horizons, GARCH models have lower R2 than GAS

models at the monthly horizon. Furthermore, GARCH models are generally found

to have significantly lower forecasting errors measured by MAE compared to GAS,

indicating the superiority of GARCH over GAS in volatility modelling. However,

it is noteworthy that TLS-GAS has the lowest prediction error of 3.86 at the daily

horizon. Such outperformance is found to be statistically different and it is con-

firmed by out-of-sample R2 and CW test statistics. Fourth, pairwise out-of-sample

R-squared comparisons between models confirm the dominance of TLS-GAS at the

daily horizon.

Adopting a sub-sample during the 2007 - 2008 financial crisis, it is documented

that the SNW-GAS overwhelmingly dominates other models at the daily horizon,

indicating that the Weibull distribution is a more suitable candidate for financial

returns modelling during high market uncertainty. The dominance of SNW-GAS

lasts at the weekly horizon and disappears at the monthly horizon.

The predictive power of model-based forecasts is also compared to that of implied

volatility represented by IV and MFIV. Consistent with existing literature, the dom-

inance of implied volatility in describing the changes in realised volatility is observed.

Such superior predictive power is robust across horizons from 1 day up to 1 month

and it is found to be more robust as the forecasting horizon extends. Concerning

the prediction accuracy measured by MAE, IV and MFIV fail to outperform para-

metric models, and such inferior performance becomes weaker as the forecasting

horizon stretches. The DM test results indicate that, at the daily horizon, IV is not

statistically different from other model-based predictions in most cases (10 out of

16), while MFIV is significantly different from almost all other predictions (15 out of

16). This pattern continues at weekly horizons but becomes the opposite at monthly

horizons. Finally, the pairwise CW test statistics indicate that model-based fore-

casts consistently have lower prediction errors than IV and MFIV. Such superiority

of parametric models in prediction accuracy lasts for forecasting horizons from one
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day up to one month.
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Chapter 4

Option Pricing with

GARCH/GAS Models

4.1 Introduction

4.1.1 Option pricing models

The seminal work of Black and Scholes (1973) and Merton (1973) was followed by

a significant increase in pricing studies that attempted to determine the fair value

of contingent claims. It is also the answer to how to assign these contingent claims

a fair value. As one of the most common derivatives, options play an essential

role in financial markets. The value of an option presently is determined by its

possible payoffs at the maturity date. Following the non-arbitrage principle, Black

and Scholes (1973) proposed the closed-form BS option pricing model. It is worth

mentioning that the BS model is consistent with the Efficient Market Hypothesis

(ETH), where there exists a unique risk-neutral probability measure, such that the

discounted evolution of the underlying price is a martingale. In that case, the value

of an option (or other contingent claims) is simply the expectation of future payoffs
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discounted using risk-free rates. More discussions on the non-arbitrage principle can

be found in Harrison and Pliska (1981).

Volatility is proportional to the level of option prices. Hence it plays a vital role

in option pricing. It is natural to think that high-quality volatility forecasting im-

proves option pricing accuracy. In the practice of volatility forecasting, it is more

convenient to consider discrete-time models. In this field, a dominating group is the

Autoregressive Conditional Heteroskedasticity (ARCH) models developed by En-

gle (1982) and its generalised version Generalised Autoregressive Conditional Het-

eroskedasticity (GARCH) proposed by Bollerslev (1986). The GARCH models are

advantageous partly in their ability to capture the time-varying property of volatil-

ity. However, standard GARCH models have limited capability in characterising

the negative skewness and excess kurtosis that are commonly observed in financial

returns time series. This motivates the explosive growth of studies in extensions of

GARCH models. One important extension lies in the distribution of asset returns.

According to Bollerslev (1987), distributions with heavier tails, such as the Stu-

dent’s t distribution, can accommodate the excess kurtosis. Another candidate with

a similar feature is the Generalised Error Distribution (GED) proposed by Nelson

(1991). Another well-documented characteristic of volatility is its different responses

to positive and negative underlying return shocks. GARCH models specified with

these distributions are still insufficient to characterise the negative skewness at the

same time. A solution to this is to introduce asymmetry. This can be realised

by incorporating the ”leverage effects” using GARCH variations, such as threshold

GARCH, exponential GARCH and the GJR-GARCH (Glosten et al., 1993).

With reasonably estimated volatility, a variety of options pricing approaches exist

for practitioners to choose from. Among these, the Black-Scholes (BS) model is the

most popular one in practice. As it is analytical, the pricing can be accomplished

in milliseconds using modern computers. However, the problematic part of the BS

model is that it is developed based on a series of unrealistic assumptions. Among
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these, one of the most problematic ones is probably that the volatility, as one of the

inputs to the model, is assumed to be constant over time to maturity and across

the spectrum of strike prices. The concept of the ”volatility smile” is proposed

in Rubinstein (1985) to describe such volatility behaviour. Empirically, it can be

observed that volatility forms a surface against time to maturity and strikes. Apart

from this, the distribution of underlying asset returns is not necessarily normal. It

is reasonable that models that take into consideration the nature of volatility might

have improved performance.

In the derivation of the BS model, stock prices are assumed to follow a geometric

Brownian motion such that

dSt = µStdt+ σStdWt (4.1)

where St denotes the stock price at time t, µ is called the drift term that assigns St

some directional trend over time, σ is constant volatility and dWt is some Wiener

process.

Quite a few studies propose an improved option pricing model by relaxing the con-

stant volatility assumption. The critical logic lies in this strand of research is to

let volatility σ be stochastic. To the best of my knowledge, the first attempt that

takes into consideration stochastic volatility in the option pricing model was made

by Heston (1993).

dSt = µStdt+
√
νtStdW

S
t (4.2)

dνt = κ (θ − νt) dt+ ξ
√
νtdW

ν
t (4.3)

where νt is the instantaneous variance at time t, θ is the average variance in the

long run and ξ is usually referred to as the volatility of volatility. It determines

the variance of νt. κ is the reversion rate of νt towards θ. It can be shown that as

t ∼ ∞, νt ∼ θ. It is worth mentioning that if the condition 2κθ > ξ2 is satisfied, the
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process of νt will be strictly positive. This condition is called the Feller condition.

Following the above assumption on the evolution of asset prices, Heston (1993) shows

that the price of a European call option can be estimated using a formula analogous

to the BS model in terms of model structure.

C = S0P1 − e−rTKP2 (4.4)

where S0 stands for the spot price, K is the strike price, P1 is the option delta

and P2 is the risk-neutral probability that the call option expires in-the-money,

that is P (ST > K). One problem is that such density is not instantly available in

closed form. However, it can be calculated via the one-to-one mapping relationship

between the probability density and characteristic functions. By adopting inverse

Fourier transformation, Heston (1993) shows that

P1 =
1

2
+

1

π

∫ ∞

0

Re

[
e−iϕ ln(K)ψ(ϕ− i)

iϕψ(−i)

]
dϕ (4.5)

and

P2 =
1

2
+

1

π

∫ ∞

0

Re

[
e−iϕ ln(K)ψ(ϕ)

iϕ

]
dϕ (4.6)

where ψ(ϕ) is the characteristic function of the log price of the underlying asset.

Equations (4.4), (4.5) and (4.6) constitute the Heston (1993) option pricing model.

This approach, despite having a quasi-closed form, is still semi-analytical. This

is because the parameters that define the Heston stochastic process still need to

be estimated before using them to compute the characteristic function ψ(ϕ). The

relative advantage of this model is that once the parameters are obtained from

historical data, the option pricing can be done in a fraction of a second. Note that

some option approaches adopt Monte Carlo simulation to compute the expected

payoff of underlying, which can be very time-consuming.

In the framework of the GARCH model, Heston and Nandi (2000) assume that
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the log price of the underlying asset follows the GARCH process and proposes the

closed-form GARCH option valuation model

C =e−r(T−t)Et[Max(S(T )−K, 0)]

=
1

2
S(t) +

e−r(T−t)

π

∫ ∞

0

Re

[
K−iϕψ(iϕ+ 1)

iϕ

]
dϕ

−Ke−r(T−t)

(
1

2
+

1

π

∫ ∞

0

Re

[
K−iϕψ(iϕ)

iϕ

]
dϕ

) (4.7)

This discrete time model resembles the Heston (1993) continuous time model, and it

can be shown that the latter is the former’s limit when time is continuous (Christof-

fersen et al., 2006).

Instead of having closed-form solutions, some other methods emphasise finding out

the process that describes the evolution of the underlying under the risk-neutral mea-

sure Q. To the best of my knowledge, Duan (1995) was the first to systematically

build a theoretical framework for option pricing under the context of the GARCH

model. The most important work in Duan (1995) is generalising the concept of

risk-neural pricing by introducing the Locally Risk-Neutral Valuation Relationship

(LRNVR). This enables us to select an equivalent martingale under the GARCH

model with normal innovation. However, this approach does not apply to GARCH

models with non-normal innovations. Adopting a different risk-neutralisation ap-

proach, Duan (1999) proposes a model with innovation terms following generalised

error distribution (GED). Stentoft (2008) uses the same method to find the risk-

neutral representation for the GARCH model with normal inverse Gaussian innova-

tion. The normalised density function of GED is given by

fφ(ξ) =
φ

21+
1
φ θ(φ)Γ

(
1
φ

) exp

(
−1

2

∣∣∣∣ ξ

θ(φ)

∣∣∣∣φ) (4.8)
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where

θ(φ) =

2−
2
φΓ
(

1
φ

)
Γ
(

3
φ

)


1
2

(4.9)

and where Γ(·) is the Gamma function. ξ has a zero skewness and kurtosis of

κ(φ) =
Γ
(

5
φ

)
Γ
(

1
φ

)
Γ
(

3
φ

)2 (4.10)

It can be shown that when φ = 2 κ = 0, and f(ξ) = 1√
2π

exp
(
−1

2
ξ2
)
. This means

that the standard normal distribution is nested in GED, as a special case when

φ = 2.

Neither Duan (1995) nor Duan (1999) provide closed form solution as in Heston

(1993) and Heston and Nandi (2000). Instead, in these approaches, option pric-

ing is done via simulations after obtaining the risk-neutralised representation of the

underlying price dynamics. This is less cost-effective and less accurate occasion-

ally. Another study that follows a similar fashion is Christoffersen et al. (2006).

They propose a GARCH model with inverse Gaussian innovation. The difference

is that, in their study, the framework of the Esscher transform is adopted for risk-

neutralisation, after which option pricing is implemented again via Monte Carlo

simulations. Other beneficial attempts on making different assumptions on the in-

novation term within the GARCH framework include Shifted Gamma distribution

in Tong et al. (2004) under GARCH framework and Badescu et al. (2008) in which

a mixture normal innovation is adopted.

4.1.2 Risk-neutralisation

Harrison and Pliska (1981) documented a valid mathematical illustration of the

relation between the no-arbitrage principle and asset pricing under risk-neutral

measures. According to their study, if no arbitrage opportunities can be found, it
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means that there exists an Equivalent Martingale Measure (EMM). Consequently,

the unique prices for any contingent claims can be estimated by discounting ex-

pected payoffs at maturity under such martingale measure. However, the complete

market assumption is problematic, and there is normally more than one EMM and

hence a range of contingent claim prices. In this case, it is important to select one

EMM under which the contingent claim price is economically justifiable. To this

point, Gerber and Shiu (1994) propose an elegant approach for EMM selection via

the Esscher transform. The latter is a widely applied tool in actuarial science, de-

veloped by Escher (1932), in an incomplete market setting. The most appealing

part of their approach is that it provides more flexibility for practitioners to choose

from a range of parametric models, such as the observation-driven GARCH and

GAS models. These models can be used for option pricing in a convenient way.

It is worth mentioning that the option prices given by the Esscher transform are

consistent with those from the maximisation of the expected power utility of an

economy. On the basis of Gerber and Shiu (1994), Bühlmann et al. (1996) propose

a generalisation of the Esscher transform in the context of a stochastic process. The

concept of conditional Esscher transforms was introduced in order to incorporate

semi-martingale under the no-arbitrage condition.

The Esscher transform is not the only way to identify EMM. To obtain these risk-

neutral measures, one can also resort to the previously introduced LRNVR proposed

by Duan (1995). However, one pre-requisite of applying this approach is that the

distribution of innovation terms must be normal. Since the emphasis of our study

is to explore and scrutinise alternative assumptions on error terms other than nor-

mality and to make comparisons between GARCH models and corresponding GAS

counterparts, a more flexible method for computing risk-neutral measures is ap-

pealing. The Extended Girsanov Principle (EGP), proposed by Elliott and Madan

(1998) fixes the gap. Consistent with Tong et al. (2004), in this study, the Esscher

transform is applied to the parameters calibrated under the P measure to obtain
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their counterparts under the Q measure, under which the option valuations are

implemented.

4.1.3 Contributions

My study contributes to the strand of literature represented by Duan (1995) and

Duan (1999), where, in order to value options, simulations are applied after risk-

neutralising GARCH models. The first innovation of my study is that, instead of

GARCH models, I construct GAS models based of different assumptions on the

distribution of market returns. The second innovation of my study is that the GAS

models’ representations under risk-neutral measure are found out by adopting the

Esscher transform, as in (Tong et al., 2004). This is because the Esscher trans-

form has higher flexibility in dealing with non-normally distributed innovations. As

the proposed GAS models in this study have innovation terms that follow shifted

Gamma process, the Esscher transform is a good candidate for risk-neutralisation.

The Gamma innovation term is chosen because of its capability in accounting for

the skewness exhibited in financial returns (Tong et al., 2004).

The primary finding of this study is that, in terms of pricing accuracy measured by

Mean Absolute Percentage Error (MAPE), the GAS models with shifted Gamma

innovation (SG-GAS) and shifted negative Gamma innovation (SNG-GAS) signifi-

cantly outperform other competing models including the BS model, GARCH model

with normal innovation (GARCH) and GAS model with normal innovation (GAS).

It is also reported in this study that while all the models seem to suffer from drops

in pricing accuracy from the pre-crisis period to the post-crisis period, the superior

performance of SG-GAS and SNG-GAS models stays unchanged. In fact, it is even

more significant in a normal market atmosphere. During the 2007-2008 financial

crisis, the GAS models with Gamma innovations are no longer the best performers.
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Instead, the observation-based models with normal innovation (GARCH and GAS)

tend to have relatively better performance during this massive market uncertainty.

To investigate the source of the outperformance of GAS models with shifted Gamma

innovations, the option valuation performance of all models is tested across a range

of moneyness levels, and across a variety of times to maturity. I find that the superior

pricing performance of SG-GAS and SNG-GAS is mainly due to their ability to more

accurately price Deep Out-of-the-Money (dOTM) options. Given that the number

of near-the-money options is 10924 and the number of OTM options is 31773, it

is reasonable to think that it is the superiority of SG-GAS and SNG-GAS models

in pricing OTM options that drives their overall outperformance in option pricing.

It can be observed that SG-GAS and SNG-GAS models perform better in pricing

options with longer maturities as well.

Designed Monte Carlo simulation studies, instantly show that under the Q measure,

the density implied by SNG-GAS model tends to have fatter tails compared to that

implied by the GARCH model with normal innovations. Such a pattern can be

consistently observed for density simulated 30 days to 360 days from now. Such

behaviour of the SNG-GAS model indicates that it tends to overestimate tail risk,

which is related to the price of OTM options. Note that it is reported that the BS

model is flawed due to its inferior accuracy in pricing OTM options because of its

tendency to underestimate tail risk. The GARCH model is found to have a similar

performance as the BS model.

The rest of this chapter is organised as follows: Section 4.2 introduces the framework

of the GARCH model. Section 4.3 illustrates the mechanism of the GAS model,

including how the re-parameterisation is implemented via the link function and

how the parameters are estimated via Maximum Likelihood Estimation (MLE).

Section 4.4 briefly introduces the Esserch transform and how it can be applied to

option pricing. In Section 4.5 I construct a GAS model with normal innovation
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(GAS) and adopt the Esscher transform to obtain the GAS model for option pricing

under Qmeasure. Following a similar procedure, the GAS option pricing model with

shifted Gamma (SG-GAS) and shifted negative Gamma (SNG-GAS) innovations

are constructed. Furthermore, GARCH models with normal and shifted Gamma

innovations are also constructed as comparisons to GAS models. In Section 4.6, I

design and conduct a simulation study using all 4 parametric models. It can be

shown in this section that, from P measure to Q measure, the distribution of the

terminal index level simulated by the GAS model with normal innovation is shifted

leftwards by the Esscher transform, while the distribution of the terminal index

level simulated by SNG-GAS is skewed by the transform. I also show that the SNG-

GAS model, due to its ability in simulating more skewed index levels, could be a

more reasonable choice for option pricing, especially for those deep out-of-the-money

ones. I also present and compare in this section the volatility smile characterised

by all observation-driven models over different horizons. In Section 4.7, I use DJIA

index historical data option data to train GARCH and GAS models and evaluate

model performance by computing the MAPE of estimated option prices against

corresponding option quotes in the real world. Section 4.8 concludes.

4.2 GARCH Models

The ARCH model was first developed by Engle (1982) to forecast conditional vari-

ances. In an ARCH(p) model, the conditional variance is dependent on p-order

lagged squared errors. The model can be written down as

yt = µt + ξt

ht = ω +

p∑
i=1

αiξ
2
t−i.

(4.11)
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where yt in our study is log-returns of an asset, µt is the mean value of yt that changes

over time, and ξ is called the innovation term or error term, ht is the conditional

variance of the error term, ω is some constant value, αi is defined as the coefficients

of lagged terms of ξ.

The ARCH models are able to capture some features of volatility, such as volatility

clustering (Bera and Higgins, 1993). However, it still has an obvious disadvantage.

As it is widely known, volatility exhibits strong dependency even after long lags.

As documented by Abdalla (2012), it can be difficult to estimate a large number of

ARCH parameters due to a large number of lagged terms. The GARCH model, as a

generalisation of the ARCH model, avoids the long-lag structure of ARCH models.

The GARCH model can be described by the equation below:

yt = µt + ξt (4.12)

ht = ω +

p∑
i=1

αiξ
2
t−i +

q∑
j=1

βjht−j. (4.13)

In the application of option pricing, one important property of the GARCH model

is that it is non-Markovian (Duan, 1995). More specifically, the GARCH volatility

(hence the GARCH option prices) is dependent on the information set at present

and in the past. This forms the foundation of dynamically making one-step-ahead

volatility forecasts. The GARCH model, when first proposed, was still inadequate

to capture some commonly observed features in financial returns time series, such as

the asymmetric responses to positive and negative returns shocks. Plenty of GARCH

extensions have been developed to account for such an effect. Another problematic

part of the GARCH model is that the innovation term ξ is not necessarily normally

distributed. In fact, returns series tend to be leptokurtic. According to Bollerslev

(1987) and Baillie and Bollerslev (1989), the normality assumption fails to accom-

modate such behaviour of asset returns. Tong et al. (2004), within the GARCH

framework, propose to assume that the innovation terms ξ follow a shifted Gamma
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distribution, as it has the ability to account for the skewness of stock returns.

4.3 GAS Models

Time-varying parameters are appealing in describing stochastic processes. The

GARCH model is one of the examples of time-varying parameter models. Apart

from GARCH, the stochastic volatility model is another candidate; see Shephard

(2005) for a review. According to Creal et al. (2014) and Harvey (2013), two chal-

lenges are confronted by these models. First, it can be difficult to estimate the

parameters. Second, the shape parameter that also characterises a distribution is

not appropriately take into consideration by these models. Creal et al. (2014) and

Harvey (2013) propose the Generalised Autoregressive Score (GAS) model, where

the score of the conditional density function is set as the driver of changes in pa-

rameters over time. It is worth mentioning that another name for the GAS model

is the Dynamic Conditional Score (DCS) model.

4.3.1 The Framework of GAS

Denote the random variable we attempt to model by yt, and let ft denote the time-

varying parameter that is relevant to the distribution of yt. Further denote the

information set until time t as It, the GAS model supposes that the data gener-

ating process yt is dependent on past information It−1 and ft plus a set of static

hyperparameters θ. The variable yt is predicted to have a distribution as below:

yt ∼ p (It−1, ft; θ) (4.14)
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For a GAS(1,1) model, the updating process for time-varying parameter ft can be

represented as

ft+1 = ω + αSt∇t + βft (4.15)

where ω is a vector of constants that usually take values of unconditional expecta-

tions of ft. St is a scaling matrix of the log density of observations. It is computed

as the score of ln p (yt | It, ft; θ)

∇t =

[
∂ ln p (yt | It, ft; θ)

∂ft

]
(4.16)

The coefficient matrices α, β, together with ω are functions of static parameter θ.

Clearly, the innovative part of the representation is that the scaled score function

is adopted as the driver in the updating process of ft. It bridges all the parameters

that define the conditional distributions of observations to changes in ft. The scaling

matrix St can be written as

St = I−d
t (4.17)

where It is the information matrix of the observation density. d is called the scaling

coefficient, and its value is usually chosen between 0, 0.5 or 1. In this chapter, d is

set to 1. Under this condition, following Creal et al. (2012), the scaling matrix St

can be calculated as:

St = I−1
t = −Et

[
∇t∇T

t

]−1
(4.18)

As illustrated above, when modelling using GAS models, the shape of observation

density matters. If the time series is inclusive of changes in the shape of its distri-

bution at some points in time, such changes can be captured by the time-varying

parameters during the updating process of ft. Figure 4.1 is an illustration of the

nature of the GAS model, where it can be observed that the shape of distributions

indeed changes over time. This indicates more flexibility is provided by GAS models

and hence possibly improved power in characterising volatility movements.
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Figure 4.1: Time-varying density implied by SNG-GAS
Notes: This figure plots time-varying kernel densities implied by SNG-GAS. The X-axis represents

the dates considered, and the Y-axis depicts the SNG-GAS simulated distribution of logarithmic

returns.

4.3.2 Re-parameterisation

It is clear that the time-varying parameters, ft, do not have boundaries from equa-

tion (4.15). In practice, restrictions are occasionally set on ft, such that the updating

process does not produce unreasonable values. For example, if the innovation term

is assumed to follow a normal distribution and assumes that the variance ht is time-

varying, it is then necessary to make sure ft = ht is positive, as variance cannot be

negative. However, it is not necessary that the positiveness of ft is guaranteed at

each stage during the updating recursion within the estimation process. Under such

circumstances, one solution we can resort to is re-parameterisation with respect to

ft via some link functions. The procedure is proposed and illustrated in Creal et al.

(2012).

Here I provide an example in which the innovation term ξt is normally distributed

by assumption, that is, ξt ∼ N(µt, σ
2
t ). Further assume that µt = 0 and f ′

t = lnσ2
t .

Clearly, since σ2
t = exp f ′

t , the positiveness of σ
2
t is ensured in the estimation process.

The updated GAS updating process using re-parameterised time-varying parameters
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f ′
t is then

f ′
t+1 = ω + αS ′

t∇′
t + βf ′

t (4.19)

where

∇′
t =

[
∂ ln p (yt | It, ft; θ)

∂f ′
t

]
(4.20)

It is obvious that the original recursion in equation (4.15) is impacted by re-parameterisation

from ft to f
′
t . Note that, after re-parameterisation, the coefficients ω, α and β are

still functions of the static parameter θ. Define the mapping from ft to f
′
t as M,

and let M(ft) = ln σ2
t . The Jacobian of M can be calculated as:

M′
t =

∂M (ft)

∂(ft)
=

1

σ2
t

(4.21)

In accordance with Creal et al. (2012), if the logarithmic link function is applied for

re-parameterisation of ft given that d = 1, it can be shown that

S ′
t∇′

t = M′
tSt∇t (4.22)

In this chapter, (4.22) is used to compute linked scaled scores after re-parameterisation.

4.3.3 Maximum Likelihood Estimation

One important step before option valuation is to produce forecasts of volatility

using the GAS model. Essentially, the aim is to dynamically obtain estimations

of the static hyperparameters θ via Maximum Likelihood Estimation (MLE) using

historical data on a rolling window basis.

Mathematically,

θ̂t = argmax
θ

N∑
t=1

ln p (yt | ft, It−1; θ) (4.23)

where the initial values θ̂1 =
ω

1−β
is equal to the unconditional expectation of f ′

t .
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Obtaining the log-likelihood functions is quite straightforward. At each point in

time, the updating equation outputs a conditional parameter that determines the

density of innovation term ξt at each estimation. Connecting the conditional pa-

rameter to the log-likelihood function, the next step is to search for a set of θ that

maximises the value of the log-likelihood function.

There are two challenging setbacks in the procedure of fitting GAS models via MLE.

First, according to Catania and Billé (2017), the maximum likelihood estimation of

the GAS model is an ongoing research topic. See for example, Harvey (2013),

Blasques et al. (2014b), Blasques et al. (2014a) for some generally reported results.

Harvey (2013) introduces the conditions for deriving the asymptotic distribution of

the maximum likelihood estimations. Similarly, Blasques et al. (2016) proposes the

conditions under which the GAS models are invertible, which is important to ensure

asymptotic normality of the maximum likelihood estimations. Second, although the

maximum likelihood estimators are asymptotically Gaussian, the numerical maximi-

sation of the log-likelihood function can be challenging since appropriate starting

values need to be selected with caution.

4.4 The Esscher Transform

The Esscher transform has been a popular tool in actuarial science. An overview can

be found in (Tong et al., 2004). The Esscher Transform is adopted by Gerber and

Shiu (1994) to find out an Equivalent Martingale Measure (EMM), which can be

efficiently used in option valuation. The generalised version of the Esscher Transform

for stochastic processes was proposed by Bühlmann et al. (1996). The advantageous

feature of the Esscher Transform that distinguishes it from other methods, such as

the LRNVR by Duan (1995) is that the former is more flexible in accounting for

different distributions of the innovation term within observation-driven models like
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GARCH and GAS, while the latter usually requires a normality assumption on the

innovation term.

To show how the Esscher Transform works, let δt be a stochastic process and let It be

the information set at time t. Suppose that δt is known given It−1. The conditional

Moment Generating Function (MGF) of the stochastic process of the variable of

interest yt under the probability measure P can be expressed as:

Myt|Φt−1(z) := EP (e
zyt | Φt−1) (4.24)

Note that the moment generating functionMyt|Φt−1(z) exists if and only ifEP (e
zyt | Φt−1) <

∞. According to Bühlmann et al. (1996), the Radon-Nikodym derivative can be cal-

culated by the sequence below:

dQ
dP

∣∣∣∣
It

=
t∏

k=1

eθkyk

Myk|Φk−1
(θk)

(4.25)

Define the sequence with Λt, it is clear that Λ0 = 1. Following Tong et al. (2004),

by the martingale property of Λt, the risk-neutralised moment generating function

can be computed as follows:

Myt|Φt−1 (z; θt) =
Myt|Φt−1 (z + θt)

Myt|Φt−1 (θt)
(4.26)

where δt is called the conditional Esscher parameter. The Esscher Parameters can

be dynamically solved from the equation below:

r = ln
{
Myt|Φt−1 (1; δ

q
t )
}

(4.27)

After the sequence of δqt is obtained, they have substituted back into (4.26) to

finally compute the moment generating function under the Q measure. Under the

equivalent martingale measure, option prices are simply discounted payoffs of the
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underlying at the risk-free rate.

4.5 GAS Models for Option Pricing

This section introduces our models of interest. Within the GAS framework, the

innovation term is assumed to follow a Gaussian distribution, shifted Gamma dis-

tribution and shifted negative Gamma distribution to construct corresponding GAS

models. I show that if the error term is a Gaussian process, the derived model is

consistent with that of Duan (1995), where LRNVR is the adopted method for risk-

neutralisation. When the innovation term follows shifted Gamma (SG) or shifted

negative Gamma distribution conditionally by assumption, the risk-neutralised error

term of Gamma-process in Tong et al. (2004) and the error term of IG-GARCH in

Christoffersen et al. (2006) can be retrieved. All models in this study are specified

with GAS(1,1) structure as it is the most widely applied. The models are used to

predict conditional volatility in the first stage and the predictions, together with the

fitted static parameters, are utilised to price options via Monte Carlo simulations.

4.5.1 GAS with Gaussian Innovation

Recall that the process of the variable of interest can be expressed by (4.12) and

(4.13), where µt is some mean process and (4.12) is called the mean equation of

GARCH model. µt can have different specifications, such as ARMA structure. In

this study, the common choice of µt in Duan (1995) is applied.

To start, suppose that the evolution of asset price is described by the stochastic

differential equation below:

St = St−1 exp

(
r + λ

√
ht −

1

2
ht + ξt

)
(4.28)
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where r is the risk-free rate, λ is a constant and is normally a proxy of the unit price

of risk. Clearly, the function of a stochastic process ξt here is to introduce shocks

into the evolution of asset prices.

Taking logs on both sides:

ln

(
St

St−1

)
= r + λ

√
ht −

1

2
ht + ξt (4.29)

Clearly, the left-hand side is the logarithmic returns of an asset. Denote it by yt,

the mean equation of the model is obtained as:

yt = r + λ
√
ht −

1

2
ht + ξt (4.30)

In the GAS environment, the updating process of factor ft can be described by:

ft+1 = ω + αSt∇t + βft (4.31)

Applying the logarithmic link function so that f ′
t = ln ft, and the updating process

changes to:

f ′
t+1 = ω + αS ′

t∇′
t + βf ′

t (4.32)

To construct the Normal GAS model, assume that ξt is a Gaussian process with

time-varying variance ht, that is, ξt ∼ N(0, ht). Note that under such circumstances,

the asset logarithmic returns are also normally distributed with time-varying mean

µt = r + λ
√
ht − 1

2
ht. The probability density function of ξt is:

fξt(y) =
1√
2πht

e

(
− y2

2ht

)
, µ ∈ R, ht ∈ R+ (4.33)

Hence the log density can be calculated as follows:

ln fξt(y) =
−1

2
ln 2πht −

y2

2ht
(4.34)
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and the score function where variance is set as the time-varying parameter is:

∇t =
∂ ln fξt(y)

∂ht
=

−1

2ht

(
1− y2

ht

)
(4.35)

Recall that to ensure the positiveness of ht, the logarithmic link function is applied.

As a consequence, the Jacobian of the mapping function M in the normal GAS case

is calculated as:

M′
t =

1

ht
(4.36)

Given that the value of the scaling coefficient is set to 1, the scaling matrix of the

score function is computed as:

St = I−1
t = −Et

[
∇t∇T

t

]−1
= 2h2t (4.37)

By (4.22), the parameterised recursion equation (4.32) can be rewritten as:

f ′
t+1 = ω + αM′

tSt∇t + βf ′
t (4.38)

Equation (4.30) and (4.38) compose the normal GAS(1,1) model under the P mea-

sure. The parameters of the model can be estimated via MLE.

Since the aim is derivative pricing, it is still necessary to find out the risk-neutralised

parameters. Following Tong et al. (2004), the first step is to compute the conditional

Esscher parameter δqt . Let σ2
t = ht, the conditional moment generating function

(MGF) of the normal distribution is:

Myt|Φt−1(z) = exp
(
µtz + σ2

t z
2/2
)

(4.39)
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From (4.26) and (4.27):

exp (r) =Myt|Φt−1 (1; θ
q
t )

=
Myt|Φt−1 (1 + δqt )

Myt|Φt−1 (δ
q
t )

=
exp

[
(1 + δqt )

(
r + λ

√
ht − 1

2
ht
)
+ 1

2
(1 + δqt )

2 ht

]
exp

[
δqt
(
r + λ

√
ht − 1

2
ht
)
+ 1

2
δq2t ht

]
(4.40)

Solving for δqt , we have δqt = − λ√
ht
. Substitute it back into (4.26), the conditional

moment generating function under the Q measure can be written down as follows:

Myt|Φt−1 (z; θ
q
t ) =

Myt|Φt−1 (z + θqt )

Myt|Φt−1 (θ
q
t )

=
exp

[
(z + θqt )

(
r + λ

√
ht − 1

2
ht
)
+ 1

2
(z + θqt )

2 ht

]
exp

[
θqt
(
r + λ

√
ht − 1

2
ht
)
+ 1

2
θq2t ht

]
= exp

[
z

(
r − 1

2
ht

)
+

1

2
z2ht

)] (4.41)

It can be observed from the result above that the conditional distribution of yt

under Q is still normal. The mean, compared to that under P is left shifted to

r − 1
2
ht, while the variance ht remains unchanged. It is necessary to note that the

shift is essentially made with respect to the original error term. In other words, the

conditional mean of error term ξt under Q is −λ
√
ht. Let ξ∗t = ξt + λ

√
ht be the

updated innovation term under Q, we have ξ∗t ∼ N(0, ht). The GAS(1,1) model

under risk-neutral probability measure can be described as:

yt = r − 1

2
ht + ξ∗t , ξ∗t ∼ N(0, ht) (4.42)

f ∗
t = lnht (4.43)

f ∗
t+1 = ω + αM′

tSt∇t + βf ∗
t (4.44)
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4.5.2 GAS with Gamma Innovation

Tong et al. (2004) document that the GARCH model with shifted Gamma dis-

tributed innovation can be used to better deal with the skewed characteristic of

asset returns. Assuming that the innovation process can be described by condi-

tional shifted Gamma distribution, I construct the SG-GAS model. In the same

way, I also assume that the innovation term follows conditional shifted negative

Gamma distribution and fits the SNG-GAS model accordingly.

Let Xt be a stochastic process under P measure. Suppose that for any t ∈ T , Xt

are independently distributed. Let G(a, b) define a Gamma distribution with shape

parameter a and scale parameter b. I assume that Xt ∼ G(a, bt). Note that the scale

parameter bt is set to be changing over time in the GAS mechanism. For simplicity, I

omit the subscript t in the model derivation below. The probability density function

of Xt is given by:

fXt(y) =
1

Γ(a)ba
ya−1e−

y
b (4.45)

Furthermore, the mean of Xt is:

µ = ab (4.46)

and the variance can be computed as:

h = ab2 (4.47)

It should be noted that the support of the Gamma distribution is y ∈ (0,∞).

However, one fact of asset returns is that it can be both positive and negative. In

this case, I consider applying shifted Gamma distribution to model the innovation

term. Essentially, the innovation term is shifted such that only positive values are

considered. Following Tong et al. (2004), first define the innovation term of asset
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returns by ξt, which can be calculated as:

ξt =
√
ht

(
Xt − ab√

ab2

)
(4.48)

It is easy to see that under P, the shifted innovation process ξt is a standardised

Gamma distribution that has a zero mean and time-varying variance ht. Under such

circumstances, the logarithmic returns process yt can be re-written as:

yt = r + λ
√
ht −

1

2
ht + ξt

= r + λ
√
ht −

1

2
ht −

√
aht +

1

b

√
ht
a
Xt

(4.49)

From the scaling property of Gamma distribution, if

Xt ∼ G(a, b) (4.50)

then

cXt ∼ G(a, cb) (4.51)

It is easy to see that the last component of (4.49) follows Gamma distribution with

shape parameter a and scale parameter
√

ht

a
. The moment-generating function of

yt can be written as:

Myt(θ) = (1− bθ)−a

=

( √
a
ht√

a
ht

− θ

)a

exp

[(
r + λ

√
ht −

1

2
ht −

√
aht

)
θ

] (4.52)

The moment generating function of yt after the Esscher Transform is given by:

Myt|Φt−1 (z; θt) =

( √
a
ht

− θt√
a
ht

− θt − z

)a

exp

[(
r + λ

√
ht −

1

2
ht −

√
aht

)
z

]
(4.53)

Following (4.26) and (4.27), the conditional Esscher parameter under measure Q
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can be solved for as:

θqt =

√
a

ht
−

[
1− exp

(
λ
√
ht − 1

2
ht −

√
aht

a

)]−1

(4.54)

Recall that bt is the scale parameter of yt under P. Following Tong et al. (2004), let

bqt denote the corresponding scale parameter under Q, then bqt is defined as:

bqt = bt − θqt

=

[
1− exp

(
λ
√
ht − 1

2
ht −

√
aht

a

)]−1 (4.55)

It is obvious that, under Q, yt again is a shifted Gamma process with shape param-

eter a, scale parameter bqt and shift parameter −r − λ
√
ht +

1
2
ht +

√
aht. That is,

from P to Q, the Esscher transform solely works on modifying the scale parameter.

Denote the error term of yt under Q by ξ∗t ∼ G(a, bqt ). The density function of ξ∗t is:

fξ∗t (y) =
1

Γ(a)(bqt )
a
ya−1e

− y

b
q
t (4.56)

The corresponding logarithmic density function is given by:

ln fξ∗t (y) = (a− 1) ln y − y

bqt
− ln Γ(a)− a ln bqt (4.57)

Let f ∗
t = ln bqt , the score function, the Jacobian of the mapping function and the

scaling function are given by:

∇∗
t =

∂ ln fξ∗t (y)

∂bqt
=

y

(bqt )
2
− a

bqt
(4.58)

M′∗
t =

1

bqt
(4.59)

and

S∗
t = −Et

[
∇∗

t (∇∗
t )

T
]−1

=
(bqt )

2

a
(4.60)
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Hence, the GAS model with shifted Gamma innovation (SG-GAS) under Q is given

by:

yt = r + λ
√
ht −

1

2
ht −

√
aht + ξ∗t , ξ∗t ∼ G(a, bqt ) (4.61)

f ∗
t = ln bqt (4.62)

f ∗
t+1 = ω + αM′∗

tS
∗
t∇∗

t + βf ∗
t (4.63)

For the purpose of option pricing, (4.61), (4.62), and (4.63) constitute the process

applied to simulate the evolution of underlying asset prices underQ. It is noteworthy

that the risk-neutralisation of shifted Gamma innovation term is different from that

in the Gaussian case, where the Esscher transform does not change the time-varying

parameter ht, hence functions M′, St and ∇t obtained under P can be used directly

to generate underlying prices. The only operation needed is to shift the mean of yt.

In contrast, the scale parameter of shifted Gamma innovation changes to bqt under

Q. This means that the functions M′∗, S∗
t and ∇∗

t under Q are different from their

counterparts under P.

In terms of the GAS model with shifted negative Gamma error term (SNG-GAS), the

derivation procedure is quite similar. The difference is that, at the very beginning

of model construction, the Gamma process Xt ∼ G(a, b) changes to Xt ∼ −G(a, b).

As a result, the scaled error term follows a negative Gamma distribution denoted

as −G(a,
√

ht

a
).

4.6 Simulation Study Design

Inspired by Tong et al. (2004) and Zhu and Ling (2015), in this section, I implement

a series of Monte Carlo simulation studies to investigate and compare the properties

of the models of interest. Four models are involved: GARCH, GAS, SG-GAS and

SNG-GAS. First, using each model, I simulate the underlying price process under
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both P and Q. The aim is to show how risk-neutralisation makes a difference to the

distributions of simulated underlying prices. Second, under Q, I make comparisons

between the GAS model with Gaussian innovation and the GAS model with shifted

negative Gamma innovation. Third, I inspect and compare the implied volatility

smile given by these models.

4.6.1 Innovation from P to Q

Using the logarithmic returns of the Dow Jones Industrial Average index between

31/12/2012 and 31/12/2017 and the corresponding risk-free rate proxied by 3-month

T-bill rates, I train GARCH, GAS, SG-GAS and SNG-GAS models, and obtain a set

of static parameters for each model. These parameters are used to generate 20000

paths of the underlying price evolution under P and Q respectively. Conventionally,

the risk-free rate is set to zero, and the number of steps (or time to maturity in

option pricing language) is set to 30 days. For each model, I keep and plot the

distribution of its terminal values from simulations. Figure 4.2 exhibits comparisons

between terminal price distributions under P and Q for each model.

First, for the GARCH and GAS with normal innovations, our finding is consistent

with existing literature, that the risk-neutralisation by the Esscher transform is

essentially making a leftwards horizontal shift to the original distribution under P. It

can also be observed that, compared to the GAS model, the GARCH model tends to

generate more extreme values or outliers. This is reflected by its significantly longer

tails. Second, consistent with our previous illustration, GAS models with shifted

Gamma innovations tend to be more negatively skewed under Q compared to those

under P. This is because the Esscher transform only affects the scale parameter b

and the skewness of the Gamma distribution is equal to 2√
b
, which indicates that

the skewness of the Gamma distribution is solely determined by its scale parameter.
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Figure 4.2: Simulated density under P and Q
Notes: This figure plots densities of underlying prices simulated by GARCH, GAS, SG-GAS and

SNG-GAS. By convention, the risk-free rate is set to zero, and the number of simulation steps is

set to 30. For each model, 20000 paths of underlying price evolution are generated under P and Q

respectively.

4.6.2 Innovation From Gaussian to SNG

Adopting an identical sample as in the above subsection, I investigate behaviours

of the GAS model with normal innovation and the GAS model with shifted neg-

ative Gamma innovation under risk-neutral measures. I do not include SG-GAS

because its behaviour is quite similar to that of SNG-GAS. In terms of the number

of simulation steps, in addition to 30 days, I also include 90 days, 180 days and

360 days so that it is possible to inspect how assumptions on the distribution of

asset returns differentiate models in simulating asset price processes across different

horizons. From Figure 4.3, It can be observed that under the GAS mechanism, sim-

ulated ending prices from both GAS and SNG-GAS models tend to be identically

widely distributed. Furthermore, as the number of simulation steps increases, the

ending prices become more and more widely distributed, which is consistent with

intuition. Second, it is obvious that, compared to the GAS model, the distribution

of simulated ending values from the SNG-GAS model has significantly fatter tails.

In other words, if the SNG-GAS model is adopted to run the simulations, simulated
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prices that are more deviated from the starting value are more frequently observed.

This is very important, as this means that the GAS models with shifted Gamma

innovation tend to overestimate the tail risk, which is underestimated by BS and

GARCH models, and thus overestimate prices of out-of-the-money options that are

related to tail risk. Hence, the proposed SNG-GAS model tends to have the overall

best performance.

Figure 4.3: Simulated density by models under Q
Notes: This figure depicts densities of underlying prices simulated by GARCH and SNG-GAS

under Q measure. By convention, the risk-free rate is set to zero, and the number of simulation

steps is set to 30, 90, 180, and 360. For each model, 20000 paths of underlying price evolution

are generated. The solid lines represent the density implied by GARCH and the dashed lines,

SNG-GAS.

4.6.3 Volatility Smile

In this subsection, I take a further step into checking how implied volatility changes

in accordance with different assumptions on innovation terms and hence different

models. Following the procedure in Zhu and Ling (2015), to obtain to parameters for

running simulations, I first fit GARCH, GAS, SG-GAS and SNG-GAS models using

a historical data set that consists of DJIA log-returns and corresponding 3-month

T-bill rates. Within the data set, 5538 observations ranging from 03/01/1996 to

31/12/2017 are included. The estimated parameters are used to estimate European
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call option prices via Monte Carlo simulations. Similarly to Duan (1995) and Zhu

and Ling (2015), in the simulation procedure, the risk-free rate is set as r = 0, and

the strike price is set as K = 1 so that by adjusting the input of spot price S0, a

series of moneyness S/K ranging from 0.9 to 1.1 is obtained. The time to maturity

(TTM) is between 30 days, 90 days and 180 days, and the starting value of variance

that is used to initiate the simulation process is 0.8h0 or h0, where h0 is the variance

of log-returns series adopted in the model training process.

Applying each model, I run 20000 simulations for each S/K and for each time to

maturity to obtain estimated call option prices. Then I inversely apply the Black-

Scholes model to convert these call option prices into implied volatility. Figures

4.4, 4.5 and 4.6 depict implied volatility given by different option pricing models

across different times to maturity and starting from different initial variances. I

document a few findings from these plots. First, the most significant difference

between these models’ implied volatility is that, while others tend to show volatility

smile to some extent, the SNG-GAS implied volatility exhibits a volatility smirk

across all maturities and initial variances. Zhu and Ling (2015) find that the implied

volatility curve is U-shaped when the innovation term is assumed to follow the

normal distribution, while the curve tends to be skewed when the innovation terms

are assumed to follow a distribution, such as shifted Gamma distribution, that takes

into consideration the leverage effect of asset returns to volatility. Our finding is

consistent with Zhu and Ling (2015) and it indicates that the SNG-GAS model may

overestimate out-of-the-money call options.

Second, models assumed to have Gamma innovation tend to show higher implied

volatility compared to those with Gaussian innovations. More specifically, the SNG-

GAS model implied volatility is the highest among all candidate models, this is

followed by SG-GAS implied volatility. Such behaviour is observed across TTM

from 30 days to 180 days, and as TTM stretches, SNG-GAS and SG-GAS start to

imply more and more significantly higher volatility compared to GARCH and GAS
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models.

Third, consistent with Zhu and Ling (2015), I document as well that the level of

implied volatility curves is determined by the input of initial variance. The curves

shift upwards as the initial variance increases. Fourth, I report that the U-shape of

each implied volatility curve gradually disappears as the time to maturity extends.

This is again documented in Zhu and Ling (2015).

Figure 4.4: Implied volatility smile at 30-day horizon
Notes: This figure plots the curve of 30-day volatility implied by GARCH, GAS, SG-GAS, and

SNG-GAS. Consistent with existing literature, the risk-free rate is set to be zero, and initial

variance is set to be 80%, 90% and 100% of long-term variance. The strike price is set to be 1,

such that in each scenario, the implied volatility is computed across moneyness ranging from 0.9

to 1.1.

4.7 Model Application

4.7.1 Data

In this section, I adopt real-world data to test the performance of our models. I

obtain the DJIA logarithmic returns series between 04/01/1996 and 31/12/2017

from Bloomberg, and the corresponding risk-free rate proxied by 3-month T-bill

rates are obtained from the Federal Reserve at St. Louis. This data set functions
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Figure 4.5: Implied volatility smile at 90-day horizon
Notes: This figure plots the curve of 90-day volatility implied by GARCH, GAS, SG-GAS, and

SNG-GAS. Consistent with existing literature, the risk-free rate is set to be zero, and initial

variance is set to be 80%, 90% and 100% of long-term variance. The strike price is set to be 1,

such that in each scenario, the implied volatility is computed across moneyness ranging from 0.9

to 1.1.

Figure 4.6: Implied volatility smile at 180-day horizon
Notes: This figure plots the curve of 180-day volatility implied by GARCH, GAS, SG-GAS, and

SNG-GAS. Consistent with existing literature, the risk-free rate is set to be zero, and initial

variance is set to be 80%, 90% and 100% of long-term variance. The strike price is set to be 1,

such that in each scenario, the implied volatility is computed across moneyness ranging from 0.9

to 1.1.
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as the training set of our models. On a rolling window basis, I use log-returns

and risk-free rates over the past 5 years to dynamically make predictions of daily

parameters that define the distributions of innovation terms, which are then adopted

for pricing options via a simulation approach. To evaluate the performance of our

models, I introduce real option price data over the same sample period. The options

data is obtained from OptionMetrics. By convention, I only keep option prices

on each Wednesday between 04/01/1996 and 31/12/2017 for making comparisons.

Furthermore, I remove prices of in-the-money options and options with time to

maturity shorter than one week or longer than 2 years are also removed. After

applying these filters, we are left with 42697 options. I apply SG-GAS and SNG-

GAS models to estimate the prices of these options and compare our estimates

to option prices in the real world. In addition to the two GAS models above, I

also set the Black-Sholes model as the benchmark and apply GARCH and GAS

models as comparisons. For each model, I quantify its accuracy in pricing options

by computing its mean absolute percentage error (MAPE) as:

MAPE =
100%

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (4.64)

where At represents the actual option prices and Ft stands for corresponding esti-

mated option prices from the models.

I inspect the pricing accuracy of our models across moneyness ranging from 0.96 to

1.06. By converting put option prices into call option prices, moneyness is a way for

us to distinguish puts from calls. To investigate how models perform as expiration

differentiates, I also evaluate model performance across time to maturity from 30

days to 720 days. The performance of our models may vary over time. It is more

appealing to us to find out how the models perform during market turmoil. Hence,

in addition to the full sample, I also divide it into sub-periods before, during and

after the 2008 financial crisis.
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4.7.2 Empirical Results

The pricing errors over the full sample are concluded in Table 4.1. First of all, it is

obvious that all observation-driven models significantly outperform the benchmark

BS model with significantly lower pricing errors. To be more specific, the GAS

models with shifted Gamma innovation (SG-GAS) and shifted negative Gamma

innovation (SNG-GAS) significantly dominate other candidate models. The overall

pricing error calculated using the full sample (42697 observations) is 61.60% using

the BS model, and this number falls to 55.67% when the GARCH model is utilised.

For the GAS model, the pricing error decreases to 53.51%. It is noteworthy that

the proposed SG-GAS and SNG-GAS models, with a MAPE of 51.51% and 48.94%,

tend to have the overall best performance in option valuation. This is also one of

the main findings of this study.

Table 4.1: MAPE of estimated option prices - full sample

No. obs BS GARCH GAS SG-GAS SNG-GAS
M<=0.96 6466 1.1015 1.0723 0.8043 0.7081 0.6834

0.96<M<=0.98 3916 0.7208 0.6660 0.6522 0.7727 0.6249
0.98<M<=1.02 10924 0.2956 0.2604 0.2567 0.3594 0.3124
1.02<M<=1.04 4541 0.3697 0.2978 0.3059 0.3491 0.3144
1.04<M<=1.06 3412 0.5035 0.4070 0.4254 0.3972 0.3862

M>1.06 13438 0.7241 0.6432 0.7030 0.5597 0.5858
TTM<=30 14609 0.7712 0.6031 0.5693 0.6260 0.5428
30<TTM<=60 12852 0.5516 0.5177 0.4993 0.4978 0.4595
60<TTM<=90 4064 0.5386 0.5293 0.5319 0.4490 0.4463
90<TTM<=180 6302 0.5258 0.5551 0.5374 0.4270 0.4615
180<TTM<=360 3494 0.4982 0.5567 0.5365 0.4076 0.4770
TTM>360 1376 0.5109 0.5167 0.5018 0.3701 0.4888
CALLS 14910 0.7888 0.7469 0.6215 0.6607 0.5940
PUTS 27787 0.5233 0.4547 0.4887 0.4370 0.4333
TOTAL 42697 0.6160 0.5567 0.5351 0.5151 0.4894

Notes: This table reports the mean absolute percentage errors between model-based option price estimations (BS,
GARCH, GAS, SG-GAS, and SNG-GAS) and real option prices between 04/01/1996 and 31/12/2017. The pricing
performance is evaluated separately by segmenting options according to moneyness ranging from below 0.96 to above
1.06 and time to maturity ranging from less than 30 days to more than 360 days. The pricing performance of all
models is also evaluated with respect to calls and puts respectively.

It is also documented in this study that the superiority of SG-GAS and SNG-GAS

models seems to be enhanced during a normal market environment. Using a sub-

sample of options prices before the 2007-2008 financial crisis (18442 observations),

the MAPEs are computed and reported in Tables 4.2 and 4.3. It can be found
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that the pricing errors of SG-GAS and SNG-GAS models tend to be significantly

smaller (43.24% and 39.48% respectively) than those from the BS model, GARCH

and GAS models (42.09%, 46.95% and 48.34% respectively). This pattern can still

be observed using the post-crisis sub-sample (14766 observations), where SG-GAS

and SNG-GAS tend to have pricing errors of 54.86% and 50.16% respectively, while

all the other competing models are found to have pricing errors above 60% and

the highest pricing error of 65.83% is produced by the BS model. In a timeline

sense, comparing the pricing error of the BS model before the financial crisis to its

performance after the crisis, it is easy to see that the MAPE increases from 42.09%

to 65.83%.

Note that while other parametric models all witnessed weakened pricing performance

from pre-crisis time to post-crisis time, the BS model seems to have the most sig-

nificant drop in terms of pricing accuracy. This indicates that the BS model might

be relatively more accurate in earlier years, especially before the 2007-2008 financial

crisis. After the financial crisis, when it comes to years that are closer to the present,

option valuation generally becomes more difficult. This is indicated by systematic

drops in pricing accuracy across all models. Notably, the BS model seems to suffer

a bigger loss in pricing accuracy compared to other models.

It is interesting to look at the empirical results obtained using a sub-sample during

the 2007-2008 financial crisis (9489 observations). The pricing results are reported

in Table 4.4. It is obvious that the proposed SG-GAS and SNG-GAS models fail

to beat the other candidate models under such circumstances. The pricing errors of

the two proposed models are 62.35% and 65.42% respectively, and the only model

they outperform is the BS model, with a high MAPE of 92.94%. The GARCH

and GAS models are found to have lower pricing errors of 58.07% and 51.25%

respectively. This indicates that, during market turmoil, normal innovation could

be a better choice for financial returns modelling compared to Gamma innovation

which introduces skewness. It is potentially indicated that the selection of innovation
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terms is of great importance in order to better facilitate parametric models for the

purpose of option valuation. It can also be reported that the GAS model, with a

pricing error of 51.25%, significantly outperforms its GARCH counterpart, with a

pricing error of 58.07%. This is possible because of the less fierce response of GAS

models to shocks from extreme observations compared to GARCH models.

To find out the source of the outperformance of SG-GAS and SNG-GAS models,

option valuation errors from all models are calculated and reported across a variety

of moneyness levels, denoted as the quotient between spot prices and corresponding

strikes, and across time to maturity from less than 30 days to more than 360 days.

It can be observed instantly that the improved pricing performance of SG-GAS

and SNG-GAS mainly originates from their ability to more accurately price out-

of-the-money options, especially those Deep Out-of-the-Money (dOTM) options.

To see this, for dOTM calls with moneyness below 0.96, SG-GAS and SNG-GAS

tend to have much lower pricing errors of 70.81% and 68.34% respectively. This

is compared to MAPEs of 110.15%, 107.23% and 80.43% from the BS, GARCH

and GAS models respectively. For dOTM puts with moneyness above 1.06, the

MAPEs of proposed SG-GAS and SNG-GAS models are 55.97% and 58.58%. In

comparison, the pricing errors of the BS, GARCH and GAS models are 72.41%,

64.32% and 70.30% respectively. Note that this is consistent with Black (1975) and

Duan (1995), in which it is documented that the BS model tends to underestimate

deep OTM options.

Clearly, the GAS models with Gamma innovations tend to perform better in pricing

OTM options, while it is the opposite for near-the-money options with moneyness

ranging from 0.98 to 1.02. In comparison, the SG-GAS and SNG-GAS models tend

to have the worst overall performance, with pricing errors of 35.94% and 31.24%.

Note that the BS, GARCH and GAS models under such circumstances have obvi-

ously lower pricing errors of 29.56%, 26.04% and 25.67% respectively. It is worth

noticing that for other OTM options that are further out-of-the-money, the out-
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performance of SG-GAS and SNG-GAS is still observed. For example, for OTM

puts with moneyness between 1.04 and 1.06, the pricing errors of SG-GAS and

SNG-GAS models are 39.72% and 38.62% respectively, while the MAPEs of the BS,

GARCH and GAS models are 50.35%, 40.70% and 42.54%. Given that the number

of near-the-money options is 10924 and the number of OTM options is 31773, it is

reasonable to think that it is the superiority of SG-GAS and SNG-GAS models in

pricing OTM options that drives their overall outperformance in option pricing.

Option valuations across different times to maturity are also inspected in this study.

It can be observed from Table 4.1 that SG-GAS and SNG-GAS models perform

relatively better in pricing options with longer maturities. For instance, for options

that expire within 30 days, the pricing errors of SG-GAS and SNG-GAS are 62.60%

and 54.28%, this is compared to 77.12%, 60.31% and 56.93% from BS, GARCH and

GAS models respectively. The pricing error of SG-GAS and SNG-GAS models with

respect to options that expire in more than 360 days are 37.01% and 48.88%. which

is significantly lower than 51.09%, 51.67% and 50.18% from BS, GARCH and GAS

models. Note that from within 30-day time to maturity to longer than 360-day time

to maturity, the pricing errors of these two proposed models drop from 62.60% and

54.28% to 37.01% and 48.88%. These are more remarkable improvements compared

to the BS, GARCH and GAS models. Hence, it can be inferred that SG-GAS and

SNG-GAS models tend to have a comparative advantage in pricing options with

longer lifespans.

In terms of performance in pricing calls and puts, it can be observed from Table 4.1

that, while all models tend to perform better in pricing put options, SG-GAS and

SNG-GAS consistently outperform BS, GARCH and GAS models in pricing puts.

For the valuation of call options, these two models fail to beat all the other models

at the same time.

157



4.7. MODEL APPLICATION

Table 4.2: MAPE of estimated option prices - pre-crisis

No. obs BS GARCH GAS SG-GAS SNG-GAS
M<=0.96 2834 0.5067 0.7487 0.7401 0.6086 0.4940

0.96<M<=0.98 1677 0.3622 0.4968 0.5398 0.6799 0.4362
0.98<M<=1.02 4395 0.1858 0.2229 0.2236 0.2996 0.2257
1.02<M<=1.04 1893 0.2746 0.2822 0.2671 0.2893 0.2670
1.04<M<=1.06 1522 0.4096 0.3748 0.3633 0.3184 0.3327

M>1.06 6121 0.6142 0.5911 0.6323 0.4511 0.5140
TTM<=30 4867 0.4943 0.4931 0.4938 0.5705 0.4457
30<TTM<=60 5436 0.3949 0.4604 0.4825 0.4526 0.3837
60<TTM<=90 1975 0.4042 0.4791 0.5145 0.3755 0.3764
90<TTM<=180 3350 0.4167 0.4754 0.4883 0.3415 0.3724
180<TTM<=360 2069 0.3714 0.4454 0.4548 0.3178 0.3787
TTM>360 745 0.3318 0.3957 0.3961 0.2616 0.3380
CALLS 5902 0.4087 0.5725 0.5840 0.6006 0.4423
PUTS 12540 0.4266 0.4210 0.4360 0.3533 0.3725
TOTAL 18442 0.4209 0.4695 0.4834 0.4324 0.3948

Notes: This table reports the mean absolute percentage errors between model-based option price estimations (BS,
GARCH, GAS, SG-GAS, and SNG-GAS) and real option prices before the 2007-2008 financial crisis. The pricing
performance is evaluated separately by segmenting options according to moneyness ranging from below 0.96 to above
1.06 and time to maturity ranging from less than 30 days to more than 360 days. The pricing performance of all
models is also evaluated with respect to calls and puts respectively.

Table 4.3: MAPE of estimated option prices - post-crisis

No. obs BS GARCH GAS SG-GAS SNG-GAS
M<=0.96 1397 1.3379 1.9101 1.4895 0.9810 0.9527

0.96<M<=0.98 1469 1.0450 1.0361 0.9803 1.0519 0.8987
0.98<M<=1.02 4845 0.3508 0.3125 0.2957 0.4078 0.3670
1.02<M<=1.04 1859 0.4018 0.3022 0.3110 0.3400 0.2773
1.04<M<=1.06 1238 0.5377 0.4384 0.4616 0.3789 0.3349

M>1.06 3958 0.8094 0.7056 0.7493 0.5327 0.5173
TTM<=30 6279 0.7345 0.6634 0.6399 0.6624 0.5527
30<TTM<=60 4402 0.5540 0.5874 0.5461 0.4738 0.4217
60<TTM<=90 1183 0.6372 0.6483 0.6141 0.4488 0.4231
90<TTM<=180 1691 0.6368 0.6724 0.6372 0.4393 0.4861
180<TTM<=360 853 0.6597 0.7796 0.7029 0.4859 0.6021
TTM>360 358 0.7715 0.7871 0.6805 0.4676 0.6815
CALLS 5468 0.8270 0.9622 0.8245 0.7872 0.7231
PUTS 9298 0.5590 0.4668 0.4905 0.4083 0.3714
TOTAL 14766 0.6583 0.6503 0.6142 0.5486 0.5016

Notes: This table reports the mean absolute percentage errors between model-based option price estimations (BS,
GARCH, GAS, SG-GAS, and SNG-GAS) and real option prices after the 2007-2008 financial crisis. The pricing
performance is evaluated separately by segmenting options according to moneyness ranging from below 0.96 to above
1.06 and time to maturity ranging from less than 30 days to more than 360 days. The pricing performance of all
models is also evaluated with respect to calls and puts respectively.
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Table 4.4: MAPE of estimated option prices - during-crisis

No. obs BS GARCH GAS SG-GAS SNG-GAS
M<=0.96 2235 1.7078 0.9587 0.4574 0.6635 0.7554

0.96<M<=0.98 770 0.8833 0.3282 0.2713 0.4422 0.5136
0.98<M<=1.02 1684 0.4236 0.2084 0.2313 0.3765 0.3812
1.02<M<=1.04 789 0.5224 0.3249 0.3869 0.5144 0.5156
1.04<M<=1.06 652 0.6578 0.4227 0.5016 0.6161 0.6086

M>1.06 3359 0.8240 0.6644 0.7772 0.7894 0.7974
TTM<=30 3463 1.2267 0.6485 0.5473 0.6381 0.6612
30<TTM<=60 3014 0.8309 0.5195 0.4612 0.6142 0.6514
60<TTM<=90 906 0.7028 0.4830 0.4625 0.6096 0.6289
90<TTM<=180 1261 0.6668 0.6093 0.5341 0.6379 0.6651
180<TTM<=360 572 0.7162 0.6266 0.5840 0.6156 0.6462
TTM>360 273 0.6579 0.4921 0.5556 0.5383 0.6476
CALLS 3540 1.3632 0.7051 0.3703 0.5653 0.6475
PUTS 5949 0.6713 0.5067 0.5972 0.6582 0.6582
TOTAL 9489 0.9294 0.5807 0.5125 0.6235 0.6542

Notes: This table reports the mean absolute percentage errors between model-based option price estimations (BS,
GARCH, GAS, SG-GAS, and SNG-GAS) and real option prices during the 2007-2008 financial crisis. The pricing
performance is evaluated separately by segmenting options according to moneyness ranging from below 0.96 to above
1.06 and time to maturity ranging from less than 30 days to more than 360 days. The pricing performance of all
models is also evaluated with respect to calls and puts respectively.

4.8 Conclusion

While the majority of existing studies in option pricing with parametric models

tend to develop models within the framework of GARCH, this chapter innovatively

proposes to build time-varying parameter models for option valuations within the

framework of GAS models. One attractive feature of the GAS model is that different

from the widely applied GARCH models, in GAS models, the time-varying parame-

ter that drives the updating mechanism is not necessarily the variance of innovation

term. Instead, the driving parameter of the GAS model is usually connected with

variance via some channel that is closely connected with variance, such as the scale

parameter. Another appealing feature of the GAS model is that it tends to respond

less fiercely to large values of observations, as the impact from extreme values can

be absorbed by the driving score functions. This feature is very useful in financial

returns modelling, as the occurrence of large observations might be simply due to the

fat-tailed nature of financial returns, and it does not necessarily cause an increase

in volatility. Such property of GAS models leads to a more appropriate forecast
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of volatility and consequently improved accuracy in option valuations. During pe-

riods of market stress, like the 2007 - 2008 financial crisis, the advantage of GAS

models becomes more prominent, as during great market uncertainties, fat-tailed

distributions of asset returns are more frequently observed.

For the purpose of option valuation, I construct GAS models with shifted Gamma

and shifted negative Gamma innovations. The proposed models are hence named

SG-GAS and SNG-GAS models. Consistent with Tong et al. (2004), I choose to

incorporate Gamma innovation terms in order to take into consideration the skew-

ness exhibited in financial returns. The general procedure of option valuation in this

study is analogous to Duan (1995), Duan (1999) and Tong et al. (2004), where his-

torical financial returns are used to train parametric models in the first stage. Then

in the second stage, with the estimated parameters under the physical probability

measure P, the Esscher transform is applied to find out corresponding model spec-

ifications under risk-neutral measure Q, following the methodology in Gerber and

Shiu (1994) and Tong et al. (2004). Finally, in the third stage, the parametric mod-

els under the Q measure are used to generate simulated paths of underlying price

evolution, and the expected payoff is calculated and discounted to obtain option

price estimations.

Before model evaluation and comparison using real-world option data, a series of

Monte Carlo simulation studies are implemented in order to reveal the features of

the proposed models and to show that the proposed GAS models are potentially bet-

ter candidates for option pricing. From these simulations, it is easy to observe that,

consistent with Duan (1995) and Tong et al. (2004), by applying the Esscher trans-

form to parametric models under P measure, the density of normally distributed

innovation terms are essentially shifted leftwards under Q. In contrast, the Esscher

transform, instead of shifting the Gamma innovations, is skewing these innovations

so that from P to Q, they become more negatively skewed. It can also be revealed

from the simulation studies that the underlying price distribution simulated by the
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SNG-GAS model tends to have fatter tails compared to that simulated using the

GARCH model with normal innovations. Such a pattern can be observed for den-

sities simulated 30 days to 360 days from now. This indicates that the SNG-GAS

model tends to overestimate tail risk, which is related to the price of OTM options.

Note that the BS model is reported to have inferior accuracy in pricing OTM op-

tions due to its tendency in underestimating tail risk and that the GARCH model

is found to have similar performance as the BS model. They all tend to give OTM

option prices that are less than market prices. Therefore, it is natural to expect

that the SNG-GAS and SG-GAS models perform better in pricing OTM options,

especially those dOTM ones.

Following a similar process as in Zhu and Ling (2015), I inspect the implied volatility

smile of each model using a set of static parameters estimated using a full sample.

Consistent with Zhu and Ling (2015) and Duan (1995), the risk-free rate is set to

zero and the strike priceK is assumed to be 1. So that by changing the values of spot

prices, the moneyness has a range between 0.9 and 1.1. To be more comprehensive,

times to maturity from 30 days to 180 days and starting values of 80% sample

variance and 100% variance used to initiate the simulation process are considered.

It can be concluded that while other models tend to show volatility smiles to some

extent, the SNG-GAS model tends to show volatility smirks across maturities and

initial variances. This is again evidence that the SNG-GAS model should outperform

in pricing OTM calls, as volatility is positively correlated to option prices. It is

also obvious that the SNG-GAS model implied volatility is consistently higher than

the volatility implied by other models. Such a pattern becomes more and more

significant as time to maturity extends. Last but not least, the U-shaped volatility

curves are found to be flattened as time to maturity stretches. All these reported

findings are consistent with Zhu and Ling (2015).

Using option data in the real world, the main empirical finding of this study is

that the SG-GAS and SNG-GAS models significantly outperform the BS, GARCH
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and GAS models in terms of option pricing accuracy. The findings in simulation

studies are thus verified. More specifically, the pricing errors of these two proposed

models are 51.51% and 48.94%, while the BS, GARCH and GAS models are found to

have pricing errors of 61.60%, 55.67% and 53.51%. It is also documented that such

superiority of SG-GAS and SNG-GAS disappears during the 2007-2008 financial

crisis. However, during the crisis, it is still the GAS model that dominates all the

other candidate models. This means that the selection of innovation terms indeed

matters in financial returns modelling, especially when the market environment is

unusual. Apart from the financial crisis period, the two proposed models are found to

consistently dominate other models, and such dominance becomes more prominent

in the post-crisis era.

I also test all models across a range of moneyness and times to maturity. It can

be concluded that the outperformance of SG-GAS and SNG-GAS models is mainly

from their improved accuracy in pricing deep out-of-the-money (dOTM) options. To

see this, for near-the-money options with moneyness between 0.98 and 1.02, these

two GAS models are found to have the worst performance, with pricing errors of

35.94% and 31.24%. While the BS, GARCH and GAS models have significantly

lower pricing errors of 29.56%, 26.04% and 25.67%. For dOTM calls (moneyness

below 0.96), SG-GAS and SNG-GAS have much lower pricing errors (70.81% and

68.34%) compared to those from competitors (110.15%, 107.23% and 80.43% for

BS, GARCH and GAS). Such outperformance of SG-GAS and SNG-GAS stays

unchanged for dOTM puts with moneyness above 1.06. The MAPE of these two

models is 55.97% and 58.58%. In comparison, the pricing errors of the BS, GARCH

and GAS models are 72.41%, 64.32% and 70.30% in this case. Given that the number

of near-the-money options is 10924 and the number of OTM options is 31773, it is

reasonable to think that the outperformance of SG-GAS and SNG-GAS models is

due to their ability in pricing OTM options more accurately.

Finally, I document that SG-GAS and SNG-GAS models perform better in pricing
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options with longer maturities. For instance, for options that expire within 30 days,

the pricing errors of these two models are 62.60% and 54.28%, compared to 77.12%,

60.31% and 56.93% from BS, GARCH and GAS models. However, the pricing errors

of the proposed models with respect to options that expire in more than 360 days are

37.01% and 48.88%, which is significantly lower than 51.09%, 51.67% and 50.18%

from BS, GARCH and GAS models.
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Chapter 5

Conclusion

This thesis consists of three essays on forecasting and option pricing. In the first

two essays, I attempt to evaluate the performance of parametric and non-parametric

approaches in predicting future realisations. More specifically, Chapter 2 is about the

predictive power of option-implied correlation over realised correlation and market

returns. The time series of implied correlation is obtained model-free, hence it is

classified as non-parametric forecasting. In Chapter 3, I evaluate the performance

of trending observation-driven models in capturing the dynamics of the Dow Jones

Industrial Average (DJIA) returns and predicting realised volatility.

The first model I consider is GARCH, which enables the variance of the error term to

be time-varying. As a comparison, I also construct the Dynamic Conditional Score

(DCS), or simply score-driven models. The DCS model is also called the Generalised

Autoregressive Score (GAS) model due to its similar structure to GARCH. In this

thesis, the score-driven model is referred to as the GAS model. A series of GARCH

and corresponding GAS models are constructed following different assumptions on

innovation terms. These models are fitted before being utilised to make forecasts to

volatility or other parameters that are connected to variance, such as the scale pa-

rameter, that defines the innovation terms on a rolling window basis. In 3, emphasis
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is placed on evaluating the forecasting performance of model-based predictions to

realised volatility. Such forecasting performance is also compared to that of implied

volatility. Consequently, in chapter 4, option valuation is implemented by running

simulations with these time-varying parameters to obtain expected payoffs under

risk-neutral measure.

In each of these essays, I have a few important findings that are connected and

contributive to existing literature. In Chapter 2, I inspect the informational content

of implied correlation in the sense of decomposing it into components with different

frequencies. In particular, I report that the predictive power of implied correlation

stems from the interaction between its low-frequency and high-frequency compo-

nents. Intuitively, the high-frequency component is expected to capture short-term

changes of implied correlation, while the low-frequency component tends to pick

up more lasting fluctuations. The empirical analysis in Chapter 2 indicates that

the high-frequency component drives the predictive power of implied correlation

at shorter horizons, while the low-frequency component, at longer horizons. More

importantly, I find that the predictability of market returns can be substantially im-

proved by decomposing implied correlation into components. This improvement is

more significant at shorter horizons, where it is more challenging to predict market

returns. The improvement in market return predictability is robust after control-

ling for a set of option-implied and fundamental variables, and it can be observed

out-of-sample as well.

In Chapter 3, using a sample of the Dow Jones Industrial Average index historical

prices ranging between 07/1997 and 04/2022, I construct a series of GARCH/GAS

models by making assumptions on the distribution of innovation term ξt. Extensive

comparisons are made between these two groups of models in terms of their abil-

ity in predicting realised volatility. As the first study that implements systematic

evaluation of these two representative observation-driven models, few findings are

documented in it. First of all, it is observed that GARCH models, with higher
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R2 and lower prediction error, tend to have better performance than corresponding

GAS models in predicting realised volatility across all forecasting horizons.

Second, I find that, at daily and weekly horizons, the R2 from regressing RV onto

GAS model-based predictions are generally lower than that of GARCH models.

However, at the monthly horizon, it is the opposite. In terms of prediction accuracy,

GARCHmodels tend to have significantly lower forecasting errors measured by MAE

compared to GAS. This evidence indicates the outperformance of GARCH over GAS

in volatility forecasting.

Third, it is documented that TLS-GAS has the lowest prediction error of 3.8626

at the daily horizon, given that its R2 from Mincer-Zarnowitz regressions is on the

same level as the best performer at daily horizons and that the slope of TLS-GAS

is closer to 1, it can be concluded that TLS-GAS has the overall best performance

in prediction RV at the daily horizon. The additionally reported out-of-sample R2

and CW test statistics confirm the superiority of TLS-GAS, and the DM statistics

indicate that the TLS-GAS prediction is statistically different from others.

Fourth, from the pairwise out-of-sample R-squared R2
os, it can be concluded that

GARCH models outperform GAS in most cases at the weekly horizon. In contrast,

GAS tends to dominate GARCH at the monthly horizon. In terms of specific models,

I find that SNG-GARCH (together with SNIG-GARCH) and SIG-GAS consistently

outperform other candidates at weekly and monthly horizons respectively.

Another topic in this chapter is evaluations of parametric models’ performance in

volatility forecasting during market turmoils. To this end, I adopt a sub-sample dur-

ing the 2007-2008 financial crisis to fit models and implement evaluations. Several

key findings are reported. First, instead of TLS-GAS, SNW-GAS strongly dominates

other models at the daily horizon with both higher R2 and lower forecasting error.

The SNW-GAS prediction is statistically different to other forecasts, according to

DM test results, and its superiority is verified again by CW statistics. In addition,
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SNG-GAS and SG-GAS are found to have a performance only second to SNW-GAS.

It appears that shifted Gamma or Weibull distributions are more appropriate can-

didates for financial returns modelling during financial crises. Second, I find that

at the monthly horizon, the outperformance of SNW-GAS vanishes. Instead, the

SIG-GAS model is found to dominate in this case.

The comparisons between implied volatility, represented by IV and MFIV, and

model-based volatility forecasts, in terms of their performance in predicting RV,

are also explored in this chapter. The findings are consistent with existing litera-

ture. The most straightforward finding is the domination of implied volatility in

terms of describing the movements in future realised volatility. Such superiority is

observed across horizons from 1 day up to 1 month and is found to be stronger as

the forecasting horizon extends. On the contrary, IV and MFIV are found to have

inferior forecasting accuracy, measured by MAE, compared to observation-driven

models. and such inferior performance becomes weaker as the forecasting horizon

stretches. It can be concluded that model-based predictions consistently have higher

forecasting accuracy compared to implied volatility at horizons from one day up to

one month. This is consistent with the pairwise CW statistics.

From the DM statistics, it can be inferred that, at the daily horizon, IV is not

statistically different from other model-based predictions in most cases (10 out of

16). In contrast, MFIV is significantly different from almost all other predictions (15

out of 16). This pattern is observed at weekly horizons but becomes the opposite at

monthly horizons, where IV is significantly different from model-based predictions

in most cases.

Chapter 4 is connected to Duan (1995), Duan (1999) and Tong et al. (2004), where

option pricing is implemented by running simulations under risk-neutral measure.

Under the framework of GAS, SG-GAS and SNG-GAS are constructed due to the

Gamma innovation’s ability in handling the skewness of in financial returns (Tong
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et al., 2004).

The pricing accuracy of the models is measured by the mean absolute percentage

error (MAPE) through this chapter. Empirically, SG-GAS and SNG-GAS are found

to have significantly lower pricing errors compared to the BS model, normal GARCH

(GARCH) and normal GAS (GAS). Utilising sub-samples before, during and after

the 2007-2008 financial crisis, I find that the outperformance of SG-GAS and SNG-

GAS models is more significant in normal market environments (before and after

the financial crisis). However, during the financial crisis, SG-GAS and SNG-GAS,

while still outperforming the BS model, are no longer the best performers. Instead,

GARCH and GAS tend to outperform other candidates during this massive market

turmoil. More specifically, GAS is found to significantly dominate its GARCH coun-

terpart, indicating that if the error term is appropriately selected, GAS is potentially

a better candidate model for option pricing during big market uncertainties.

Finally, it can be inferred from simulation studies and empirical results that, the

outperformance of SG-GAS and SNG-GAS is mainly from their superior ability

in pricing Deep Out-of-the-Money (dOTM) options. This is because they tend to

produce ’leptokurtic’ underlying price distributions. It is also documented that SG-

GAS and SNG-GAS have significant outperformance in pricing options with longer

maturities.

From an overview through all chapters, it is obvious that the findings are beneficial

to both industry and academia. For instance, the findings in chapter 2 enable

investors with different investment horizons to better predict market returns using

components of implied correlation. The findings in volatility forecasting and option

pricing are more extensive. Chapter 3 can be used as a dictionary that tells investors

what model can be a better choice under specific circumstances. For example, during

high market uncertainties, if an investor is to predict daily volatility, then SNW-

GAS could be a reasonable choice. If the investor intends to price an option when
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the market is normal, then he may want to apply the SNG-GAS option pricing

model. In terms of academia, the findings are inspiring starting points for more

in-depth research. For example, the methodology of chapter 2 can be extended to

more option implied information, such as implied skewness and kurtosis. Apart from

that, chapter 3 and chapter 4 can be seen as fundamental research on GAS models in

volatility forecasting and option pricing. They are extendable, as more models can

be proposed by assuming different distributions of innovation terms. Besides, some

promising findings, such as the dominance of TLS-GAS in volatility forecasting at

the daily horizon, lead to a good starting point for building more advanced models.

The first two chapters of this thesis extensively provide fundamental inspections into

parametric and non-parametric methodologies for forecasting realisations. It is also

a preparation for more in-depth explorations in this field. For example, in Chapter

2, the decomposition of implied correlation has a number of potential applications

that can be used to motivate future research. Among these, an obvious one is

forecasting market variables at specific horizons by choosing appropriate components

from decomposition so that the prediction accuracy is improved due to a reduction

in noise. Another promising application lies in optimal portfolio selection in the

presence of correlation risk, as such risk might be depending on specific investment

horizons. In a more general sense, the implied correlation does not have to be a

univariate time series. Instead, motivated by (Numpacharoen and Numpacharoen,

2013), it is possible to extract correlation matrices that dynamically change over time

from option prices. To this end, option implied mean-variance portfolio construction

is again one natural and appealing application. Finally, it is also an interesting

direction for future research to explore how each component of implied correlation

(or other similar risk factors) is priced in the cross-section of stock and option

returns.

In terms of volatility forecasting, there are also promising topics for further explo-

ration. For instance, it is crucial to have stable optimisation methods in the model
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training process. It is also important to select wisely the initial points for optimi-

sations. Some more advanced methods, such as the grid search might be able to

equip the parametric models with improved forecasting power. In fact, optimisation

itself is a popular topic that has been investigated all the time. It is possible that

the model performance can be improved by applying different types of optimisation

methods in the process of model fitting.

I see the ongoing topic of finding distributions that are more suitable for financial

returns modelling and volatility forecasting as promising as well. As introduced, this

study is fundamental in that the distributions adopted in constructions of GARCH/-

GAS models are common ones. There exists great space for more discovery. For

example, more types of distributions can be considered in model construction so

that the model library can be expanded. Potential candidate distributions are the

negative inverse Gaussian (NIG) distribution and the mixture normal distribution.

The latter, as the entry-level mixture distributions, can also be extended to more

complicated scenarios, such as variance-gamma mixture.

As reported, some of the observation-driven models tend to have superior perfor-

mance in volatility forecasting at specific horizons, such as the TLS-GAS at the daily

horizon and the SIG-GAS at the monthly horizon. For the purpose of further im-

provement in RV prediction, it is natural to consider more sophisticated GAS model

specifications, such as the GJR-TLS-GAS that take into consideration the leverage

effect. Alternatively, introducing exogenous variables might also help in enhancing

model performance. A possible example could be the RV-TLS-GAS model by in-

troducing realised volatility into the model system. I see this topic as practical, as

plenty of studies propose variations of GARCH models, and it is always accessible to

get hints from GARCH literature before adopting them in the framework of GAS.

Volatility forecasting using parametric models in this study is straightforward. How-

ever, this is not the case for option pricing. This is because risk neutralisation is
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needed to find out the equations that describe financial return movements in a risk-

neutral world. The Esscher transform is advantageous in its capability in handling

non-normal distributions. However, it requires an analytical moment-generating

function to accomplish the transformation. This makes it inappropriate to con-

sider some distributions in constructing option pricing models, as they do not have

closed-form MGFs. Inspired by existing literature, a possible solution could be the

application of machine learning tools. All observation-driven models are naturally

able to predict volatility or parameters that define density and are linked to variance

closely. The main logic is quite straightforward: all these predictions can be used

as inputs to feed neural networks that output option prices.
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Appendices
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Appendix A

The Sifting Process

1. Initialisation: set f0(t) = IC(t), i = 1

2. Extract the ith IMF

2.1. Initialisation: set d0(t) = fi−1(t), k = 1

2.2. Identify all the extrema of dk−1(t)

2.3. Fit a cubic spline to generate the upper and lower envelopes (emin(t) and

emax(t), respectively) of dk−1(t)

2.4. Calculate the point-by-point mean m(t) = emin(t)+emax(t)
2

2.5. Define the difference dk(t) = dk−1(t)−m(t)

2.6. If dk(t) satisfies the two conditions of an IMF, denote it as the ith IMF,

i.e. ci(t) = dk(t), and go back to step 2.2.

3. Define res(t) = fi(t)− ci(t)

4. Check if the following stopping criteria are satisfied

(a) res(t) contains fewer than 3 extrema

(b) the amplitudes of res(t) are smaller than the amplitudes of fi(t) at each

point
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If either stopping criterion (or both) is not satisfied, then go back to step

2 to extract the next IMF. If both stopping criteria are satisfied, the sifting

process is completed, and the final residual term res(t) can be considered as

the average trend of IC(t).
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Diebold-Mariano and Clark-West

Tests
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