
Beadle, Lawrence and Johnson, Colin G. (2008) Semantically Driven Crossover
in Genetic Programming. In: 2008 IEEE Congress on Evolutionary Computation.
IEEE, pp. 111-116. ISBN 978-1-4244-1822-0.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/23989/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/CEC.2008.4630784

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/23989/
https://doi.org/10.1109/CEC.2008.4630784
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Semantically Driven Crossover in Genetic
Programming

Lawrence Beadle and Colin G. Johnson

Abstract—Crossover forms one of the core operations in genetic
programming and has been the subject of many different investi-
gations. We present a novel technique, based on semantic analysis
of programs, which forces each crossover to make candidate
programs take a new step in the behavioural search space. We
demonstrate how this technique results in better performance
and smaller solutions in two separate genetic programming
experiments.

Index Terms—Genetic programming, program semantics,
crossover, reduced ordered binary decision diagrams.

I. INTRODUCTION

This paper presents a novel algorithm (Semantically Driven
Crossover—SDC) which is used to improve crossover in ge-
netic programming (GP). The SDC algorithm has been devel-
oped based on analysis of the behavioural changes caused by
crossover. The SDC algorithm works to enhance behavioural
diversity in a GP run by not allowing child programs to
be produced when they are semantically equivalent to the
parent programs. We apply this technique to two boolean GP
problems and demonstrate how it results in statistically signif-
icant improvements in performance, as well as a statistically
significant decrease in code bloat.

The key feature of this concept is the use of a canonical
representation of members of the population (reduced ordered
binary decision diagrams—ROBDDs) to check for semantic
equivalence without having to access the fitness function. This
ability to check for equivalence provides us with an important
tool to aid the search for a global optimum in the GP search
space. This is because SDC eliminates crossovers that do not
change the behaviour of candidate solution programs.

The remainder of this paper begins with a review of
techniques that improve crossover and an introduction to
ROBDDs. We describe the SDC algorithm and apply it to two
different GP problems, comparing them with the traditional
Koza standard crossover [1].

II. IMPROVING CROSSOVER AND EFFECTIVE FITNESS

The approach we present simultaneously tackles two issues
in GP. These are improving the performance of the crossover
operation (in terms of the fitness measurement) and increasing
the efficiency of the crossover operation (in terms of making a
significant impact on reducing bloat). Therefore, in this section
we review existing work in these areas.

Lawrence Beadle and Colin G. Johnson are with the Computing Labora-
tory, University of Kent, Canterbury, Kent, CT2 7NF, UK (email: {lb212,
C.G.Johnson}@kent.ac.uk).

A. Improving Crossover in GP

When considering improving the crossover mechanism,
there are three main approaches. These are: modifying the
way in which parents are chosen for the crossover, choosing
the swap points within the parent programs and using a system
of pre and post crossover evaluation.

When choosing parents based on a particular characteristic,
common sense would suggest that two parents with that
characteristic should be selected more frequently in order to
improve the performance of the GP run. This characteristic
could be fitness based, or it could be due to another attribute
(e.g. containing all the distinct terminals when it is prior
knowledge that all terminals will be required to solve the
problem). The danger of this process is that it could cause the
GP to converge on a local optimum and may prevent it from
making a large enough movement (because of the parsimony
pressure of the parent selection method) in the search space
to escape this local optimum.

Modifications to the method of choosing swap-points have
been shown to have some effect on performance. The first
major example of this is Koza standard crossover [1], which
provides a 90% bias to choosing functions and 10% bias to
choosing terminals as swap-points. The concept is that by
putting a bias on the functions, it is more likely to cause
a bigger movement in the search space. The disadvantage
of such a technique is that later in the GP run it becomes
more difficult to fine tune candidate solutions by changing
a leaf of the tree. Rosca [2] proposed a similar idea based
on a negative binomial distribution over tree depth. These
experiments demonstrate a positive effect on GP performance;
however, incorrect choice of swap-points could have a negative
effect on performance. Another example of using the choice
of swap points to influence crossover is homologous crossover
[3], where sub trees which are structurally similar (defined
using edit distances) are more likely to be crossed over.

Pre and post crossover evaluation compares the result of the
crossover to the parents. An example of this is presented by
O’Reilly [4], in which GP crossover is hybridised with two
hill climbing techniques. Whilst this technique demonstrated
that fewer fitness evaluations were required to reach the ideal
solution, there is always the risk that the candidate solutions
can be caught in local optima, as well as the additional com-
putational requirement needed to implement this technique.

B. Efficiency in Crossover

One of the most studied side effects of crossover is bloat.
Numerous authors [3], [5], [6], [7] have presented theories as
to the cause of code growth; however, the cause of this growth

remains a contentious issue. An important factor in terms of
efficiency is whether all of the code included in a program
is contributing to the fitness. Whilst numerous authors have
studied introns [8], [9], [10], [11], [12], [13], [14] (code that
does not contribute to the fitness of a program) there are three
key aspects of introns that are dealt with in this paper.

In the first instance, there is the question of what actually
makes up an intron. For the purposes of this paper, we
will place introns into two categories (not the five categories
described by Nordin [13]). These are unreachable code and
redundant code. An example of unreachable code would be IF
A1 D0 (IF A1 (AND D0 D1) D1). The emphasised segment
is unreachable because of the condition of the nested IF
statement. This represents an inefficiency because code is
present but cannot be used.

The second issue is that of redundant code. An example of
redundant code is AND A1 A1. This could just be reduced
to A1. This is worse than unreachable code because we still
have to process it to reach the answer, which represents a
computational inefficiency. The ROBDD analysis we use in
this paper reduces a program’s behavioural representation,
such that redundant and unreachable code is removed. This
allows direct comparisons of the behaviour of the programs to
be made without interference from introns.

The final and most important issue in terms of the mechanics
of the crossover operator is the idea of linkage. Because of
the random elements of the crossover operation, there is the
potential to take two programs with 100% effective fitness,
swap sub trees and, as a result, achieve either redundant,
unreachable or both types of intron in the transplanted sub tree.
Conversely, there is also the possibility of taking code from
redundant or unreachable sub trees and transplanting them into
a new parse tree such that they become effective and contribute
to fitness.

A previous study by Luke [9] into controlling the crossover
operation ensured that the swap points were not in unreachable
sub trees. This study concluded that even when the crossover
of unreachable code was controlled in this fashion, it still did
not reduce code bloat. The aspect that is not considered by this
study is whether the code is unreachable or redundant upon
insertion to the receiving program. In this paper we compare
pre and post crossover canonical representation of behaviour,
in order to ascertain whether the insertion of the new code
has caused a behavioural change, which would indicate that
at least some of the inserted code has been effective.

III. SEMANTIC CONTROL PROCESS

A. Measuring Semantic Equivalence

To enable us to analyse semantic characteristics of boolean
programs we use our own Java implementation of GP,
linked to the Colorado University Decision Diagram Pack-
age (http://vlsi.colorado.edu/~fabio/CUDD/) (CUDD) using
the JavaBDD interface (http://javabdd.sourceforge.net/). The
important functionality that this provides is the ability to
reduce program representations by removing redundant and
unreachable arguments. We can obtain canonical representa-
tions known as ROBDDs [15] of the behaviour of the boolean

programs, which allows us to compare and analyse programs
for semantic equivalence (see figure 1 for an example). Any
two programs that reduce to the same ROBDD are semanti-
cally equivalent, and vice versa.

Figure 1. This example ROBDD is a canonical representation of behaviour,
however, this behaviour could be represented by many different parse trees.
Two examples of parse trees that would result in this behaviour are IF A0
D0 D1 and IF (NOT A0) D1 D0. In the diagram, circles represent variables
(terminals in the GP context), solid arrows represent true paths and dotted
arrows false paths. The squares marked 1 and 0 represent output of true and
false respectively.

B. Semantically Driven Crossover Algorithm

Our implementation of the SDC algorithm is a modification
to Koza standard crossover [1]. We add the ability for the
algorithm to check that the child programs of the crossover
are semantically not equivalent to the parent programs. The
SDC based crossover algorithm is presented below:

while (number_of_programs < population_size) {
select p1 randomly (parent 1) (uniform distri-
bution)
select p2 randomly (parent 2) (uniform distri-
bution)
copy p1 into c1 (child 1)
copy p2 into c2 (child 2)
if (random_number < crossover_probability)
{

choose swap_point1 on c1 (90% bias on
functions)
choose swap_point2 on c2 (90% bias on
functions)
perform crossover at swap points
generate ROBDD of p1, p2, c1, c2
if (p1_ROBDD not equivalent to
c1_ROBDD AND p2_ROBDD not
equivalent to c1_ROBDD) {

add c1 to population
}
if (p1_ROBDD not equivalent to
c2_ROBDD AND p2_ROBDD not
equivalent to c2_ROBDD) {

add c2 to population
}

} else {
add c1 and c2 to population

}
}

Additionally, we check that we do not insert two members
into the population when there is only one slot remaining in
the population. The SDC algorithm essentially repeats Koza
standard crossover until the child programs produced are not
semantically equivalent to either parent. Whilst this does mean
that there is an extra computational requirement in terms of
both the numbers of crossovers to be performed, and the
construction of the ROBDDs, this is offset by the increase
in speed at fitness function evaluation, as the programs tend
to be substantially smaller to process and score.

In a second experiment we implement crossover with only
a state checker (SC) active such that if the child is equivalent
to either parent, one of the parents would be added to the
population instead of the child. This serves to demonstrate the
effects of only stopping behaviourally neutral crossover and
we will show how this has a significant effect on program
size.

IV. RESULTS

A. General GP Parameters

The general GP parameters we use in our experiments
are 0.9 crossover, 0 mutation, 500 population size, 10%
reproduction, max depth limit of 17, 50 generations in addition
to a Ramped Half and Half (to depth 6) starting population
and a 7 competitor tournament selection. We perform 100
runs of each experiment and all results reported are averaged
over these 100 runs. With the exception of the 7 competitor
tournament crossover, these parameters are used by Koza [1]
as standard parameters. We use the 7 competitor tournament as
it is quicker to execute than the fitness proportionate selection
used by Koza.

B. Experiment 1: The 6 Bit Multiplexer

The 6 bit multiplexer has a semantic search space of size
264. The function set we use is {IF, AND, OR, NOT} and the
terminal set is {A0, A1, D0, D1, D2, D3}. The objective is to
map one of D0-D3 to the output, dependent on the two control
bits A0 and A1 which are treated as a two bit binary number.

C. 6 Bit Multiplexer Results

Figure 2 shows that the application of a state checker in
either SC or SDC form significantly reduces the depths of
programs (confirmed using Paired T test at the 99% confidence
level—The Paired T test is applied to compare the mean depth
of programs over each generation for the different runs we
present) when compared to standard crossover. Figure 2 also
shows that the SDC average maximum score is significantly
higher than the standard run (again confirmed using a Paired
T test at the 99% confidence level).

Figure 3 shows the application of the state checker and
the SDC algorithm increases the standard deviation of score
significantly (confirmed using Paired T test at 99% level). The
importance of this is that combined with the higher scores from
Figure 2 the SDC algorithm is performing a wider search and

Figure 2. Mean maximum score plotted against mean program depth. Normal
represents a standard GP run, SC represents a state checked run as described
in III B and SDC represents a run using the SDC algorithm we describe.

Figure 3. Mean standard deviation of score plotted against mean program
depth. Normal represents a standard GP run, SC represents the use of the
state checker and SDC represents the use of the SDC algorithm.

yielding better results. In addition, it achieves this increased
search using significantly smaller programs, which is a more
efficient application of GP.

D. Experiment 2: Even 5 Parity

The even 5 parity problem has the function set {IF, AND,
OR, NOT} and a terminal set {D0, D1, D2, D3, D4}. The
objective is to output true when and only when an even number
of inputs (D0-D4) are true.

E. Even 5 Parity Results

Figure 4 shows that the use of a state checker significantly
reduces the depth of programs (confirmed using Paired T test
at 99% confidence level). In addition to this, the score is
significantly increased (confirmed using a Paired T test at 99%
confidence level).

Figure 5 shows that the standard deviation is significantly
increased (confirmed using Paired T test at 99% confidence
level) when using the state checker and SDC algorithm. This
again implies that a wider search of the behaviour space is
taking place and, when this is combined with the decreased
mean depths of the programs, a more efficient search (wider
search with smaller programs) is being achieved.

Figure 4. Mean maximum score plotted against mean program depth. Normal
represents a standard GP run, SC represents a state checked run as described
in 3.2 and SDC represents a run using the SDC algorithm we describe.

Figure 5. Mean standard deviation of score plotted against mean program
depth. Normal represents a standard GP run, SC represents the use of the
state checker and SDC represents the use of the SDC algorithm.

F. Results Summary

The results for all the experiments are summarized in table
1.

Table I
% IS THE PERCENTAGE OF RUNS THAT HAVE REACHED FULL SCORE BY

GENERATION 50. DEPTH IS THE AVERAGE DEPTH OVER 100 RUNS. SCORE
IS THE MEAN OF THE MAXIMUM SCORES OVER 100 RUNS. SCORE / DEPTH

REPRESENTS A MEASURE OF EFFICIENCY IN THE AVERAGE
CONTRIBUTION TO SCORE BY EACH LAYER OF PROGRAM CODE.

Experiment Method % Score Depth Score/Depth
6 Bit Mux SDC 85 63.40 9.333 6.793

SC 44 61.17 8.131 7.523
Standard 48 61.25 14.113 4.340

Even 5 Parity SDC 5 29.34 12.016 2.442
SC 1 27.39 10.660 2.569

Standard 4 27.81 14.862 1.871

V. DISCUSSION

The results we present in figures 2-5 and table 1 provide
substantial and statistically significant support to show the
SDC is able to improve results in GP runs. The effect of
increasing the movement in the search space, despite the effect
of destructive crossover, enables the SDC method to produce
more successful runs where an ideal solution is found, and
reaches a higher average maximum score for all the runs.

Figure 6. % of crossovers reverted over the generations using the state
checker. This is data for the simplistic SC method applied to the 6 Bit
Multiplexer and the Even 5 Parity problems. This result is averaged over
100 GP runs.

In addition to this, the fact that the standard deviation of
scores is greatly increased (at statistically significant level)
using the SDC adds weight to the argument that the SDC is
performing a wider search and as a result attaining a wider
variety of scores.

The application of the state checker functionality has made
a significant impact on bloat. The average depth of programs is
significantly reduced to approximately two thirds the average
depth of programs in a normal run. Using our SC runs we are
able to see explicitly what happens when the production of
behaviourally neutral children is prevented. This supports the
theory that introns do play at least some part in code bloat.

In addition to this we see a slight but statistically significant
drop in score when the SC method is used, compared to the
standard GP runs. This could be attributed to the opportunity
to improve code that is lost when neutral but syntactically
different crossovers occur.

In table 1 the figures for score divided by depth are
presented. This gives an averaged and approximate guide as to
how efficient a program is in terms of developing a high score
with the smallest possible program size. Table 1 shows that the
SC technique provides a higher score per depth of program,
however, the score per depth of the SDC method also exceeds
that of standard GP. This is the result of combination of two
effects: the first is a wider search and therefore the possibility
of finding more highly fit individuals; the second is the state
checker’s effect of reducing the size of the programs in such a
way that at least some of the implanted code in the crossover
is effective.

Figure 6 highlights an interesting fact when considering
parent and child programs after crossover. For both the multi-
plexer and even parity problem, under normal GP run criteria,
an increasing number of parents and children are behaviourally
equivalent after crossover. This indicates that over 20%, and
after the 10th generation, over 40%, of crossovers are not
creating a movement in the behavioural search space. This
is a worrying statistic as it shows that even in a best case
scenario, over 40% of crossovers are wasted.

The SDC algorithm eliminates this effect and the increased
scores attained represent the benefit of forcing each crossover

to produce children which are behaviourally different to their
parents.

VI. APPLICATION TO THEORY

There are a number of theories to explain the code bloat
phenomenon in GP. We examine our experimental results
(showing substantially reduced code bloat) and assess each
theory in light of our results.

A. Protection from Deletion

The protection from deletion theory [3] states that introns
protect valuable code during crossover. The reason that the
valuable code needs to be protected is because crossover is
mostly a destructive process and would destroy sub trees of
useful code.

The SDC algorithm would magnify the effect of destruc-
tive crossover as it only checks whether a crossover is be-
haviourally neutral rather than whether it is constructive or
destructive. As a result, if we prevent introns from being
added to programs at the point of crossover, we would expect
programs to perform worse in terms of overall score if we
apply the protection from deletion theory. While we do see an
increased range in scores (figures 3 and 5), we still see higher
average maximum scores.

It is clear that allowing introns would serve to push up
the scores of the worst performing programs and as a result
increase the mean score, in the standard GP run. In terms of
maximum score (which is the goal for many GP practitioners)
the standard GP run results in worse performance when
compared to the SDC in these experiments.

While we achieve a higher average maximum score using
the SDC technique with a wider search, this raises the question
of whether protection from deletion is valid. It could be argued
that in the experiments we present it is not valid, because it
would imply that introns are needed in order to achieve high
scoring programs. In our experiments, whilst intron formation
is explicitly prevented, the maximum scores outperform that
of the standard GP technique.

Another problematic aspect of this theory is the idea that
to achieve high scores GP evolution is dependent on an
inefficient one to many mapping between behaviour and syntax
respectively to achieve high scores. The system we have
proposed in this paper has taken a step towards a one to one
relationship between syntax and behaviour and outperforms
the standard GP technique.

Our results indicate that protection from deletion may serve
to increase the scores of the worse performing programs and,
as a result, the mean score of the generation. The results we
present disagree with the idea that introns are required to attain
high performing programs.

B. Fitness Causes Growth

The theory fitness causes growth [16] can be split into two
aspects. The first of these is the idea that programs may need to
grow to attain higher scores as they may be missing essential
parts. The second is the idea that a particular set of programs

will drift to a region of the search space where they are more
likely to attain a higher score and multiply resulting in the
same standard behaviour.

Both of these factors are plausible under the system we
present and although the SDC mean program size is sub-
stantially smaller than the standard GP, it does increase with
score. Even with a canonical mapping of one to one between
behaviour and syntax, both of the fitness causes growth
situations are still possible.

One interesting difference between standard crossover and
the SDC algorithm is the fact that whilst the search may
move to areas of semantically equivalent programs, the lineage
will be different because we force each crossover to make
a new behavioural step. As a result, whereas in standard
crossover, code may drift to semantically equivalent and fitness
equivalent areas of the search space, in SDC crossover these
clusters of programs may not be as large. This increased
variance is confirmed by the substantial increase in standard
deviation (figures 3 and 5) using the SDC algorithm.

C. Removal Bias

Removal bias [5] hinges on the idea that in the event of
a fitness neutral crossover, it is more probable that a small
sub tree will be swapped for a larger one during crossover.
Behaviourally neutral crossovers are subsumed by fitness
neutral crossovers, however, we see a substantial proportion
of behaviourally neutral crossovers in figure 6. As a result
of these experiments, the SDC algorithm serves to dampen
the effect of removal bias, as it will prevent a substantial
proportion of fitness neutral crossovers from occurring. Whilst
it is possible for fitness neutral crossovers to occur under
our system, the removal bias theory remains a plausible
explanation for the code growth present in our experiments.

D. Distribution of Program Sizes

Dignum’s recent work on GP theory in relation to bloat [7]
suggests that a bias in the choice of crossover swap points
(which is applicable to the 90% bias on functions, 10% on
terminals crossover) which favours swapping larger sub trees
into smaller programs will result in bloat. The SDC algorithm
we present would have no effect on this process unless the bias
caused behaviourally neutral crossovers. As a result of this,
crossover bias may be one of the factors involved in increasing
program sizes when SDC algorithm is applied.

VII. CONCLUSION

We have demonstrated that we can simultaneously and
significantly increase performance of GP and decrease code
bloat using the SDC algorithm on two separate GP problems.
We have demonstrated that we can eliminate the addition of
behaviourally neutral code at the point of crossover using
ROBDDs. It is clear that, in the experiments we present,
behaviourally neutral crossovers allow introns to propagate
through the population increasing the average size of pro-
grams. From this we can deduce that code bloat is at least
partially a result of intron creation through crossover.

The higher performance level is unsurprising as the SDC
algorithm effectively forces programs to make more move-
ments around the behavioural search space. Using the SDC
algorithm, probability would dictate that the search is wider
(which is supported by our results).

One factor that remains interesting is the high number of
behaviourally neutral crossovers that occur under the standard
GP process. Our simulation with only a semantic state checker
running shows that between 20% and 50% of crossovers do
not make a semantic movement around the search space. This
represents a substantial waste in terms of computation and
halves the power of the GP search.

Despite the theory that introns protect valuable code from
destruction in crossover, the combination of two factors would
indicate that introns are not required to achieve high perfor-
mance in GP. These factors are increased performance and
smaller program sizes. Based on these two factors, and the
added computational burden of bigger programs, we can argue
that introns are undesirable in GP.

VIII. FUTURE WORK

There are several areas of interest following on from this
work. In the first instance there is the development of canonical
representations to cater for other types of GP problem. Once
these canonical representations are in place the SDC technique
can be applied to other problems with relative ease. Secondly,
there is the comparison of the SDC crossover techniques with
other crossover techniques such as uniform crossover.

Another interesting experiment would be to attempt to run
a GP with no introns present to compare the results with
standard GP and current bloat theories. To do this we would
require the ability to initialise populations without introns
and control introns in crossover. In other work [17] we have
developed a State Differential Algorithm, which generates
semantically distinct programs with no introns. We could
combine this with the SDC technique and a semantic pruning
system to examine the effects of a GP with no introns.

One of the key aspects of whether a crossover will result in
a behavioural change is how the code transplanted from the
swap partner will work together with the rest of the program.
A further understanding of linkage may yield clues as to how
to make crossover more effective in terms of increasing the
probability of changing the behaviour of a program with each
crossover.

This paper has demonstrated the benefit of a wider, be-
haviourally driven search to GP. It would be useful to conduct
an experiment which forced the GP to move into new areas
of the search space as well as quantify how many times
behaviours are produced to analyse and behavioural bias. To
do this we could hybridize GP with a semantic based tabu
search.

REFERENCES

[1] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

[2] J. P. Rosca and D. H. Ballard, “Rooted-tree schemata in genetic
programming,” in Advances in Genetic Programming 3 (L. Spector,
W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline, eds.), ch. 11,
pp. 243–271, Cambridge, MA, USA: MIT Press, June 1999.

[3] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Pro-
gramming – An Introduction; On the Automatic Evolution of Computer
Programs and its Applications. San Francisco, CA, USA: Morgan
Kaufmann, Jan. 1998.

[4] U.-M. O’Reilly and F. Oppacher, “Hybridized crossover-based search
techniques for program discovery,” in Proceedings of the 1995 World
Conference on Evolutionary Computation, vol. 2, (Perth, Australia),
pp. 573–578, IEEE Press, 29 Nov. - 1 Dec. 1995.

[5] T. Soule and J. A. Foster, “Removal bias: a new cause of code growth
in tree based evolutionary programming,” in 1998 IEEE International
Conference on Evolutionary Computation, (Anchorage, Alaska, USA),
pp. 781–186, IEEE Press, 5-9 May 1998.

[6] W. B. Langdon and R. Poli, “Fitness causes bloat: Mutation,” in Late
Breaking Papers at the GP-97 Conference (J. Koza, ed.), (Stanford, CA,
USA), pp. 132–140, Stanford Bookstore, 13-16 July 1997.

[7] S. Dignum and R. Poli, “Generalisation of the limiting distribution
of program sizes in tree-based genetic programming and analysis of
its effects on bloat,” in GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation (D. Thierens, H.-
G. Beyer, J. Bongard, J. Branke, J. A. Clark, D. Cliff, C. B. Congdon,
K. Deb, B. Doerr, T. Kovacs, S. Kumar, J. F. Miller, J. Moore,
F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O. Stanley, T. Stutzle,
R. A. Watson, and I. Wegener, eds.), vol. 2, (London), pp. 1588–1595,
ACM Press, 7-11 July 2007.

[8] W. B. Langdon, T. Soule, R. Poli, and J. A. Foster, “The evolution of size
and shape,” in Advances in Genetic Programming 3 (L. Spector, W. B.
Langdon, U.-M. O’Reilly, and P. J. Angeline, eds.), ch. 8, pp. 163–190,
Cambridge, MA, USA: MIT Press, June 1999.

[9] S. Luke, “Code growth is not caused by introns,” in Late Breaking
Papers at the 2000 Genetic and Evolutionary Computation Conference
(D. Whitley, ed.), (Las Vegas, Nevada, USA), pp. 228–235, 8 July 2000.

[10] T. Soule, J. A. Foster, and J. Dickinson, “Code growth in genetic
programming,” in Genetic Programming 1996: Proceedings of the First
Annual Conference (J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo, eds.), (Stanford University, CA, USA), pp. 215–223, MIT Press,
28–31 July 1996.

[11] T. Soule and J. A. Foster, “Code size and depth flows in genetic
programming,” in Genetic Programming 1997: Proceedings of the
Second Annual Conference (J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel,
M. Garzon, H. Iba, and R. L. Riolo, eds.), (Stanford University, CA,
USA), pp. 313–320, Morgan Kaufmann, 13-16 July 1997.

[12] T. Soule and J. A. Foster, “Support for multiple causes of code growth
in GP.” Position paper at the Workshop on Evolutionary Computation
with Variable Size Representation at ICGA-97, 20 July 1997.

[13] P. Nordin, F. Francone, and W. Banzhaf, “Explicitly defined introns
and destructive crossover in genetic programming,” in Proceedings of
the Workshop on Genetic Programming: From Theory to Real-World
Applications (J. P. Rosca, ed.), (Tahoe City, California, USA), pp. 6–22,
9 July 1995.

[14] K. Harries and P. W. H. Smith, “Code growth, explicitly defined introns
and alternative selection schemes.” www, 1998. Earlier version of
Evolutionary Computation 6 (4), 336-360, 1998.

[15] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[16] W. B. Langdon and R. Poli, “Fitness causes bloat,” in Soft Computing in
Engineering Design and Manufacturing (P. K. Chawdhry, R. Roy, and
R. K. Pant, eds.), pp. 13–22, Springer-Verlag London, 23-27 June 1997.

[17] L. Beadle and C. Johnson, “Behavioural diversity in genetic program-
ming starting populations.” Submitted for Publication.

