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											Abstract 
 

Secure device authentication is one of the top challenges worldwide from a security and privacy 

point of view. For the provisioning of security services, cryptographic methods have traditionally 

relied on keys stored in the devices. These keys are vulnerable to attack since they are seldom 

protected. 

 

This thesis investigates the feasibility to enhance device security. The recommended framework 

makes use of novel Integrated Circuit Metrics (ICMetrics) technology, which leverages measurable 

features and properties of a device. Low level device features are used to build an identity for the 

device through the use of the ICMetrics. This technology specialises in deriving strong device 

identity to prevent all forms of skimming and malware attacks. 

 

Firstly, the research contribution is to examine the suitability of employing various low level 

behavioural characteristics or features derived from wearable and general computing devices. The 

novelty offered by this research enables the utilization of dynamic features instead of solely relying 

on static features. Additionally, the feature characteristics need not remain absolutely constant but 

are free to vary within deduced parameters, thus allowing the software to operate in several states 

and on a variety of platforms. To increase the complexity of the generated ICMetrics, the extracted 

feature values are subjected to statistical and mathematical analysis. Another fundamental problem 

solved by ICMetrics is the generation of stable and unique digital identities from features that are 

unstable. Potential features that might be used for device identification were the initial point of 

focus, which was followed by a study of the feature extraction strategy and multimodal properties.  

The modular dataset made it easier to assess how reliable the device identification was. The security 

system is analysed and tested during this phase in order to measure its efficacy. In other words, it is 

tested using a dataset that was captured directly from the computing devices. The accuracy rate 

and confusion matrix, are calculated in this phase. The investigation showed that the suggested 

model outperformed all other model for identifying devices. The accuracy results obtained for the 

second and third feature sets of the proposed model are 91.5%, 92%, and 80.3% respectively. 

	

The thesis also investigates the effectiveness of employing measured hardware features mapped into 

the frequency domain for device identification. Discrete Wavelet Transform (DWT) coefficients are 

used as differentiating features in the approach. In this thesis, the proposed model of multivariate 

Gaussian distribution is used to describe the analysis process and its mathematical application. 



 iv 

Hardware characteristics were investigated. Wavelet-based features were leveraged. The analysis 

and comparison of classifiers revealed that they behave differently on the same dataset. Overall, 

wavelet features outperform raw features, and Sym2 and DB2 are the two wavelets that perform the 

best. 

 

Finally, because the sample data was stored on the device, an efficient technique for data security 

had to be implemented. A decision was taken to employ the homomorphic encryption (HE) 

algorithm. The method fulfils the requirements for data protection. 
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Chapter 1  
 

Introduction 
 

Our identity is everything: who we are, what we have access to, etc. Every day, we rely on our 

identities. Today, with ever increasing cyber fraud, securing online identities has become a major 

focus area for organisations across the globe. Humans are just a speck in the identity network 

ecosystem. The problem was amplified when machine identities outnumbered humans. Just like 

humans, machines also need identities to authenticate and securely communicate with each other 

and with humans. The IAM tools are better equipped to handle human traffic; however, we need 

similar tools, or rather more sophisticated ones, to handle machine identities. So, what is a machine 

ID? Simply put, they're your cryptographic assets, like X.509 certificates, SSH keys and certificates, 

symmetric keys, code signing certificates, and other secrets and non-human identities. 

 

With constantly rising cyber scams, securing online identities has become a main focus for 

organisations throughout the world and almost 14 billion dollars were spent on identity access 

management (IAM) in 2021 [1]. IAM relies on tools like multi-factor authentication, single sign-

on, and privileged access management. 

 

Identity fraud can wreak havoc on societies and economies, and this crime is often committed to 

facilitate other crimes such as credit card fraud or money laundering, mail fraud, bank fraud, wire 

fraud, etc. These frauds affect not only individual citizens and the nation’s economy, but they are a 

national security threat as well. There are different types of Machine Identity Management (MIM) 

solutions in the market, for example, hardware and software-based techniques; they have limitations 

and vulnerabilities, which are detailed in Chapter 2 (Section 2.9). However, the need of the hour is 

robust Machine Identity Protection (MIP) [2]. 

 

Hardware-based solutions are relatively expensive. In a post-pandemic workforce, remote 

connections have greatly increased, and this has created additional security concerns for CISOs that 

cannot be met with ever tightening budgets. Large organizations have to choose between key 

protection and productivity. Unfortunately, today it is all too likely that organisations are relying on 

the underlying native security offered by a device’s operating system, the device hardware itself, 
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and the microprocessor providers. 

 

The primary challenge with these MIP techniques is that they can be compromised by advanced 

attacks like MITM, malware, etc. If deployed correctly; PKI is, by far, the most robust technology 

[3]. In the world of PKI, a credential is a combination of a digital certificate and a private key. 

Conventional key protection techniques have fundamental flaws. For example, software based key 

protection approaches like .pfx or. p12 files or browser-based certificate stores have issues like being 

prone to brute-force attacks, can be skimmed, and software containers cannot be strongly bound to 

a machine. The traditional hardware backed mechanisms to protect the private key is through 

Hardware Security Modules (HSM), smart cards, TPM chips, and key management solutions. HSM 

security is, of course, very high (often at the FIPS level); however, applications connect to the HSM 

via username and password and/or client certificates stored in .pfx or. p12 files [4].   Often, these 

can be hacked with simple social engineering tricks. Further, these are dump authenticators since 

they will sign any hash value so long as the container password is correct. Hardware containers like 

cryptographic smart cards, TPMs, which have limitations, hardware, and logistic cost, requires 

driver installation. To protect against fraudulent data manipulation, the protection of encryption 

keys should be guaranteed. 

 

A majority of main stream crypto key providers have been successfully attacked multiple times, 

such as the Pegasus attack against WhatsApp encryption keys (iOS and Android) [5], Jeff Bezos 

iPhone hack, Meltdown and Spectre (Intel, ARM, AMD, Linux/Windows, and so on) [6], and, more 

recently, SGAxe and Crosstalk targeting Intel H/W [7]. 

 

To avoid total dependence on native security features, one can adopt an effective ‘layered’ security 

approach. ICMetrics offers all the capabilities and benefits to provide a strong deterrent against the 

above-mentioned threats and attacks. 

 

Integrated Circuit Metrics (ICMetrics) is a novel machine identity protection technology for 

deriving unique private keys based on the operating characteristics of digital systems (a combination 

of software and hardware configurations) using properties or features derived from their own 

construction and behaviour capable of assuring both their authenticity and freedom from malware 

[8][9] [10].  

 

A significant amount of such fraud can be tackled effectively if there is a robust way to link users’ 

physical identities to their online identities and the credentials are strongly bound to their devices. 
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ICMetrics can play a crucial role here. ICMetrics is a software client that reads various dynamic and 

static (hardware and software) feature values of a device and generates a unique identifier for the 

device. This unique identifier is used to generate key pair, of which the private key is not stored 

permanently on the device or in the database. Every time a cryptographic operation is required, the 

ICMetrics client reads these feature values and reconstructs the private key. If the ICMetrics client 

is skimmed, then on a rogue device, the feature values will differ from what the ICMetrics client 

expects, which will result in a failed cryptographic operation. This technique eliminates offline brute 

force attack [8][9] [10]. 

 

The novelty of the proposed system is that the measured characteristics do not need to remain 

constant but are free to vary, thus allowing the software to operate in several states and on a variety 

of platforms while still ensuring that any skimming attacks or malware are detected via unacceptable 

changes in the operating parameters. This technique thus represents a promising new approach for 

generating unique keys for systems enabling the protection of cryptographic keys. This technology 

can identify pattern features with highly non-standard distributions derived from machine level 

behavioural characteristics, which ensures that a private key is not easily compromised [8][9] [10].  

 

Such a system will offer the following unique selling proposition: 

1) The elimination of the need to store any type of sensitive data (or template) for validating 

the service, thereby directly addressing the major flaw that the data is accessed and used to 

breach the system’s security. 

2) Prevent malware from taking over devices and tampering with software configuration. 

Malware infection will cause its ICMetrics behaviour to change, which will prevent its 

further utilisation. 

 

A system for implementing device identification is proposed in this thesis. ICMetrics technology is 

investigated in the proposed system to identify devices. The ICMetrics technique generates a unique 

identification for a device using internal properties of the device. It can be used to offer 

authentication and attack detection services. ICMetrics is generated automatically as needed and is 

then discarded, with no user input [8][9] [10]. 

	

1.1 Research Motivation 
 

An internet-connected device is always at risk when modern social engineering techniques, naive 
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users, and other factors are combined. Personal and confidential information can be compromised 

with just one successful attempt. Therefore, it is strongly advised that confidential data be encrypted 

in order to reduce the fraudulent use of the compromised data and protect its validity and integrity. 

 

Data encryption, which transforms plain-text data into seemingly random data, is a crucial 

instrument for data protection. An encryption key is used to encrypt plain text, and depending on 

whether symmetric or asymmetric encryption is being used, the same or a different key is used to 

decrypt the data, respectively. Hence, securing these keys is of prime importance. When the security 

of the encryption keys cannot be completely ensured, the integrity of encryption is called into 

question. 

 

Apart from encryption, cryptographic keys can be leveraged for authentication and digital signatures 

as well. These serve the purposes of identification and non-repudiation. The cryptographic keys are 

often secured by passwords, and since they tend to be brief and contain alphanumeric characters, 

they are weak in nature. Therefore, key creation and seamless usage has been suggested in recent 

years without the user being aware of the encryption key or passphrase. 

 

There are currently more online devices than users [11]. This indicates that many of us have multiple 

internet-connected devices. It is impossible to overstate the significance of security as more 

commonplace items like watches and televisions gain internet connectivity. Computational devices 

are still insecure despite ongoing development in the realm of cryptography. Every year, there are 

several reports of computer security incidents where systems are attacked, resulting in monetary 

loss, data theft, and even a threat to life[12]. The availability of cheap computing power and 

improved communication have made enemies more powerful than before. The goal of cyber-attack 

may be to jeopardise security or simply to cause a minor annoyance. Traditional cryptography 

systems rely on the user having access to these keys, which breaks down if the secrets are not kept 

private. Furthermore, keys cannot offer non-repudiation because they might be misplaced, lost, or 

stolen.  

 

An enemy may view device communication as an alluring setting full of equipment and linkages. 

Therefore, attackers will try to acquire access by taking advantage of security or system design 

weaknesses. Security procedures and techniques that call for cryptographic keys presumptively keep 

the key secret. Traditional non-hardware-based cryptosystems have a flaw because there are 

numerous ways for an opponent to obtain the keys. So, any security-based system's Achilles heel is 

cryptographic key theft. It is imminently necessary to adopt a new strategy for the supply of security 
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in light of the possibility that an attack on cryptographic keys could result in failed security. 

 

An alternative method for protecting a system is to enhance the device identity. ICMetrics offers a 

unique way to measure characteristics of a target device by leveraging features and their 

combination. In this research, a security system based on ICMetrics technology is suggested. This 

system collects properties and features from a devices’ behaviour and characteristics in order to 

uniquely identify and secure a system based on that identification. A device can create an identity 

using the ICMetrics technology in order to provide authentication and a number of additional 

security functions [9] [10]. 

 

Additionally, some security measures rely on the keys that are kept in storage to enable safe 

information. Such methods have weaknesses because they leave the security of any data protected 

by the keys exposed in an instance that they are compromised. Consequently, it is crucial to use 

security techniques to defend these systems against intruders. By utilising a device property to 

generate an ICMetrics number that will be used for the identification, ICMetrics technology has 

been developed as a means of preventing key theft [9] [10].  

 

1.2 Scope and Research Objective 
	

This thesis offers a novel method to address the device security issues raised above and develops a 

methodology to showcase how device characteristics can be extracted and captured to produce a 

unique digital identity. Utilizing these unique characteristics in various models, helps to determine 

the identity of a device.  

 

The aim is to reproduce unique identifiers for a particular device to identify it in a large device base. 

Firstly, the features that can be used for device identification are looked into. The technology is then 

used to standardise the characteristics. Multimodal features are examined and converted to a format 

that traditional statistical models can easily understand. One example is the division and reordering 

of multi-model features into a normal form. The effectiveness and viability of the features that have 

been gathered are examined next. For the purpose of identifying the configurations that result in the 

best performance, all features are mapped into a multi-dimensional space. 

 

The unique generation of a digital identity by harvesting device features overcomes major issues 

regarding secure data transfer, such as spoofing, cloning, and MITM attacks. As the identity of the 
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device becomes more difficult to mimic, it reduces the significant threat posed to communication 

systems. The technique offers mathematical analysis and device characteristic modelling, which 

allows for the actual feature values to change. As a result, a fundamental concept for generating 

identity keys under variable conditions is implemented. The cryptographic keys generated using the 

ICMetrics technology can be leveraged for authentication, confidentiality, and integrity [8][9] [10]. 

The framework that is being presented examines the ICMetrics technology in two ways: first, as a 

foundation for creating cryptographic keys for device identification, and second, as a means of 

preventing key theft.  

 

The objectives are: 

1. Developing a security system for device identification based on ICMetrics technology, 

which depends on features that distinguish each device and generates a unique number called 

an ICMetrics number that is used for device identification. 

2. Robust authentication of devices is based on the internal behavioural characteristics of the 

associated hardware and software. The technology can prevent MITM, brute force, malware 

takeover of device etc. 

3. Demonstrating how device features can be leveraged to increase security and implement 

device identification. It is possible to identify a device using data collected by internal 

behavioural characteristics of the related hardware and software. 

4. Examine features in the frequency domain for identifying devices and determining a unique 

ICMetrics. 

5. Device identification using homomorphic encryption.  

6. System performance parameters, such as the confused matrix, accuracy rate are tested and 

evaluated. 

	

1.3 Research Challenges 
 

Based on the description above, the main challenges of this research are listed below 

 

1. It is crucial to minimize intra-sample variability at all stages of the procedure. This is 

required to achieve the best results for all pattern recognition tasks. If the intra-sample 

variation is not reduced at every level, it will progressively increase.  
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2. The variation of the extracted feature vectors should also be decreased by lowering the 

variance at the beginning of the process. This should make it possible to develop matching 

and classification algorithms that require less variance modelling during matching. 

3. Given the difficulty in generating a stable unique identifier for individual devices, the 

challenge was how to deploy multimodal features in multi-dimensional space. 

4. The standard pattern recognition system may struggle to compute features with non- 

standard distributions. The research was focused on challenge to normalise those features 

and apply them to the ICMetrics system. As is well known, an unstable set of features will 

result in an unstable pattern recognition system. Stability is far more crucial for a security 

system than other conventional classification schemes. It will be quite difficult to figure out 

how to apply those elements of an unstable environment to a security system. 

5. Performance can also be enhanced by extracting a group of features that share specific traits. 

However, when implementing an automatic pattern recognition system, such feature 

selection is a crucial challenge that must be taken into account. A feature, or combined 

feature set, must be highly discriminative (i.e., have low variation between signals obtained 

from the same origin and high variation between signals obtained from different origins), 

consistently reproducible, and invariant to affine transformations and scale in order to yield 

the best results. 

6. Unfortunately, it is not easy to pinpoint the specific features or feature combinations that 

deliver high inter-sample and low intra-sample variance. However, because of the 

considerable variability of the data, it may not always be possible to consistently extract a 

feature that is highly discriminative. As a result, finding an appropriate representation of the 

feature is just as crucial as finding the feature itself. 

 

Despite the fact that ICMetrics has been studied for a while, this thesis is innovative in that it uses, 

for the first time, new strategy to leverage unique hardware features and combining them to 

significantly enhance device identity. This research also utilizes discrete wavelet features, and 

homomorphic encryption to protect template data. 

 

1.4 Research Questions 
	

A set of research questions is developed to further investigate this area and identify the opportunities 

and constraints for device authentication. The goal of the thesis is to develop a framework for 

evaluating and quantifying performance on various platforms across various contexts, usage tasks, 
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and scenarios. This research seeks to provide answers to the following important questions: 

 

1) Is it possible to enhance device identification to 80% or above from the physical 

characteristics of general computing devices? 

By analysing various operating characteristics of digital systems associated with their 

software, hardware configurations, and behavioural properties, for example, CPU usage 

performance, memory I/O, hard disk speed, usage of apps, keystrokes, tabs opened in 

browsers, etc., one can model pattern features, which can ensure that a unique private key is 

constructed serving the purpose of robust device authentication. These features are plotted 

on a polynomial, and if malware infects the device and the presence of additional software 

(malware) violates the polynomial, the authentication fails, preventing malware takeover of 

the device.  

 

2) What elements of the devices have an impact on the system’s overall performance? 

When using the embedded sensors on the device to capture feature data, it is essential to 

examine the stability of these over time and in different environments. Because every user’s 

machine usage has a different impact on the features that are extracted (as each user uses 

their machines differently), it is possible to draw connections between the existence of 

background processes for a system resource and the potential impact those activities may 

have on the various candidate features under consideration. Understanding whether and how 

these factors affect authentication performance can lead to the development of robust 

authentication methods and devices. Therefore, a study on the impact of these factors on 

device identification has been conducted and presented in this thesis. 

 

3) How can various behavioural characteristics of a device be used to increase identification 

accuracy even more? 

Enhancing the underlying security is essential because of the rising threat of spoofing and 

MITM attacks on devices. Understanding the technological viability of establishing a 

system, as well as its potential to increase identification accuracy in the context of challenges 

unique to devices, was essential for achieving this. In this work a thorough analysis and 

comparison of the device identification performance based upon multimodal features has 

been conducted, along with a variety of traditional classifiers for benchmarking. 
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1.5 Thesis Structure 
 

There are a total of six chapters in this thesis. The areas in which this thesis study was conducted 

are listed below. 

 

Chapter 2 starts with an overview of security requirements. Then it presents current State of the Art 

in Authentication techniques for example PUF, TPM, MPC. Following that, discussed the 

background of ICMetrics and related works. Next the focus was on extensive competitive analysis 

and a comparison of various different types of authentication technologies. Finally, the chapter ends 

with security issues in cybersecurity physical attacks on devices. 

 

Chapter 3 describes the ICMetrics Process, the feature extraction concept, feature modelling, 

introduce feature analysis, and multimodal distribution. The second half of the chapter explains the 

operation phase of the system and the different methodologies and algorithms of the system. Lastly, 

it describes the experiments, results, and conclusion. 

 

Chapter 4 starts with the introduction of wavelets, types of wavelets used for analysis, and related 

work. Then it describes a system overview, experimental methodology, and classifiers, and ends the 

chapter with experimental results and a conclusion. 

 

Chapter 5 commences with a brief focus on related works, then goes on to describe homomorphic 

encryption and explain the proposed system. Lastly, it focuses on experiments conducted and 

concludes the chapter. 

 

Chapter 6 is the last chapter, which summarises the findings of the research. Additionally, future 

work is discussed. 
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Chapter 2 
 

Literature Review & Related Works 
 

2.1 Introduction 
 

Today's cutting-edge computer environment views security and data privacy as one of the most 

important factors impeding the widespread adoption of large-scale general computing devices. 

Determining the security level of a particular device and being able to comprehend device specific 

vulnerabilities are therefore essential. Protecting the hardware and software from attacks is currently 

an issue. Security refers to defending computer systems from harm and unauthorised entry by 

malicious actors and software, such as malware. One of the most frequent forms of attacks on 

information systems, for instance, is the computer virus. Security tools are required to find and 

eradicate the malware once it has taken up residence in a computer system.  

 

Attacks on a device are often conducted with knowledge of the device's limitations. Cybersecurity 

experts understand that one of their responsibilities is to reduce the impact of security threats. When 

sharing data and resources, it's crucial that both communicating devices are protected against threats. 

As per Verizon’s Data Breach Investigations Report 2022, a vast majority of cyber-attacks involving 

Web applications use stolen credentials [13]. This highlights significance of robust authentication 

techniques.  

 

This chapter highlights existing device authentication techniques i.e., Physically unclonable 

functions, Trusted Platform Module (TPM), Hardware Security Module (HSM), Multi Party 

Computation (MPC). The deficiencies in the current state of art and competitive analysis are 

examined in detail. The chapter then describes the ICMetrics technology's design ideas, novelty, 

earlier work related to ICMetrics, and the chapter also includes a comprehensive analysis on device 

attacks.  
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The purpose of this research study is to examine how the novel technique, ICMetrics can be used to 

address credential related security problems. It is essential to have a fundamental understanding of 

the terminology and evaluation standards currently used in these domains. Once the user 

authenticates, there are crucial cryptographic operations required to ensure the confidentiality of 

data. All such operations were discussed and supported by ICMetrics.  

 

The rest of the chapter is organised as follows: 

Section 2.2 discusses security requirements. Section 2.3 will explore the current start of the art in 

authentication techniques. Section 2.4 discusses the background of ICMetrics, section 2.5 on 

ICMetrics related works, section 2.6 focuses on competitive analysis, section 2.7 will discuss a 

comparison of various other types of authentication technologies. Finally, Section 2.8 discusses 

cybersecurity physical attacks on devices and Section 2.9 summarize the chapter. 

 

2.2 Security Requirements 
	

The goal of security is to safeguard system data in order to preserve it against modification and theft 

and to ensure its availability, confidentiality, and integrity. It covers securing computer hardware, 

software, data, and connections. [14] 

 

The word ‘security’ is used to refer to a variety of situations, including those in which there are no 

risks or threats, hazards are prevented, or confidence has been attained. At the level of both 

individuals and organisations, attaining security is necessary in various contexts. The level of 

security varies from one organisation to other since ensuring security requires people with expertise 

and experience. It is crucial for users to take a systematic approach, which entails analysing, 

planning, implementing, and maintaining a necessary security system, in order to improve security 

for companies and individuals [15]. 

 

Security has a variety of objectives, as shown below [14]: 

 

Authentication: The process of confirming a person's or a device's identification. 

 

Confidentiality: In order to avoid unauthorised access to the information, confidentiality refers to 

keeping the information private. 
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Availability: This refers to the data's readiness for use. A system malfunction results from delayed 

access to information. 

 

Integrity: Integrity is the quality of preventing information from being manipulated or destroyed. 

Information can be altered or sabotaged if there is a lack of integrity. 

 

Non repudiation: This guarantees that sender cannot ever refute signing the message. 

 

Adversaries are able to take advantage of system flaws in order to get unauthorised access. In order 

to ensure the security of any system, both its hardware and software must be secure. 

 

2.3 Current State of the Art in Authentication Techniques 
 

The emphasis in this section was to understand existing device authentication techniques to address 

the core security requirements such as PUF, MPC, TPM, and PKCS #12 file-based storage, as well 

as their vulnerabilities and limitations. The emphasis was on how ICMetrics overcomes these 

challenges. 

 

2.3.1 Physical Unclonable Functions (PUF) 

 
 
PUF is usually implemented by utilising a specific hardware component in a device, which serves 

as the basis for a digital finger print [16]. SARM-based PUF is one way of doing it. Here is how it 

works:  

 

1) A software client is deployed on each device. And at the silicon level, this client reads the 

unique submicron physical characteristics of a chip's SRAM and, using this as a digital 

fingerprint, generates an asymmetric key pair. It is a scientifically proven fact that each 

SRAM (even of the same model and produced by the same manufacturer) is absolutely 

unique, resulting in a very high entropy. A digital certificate is then issued in a standard way 

that serves identity purposes [17].  

 

2) Since PUF client is required to generate this private key, if skimmed, this client will be 

required on a rogue device as well to generate the same private key. And since the physical 
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characteristics of SRAM will change, the same private key will not be generated, effectively 

making it impossible to skim.   

There are two types of randomness with PUF:  

• Intrinsic Randomness: PUFs rely on randomness that is intrinsically present in the physical 

device introduced at the time of its manufacture. The advantage of this type of PUF is that 

no special fabrication techniques are required to produce them, making them easier and 

cheaper to integrate into an IC. 

 

• Explicitly Introduced Randomness: PUFs that use a source of randomness that is 

intentionally added to the device, such as an optical system, have the advantage that they are 

generally able to produce basis numbers with higher entropy than intrinsic randomness PUFs 

and tend to be more environmentally independent since the source of randomness was 

chosen with these parameters in mind. However, special fabrication techniques are often 

required to integrate these sources of randomness into the device, increasing its 

manufacturing difficulty and cost. 

 
 

PUFs produce their basis number by implementing the challenge response authentication method: 

the PUF is challenged with a stimulus applied to the device’s input, which is mapped (via the 

randomness in the internal structure of the device) to an output called the response. While different 

stimuli will produce different responses, the PUF’s response to a given stimulus should always be 

the same. Since this challenge response mapping is defined by randomness in the internal structure 

of the device, it can be challenging to spoof or clone a properly implemented PUF. 

 

Although PUFs provide an adequate source of basis number generation, there are several 

disadvantages when compared to an ICMetrics approach. One disadvantage is that a system 

implementing PUFs requires specialised hardware, implemented at the design phase, making it 

difficult to apply retroactively if it is decided that additional security is needed. This is in contrast 

to an ICMetrics approach, which aims to generate a basis number directly from characteristics 

already present on the device, allowing it to be implemented in software even after the device has 

been manufactured. In addition, a PUF based system is only as secure as the PUF hardware; if a 

given PUF is found to be vulnerable (as many have been), then the entire security system has been 

broken; it is not easy to patch a hardware problem. Since an ICMetrics system is more adaptable, 
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even if a particular implementation of the system is found to be vulnerable, it may be possible to 

apply a software fix to resolve the problem [18]. 

 

2.3.1.1 Vulnerabilities 

 

1) PUF, in general, has known vulnerabilities. 

2) PUF itself does not have anti malware capabilities and is vulnerable to attacks by malware 

running on the system's (micro) processor. It is the device owner’s or manufacturer’s 

responsibility to protect the boot sequence. 

3) Since Intrinsic PUF technology depends exclusively on dedicated hardware, if ever a 

vulnerability is found with this component, as happened with the Spectre and Meltdown 

vulnerabilities (which affected all microprocessor manufacturers), a large number of keys 

deployed in the field might have to be revoked and renewed [19].  

 

2.3.1.2 Limitations 

 

1) A very common PUF implementation relies on SRAM. And it does not work on devices that 

block access to SRAM, such as Intel, Apple, etc. – that’s a significant chunk of enterprise 

security devices.  

Further, in the IoT space, SRAM PUF suitability is limited only to IoT devices. However, if 

the customer is focused on securing PKI keys across the entire IoT eco system, like servers, 

computers, mobile devices, and the applications that interact with the IoT device, then this 

technology is ruled out [20] [21].    

	

2.3.2 Trusted Platform Module (TPM) 
 

TPM is an in-built hardware chip (dedicated microcontroller) designed to secure cryptographic keys 

in such a way that the private key is not exportable. Because TPM is built into the device, third-

party applications and services can use it right away. 

 

TPM follows the RSA principles of holding a private, inaccessible key for either encryption or 

decryption. An attacker cannot remove a TPM chip and insert it into another computer, as it is fixed 

to specific hardware [22]. 
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2.3.2.1 Vulnerabilities 

 

1) Being hardware, if there is a vulnerability detected in library implementation, the devices 

need to be physically recalled - a logistical nightmare. For example, in October 2017, it was 

reported that a code library developed by Infineon, which had been in widespread use in its 

TPMs, contained a vulnerability known as ROCA, which allowed RSA private keys to be 

inferred from public keys. As a result, all dependent systems were vulnerable to compromise, 

such as identity theft or spoofing. And one country, Estonia, ended up recalling 750,000 ID 

cards. Software implementations are relatively easy to fix via an OTT update.  

2) TPMs are prone to a cold boot attack (or, to a lesser extent, a platform reset attack). This is 

a type of side channel attack in which an attacker with physical access to a computer is able 

to retrieve encryption keys from an operating system while in operation after using a cold 

reboot to restart the machine. The attack relies on the data persistence property of DRAM 

and SRAM to retrieve memory contents that remain readable for a few minutes after 

shutdown [22] [23]. 

3) There have been several other attacks reported over the years, for example, a design flaw in 

the TPM 2.0 specification for the static root of trust for measurement (SRTM). 

  

2.3.2.2 Limitations 

 

a) Not all devices support TPMs. For example, Apple has not shipped a device with TPM since 

2006.  

b) TPMs are not economically viable for some IoT devices. For 100K-200K devices, it costs 

around USD 4-5 per TPM. This makes it difficult for manufacturers in certain segments with 

cut-throat competition, for example, smart thermostats. 

c) Trusted Computing Group (TCG) has faced resistance to the deployment of this technology 

in some areas, where some authors see possible uses not specifically related to Trusted 

Computing that may raise privacy concerns. The concerns include the abuse of remote 

validation of software (where the manufacturer decides what software is allowed to run) and 

possible ways to follow actions taken by the user being recorded in a database that are 

completely undetectable to the user [23] [24]. 
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The ICMetrics approach is not tied to a specific hardware platform; it is applicable across various 

hardware platforms. With ICMetrics, there is no chip for an attacker to remove, as the encryption 

keys are generated from the device features [25] [26]. 

 

Furthermore, in an ICMetrics approach, the feature value derived from a basis number and various 

combined features, which can be considered a private encryption key, is purely generated on request 

[27]. In contrast, in the case where a TPM is not cleared before a clean installation of a new operating 

system on a computer, under the principles of attestation, where a witness verifies authenticity, due 

to the reuse of similar TPM values by another operating system, the TPM encryption key generation 

is not purely unique, even though a high level of machine security is provided. The ICMetrics system 

is more unique by providing key encryption values on request at runtime, based on a series of 

attested combined feature distributions in the calibration phase. 

 

2.3.3 Multi Party Computation (Shared Secret Approach) 

 

MPC splits an asymmetric key into multiple shares, one of which is stored on the end entity device 

and the rest at the servers (on-premises) which support HSMs. Every time a cryptographic operation 

is required, all the shares are combined on the server and the operation is performed; all these shares 

are never combined on end-point devices. During the crypto operation, the end-entity share is 

exposed in device memory for a fraction of a second [28].  

 

This end-entity share is protected by three asymmetric keys – the first key encrypts the end-entity 

share, the second signs every message send to MPC server and the third decrypts in-coming 

messages sent by the server.  

They use the on-board security features offered by the device for securing the end-entity share and 

three asymmetric keys. These include the trusted execution environment for Android and the 

security enclave on iOS. Further, they can utilise native mobile biometric authentication schemes 

for end-user certificate use cases.   

 

Every time the end-entity share is used, it is refreshed or rotated, primarily to protect against 

skimming attacks. They seem to support the risk engine (geo-location) for additional security.  
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2.3.3.1 Vulnerabilities 

 

1. End-entity shares being exposed to memory can lead to a malware based skimming attack that 

can take a memory dump and then skim the sensitive data.  

				[ICM advantage [25]: it effectively protects against malware attacks] 

	

2. If end-entity share can be compromised, it is also equally likely that the three asymmetric keys 

can be compromised as well!   

    [ICM advantages [27]: ICM has the capability to bind the private key to the device and does 

not need additional keys to enhance security.]  

	

3. MPC technology itself does not offer anything at all to secure the private keys at the device 

level; there is total dependence on native security features, all of which have been breached, for 

example the Pegasus attack against WhatsApp encryption keys, Jeff Bezos iPhone hack, etc.  

    [ICM advantage [27]: ICM offers very robust capability to protect and bind the private key to 

the device and does not depend on native security features. That said, native features can be 

used if the customer wishes to have additional security.]   

	

4. If the device is compromised by malware, it can potentially also skim the new, refreshed key 

even before the victim can use it. There is no way for the server to know whether malware has 

taken over a device. 

    [ICM advantage [26]: There is no need to rotate or refresh the keys or have short-lived 

certificates. ICMetrics itself effectively protects the keys from being skimmed.]  

	

5. Geo-location only helps if the fraudster and victim are separated far enough to be identified as 

such. What if the fraudster is located in close proximity to or in the same building as the victim? 

Worse, it could be malware or a bot running on the victim’s machine!  

    [ICM advantage: ICM does not have any dependency on geo-location.] 

	

2.3.3.2 Limitations 

 

1) Since there is a dependency on the server to compute MPC, this technology is not suitable for 

SSL certificate key protection due to additional latency - every time an SSL handshake is 

required at the server, MPC client will need to communicate with the server, each of which can 
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support approx. 1000 concurrent users [29]. For higher concurrency on web servers, MPC 

technique will need multiple servers; hence, it will have significant infrastructure overheads! 

     Additionally, this technology is not suitable for devices that are deployed in air-gap 

environments, for example, some IoT devices.  

     [ICM advantage: Since this technology runs entirely on the device, there is absolutely no 

dependency on servers, databases, etc. ICM does not store device feature lists or values locally, 

nor does it store the actual private key in file [26].]   

	

2) Since IoT devices usually do not have on-board security features, this technology is not suitable 

for most IoT use cases.  

      [ICM advantage: This technology doesn’t depend on native security features, but rather 

provide themselves, which converts a standard device into a smart card or HSM.] 

	

3) 	Since the end-point share is refreshed or rotated every time it is used, a new certificate will be 

required as well (a one-time certificate). Hence, they are not at all suitable for SSL certificates 

or for IoT devices with limited computational power and a lack of CSR generation capability.  

     [ICM advantage [27]: There is no need to rotate or refresh the keys or have short-lived 

certificates. ICMetrics itself effectively protects the keys from being skimmed.]  

	

4) Geo-location-based checks will further introduce latency for SSL certificates and are therefore 

not suitable.    

     [ICM advantage: ICM does not have any dependency on geo-location.] 

	

2.3.4 PKCS #12 file-based storage 

 

PKCS #12 defines storing multiple cryptography objects as a single file. It is commonly used to 

store a private key with its X.509 certificate. These files have the. p12 or .pfx file extension. Being 

a software form factor, it is easy to deploy and supported by all standard applications and operating 

systems. This crypto container supports password-based access [30]. There are several use cases 

that rely on file-based storage of keys and certificates. Here are a few examples:  

 

1. Digital signing and encryption: S/MIME, data encryption, EU eIDAS digital signature 

solutions, KMS, etc.  
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2. Client authentication (VPN, HSM, Certificate Enrolment clients, 2FA solutions, KMS, etc.).  

	

2.3.4.1 Vulnerabilities 

 

[1] PKCS #12 files cannot be locked or bound to a machine. To get remote access, usually there is 

an application username and password combined with a PKCS #12 client certificate. Assuming 

login credentials are compromised by standard attacks like phishing, smishing, or vishing, or by 

social engineering, insider attacks, etc., and malware then skims the client certificate file, the 

bad guys can gain access to the network or sensitive target keys. So, access to military-grade 

secrets is protected by flimsy authentication schemes!  

 

[2] This key container supports password-based access; however, once skimmed, it is prone to an 

off-line brute force attack.  

 

[3] Dumb authenticator: will sign any hash value so long as the .pfx/. p12 password is correct. It 

does not have any additional intelligence to detect threats.   

 

2.3.4.2 Limitations 

 

There are no limitations with PKCS #12 as such; however, certain implementations have overhead. 

For example, KMIP (Key Management Interoperability Protocol), etc. Here, the high-value ‘target’ 

key (for the end-user or server) is stored at a secure centralised military-grade crypto server (FIPS 

or Common Criteria), instead of the insecure end-entity device (a computer or server). In order to 

access the target key, the client authenticates to the crypto server and either (a) downloads the target 

key temporarily to perform the crypto operation, which is insecure, or (b) the crypto operation is 

performed remotely. This method, although secure, has latency, and for certain use cases it is not 

suitable, for example for hard disk encryption, where the data volumes are significantly higher and 

cannot be transferred remotely. As a result, on-device secure key storage is required [31]. The 

solution to all these vulnerabilities and limitations is discussed below.  
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2.4 Background of ICMetrics  
 

Integrated Circuit Metrics (ICM) is a highly sophisticated device identification technology [25] [32]. 

It is essentially a software client that reads various dynamic and static hardware and software feature 

values from a device and calculates a polynomial. Each of these feature values is a point on the 

polynomial, which gives an ICM value, which in turn is the basis of a digital fingerprint, also known 

as device ID. This ICM value is used to generate the key pair, and the private key is not stored 

permanently on the device or in the database [25] [32]. Every time a crypto operation (for example, 

authentication) is required, ICMetrics reads these feature values, ensures it’s the genuine device, 

reconstructs the digital fingerprint, and reconstructs the private key. If the ICM client is skimmed, 

then on a rogue device, the feature values will obviously differ from what the ICM client expects. 

In this situation, depending on the use case, either ICM can halt the cryptographic operation 

completely (for example, in the SSL use case). Or to trick the bad actor, ICM can deliberately 

construct an incorrect private key (client authentication use case). This forces the bad actor to use 

the incorrect key, which will eventually result in a failed cryptographic operation. This technique 

also eliminates ‘offline brute force’ attacks [33] [34]. 

 

By using the ICMetrics technology, there is no need to store the keys or any associated templates 

because the ICMetrics and keys are generated when required and discarded thereafter. Doing so 

discourages attackers since there is no cryptographic key present on the system. The concept of 

ICMetrics is analogous to human biometric technology: the identification of individuals using their 

varying physical and behavioural characteristics, such as fingerprints, iris patterns, voice, etc. 

Similarly, the ICMetrics technology proposes using device features to identify every device 

uniquely and this is achieved without the need for stored templates or associated data. This quality 

means that the ICMetrics technology can be used for preventing key theft, impersonation, and 

spoofing based attacks on computation systems [35]. In this technology, ICMetrics keys are 

generated when needed and then deleted afterward, there is no need to store the keys or other related 

templates when using the ICMetrics technology. Since no cryptographic key is present on the 

system, doing so deters attackers [36].  

 

The formation of an ICMetrics is a complicated process, mainly because the ICMetrics is created 

using both explicit and implicit features. The features used for ICMetrics generation have a 

significant impact on the security of an ICMetrics based system. For example, since a device MAC 

address may be recovered with the help of a network surveillance tool like Wireshark, it is not a 
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good candidate. Because of this, with lot of devices, a number low level features are used to generate 

the ICMetrics. The benefit of using low level traits is that they are difficult for an adversary to 

predict or duplicate [37].  

 

The presence of malware (software) will result in an additional (invalid) polynomial point and thus 

fails to calculate the correct ICMetrics value, resulting in the private key not being reconstructed 

and thus the crypto operation failing. Though the default communication interface would be REST 

APIs, ICMetrics can be embedded into the device firmware, making it suitable for IoT devices.  

 

The technique effectively allows the use of the distinct characteristics that are generated even for 

identical hardware and software. Some examples of features can be location information, app usage 

patterns, and content changes on the device, etc., together with low level operating characteristics 

of the system itself.  

 

A major novelty and security enhancing feature of the ICMetrics system is that the measured 

characteristics need not remain absolutely constant but are free to vary within deduced parameters, 

thus allowing the software to operate in several states and on a variety of platforms while still 

ensuring that any illegal clone or malware infecting the software is detected as a result of 

unacceptable changes in the operating parameters. This also acts as a security enhancing feature in 

that an attacker cannot easily derive the information needed to reproduce the characteristics needed 

to break the code by observing the device, especially as characteristics whose acceptable values vary 

over time are typically employed [26] [27].  

 

Two steps are required for the production of an ICMetrics system: the calibration phase and the 

operation phase. 

 

Phase I: Calibration (once for each new device type) 

 

1. For each sample device or system type, measure the desired feature values, which offer 

higher entropy.  

2. Generate feature distributions describing the frequency of occurrence of discrete values for 

each sample system.  

3. Normalize the feature distributions and generate normalisation maps for each feature.  
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Phase II: Operation (every time a device needs to authenticate)  

 

1. Measure the desired system features.  

2. Apply the normalisation maps to generate the correct values for key generation.  

3. Apply the key generation algorithm and reconstruct the key. 

		

These illustrations highlight some of the ICMetrics technology limitations: 

 

1) The target test devices must be of same type (make and model), thus imposing limitation.   

2) The stability of unique identifier is one of the limitations that depends on several factors, 

such as number of devices available for readings and the environment of their operation, 

features employed and mathematical equations. 

3) Every new device type requires calibration, which is the current restriction on the calibration 

step. This, in turn, results in increased time and cost. 

4) Limitation of existing ICMetrics system is that they do not focus on multimodal feature 

behaviour.  

	

	

2.5 ICMetrics Related work 

	

This section summarises previous studies involving the ICMetrics. As was mentioned in the 

background section, the technology was developed to identify the software and hardware features. 

The ICMetrics approach has been used in many earlier studies [33, 38, 39, 40, 41, 42] for their 

system. 

 

The following list contains some of the most significant studies: 

 

Hardware properties that can be leveraged for ICMetrics production have been uncovered in earlier 

investigations [43] [26] [25]. Experiments show that the Program Counter (PC) and Cycles Per 

Instruction (CPI) can be used to build an ICMetrics. 

 

The Integrated Circuit Metrics (ICMetrics) technology was developed as a replacement for stored 

keys and as the foundation for a number of cryptographic applications [44] [45] [38]. The innovative 

idea and layout of the ICMetrics technology do not restrict its application as a substitute for stored 
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keys. It is both feasible and advised to leverage a device's properties to generate an ICMetrics, which 

may subsequently be used to provide cryptographic services in a system, according to research [44] 

[45] [38] on the ICMetrics technology. The ICMetrics technique prevents key theft by completely 

doing away with the requirement for cryptographic keys to be kept. 

 

In a research study [34] looked into intersatellite communications that operate in low power 

environments and generate encryption keys. It demonstrates methods that make it possible to create 

encryption keys based on characteristics or features that are actually connected to satellites, doing 

away with the need for key storage. It makes use of a prototyped feature extraction infrastructure 

circuit that is integrated into the embedded system-on-chip computing system of the satellite. It 

looked into the cache usage technique and the processor's software. Specifically, address and data 

value distributions. 

 

A health care communication data encryption key strategy based on the ICMetrics was introduced 

by [46]. It developed metrics for the efficacy of the programme and the data caches using 

performance counters. These features included address and data buses from a system on chip and 

data values and programme addresses from a processor's data transaction. The features are then 

adjusted using a normalisation method so that they may be used by a standard pattern recognition 

system. Finally, a key for encryption was produced by combining all the attributes. The outcome of 

this study showed that it is possible to create an encryption key using the traits that were taken from 

systems on chip devices. The author [47] looked into the processor's programme counter and cycles 

per instruction. They then used these features to use the SOM to find anomalous behaviours (a self-

organising map). An embedded device identification system utilising ICMetrics is presented in this 

study. It was suggested that SOM and the ICMetrics system may work together since different 

behaviours can be represented by different fundamental numbers and the key cryptography method 

can produce a variety of encryption keys as a result. 

 

The findings show that the suggested strategy can identify unidentified behaviours that are not in 

the training set with an accuracy of over 98.4%. For embedded architectures such as function call 

sequences, internal control, and instruction streams within each function, the suggested work offers 

protection at many levels. 

 

In addition, [48] investigated the programme counter as a potential source for extracting ICMetrics 

features and compared it to two tracing approaches, stepping and sampling, to acquire feature values. 

According to the findings of this study, PC values that may have been attained during execution do 
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not provide for a strong ICMetrics feature. Instead, a powerful ICMetrics system might be developed 

using PC logs, sequence analysis, and frequency analysis. 

 

Another piece of literature has suggested two strategies for guaranteeing device security [49]. The 

first form of security attempts to authenticate the user wearing the device, while the second 

technique strives to identify the gadget and secure it. These are two distinct paradigms, the first of 

which solely guarantees the wearer's security. The second approach secures the device, increasing 

the wearer's security. A faulty security implementation can result from focusing just on the device 

or the user, since cryptographic keys are held on a device. 

 

The emphasis of the following chapters will be on enhancing ICMetrics through the handling of 

multimodal features in frequency distribution and safeguarding template feature data. 

 

2.6 Competitive Analysis Matrix 
 

This section provides in depth comparison between ICMetrics and various authentication 

technologies   

 
Parameter 

 

Description 

 

ICM 

 

MPC 

 

PUF 

 

PKCS#12 

 

TPM 

 

HSM/ 

KMIP 

 

Robust end-

point key 

protection  

 

Does MIP technology provide strong key protection 

on its own or does it rely on third parties? For 

example, underlying device security features, etc. 

Y N Y N Y Y 

Anti-

malware 

capability 

 

Can the technology itself protect a device from 

malware takeover? If not, after the takeover, the 

malware can skim the keys and impersonate the 

device or user. A robust MIP technology, ideally, 

should not rely on third party anti-malware 

solutions to secure the device. 

 

Y N N N N N 

Database 

dependence 

 

For the technology to operate, is there any 

dependence on a database at all? If so, the solution 

a) will not work in air-gapped networks and b) will 

incur costs such as database security (all eggs in 

one basket/single throat to choke)  

N Y N N N N 
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Prone to 

Inside Fraud 

 

Is the solution prone to any form of insider fraud, 

for example, dependence on passwords?  

 

N Y N Y N Y 

Latency 

 

Is latency a barrier to securing a large number of 

keys in high-traffic environments, such as SSL keys 

on webservers?  

 

N Y N N N Y 

Bespoke 

Hardware  

 

Does the technology rely on a specific hardware 

component in a device? If yes, what if this specific 

component is not available or access to this 

component is blocked by a device manufacturer. 

Ideally, the technology should have the capability 

to leverage various device components 

simultaneously and ignore others if need be. 

 

N N Y N Y Y 

Support 

offline 

crypto-

operation 

 

Does the technology require network connectivity 

to perform cryptographic operations? If yes, it is 

not viable in offline environments, for example 

IoT.  

 

Y N Y Y Y N 

Immune to 

offline brute 

force attack 

 

Is the technology immune against offline brute 

force attacks? 

 

Y Y Y N Y Y 

Dynamic 

Features 

 

Does the technology support dynamic features? i.e., 

the ability to allow measured features to vary while 

still generating a stable key. For example, CPU 

usage, memory I/O, etc. These feature values vary 

constantly and, as such, contribute towards higher 

entropy for key pair generation. On the contrary, 

with static features, such as disk serial number, OS 

version, and so on, the feature value remains 

constant, resulting in lower entropy, making it easy 

to brute force and vulnerable to insider fraud. 

 

Y N N/A N/A N/A N/A 

Data 

obfuscation 

 

Does the technology use raw feature values or 

leverage statistical and mathematical analysis to 

obfuscate these values? Raw feature values are 

prone to MITM attacks. For example, consider a 

possible attack vector: (1) A malware reads static 

feature values on the target victim device, (2) It 

skims the Device ID client and these feature values, 

(3) on a rogue device, the malware intercepts the 

Y Y N/A N N/A N/A 
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communication between the client and OS, and (4) 

it passes the feature values fetched in (1) above to 

the client, thus tricking it into believing that it’s still 

deployed on a genuine device. 

 

User 

behavior 

analytics  

 

Does the technology support user behavior 

analytics to prevent friendly fraud? 

 

Y N N N N N 

Persistent 

storage of 

key 

 

Is any sensitive data, for example keys or feature 

values, persistently stored locally within the device 

or in a database? If they are stored at either of the 

two, there is always a chance that malware or 

insider fraud can expose the details and 

compromise the security. Even if these values are 

stored in encrypted format, who has access to them, 

and how secure is the encryption key? 

 

N N N Y N/A N/A 

Know 

feature list 

and value 

 

Is the device’s feature list and feature value length 

known to anyone in the world? If it is, a rogue 

administrator, malware, and a brute-force attack 

can possibly breach the security. 

 

Y N N/A N/A N/A N/A 

Random 

feature list 

and value 

 

Does the device feature list and feature value length 

remain constant on all devices deployed at a 

customer’s premise? If yes, once the hacker figures 

out how to crack one device, all other devices are 

vulnerable. On the contrary, if these are random on 

all devices, such a domino effect can be avoided.   

 

Y N N/A N/A N/A N/A 

Broad 

spectrum 

device and 

OS support  

 

Does the solution support deployment on various 

devices and OS types? 

 

Y Y N Y N Y 

OTA crypto 

library 

update 

 

If there is a vulnerability detected in the crypto 

library implementation, can it be updated over-the-

air? 

 

Y Y Y N/A Y Y 

Prevent 

side-channel 

attacks 

 

Does the solution offer a high level of assurance 

against side-channel attacks? 

 

Y Y N N Y Y 

	

Table2.1 Competitive Analysis Matrix 
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2.7 Comparison of Various Other types of Authentication 
Technologies  
 
 

Since authentication is a key element in securing any environment, in this section, our contribution 

is to compare various types of authentication technologies with ICMetrics. 

 

2.7.1 Biometrics Vs. ICMetrics 
 

Biometric Authentication ICMetrics 

Provide third-factor authentication Provide two-factor authentication 

No Legal Tangibility PKI is recognized by most IT Acts 

Only the authentication layer Provide multiple layers 

There is no device locking Device Locking and Identification 

There are only ten resets available Multiple resets are possible 

Difficult deployment and management Easy deployment and management 

Not transparent to users 100% transparent to users 

Not Scalable and costly Highly scalable and cost-effective 

False Positives No false positives 

No digital signature or encryption Digital Signature and Encryption Layer 

Cannot prevent against phishing, pharming Prevention against Phishing 1.0, 2.0, and Pharming 

Table2.2 Biometrics [51] vs ICMetrics [25] 

 

2.7.2 OTP Vs. ICMetrics 

 
 

OTP ICMetrics 

Weak 2FA Strong 2FA 

Prone to password sharing Not prone to password sharing 

Prone to skimming attacks Not prone to skimming 

The user experience deteriorates No change in user experience 

Multiple copies of credentials Single copy of credentials 

Prone to fraudulent administrator (inside attack) Not Prone to Fraudulent Admin 

Prone to MITB and brute force Can prevent MITB & brute force 

Prone to vishing and smishing Can Prevent Vishing and smishing 

Cannot perform encryption Supports encryption 

Limited legal tangibility PKI is recognized by major IT Acts 

No digital Signature only supports Electronic Signature Asymmetric cryptographic digital signatures are supported 

Table2.3 OTP [52] vs ICMetrics [25] 
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2.8 Security Issues 
 

Since our research is primarily focused on device authentication, this section studies Verizon's Data 

Breach Investigations Report 2022, which highlights key paths leading to information security 

breaches including credentials and phishing (authentication), exploiting vulnerabilities, and botnets, 

and no organisation is safe without a plan to handle them all [13]. Below figure 2.1 shows basic 

Web application attacks breaches 

 

 
Figure 2.1 Top Action vectors in Basic Web Application Attacks breaches [13] 

 

As described in figure 2.2, in Basic Web Application Attacks (BWAA), the report largely focuses 

on attacks that directly target an organization’s most exposed infrastructure, such as Web servers. 

These incidents leverage one or both of two entry points: the use of stolen credentials or exploiting 

a vulnerability [13]. This pattern is still dominated by the use of stolen credentials to gain access to 

an organization’s internet-facing infrastructure, such as web servers and email servers, and this is 

where ICMetrics can help [13].  
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Figure 2.2 Top Action vectors in Basic Web Application Attacks breaches [13] 

	

Figure 2.3 clearly displays how the vast majority of incidents involving Web applications use stolen 

credentials [13]. 
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Figure 2.3 Shows incidents involving web application are using stolen credentials [13] 

	

A system's flaws can frequently be used by adversaries to gain unauthorised access. Security is 

crucial as systems expand beyond the confines of homes and offices to more commonplace 

situations [53]. It is crucial to guarantee the security of any system's hardware and software 

components. A discussion of potential system attacks and how common they are in daily life is 

provided below. 
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2.8.1 Cyber security physical attacks on devices 

 

In this section, the concern is with physical attacks on devices, where systems are vulnerable. This 

type of attack is carried out through penetration, monitoring, manipulation, modification, and 

substitution. 

 

Physical tampering with hardware devices is a security issue. The processing and storing of data by 

hardware devices makes it crucial to safeguard hardware against attacks that could result in data 

theft or data modification [54]. If an adversary manages to physically access the cryptographic 

device or the area around it, such as smart card, then physical assaults are relevant [55]. 

  

According to research [56], physical devices can be tampered with using techniques like contactless 

radiation imprinting, contactless material removal, and probing. These attacks employ chemical and 

physical characteristics to gain unauthorised access to a system. 

 

Data theft, forgery, and cloning are all possible outcomes of physical attacks [57] on systems. Data 

that has been captured is transferred to a cloned device, and a verifier is then persuaded that the 

device is legitimate. Cloned devices present a problem because their use can frequently go 

undiscovered. Cloning and counterfeiting can be prevented by implementing strong encryption and 

limiting access to the decryption keys [58]. 

 

Five attack scenarios are defined in [59]: penetration, monitoring, manipulation, modification, and 

substitution. These scenarios show the primary areas of physical attack. 

 

An active, intrusive attack against the cryptography module is known as penetration. This entails 

breaching the module's cryptographic barrier. In order to find the secret keys kept inside the security 

module, it is intended to intercept data on internal communication lines or extract data from the 

memory. 

 

Monitoring: The monitoring attack maintains the cryptographic border while being passive and non-

intrusive. This class of attacks makes use of the cryptographic module's built-in leakage, such as 

through observing electromagnetic radiation. The two most common passive assaults based on 

monitoring are TEMPEST (Telecommunications Electronics Material Protected from Emanating 

Spurious Transmissions) investigations and side channel analysis. 
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Manipulation: A non-intrusive assault known as manipulation maintains the cryptographic barrier. 

The attacks mostly target the logical interface with the goal of inadvertently obtaining a service [59]. 

Changes in the surroundings may also be a component of manipulating attacks. For instance, the 

power supply and the ambient temperature may be used as harsh operating conditions for the 

cryptography module. These non-intrusive fault attacks fall under this heading.  

 

Modification: Modification entails breaching the module's cryptographic border and is a direct, 

intrusive assault. The goal is to alter internal connections or the internal memories employed, as 

opposed to penetration attacks.  

 

Substitution: Substitution entails removing the cryptographic module and replacing it with an 

imitation device that implements security functions differently. In this assault, the cryptographic 

border is not the main focus [59]. 

 

Next, the attack on communication is described in detail. 

	

2.8.2 Attack on Communication 

 

Through communication-based attacks, a malicious party can gain access to a network as a user or 

host and then obtain rights that allow the unauthorised use of authentication and authorisation. An 

attacker may try to seize the system's cryptographic keys once they have access. In an attack known 

as ‘IP spoofing’ [60] [61], the attacker fabricates IP addresses, which results in false IP packets. If 

done properly, an attacker can seize, redirect, alter, or remove data from the network. IP spoofing is 

particularly dangerous due to its online camouflage assault nature and difficulty in detecting it. In 

other types of communication attacks, malware finds vulnerable devices by looking for ones that 

are logged in with the factory default login and password. Once a device has been taken over, it is 

then employed as a bot to launch a Distributed Denial of Service (DDoS) attack by saturating a 

distant server with a significant amount of data [62] [63].  

 

Eavesdropping is arguably the most frequent method of assaulting communication networks. Many 

wearable technology devices send data wirelessly, which makes them vulnerable to eavesdropping. 

By ensuring that the data is encrypted when it leaves a system, eavesdropping can be prevented [64]. 
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The table 2.1 below highlights additional types of device-related communication channel attacks. 

As per UN regulation on vehicles with regards to cyber security management system, the following 

are the identified threats [65] [66]. 

	

High level and sub-level descriptions of vulnerability/ 

threat 

Example of vulnerability or attack method 

Threats to devices 

regarding their 

communication 

channels 

Spoofing of messages or data 

received by the vehicle 

Spoofing of messages by impersonation (e.g. 802.11p V2X 

during platooning, GNSS messages, etc.) 

Sybil attack (in order to spoof other vehicles as if there are many 

devices in vicinity 

Communication channels used 

to conduct unauthorized 

manipulation, deletion or other 

amendments to device held 

code/data 

Communications channels permit code injection, for example 

tampered software binary might be injected into the 

communication stream 

Communications channels permit manipulation of device 

data/code 

Communications channels permit overwrite of device data/code 

Communications channels permit erasure of device data/code 

Communications channels permit introduction of data/code to the 

device (write data code) 

Communication channels 

permit untrusted/unreliable 

messages to be accepted or are 

vulnerable to session 

hijacking/replay attacks 

Accepting information from an unreliable or untrusted source 

Man in the middle attack/ session hijacking 

Replay attack, for example an attack against a communication 

gateway allows the attacker to downgrade software or firmware 

of the device 

Viruses embedded in 

communication media are able 

to infect device systems  

Virus embedded in communication media infects device systems 

Messages received by the 

device (for example X2V or 

diagnostic messages), or 

transmitted within it, contain 

malicious content 

 

 

Malicious proprietary messages (e.g., those normally sent from 

OEM or component/system/function supplier) 

Table 2.4 Highlights various other types of attacks on communication channels [65] 

 

A description of cryptographic attacks has been presented in Section 2.2.3. 
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2.8.3 Cryptographic Attacks 

 

An attacker's primary goal is to disassemble a cryptosystem and separate the plaintext from the 

cipher text. The attacker simply has to learn the secret decryption key to get the plaintext because 

the algorithm is already known to the general public. 

As a result, he makes every effort to discover the cryptosystem's secret key. Once the attacker is 

able to determine the key, the system is regarded as broken or compromised. 

 

According to research, cryptographic keys can be obtained through a wide variety of techniques, 

including brute force, malware, cold boot attacks, and more [67] [68] [69]. Key theft prevention can 

be a challenging undertaking because there are numerous assault tactics. Attackers try to capture 

cryptographic keys by taking advantage of system vulnerabilities or design faults. The following 

are some examples of potential key theft attacks. 

 

By employing brute force, dictionary-based attacks, rainbow table assaults, man-in-the-middle 

attacks, etc., an attacker may try to break a cryptosystem. These types of attacks can be avoided by 

taking appropriate precautions, including increasing key size, integrating salts, and not using 

outdated algorithms [68]. 

 

Attackers may use another person's public key and claim it as their own. To demonstrate that the 

key is not being used as a fake identity, certification authorities need proof. There is an expanding 

certificate revocation list in web browsers as a result of certification authorities inadvertently issuing 

certificates to forgers in the past [73], [74]. 

 

The foundation of many cryptographic algorithms is algorithmic intractability, such as the use of 

huge prime numbers, factorability, etc. An adversary may find it simpler to attack the keys if the 

algorithm used to generate them is weak or poorly constructed. The keys must be produced by a 

reliable source, which is crucial. An enemy, for instance, may be able to generate a key by posing 

as a reliable source of information. By doing this, the attacker would not only be in possession of 

the keys but also have the ability to intentionally produce keys that lack the desired qualities [71], 

[72]. 
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To get the keys from their owners, attackers may use psychological manipulation and persuasion 

[70]. The keys must be kept a secret from both insiders and outsiders at all times. Social engineering 

is a potent weapon that can be used to undermine security on multiple levels. 

 

Even though the thesis' primary focus was on laptops, research on wearable internet of things 

devices were done in the beginning to evaluate their hardware. Cyber-attacks on wearable 

technology was investigated as part of this assessment. 

	

2.8.4 Cyber Attacks on Wearable IoT device  

	

Since wearable technology is being created and commercialised so quickly, security and risk 

management frequently seem to be neglected. Device vulnerabilities increase exponentially with the 

introduction of wearable technology. These devices have the potential to facilitate the compromise 

of data integrity, availability, and confidentiality for individuals and organisations if they are not 

properly controlled or governed [75]. Due to the individuality of each wearable device and the 

hazards associated with the data it gathers, including the user's location, the wearer is now more 

exposed than before [75]. 

 

Research [76] shows that as wearable technology becomes more popular, it seems that producers 

and developers are more concerned with boosting elements like design aesthetics and power 

consumption than with security dynamics. Due to a lack of authentication, authorization, and secure 

information transfer methods, wearable devices have a security and privacy issue [76], [77]. 

 

Gait recognition is one of several techniques for verifying the identity of a device's user. The idea 

of employing gait recognition to authenticate wearable technology has been thoroughly investigated 

[78], [79]. In their study [80], the authors propose a security system for Google Glass, an optical 

wearable. The authors describe a discrete security system that establishes user authenticity through 

a variety of user gestures. The concept is intriguing, but it lacks credibility because it depends on 

human input. The requirement that the user have prior Google Glass experience for enhanced 

accuracy is another flaw in the proposed approach. 

 

Identification of a person via a system or device's built-in mechanism is called authentication. 

Without authentication, a hacker who is not a legitimate user of the hosting device can access 

resources, including services and information. At the moment, Fit bit smart watches lack an internal 
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security system [76]. Fitbit can compromise someone's location and personal information without 

verification. Absence of strong device authentication can send a hacker to a network entry point 

where they could potentially abuse the system. If a vulnerability of this kind is effectively exploited, 

it can affect data storage other than that on a single device, allowing access to personal information, 

passwords, emails, and digital material. As a result, significant attacks and identity theft can occur 

[76], [81], [82], [83], and [84]. 

 

Research [76], [84] says some smart watches require a Bluetooth Low Energy (BLE) connection to 

another device before they may connect directly to the Internet. The IEEE 802.15 standard for 

wireless personal area networks now incorporates BLE (wireless personal area networks). Man-in-

the-middle (MITM) attacks are more likely to succeed on connected devices with shaky connectivity 

or Bluetooth connections [76] [85]. According to the author [84], wearable devices inherit the same 

communication vulnerabilities that most Bluetooth devices do, such as message tampering, denial 

of service (DoS), and eavesdropping attacks. 

 

According to a study [86], even wearable technology that has received widespread marketing can 

have weak security features that make hacking simple. The Fit bit tracker, which has 96 KB of RAM 

and an altimeter and accelerometer sensor built in, is the subject of this research. The Fit bit tracker's 

security is examined in the article, which demonstrates that the wearable technology can be attacked 

by taking advantage of flaws in its defences. The authors who reverse-engineered it, discovered that 

Fitbit lacks security features. The tracker, for instance, sends user credentials in plain text. 

Additionally, any HTTP data processing that occurs is likewise done in plaintext. The authors also 

show how, by attaching the tracker to moving objects, fake data may be created and injected into 

the device. Table 2.2 shows various types of attacks on devices [65]. 

	

High level and sub-level descriptions of vulnerability/ 

threat 

Example of vulnerability or attack method 

Threats to devices 

regarding their 

update procedures 

Misuse or compromise of 

update procedures 

Compromise of over the air software update 

procedures. This includes fabricating the system 

update program or firmware 

Compromise of local/physical software update 

procedures. This includes fabricating the system 

update program or firmware 
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High level and sub-level descriptions of vulnerability/ 

threat 

Example of vulnerability or attack method 

Threats to devices 

regarding 

unintended human 

actions facilitating a 

cyber attack 

Legitimate actors are able to 

take actions that would 

unwittingly facilitate a cyber-

attack 

Innocent victim (e.g., owner, operator etc.) being tricked into 

taking an action to unintentionally load malware or enable an 

attack 

Threats to device 

data/code 

 

 

 

 

 

 

 

 

 

 

 

 

Potential 

vulnerabilities that 

could be exploited if 

not sufficiently 

protected or 

hardened 

Extraction of device data/code Extraction of copyright or proprietary software from device 

systems (product piracy) 

Extraction of cryptographic keys 

Manipulation of vehicle 

data/code 

Illegal/unauthorized changes to device’s electronic ID 

Identity fraud. For example, if a user wants to display another 

identity when communicating with other systems,  

Introduction of malware 
Introduce malicious software or malicious software activity 

 

Cryptographic technologies can 

be compromised or are 

insufficiently applied 

Combination of short encryption keys and long period of validity 

enables attacker to break encryption 

Physical manipulation of 

systems can enable an attack 

Manipulation of electronic hardware, e.g. unauthorized 

electronic hardware added to a device to enable ‘man-in-the-

middle’ attack 

Replacement of authorized electronic hardware (e.g., sensors) 

with unauthorized electronic hardware 

 

Table 2.5 Highlights various other types of attacks on devices [65] 

 

2.8.5 Mitigation for device attacks 

 

Below are the mitigations for device and communication channel attacks as highlighted in tables 

2.3 [65].  
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Threats to ‘device communication channels’ Mitigation 

Spoofing of messages (e.g., 802.11p, GNSS messages, etc.) by 

impersonation 

The Device shall verify the authenticity and integrity of 

messages it receives 

Sybil attack (in order to spoof other devices as if there are many 

devices) 

Security controls shall be implemented for storing 

cryptographic keys (e.g., use of Hardware Security Modules) 

Communication channels permit code injection into device held 

data/code, for example tampered software binary might be injected 

into the communication stream 

The device shall verify the authenticity and integrity of 

messages it receives 

Accepting information from an unreliable or untrusted source The device shall verify the authenticity and integrity of 

messages it receives 

Man in the middle attack / session hijacking The device shall verify the authenticity and integrity of 

messages it receives 
Replay attack, for example an attack against a communication 

gateway allows the attacker to downgrade software or firmware 

Interception of information / interfering radiations / monitoring 

communications 

Confidential data transmitted to or from the device shall be 

protected 

Virus embedded in communication media infects device systems Measures to protect systems against embedded 

viruses/malware should be considered 

Malicious messages e.g. infrastructure to device or device- device 

messages 

The device shall verify the authenticity and integrity of 

messages it receives 

Malicious diagnostic messages 

Malicious proprietary messages (e.g., those normally sent from 

OEM or component/system/function supplier) 

 

Mitigations to the threats which are related to ‘Update 

process’ 

Mitigation 

Compromise of cryptographic keys of the software provider to 

allow invalid update 

Security controls shall be implemented for storing 

cryptographic keys 
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Threats to ‘External connectivity and connections’ Mitigation 

Corrupted applications or those with poor software security, 

used as a method to attack device systems 

Software shall be security assessed, authenticated and 

integrity protected. Security controls shall be applied to 

minimize the risk from third party software that is intended or 

foreseeable to be hosted on the device 

Extraction of cryptographic keys Security controls shall be implemented for storing 

cryptographic keys e.g. Security Modules 

	

Mitigations to the threats which are related to ‘Data loss / 

data breach from device’ 

Mitigation 

Information breach. Personal data may be breached Best practices for the protection of data integrity and 

confidentiality shall be followed for storing personal data. 

	

Mitigations to the threats which are related to ‘Physical 

loss of data loss’ 

Mitigation 

Damage caused by a third party. Sensitive data may 

be lost or compromised due to physical damages to device. 

Best practices for the protection of data integrity and 

confidentiality shall be followed for storing personal data. 

Example Security Controls can be found in ISO/SC27/WG5 
Loss from DRM (digital right management) 

conflicts. User data may be deleted due to DRM 

issues 

The (integrity of) sensitive data may be lost due to 

IT components wear and tear, causing potential 

cascading issues (in case of key alteration, for 

example) 

Table 2.6 Mitigation for device and communication channels [65] 

 

2.8.6 Sky Go Report 

 

This security research report shows how a real-world attack on a high-end luxury car was carried 

out. Then mitigation using ICMetrics is highlighted. 

Sky-Go research demonstrated how remote cars can be hacked in the following phase [87]:  
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2.8.6.1 Use Case # 1: Remote access  

 

                              
Figure 2.4 Test bench [87] 

 

1) Dumping the firmware from NAND flash provides access to the file system. 

2) Client Certificate: This file system exposes the client certificate in a .pfx file, password, and 

CA certificate for the backend server [87].  

 
Figure 2.5 Certificates and Key pair [87] 

[ICM advantages]: This technology does not rely upon insecure .pfx files to store the 

private key. In fact, the private key is not stored permanently. ICM offers a much more robust 

technique. Even if authorised access to the file system is possible, the private key cannot be 

used outside the Telematics control unit (TCU) because the TCU’s digital fingerprint has 

changed [25], [34].  

3) Access the Backend: Using the e-SIM from the car, connecting it to a local broadband router, 

and spoofing the IMEI number of the router (with APN (access point name) information 

from the car), the backend will trust the incoming connection. As per the research paper ‘Car 

Backend is the core of Connected Cars’. As long as Car Backend services can be accessed 

externally, it means that Car Backend is at risk of being attacked [87]. ‘The vehicles 

connecting to this car backend are in danger too’. 

[ICM advantages]: An IMEI number, like the MAC address on a NIC card, is easily spoof 

able. To avoid this attack vector, possible techniques include a) using the TCU’s private key 

to digitally sign the login request to the backend server and b) using eSIM as one of the 

components to calculate the TCU’s digital finger print. When the eSIM is extracted from the 



 41 

TCU, its digital fingerprint changes and ICMetrics fails to generate the correct private key, 

resulting in a failed rogue login [25] [35]. 

 

4) Protocol Analysis: Every time the TCU reboots, a new shared key is pushed to the car, which 

is equally vulnerable as the old key [87]. 

[ICM advantages]: The fundamental reason for these short-lived keys is protection of the 

key. The current technique cannot assure private key protection; hence, they are renewed 

frequently. ICM can bind the private key to the TCU in a very effective way, so there is no 

need for ‘short’ key renewal. Furthermore, shared keys should be replaced with asymmetric 

keys to reduce management and security overheads on the database to store keys and encrypt 

shared keys [37] [27].  

	

2.8.6.2 Use Case #2 – Field Update of ECU Software  

	

The context: automobile manufacturers have a need to remotely upgrade the software of engine 

control units (ECUs) in a secure fashion. For enhanced security, the software is usually digitally 

code-signed to avoid a MITM attack. Such an attack can potentially push malware to the ECUs, 

which in turn can lead to severe consequences, such as fatally crashing the car, etc. HSM is typically 

used to protect the private key used for code signing [87].  

 

The challenge: One possible attack vector could be replacing the code signing certificate with a 

rogue certificate, so that the ECUs will trust the code and execute malware. To explain further, after 

the code is signed by a private key at the server side, the ECU or TCU verifies it using the code 

signing certificate (public key), which is embedded in the file system as described in Use Case #1 

above. If the bad actors replace this certificate with a rogue certificate, sign malware with their own 

(rogue) private key, and push it onto the ECU, the ECU will trust the malware and execute it [87].  

 

The solution: ICMetrics client software can bind the manufacturer’s code signing certificate (public 

key) on the file system such that it cannot be replaced by a rogue certificate or misused in any 

possible way. Effectively, manufacturers can implement a robust certificate store on the ECU device 

that cannot be tampered with. Although PKI is the de-facto standard for secure client authentication, 

if the manufacturer is not keen on implementing PKI, ICMetrics can also support similar high-level 

assurance in a non-PKI environment [34] [27].  
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2.9 Summary 
 

 

As a precursor to device authentication technique, this chapter thoroughly examines existing 

authentication approaches and their limitations, including physically unclonable functions, TPM, 

MPC, and PFX. Then the chapter dives extensively into the cutting-edge ICMetrics technology and 

previous work related to ICMetrics. ICMetrics technology has been investigated as an important 

identity theft prevention method and as the foundation for a number of cryptographic services. In 

order to establish an identifier known as an ICMetrics, the technique suggests utilising unique 

features of a device. In order to produce an ICMetrics that is really unique, the ICMetrics technology 

relies on distinctive reproducible explicit and implicit characteristics. Additionally, the two stages 

of ICMetrics production have been provided for processing a variety of potential features that will 

be covered in the following chapter. Next, the focus was on extensive competitive analysis, and all 

possible relevant authentication technologies comparison were covered. Thereafter, the focus was 

on security concerns as we know a system can be attacked in a variety of ways, thus this chapter 

makes the case that attackers will try to take advantage of communication, physical, or cryptosystem 

flaws in order to get unauthorised access. Attacking a system in order to obtain the credential is a 

common objective of adversaries. Lastly the focus was on a very specific ECU attack vector. The 

extensive focus was on threat mitigation via ICMetrics highlighting at each step how ICMetrics 

helps in preventing the attack.  
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Chapter 3 
 

General Computing Device Authentication  
 

3.1 Introduction 
	

The focus of this chapter is to evaluate the feasibility of identifying devices uniquely based on 

hardware features derived from the properties and behaviour of general-purpose computing devices 

[88]. In order to achieve this, appropriate methods of extracting hardware features were investigated 

and potential features that were suitable for identification were explored. 

 

With the use of ICMetrics technology, a unique device identifier is created that can be used for a 

variety of security functions, including key generation, authentication, integrity, and privacy. 

Utilising ICMetrics technology, device identification is provided for the purpose of security 

services. Exploring suitable features to produce an individual device identification is necessary for 

a system based on ICMetrics technology. 

 

In common cybersecurity parlance, the importance of strong authentication is greater than ever 

before. Regulatory requirements, such as EU eIDAS, also mandate robust authentication. As per the 

Department for Digital, Culture, Media, and Sport (DCMS), in the last 12 months, 39% of UK 

businesses identified a cyber-attack and 83% of these identified the most common threat vector as 

phishing attempts [89]. Further, 80% of companies experienced a breach related to a weakness in 

authentication. This costs them an average of $2.19 million per year [90]. Under the current 

circumstances, traditional approaches like hardware tokens are expensive to deploy and manage and 

are ineffective against some threats [91]. The challenge was to deploy a technology that is both easy 

to use and strong enough to protect against sophisticated attacks like malware, man-in-the-middle 

attacks, etc. ICMetrics is a secure software credential that combines protection for digital identities 

similar to that of a hardware smart card, and with its ease of use and distribution, it offers lower 

costs for deployment and maintenance. The ICMetrics is ‘something you have’ and the optional 
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ICMetrics password is ‘something you know’ necessary for two-factor authentication. As a 

software-based solution, ICMetrics enables organisations to leverage the advantages of public-key 

infrastructures (PKI) without the expense and management issues inherent with hardware-based 

secure key storage. ICMetrics can also operate and offer a similar level of security in a non-PKI 

mode as well [92]. 

 

ICMetrics is a unique technology for deriving private keys based on the digital fingerprint (software 

and hardware configurations) of the device [93]. The novelty of the proposed system is that the 

measured characteristics need not remain absolutely constant but can fluctuate within a 

(configurable) defined range, thus allowing the software to operate in several different states while 

still ensuring that any illegal clone or malware attack is detected [94]. Such a system will offer the 

following significant advantages: 1) Eliminate the need to store any credential-related sensitive data 

within the device, thus addressing the major weakness that can be used to circumvent the security 

offered by the system. 2) In a malware attack, ICMetrics behaviour analysis helps detect tampering 

with the constitution of the software and will cease the authentication process.  

 

The novelty of this research work was that new hardware features from different devices (MacBook 

Air, MacBook Pro) were investigated, shortlisted based on good feature criteria, and then analysed 

and applied in our proposed model. For benchmarking, conventional classifiers for device 

identification were used. 

 

In this chapter, hardware feature data offered by devices are used to create an ICMetrics unique 

identifier. An identity can be generated by a device using the ICMetrics technology, which is used 

for various security applications. This chapter explores the potential of using device-generated 

features to provide an ICMetrics. 

 

 
The rest of the chapter is organised as follows: 

Section 3.2 describes the ICMetrics Process, Section 3.3 explains feature extraction concept, Section 

3.4 focuses on feature modelling, Section 3.5 on feature analysis, Section 3.6 explains multimodal 

distribution, Section 3.6 details the operation phase of the system, Section 3.7 focus on system’s 

methodology and algorithms, Section 3.8 give experiment and result details and finally Section 3.9 

highlights chapter’s conclusion. 
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These sections give us an in-depth understanding of the feature data characteristics, how it is 

gathered, and how to create an efficient classification model. 

 

3.2 Proposed ICMetrics Security System 
 

In the previous section, although a general description was provided, here the specific focus is on 

the adaptation of how each phase is applied for device identification. 

 

ICMetrics technology relies on measurable features that are obtained from a certain system's 

characteristics. The emphasis is on making use of the hardware features that are provided in the new 

system. 

 

It is necessary for this research to use Mac laptops, and the hardware attributes that can be extracted 

from these devices are used to create the ICMetrics security system. These characteristic data are 

utilised to generate an ICMetrics unique identifier, which is then used to identify devices. The 

following parts go into further detail about the suggested system: 
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Figure 3.1 ICMetrics Process 

 

The following sections will go into more detail about the calibration phase and the operation phase. 

	

3.3 Feature Extraction 
 

This research took into account the hardware features that could be gathered using general 

computing devices. Relevant features were retrieved from devices in this procedure to create feature 

vectors. These feature vectors are then used by classifiers to differentiate between the desired output 

unit and the input unit. These properties enable the classifier to discriminate between devices more 

clearly, simplifying categorization. The technique of extracting the most crucial information from 

raw data is known as feature extraction. The extraction of features should be simple, resource-

efficient, and atomic. 
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3.3.1 Calibration 

 

The calibration phase is useful in pre-production to extract suitable features with the goal of 

providing sufficient correlation when combined. By combining device features appropriately, an 

ICMetrics system can form a unique identifier for device identification. Calibration is carried out 

once per application domain. The suitability of device features depends on the nature of the device. 

In most cases, it will include surveying a device for a set number of days or periods and gathering 

stable values. In other cases, it may be variable features that are likely to change over time. This 

leads into static and dynamic features [50] [95]. 

 

The experimental data collection is described in this section, along with the scenarios and 

devices that were selected. It investigates the analysis of our collected data. 

	

3.3.1.1 Devices 

 

This was a very limited identification scenario. Even though there was lack of test devices, the 

research required a minimum of eight MacBook laptops for better indication of the performance of 

the feature and feature combination of the system. In order to find features that can provide sufficient 

dynamic range and variation, for example enough sample such that distribution is stable and shows 

clear pattern. MacBook Air and MacBook Pro were chosen since they allow access to both the low-

level hardware and software present on each device. Since Apple produces MacBook, the hardware 

tends to be more homogenous, and based on these traits, the feature values may be segregated, in 

contrast to Windows, whose hardware is produced by various vendors and makes it difficult to 

differentiate the devices. To create the widest possible range of feature values, data from various 

Mac devices were gathered as part of the study of each feature. Some of the tested devices have 

various OS iterations, settings, and programmes. The same-model devices with identical chipsets in 

the collection were the most difficult to distinguish from one another using hardware and software 

features.  The table below displays information on the device processor, memory, and storage. 
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Devices Processor Memory Storage 

MacBook Air (13-inch, Mid 2013) 1.3GHz dual-core Intel Core i5 

 

8GB 1600 MHz DDR3 128 GB Flash Storage 

MacBook Air (13-inch, Mid 2014) 1.4GHz dual-core Intel Core i5 
 

8GB 1600 MHz DDR3 

 

128 GB PCIe-based Flash 
Storage  

 

MacBook Air (13-inch, Early 
2015) 

1.6GHz dual-core Intel Core i5 
 

 8GB 1600 MHz DDR3 
 

128 GB PCIe-based Flash 
Storage  
 

MacBook Air (13-inch, Early 
2017) 

1.8GHz dual-core Intel Core i5 
 

 8GB 1600 MHz DDR3 
 

256 GB PCIe-based SSD  

MacBook Air (13-inch, Early 
2019) 

1.6GHz dual-core Intel Core i5 
 

8GB 1600 MHz DDR3 

 

128 GB PCIe-based SSD  

 

MacBook Pro (13-inch, M1 2020) Apple M1 chip 
8-core CPU with 4 
performance cores and 4 
efficiency cores 
8-core GPU 
16-core Neural Engine 
 

8GB 256GB SSD 

MacBook Pro (13-inch,2018) 2.3GHz quad-core Intel Core i5 
 

8GB of 2133MHz 
LPDDR3  

 

256GB SSD 

MacBook Pro (13-inch,2019) 1.4GHz quad-core Intel Core i5 

 

8GB 128GB SSD 

Table 3.1 Device List 

 

The calibration phase contains four parts, i.e., (a) data collection, (b) feature selection, (c) feature 

modelling, and d) feature analysis, which describe the processes sequentially undertaken prior to 

building a model. 



 49 

 
Figure 3.2 Flowchart of Calibration Phase 

The device characterizations employed by the system are known as ‘features’. Features are a major 

part of the ICMetrics system, and the features utilised directly influence the strength of the security 

provided. The data collected from the devices described here are the Apple laptops, namely the 

MacBook Pro and MacBook Air. With weak features, i.e., features that do not change at all with the 

functionality and restrict the ICMetrics system in how much security it can offer, a feature value is 

ultimately used to identify a device. So, the more discriminative it is, the better when evaluating the 
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security of an ICMetrics system [96] [88]. The values of features are determined by how the machine 

is used. Ideal feature candidates can provide the basis for a secure system that can guarantee an 

increase in the trust associated with existing security protocols. The analysis and mapping 

techniques allow the system to incorporate features whose values can change while still being able 

to transform these dynamic values to distinguish a device. To facilitate this, features that exhibit low 

intra-sample variance and high inter-sample variance are selected as priorities for the mapping 

process. Because the values of features employed in the ICMetrics system can change, the feature 

behaviour and the influences on that feature value need to be understood before an ICMetrics value 

can be reproduced consistently. The methodology of calibration phase (Figure 3.2) is described in 

detail below till section 3.5. 

 

3.3.2 Data Collection 

	

The contribution of this work was to focus on hardware features to identify the device uniquely. For 

this, features are required to provide distinguishability for similar devices using the same features 

for example MFLOPS, random seeks\sec, random seeks%cpu behaves differently on each device. 

Although the devices have same hardware, based on user usage, the performance level differs which 

help us to distinguish devices. The features not only have to provide sufficient variance but 

additionally; the features have to remain obscure to any unauthorized access, therefore the features 

need to come from a variety of sources on the device to prevent easy discovery of the features that 

are included for example in our analysis features are categorised from three different areas like hard 

disk performance, memory performance and CPU Floating point performance using different 

categories of features helps us provide sufficient variance and good obscurity. 

 

In order to allow for a wide range of features, the particular focus of this study has been due to the 

great variety of devices it provides, which allows for an in-depth analysis of how the features affect 

the system. Thus, the data is gathered from multiple devices in order to fully ascertain the range of 

each particular feature's values. The devices tested included a variety of devices with identical 

chipsets of the same model. They were tested to obtain data from devices that would be difficult to 

distinguish based on the hardware and software alone. The data collection system was run on each 

device repeatedly. System variables such as the running processes, power settings, system updates, 

and user activity were monitored to examine the variance in the data produced. 

 

In earlier research on ICMetrics generation, a variety of relevant qualities have been sought after. 

According to earlier research [122][123][124] on hardware features for ICMetrics production, a 
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device ICMetrics can be produced using the programme counter and cycles per instruction. The bias 

in MEMS sensors was also exploited as a distinctive feature in a recent study [125]. The authors 

demonstrate statistically that there is a bias that is adequate to identify a specific wearable health 

gadget using the accelerometer and gyroscope. The authors set up a test bed of various sensors to 

demonstrate that, assuming the device and its internal environment are not corrupted, each sensor 

has a distinct and reproducible bias. An excellent feature will have a large inter-sample variance, 

providing a wide range of possible versions. A basic serial number with a very significant inter-

sample variation would be an illustration of this since each device's serial number is entirely unique. 

Unluckily, these serial numbers likewise have very little obfuscation. As a result, both a feature's 

positive and bad aspects must be taken into account while making a decision. 

 

Various features generate non-static values, which change while the device is in used. The amount 

of available RAM on the device right now is an illustration of such a feature. While the value should 

be fairly constant, it will change as programmes are launched (consuming RAM) or shut off 

(releasing RAM). How much these values change over a device's operational time is described by 

intra sample variation. The free RAM that is currently available on a device will always be located 

someplace along the axis but will occasionally move up and down. A specific code was designed to 

capture the data from the OS and it looks for intra and inter-sample variance. These dynamic 

operating conditions tends to make a device unique and they are modelled based on the frequency 

distribution of the feature behaviour. It is explained in detail below in section 3.5.1. This feature is 

too unstable to be recorded over time on its own, but it can be controlled if we define ranges of 

values, in this example ranges of 400MB. These ranges are all mapped to arbitrary values, and as 

long as the characteristic remains inside the range, the resulting arbitrary value will not change. The 

intra sample variance of the feature must be as low as it can be since features with a large intra 

sample variation fluctuate too much to be used in this manner. In the end, this is impossible to map 

and cannot provide a persistent value. 

 

The data is collected using Python code in a monitored natural environment, which gives an insight 

into the behaviour of the features during the analysis. The features extracted are uniquely affected 

by each user’s machine usage (as each user uses their machines differently). This allows conclusions 

to be drawn between the presence of background processes for a system resource and the influence 

they can have on the various candidate features being analysed. The features were initially narrowed 

down through a variety of techniques, including the analysis of their variance and their correlations 

with other features to identify stable correlations that were distinctive to any set of devices. This 

will lead to a greater understanding of feature correlations per device in order to exploit their internal 
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relationships. It is not just framework measures that might actually influence low-level hardware 

feature values. User-controlled cycles could likewise adjust the distribution of a feature. To help 

with this problem, the device is observed and recorded when data are read for analysis.  

 

The selected features were then divided into sets in order to improve operational robustness by 

utilising Shamir’s secret sharing to allow for controlled potential partial failure of the system whilst 

still retaining some security verification. These feature sets are more reliable than individual 

features, and generate a stronger base for applying the ICMetrics system [93].  

 

A system's features are a result of its internal environment and can be divided into three categories: 

user data, system specific, and device settings. As stated in second paragraph of same section above, 

the methodology to select these categories is as follows: 

1) User Data would assist in user behaviour analytics. For example, how they are using their 

machine in terms of how many tabs are open, what applications are running etc. 

2) System specific data helps to uniquely identify the device for example CPU usage, memory 

I/O 

3) Device settings are crucial since the configuration can be changed thus allowing flexibility 

to the users and at same time offers additional device features for enhanced security. 

	

The next section discusses the three feature categories. 

	

The internal setting of a system affects the features of that system. One can be tempted to start with 

obvious elements like a MAC address while thinking about system features. Despite being a system 

feature, the MAC address can be viewed as being weak because it is simple to acquire using typical 

network sniffing tools. ICMetrics can be generated using features that are specific to the system yet 

challenging for an attacker to capture. Every device has a CPU, and since every device has a 

different type of CPU, CPU information is used to create an ICMetrics measure. A number of 

characteristics of the CPU hardware, including the amount of memory assigned to buffers, the 

available memory, dirty memory, and shared memory, are employed in the development of the 

ICMetrics. 

 

According to research [125], a device's internal settings can be used to calculate its ICMetrics. Serial 

numbers, calibration settings, inbuilt identifying modules, Bluetooth identification, SSID, etc. can 

all be used to do this. Using just one device setting can jeopardise the security of the ICMetrics 

implementation because device settings like Bluetooth identification are adjustable. Although a 
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device's serial number is unique, it should still be used with caution because it is easy to fake them 

because they frequently appear on the outside of the device. The DS-2411 [126] is an illustration of 

a robust serial identification chip, on the other hand. This single line chip, which was lasered at the 

factory, offers serial identification-based services. Cloning, fabrication, and spoofing-based attacks 

are prevented since once the chip has been laser-engraved with a serial number, it cannot be changed 

in any manner. The calibration parameters of a device may also serve as the foundation for the 

ICMetrics of that device. This is a key feature for ICMetrics creation because the calibration of a 

sensor is frequently based on numerous variables. The hardware and software environments of 

identical devices that have been mass-produced by a single vendor will be comparable. Due to the 

availability of specific user data, if the devices are used by two distinct users, the internal 

environment will be sufficiently different. Once more, it's critical to build the ICMetrics generation 

on characteristics that are specific to a user and unpredictable to an enemy. 

 

These three categories of features (hard disk performance, memory performance and CPU Floating 

point performance) were selected since they help to uniquely identify the devices based upon user 

behaviour. For example, on a similar type of device two users will have different sets of applications 

installed and running, data, etc.; hence, this helps to differentiate the devices. 

 

The following features are in scope, which include a range of categories:  

 

3.3.2.1 CPU Usage  

 

CPU time (also known as process time) measures the amount of time a central processing unit (CPU) 

was put to work processing instructions from a computer programme or operating system, as 

opposed to, say, waiting for input/output (I/O) activities or going into low-power (idle) mode. Clock 

ticks or seconds are used to represent CPU time. CPU utilisation, also known as CPU time, is 

frequently expressed as a percentage of CPU capacity. 

 

CPU time and CPU utilisation have two primary applications. The system's total level of bustle can 

be measured using the first application. The user can lag if the CPU use is beyond 70%. An 

insufficient amount of processing capacity is evident from such high CPU consumption. Either the 

CPU needs to be updated or the user experience needs to be scaled back, for instance by switching 

to graphics with lower quality or fewer animations. With the introduction of multitasking, the second 

application is to measure how the CPU is distributed among computer programmes. A piece of 
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software that uses a lot of the CPU can be very resource-intensive or it might be broken—for 

instance, it might have become stuck in an endless loop. 

 

3.3.2.2 Memory Performance 

	

In other words, it's the measurement of all memory-related metrics on the host or device. These 

attributes were extracted because even the tiniest changes in the processes running on devices are 

reflected in them. One element of performance is memory bandwidth, or how quickly data can be 

written to or read from memory by the processor. Applications' loading and unloading times have a 

big impact on how quickly the OS can handle data. If memory bandwidth is low, the CPU can be 

waiting on memory to read or write data. Data that the CPU needs to read or write can be done 

quickly if memory bandwidth is high. 

 

A simple, synthetic benchmark programme called STREAM (Sustainable Memory Bandwidth in 

High Performance Computers) determines the processing speed for simple vector kernels based on 

the sustainable main memory bandwidth in MB/s [97]. 

 

 STREAM uses four kernels to inform its analysis:  

1. ‘Copy’ computes transfer rates devoid of mathematical requirements. 

2. The term ‘scale’ encompasses a simple mathematical operation. 

3. To enable testing of multiple load/store ports on vector machines, ‘Sum’ adds a third operand.  

4. ‘Triad’ enables the chaining, overlapping, or fusing of multiply/add operations. 

	

3.3.2.3 Block I/O 

	

The control and monitoring of tasks in cgroups' access to I/O on block devices is handled by the 

Block I/O (blkio) subsystem. Writing values to some of these pseudo files restricts access or 

bandwidth, while reading values from some of these pseudo files provides information on I/O 

operations [98]. 

 
The BLKIO subsystem has two policies for restricting access to I/O: 

 
• Proportional weight division, which allows you to apply weights to certain cgroups and is 

implemented in the CFQ I/O scheduler. 
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I/O throttling (Upper Limit) is a policy that is used to set a maximum number of I/O operations that 

can be performed by a single device. This portion is set aside for each cgroup and is based on the 

cgroup's weight. As a result, a device is limited in how many read or write operations it can perform 

each second.  

 

Currently, buffered write operations are incompatible with the Block I/O subsystem. Although it is 

primarily made for direct I/O, it may perform buffered read operations. 

	

3.3.2.4 Floating Point Operations Per Second 

	

FLOPS is a unit used to measure how many floating-point operations a microprocessor can perform 

in a second. In areas of scientific computing where floating-point calculations are required, FLOPS 

is useful. In certain situations, it is a more accurate statistic than counting instructions per second 

[99]. 

	

3.3.2.5 Input/output Operations Per Second (IOPS) 

	

IOPS is a metric used to determine how many read and/or write operations a storage device can 

complete in a specific length of time. Block sizes on hard disk drives (HDD) are commonly 512 

bytes or 4 KB. By itself, the IOPS statistic says nothing about how much data a drive can store. The 

maximum number of bits or bytes that can be devoted to a single I/O transaction, ‘block size,’ is 

what determines this amount together with the IOPS. For instance, when the IOPS value is the same, 

the drive with the larger block size may process more data (read or written). 

	

IOPS may vary based on whether data is accessed sequentially or ad hoc. On HDDs in particular, 

IOPS is frequently higher for sequential writes due to the ease with which the disc head can access 

auxiliary blocks. On the other hand, random reads and writes require shifting the disc head to the 

necessary location. There may be differences in the read and write IOPS values [100]. 

	

Overall, 38 features were collected and named as shown in Table 3.1, out of which 17 were used for 

this analysis. The features that can provide critical information for characterization are kept, and the 

rest are ignored for this work. 
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Sr. No. Feature Name Feature Category 

F1 max speed (MB/s) for copy function 

 

Memory Performance  

F2 avg. duration for copy function 

 

Memory Performance  

F3 quickest duration for copy function 

 

Memory Performance  

F4 longest duration for copy function 

 

Memory Performance  

F5 max speed (MB/s) for scale function 

 

Memory Performance  

F6 avg. duration for scale function 

 

Memory Performance  

F7 quickest duration for scale function 

 

Memory Performance  

F8 longest duration for scale function 

 

Memory Performance  

F9 max speed (MB/s) for add function 

 

Memory Performance  

F10 avg. duration for add function 

 

Memory Performance  

F11 quickest duration for add function 

 

Memory Performance  

F12  longest duration for add function 

 

Memory Performance  

F13 max speed (MB/s) for triad function 

 

Memory Performance  

F14 avg. duration for triad function 

 

Memory Performance  

F15 quickest duration for triad function 

 

Memory Performance  

F16 longest duration for triad function 

 

Memory Performance  

 

Sr. No. Feature Name Feature Category 

F17 Norm. Resid 

 

CPU Floating Point computing Power 

F18 Resid 

 

CPU Floating Point computing Power 

F19 MACHEPX [1] 

 

CPU Floating Point computing Power 

F20  X[N] 

 

CPU Floating Point computing Power 

F21 Factor 

 

CPU Floating Point computing Power 
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F22 Solve 

 

CPU Floating Point computing Power 

F23 Total 

 

CPU Floating Point computing Power 

F24 MFLOPS 

 

CPU Floating Point computing Power 

F25  Unit 

 

CPU Floating Point computing Power 

F26 Cray-Ratio 

 

CPU Floating Point computing Power 

F27 sequential output (per char) M/sec 

 

Hard disk Performance  

F28 sequential output (per char) %CPU 

 

Hard disk Performance 

F29 sequential output (block) M/sec 

 

Hard disk Performance 

F30 sequential output (block) %CPU 

 

Hard disk Performance 

F31 sequential output (rewrite) M/sec 

 

Hard disk Performance 

F32 sequential output (rewrite) %CPU 

 

Hard disk Performance 

F33 sequential input (per char) M/sec 

 

Hard disk Performance 

F34 sequential input (per char) %CPU 

 

Hard disk Performance 

F35 sequential input (block) M/sec 

 

Hard disk Performance 

F36  sequential input (block) %CPU 

 

Hard disk Performance 

F37 random Seeks /sec 

 

Hard disk Performance 

F38 random Seeks %CPU 

 

Hard disk Performance 

Table 3.2 Feature List 

 

3.3.3 Feature Selection 

 

The process of choosing a subset from the initial feature set based on the significance of the features 

is known as feature selection. 
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This work evaluates some of the potential hardware performance features read by the MacBook Air 

and identifies the useful ones. In order to collect data, each device runs an algorithm to find features 

that can provide an adequate dynamic range, obfuscation, and variance. By default, features 

collected by devices are grouped into three main categories. These are CPU-related values like the 

performance of floating-point arithmetic, memory-related features like the time taken to read 

memory, and hard disk-related features like the CPU usage when writing to disk. Also, the 

correlation between features and this value is used as a new feature. This research work focused on 

hardware features as potential ICMetrics features. Each feature was collected 1000 times since it is 

sufficient to determine the probability distributions.  

 

Next, a feature set for a device was created that can be sensibly divided into individual sets. Each 

set includes features that have similar characteristics or are affected by the same changes in a device. 

These three feature sets consist of eight, six, and three features, respectively, in each set. Each 

feature set contains information to recognise low-level behaviours of the device. These features are 

dynamic in nature and will be more informative when building a model. These features are tied to 

each other to establish a unique relationship among features per device. In order to model this 

successfully, the first step was to perform very basic analysis to demonstrate the selection of the 

features in the table below (details in the following section). 

 
Sr. No. Feature Name Feature set Number 

F1 Maximum speed for copy function 1 

F2 Maximum speed for scale function 1 

F3 Maximum speed for add function 1 

F4 Maximum speed for triad function 1 

F5 Average duration for copy function 1 

F6 Average duration for scale function 1 

F7 Average duration for add function 1 

F8 Average duration for triad function 1 

F9 Sequential output (block)%CPU 2 

F10 Sequential output (block)MB/sec 2 

F11 Sequential output (rewrite)%CPU 2 

F12 Sequential output (rewrite) MB/sec 2 

F13 Sequential input (per char) %CPU 2 

F14 Sequential input (per char) MB/sec 2 

F15 Duration for add function 3 

F16 Quickest duration for add function 3 

F17 Longest duration for add function 3 

Table 3.3 Lists New Dynamic Features selected to build an ICMetrics system 
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The following are the properties (related to raw features) that were explored to identify the devices 

uniquely: 

 

A. Correlated features provide higher stability than individual features as they offer a 

predictability of range amongst them, this means that there is less intra-sample variance. 

These correlated raw feature sets contribute to building a robust system. 

B. The lower intra-sample (samples of the same device) variance is needed means the more 

feature value can vary, the harder the value is to map and the less stable the value is when 

contributing to identify device uniquely. 

C. Higher inter-sample (samples between two or more devices) variance contributes to the larger 

entropy of the system. 

The high inter-sample variance and low intra-sample variance are examined to observe the potential 

overlap of the data between two or more devices [88].  

 

 

3.3.4 Correlation of Features 
 

This section explains the importance of correlated features. Correlated features are more desirable 

than singular features because the correlated features are likely to be more stable than the singular 

features as they represent a relationship rather than a specific range, such that there is less intra-

sample variance. In other words, in a given device, a non-correlated feature could have any range 

of values, but the relationship between two tends to be more stable, as indicated by the correlation. 

Another significant aspect of correlated features is their ability to help distinguish devices. Singular 

features have a higher chance of having an overlap when the possible range for the feature is 

analysed across multiple devices. Singular features are measured directly from the device rather 

than being derived. Correlated features add an extra step when trying to recreate the values, as the 

correlated values must be generated and cannot be read directly from a device. Importantly, each 

correlated feature can itself be used as a feature [101]. For instance, Table 3.3 shows the correlation 

of the same feature combinations across different devices. The correlation of F1-F2 from device 0 

is 0.964728227, and the correlation of device 1 is 0.738532807. This shows a great difference 

between Device 0 and Device 1. Although the coefficient of Device2 is 0.982909775, which is a 

small difference compared to Device0, it is still distinguishable. Device0 and Device1 are similar 

for F2-F4. Device2 shows an enormous disparity between Device0 and Device1. In this case, 

Device2 is distinguishable, but Device0 and Device1 are quite close.  
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Correlation of Features  Device 0 Device 1 Device 2 

F1F2 0.964728227 0.738532807 0.982909775 

F1F3 0.155117596 0.351856621 0.886997405 

F1F4 0.283791595 0.34646151 0.961830229 

F2F3 0.224913722 0.343722645 0.872258654 

F2F4 0.350919526 0.342947973 0.959656282 

F3F4 0.767960793 0.886801301 0.94689632 

Table 3.4 Correlation of Features 

	 	

3.4 Feature Modelling 
 

The second contribution of this work is to analyse features in multidimensional space for device 

identification. To achieve this, the focus was on the following:  

1 Feature Normalization 

2 Feature Analysis 

3 How to handle multimodal distribution 

 

This section presents techniques that are used to model dynamic features that require statistical 

modelling to be used for unique device identification. Due to the fact that they are continuously 

changing, statistical features such as the mean and variance of a set of raw data are required in order 

to generate a stable unique identifier for identification, as these values are unlikely to change much 

with time. Since different approaches may be required for different feature sets, some may be 

normally distributed, some may conform to a multimodal distribution, etc.  

 

The primary goal of an ICMetrics system is to generate a unique identifier for each device, which 

is derived from various device characteristics. This unique identifier can then be used to authenticate 

the device and detect changes in device operation. This unique identifier should have high intra-

sample stability (on the same device) but low inter-sample stability (between different devices). In 

other words, a given device should always generate the same unique identifier, which should be 

unique to that device [93].  

 

For dynamic features, it is likely that each time the feature is sampled, it will hold a different value. 

Instead, it is important to take numerous estimations of the feature, quantize the deliberate values 

into discrete values, and produce a frequency distribution for that feature [102]. One possible 
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approach to extracting a feature value from a feature distribution is to map every value to a single 

value that is representative of the distribution, for example, the median of the set. This number 

would then be the feature value for that set. Since there are 17 unique features as of now, the entropy 

is 217. 

 

3.4.1 Normalisation 

 

In the calibration stage, features that are described in Table 3.2 have been utilized. The data is then 

sent through a quantization and normalisation process. If the data measured by the device is not-

normally distributed, it may be necessary to normalise the data so that it can be used for device 

identification. One approach that can be used to achieve this is to map the values from the raw 

distribution to a set of values in a normal distribution [103]. Finally, a multidimensional 

normalisation map is produced based on normalised data. In the operation phase, measured data is 

mapped to a multidimensional normalisation map to form a unique identifier [104] [105].  

	

3.5 Feature Analysis 
 

To determine the best technique to describe the distinct behaviour of the features (per device) and 

to identify subtle differences between the datasets acquired from each device, simple statistical 

analysis to find the correlation, mean, standard deviation, and variance were undertaken. These are 

the first derived entities from the raw data. The probability density function (PDF) is applied to the 

data as part of the detailed analysis. 

 

For detailed analysis, a probability distribution graph for each feature was generated to understand 

how the data is distributed in multidimensional space. The importance of visualising the data in 

multidimensional space helps differentiate between the overlapping data from different devices. 

This will infer the data to be unimodal, bimodal, or multimodal in nature.  

The data should be analysed in a multidimensional space because the selected features are 

multimodal in nature. The distribution of the data is shown in the following section, along with a 

thorough explanation of how to deal with the data's multimodality for accurate classification. 

Addressing this multimodality will increase the probability of the devices being recognised 

correctly.  
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3.5.1 Multimodal Distributions 

 

The previous section discussed the importance of using highly dynamic and multimodal aspects. 

Figure 3.3 below shows the distribution of one of the features across all devices.  

 
Figure 3.3  Probability density graph of feature (F1) for all devices 

 

To analyse the data, the probability density function was applied to each selected feature, and the 

distribution of each feature across all devices was visualized. The device number in the graph 

denotes the total number of devices (8) in this case. The distribution of data across each device is 

presented using various colours. Understanding the distribution of F1 across all devices requires the 

representation of F1 on a single graph. Each device's Feature F1 is multimodal, and all of the data 

for all of the devices completely overlaps. Therefore, for efficient data modelling, it is crucial to 

take advantage of the connections between the features for effective modelling of the data.  

 

To address the multimodal feature behaviour, the following steps are taken. 

 

1. To determine the total number of modes for every feature on each device. 
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2. The peak-trough approach is used to separate these multimodal features into the number of 

modes they each represent. Here, the number of modes present in each feature will provide 

a corresponding number of thresholds. Modal boundaries will be produced by these 

thresholds. The modes for a device's F1 and F2 features are depicted in the fig below.		

	
3. Establish a connection between the modes of these features. For instance, in a database with 

two features, F1 and F2, if F1 is bimodal (two modes are represented by F1-M1, F1-M2) 

and F2 is also bimodal (two modes are represented by F2-M1, F2-M2), as seen in the image 

above. Combining the modes for each feature can demonstrate their link. So, for Device 0, 

we obtain the following four modal combinations: 

 

I. [F1-M1, F2-M1] 

II. [F1-M1, F2-M2]  

III. [F1-M2, F2-M1]  

IV. [F1-M2, F2-M2] 

	

4. The data in each of these combinations is unimodal in nature and exclusively represents 

device 0. The number of combinations produced by this process—four in the example 

above—depends on how many modes each feature has. It is carried out for each device with 

‘n’ features. These modal mixtures are often known as ‘Converted Gaussians.’ 

5. The samples should then be sorted according to thresholds for each modal feature 

combination for that device. There might be a few empty combinations (i.e., combinations 

with no samples), which can be removed as soon as they are discovered. 

6. For every device, these created modal combinations are also known as Converted Gaussians. 

Each device is represented by many converted Gaussians. 
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With the use of thresholds produced by the peak-trough method, the steps above address the 

multimodal features and transform them into Gaussian distributions. Next our focus is to take care 

of the second issue, which is feature overlap, by addressing the multimodality of the characteristics. 

By constructing the combination of modes that were described in step 3, we can demonstrate the 

relationship between the modes of features (these are specific to each device), which helps to 

distinguish the overlap of data between devices for each feature. For instance, consider the F2 for 

each device if the F1 values for devices 1 and 2 completely overlap. This shows that the overlapped 

values in F1 might not be related to the same values of F2 by taking into account the relationship 

between F1 and F2 for each device. Utilising the interdependence of each feature on each device, 

our aim is to take advantage of the unique hardware level operation of each device. The distribution 

of feature F2 across all devices is depicted in the figure 3.4 below and the graph shows that there 

are overlapped values for the same feature for different devices. There was a need to determine how 

each feature on each device interacts with the others. As visualised in the graph 3.4, devices 1 and 

2 are bimodal and multi modal nature.  

	

	

 
Figure 3.4  Probability density graph of feature (F2) for all devices. 
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Figures 3.5, 3.6, 3.7, 3.8, 3.9, and 3.10 show the third, fourth, fifth, sixth, and eighth feature 

probability density graphs for all devices. From the graph, we can observe how the same feature is 

acting differently across all devices. The relationship between the features must therefore be taken 

advantage of for effective data modelling. Graph 3.5 highlights devices 2 and 6 data are overlapping 

hence the focus was on relationship between the devices.  

 
 

 

 
Figure 3.5 Probability density graph of feature (F2) for all devices. 

 
In the graph 3.6, devices 4 is multimodal, 1 and 2 is bimodal in nature. 
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Figure 3.6 Probability density graph of feature (F3) for all devices. 

 
In the below graph, devices 7 is multimodal and rest are all unimodal  

 

 

 
Figure 3.7 Probability density graph of feature (F4) for all devices. 
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As shown in the graph 3.8, devices 4, 6 and 7 are multi modal in nature.  

 
 

 
Figure 3.8 Probability density graph of feature (F6) for all devices. 

 

As shown in the graph 3.9, devices 0, 2, 6 and 7 overlap significantly  
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Figure 3.9  Probability density graph of feature (F7) for all devices. 

 
Graph 3.10 represents all multi modal devices. 
	
	
 

 
Figure 3.10 Probability density graph of feature (F8) for all devices. 
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Figure 3.11 Probability density graph of feature (F9) for all devices 

 

 

As shows in fig 3.2 - 3.10, if the feature data is distributed across two curves, it is bimodal and if its 

more than two curves, then its multi-modal distribution. To explain further, one feature on 2 

different devices can have different distribution. For example, one target feature (CPU usage) on 

two identical (laptops) can have bimodal or multi modal distribution depending on application 

(Browser) running at the time of data collection. After looking at the frequency distribution of the 

feature, it became apparent that these are multimodal features, and hence the multimodal approach 

was decided. Figure 3.11 below depicts the multimodal feature process in detail.  
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Figure 3.12   Multimodal Process 

	

Multimodal process is defined below. 

	

After feature analysis, it was concluded that a multimodal set of features does not generate a unique 

identifier for device identification. To address this challenge, there was a need to determine how 

many modes are available for each feature on each device. The distributions were subdivided into a 

series of components, each of which is approximately normal, and each mode on the original 

distribution become the mode of its own normal distribution. A simple approach to this problem is 

to apply a peak-trough detection algorithm to the histogram of each feature where the troughs split 
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the multimodal distribution into separate normal distributions (converting this to unimodal) with the 

peaks forming the modes, to decrease the overlapping of data amongst devices. 

	

The peak-trough algorithms take in the histogram data and divide the modes based on the troughs 

of a probability distribution graph [106]. This is used to create modes to associate samples with their 

respective permutations. This in turn will show the relationship between the features for each modal 

combination. Hence, examining these features in relation to each other creates a unique device print 

where these combinations are generated [108]. 

 

The above-mentioned procedures deal with multimodal features and transform them into Gaussian 

distributions using thresholds produced by the peak-trough technique. By addressing the 

multimodality of the characteristics, which is feature overlap, the second issue was solved. 

Establishing a relationship between the modes allows for the differentiation of data overlap between 

devices for each feature, so combining the modes demonstrated the relationship between the modes 

of features (these are unique per device) [107]. 

 

In this section, a thorough explanation of the handling of multimodal data and its significance is 

provided. The next section outlines the operation phase of the system. 

 

3.6 Operation Phase  
	

The operation phase starts each time an encryption key is required. For this, all features in the three-

feature set (as described in Table 3.2) are dynamic in nature, which requires statistical or 

mathematical modelling for a unique identifier. In other words, a given device should always have 

a unique identifier, which is the primary goal of the ICMetrics system [101] [107]. 

 

The challenge with the ICMetrics technique is to generate a unique identifier that is used to 

authenticate and is formed of several device characteristics. Having just one characteristic change 

significantly may change the unique identifier, although the variation may still be consistent with 

the operation of the device. Subsequently, the device will fail to authenticate because basic 

approaches to combining feature values, like simple concatenation, don't allow for device 

characteristics to change. 
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One possible solution to this problem is to implement a secret sharing algorithm to combine feature 

values, which allows the unique identifier to be recovered even if a limited number of the device 

characteristics have failed. 

 

3.6.1 Secret Sharing Scheme 
 

In the case of Shamir’s Secret Sharing algorithm [111], this is done by defining a polynomial where 

the y-axis intercept defines the unique identifier, and upon which all of the devices’ feature values 

(at the time of calibration) lie. Since a polynomial can be defined if a given number of points are 

known (i.e., a straight line with 2 points, a parabola with 3 points, a cubic polynomial with 4 points, 

etc.), the y-axis intercept and therefore the unique identifier can be recovered even if a limited 

number of the characteristics fail. For example, a parabola with 5 total points would allow up to 2 

points to be invalid, and the unique identifier can still be calculated correctly using the other 3 valid 

points available.  

 

The next step is secret sharing in the ICMetrics key generation process. A common way is to 

generate a unique identifier to pass in as the X values and then calculate the associated Y values to 

create the points needed to reconstruct the unique identifier, or device identity. When it is required 

to reconstruct the secret, Y values can be fetched from where it was stored and ICMetrics values 

read to get the X values. Once the X and Y pairs are in place, reconstructing the secrets using 

interpolation is the next step. This way, correctly reconstructing the secrets is possible when enough 

ICMetrics values are valid. 

 

The secrets can be split into several shares, with a threshold needed before the secret can be 

reconstructed. Generating a secret using some form of cryptographically secure RNG and then using 

ICMetrics to represent the points on the polynomial allows the secret to be reconstructed with valid 

ICMetrics, and also allow the key to be revoked if it gets compromised. It also enables us to set a 

level of tolerance in the system for difficult-to-map features, ensuring the ICMetrics system’s 

reliability.      

 

The advantage of this process is that the ICMetrics are not stored on the system, and the only values 

that are stored are one-half of the co-ordinates that are necessary to generate the polynomial that 

produces the ICMetrics. The halves that are stored on the system cannot be used to find out the 

polynomial that was used to generate them. Interpolation cannot be employed without the associated 

x value for each stored Y value, which means an attacker cannot derive the device identifier (unique 
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identifier) from the stored data and has no way of knowing where on the X axis each point sits. 

Additionally, a new ICMetrics can be generated any time the system needs to be changed or reset 

by repeating the process of taking a new arbitrary basis value and passing in feature values to 

generate new Y values similar to existing Y values, or by dynamically adjusting Y values by using 

an offset. 

	

3.7 Experimental Methodology 
 

This section describes the dataset, pre-processing and standard classifiers used for this analysis. 

	

3.7.1 Feature Dataset 

 

MacBook Air and MacBook Pro were chosen since these devices allow access to the low-level 

hardware as well as the software contained on each device, allowing us to find features that can 

provide an adequate dynamic range and variance. Despite having MacBook models from 2013 to 

2020 (section 3.3.1.1), the majority of them had an i5 processor, which allowed us to have 

uniformity in the features collected in section 3.3.2. 

 

On contrary, Windows hardware is created by numerous vendors and makes it difficult to separate 

the devices. Apple's hardware tends to be more homogenous. Based on these traits, feature values 

were segmented. Memory performance, Hard disk performance, and CPU floating point make up 

the three categories for the dataset information that was collected from the devices. The analysis of 

each feature included collecting data from multiple Mac devices to generate as diverse a range for 

feature values as possible. Features generally form unusual distributions that cause a pattern 

recognition problem and require more complex pattern recognition methods. The patterns that were 

discovered were used to differentiate the feature values into multifaceted clusters that can dictate 

how distinguishable the devices are using that particular feature. If the feature provided enough 

inter-sample variance, it was selected for further examination. Furthermore, a feature that did not 

provide enough inter-sample variance could still be acceptable if a correlation could be found with 

another feature that produced suitably complex and distinct clusters when plotted in an n-

dimensional space. Distinct clusters are easier to discover when multiple features are used in 

combinations, thus the requirement for multi-dimensional plotting. The goal of the experiment is to 

evaluate the hardware features for device identification. The extracted features are used during 

testing to determine the proposed system's accuracy rate and for benchmarking the results. Also 



 74 

performance metrics are computed to evaluate the effectiveness of the proposed ICMetrics security 

system, including the accuracy rate, precision, recall and F Measure. 

 

3.7.2 Pre-processing /Normalizing  

 

This stage is necessary to produce training and testing dataset from the device's extracted features. 

The mean and variance of each individual feature value are modified as part of the feature 

normalisation procedure in order to compare how much each characteristic contributes to the final 

match score. During this step, a min-max normalisation approach was applied [112]. 

	

3.7.3 Classifiers 

 

This section explains the common linear and non-linear classification methods used on data gathered 

from devices (accessible with sklearn). The classification outcomes obtained using these methods 

are compared with the multimodality model we created. Standard classifiers are used to verify and 

compare how well each classifier performs on the data because the data is multi-modal in nature. 

The results are compared using the following classifiers: 

 

The correct classification of the device is defined using our proposed model's multivariate Gaussian 

distribution [113] in order to evaluate the model's effectiveness as a classifier. In this proposed 

methodology, other three standard classifiers have been used for benchmarking, namely: logistic 

regression (LR) [115], linear discriminant analysis (LDA) [114] and support vector machines 

(SVM)[115]. These classifiers are used to compare the predictions. To accurately classify the test 

data based on three feature sets, the above-mentioned classifiers were applied to various device 

datasets. The performance of these classifiers is evaluated on the basis of accuracy, precision, recall, 

and F measure. The results section contains the analysed results based on these. For code 

implementation, Python has been used. In this section, we explain the various classification 

techniques. 

 

3.7.3.1 Proposed Multivariate Gaussian Distribution (MVGD) 

 

The statistical analysis needed for the production of ICMetrics numbers used for device 

identification is provided below. Because the feature readings are a discrete random variable, the 

process requires a probability density (x) function to calculate the precise value from the feature 
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reading.  

 

By taking multimodality into consideration, our goal was to model the data from each device as 

multiple multivariate Gaussian distributions. Create modal combinations to divide the data from 

each device into several converted Gaussians in order to address multimodality; these conversions 

are made with the use of modal threshold, as discussed in section 3.5.1. These transformed 

Gaussians can be seen as numerous multivariate distributions per device, similar to how it is shown 

in GMM. The mean and covariance matrices of each of these multivariate Gaussians serve as their 

representation. Next, use equation (1) to calculate the probability of each test sample compared to 

each distribution and keep a record of the probability that each devices produces. Last step is to 

repeat for each device, finding the maximum probability generated, which is our classifier's 

prediction data. 

 

As per our knowledge in Gaussian Mixture Models (GMM) [161], the data is represented as ‘n’ 

mixture models; similarly, our classifier represents it as ‘n’ multivariate Gaussians per distribution. 

Assume that each sample has one of these multivariate Gaussian distributions. 

 

The d-dimensional vector x is multivariate Gaussian in the event that it has a likelihood thickness 

capacity for the accompanying structure:	

	

	𝑝 𝑥; 𝜇, ∑ = )
(+,)./0 ∑ 1/0 𝑒𝑥𝑝

)
+
𝑥 − 𝜇 4∑5)(𝑥 − 𝜇) 		 	 	 	 (1)	

	

if ′𝜇′	represents mean, ‘x’ represents particular sample reading from feature data and the covariance 

matrix ‘Σ’.   

The mean vector µ is the assumption for x:   

	

														𝜇 = 𝐸[𝑥]													 	 	 																																																																		(2)	

The covariance Σ is the assumption for the deviation of x from the mean:  

	

																Σ = 𝐸 𝑥 − 𝜇 (𝑥 − 𝜇)4 																																																																																						(3)	     

              

3.7.3.2 Linear Regression (LR) 

 

Logistic Regression is a predictive analysis technique that uses linear classification when the 
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dependent or target variable is dichotomous [117]. Since this is a standard classifier, our intent is to 

compare this with our classifier (multi-modal distribution) and check the performance of the system. 

Additionally, it offers multinomial categorical prediction, which in our instance classifies the data 

into the device number, or the target variable. 

 

3.7.3.3 Linear Discriminant Analysis (LDA) 

	

The LDA projects the data in higher dimensions onto a lower-dimension space (reducing 

dimensions). In LDA, the goal is to identify a linear combination of features that can distinguish 

between two or more object classes and assess the system's effectiveness with multimodal feature 

combination [118]. 

	

3.7.3.4 Support Vector Machine (SVM)) 

 

The SVM model has the capability to handle both regression and classification problems. Here the 

data is plotted and viewed in n-dimensional space, where n depicts the number of features. This is 

a non-linear classification technique that can separate the data into different classes via a decision 

plane. Hence the data, which seem to be linearly inseparable, are subjected to intricate mathematical 

functions called kernels, which effectively separate the data belonging to their respective classes 

[119]. The complexity of the model ensures higher accuracy and presents fewer possibilities of over-

fitting [117].  

 
The exploratory outcome depicts which classifier is best between them. The contribution of this 

research is to analyse multimodal features in multi-dimensional space and identify the device 

uniquely, and for benchmarking, use the standard classifier for comparison.  
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Figure 3.13 Methodology Process 

 
 
3.7.4 Multimodal Classifier Algorithms 

 

The following steps summarise the proposed multi-modal classifier algorithm for the ICMetrics 

security system: 

1. Read the data from all the devices. 

2. Select features based on criteria for good features. 

3. Normalize the data and then split it using k-fold (k = 10) cross-validation. 

4. Divide features into three groups that share the same characteristics, and then determine a 

probability distribution for each feature. 

5. Check if the distribution is unimodal, bimodal, or multimodal. 

6. Apply a peak-trough identification algorithm to the distribution if the distribution is 
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multimodal. Here, the peak-troughs split the multimodal distribution into separate Gaussian 

distributions, with the peaks forming the modes. 

7. Create modal combinations to split the data per device into many ‘Converted Gaussians’. 

These are transformed with the aid of a modal threshold that was built using peak-trough 

data. 

8. The mean and covariance matrices of each of these multivariate Gaussian distributions are 

used to represent them. 

9. Next, calculate the probability of each test sample associated with that mode using a 

multivariate normal probability density function. 

10. Take samples from each device and compute the mean and covariance of the modes within 

the distribution of the current devices to determine the probability.  

11. For example, if the device has a bimodal distribution, that means there are two modes, and 

each mode has its own mean and covariance.  

12. For this, first determine which mode the current sample falls into, then calculate the 

probability of the sample, and repeat the same process for other modes.  

13. Next, take the same sample set from another device and determine which mode of the first 

device that samples belong to, and then calculate the probability of the sample. If the 

probability from the second device is low as compared to the first device, that means the 

first device is correctly identified based on probability, and you repeat the same process for 

the other ‘n’ devices and then save the probability produced for each device.  

14. Repeat this process for all devices, and the maximum probability of those results will serve 

as our classifier's prediction data. 

15. Compare probability results from benchmarking classifiers.  

16. Generate a confusion matrix and classification reports. 

 

3.7.5 Performance Measures 

 

Performance, accuracy and usability are three metrics that can be used to evaluate system features. 

Metrics were employed by the researchers to evaluate the system's performance. The system, which 

is based on the dataset collected from the general computing devices, is evaluated using a variety of 

performance metrics. 
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Four different alarm types - True Positive (TP), False Positive (FP), True Negative (TN), and False 

Negative (FN) - must be calculated in order to quantify and assess the proposed system's 

performance. The measurements will be computed using the formula below [120].  

  

TP- if we can prove that a unique identifier belongs to a specific device  

TN- if we can prove that a unique identifier does not belong to a specific device   

FP- if unique identifier identifies a device incorrectly 

FN- if unique identifier incorrectly concludes that it’s not the specific device, however, in reality it 

is the device in question. 

 

Classification Rate or Accuracy is given by the relation 		

	 Accuracy = 4;<4=
4;<4=<>;<>=

   (4) 

 

Recall: Recall can be defined as the ability of the classifier to find all positive instances. It is defined 

as the ratio of true positives to the sum of true positives and false negatives. 

 Recall = 4;
4;<>=

     (5) 

 

Precision: Precision can be defined as the ability of the classifier not to label as positive a sample 

that is negative. It is defined as the ratio of true positives to the sum of true positives and false 

positives. 

 Precision = 4;
4;<>;

     (6) 

 

F-measure: F-measure can be defined as the harmonic mean of precision and recall. The F-measure 

corresponding to every class will tell you the accuracy of the classifier in classifying the data points 

in that particular class compared to all other classes. 

 F-measure = +∗@ABCDD∗;EABFGFHI
@ABCDD<;EABFGFHI

               (7) 

 

3.8 Experimental Results 
 

The proposed system's role in creating and improving the security methods for device identification 

is detailed in this section. To assess the system's performance, the proposed system is put to the test 
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using features derived from the device. Performance measures, such as the confusion matrix, and 

accuracy rate are determined in this section. 

As part of our experiment, multi-modal classifier was built since it offers higher level of security 

and is our novelty. To test the effectiveness of this classifier, benchmarking comparison was made 

with standard classifiers. To achieve this, the following experiments were conducted to establish 

that the above data can be measured and employed as feature values for the identification of 

individual device characteristics. Data gathering and statistical analysis have been automated using 

code written in Python.  

 

The section provides a thorough analysis of the experimental findings associated with the proposed 

model, MVGD. The features discussed in section 3.3.2.5 are the subjects of the studies. This 

information is gathered from the hardware components of the MacBook Air and MacBook Pro 

(memory, CPU and hard drive). After analysis, this data provides us with a unique identifier for 

device identification. Eight devices with up-to-date software were used. Data gathered from the 

MacBook Air and Pro, Python code, and Microsoft Excel were used in this study. For this 

experiment, these devices are used, and for our analysis, each device includes a thousand samples. 

One of our experiments was to test the following features as shown in Table3.5 and 3.6 on multiple 

devices of the same type and conclude that a particular feature could be unimodal, bimodal, or 

multimodal on different devices. This is depicted in the tables below. 

 

 
Device Feature Name Feature Mode Value Mode Category 
0 Mflops [1729.6197731, 2029.6555919, 2254.682456] Multimodal 
 Random Seeks/sec [53887.0, 145687.0, 237487.0] Multimodal 
 Random Seek%cpu [70.02503879999999, 286.95473] Bimodal 
1 Mflops [899.5161528, 948.082779] 

 
Bimodal 

 Random Seeks/sec [51306.0] Unimodal 
 Random Seek%cpu [74.953014, 90.994744] Bimodal 
2 Mflops [1442.7346728, 1782.421908] 

 
Bimodal 

 Random Seeks/sec [81121.4, 120248.20000000001, 159375.0] Multimodal 
 Random Seek%cpu [194.854033] Unimodal 
3 Mflops [1797.6023046999999, 2289.139028] Bimodal 
 Random Seeks/sec [45609.2, 130894.0] 

 
Bimodal 

 Random Seek%cpu [79.7744538, 210.394809] Bimodal 
4 Mflops [1561.2914516, 2273.87369] Bimodal 
 Random Seeks/sec [92743.2, 148842.0] 

 
Bimodal 

 Random Seek%cpu [153.83213899999998, 218.29451] Bimodal 
5 Mflops [814.2273418, 1427.335394] Bimodal 
 Random Seeks/sec [3466.5, 6146.0] Bimodal 
 Random Seek%cpu [4.127735400000001, 6.355079] Bimodal 
6 Mflops [1525.785184, 1876.558732] Bimodal 
 Random Seeks/sec [146585.0, 202439.0] Bimodal 
 Random Seek%cpu [127.4858734, 213.639322] Bimodal 
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7 Mflops [683.2273122, 1980.172609] 
 

Bimodal 

 Random Seeks/sec [295792.0] Unimodal 
 Random Seek%cpu [103.0319376, 230.78943] Bimodal 

Table 3.5 Same three features with different number of modes in different devices 

 
Device Feature Name Feature Mode Value Mode Category 
0 Sequential output (block)%CPU [333.8403578, 393.821725] 

 
Bimodal 

 Sequential output (block)MB/sec [77.671227] Unimodal 
 Sequential output (rewrite)%CPU [3027.3687172, 3976.143141] Bimodal 
 Sequential output (rewrite) MB/sec [33.659796, 42.961692] Bimodal 
 Sequential input (perchar)%CPU [17.380394600000002, 20.018369] 

 
Bimodal 

 Sequential input (perchar)MB/sec [97.57372260000001, 99.955529] 
 

Bimodal 

1 Sequential output (block)%CPU [99.909929, 181.144981] 
 

Bimodal 

 Sequential output (block)MB/sec [33.2123522, 70.531697] Bimodal 

 Sequential output (rewrite)%CPU [1189.5236169999998, 2020.446923] 
 

Bimodal 

 Sequential output (rewrite) MB/sec [35.187215] Unimodal 
 Sequential input (perchar)%CPU [4.6886006, 8.756403] 

 
Bimodal 

 Sequential input (perchar)MB/sec [54.3397778, 99.963561] Bimodal 
2 Sequential output (block)%CPU [1283.202874] 

 
Unimodal 

 Sequential output (block)MB/sec [147.342487] Unimodal 
 Sequential output (rewrite)%CPU [1382.0247729999999, 4306.075873] Bimodal 
 Sequential output (rewrite) MB/sec [48.88907] Unimodal 
 Sequential input (perchar)%CPU [11.518076, 17.625869] Bimodal 
 Sequential input (perchar)MB/sec [99.939266] Unimodal 
3 Sequential output (block)%CPU [102.255239] Unimodal 
 Sequential output (block)MB/sec [19.085119] Unimodal 
 Sequential output (rewrite)%CPU [3538.445207] Unimodal 
 Sequential output (rewrite) MB/sec [19.918016] 

 
Unimodal 

 Sequential input (perchar)%CPU [1.256827, 2.659283, 3.711125] Multimodal 
 Sequential input (perchar)MB/sec [9.952163500000001, 20.4312095, 28.290494] Multimodal 
4 Sequential output (block)%CPU [624.562806] 

 
Unimodal 

 Sequential output (block)MB/sec [74.72207] Unimodal 
 Sequential output (rewrite)%CPU [6214.654154] Unimodal 
 Sequential output (rewrite) MB/sec [78.222535] Unimodal 
 Sequential input (perchar)%CPU [17.941423] Unimodal 
 Sequential input (perchar)MB/sec [81.577747] Unimodal 
5 Sequential output (block)%CPU [620.0750369, 876.800729] Unimodal 
 Sequential output (block)MB/sec [54.5787354, 87.595625] Bimodal 
 Sequential output (rewrite)%CPU [2547.5043626, 6294.058409] Bimodal 
 Sequential output (rewrite) MB/sec [31.012234399999997, 92.964095] Bimodal 
 Sequential input (perchar)%CPU [10.522833000000002, 20.989768] Bimodal 
 Sequential input (perchar)MB/sec [100.005217] Unimodal 
6 Sequential output (block)%CPU  [362.5170858, 810.576401] Bimodal 
 Sequential output (block)MB/sec [54.2516332, 98.151602] 

 
Bimodal 

 Sequential output (rewrite)%CPU [4079.5603254, 4636.928499] Bimodal 
 Sequential output (rewrite) MB/sec [93.369356] Unimodal 
 Sequential input (perchar)%CPU [20.7158174, 21.523915] 

 
Bimodal 

 Sequential input (perchar)MB/sec [99.877581, 99.968973] Bimodal 
7 Sequential output (block)%CPU [1231.041954] Unimodal 
 Sequential output (block)MB/sec [52.402349300000004, 78.43738570000001, 

97.963663] 
Multimodal 

 Sequential output (rewrite)%CPU [2899.0309488000003, 7735.746886] Bimodal 
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	 Sequential output (rewrite) MB/sec [18.5745598, 92.863703] 

 
Bimodal 

	 Sequential input (perchar)%CPU [7.801117400000001, 25.793272] 
 

Bimodal 

	 Sequential input (perchar)MB/sec [20.746663800000004, 99.933559] 
 

Bimodal 

Table 3.6 Same six features with different number of modes in different devices 

 
Here is an explanation of how permutation samples vary depending on certain feature modes on 

Mac devices. For another set of features (max speed (MB/s) for the copy function, quickest duration 

for the add function, quickest duration for the triad function). Feature 1 is bimodal; Feature 2 is 

multimodal; and Feature 3 is bimodal. 

 

In this example, the above features are taken, and 12 permutations are identified. Half of them don't 

have samples associated with them. 

	
Permutations Samples 

000 064 

001 036 

010 002 

011 000 

020 000 

021 000 

100 001 

101 000 

110 911 

111 000 

120 986 

121 000 

Table 3.7 Combinations with different numbers of samples 

Empty combinations are not considered in our experiment, and combinations with higher sample 

values are useful for identifying the devices. 

 

The experiment uses 17 features, which are collected from general computing devices and pre-

processed. Features were extracted and passed to the model for training with 4 different algorithms. 

The data was divided into two parts for holdout accuracy estimates: 80% and 20%. The model was 

trained with 80% and tested with 20%. Each device randomly chooses a portion of its test data, 

which represents 20% of the total data set. The precision value for each device and classifier, as 

well as the overall accuracy for each classifier, are displayed in this section. The ability of a system 

to categorise a sample as positive when it is actually negative is known as precision. The results 
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were validated using k-fold cross-validation with k = 10. K-fold cross-validation divided the data 

into k portions and used 1 portion as test data and the rest of the k-1 portion as training data.  

 

In this system, hardware features are utilised for generating the unique identifier. In order to apply 

device identification, these readings are used in the construction of the ICMetrics security system.  

The retrieved features are used to assess the accuracy rate of the suggested system during testing. 

The suggested system is put to the test using a dataset taken from the hardware features to determine 

the accuracy rate and the four different sorts of alarms. The effectiveness of the suggested security 

strategy is assessed using cross validation. The accuracy of the classification for each device is 

displayed in the table below. Each table displays the classification outcomes for each common 

classifier in comparison to the (MVGD). Each linear classifier performs poorly when presented with 

the data. Because of this, the variation in the feature values and relationships among them are similar 

when viewed from a linear perspective, which accounts for the lower accuracy and precision values 

for the devices. When the data is subjected to MVGD, we take into consideration the multimodal 

character of the data, and higher accuracy results are observed. This demonstrates the need of 

looking at the data in a multidimensional space and taking into account the characteristics' 

multimodality. 

 

Tables 3.8, 3.9 and 3.10 show the comparison of our proposed model MVGD with other standard 

classifiers LR, LDA, and SVM and evaluate the performance of the proposed model on the basis of 

accuracy, precision, recall, and F measure [120]. 

 

In all classifiers for the first feature set, which includes eight features related to the speed of a hard 

disk to copy, add, scale, and triad function, MVGD performs better; its accuracy is 91.5%; after that, 

SVM performs better; it holds 90% accuracy.  
 

Classifier Accuracy Precision Recall F Measure 

MVGD 91.5% 74.2% 73.1% 72.5% 

LDA 87% 70.7% 69.7% 68.7% 

LA 87% 69.2% 69.7% 68.9% 

SVM 90% 73.4% 73.5% 72.9% 

Table 3.8 For feature Set 1 classification performance of proposed model with standard classifiers using Training-

Testing in 10-fold cross-validation setup. 

 
For the second feature set, which includes six features related to hard disk like CPU usage when 

writing to disk and memory-related features like time taken to read memory, MVGD performs better 
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and its accuracy is 92%. After that, SVM performs better and its accuracy is 90.5%. 
Classifier Accuracy Precision Recall F Measure 

MVGD 92% 74.1% 73.6% 73.4% 

LDA 91.2% 74% 73% 72.5% 

LA 91% 74.1% 73.4% 73% 

SVM 90.5% 77.2% 77.2% 77.1% 

Table 3.9 For feature Set 2 classification performance of proposed model with standard classifiers using Training-

Testing in 10-fold cross-validation setup. 

 

For the third feature set, which includes three features related to CPU-related values, like the 

performance of floating-point arithmetic, MVGD performs better; it holds 80.1% accuracy; after 

that, SVM performs better; its accuracy is 67.9%. 
 

 

Classifier Accuracy Precision Recall F Measure 

MVGD 80.1% 67.9% 64.6% 62.1% 

LDA 57.8% 44.2% 47% 42.3% 

LA 57.1% 52.6% 46.4% 44.1% 

SVM 67.9% 59% 55.1% 50.3% 

Table 3.10 For Feature Set 3 classification performance of proposed model with standard classifiers using Training-

Testing in 10-fold cross-validation setup. 

Below table show the confusion matrix for first feature set for MVGD classifier explained in table 
3.8 
 
 

D0 200 0 5 0 1 0 0 0 
D1 0 193 0 0 0 0 0 0 
D2 0 0 207 0 4 0 0 0 
D3 0 0 0 197 1 2 0 0 
D4 0 1 0 2 194 0 0 0 
D5 0 59 0 25 34 83 0 0 
D6 0 0 0 0 0 0 197 0 
D7 0 0 0 0 0 1 0 194 
	 D0 D1 D2 D3 D4 D5 D6 D7 

Table 3.11 Confusion Matrix for first feature set for MVGD classifier explained in table 3.8 

 

Below table show the confusion matrix for second feature set for MVGD classifier explained in 
table 3.9 
 
 

D0 205 0 0 0 1 0 0 0 
D1 0 187 0 0 0 6 0 0 
D2 0 0 201 0 10 0 0 0 
D3 0 0 0 192 0 8 0 0 
D4 0 0 0 0 186 11 0 0 
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D5 0 0 0 87 0 114 0 0 
D6 0 0 0 0 0 1 195 1 
D7 0 0 0 0 0 4 0 191 
 D0 D1 D2 D3 D4 D5 D6 D7 

Table 3.12 Confusion Matrix for first feature set for MVGD classifier explained in table 3.9 

 
 

Below table show the confusion matrix for third feature set for MVGD classifier explained in table 
3.10 
 

 
D0 200 0 4 0 1 0 1 0 
D1 0 193 0 0 0 0 0 0 
D2 11 0 42 0 5 0 153 0 
D3 0 0 0 196 1 3 0 0 
D4 0 7 0 6 184 0 0 0 
D5 0 78 0 22 17 84 0 0 
D6 4 0 0 0 0 0 193 0 
D7 1 0 1 2 0 0 0 191 
	 D0 D1 D2 D3 D4 D5 D6 D7 

Table 3.13 Confusion Matrix for third feature set for MVGD classifier explained in table 3.10 

 
 

According to the experiment results, the proposed multivariate Gaussian distribution model 

outperforms the other three standard classifiers in the prediction of uniquely identifying devices.  

After applying secret sharing (explained in section 3.6.1), the results for ICMetrics device 

identification for multivariate Gaussian distribution classifier were 94%, 95% and 84% for the first, 

second, and third feature sets, respectively. This proves that our results improved statistically over 

the previous ones. 

 

 
Classifier Feature Set Accuracy Precision  Recall  F Measure 
Proposed MVGD 
	

8F 94% 93% 94% 94% 
6F 95% 94% 95% 95% 
3F 84% 85% 84% 84% 

Table 3.14 Secret Sharing results for 8F,6F and 3F classification performance of proposed model using Training-
Testing in 10-fold cross-validation setup. 

 

The method proposed in this thesis can be utilised to provide device identification with a higher 

degree of accuracy, according to the results provided in the tables above. 
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3.9 Conclusion 
 

ICMetrics is a device identification system that identifies a device based on its internal environment. 

This chapter includes a study on explicit and implicit features that can be applied to the development 

of device ICMetrics. This chapter provided an overview of ICMetrics technology and demonstrated 

how to use it for device identification. At the outset, an overview of the structure of the ICMetrics 

approaches is provided. This system is novel in that it takes features from a device and uses them to 

identify it. Following that is a discussion of a generic list of potential features that could be used for 

identification. Following that, the approaches of feature extraction technologies are demonstrated 

and explored. Handling multimodal characteristics was the second contribution. To convert unique 

distributions into conventional distributions, a multimodal algorithm is created. The peak-trough 

detection approach is used for multimodal features to identify each mode inside the feature. This 

multi-modal dataset aided in evaluating the robustness of the device identification methods under 

various devices scenarios. This dataset was heavily used in this thesis work to perform a variety of 

evaluations with multiple classifiers. Using this dataset, a thorough analysis of the identification 

accuracy was performed.  The device was then identified using a classifier comparison analysis. The 

device identification technique is compared to four alternative classifiers. Samples were sorted out 

based on modes, and samples were verified against all training samples during testing; the 

probability was then calculated, and this was used to predict the classifier output.  

 

Experimental results show that different classifiers behave differently on the same dataset. The 

analysis revealed that the proposed model MVGD outperformed all others for device identification 

because multimodal features were analysed. The accuracy results for feature set 1 for our proposed 

classifier are 91.5%; and for the second feature set, 92%; and for feature set 3, 80.3%. These findings 

demonstrate that our experiment was successful. This relates to the research question in Chapter 1. 

And our Shamir’s Secret Sharing results based on ICMetrics device identification for the proposed 

model MVGD are quite promising. Overall, this chapter outlines the method of analysis and 

mathematical implementation using the proposed model of multivariate Gaussian distribution. The 

findings for ICMetrics device identification obtained using Shamir’s secret sharing technique are 

finally presented. 
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Chapter 4 
 

Frequency Domain Analysis & Classification  
 

 

4.1 Introduction 
 

Multimodal features have been employed to identify devices so far in our research. The system 

performance of this strategy was, however, constrained. There are three restrictions:  1) Excessive 

data noise and abrupt interruptions, 2) In multimodal distribution, bursts of modes frequently 

separate and drift apart from one another. It is typical to see that these bursts occur at regular 

intervals or within the modes, where high frequency changes are consistent while lower frequency 

changes are quite inconsistent. It is typical to find that certain high frequencies are consistent for a 

certain device and that low frequencies tend to dominate the later when things are separated into 

frequency and spatial domains.  Our primary objective is to ascertain if low-frequency changes in 

the spatial domain conceal high-frequency changes inside modes for the various devices. They 

cannot be differentiated without being moved to the frequency domain and 3) Multimodal-based 

feature analysis requires longer processing time [126]. These restrictions have been explained in 

chapter 3 section 3.5.1 

 

 Frequency Domain Analysis and Classification provide a solution since they: 

 

 1) Lessened the commotion and noise. 

 2) When evaluated in the spatial domain, low frequency conceals high frequency fluctuations 

within modes that are constant across devices, according to our research. It is challenging to 

tell them apart without going into the frequency domain. 

3) Faster computations. 
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To further validate these points, a detailed comparison of multi modal classifier results with standard 

classifier is highlighted in section 4.5. This technique further helps to add an additional security layer 

since their coefficient can be driven and used as an additional device feature. This novel way 

provides for even stronger device authentication. 

 

The use of the wavelet transform for device identification is the focus of discussion in this chapter, 

as are wavelet-based features to identify such devices uniquely. Our aim was to study the impact of 

utilising different wavelet functions on the performance of the device identification system. 

Importantly, the features examined exhibit non-standard and multimodal distributions, which 

present a significant challenge to model and characterize. 

 

The rest of the chapter is organised as follows: Section 4.2 details the related work on this topic; 

Section 4.3 focuses on the system overview; following this, Section 4.4 presents the methodology 

process; Section 4.5 presents experimental results; and Section 4.6 draws conclusions based on the 

results. 

 

4.2 Related Work 
 

This section progressed with our research based on wavelets covered in our experiments. Earlier 

wavelet-based image classification work is discussed. In [127], Harr and a bank of perceptron’s 

used a database of 600 photos to classify images (300 for training and 300 for testing). For the 

training set, they achieve 81.7% right classification, and for the assessment test, 76.7%. Combining 

wavelet transformations for image classification is done in [128]. They claim that performance is 

almost 80%. In [129], classification is accomplished using Daubechies’ wavelet transformations. 

For testing, 240 colour photos of aeroplanes were used, while 120 were used for instruction. 88% 

efficiency was the highest recorded. In this research, the author also offers a method based on the 

wavelet transform. 

 

In order to synthesise the reconstructed images using the estimated detail matrix and information 

matrix provided by the wavelet transform, they employed DWT to estimate the detail matrix from 

the information matrix [130]. 
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By applying several threshold approaches to increase the quality of the reconstructed image, they 

created a computationally efficient and effective algorithm using the Haar wavelet transform for 

compression of lossy images [131]. 

	

Wavelet transformation is one method that has been employed for feature extraction. The wavelet 

transform is frequently used to extract characteristics from non-stationary bioelectrical signals 

[132]. The discrete wavelet transform (DWT) was used in this study due to its popularity for the 

measuring and analysing time-frequency and spectral component fluctuation [133,134]. The 

technique has been widely applied [135,136]. It is helpful for evaluating transitory signals because 

it makes it possible to extract features that change over time [137,138].  

 

The Haar wavelet can split data classes without considerably reducing the original data's content, 

which has the advantages of being quick and easy while dealing with memory efficiency [139]. The 

energy spectrum of Daubechies' wavelets is symmetric, centred around low frequencies, and 

effective for reducing the number of dimensions needed to classify images [140,141]. Symlets are 

almost symmetrical wavelets with Daubechies wavelet-like properties [142]. Coiflets use 

approximation properties based on the number of vanishing wavelet moments [143]. 

 

While the biorthogonal wavelet has linear phase filter banks with symmetric properties, and is useful 

for signal and image reconstruction, it has the advantage of a dual filter that corresponds to a fixed 

wavelet filter used for signal decomposition [144-146], since it is predicted that bioelectrical signals 

collected from smart watches will contain some noise, the most effective way to minimise the noise 

is to use a wavelet with a filter bank. The ability to extract a sample of the signal for feature 

extraction will be made possible by the signal's decomposition, which will be another benefit. 

 

A biorthogonal wavelet has the benefit of a dual filter, which corresponds to a fixed wavelet filter 

used for signal decomposition; it is useful for signal and image reconstruction; and it has the benefit 

of linear phase filter banks with symmetric property [144–145]. The most efficient technique to 

reduce noise in signals obtained from devices, is to use a wavelet with a filter bank. Another 

advantage is that the signal decomposition will enable the extraction of a sample of the signal for 

feature extraction. 

 

The Bior1.1, 1.3, 1.5, Bior2.2, 2.4, 2.6, 2.8, Bior3.1, 3.3, 3.5, 3.7, 3.9, Bior4.4, Bior5.5, and Bior6.8 

wavelets are members of the biorthogonal wavelet family. A signal is divided into approximation 

and detail components using biorthogonal wavelet transformations. The Approximation and detail 
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Coefficient contains pertinent data about a signal that can be used to extract features. Each n-level 

of the sub-band divides the bioelectrical signal into a high and low frequency signal component 

[153]. The parameters of the biorthogonal wavelet signal differ depending on how the signal is 

deconstructed or reconstructed. 

 

4.3 System Overview 
 

This section introduces the characteristics of computing devices and their classification based on 

device usage and its hardware. Our chosen platform is general purpose computing devices, as they 

have a wide range of applications that can be vulnerable to attacks. Hence, investigate the 

distinguishing device characteristics that can be used for device identification and explored a few 

device characteristics to see if they could effectively deliver as much information as possible [148].  

 

 This system’s operation is divided into four stages  

 

A. Criteria for Good Features: This portion of the paper introduces criteria for good features; this 

has already been detailed in Chapter 3. 

B. Feature capture - At this stage, feature data was collected from the devices, as described in 

Chapter 3. 

C. Feature selection - From all of the data collected, select features that meet the necessary 

criteria were chosen; this is described in Chapter 3. 

D. Wavelet - Map the features into the frequency domain, generating wavelet coefficients and 

subsequently employing these coefficients as features for classification. 
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Figure 4.1 Model of the Proposed System 
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This section explains the proposed model of the system step-by-step. 

	

4.3.1 Data Collection 

	

The dataset used for this experiment is the multi-modal dataset described in Chapter 3. A total of 

eight different devices with three different behavioural characteristics - hard disk performance, 

memory performance, and CPU floating point performance are used for this analysis. 

The data was acquired under various usage scenarios as well. A code written in Python was used to 

capture this data explained in detail in Chapter 3. 

	

4.3.2 Feature Selection 

	

After reviewing the raw data in section 4.3.1, the static features were found there and deleted since 

they had the same values throughout the whole data collection stage and the same values for the 

devices. Additionally, these characteristics were removed in the preliminary exams. 

 

After making this initial choice, our focus was on conducting statistical analysis to determine the 

correlation, mean, standard deviation, and variance in order to determine the best way to model the 

distinct behaviour of the features (per device) of the data that was collected and to identify minor 

variations between the datasets that were acquired from each device. These first entities were created 

using the raw data. And then, based upon the criteria for good features (discussed in chapter 3) 

features were selected. After feature selection, create feature sets, which are detailed in Chapter 3. 

In this same category of features, the sets are gathered for study to see how they might help us 

identify between devices and enhance system performance.  

 

The novelty of this work is to use the above feature set data to calculate discrete wavelet coefficients 

and then use those coefficients as a new feature for device identification. 
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4.3.3 Feature Analysis 

 
This section consists of a detailed analysis of the feature data. The first step is to check feature 

distributions for each feature (per device). The distribution of each characteristic is then shown on 

a probability density graph so that users can understand how they are distributed and whether any 

features on different devices overlap. It is also worth noting whether the features are multimodal, 

bimodal, or unimodal. Here our focus is on wavelet coefficient features derived from hardware 

feature sets explained in Chapter 3. The probability density graph of a feature with a multimodal 

distribution is shown in the figure 4.2 below. The next step is to build the model and compare the 

performance based on the classifier’s accuracy. 

	

	

	
Figure 4.2 Probability density function graph of a feature having multimodal distribution 

 

4.3.4 Discrete Wavelet Transform 

	

Our contribution here is to use hardware features in the frequency domain for device identification. 

To do this, our choice was DWT because of the following advantage: DWT provides sufficient 

information for the analysis of original data with a significant reduction in computation time [149]. 

In DWT, wavelets are transient functions of short duration, that is, limited duration centring around 
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a specific time. The DWT decomposes a dataset into numerous scales indicating different frequency 

bands, and at each scale, the position of the DWT can be determined at the important time 

characteristic with which the electrical noise can be recognised and successfully removed. The DWT 

is measured an appropriate mechanism for noise removal as an innovative substitute that changes 

ways of reducing noise in systems through the use of low-pass filters. For situations that need signal 

reconstruction, a discrete wavelet transform can be used [149]. Since there is no conversion from 

scale to frequency required, the DWT is simpler to calculate, and the wavelet coefficients are simpler 

to understand. 

 

The advantages mentioned above are compelling reasons to investigate this novel method of 

exploring features in the frequency domain using a discrete wavelet transform, which helps us 

improve the accuracy of the system. 

 

Figure 4.4 shows the process of wavelet decomposition. Performing the discrete wavelet transform 

(DWT) of a signal x is done by passing it through low-pass filters (scaling functions) and high-pass 

filters simultaneously [149]. 
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Figure 4.3 Process of Wavelet decomposition. 

 
The results provide the detail coefficients (from the high-pass filter) and approximation coefficients 

(from the low-pass filter). The output of the low-pass filter is then subsampled by 2 and further 

processed by passing it again through a new low-pass filter and a high-pass filter with half the cut-

off frequency of the previous one. This decomposition has halved the time resolution since only half 

of each filter output characterises the signal. Though, every output has half the frequency band of 

the input, the frequency resolution has been doubled. These filters are relevant to our data because 

of features like memory, CPU, hard disk, and using these filters, noise is reduced from the data and 

the high and low coefficient data is visualised, which helps us identify how our data is behaving, is 

capable of identifying the device, and speeds up the classification process [150]. 
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An algorithm for DWT is the signal to be modified is x, the low-pass and high-pass filters are L and 

H respectively, and the number of filter bank iterations is n [150]. 

Step 1: Let's say feature vector X = [0,1,2,10,2,1,0,0]. 

Step 2: The first step of the wavelet decomposition is to split our information into two vectors of 

four components, say approximation coefficient a (1) and detail coefficient d (1). 

 Step 3: Calculate Approximation Coefficients 

 

   a(1) = J +K <J(+L<))
√+

       (k= 0,1,2,3) ---------------------(1) 

 

Step 4: Calculate Detail Coefficients 

 

                         d(1) = J +K 5J(+L<))
√+

       (k= 0,1,2,3) ---------------------(2) 

 

Step 5: Approximation Coefficients 

   a(1) = )
√+

,)+
√+

, N
√+

,0 

 

Step 6: Detail Coefficients  

   d(1) =  - )
√+

,− O
√+

, )
√+

,0 

 

The next step is to use the step 5 and 6 approximations and detail coefficients as new wavelet 

features to identify the device uniquely. For further analysis, the same steps were used as discussed 

in sections 4.4.6.5. 

	

	

4.3.5 Wavelet used for analysis 

	

This section contains information about the wavelet used for feature extraction. Mother wavelets in 

WT play a significant role in the analysis of their shapes, which vary according to the application. 

Given the variety of mother wavelets, choosing one is a challenge for obtaining the most precise 
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findings from the various analysis, which entails a strong correlation between the signal and the 

mother wavelet. 

 

The wavelet families Daubechies, Coiflet, Haar, Symlet, and Bi-orthogonal were chosen as 

candidate wavelet functions. The variance technique is used as a selection criterion to choose the 

best wavelet function. This is related to the variance of the wavelet coefficients. As a mother 

wavelet, the wavelet with the highest sum of variance of wavelet packet coefficients can be used 

(WPC) [151]. In our system, the variance method is used for both feature and wavelet selection. In 

our analysis, different statistical measures were calculated, and variance is one of them.  

 

These wavelets have been used, and their properties have been described below: 

 

1. Haar wavelet are orthogonal, symmetrical, and compact.  

2. Daubechies’ wavelet lacks an unambiguous formulation, is orthogonal, asymmetrical, and 

introduces phase distortion.  

3. Coiflet wavelet has regularity, is nearly symmetric, is orthogonal, and has compact support.  

4. Symlet wavelet orthogonal, nearly symmetric, compact support, and regularity characterise 

5. A Biorthogonal wavelet has regularity, compact support, symmetry, and orthogonality. 

 

All these wavelets were used since they gave us better results. Without these, the output was 

approximately 5% less.  

 

Wavelet coefficient features derived from different categories of hardware features like CPU, 

memory, and hard disk are vary based upon usage scenarios. The above properties of wavelets help 

us analyse the system’s performance and improve its accuracy. 

	

4.3.5.1 Haar  

	

It is one of the most unsophisticated parts of the wavelet family. This is a theoretically simple, low-

cost, easy to apply and memory-efficient wavelet transform. It uses just two scaling and wavelet 

function coefficients and decomposes a signal into two sublevels: one known as the average and the 

other as the difference. This wavelet family looks like a step function and is non-continuous in 

nature [152] [153]. The inability of the Haar wavelet transform technology to offer compression and 

noise removal for audio signal processing applications is a drawback [154] [155]. This wavelet helps 
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us generate the results quickly with low computation power and reduces the feature dimension 

because of the way it calculates coefficients. 

	

4.3.5.2 Coiflet 

	

In general, wavelets have the largest number of vanishing moments for both scaling functions and 

wavelet functions for a given support width and are compactly supported wavelets. ‘Coif’ is the 

abbreviation for these wavelets. There are several orders in this family, including Coif1, Coif2, 

Coif3, Coif4, and Coif5 [3]. Coiflet was constructed with the vanishing moments of the wavelet 

function (phi) and scaling function (psi). The wavelet function has 2N moments, and the scaling 

function has 2N-1 moments equal to 0. These functions together have the support number 6N-1. 

The number of vanishing moments is highest in coiflets for a given support width, i.e., phi and psi 

[156]. The wavelet and scaling functions are both normalised by a factor. The scaling function of 

this family demonstrates the interpolating attributes that imply excellent approximations of 

polynomial functions at various resolutions. The symmetrical properties of coiflets are advantageous 

in signal analysis work due to their linear phase in the transfer function. It presents both time and 

frequency information as essential arrangements [152]. 

	

4.3.5.3 Daubechies 

	

Daubechies’s wavelets are capable of symmetry, with the energy scale focused around low 

frequencies and efficient for dimension reduction in data classification. Daubechies is a group of 

wavelets introduced by Ingrid Daubechies that are detached from the number of polynomial degrees 

that build up the wavelet, the number of instants lost, or the size of the filter coefficient used [152]. 

The number of polynomial degrees, the number of instants lost, and the size of the filter coefficient 

have values that are related to one another. The number of polynomial degrees and the number of 

lost instants have the same value, while the length of the filter coefficient is twice that value. Assume 

the degree of the polynomial that forms a Daubechies is 4, the number of lost instants is also 4, and 

the number of filter coefficients used is 8. These values are also taken into account by the name 

daubechies wavelet. For example, daubechies-1, daubechies-2, .... Daubechies-N. Several use the 

number of filter coefficients as a means of naming daubechies wavelets, for example, daubechies-

2, daubechies-4, daubechies-6, ... daubechies-2N.  
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4.3.5.4 Biorthogonal  

	

A biorthogonal wavelet has definite properties like perfect reconstruction and linear phase 

properties. It also has the benefit of a dual filter, which corresponds to a fixed wavelet filter used 

for signal decomposition. In a biorthogonal wavelet, there are two scaling functions and two 

different wavelet functions. A biorthogonal wavelet transforms split data into approximation and 

detail coefficients. The Approximation and Detail Coefficient holds appropriate information about 

a dataset from which features can be extracted. Data extracted from devices is expected to come 

with some level of noise; therefore, using a wavelet with a filter bank to reduce the noise will be 

most appropriate [157]. 

 

4.3.5.5 Symlet 

	

The Symlet family wavelet is derived from the variations in the Daubechies family. These variations 

are the symmetry modifications, hence the name ‘Symlet’. This family of wavelets is nearly 

symmetrical, biorthogonal, and orthogonal in nature. The properties of sym and db wavelets are 

similar and comparable. symN, where N is the order. The symN has seven different functions, from 

sym2 to sym8. These have the maximum number of vanishing moments for a compact support in 

time [158] [159].  

 

The next step is to use the new wavelet features for analysis once the approximation and detail 

coefficients have been calculated. Wavelet features, which are multimodal in nature, are treated 

similarly to the detailed discussion in Chapter 3. 

 

4.4 Experimental Methodology 
 

The novelty of this work is to evaluate the proposed wavelet feature-based device identification 

using its potential as a basis for classifier accuracy. The experimental dataset contains the features 

explained in chapter 3, Table 3.2. The data is collected in a monitored environment where our goal 

is to track device activity during data collection. This gives an understanding of 

the behaviour of the features during the analysis. To understand the potential of the candidate 

features in the frequency domain, the hardware features used for evaluation are transformed into 

wavelet coefficients. These coefficients are then employed as features of the devices for 
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classification. 

	

4.4.1 Device Identification Phase 

	

The first step in the device identification phase is to extract hardware features from all the devices. 

A total of 38 features from different categories were extracted, and then based upon selection 

criteria, 17 features were used for this analysis. In the next step, the same category of features is 

grouped into different sets, and feature sets from different categories are concatenated together to 

form a feature vector. This feature vector underwent feature normalisation and selection processes. 

The device identification was performed based on the proposed model classifier and three different 

classifiers (SVM, LDA, and LR), and a final result was generated for the incoming input sample. 
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Figure 4.4 Device Identification Phase 
	

4.4.2 Feature Normalisation  
 

Two feature vectors, X and Y, may have different ranges and distributions for individual feature 

values. As part of the feature normalisation process, the mean and variance of each individual feature 

value are adjusted in order to compare how much each feature contributed to the overall match 

score. This phase used a min-max normalisation strategy [160]. 

 

4.4.3 K-fold cross validation  

	

After normalisation, k-fold cross-validation method was adopted to split the data into training and 

testing. A resampling technique called cross-validation is used to assess models using small data 

samples, like the one used in our experiment. The number of groups into which a given data sample 

is to be divided is indicated by the parameter ‘k.’ The following actions were taken while doing the 

stratified k-fold cross validation: samples from the feature set were mixed up at random. Ten folds 

were created for feature sets. For each unit of measurement breakdown, the model was fitted to the 

training set, and assessment was carried out on the test set, yielding an evaluation score. One group 

was set aside as the test data set, while the remaining groups were taken as the training data set. The 

number of folds was chosen as five owing to the limited number of samples.  

	

4.4.4 Classifiers 

 

This proposed method has the ability to offer strong device identification. In order to evaluate the 

model as a classifier, the correct classification of a unique identifier is required. In this process, a 

multivariate Gaussian distribution is leveraged. 

 

In this proposed methodology, three standard classifiers for benchmarking were used, namely, 

logistic regression (LR), linear discriminant analysis (LDA), and support vector machines (SVM) 

[161] as explained in section 3.7.1. These classifiers are used to compare the predictions. Based on 

three feature sets, the test data was accurately classified using the aforementioned classifiers on 

various device datasets. As explained in the diagram above, our analysis was based on the wavelet 

coefficients as features for classification. The performance of these classifiers is evaluated on the 

basis of accuracy, precision, recall, and F measure. The results section contains the analysed results 
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based on these. These classifiers code is implemented in Python.  

 

This work represents a comparison amongst four classification techniques, evaluating which of 

these techniques is best suited to identify and classify the devices based on the collected data. In the 

next section the general algorithm that was used to model our proposed classifier is explained. 

 

 

4.4.4.1 Algorithm for the proposed system 

 

The algorithms below introduce the process of generating wavelet coefficients for classification. 

 

Step 1:  Read device data. 

Step 2:  Split device data into training and testing using k-fold. 

Step 3:  Determine the wavelet coefficients for the training split. 

Step 4:  Determine the wavelet coefficients for the test split. 

Step 5:  Repeat Steps 1-4 for all the devices. 

Step 6:  Verify training data against test data 

1. Read the approximation and detail arrays one at a time. 

2. Generate a probability density graph for each feature. 

3. Analyse the distribution to see if it is unimodal, bimodal, or multimodal. 

4. Apply Peak-trough to calculate mode thresholds if there are multiple modes in the 

distribution. 

5. Use approximation array, threshold and test dataset 

a. Utilize the column threshold to compute permutation indices.  

b. Calculate permutation samples for training and testing. 

c. Calculate all probabilities for permutations. 

6. Calculate the device probability. 

7. Calculate the maximum probability. 

8. Repeat steps 1-5 for each device and for each feature set. 

Step 7: Apply the benchmarking classifier. Multivariate Gaussian Distribution [161], Logistic 

Regression [162], and Linear SVM [163] were used to predict the results’ accuracy. 

Step 8: Results are analysed based on accuracy, precision, recall, and F-measure. 
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 4.5 Experimental Results 

	

This section presents a discussion of the obtained experimental results with the standard classifiers 

mentioned above and then compares the results with raw feature data. Here, experiments use 

wavelet-based features (when raw feature data is subjected to a wavelet transform). This data, after 

analysis, gives us a unique identifier. Eight devices were used with updated software. For this work, 

data was collected from the MacBook Air and Pro, Python code, and Microsoft Excel. Each device 

contained thousands of samples for our analysis. The cross-validation method with a fold value of 

10 has been used for training and testing phases. Consequently, all of the records that exist in the 

dataset will affect the training and testing of the classifiers.  

    

Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 show the comparison of our proposed model’s MVGD wavelet-

based feature with other standard classifiers such as LR, LDA, and SVM and evaluate the 

performance of the proposed model on the basis of accuracy, precision, recall, and F measure, as 

explained in section 3.7.2.  

	
	

Db2 Wavelet FS1 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 93.2% 93% 93% 93% 

LDA 89.2% 89.1% 88.2% 87.8% 

LR 88.5% 88.1% 87.3% 87.1% 

SVM 92.5% 92% 91.5% 91% 

Db2 Wavelet FS2 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 98% 97.9% 97.8% 97.7% 

LDA 89.3% 89.8% 88.3% 87.3% 

LR 80.4% 84.2% 79.1% 76.5% 

SVM 91% 92.5% 90.6% 90% 

Db2 Wavelet FS3 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 81% 80.9% 80.8% 80.7% 

LDA 46.9% 53% 48% 42% 

LR 64.8% 62% 65% 57% 

SVM 44.5% 64% 47.2% 40% 

Table 4.1 Db2 wavelet (approximation) for all 3 feature sets classification performance of proposed model with 
standard classifiers using training-testing in 10-fold cross-validation setup. 
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While Haar compressed signals via averaging and differencing, Daubechies are an orthonormal 

wavelet that is compactly supported and maintains the energy of signals. In our experiment (Table 

4.1 and Table 4.5) it has been found that Daubechies filters produce better classification outcomes 

than Haar but require more calculation time due to the longer support of scaling and wavelet 

coefficients. 

 
	

Bior1.3 Wavelet FS1 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 92% 91.9% 91.8% 91.7% 

LDA 86.5% 88% 86% 85% 

LR 87.3% 87% 87% 86% 

SVM 90.9% 90% 89% 89% 

Bior1.3 Wavelet FS2 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 81.8% 78% 82% 78% 

LDA 80.3% 82% 81% 81% 

LR 76.4% 82% 78% 73% 

SVM 80% 84% 82% 80% 

Bior1.3 Wavelet FS3 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 70.2% 76% 72% 69% 

LDA 36% 36% 39% 30% 

LR 47.2% 44% 51% 38% 

SVM 54.9% 62% 57% 51% 

Table 4.2 Bior1.3 wavelet (approximation) for all 3 feature sets classification performance of proposed model with 

standard classifiers using training-testing in 10-fold cross-validation setup 

	

In Table 4.2 MVGD classifier performed best as compare to other classifier and out of three feature 

set, FS1 performed best in Bior 1.3. This is because FS1 features are related to memory performance 

of the system, which are largely dependent on how users use the machine.  

	

 
Sym2 Wavelet FS1 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 99% 98.9% 98.8% 98.7% 

LDA 89.2% 89% 88% 88% 

LR 88.5% 88% 87% 87% 

SVM 91% 92% 91.5% 91% 

Sym2 Wavelet FS2 (Approximation) 
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Classifier Accuracy Precision Recall F Measure 

MVGD 99% 98.9% 98.8% 98.7% 

LDA 89.3% 90% 88% 87% 

LR 80.4% 84% 79% 76% 

SVM 91% 92% 91% 90% 

Sym2 Wavelet FS3 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 65% 64.9% 64.8% 64.7% 

LDA 46.9% 53% 48% 42% 

LR 64.8% 62% 65% 57% 

SVM 44.5% 64% 47% 40% 

Table 4.3 Sym2 wavelet (approximation) for all 3 feature sets classification performance of proposed model with 

standard classifiers using training-testing in 10-fold cross-validation setup. 

	

In Table 4.3 MVGD classifier performed best as compare to other classifier and out of three feature 

set, FS1 and FS2 performed best in Sym 2. This is because FS1 and FS2 are related to memory and 

CPU performance of the system, which are largely dependent on how users use the machine.  

 

 
 

Coif1 Wavelet FS1 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 90% 90.00% 90.00% 89.00% 

LDA 88.50% 89% 88% 87% 

LR 88.60% 89% 88% 87% 

SVM 89% 89% 89.00% 89% 

Coif1 Wavelet FS2 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 89% 89.00% 89.00% 88.00% 

LDA 88.10% 87% 88% 87% 

LR 87.00% 88% 88% 87% 

SVM 88% 89% 87% 86% 

Coif1 Wavelet FS3 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 72% 77.00% 74.00% 71.00% 

LDA 45.70% 49% 47% 40% 

LR 59.80% 57% 61% 52% 

SVM 58.50% 62% 61% 54% 

Table 4.4 Coif1 wavelet (approximation) for all 3 feature sets classification performance of proposed model with 

standard classifiers using training-testing in 10-fold cross-validation setup 
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In Table 4.4 MVGD classifier performed best as compare to other classifier and out of three feature 

set, FS1 performed best in Coif1. This is because FS1 features are related to memory performance 

of the system, which are largely dependent on how users use the machine.  

 

 
Haar Wavelet FS1 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 90% 91.00% 89.00% 88.00% 

LDA 87.30% 89% 86% 86% 

LR 76.70% 81% 76% 73% 

SVM 89% 89% 90.00% 91% 

Haar Wavelet FS2 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 92% 92.00% 91.00% 90.00% 

LDA 90.10% 90% 90% 90% 

LR 89.10% 90% 89% 88% 

SVM 91% 91% 91% 90% 

Haar Wavelet FS3 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 71% 76.00% 71.00% 69.00% 

LDA 31.30% 39% 33% 26% 

LR 40.50% 40% 42% 33% 

SVM 42.70% 49% 44% 36% 

Table 4.5 Haar wavelet (approximation) for all 3 feature sets classification performance of the proposed model with 

standard classifiers using training-testing in a 10-fold cross-validation setup 

 
In Table 4.5 MVGD classifier performed best as compare to other classifier and out of three feature 

set, FS2 performed best in Haar. This is because FS2 features are related to CPU performance of 

the system, which are largely dependent on how users use the machine. 

		

 
Sym6 Wavelet FS1 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 90% 91.00% 90.00% 89.00% 

LDA 89.40% 89% 88% 88% 

LR 84.60% 82% 83% 82% 

SVM 89% 90% 88.00% 88% 

Sym6 Wavelet FS2 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 87% 86.00% 86.00% 85.00% 
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LDA 86.00% 87% 86% 85% 

LR 81.90% 86% 82% 80% 

SVM 86% 88% 85% 86% 

Sym6 Wavelet FS3 (Approximation) 

Classifier Accuracy Precision Recall F Measure 

MVGD 73% 79.00% 73.00% 70.00% 

LDA 59.10% 59% 60% 55% 

LR 50.10% 54% 51% 46% 

SVM 71.00% 77% 72% 69% 

Table 4.6 Sym6 wavelet (approximation) for all 3 feature sets classification performance of proposed model with 

standard classifiers using training-testing in 10-fold cross-validation setup 

 
In Table 4.6 MVGD classifier performed best as compare to other classifier and out of three feature 

set, FS1 performed best in Sym6. This is because FS1 features are related to memory performance 

of the system, which are largely dependent on how users use the machine.  

	

 
Raw Feature FS1 (without wavelet transform) 

Classifier Accuracy Precision Recall F Measure 

MVGD 89.5% 89.00% 88.00% 88.00% 

LDA 87.00% 88% 87% 86% 

LR 88% 87% 88% 88% 

SVM 88.5% 88% 87% 87.4% 

Raw Feature FS2 (without wavelet transform) 

Classifier Accuracy Precision Recall F Measure 

MVGD 80.5% 79% 78% 78% 

LDA 79% 80% 78% 78% 

LR 78% 77% 78% 77.4% 

SVM 76% 76% 75% 75.4% 

Raw Feature FS3 (without wavelet transform) 

Classifier Accuracy Precision Recall F Measure 

MVGD 64.5% 63% 62% 62.4% 

LDA 57.80% 55% 59% 53% 

LR 63% 62% 61% 61.4% 

SVM 56% 55% 55% 55% 

Table 4.7 Raw feature (without wavelet transform) for all 3 feature sets classification performance of the proposed 

model with standard classifiers using training-testing in a 10-fold cross-validation setup 
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In Table 4.7 MVGD classifier performed best as compare to other classifier and out of three feature 

set, FS1 performed best. The conclusion is that wavelet-based features perform significantly better.  

 
This paragraph explains the detailed analysis of the results in tables 4.2 - 4.7. These results are based 

upon wavelet features and raw features for each feature set, respectively. Six different mother 

wavelets were used to generate coefficients for wavelet features, and the results were compared to 

see which of six wavelets produced the best results. 

 

Amongst all classifiers, MVGD worked best for all three feature sets for approximation in the cases 

of db2, bior1.3, Sym2, coif1, haar, and sym6 wavelets. For our analysis, three feature sets were 

used, out of which FS1 and FS2 accuracy percentages are the highest as compared to the third feature 

set. These feature sets contain the data related to disks, like CPU performance and disk speed, when 

read and write operations are performed. This can be unique to different devices; hence, the highest 

accuracy can be achieved from this feature set. Our wavelet feature-based results are better than 

non-wavelet-based results because when wavelets are used, a large amount of data is compressed 

and divided into two parts: high-pass and low-pass filter data. The compressed data are then used to 

do our analysis to uniquely identify the device, and the second point for improved wavelet results 

is the removal of noise from the data. Out of six wavelets, Sym2 is the best for the first and second 

feature sets and Db2 is the best for the third feature set for device identification. The MVGD 

classifier shows the best accuracy results. 

 

From the experiment results, it was observed that the proposed model of multivariate Gaussian 

distribution using wavelet-based features performed better as compared to the other three standard 

classifiers in the prediction of uniquely identifying devices.  

 

4.6 Conclusion 
	

This chapter presents a novel wavelet feature based device identification scheme. In this work, 

hardware characteristic features were explored and wavelet-based features were used to identify 

electronic devices uniquely. This co-relates to research Question#1. The comparison and analysis 

of classifiers for the prediction of identifying the device were performed. This co-relates to research 

Question#3. The device identification technique is compared to four alternative classifiers. 

Experimental results show that different classifiers behave differently on the same dataset. Overall, 

this chapter outlines the method of analysis and mathematical implementation using the proposed 

model of multivariate Gaussian distribution. 
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Our conclusion was that device identification using wavelet features yields a higher percentage of 

accuracy in comparison with raw features. Overall, wavelet features give better results compared to 

raw features, and Sym2 and db2 perform the best out of the six wavelets. 
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Chapter 5 
 

Device Authentication using Homomorphic 

Encryption 
 

5.1 Introduction 
	

Data transmission over the internet must be secure, especially if it contains sensitive or personal 

information. As previously mentioned, the scope of our investigation was only eight test devices in 

our setting. Additionally, since these devices were distant, this didn’t allow us to run test scenarios 

in real time. As a result, the main test device (a Mac Laptop) had to be used to save all template data 

from eight machines. The sample data must be safeguarded because it is kept on the main device (in 

clear text). At the time of operation, these distant machines communicate the template data, which 

was vulnerable to interception while travelling. There was a need to create an easy approach to 

secure data. Data encryption is one way to protect the messages, but attackers may still attempt to 

steal the encryption key. 

 

The solution to the above problem is homomorphic encryption (HE) algorithm, which allows:  

 

1) Mathematical operations to be performed on encrypted data.  

2) This avoids decryption of the sensitive data 

3) The process is relatively faster (since decryption is not required)  

4) Decryption key protection overheads are completely avoided  

 

These are key beneficial characteristics that led us to decide on using HE in device authentication. 

As such, once the template data was available in primary machine, to protect it from attacks, it was 

encrypted. Lastly, when device identification was required, this data had to be operated in a secure 
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manner. HE helped achieve this task. Our implementation of HE allowed ICMetrics code to run the 

identification logic on encrypted device data.  

 

Talking about data, there are three different forms of it: stored, transmitted, and operated on. There 

are many algorithms available today to secure the first two data variations; however, few of these 

algorithms can operate on encrypted data, which is where homomorphic encryption comes in 

because it makes it possible to perform calculations on encrypted data. This means that data 

processing can be outsourced to a third party without the need to trust the third party to properly 

secure the data. Without the proper decryption key, the original data can’t be accessed. 

 

In general, data security must meet the three criteria listed below: 

 

Confidentiality: One of the most important components of data security is confidentiality. Data 

confidentiality means that only authorised users are permitted access to the data. Data confidentiality 

guarantees that unauthorised users are kept at bay. 

 

Data integrity: is the term used to describe safeguarding data from unauthorised change. Data 

integrity must be implemented in the cloud to prevent unauthorised data modification. 

 

Data accessibility: Accessibility is a crucial component of data security. Data availability aims to 

provide clients with secure network access to their data at any time, from any location. 

 

Data processing on encrypted data in cloud environments is a novel method for securing data. To 

create such a solution, new encryption techniques known as homomorphic encryption have been 

introduced. This technique permits the operation of encrypted data while guaranteeing data 

confidentiality during processing. 

 

Since device data was collected from various sources and kept in clear text, a compromise would 

result in a spoofing attack, and the bad actor could impersonate the target device. To ensure the data 

on this device was not compromised, it had to be encrypted. Now, the question was, ‘How to protect 

the data on the device or server?’ The most viable option was to leverage file encryption tools.  

 

To achieve this, the following are the alternative techniques that were considered:  
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A) Password based: the user defines the password at the time of file encryption. During 

decryption, the tool will prompt for the password. It is convenient, but it is not very secure 

because malware can read the file and attempt an offline brute force attack. 

B) Token or dongle based: The decryption private key is available on a hardware token or 

dongle, which needs to be presented at the time of decryption. The token has a maximum of 

10 PIN attempts; after which it initialises. This approach requires a token, however, and is 

much more secure.  

 

HE does not require password or private key protection, resulting in lower overhead to manage and 

a better solution. Thus, it was the most viable choice for this purpose.  

 

The term ‘big data analytics’ describes the capacity to efficiently ingest enormous amounts of data, 

analyse it, and draw conclusions and inferences from it [164]. How to maintain the security and 

privacy of the data while processing it is a significant concern for businesses that collect, transport, 

store, and use large data sets. Numerous studies have been done on the issues with securing data 

when it is in transit and at rest. How to preserve data, in particular big data, effectively and securely 

while it is being processed is the last unresolved problem. Because there aren't any effective methods 

for securing data privacy and security when it's processed remotely (in the cloud), data security 

breaches are frequently reported, sometimes in ways that are egregiously serious and other times in 

ways that seem insignificant. Examples of exceptionally serious data breaches include the 2017 

Equifax data breach, which predominantly affected 143,000,000 Americans [165]. A large portion 

of the Equifax data that was obtained was in plaintext [166], probably for computational ease. 

Another especially catastrophic incident occurred in 2015 when the US Office of Personnel 

Management suffered a data breach, and more than 21.5 million records were stolen [167]. Other 

data breaches had a smaller effect but were nonetheless widely publicised. 

 

The technique used to solve this problem is homomorphic encryption (HE), which is data processing 

delegation without granting access to it. HE enables operations to be performed directly on 

encrypted data without ever using the decryption key. Using HE, data is encrypted on the client side, 

pushed into the cloud, securely processed, and the results are sent back to the client for decryption. 

The alternative to this approach was to use a large number of real devices, which has been a 

limitation. 
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When compared to a password or token-based approach, HE has some advantages. There is no 

need for:  

1) Password management. Hence, it offers a higher level of security.  

2) Dongle management. As a result, the logistics and costs of hardware can be avoided.  

 

Homomorphic encryption techniques offer creative ways to support calculations on encrypted data 

while protecting the content of private data. These methods do, however, have certain drawbacks, 

such as high computational costs and the requirement for custom adjustments for every case study. 

 

Along with authentication, homomorphic encryption can be leveraged for device identification by 

performing mathematical operations on encrypted data, which will ensure the protection of the 

original data. This is the focus of discussion in this chapter. Features examined in Chapter 4 exhibit 

non-standard and multimodal distributions, which present a significant challenge to model and 

characterize. The details of the mathematical functions were investigated to see if there is a way to 

test samples and compare them for closeness to the training models for device identification using 

encrypted modelled data.  

 

The rest of the chapter is organised as follows:  

Section 5.2 focuses on related works, Section 5.3 describes homomorphic encryption, Section 5.4 

explains the proposed system, Section 5.5 focuses on experiments, and Section 5.6 concludes the 

chapter. 

 

5.2 Related Works 
	

According to the related work described below, data security has been the subject of substantial 

investigation. 

 

For monitoring chronic diseases, the study in [168] established an IoT based architecture with 

homomorphic encryption to protect against data loss and spoofing assaults. The findings imply that 

homomorphic encryption offers simple, affordable protection for private health information. For the 

protection of medical data, block chain technologies are also used in conjunction with homomorphic 

encryption. 

 

To prevent potential password breaches, the author [169] proposes a novel authentication system 
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based on the password authentication protocol, which uses two servers modified to store passwords. 

The El Gamal algorithm and DH are employed in this paper. The backup services are offered to 

maintain the service. Client data from server one is retained as a backup on server two, and vice 

versa. If one of the two servers were to shut down for whatever reason, the client would still need 

to get services from another server. This protocol offers protection from both active and passive 

assault [169] 

 

In 2016, the author proposed a banking application for data security. The bank contains a large 

amount of confidential customer information that must be protected from unauthorised access, so 

the data must be kept confidential. In this paper, paillier HE is used to apply operations to encrypted 

banking information because it enables performing calculations on cipher text without the use of a 

secret key. This plan provides data security and confidentiality [170].  

 

One of the most secure authentication methods, according to a paper [171] published in 2016, is the 

use of biometric validation. The biometric data is saved on the remote server in encrypted form. In 

this paper's proposed palm print authentication approach, the matching of the user input to the 

registered biometric data is computed in an encrypted domain based on pailliar homomorphic 

encryption. This plan is carried out effectively [171]. 

 

They proposed a security model for biometric verification in this study in 2017, and in this study, 

they propose a new verification scheme based on HE for template protection employing multi-

biometric, with the Paillier homomorphic encryption scheme used for data encoding, processing, 

and decryption. By computing the original biometric data and the encrypted template, HE 

verification handles the sole cipher text. High accuracy rates can be seen in the results [172]. 

 

Encryption methods like homomorphic encryption are also used to protect medical data.  Such 

institutions as hospitals and research institutes are developing technical solutions for sharing patient 

data in a privacy preserving manner. Two of these technical solutions are homomorphic encryption 

and distributed ledger technology. Homomorphic encryption allows encrypted patient data to be 

shared with other health care service providers while it is encrypted [173]. 

 

The authors of [174] suggest a homomorphic encryption-based online safe multiparty computation 

with patient information sharing to hospitals. In this paper [175], a homomorphic encryption model 

based on heart rate data was proposed and linked to a personal health information system. The 
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findings show that, despite anticipated storage and network issues, the technique presented was 

successful in meeting the needs for secure data processing for 500 patients. The authors of [176] 

presented a data division scheme-based homomorphic encryption for wireless sensor networks. The 

findings demonstrate that data security and resource availability are mutually exclusive. By 

monitoring the patients' vitals with a simple encryption system, [177] demonstrates the applicability 

of homomorphic encryption. While encryption only occurs in medical facilities, sensor data like 

breathing and heart rate are encrypted using homomorphic encryption before being transmitted to 

an unreliable third party. 

 

For monitoring chronic diseases, the study in [178] established an IoT based architecture with 

homomorphic encryption to protect against data loss and spoofing assaults. The findings imply that 

homomorphic encryption offers simple, affordable protection for private health information. For the 

protection of medical data, block chain technologies are also used in conjunction with homomorphic 

encryption. In their article [179], the authors suggested combining block chain and homomorphic 

encryption in intelligent transportation systems with autonomous healthcare monitoring to track 

pandemic infections. In a different work [180], they used homomorphic encryption to create a 

searchable distributed medical database on a block chain. The necessity to protect sensitive 

information is growing, which encourages the integration of several strategies.  

 

The next section provides a detailed explanation of homomorphic encryption. 

 

5.3 Homomorphic Encryption 
 
 
According to the problem analysis in Section 5.2 and the overview presented above, it is crucial to 

use a homomorphic encryption approach to safeguard the confidentiality of data. 

 

How organisations and individuals use and manage their data has fundamentally changed thanks to 

affordable cloud computing and cloud storage. Data can be conveniently saved in encrypted form 

using traditional encryption techniques like AES, which are incredibly quick. However, the owner 

of the data must download, decode, and act on the encrypted data locally, which can be expensive 

and logistically challenging. Alternatively, the cloud server must have access to the secret key, 

raising security issues. Because the cloud may directly process the encrypted data and only provide 

the encrypted output to the data owner, homomorphic encryption can greatly simplify this scenario. 

In more complex application scenarios, many parties with private data may be involved [181]. In 
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these cases, a third party may carry out an operation and then deliver the findings to one or more of 

the participants for decryption. 

 

Homomorphic encryption is being developed to protect the security of information that must be kept 

private. 

 

Operations can be carried out directly on encrypted data (cipher text) using homomorphic 

encryption techniques without needing access to the unencrypted data (plaintext). The party with 

the private key ‘Alice’ can encrypt its input and pass it to the party with the public key ‘Bob,’ who 

can do the necessary operations on the encrypted data alone if the homomorphic encryption scheme 

is asymmetric, i.e., offers public and private keys. Due to Bob's inability to decrypt and view Alice's 

input, operations on encrypted data protect privacy. The procedures used to protect privacy are built 

around this property.  

 

A fully homomorphic cryptosystem is one in which any action on the plaintext may be performed 

by performing an operation on the corresponding cipher text (FHE). Gentry [182], [183] made the 

first such cryptosystem suggestion in a ground-breaking paper. The structure meets the requirements 

for FHE, but it is found to be computationally inefficient to be used in practise [184], and creating 

FHE schemes that are computationally feasible is an ongoing field of research [185].  

 

Two characteristics of the homomorphic encryption technique are additive and multiplicative. An 

algorithm that can calculate Enc (X1+X2) from Enc(X1) and Enc(X2) without knowing the values 

of X1 and X2 is said to have an additive property in homomorphic encryption [186]. An algorithm 

with multiplicative properties can generate Enc(X1*X2) from Enc(X1) and Enc(X2) without 

needing to know the values of X1 and X2 [186]. 

 

The basic architecture of homomorphic encryption is shown in Figure 5.1. 
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Figure 5.1 Homomorphic Encryption Process 

 
The main algorithm utilised to represent our system is defined in the next section. 

	

5.4 Proposed System 
	

This section gives an overview of the proposed homomorphic encryption-based device 

identification system. To uniquely identify each device when data from different devices is 

generated and sent to our model, our model uses fully homomorphic encryption, which means that 

the data from these devices will always be in encrypted form throughout the computation. This 

makes the process of identifying devices safe and secure. 

 

In our work, Microsoft Seal is leveraged, which is an open-source and highly optimised HE library 

developed by the Cryptography Research Group at Microsoft Research [187]. 
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Figure 5.2 Traditional Encryption Vs Homomorphic Encryption 

	

The BFV and CKKS algorithms are supported by Microsoft SEAL, which also enables additions 

and multiplications on encrypted integers or real numbers. Most of the time, using this technology, 

it is not possible to evaluate other operations on encrypted data, such as encrypted comparison, 

encrypted sorting, or regular expressions. Therefore, Microsoft SEAL should only be used to build 

cloud computation components of projects that require privacy. The BFV schemes allow modular 

arithmetic to be performed on encrypted integers [187].  

 

This research work adopted the CKKS scheme proposed by Cheon et al. [188] [189], which supports 

the approximate calculation of real or complex numbers. Because data is typically represented by 

real numbers, the CKKS scheme, which can deal with real numbers, has received a lot of attention 

in a variety of applications, including evaluating machine learning models on encrypted data [190] 

[191] [192] [193]. Several studies have thus been carried out to optimise the CKKS scheme [194] 

[195] [196] [197] [198].  

 

Figure 5.3 shows the step-by-step proposed system process. The proposed system consists of three 

main processes, which are described below: feature extraction, homomorphic encryption-based data 

protection, and device identification matching results. 

 

 

5.4.1 Feature Extraction  

	

This process has been explained in detail in Chapter 3, Section 3.3, where all data was pulled from 

devices and then used criteria for good features and shortlisted features that have high inter-sample 

variance and low intra-sample variance, and then normalised the data and split the data using k-fold 
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(k = 10) into training and test data. 

 

5.4.2 Homomorphic encryption-based data protection 

	

The overview of our challenges with data protection, the solution and benefits of HE is explained 

in section 5.1. The fundamental challenge was limitation of test devices and as such, the test template 

data was kept on one main machine. To secure this crucial device data, while data computation was 

performed, a mechanism was required to address this concern. To achieve our goal of data protection 

from spoofing attacks, HE is leveraged, whereby test and training sample data is encrypted and, at 

the time of a cryptographic operation (for example, authentication), the encrypted data is used. Thus, 

the advantage is that spoofing and impersonation attacks can be avoided.  

  

Microsoft offers a variety of APIs to aid in computation and support our model. The concept is 

briefed below.  

 

The first step is to generate a key pair (public and private key) using: 

 

[1] get_seal -> return the encryptor and encoder. Then encrypt training and test data 

using the public key [185]. 

[2] compare_ciphertext -> decrypt the ciphertext with private_key, compares it, and 

returns a Boolean, i.e., TRUE if ciphertext1 > cipherText2, False otherwise. 

[3] device_probability -> decrypt the permutation test and training samples, and 

computes the mean, covariance and multivariate using the private_key and return the 

probability as a result. 

 

The example below shows how get_seal interacts with data. The purpose of get_seal is to get an 

object from the Microsoft seal library to be used in encryption and decryption. get_seal consists of 

ckks_encoder, encryptor, scale, evaluator. To be able to encrypt, an instance of Encryptor needs to be 

constructed. The computations on the cipher texts are performed with the Evaluator class. 

 

ckks_encoder = <seal.CKKSEncoder 0x7fa2a1a48470>  

encryptor = <seal.Encryptor 0x7fa2a19ccb70>  

evaluator = <seal.Evaluator 0x7fa2a199cc30> 
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Our model makes use of these APIs for data comparison on encrypted values. This helps in 

achieving data security since the data computation model is only known to work with encrypted 

values and is described in detail in Section 5.4.3.  

 

5.4.2.1 Cipher Text API Comparison 

	

Boolean comparison on cipher text is not straight forward and is not supported in the Microsoft 

SEAL library either; however, our probability model uses comparison while calculating probability 

based on input values. One way to implement comparison is to encrypt messages bit by bit and write 

a comparison circuit; however, this can be very inefficient from both a running time and data 

expansion point of view. So, our own logic has been enhanced and implemented to build this 

comparison circuit, which has enhanced the capability of our model to be more secure and robust. 

 

Microsoft SEAL allows additions and multiplications to be performed on encrypted integers or real 

numbers. A comparison algorithm was built by leveraging the cipher text value additions capability, 

and our algorithm works as follows: 

	
5.4.2.1.1 Comparison Algorithm 

 
 

1. X and Y are two values that are encrypted. (In our research, this equates to cipher text data 

from 8 devices) 

2. Produce a new random number M and encrypt it with EM. (Here, M is a random number 

to enhance security and EM is encrypted random number). 

3. Perform the calculation result =X-Y+EM (In this step performs subtraction of cipher test 

and add encrypted random number). 

4. Decrypt the result => R (Now the result is decrypted). 

5. Subtract R- M from the result of the decryption. (This step simply subtracts the results from 

random number). 

6. If (R- M) > 0; then X > Y; otherwise, Y > X. Lastly, we get the comparison done and 

conclude this data belongs to which device.  

The purpose of each component is described below 

Here is a compare cipher text example where two values, let's say X and Y, are encrypted. 
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X= cipher_text1 

Y= cipher_text2 

 

cipher_text1 =  0x7fa2a1a337b0  

cipher_text2 =  0x7fa2a12a49b0 

 

Afterward, generate random number M and encrypt it, i.e., r_encrypted. 

r_encrypted = 0x7fa2a1ac3170 

 

Consequently, the result is equal to X-Y+ EM. 

result = 0x7fa2a1a28c30 

 

The following step is to decrypt the result 

plain = 0x7fa2a19a6af0 

 

And the result from plaintext is an n-dimensional value as output. 

 

Example: When X < Y 

Assume x is 1000.1, y is 1999.1, and random Number is 16148.4. 

 

r_plain = {Plaintext} <seal.Plaintext object at 0x7fde0994bab0> 

r_encrypted = {Ciphertext} <seal.Ciphertext object at 0x7fde0992a670> 

 

x_plain = {Plaintext} <seal.Plaintext object at 0x7fde0994a3b0> 

x_encrypted = {Ciphertext} <seal.Ciphertext object at 0x7fde0999e870> 

 

y_plain = {Plaintext} <seal.Plaintext object at 0x7fde099fecf0> 

y_encrypted = {Ciphertext} <seal.Ciphertext object at 0x7fde099fc330> 

 

result = {Ciphertext} <seal.Ciphertext object at 0x7fd5c2332030> (X-Y+RN) 

plain = {Plaintext} <seal.Plaintext object at 0x7fd5c2326030> 

 

output = 15149.4779 - 7151.8101 

compare = {float64: ()} -998.9999999978227 
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ICMetrics specific flow is described below.  

	

5.4.3 Device Identification Results 

	

In the last stage, the results were compared based on the highest probability and used to identify the 

device uniquely. 

	
Figure 5.3 Proposed System Process 
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5.4.4 Algorithm for the proposed system 

	

The algorithms below introduce the process of a fully homomorphic encryption enabled model for 

device identification. 

	

5.4.4.1	Algorithm	

1. Read the data from all the devices. 

2. Select features based on criteria for good features. 

3. Normalize the data and then split it using k-fold. 

4. Calculate the column threshold for training and testing and encrypt the threshold using 

CKKS FHE. 

5. Encrypt test and training data.  

6. Pass this encrypted training/test data to the model, which will return the device probability. 

A. The model will compute the permutation samples. 

B. Compute the device probability based on permutation samples after calculating the 

mean, covariance and multivariate Gaussian distribution. 

7. Save the probability produced for each device. 

8. Repeat the process for all devices to determine the maximum probability generated, which 

serves as our prediction data for device identification. 

 

5.5 Experiment 

	

The experiment’s goal is to assess the proposed system for device identification using homomorphic 

encryption based on its accuracy performance.  

	

5.5.1 Experiment Setup 

	

The section offers a comprehensive examination of the experimental results connected to the 

suggested model, MVGD. The experimental dataset contains features discussed in Chapter 3 Section 

3.3.3. The hardware of the MacBook Air and MacBook Pro served as the source of this data 

(memory, CPU and hard drive). Eight devices running current software were employed. This study 
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made use of data acquired from the MacBook Air and Pro, Python programming, and Microsoft 

Excel. And each device has 1,000 samples for our research. 

 

The experiment makes use of 17 features that were pre-processed, gathered from common 

computing devices, and then supplied to the model for training. The selected features were 

subsequently divided into sets to increase operational robustness. These feature sets offer more 

natural obfuscation, are more reliable than individual features, and generate a stronger base for 

applying the ICMetrics system. There are three feature sets: 8F,6F and 3F. The process of feature 

selection is explained in Chapter 3 (section 3.3.3). 

 

For holdout accuracy estimations, the data were split into two sections, 80% and 20%, respectively. 

20% was used for testing after 80% was used for training the model. For validating the results, k-

fold cross-validation for k = 10 was employed. For k-fold cross validation, data was divided into k 

sections, one of which was used as test data and the remaining k-1 as train data. 

 

In the encryption stage of this experiment, the CKKS homomorphic encryption algorithm provided 

by the open-source Microsoft SEAL library [187] was utilised to encrypt the data. 

Encryption parameters for CKKS are  

•n: degree of polynomial modulus 

•q: coefficient modulus 

•scale: scaling factor for plaintext message inputs 

 

SEAL generates all required parameters using these three parameters. 

	

	
Figure 5.4 Encryption Parameters 

 
The first step in setting up the cryptosystem is to select the encryption parameters as outlined in 

Figure 5.4. An instance of the class Encryption Parameters contains them all. The three moduli that 

the encryption algorithm uses are first set: q (coefficient modulus), t (plain modulus), and Xn + 1 
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(polynomial modulus) – these are the three most vital criteria, and selecting them appropriately is 

essential for getting the best results.  

5.5.2 Experimental Results 

	

In this section, the device identification performance of the proposed system is evaluated over device 

feature data. In the proposed system, the encryption is performed on the feature vector. In Table 5.1 

below, the time performance of the proposed system is demonstrated for polynomial modulus degree 

4096 and 8192. This table captures key generation, test data encryption time, and overall 

computation time to uniquely identify the device for all three feature sets. It takes about 0.057s and 

0.46 seconds to generate the public key and private key for 8F, and the other two feature sets have 

less key generation time because the other two feature sets contain fewer features than the first one. 

8F test data encryption time (33.864s) and overall computation time (516.045s) are higher than the 

other two feature sets for polynomial modulus 4096 and 8F test data encryption time (50.698s) and 

overall computation time (6376.720s) are higher than the other two feature sets for polynomial 

modulus 8192. The conclusion is that a larger sample value means more information is preserved, 

which may lead to better device identification accuracy. However, the homomorphic encryption and 

decryption and key generation are the most time-consuming operations of the whole procedure. 

Therefore, a larger sample size means longer computational time, but data under homomorphic 

cipher text can have high privacy security. 

 

 
Feature set Key Generation Time Test Data Encryption Time Overall computation time 

8F 0.057s 33.864s 516.045s 

6F 0.055s 28.953s 302.858s 

3F 0.053s 11.660s 70.393s 

Table 5.1 Proposed system's time performance for polynomial modulus 4096 in various operations 

 

 

Feature set Key Generation Time Test Data Encryption Time Overall computation time 

8F 0.463s 50.698s 6376.720s 

6F 0.417s 32.934s 1502.186s 

3F 0.400s 16.203s 263.586s 

Table 5.2 Proposed system's time performance for polynomial modulus 8192 in various operations 
 
 

The tables 5.3, 5.4, and 5.5 show results based upon device features for each feature set, respectively. 

 



 126 

The effects of different parameters on the system’s performance in terms of encryption and 

computational time are explored in the following tables. 

	

Devices Train Data Encryption Time Computation Time 

D0 44.275s 2897.953s 

D1 50.160s 1085.930s 

D2 40.913s 132.240s 

D3 42.024s 91.805s 

D4 38.562s 139.640s 

D5 37.100s 1006.374s 

D6 37.414s 98.050s 

D7 37.039s 5831.506s 

Table 5.3 8F HE based encryption and computation time for polynomial modulus 8192 
	
	
	

Devices Train Data Encryption Time Computation Time 

D0 28.946s 280.528s 

D1 29.636s 196.820s 

D2 27.341s 89.374s 

D3 27.675s 72.152s 

D4 26.612s 44.321s 

D5 26.607s 87.765s 

D6 26.553s 179.756s 

D7 26.549s 297.567s 

	 Table 5.4 6F HE based encryption and computation time for polynomial modulus 8192 
	
	
	

Devices Train Time Computation Time 

D0 14.079s 25.667s 

D1 13.554s 20.272s 

D2 13.554s 14.751s 

D3 13.535s 13.807s 

D4 13.601s 13.614s 

D5 13.550s 22.755s 

D6 13.534s 13.429s 

D7 13.536s 13.412s 

Table 5.5 3F  HE based encryption and computation time for polynomial modulus 8192
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As can be seen from Tables 5.3, 5.4, and 5.5, the average training encryption time for D0 is 

44.275s, which is twice as high as 6F and three times higher than 3F because the multiplication 

on the cipher text requires more computation time, and in 8F, there is more data and it takes 

more time to execute. The computation time for D0 is 2897.953s which is higher than 6F 

(280.528s) and 3F (25.667s). This is the observation made when test data is verified against 

training data and test samples are mapped to modes. This multimodal feature process is 

explained in Chapter 3 (section 3.5). Three feature sets were used for our analysis, out of 

which FS1 (8F) train encryption and computation time are the highest as compared to the 

second and third feature sets. These feature sets include information about disk such as CPU 

performance and disk read and write operation speeds. This can be unique to different devices, 

resulting in the highest accuracy achieved from this feature set. Table 5.5 and 5.6 shows the 

HE-based percentage accuracy of 8F and 6F individual devices, respectively. The devices are 

individually identified according to the findings. 
 

             Devices Accuracy 

D0 91% 

D1 90% 

D2 90% 

D3 96% 

D4 90% 

D5 88% 

D6 89% 

D7 90% 

Table 5.6 8F HE based encryption-based devices accuracy 
 
 

              Devices Accuracy 

D0 90% 

D1 88% 

D2 91% 

D3 90% 

D4 90% 

D5 92% 

D6 92% 

D7 94% 

Table 5.7  6 F HE based encryption-based devices accuracy 
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For 4096 polynomial modulus, tables 5.8, 5.9, and 5.10 provide the results for each feature set 

based on device features. The following section analysis the effects of various parameters on 

how well the system performs in terms of encryption and processing time. 
	

 
Devices Train Data Encryption Time Computation Time 

D0 45.204s 68.683s 

D1 79.464s 231.716s 

D2 241.678s 247.940s 

D3 258.281s 264.952s 

D4 274.792s 280.661s 

D5 290.416s 364.238s 

D6 374.039s 386.390s 

D7 396.124s 516.044s 

Table 5.8 8F HE based accuracy and computation time for polynomial modulus 4096 

 

 
Devices Train Data Encryption Time Computation Time 

D0 42.431s 98.254s 

D1 106.045s 134.343s 

D2 147.258s 162.582s 

D3 175.875s 190.557s 

D4 198.351s 205.185s 

D5 212.867s 219.770s 

D6 227.486s 247.497s 

D7 255.253s 302.858s 

Table 5.9  6F HE based accuracy and computation time for polynomial modulus 4096 

 

 
Devices Train Time Computation Time 

D0 15.939s 21.004s 

D1 25.300s 27.887s 

D2 32.177s 34.828s 

D3 39.168s 41.709s 

D4 45.994s 48.542s 

D5 52.813s 57.575s 

D6 61.615s 63.941s 

D7 67.967s 70.393s 

Table 5.10 3F HE based accuracy and computation time for polynomial modulus 4096 
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The average training encryption time for D0 is 45.204s, as shown in Tables 5.8, 5.9, and 5.10. 

This is longer than for 6F and three times longer than for 3F because the multiplication on the 

cipher text requires more computing time, and since there is more data and thus takes longer 

to execute in 8F. This finding results from comparing test data to training data and matching 

test samples to modes. The highest accuracy from this feature set can be attained because this 

is sometimes specific to distinct devices.  
 

From the experiment results, the observation is that the proposed model using CKKS-based HE 

takes longer for computation depending on how many features and samples are factored, as 

shown in the above results. Our primary objective in this chapter is to ensure data protection 

during the process of analysis and device identification. 

	

5.6 Conclusion 

 

In this chapter, an architecture and an implementation of a device identification system in the 

HE domain were presented and subsequently evaluated experimentally. The system fulfils the 

data protection objectives. A cryptographic technique called CKKS homomorphic encryption 

was executed to secure the device data and to uniquely identify the device. Our proposed model 

has multimodal features, and for our analysis, comparison was used to identify the devices. So, 

our own logic was implemented to build this comparison circuit and calculated all the 

parameters required in our model to predict the results (in Section 5.3) which enhanced the 

capability of our model to be more secure and robust. By utilising HE, the security objectives 

of a dataset are achieved. 

 

By using CKKS homomorphic encryption, the same accuracy results were achieved as 

discussed in Chapter 3 (section 3.8). The computational time and device identification accuracy 

are studied in this chapter. According to the experimental results, homomorphic encryption is 

time consuming. Efficient homomorphic encryption algorithms should be explored as future 

work to reduce the computational time so as to accelerate the deployment of device 

authentication using homomorphic encryption in some real applications.  
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Chapter 6 

Conclusions and Future Work 
 

6.1 Introduction 
	

Nowadays, users are increasingly reliant on exchanging data, and they believe that their devices 

and data are secure from intruders. Therefore, it is the designers and manufacturers job to make 

sure that this is the case. Currently, a majority of IoT compatible devices are being developed 

and produced with minimal to no security features.  

This thesis investigates using ICMetrics technology as a foundation for securing devices. The 

contributions that were made with the intention of revolutionising device security are 

summarised in this chapter. 

 

The study’s goal was to investigate and evaluate potential features for uniquely identifying the 

device. Many components of a conventional pattern recognition system were investigated and 

put into practise to achieve this goal. 

 

Candidate features had to be found because feature selection is a crucial part of pattern 

recognition systems. A group of features that needed further investigation in order to produce 

performance measures was discovered through rigorous research. These performance 

indicators were then applied to determine whether each feature was suitable for deployment in 

an implementation. Further study was done on features as well as ways to pre-process current 

features to enhance their functionality. Performance measures from statistical tests were used 

to evaluate the acceptability of each feature on its own. 

 

There was no set formula for feature selection. Each feature's best performing variation was 

compared, and the best features were ranked in accordance. The viability of a realistic 

implementation was then tested using a subset of these best feature vectors for device 

identification techniques. 
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The novelty of this work is to enhance device identification using the physical and behavioural 

characteristics of general computing devices. Our attention was on keeping track of device 

activity while collecting the data in a monitored environment. This helps to explain how the 

features behaved during the analysis. After analysis, our reflection was that feature data is 

multimodal in nature. The multimodal feature data was then used to a) determine the best way 

to precisely verify a device uniquely; b) analyse the device's stability in a variety of usage 

circumstances and its performance endurance; c) investigate the potential in the frequency 

domain; d) evaluate device authentication using homomorphic encryption. 

 

In the next section, our research contributions are presented. Following this, the direction of 

future study in this field is given. 

Section 6.2 describes research contributions and Section 6.3 finally discusses future works.  

 

6.2 Research Contributions 
 

The main objective of this research was to examine the possibility of identifying individual 

devices based on the features extracted from general computing devices. The secondary 

objective was to investigate the effectiveness of employing measured hardware features 

mapped into the frequency domain for device identification. And the third focus was to use 

homomorphic encryption for template data protection from spoofing attack.  

 

The goals are accomplished using a method known as ICMetrics (Integrated Circuit Metrics), 

which is based on extracting traits and behaviours from general computing devices and using 

them to identify devices uniquely. The ICMetrics technology enables the construction of a 

device identifier by utilising the properties of the device. The device identification is then used 

for authentication. Because a key is only generated when needed and then deleted, ICMetrics 

technology acts as a deterrent to key theft. As a result, there is nothing for an enemy to steal. 

 

In chapter 2, various security requirements are discussed. Following that, the current start of 

the art in authentication techniques explored. Then our focus was on background of ICMetrics, 

related works, extensive competitive analysis, and a summary of many different types of 

authentication systems was explored. Finally, discusses cybersecurity physical attacks on 

devices and summarized the chapter. 
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At the start of Chapter 3, criteria for good features are explained, and then hardware device 

features are used for ICMetrics device identification. Thus, the first contribution of this thesis 

is a thorough examination of the explicit and implicit features of a device that can be utilised 

to generate ICMetrics. According to a statistical examination of the feature values, each 

feature’s data has a distinct bias because evaluation was based upon three categories of 

features: hard disk performance, memory, and CPU floating-point performance. A total of 38 

features were collected and analysed. Analysis revealed that features are multimodal in nature. 

The conventional pattern recognition system has difficulty utilising unusual features. The 

approach converts the uncommon features into conventional forms that are simple to compute, 

such as the Gaussian distribution. On the original distributions, feature values are rearranged 

into a predetermined section. To solve multimodal features, a peak-trough algorithm approach 

was used to determine the number of modes in a distribution. Following that, the initial 

distributions were divided into distinct model features. In the multi-dimensional space, each 

separated distribution was considered a new feature. By addressing the multimodality of the 

features, the second issue was tackled, which is feature overlap. By combining the modes, the 

link between the modes of features (these are exclusive to each device) can be seen, which 

enables the differentiation of data overlap between devices for each feature. 

 

Multi-modal features were used for device identification. Our proposed classifier and multiple 

conventional classifiers were benchmarked. To construct the model and conduct evaluations, 

the assessment results showed how employing different categories of feature data affected the 

performance of the identification. The results obtained for features related to writing to disk 

and memory-related features showed high accuracy for device identification as compared to 

other categories of features.  

 

Chapter 4 of the thesis introduces a novel wavelet feature based multivariate Gaussian 

distribution classifier framework. The use of hardware features in the frequency domain to 

identify devices uniquely is the second contribution of this thesis. This chapter starts with the 

introduction of wavelets. For our analysis, the discrete wavelet transform was used because of 

the advantages it has, including the removal of noise from the data, the detection of abrupt 

disruptions, the reduction of large amounts of data, and most importantly, the DWT's increased 

computing efficiency due to the production of fewer coefficients. Then it describes a system 

overview, which explains the process of using hardware features to calculate the coefficients 
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and then using these coefficients as new features for our analysis. And at the end, extensive 

wavelet results were produced, and compared the results based upon hardware features. At the 

end, conclude that wavelet-based feature results are better than raw feature-based results.  

 

In Chapter 5, the concept of homomorphic encryption (HE) for device identification has been 

presented. In the HE domain, a device identification system's architecture and implementation 

were presented and then experimentally tested. In our research, the comparison is to identify 

the devices, and our proposed model contains multimodal features. In order to construct this 

comparison algorithm, our own logic was built and calculated all the necessary parameters 

needed to predict outcomes. The goal of data security is met by using HE. Hence the third 

contribution of this thesis is to highlight the usage of encrypted data for device identification 

via homomorphic encryption. 

 

In Chapter 6, thesis was summarised and offered some recommendations for further research 

in this area. 

	

6.3 Future Works 
 

By utilising a variety of explicit and implicit device features, the thesis has shown how to create 

an ICMetrics. Although ICMetrics is a developed technology, there are still some areas where 

it might be improved upon and where additional research might be conducted. Some of the 

areas for further investigation are highlighted in this section. The identification of additional 

features that can improve the security strength of the ICMetrics system should therefore be the 

focus of future research. 

 

The future work can include: -  

 

1) Large number of devices and models. Our current constraints prevent the collection of 

data from a large number of devices. In the future, it will be crucial to scale the number 

of devices and analyse if the technology can identify a unique device in a very large 

population. Future system scaling will also require a more advanced data analysis 

solution. 

2) User features need to be explored. The current set of features in the research are 
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hardware and software based. More user dependent features, for example, user 

interaction with a keyboard or touch screen, etc., can greatly raise the security level. 

3) For existing multi-modal features, a more complex normalisation technique can be 

explored to enhance the performance of the system. 

4) Explore how ICMetrics can be leveraged to enhance mobile device security, for 

example, Android and iOS. Can ICMetrics be used to uniquely identify mobile phones 

based on data obtained from the devices. 

 

According to the study cited in this thesis, devices can be identified by using attributes and 

traits that are gathered from the devices themselves. The suggested system’s effectiveness 

demonstrates that it has met the essential criteria. For a more secure environment, it is 

envisaged that this method will be enhanced in the future. 
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