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Abstract—Posterior collapse is a phenomenon that occurs when
the posterior distribution degenerates to the prior, leading to a
decline in the quality of latent encodings and generative models.
While it is known to occur in Variational Autoencoders (VAEs),
it is unknown whether it occurs in Variational Gradient Origin
Networks (VGONs). The goal of this paper is to compare the
posterior collapse of Variational Gradient Origin Networks and
Variational Autoencoders. By checking the latent encodings of
VGONs against the key posterior collapse metrics, our exper-
iments reveal that VGONs do exhibit posterior collapse both
in the decline of the Kullback-Leibler divergence (KLD) and
the collapse of individual variables. Furthermore, the results
show that VGONs and VAEs have a similar polarized regime,
suggesting that the cause of posterior collapse is not specific to the
architecture of the model used to find an encoding. These findings
support the claim made in previous research that posterior
collapse is a general issue that affects a wide range of latent
variable models.

Index Terms—Representation Learning, Variational Autoen-
coders, Gradient Origin Networks, Posterior Collapse, Polarized
Regime

I. INTRODUCTION

The Variational Gradient Origin Network (VGON) [1] is a
generative model that involves learning a latent representation
and subsequently decoding it. In this way, it performs a similar
function to a Variational Autoencoder (VAE) [2]. However,
instead of training an encoder network, it uses one-shot
learning to obtain a representation. Initially, a representation
of zeros is passed into the VGON network, but then a single
step of gradient descent predicts the lowest loss representation
for a given input data item.

Since this model does not have a dedicated neural network
for encoding, there may be some differences in the representa-
tions. It has been suggested that this may have some positive
impact on the latent representation, as it may not experience
posterior collapse [1].

Posterior collapse is when the latent representation (the
posterior) degenerates to the prior. Since the prior is Gaussian
noise, this makes the distribution of latent features useless.
While it may be beneficial for some latent features to collapse,
to form a polarized regime [3], it is a hugely important issue
if they all collapse.

Many publications have investigated the cause of posterior
collapse. Some papers have suggested that the design of the

network may be the cause of collapse [4]. On the other hand,
other papers have shown that the design of the network is
not the cause. Instead, these argue that the loss function, the
Evidence Lower Bound (ELBO) [5], is to blame for posterior
collapse [6], [7]. Others argue that both are factors [8].

VGONs use a slightly different architecture to VAEs, partic-
ularly where encoding is involved. On the other hand, while
the loss function is slightly different to that of a traditional
VAE, it is still based on the ELBO. This different setup for
the task of autoencoding provides a fresh perspective on the
problem of posterior collapse. With a similar loss function to
VAEs but different encoding strategy, VGONs are of particular
interest to posterior collapse research.

Finally, the polarized regime [3] is of great interest as it can
be seen as partial posterior collapse. We know that VAEs learn
a polarized regime, but that is not yet known for VGONs.

The contributions of this paper are as follows:

• We verify whether posterior collapse is exhibited by
VGONs when they are over-regularised

• We compare the magnitude of its collapse to VAEs
• We compare the similarity of encodings obtained by

VGONs and VAEs to investigate the polarized regime

The explorations included in this paper show that poste-
rior collapse is, contrary to prior assumptions, exhibited by
VGONs. They also show that it is experienced very similarly to
VAEs with only minor differences. These similarities crucially
include the prevalent polarized regime.

II. PRELIMINARIES

A. Variational Autoencoders

Variational Autoencoders (VAEs) [2] are autoencoders that
produce a latent representation by compressing data down to a
probability distribution, rather than a deterministic vector. This
model aims to find a distribution for the encoder qϕ(z|x) =
N (µ, σ2), and a data distribution pθ(x|z).

Specifically, the latent encoding z is obtained by sampling
from a distribution parametrised by the encoder’s outputs,
µ and σ (see Fig. 1). If we were to sample directly from
this distribution to get z, that computation would be non-
deterministic. If we were to backpropagate through it, the
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Fig. 1: VAE Architecture.

gradients would be random and hard to train with. For this
reason, the reparamaterization trick is used:

z = µ(x) + ϵσ(x), (1)

where z is the sampled latent representation, µ and σ are
functions of the input x, and ϵ ∼ N (0, I).

Variational inference is used to train such models, where
the loss is the ELBO:

LELBO = Eqϕ(z|x)
[
log(pθ(x|z))

]
−DKL(qϕ(z|x)||p(z)),

(2)
where p(z) is the prior distribution of the latent representation,
given as p(z) = N (0, I). In the first term of this equation, we
have the error of the decoder given an encoding. In the second
term, we have the Kullback-Leibler divergence (KLD) of the
posterior distribution (z) and the prior. We can multiply the
second term in ELBO by a hyper-parameter, β, to increase or
decrease the importance of the KLD term. Such a VAE with
the hyper-parameter β is known as a β-VAE [9] (see equation
3). Research has shown that when the KLD term is weighed
higher, the representation is more likely to form a polarized
regime [3]. In these cases, all active units will be disentangled
[10], [11].

LβVAE = Eqϕ(z|x)
[
log(pθ(x|z))

]
− βDKL(qϕ(z|x)||p(z)).

(3)

B. Posterior Collapse

Posterior collapse occurs when the latent distribution q(z|x)
degenerates to the prior distribution p(z). This is experienced
in β-VAEs when the value of β in the ELBO is too high,
causing it to over-regularise [12]. In the context of the po-
larized regime, it occurs when all variables become passive.
Recently, [7] showed that posterior collapse occurs due to
over-regularisation of the mean representation rather than the
variance representation.

Initially, tracking the KL divergence between the latent
distribution and the prior distribution can tell us if collapse
has taken place [12]. However, this has been shown to not
always determine posterior collapse [13]. For example, in [13],
they trained a model with a fixed variance σ2

z but learnable
mean µz . Equation 4 is the closed-form calculation for the
KL divergence between the representation z and the normal
prior. Even if the mean collapses to zero, if we fix σ2

z to a
sufficiently high value, then that component of the ELBO may
be higher than any DKL threshold we use to define collapse.

This shows that such a model will have a meaningful lower
bound on its KL divergence.

DKL = −0.5 ·
∑
z

(
1 + log(σ2

z)− µ2
z − σ2

z

)
(4)

Hence, it was shown that these models can still experience
posterior collapse even with a high KL divergence. The model
will have collapsed by other metrics, but, since the variance
is fixed, there may still be high KL divergence.

In practical settings, this shouldn’t be the case as we
won’t be fixing the variance. That way, the variance can (and
will) collapse to the prior’s variance. However, an interesting
observation is that this lends some evidence to the claim that
the mean representation (µ) is what leads to posterior collapse
rather than the variance representation (σ), as in [7].

A disadvantage to only tracking the KLD of the full
posterior is that it does not explain what individual units
are doing. In recent work, VAEs have been shown to learn
a polarized regime [14], [3]. Here, individual units within
the latent distributions adhere to strict modes, active and
passive. Active variables are variables which are used by
the decoder in reconstruction. Passive variables, on the other
hand, are variables which are not used by the decoder in
reconstruction. These variables will typically have zero mean
and unit variance, in correspondence with the prior.

Given these two modalities, it is no longer as useful to mea-
sure the average KL divergence given the full representation.
Instead, we care about what each unit is doing.

[6] amended the KL divergence measure to now detect if
an individual unit has collapsed within the representation:

Px∼d

[
DKL(q(zi|x)||p(zi)) < ϵ

]
≥ 1− δ. (5)

If the KL divergence of a unit i falls below a threshold ϵ for
a sufficiently high portion δ of the dataset, it will be labelled
as collapsed. That way, we can track the percentage that a
representation has collapsed as a function of its individual
units.

[15] explored the polarized regimes further and split the
variables into three categories: either they are passive, active,
or mixed. Passive variables are those that are collapsed, and
they are similar to the prior. Active variables are those that
are not collapsed, and their distributions should be tight
(σ(V ar) ≈ 0) since they need to convey as much information
as possible with high precision. Mixed variables are those
that flip between active and passive depending on the data
examples. By tracking the numbers of active / mixed / passive
variables, we can track the progression of posterior collapse.
Once all the variables are passive, a model can be seen as
having totally collapsed to the prior.

C. Variational Gradient Origin Network

As in VAEs, the goal of VGONs [1] is to transform data
into a probabilistic encoding, and then to decode that back
into a data distribution. Although the objectives are the same,
VGON’s approach to encoding is novel. Rather than using a
neural network that is trained to encode the data, it uses just
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Fig. 2: VGON Architecture.

one network. In this sense, the VGON’s single network has a
dual purpose. It is both to produce the encoding and to decode
it.

The encoding method proposed by [1] starts with a vector
of zeros (r0) which is used as an initial estimate of the
representation r. Once passed through the network (denoted
by F (·)), we can find the loss. With this, the gradient of the
loss with respect to the initial representation estimate is used
as a new representation:

r = −∇r0LELBO
(
x, F (r0)

)
. (6)

This can be iterated many times, but it is argued in [1] that only
one step of gradient descent is required to obtain an accurate
latent distribution.

The vector r obtained by gradient descent gives a linear
transformation of the input x into µ and σ, which are the
parameters of the normal distribution representing the latent
features. When this latent distribution is sampled, we obtain
the sample representation z. Like VAEs, VGONs utilize the
reparameterization trick. The sampled representation can be
passed into the neural network to produce a final reconstruc-
tion of the original data x̂. With this final reconstruction, we
can perform normal backpropagation to update the weights of
the network. Figure 2 visualises this model.

In essence, therefore, a VGON is very similar to a VAE.
The network, F , acts as its decoder, while the gradient acts
as its encoder.

III. EXPERIMENTS

The VAE model consisted of a 4-layer convolutional and
a 4-layer transposed convolutional neural network for the
encoder and decoder respectively, plus a linear transformation
from the encoder to the mean and variance representaiton. The
VGON model consisted of a 4-layer transposed convolutional
neural network plus a linear transformation from r0 to the
mean and variance representations. These models were trained
for 200 epochs.

We trained a number of networks on the following datasets:
• Mnist [16]
• smallNorb [17]
• dSprites [18]
Mnist was used as a benchmark dataset. It is relatively

simple, but with overlapping classes. smallNorb is a far more
challenging dataset with a variety of ground-truth factors.
dSprites was designed with disentanglement in mind. In
dSprites, there are a small set of independent and deterministic
ground truth factors which should ideally be captured by a
disentangled representation.

For each dataset, we trained models for several values of
the hyper-parameter β (0.5, 1.0, 5.0, 10.0, 20.0, 25.0, and
30.0) and ten different seeds. β was chosen to vary as it is the
regularisation strength. We expect greater posterior collapse as
β increases. Our values for β were particularly high, as we
wanted to see what happens during total collapse.

While it has its limitations, we tracked the KL divergence of
the representations. As we do not fix the variance, we expect
to see coherence between the KLD metric and others. We
additionally use the definitions of collapsed variables used
in [15]. We opted to not include the KL divergence collapse
metric from [6], viewing it as a more computationally expen-
sive equivalent to the metrics in [15]. A mutual information
metric [13] was also omitted from this study for computational
reasons.

As we are examining the collapse of each unit in the
polarized regime, it is worth looking at the distribution of
each unit’s two representations (mean and variance) for the
full dataset. The purpose of showing these distributions is to
show the shape of the three types of variable present in the
polarized regime and verify that VGONs converge to similar
representations to VAEs.

If we find that VGONs do collapse, and all the metrics
are aligned, that indicates a clear similarity between VGON
representations and VAE representations. So, to more closely
examine the representations, we use linear Centered Kernel
Alignment (CKA) [19]. This has been used to compare
representations within neural networks. The results of this
experiment should show if VGONs are, indeed, arriving at
similar representations.

IV. RESULTS

A. KL-Divergence

Firstly, we report the change of KL divergence when β
changes. Figure 3 clearly shows that VGONs are experiencing
KL collapse as KLD diminishes with higher β. This is to be
expected. They also show, though, that VAEs and VGONs
come to very similar values of KL divergence.

B. Polarized Regime

Figures 4 and 5 show the state of each variable given by
[15]’s metrics. Variables are transitioning from active variables
at low values of β to passive variables at high values of β.
This is a strong indication of posterior collapse. The overall
collapse of the models is the same. This can be identified by
comparing the number of passive variables at a given value of
β. The extent to which they collapse, however, varies between
datasets. For instance, comparing 5c and 4c, we observe a
slight difference at intermediate values of β. Additionally, in
figure 4b the VGON trained on MNIST has far fewer passive
variables than VAEs (figure 5b) until very large values of β
where the models reach total collapse.

Crucially, there is no meaningful difference between the
overall pattern of collapse between VAEs and VGONs. The
number of active, mixed and passive variables is very similar
throughout.
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Fig. 3: Change of KLD

C. Representation Histograms

Figures 6 to 9 display the distributions of individual units
of the representation z. All figures are results from the Mnist
dataset with β = 5.0 and the same seed with the exception of
the mixed variables which were selected from the smallNorb
dataset. We used smallNorb there for reasons explained below.
Type 1 plots in figures 9a and 9c are from β = 25.0 and type
2 are from β = 5.0.

In figure 6, we can clearly see the representations for
active variables. In line with [15], we observe the mean
representation taking many values across the dataset, while
the variance representation is incredibly tight around zero.

Passive variables, by contrast, have a very tight mean
representation (figures 7a and 7b) around zero. The variance
representation (figure 7c and 7d), also, is tight around one.
This closely matches the prior, as the unit has collapsed.

Mixed variables have more diverse histograms (note that
β of 25.0 induces more collapse). The mean representation
(figure 8) appears to have reasonably high variance of the

mean, a contrast to passive variables. However, the variance
representation (figure 9) indicates two types of behaviour
across the three datasets. Type 1 is the most common with
β = 25.0, occurring for all the identified mixed variables
in Mnist and dSprites, and in type 1 smallNorb variables
shown in figures 9a and 9c. In this instance, the variance
representation is picked at some intermediate point between
0.0 and 1.0. This behaviour indicates that with this high value
of β = 25.0, the polarized regime may be violated. Type
1 variables do not transition from active to passive through
a mixture (which would make them mixed as a result of
polarized regime), but instead are progressing more directly
towards the passive state, not adhering to the polarized regime.
This explanation agrees with results in [8].

Type 2, on the other hand, does comply with our intuition
for mixed variables [15] in polarized regimes [3]. This type is
expressed strongly in the smallNorb dataset (type 2 in figures
9b and 9d with β = 5.0), and shows a clear mixture of two
Gaussian distributions with one mode at 0.0 (these would be
active) and another mode at 1.0 (these would be passive).

Overall, mixed variables with high β warrant further investi-
gation with respect to polarized regime. For example, [14] say
that polarized regime can be violated by ‘bad local optima’.
Thus, we could hypothesize that when β is excessively large
(both in a VAE and VGON), type 1 behaviour may lead
to a better local optimum than that of type 2 behaviour
with a mixture distribution, even though the latter provides
informative encoding for the data examples that are in the
active part of the mixture [15]. Type 1 behaviour essentially
shows that the polarized regime may not hold in the over-
regularised case. A formal theoretical proof of this violation
of polarized regime would be desirable.

Overall, the histograms reported in this section show that
VGONs and VAEs are very closely aligned for each of
the three key variable types. This indicates that they both
experience a polarized regime.

D. Similarity of Representations

This experiment is intended to provide more explicit com-
parisons between the two networks, as very few differences
between VAEs and VGONs have been found up to this
point. We produced a series of similarity heatmaps that show
the linear CKA between VGON and VAE representations at
various values of β. For instance, in figure 10a the point (10.0,
5.0) shows the similarity between the mean representation of
a VAE trained with β = 10.0 and the mean representation of
a VGON trained with β = 5.0 for the Mnist dataset. In all
heatmaps, darker colours express smaller similarity between
the activations of the compared layers.

In the similarity heatmap for the mean representation, figure
10, one can observe the impact of β is consistent in each
dataset. Along the columns and rows is the change of similarity
for each model at β, with the other model constant. Along the
diagonals, is the change of similarity of the two models with
the same values of β.
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Fig. 4: Collapsed variables VGON
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Fig. 5: Collapsed variables VAE
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Fig. 6: Typical active variable mean (left) and variance (right) representations with β = 5.0

Excluding the dSprites dataset (figure 10b), each model’s
mean representation gradually becomes more dissimilar as the
two values of β become further apart. In the bottom-right
corner of figure 10c, we can see what happens when a model’s
posterior has fully collapsed, where the similarity of collapsed
representations is high for a range of βs. When one model’s
β is equal to 20.0, and the other model’s β is lower, there is
considerable dissimilarity, which is the evidence of posterior
collapse.

Meanwhile, looking along the diagonals, it can be seen that
the model’s representations are becoming more similar. This is
consistent with our intuition of posterior collapse. When both
models have collapsed, at about β = 20.0 in figure 10c, they
have converged to the same (prior) distribution. The diagonal
is still not explicit on the dSprites dataset (figure 10b). Here,
the point where the two models are the most similar, apart from
the trivial point at (30.0, 30.0), is at (1.0, 20.0). This could
indicate that VAEs collapsed at a lower value of β. Overall,

the mean representations for the two models are considerably
similar to each other.

The variance representation (figure 11) paints a much differ-
ent picture. In figures 11a and 11b, similarity is small for all
values of β. In figure 11c, there is a pattern along the y-axis,
indicating that the VGON isn’t changing much compared to
the VAE. At β = 20.0 there is a significant jump in the VAE’s
variance representation. Overall, there is very little relationship
between the two models’ variance representations.

Additionally, we computed the similarity of each model’s
latent representations to itself (figures 12 – 14) in order to
observe how they change as β is increased. The proceeding
experiments give a possible explanation for the poor simi-
larities in the variance representations (figure 11) but strong
similarities in the mean representations (figure 10).

The mean representations behave as expected as β changes.
The rate of change is mostly constant in the case of Mnist
in figure 12a. However, as can be seen in figure 13a, once a
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Fig. 10: Mean representation similarity heatmaps for each dataset

model has collapsed, its mean representation is collapsed and
won’t change much (bottom-right corner in figure 13a).

To contrast the rate of change seen by the mean representa-
tion, the variance representation changes in a slightly more
extreme fashion. At β = 10.0 in figure 12c we see that
suddenly the representation is very different. Following this,
there is much less change.

The peculiar pattern in figure 11c can be seen as a reflection
of the graphs in figures 13c and 13d. VGON’s variance repre-
sentation barely changes at all, so the only pattern expressed
is from the change in the VAE’s variance representation.

The variance representations of VGONs against themselves
have values on the diagonal different from zero, which ordi-
narily should not be the case in CKA. However, as mentioned
before, VGONs require one step of sampling to arrive at their
representation. This results in the representation being non-
deterministic, which explains why there can be a non-zero
value along the diagonal.

Overall, our exploration of similarities between representa-
tions learned by VAEs and VGONs show that both models
experience posterior collapse since the posteriors collapse to
the prior and are very similar between those models. The
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Fig. 11: Variance representation similarity heatmaps for each dataset
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Fig. 12: Mean (left) and variance (right) representation self-similarity heatmaps on Mnist
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Fig. 13: Mean (left) and variance (right) representation self-similarity heatmaps on smallNorb

rate of collapse as a function of β is consistent in the mean
representation, but the variance representations are starkly
different.

There is one effect that is consistent across all datasets
and both VGONs & VAEs. In the mean representation, we
observe a gradual change up to a point where there is no
more change. In the variance representation, there is a point
where it suddenly changes, and subsequently stays the same.

To be clear, a value that has changed a lot will have a
different CKA score. Reading along an axis, if the CKA score
is suddenly low then it has changed. If the CKA score is high,
it has not changed.

This pattern can be broadly described as the ‘point of
total collapse’. This occurs when the KLD component of the
loss has become so large that most (or all) would-be active
variables are not sufficiently expressive to justify their cost to
the KLD. Hence, they are collapsed into passive variables. This
results in a sharp change in the representation, as represented

in the linear CKA. Once already collapsed, there is little more
that can change between the representations, leading to the
region of little change.

This ‘point of total collapse’ can be observed, also, in the
KLD graphs and stacked graph. In the KLD graphs, when the
KLD changes steeply this is when the overall representation
is suddenly collapsing. In the stacked graph, the number of
passive units increases and active units decreases at roughly
this point.

While we observe and begin to define the ‘point of total
collapse’, it is not within the scope of this work to fully explore
this.

V. CONCLUSION

It is clear from our experiments that VGONs exhibit
posterior collapse when β is sufficiently high. Not just in
the decline in KLD, which is intuitive given the greater
regularisation strength, but also in the collapse of individual
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Fig. 14: Mean (left) and variance (right) representation self-similarity heatmaps on dSprites

variables. As such, VGONs have also been shown to learn a
polarized regime with moderate β. We have also shown that
extremely high β used in VAEs and VGONs may destroy the
polarized regime, since the variables transition from active
to passive without the bi-modal mixture distribution. These
are all important similarities to VAEs, especially given that
VGONs and VAEs do not have the same mechanism for
finding an encoding. This paper lays the foundation for future
work identifying a theoretical link between the two models
that could cause these shared behaviours.
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