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Chapter 11

A Certified Refactoring
Engine

Nik Sultand, Simon Thompsoch
Category: Research

Abstract: The paper surveys how software tools such as refactoringregs
can be validated, and introduces a new mechanism, namelyetieration of a
refactoring engine for a functional programming languagenfan Isabelle/HOL
theory in which it is verified. This research is a first step pragramme to con-
struct certified programming tools from verified theoriese ®so provide some
empirical evidence of how refactoring can be of significagdfit in reshaping
automatically-generated program code for use in largeesys

11.1 INTRODUCTION

Refactoring is the process of improving the structure ofjpan code and it has
been argued [9] that refactoring is crucial to enable codsedy facilitating its
adaptation and comprehension, and therefore lessensghefaevelopment.
There is a spectrum of interpretations of what constitutesfactoring, but
in this paper we limit our attention to behaviour-presegyimogram transforma-
tions. A refactoringengineis a computer implementation of a set of refactorings,
and various methods for checking tberrectnes®f refactoring engines — that is,
that they preserve the behaviour of arbitrary programs € baen studied. These
methods include testing the refactored code [7, Chapteeding the refactoring
engines [15, 4], as well as formally proving properties dhibair specifications
[3, 6, 8, 11, 22]. In some of the works cited in the last catggbe specifica-
tions used were themselves executable, and therefore atzalde interpreted as
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XI-2 CHAPTER 11. A CERTIFIED REFACTORING ENGINE

implementations of the refactoring engines.

In this work we use HOL as a specification language; it is ntitey executable

so initial work on this project consisted in surveying thagture between exe-
cutable programs and HOL in the literature. Of particulderast is the junc-

ture between Haskell and HOL, since we aspire to eventuzinel the Haskell

Refactorer HaRe in this way. The approaches can be classif@tvo:

e The first possibility of integrating an executable defimitaf a refactoring and
Isabelle/HOL involved translating the former into a defont embedded in
the latter. This is the approach taken, for example, in tmiieation of an L4
microkernel [5] and in the system Hets [25].

e The second option was to generate Haskell code from thellsaheory in
which the refactoring is verified. This could be done using ltfets system
since it supports the generation of Haskell code from HadCgycifications
[16], but we instead used a code generation framework tfiatren an exe-
cutable subset of HOL.

In previous work [22] a number of correctness theorems alefattorings
were described. This built on previous work [14] to formaliefactorings over
functional programs. It explored using untyped and typezilculi and developed
fully-formal proofs that were checked using Isabelle/HQL]

The work described in this paper uses a new code generatiorefvork for
Isabelle and extends previous work to produce Haskell coderfe of the refac-
torings studied. Software produced in this manner — thagésierated from a
machine-checked theory proving its correctness — is salukbtoertified other
examples using this approach are describgd 5.

This paper is a study of the steps involved in the processmdmging a refac-
toring engine from its verification in an Isabelle/HOL thgand will briefly sum-
marise the work it builds on. We also argue that refactoring loe profitably ap-
plied to automatically-generated code with reference ttiqadar examples. The
contributions of this paper are:

e An extension of the verification of refactorings to produeeified code;

e A discussion of patterns of refactoring that are applicablie verified code
itself;

e A discussion of the interaction between the refactoringregnd the type-
checker, and on the integration of this code with a refaatptool.

Although we restrict our focus to refactorings, these stepy be followed to
produce various other kinds of certified software.

The rest of the paper is organised as follows. The next sedéscribes the
approach we use to obtain Haskell programs from an Isabdedlery. Previous
work on the verification of refactorings is summarise¢11.3, and irg11.4 we
describe the extension of that work to obtain a verified tefaitg. Related work
to produce certified programmer tools is describedlifi.5 and the paper con-
cludes with a discussion.
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11.2 ISABELLE

The Isabelle proof assistant is designed to facilitate thieezlding of object logics
in which to reason. It provides a metalogic consisting ofatarctive higher-order
logic [19]; the work we describe is formalised in HOL [17], Essical higher-
order logic embedded in Isabelle.

11.2.1 Program generation for Isabelle

Specifications are generally considered more perspicum@arsrograms due to
their lack of operational details; these details may be icened a distraction
at a high level of abstraction. Having written and validatespecification, one
might wish to animate it for various reasons: for examples oauld “test” the
specification, or else generate the implementation diré its specification.

Since specifications are often grounded in a logic, theiosighip between
logic and programs has been exploited not only for studyteglatter using the
former, but also for yielding programs from proofs of theioperties.

In this work we use a framework [10] for generating progrardefrom Is-
abelle theories. This framework relies on restricting defins to an executable
subset and exploits equational theorems to yield definingians for functions,
which are processed to eventually yield code. It also yidifitions for alge-
braic types and type classes, and can be instructed to thffgeent languages; if
the target language does not support type classes natityet dictionary trans-
lation is used.

11.3 VERIFYING A REFACTORING

In this section we summarise the results on the verificatforfactorings which
first appeared in [22]. A refactoring consists of two partpragram transfor-
mationT, and a collection of side-conditions (or pre-conditiorms)the transfor-
mation in question to be meaning preserving; in other watdstransformation
is only performed if the side-conditions are satisfied. Trezpnditions are con-
joined to form the formul®.

Note that in general a program transformation will be paraised by a num-
ber of other arguments, such as an old and new name for artolsjezre appro-
priate in what follows we will suppress these other argumb;ﬁ. The metavari-
ablep ranges over programs.

Definition 11.1.For a particular Q and T, and modula, the behaviourof a
refactoring is described by the following functiamp. if (Q p) then (T p) else p

The symbok- will be used to denote a behavioural equivalence over progra

Definition 11.2. A refactoring iscorrectiff it is behaviour-preserving, that is it
satisfies the following formulep. (Qp) — (T p) ~p
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In [22] this formulation was used to describe the verificatida number of refac-
torings in Isabelle/HOL. The principal challenge in cangiout such a verifi-
cation consists of embedding the semantics of the programianguage over
which the refactoring is defined.

11.3.1 Program syntax and metalinguistic definitions

The initial investigation of the problem is carried out ugsia small language:
namely PCF [21] extended with sum and unit types; we callRGs L.

In what follows we use the following notational conventiom4, N, L range
over termsg, T range over types, and ranges over typing contexts — formalised
as finite maps. The notation,x: T abbreviateg I pomr)—x)[X— ] — that is,
adding a typing to a context will involve first restrictingetbontext then carry out
the extension. Symba&mpty will denote the empty context.

Definition 11.3. The termsof PCF™ are inductively defined by the following
grammar:

M = X | AXI.M
| M-N | fixx'.M
| unity | zero
| succM | predM
| ifzLMN | inL;M
| InRrM | (M<=xL{y=N)

As per conventiomprogramsare closed terms, i.e. terms with no free variables.

Definition 11.4. The typesof PCF'! are inductively defined by the following
grammar:
T = Nat | o—0
| Unit | o+0

The notation™ > M :: T asserts that terfil is typedt in . Thus>M :: T asserts
thatM has typer in the empty context, implying th&dl is a closed term.

A multi-sorted equational logic will be used to reason abprggrams in
PCF'L, in the style of [23, 24]. This will be the vehicle for provimgfactorings
correct for this language. The equivalence between téinandN — both typed
Tin I — will be expressed using =M ~ N :: 1. The relation~ is a behavioural
equivalence over terms, induced by the equational ruleB@F" 1. The language
is defined together with the usual metalinguistic defingion

e FV maps terms to sets containing their free variables.

e BV is analogous but concerns bound variables.
The formulation of some metalinguistic definitions is n@amstard with respect to
the usual mathematical practice. When reasoning aboutgmgin the abstract
it is convenient to identify them up to renaming — howevemaa are of central
importance in refactoring since the source-code returoditet programmer must
be recognisableand the default is that names need to be preserved. To ttis en
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concrete names are used, and substitution is not defineddmatically rename
variables — anaive definition of substitution is used. As a result, the theony fo
this language is defined using a parffatule conditional upon non-capture — this
condition is formulated in the following definition.

Definition 11.5. Captures M N £ 3v e FVN. (v e BVM)

In order to avoid confusion we will distinguish the langudgeels using type-
faces: terms in the language induced by Definition 11.3 vélshown initalics,
thenonospace typeface will be reserved for executable (meta)definitiang
sans serif will be used for other (meta)definitions.

The predicateCaptures M N was defined to formalis® is free for all free
variables in N In effect, Definition 11.5 formalises the Barendregt Valéacon-
vention [1,§2.1.13]. This predicate is used here for consistency withezavork,
but it is too imprecise for practical programming, and an riayed, more pre-
cise, version was described in previous work [¢2.1.2]. We conclude with two
definitions by way of ‘syntactic sugar’.

Definition 11.6.

letxX' :=NinM = (Ax".M)-N
letecX :=NinM = (Ax".M)-(fixx".N)

11.3.2 Metalinguistic results

We now turn to a specific refactoring — “enlarge definitiona,pT his refactoring
expands the type of a definition into the coproduct of itsioagtype (on the left)
and some other type. Its behaviour is illustrated belowgikiaskell-like pseudo-
code fragments. Note that the refactoring replamesryoccurrence of f x)
with (either f L x).

X . T X :: Bither T T
X 1= ... X .= Left
(X)L ...(either f L x)...

The symbol= in the above snippet is intended to suggest the bidiredttgrod
refactoring: if two programs are indeed equivalent tham li@nsforming one to
the other and the inverse are behaviour-preserving.

We have modified the formulation of correctness of this nefdcg as ex-
pressed previously [22] by weakening its assumptions otyfhiag context. The
correctness of this refactoring is given by Theorem 11.% ttwat all the variables
are implicitly universally quantified. The theorem’s forfation instantiates the
general form from Definition 11.2.
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Theorem 11.7.(Enlarge definition type)

I HletX :=MinN ~ let X7 = (inLy,p M)inN[(X < X)x(y = L) /X :: 0
The above equation holds provided that these side-comditice satisfied:
1. Well-typing:

@r,xxteN:o
b)r,x:r,y:t'Lut
cresM:ur

2. Non-capture:

(@) =CapturesN (X' < X)x{y = L)
(b) ~CapturesN M
(c) -CapturesLM

3. Non-occurrence:

(@) X ¢ FVM
(b) y¢ FVM
(c) x¢ FVL

Proving this theorem relied on the “substitution lemma't thsserts that substitu-
tion preserves typing:

Lemma 11.8.Substitution lemma
F>Nzo AT>x:T A -CapturesNLA M x:T'>Li1 — FxiT'>N[L/X 0

This concludes the summary of relevant previous results.

11.4 GENERATING THE REFACTORING ENGINE

This section describes how the previous result was exteimdedler to generate
correct code implementing the refactoring described irptlesious section. The
formulation of the refactoring’s correctness showed hoswtfactoring behaved,
but it was not an effective definition — and it relied on othenreffective defi-
nitions. It was necessary to derive a program implementirgyliehaviour; our
approach consisted of complementing logical definitionsr-tfstance, the predi-
cateCaptures (Definition 11.5) — with their algorithmic refinements andpng
them to be equivalent. The refactoring was then defined tafédg using these
algorithmic definitions and proved correct — the proof apge$o Theorem 11.7.
An improved version of the algorithm was subsequently emitand proved cor-
rect. The following sections elaborate on each step of thegss.
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11.4.1 Effective refinements to logical definitions

The formulation of Theorem 11.7 indicates the shape of pnogrover which the
refactoring’s transformation is defined — for the rest of phegrams it behaves
like the identity function, as can be seen from Definition11 Despite the com-
putational hints provided in Theorem 11.7 it cannot be etextdirectly or yield a
program. A program implementing the behaviour specifiedhiztheorem would
behave as follows:

e It must first recognise the program’s shape for which thesfiamation is
defined. This is achieved by pattern matching on the inpuinarro.

e The propositions appearing before the implication in Tkeol 1.7 need to be
checked in some order, and therefore

¢ An algorithm for each proposition needs to be invoked.

e The program transformation itself needs to be implemenitéds is straight-
forward since the transformation merely rearranges tharaemts given to
the transformation around a new form of expression. Thesfommation
constructs the expression on the right hand side of the qoes¢ in Theo-
rem 11.7. A refactoring is metaprogram and therefore can use the substitu-
tion operation — this operation isiplicit and not part of the actual program.

11.4.2 Changing logical definitions into effective ones

Inspecting the side-conditions of the “enlarge definitippet’ refactoring — that
is, the antecedents in Theorem 11.7 — reveals that they calagsified into the
following three categories:

¢ Well-typing checkdor instancd™,x:T>N:: o

¢ (non)Capture checksor instance~-Captures NM

e Free occurrence checkfor instanced ¢ FVM
Each of these predicates must be refined into an effectivectaaistic function.
For the first category of checks this involves implementirigpe-reconstruction
algorithm for PCFE® and proving it to be correct relative to the static semantics
Handling the second category of checks is easier since dtigateCaptures is
simpler and therefore its algorithm is easier to verify. INog needs to be done for
the third category since the code generation framework @&d gode for ofFV
and the set-(non)membership test it depends on thanksamaltpreprocessing
instructions the framework uses for HOL theories.

The algorithmic equivalent t€aptures (Definition 11.5) is examined next.

Logical notation is used for the effective Boolean opersibere.

Definition 11.9. The algorithmCapt ur esEf f is defined thus:

CapturesEff ;> Terms — Terms — bool
CapturesEff x M’ = False
CaptureskEff (AX'.M)M’ = ((x€ FVM’)V (CapturesEff M M’))

CapturesEff (M;-Mz) M’ = ((CapturesEff M; M')V
(CapturesEff My M'))
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The other clauses are defined by structural induction in thdaus way.

Lemma 11.10.The executable definitidCapt ur esEf f is equivalentto the log-
ical predicateCaptures: VM N. Captures M N «— CapturesEff M N

Proof sketch Induction onM. O

We can now replace every occurrenceCapturesM N with CapturesEffMN

—such as in Theorem 11.7. This would not lead to any notabiefiihowever,
since even if all the side-condition checks were definectgffely we still would
not be able to produce the code of the full refactoring. We pribceed with
the original plan: using Theorem 11.7 as a blueprint anddingl an effective
definition for the refactoring according to it.

The next step involves providing an algorithmic equivatenthe relation as-
serting that a term is well-typed. Given a term in the languiagluced by Def-
initions 11.3 and 11.4 and a typing context, the algorithrtoislecide whether
the term is typable —i.e., we require an algorithm solvirgtyipe reconstruction
problem. The signature for this definition is given next; éictual implementation
is omitted here.

Definition 11.11.Type reconstruction

typeInfer :: Terms — Contexts — Types

In terms of Haskell typestypeInfer returns values of typ#aybe Type .
Having defined the type reconstruction algorithm it is pibtebe correct next.

Lemma 11.12.Correct Type Reconstruction

VEMT. (F>M:T) «— (typelnfer M N = Just 1)

Proof sketch (=) Straightforward induction on the derivatiofi=) Induction on
M; the typing rule is used in the proof of each case. In nondirtases the proof
involves case analysis atypeInfer and using “inversion lemmata” concerning
typelnfer.

An example inversion lemma, concerning application, i®gilelow:

VTl .3o.(typeInfer(My-My) M = JustT) —
(typeInferMil = Just(0 — T) AtypeInferMyl = (Justg))

These lemmata are analogues to the inversion lemmata foyphey relation,
but instead concern the type reconstruction algorithms&hemmata are proved
by case analysis on each occurrenceyfeInfer in the consequent. O

Since the algorithms have been proved to be equivalent sphafications we
can use them interchangeably in the specification of themrévtore profitably,
we could employ the algorithmic definitions in building thefactoring; this will
be described next.
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Definition 11.13.An algorithm implementing thenlarge definition typeefac-
toring:

R :» Term — Var — Var — Type — Term — Term
Rp@(letxX :=MinN) £ AxXyT'L.
case (typelnferL empty,X:T,y:T’)of
Nothing = p
Just 7/ =
if not(Qand (T =1"))
then p
else p/
where
Q £ CapturesEffN((X <= X)x(y=L)))
and (—CapturesEffNM)
and (—CapturesEffLM)
and (notInX (FVM))
and (notIny (FVM))
and (notInx(FVL))

P = letx T = (inLy o M)INN[(X < X)x(y = L) /X
Rp =P

11.4.3 Obtaining an algorithm for the refactoring

The algorithm was defined by reading-off the intended behavirom Theo-
rem 11.7 and filling in the practical details. The algorittershown in Defini-
tion 11.13 — note that this does not show the Haskell codeymexd] but a stylised
simplification: for instance, in the interest of clarity werfiorm pattern matching
on the abbreviation rather than on the core terms of PCHote that the side-
conditions are elided under the local definitignand that the last clause of the
definition specifies thak behaves like the identity function when control “falls
through” because of an unsuccessful match in the previoas i

Apart from a program the algorithm is parametrised by twaoaldes, a type
and a term: as can be seen from the right hand side of the eguatthe an-
tecedent of Theorem 11.7 these parameters are used toltichhsformed pro-
gram.

In line with previous usage, the symb8lis used to convey a definition and
the symbol= will represent the equality test carried out in the metalegg. In
a Haskell implementation these would be represented Bpd== respectively.

11.4.4 \Verifying the algorithm

The refactoring given in Definition 11.13 eé@rrectiff it preserves the behaviour
of arbitrary programs. This statement must indeed be weském the follow-
ing: a refactoring is correct iff it preserves the behaviotiarbitrarywell-typed



XI-10 CHAPTER 11. A CERTIFIED REFACTORING ENGINE

programs. This formulation is sensible since maltyped g are considered
to be meaningless, and is necessary since assuming theprogbe well-typed
discharges the related preconditions in the refactoringe-Theorem 11.7. This
will be discussed further below.

In the algorithm given in Definition 11.13 we invoke the tygeecker on ar-
gumentL and later confirm thdt is indeed well-typed and has the expected type.
Note however that this formulation assunhet® be a closed term — this assump-
tion will be weakened in the improvement of the algorithmgareted below. Since
L, M andN shared the same typing context, this leads us to considargiuenent
to the refactoring — i.e., part of a program — as a closed terprogram. This
is a strong assumption, and renders the refactoring inzgdgé to open subterms
of programs having the right shape. Weakening this formanatequires redefin-
ing the refactoring algorithm, so we postpone the genertédis and first seek to
verify Definition 11.13 using the appropriate formulation.

During the main proof we will need to use the following lemnitasimply
asserts that any well-typed program is behaviourally\egent to itself.

Lemma 11.14.
VpT. (typelnfer pempty = Just T) — empty-p~p:T

Proof sketch Case analysis ontypeInfer p empty” followed by appealing to
the reflexivity of~ and Theorem 11.12. O

We now proceed to formulating the correctness of the algaoritFor clarity

we elide the arguments y, T/, L into X in the formulation of the algorithm’s
correctness given below.

Theorem 11.15.Correctness of the refactorirfgr closed terms

VpT. (typelnfer pempty = Just T) — V X . empty (Rp ?) ~puT

Proof sketch We seek to show that for any well-typed inpRteturns a program
equivalent to the original program — and thus in any caseltberem should rest
on Lemma 11.14 ik behaves in this manner.

We expanat to obtain its conditional checks (in the local definitigim R) as
preconditions and transform the consequent into that obridra 11.7.

We then show that the assumptions obtained by exparrdingply the an-
tecedents in Theorem 11.7: this is straightforward by alopgdo the logical
equivalence o€aptures andCapturesEff, and the membership tests are equiv-
alent.

Finally we must show that the type-related preconditionEteforem 11.7 are
also implied. This involves showing thatifis well-typed therM, N andL are
also typed as expected. The inversion lemmata of the tygersysf PCF! are
used to transform the goals and then Lemma 11.12 is used tothlabthe type-
related preconditions of Theorem 11.7 are implied by theltesturned by the
type reconstruction algorithm. O
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The result we have just proved makes a strong assumptiort Abethat it is
a closed term — but it has served to highlight the generalagmbrwe should take
when verifying such an algorithm. Equally importantly, Xpdained more clearly
the interconnection between a type-checker and the refagtmol in the setting
of a typed language.

11.4.5 Generalising the algorithm and correctness proof

The previous section revealed that Definition 11.13 is néitcsently general: it
can only work on closed sub-programs. In order to generdfiseresult, and
thus render the algorithm applicable over arbitrary supmms of well-typed
programs, we need to pass typing information to the algoritls a parameter.
The new definition differs from Definition 11.13 only in thedition of a typing
context as a formal parameter and the replacemeantety in the case..of using
this context.

11.4.6 Code generation

Once the algorithm was proved to be correct, the code generfaamework by
Haftmann and Nipkow [10] — described§i1.2.1 — was used to generate Haskell
code from the algorithm’s definition in Isabelle/HOL.

Four Haskell modules were generated by the framework — sporeding to
the Isabelle theories from which the code was generated.rt Aqmen the code
most closely associated with the synthesised refactormgine, other code was
generated on which the implementation depended — for instaade related to
natural numbers, sets and HOL itself. In total 313 lines ofkddl code were
generated, and could be immediately compiled under GH@ 6.4.

11.4.7 Improving generated code

When the generated Haskell code was studied it was unsimgpiisat the gen-
erated code was very similar to the definitions in the theoitievas generated
from; but the redundancy and illegibility of some parts of tode immediately
suggested the opportunity to refactor the generated code.

In refactoring jargon, patterns of code such as these amgestigely called
“bad smells” — or opportunities for refactoring. This sugge the value of ap-
plying refactoring to code generated in this manner. Soraengkes are outlined
next:

Removing dead codéThis code might be redundant local definitions within def-
initions or else replacing dummy variables in code prodweitid anonymous
placeholders (in Haskell) if they are supported by the target language.

Type synonymsSome types reoccur in the program and it is well worth giving
them meaningful names to distinguish them. The readalufittype signa-
tures could be improved by adding type synonyms to name émetiytused
signatures.
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Moving code This would facilitate reordering the definitions in the geated
code, moving code between existing modules or else into nedutas to
better reflect the relationships between definitions.

Layout style The generated code uses the coarser style of Haskell pragram
but the user could be offered the choice of which style to heaugh the use
of a refactoring tool.

11.4.8 Summary

This section described this paper’s contribution and tepsheeded to bridge the
refactoring’s correctness theorem with generating itgpm code.

Since the generation of code from specifications is not falljomatic, exe-
cutable versions of logical definitions needed to be writted proved equivalent.
In particular, this had to be done for predicates appeanitiga refactoring’s side-
conditions. Another algorithmic definition was then given the whole refactor-
ing, which in turn called the previously-defined algorithms

This algorithm was verified using the theorem proved in eanlvork, and
Haskell code for the refactoring — and the other definitidn®lies on — was
generated using Isabelle’s new code generation framework.

It was then observed that refactoring could be useful foragarg automatically-
synthesised code, and a number of suggestions were ma@édotaring the code
we generated.

11.5 RELATED WORK

The intention to build refactoring tools from the verificatiof refactorings was
also expressed in earlier work by Garrido & Meseguer [8] amdarl et al. [11],
using the systems Maude and CafeOBJ respectively.

Using interactive theorem provers to build certified prognaing tools has
been attempted for different tools and using differenteyst. For example Okuma
& Minamide [18] use Isabelle/HOL to specify and verify a catap of which
code is then generated and embedded into a larger systewothailes a small
functional language into Java bytecode. A larger developrizedescribed by
Blazy et al. [2] and Leroy [12], in which a compiler is certdie- its frontend
compiles a fragment of C into an intermediate language ¢&@lminor, and the
backend completes the compilation into PowerPC'’s asselabfjuage.

11.6 DISCUSSION

Using PCF! to study the synthesis of refactoring engines in this mameer
perhaps a good starting point not only because the complekithe language
does not eclipse refactoring as the scope of the researth|dmubecause when
it came to synthesising the refactoring engine the codeymed was small and
more amenable to analysis than had we used a larger language.
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The simplicity of the language may be adequate for initiatlgtbut is indeed
far removed from realistic programming languages. Addngss “toy” language
in this experiment has helped prepare us better for tackliagger language — this
work has provided insight on the entire span from formadjgime programming
language to producing a certified refactoring engine forldraguage.

In the long term this line of research seeks to study thelfdigiof producing
tools using an approach similar to this — by relying on a djakwith a theorem
prover to ensure correctness of the synthesised tool. Atgheleast this would
be as difficult as formalising a “non-toy” programming laiage, but the steady
activity in this area of research lends hope to a rapid ratidis of such devel-
opments — in part animated by increasing interest devotetkithanical theorem
proving.

The type-based refactoring engine studied here invokegpleareconstruction
program as part of its operation and, as observed earli@sidye result from the
type reconstruction program is necessary before invokiegefactoring engine.
It might be fruitful to explore if the correspondence betwégese tools could be
rearranged more optimally, and studying the interactiomvben programming
and refactoring tools in order to explore how they can coaigdnetter.

This paper extends previous work [22], partly summarisegllih 3, with the
results described if11.4. The extension involved constructing effective equiv
alents to logical predicates used in earlier specificatiorefactorings, building
an executable specification of a refactoring engine thatedfthe specification
expressed in Theorem 11.7, and proving it to be correct bypime 11.15. This
was carried out in part to explore the phases of the process, econd look at
this process might instead seek to study to what extent patte process could
be automated following the validation of a specification.e T@mount of work
needed to extend the Isabelle theory to generate code wasdal days, but
this increased the size of the theory file by more than 50%oitld/be desirable
to study the optimisation of this process to reduce manualipg and keep the
size of the formalisation small. This would seek to produsgsiem that given a
formula such as Theorem 11.7 it would greatly hasten agiairDefinition 11.13.
This system could perhaps be modified to yiela programs — a refactoring in
either direction — due to the bidirectionality of refactagj described i§11.3.2.

Refactoring is usually done on program code written by peoplt while
studying the synthesis of refactoring engines we were ptedawith an opportu-
nity to reflect on refactoring code that has been generataddmhine. Such code
bears the artefacts of the definitions from which it has besregated, and of the
generation process itself, but is bare of comments; perhdpse work on code
generation could adapt heuristics such as those used by3|p[65] to extract
comments deemed associated with definitions.

11.6.1 Future work and Conclusions

Apart from the ideas discussed in the previous sectiongtheg various other
proposals for extensions of this work. Central among thespgsals is the pro-
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duction of usable programming tools using these methodsxt@nding existing
tools with new functionality. This might be realised by igtating a refactoring
engine obtained in this way with HaRe [13] — the Haskell Rifear.

Another direction for future work involves addressing a eekpressive lan-
guage — for instance one with ML-style polymorphism [822.7]. This would
inch us closer towards a realistic programming languagesaafle the synthesis
of more useful refactoring engines.

We could expand horizontally by broadening the scope of thehanisation
beyondrefactoring, to include other programming tools and stagytheir inter-
action. Alternatively, we could turn our attention to stirdyother refactorings
over this language to test this method further.

Programming tools need to be usable and correct, and thisr ghgscribes
research into the latter. This work is concerned with thettsssis of a correct
refactoring engine through the use of the proof assistafielte. It extends ear-
lier work [22] and elaborates on the process of producingrtifieel refactoring
engine, making use of Isabelle’s new code generation framewn the course
of this research we observed that refactoring can be prbfigtplied to code
generated from mechanised theories.

We thank Huiging Li for valuable discussions on the topictdé tpaper and
the anonymous referees for helpful feedback. The first awtblknowledges the
support of a Marie Curie EST fellowship, the second authémewledges the
support of the EPSRC for building the HaRe and Wrangler todlsrk on ear-
lier related research was possible thanks to financial stippavided to the first
author by the Computing Lab at the University of Kent and eyMalta Govern-
ment Scholarship Scheme through award MGSS/2006/007.
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