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i

Between my finger and my thumb
The squat pen rests; snug as a gun.

Under my window, a clean rasping sound
When the spade sinks into gravelly ground:
My father, digging. I look down

Till his straining rump among the flowerbeds
Bends low, comes up twenty years away
Stooping in rhythm through potato drills
Where he was digging.

The coarse boot nestled on the lug, the shaft
Against the inside knee was levered firmly.
He rooted out tall tops, buried the bright edge deep
To scatter new potatoes that we picked,
Loving their cool hardness in our hands.

By God, the old man could handle a spade.
Just like his old man.

My grandfather cut more turf in a day
Than any other man on Toner’s bog.
Once I carried him milk in a bottle
Corked sloppily with paper. He straightened up
To drink it, then fell to right away
Nicking and slicing neatly, heaving sods
Over his shoulder, going down and down
For the good turf. Digging.

The cold smell of potato mould, the squelch and slap
Of soggy peat, the curt cuts of an edge
Through living roots awaken in my head.
But I’ve no spade to follow men like them.

Between my finger and my thumb
The squat pen rests.
I’ll dig with it.

Seamus Heaney, “Digging”, Death of a Naturalist [26].
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Fermions coupled to solitons on low-dimensional spheres

by Jack MCKENNA

We examine models of Dirac fermions coupled to topological solitons on the

circle S1 and the sphere S2. The fermion is coupled to a pseudoscalar kink in

the (1+1)-dimensional model, and to an isovector modelling a baby Skyrmion

in the (2+1)-dimensional model. In each case, we solve the spectrum of the

fermionic Hamiltonian exactly when the soliton field is kept fixed as a back-

ground field, and the fermion dynamics do not cause any back-reaction on

the soliton field. In the (1+1)-dimensional model, we then bring the kink field

out of the background, fully coupling it to the fermion field. After a change of

coordinates to a set of bosonic coordinates constructed out of bispinors, we

demonstrate that solutions to the bosonic dynamical system can be under-

stood analytically via the framework of elliptic functions. We show that for a

particular class of solutions with no axial charge, we can recover the underly-

ing fermion field from the bispinor solution. In the (2+1)-dimensional model

we specialise to the case of the background soliton of topological degree 1

and exploit an SU(2) symmetry to describe the fermion spectrum.
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Chapter 1

Introduction

1.1 A personal introduction

“Geometry”—William Thurston is alleged to have said—“is the user inter-

face of mathematics”. We might allege a similar claim for theoretical physics;

however, in order for that statement to be taken seriously, the author should

confess that I am firmly a mathematical physicist. As it is a little early in the

thesis to be making such wild conjectures, I will attempt to clarify my feelings

on the matter before we proceed any further.

I have always been fascinated by the geometric foundation of classical

mechanics since I first took a course in Lagrangian and Hamiltonian dynam-

ics. It was a revelation that Poisson manifolds are the natural environment

to understand conservation laws from a Hamiltonian perspective. Wanting

to understand the role of Lie groups and Lie algebras led me to discover the

riches of both representation theory and differential geometry. This was com-

plemented by the glimpses of differential geometry I had previously seen in

undergraduate electrodynamics courses, with the terminology of two-forms

and covariant derivatives. The power of differential geometry in classical

field theory is beautifully demonstrated in electrodynamics, with the seem-

ingly straightforward question of “why isn’t there a magnetic monopole?"

Following this thread led to Dirac’s construction of a magnetic monopole

[20], and then Wu and Yang’s construction in the language of fibre bundles
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[72]. I wrote my graduate diploma dissertation on the rigorous construction

of gauge theories in terms of connections on principal bundles, and described

the ’t Hooft-Polyakov monopole [27, 54] as my final worked example. This

gave me my first introduction to the power of Bogomol’nyi’s equations [11],

and the power of Prasad and Sommerfeld’s solutions [55].

These BPS equations demonstrate that topological solitons can take on

remarkably simple solutions which are, in a sense, a multiple of the identity

function. This applies to both SU(2) instantons on R4 [see e.g. 48, Chapter

10], and particularly BPS B = 1 Skyrmions on S3 [23, 37, 40]. This motivates

my particular examination of similar fermion-(baby) Skyrmion models on S1

and S2. Nonetheless, the famous BPS trick is not just an incredible tool for

calculation or for finding solutions, but it opens the door to moduli spaces

and encourages us to explore their rich geometric structure.

The contemporary field of topological soliton research forges deep links

between applied physics and pure mathematics. The Skyrme theory has ap-

plication to topics such as nuclear matter [see e.g. 5, 14, 25, for some va-

rieties] and condensed matter physics [examples include 19, 22, 34, 49, 60]

but is founded in the power of differential geometry and algebraic topology,

and connects to deep results such as the index theorem and spectral flow

[12, 31]. A self-confessed mathematical physicist could hardly find a better

playground in which to conduct research.

1.2 Contents of the thesis

In Chapter 2, we give a brief overview of the field of topological solitons,

and discuss some contemporary research relevant to our models. We briefly

outline a couple of examples of kinks, as well as mentioning some features

of the Skyrme model. We highlight treatment in the literature regarding the

coupling of fermions to kinks in a number of models and the connection
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to our approach. This will motivate and the choices of Lagrangians, given

below, which define the dynamics we will study.

Our main results are contained in Chapters 3 and 4. Chapter 3 contains

our main results on fermions coupled to kinks. Here we examine in detail a

simple theory of fermion coupling to a pseudoscalar field modelling a peri-

odic topological kink. We start by considering the stationary state dynamics

of the fermion ψ(t, θ) when the scalar field is considered to be in the back-

ground, so there is no back-reaction onto the kink arising from the coupling

with the fermion. This will be modelled by the Lagrangian

L f = ψ
(

ih̄/∂ − geiγ3nθ
)

ψ. (1.1)

We identify a translation symmetry which permits us to use a basis of mo-

mentum eigenstates to solve the linear Dirac equation, and we can describe

the energy spectrum of the fermion analytically. This is an example of a

treatment used in many similar models of fermion-soliton coupling to find

the solutions and energy spectra of the fermions in the absence of back-

reaction, made particularly simple by our choice of coupling term and low-

dimensional spacetime.

We introduce the back-reaction of the kink to our consideration by adding

an appropriate dynamical term for the scalar field to our Lagrangian, chang-

ing it to

L =
M2

2
∂µϕ ∂µϕ + ψ

(
ih̄/∂ − geiγ3ϕ

)
ψ. (1.2)

where ϕ(t, θ) is the dynamical kink field. We examine the equations of mo-

tion, and the symmetries, of the altered model. In particular, we see that the

previous translation symmetry no longer exists in a particularly helpful man-

ner for finding solutions, but is instead in a manner of speaking replaced by

an internal symmetry shared by the kink and the fermion. We will argue that

such an internal symmetry is important quite generally for understanding
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why the fermion would localise onto the kink field, as has been observed in

previous treatments of fermion-soliton coupling.

We model the system as a boundary value problem for an ansatz of sta-

tionary state fermion, and static kink, solutions, and we compute some solu-

tions numerically, which are consistent with the symmetry predictions of the

model. In particular, we generate new, “non-trivial” solutions which are not

explained by the simpler model without back-reaction.

We demonstrate that, with a suitable change of variables, the equations

of motion for the fermion-kink system including back-reaction can be re-

duced to a dynamical system with several interesting features. The explicit

fermionic fields all combine into a set of bosonic coordinates formed from

bispinors of the original system; for this reason, we refer to the reduced dy-

namical system as the bispinor picture. Within the bispinor picture, the in-

ternal symmetry which we argue is important for localisation gives an even

stronger implication: the equations of motion for the fermion bispinors do

not depend on the kink, while conversely the solution to the equation of mo-

tion for the kink is determined by a solution to the bispinor equations. In a

sense, this bispinor perspective demonstrates that the kink is subordinate to

the fermion in our model, at least within our ansatz. Nonetheless, perhaps

the strongest implication of the bispinor picture is that the bosonic dynam-

ical system can be solved in terms of elliptic functions. Thus, although we

may not be able to write bosonic solutions explicitly in terms of elementary

functions, the technology of the Jacobi elliptic functions allows us to express

these solutions in terms of well-understood special functions, and to make

strong qualitative and quantitative statements about their features in terms

of certain parameters of the model.

The bispinor system is strictly weaker than the original system of fermions

and the scalar kink, and thus we would not expect that every solution of the

bispinor picture extends to a solution of our original system. Nonetheless,
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we show that in the case we focus on, we can satisfy a consistency condi-

tion arising from the relevant Dirac equations to solve for explicit fermion

components given a solution to the bispinor system. We discuss a system-

atic approach for numerically exploring the configuration space of solutions

to the bispinor system in order to obtain corresponding solutions to the full

fermion-kink system.

In Chapter 4 we look at coupling fermions to a non-linear sigma field

which models baby Skyrmions on a spherical spatial manifold, via a coupling

term analogous to how we previously coupled fermions and kinks, while

necessarily including isospin. Our starting point will be the Lagrangian

L f = Ψ(ih̄ /̂D − gτ · ϕ)Ψ, (1.3)

where Ψ(t, θ, ϕ) represents the fermion which now carries isospin, and ϕ(t, θ, ϕ)

is the isovector triplet of scalar fields comprising the baby Skyrmion. This

treatment is highly motivated by a quite analogous system of fermions on a

background B = 1 BPS Skyrmion on S3, as developed by Goatham and Kr-

usch [23]. Preserving some of the geometry of the sphere in our solutions,

such as taking an ansatz of axial symmetry, makes them resemble suitably

nice topological solitons in Skyrme models (or in instanton models). We

therefore assume a suitably simple and symmetric background configuration

of the soliton fields, and as in the previous chapter first examine fermion dy-

namics in the absence of back-reaction. Once again, we construct the problem

of finding Hamiltonian eigenstates for stationary state solutions of the Dirac

equation. There is again a symmetry of the space manifold which we can use

to identify a conserved angular momentum. With two spatial dimensions,

however, this is not enough to give a full decomposition of Hamiltonian

eigenstates: we need an additional mutually conserved “quantum number”

to serve as a label.
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Separating variables according to our ansatz of axial symmetry, we find

that the differential equation for the remaining unknown profile function is

of Fuchsian type when extended to the complex plane. We can therefore con-

sider Frobenius series solutions around its regular singularities (which are

its only singularities). Moreover, we find that the Fuchsian behaviour of the

pole at complex infinity gives us a condition on the energy spectrum of solu-

tions. We will focus on the case where the baby Skyrmion just has topological

charge 1. We observe that in this case, the fermion lives in a representation of

SU(2). Constructing the Casimir operator for this representation gives us the

second quantum number needed for a full decomposition of the Hamiltonian

eigenstates. We obtain the explicit energy eigenvalues of Hamiltonian eigen-

states, and outline the constructive approach to deriving explicit component

expressions for the eigenstates.

We conclude with Chapter 5. We recap our results and outline some di-

rections for future work. In particular we discuss the role of the axial sym-

metry of the kink-fermion model in Chapter 3, and outline some possible

extensions of the model with a focus on this symmetry. We also discuss

broader contexts for investigating coupling between fermions and solitons

on spheres.

We include two appendices. In Appendix A we explicitly work through

some differential geometry to derive the spin connection and the change of

basis transformations for fermions on S2, which we have used in Chapter

4. Appendix B contains some Maple worksheets which implement some

lengthy algebraic manipulations, and perform the subsequent Fuchsian anal-

ysis, for Chapter 4. It also contains a worksheet very briefly demonstrating

some established results for the spectrum of fermions on S2 as previously

treated by Abrikosov [1].
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Chapter 2

Background

2.1 A quick introduction to topological solitons

A topological soliton is a minimal-energy configuration in a non-trivial topo-

logical sector of a field theory. They are typically localised in some sense and

so can be modelled in a particle-like way. The simplest examples are kinks

in (1+1) dimensions, such as the celebrated ϕ4 and sine-Gordon models [43,

54, 64]. The ϕ4 kink arises from a Lagrangian which, in natural units where

c = 1 = h̄, may be expressed as

L =
1
2

∂µϕ∂µϕ − λ
(

m2 − ϕ2
)2

. (2.1)

A static solution localised at position a to the equation of motion obtained by

varying (2.1) is

ϕ(x) = m tanh
(√

2λm (x − a)
)

, (2.2)

and a Lorentz boost gives the moving kink with velocity v,

ϕ(t, x) = m tanh
(√

2λm
x − vt − a√

1 − v2

)
. (2.3)

The sine-Gordon model has Lagrangian density

1
2

∂µ∂µϕ − (1 − cos ϕ) . (2.4)
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A static solution localised at position a is

ϕ(x) = 4 tan−1 ex−a, (2.5)

and a Lorentz-boosted moving kink is

ϕ(t, x) = 4 tan−1 e
x−vt−a√

1−v2 . (2.6)

In each case, the kink interpolates between distinct topological vacua at x =

±∞ and thus cannot dynamically decay.

Even such apparently simple models can lead to complex behaviour. An

old question of kink-antikink scattering is still a contemporary area of re-

search exhibiting extremely rich physics such as multi-bounce resonance win-

dows and spectral walls [3, 4, 6, 15, 42]. Not all of the study of kinks is

classical: the quantum sine-Gordon model gives rise to the deep notion of

bosonisation in (1+1)-dimensional quantum field theory [17].

The Skyrme model is a non-linear (3+1)-dimensional SU(2) sigma model

[63, 65]. It is an effective field theory of QCD, becoming exact in the limit

N → ∞, where N is the number of colour charges [69, 70]. It has topological

soliton solutions which can be interpreted as baryons. There is an analogous

“baby Skyrme” model in (2 + 1) dimensions which is a significant simplifi-

cation but also admits topological solitons [53], which have applications to

condensed matter physics [see e.g. 66]. More recently a model of “magnetic

Skyrmions" has been developed in (2 + 1) dimensions [10], particularly in

models of chiral magnets [8]. Magnetic skyrmions have been experimentally

observed in condensed matter systems [22], and have potential applications

to low-energy data storage as a framework for “racetrack memory” [19, 47].
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2.2 Topological solitons, spheres, and fermions in

low dimensions

The dynamics of fermions coupled to topological solitons have been exam-

ined in various low-dimensional models, where the coupling term is mo-

tivated by analogy to “chiral bag” models of nucleon and fermion fields

[see e.g. 16, 28]. When the nucleon is modeled by a topological soliton, the

fermion typically also carries isospin, and couples to the isovector soliton via

a bispinor term. Spacetime is typically chosen to be either flat Minkowski

space, or such that a canonical spatial slice is taken to be an n-sphere, per-

haps by compactification of an originally flat spacetime. Often, it is easiest to

consider the soliton to be an independent background field for the fermion,

so there is no back-reaction of the fermion on the soliton and the fermion

can be (numerically or analytically) solved for a choice of a known soliton

solution. Occasionally the soliton is instead fully coupled to the fermion and

solutions of the full combined system are obtained. A numerical approach is

generally necessary; when the fermions can be solved analytically, the sym-

metries of the model usually aid classification of the solutions, and these so-

lutions may sometimes be expressed in terms of hypergeometric functions

(or indeed well-known subfamilies of “the” hypergeometric function). A

typically observed phenomenon is localisation of the fermion by the soliton.

Such models also sometimes feature spectral flow, where the fermionic energy

eigenvalues, which depend on the physical parameters of the system, can

sometimes pass through the value 0 and change sign as we evolve the phys-

ical parameters. The existence of such fermionic zero modes is predicted by

the index theorem for the relevant Dirac operator.

In (1 + 1) dimensions, fermions have been added to scalar field models

that admit topological solutions on the real line, such as ϕ4 theory and sine-

Gordon theory. In one space dimension, the soliton is modelled using a scalar
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(or pseudoscalar) field, such that the model admits solutions where this field

interpolates between topologically distinct vacua; as particles or localised ex-

citations, the solitons are precisely these topologically non-trivial solutions.

Fermions on a background ϕ4 kink solution modelled with a very simple

chiral coupling term have been modelled by Shahkarami, Mohammadi, and

Gousheh [62], using a Lagrangian of the schematic form

L = ψ
(

iγµ∂µ − geiϕγ5
)

ψ. (2.7)

Here ψ is the fermion, ϕ is the fixed pseudoscalar kink, γ5 is the chiral Dirac

matrix, and g is a coupling constant.1 This system has been solved numeri-

cally [24, 62], giving insight into scattering coefficients as well as the role of

the topological winding number and and an interpretation that the fermionic

zero modes contribute to the system’s Casimir energy. Numerical solutions

have also been found when the pseudoscalar kink is taken out of the back-

ground and allowed to react to the fermion [61]; that system is modelled by

the addition of the terms of the typical ϕ4 Lagrangian (2.1) to (2.7).

On a background sine-Gordon kink, a fermion can be added with a cou-

pling term motivated by the chiral bag model by interpreting the kink as an

isovector and promoting the fermion to an isospinor representation. Loginov

[39] has modelled this coupling by using a Lagrangian for the fermion of the

form

L f = iψγµ∂µψ − gϕ · ψτ⊥ψ, (2.8)

where ϕ is the background isovector corresponding to the sine-Gordon kink,

and τ⊥ denotes the “isovector of isospin matrices”, in the same sense that

1In [62], the authors use the notation M instead of g for the coupling constant, and ex-
plicitly interpret this as a fermionic mass parameter. However, in Chapter 3, we will use M
to denote a different parameter, so to avoid confusion we take the liberty of renaming their
coupling constant to the nomenclature that we will use.
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we typically write γµ to denote the vector of spin matrices. Fermion scatter-

ing states then have wavefunctions that can be expressed in terms of Heun

functions. The dependence of the transmission and reflection coefficients on

physical parameters such as the fermion mass is investigated numerically,

and it is observed that fermionic zero modes polarise the vacuum.

The examples of fermion-kink coupling in the Lagrangians (2.7) and (2.8)

provide the general prototype of models we will consider. We consider them

to have a similar “flavour”, and interpret the chiral coupling in (2.7) to be an

isospin-less analogue of the spin-isospin coupling in (2.8), the latter of which

directly generalises to models of higher-dimensional solitons. However, we

note that these are not the only coupling terms between fermions and kinks

which have been studied. Dirac fermions coupled to kinks is also an active

area of contemporary research linked to the questions of kink-antikink colli-

sions [9] and kink quasi-normal modes [13]. Those models employ coupling

terms of the generic form G(ϕ)ψψ for a function G of the kink field ϕ. The

simplest case where G is constant gives standard Yukawa coupling, but cases

such as G(ϕ) = sin ϕ are also considered. Although these are outside the

scope of our treatment, they demonstrate the breadth of activity in this field.

In (2+ 1) dimensions, fermions have been added to models which admit

solitons in the plane, such as those known as baby skyrmions [51] where the

soliton is stabilised by a Skyrme term, and magnetic skyrmions [52] where

the soliton is stabilised by a Dzyaloshinskii-Moriya interaction, or DMI, term.

A typical Lagrangian in such models contains terms for the isospin-carrying

fermion Ψ in the form

L f = iΨγµ∂µΨ − gΨ (ϕ · τ)Ψ, (2.9)

where ϕ is the isovector field modelling the soliton and again τ comprises the

isospin matrices. The direct analogy to (2.8) is clear. In flat space, a mass term
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−mΨΨ may be added to the fermion, and in the case of magnetic Skyrmions

the derivative term is augmented by the presence of an external magnetic

field.

In the absence of back-reaction in such models, there is typically a com-

bined rotation-isorotation symmetry of the fermion fields, corresponding to a

generalised angular momentum generator; the conserved eigenvalue of this

operator aids classification of the fermion solutions. When back-reaction is

considered in the baby Skyrmion model, it is numerically observed that a

strongly coupled fermion deforms the soliton. One zero-crossing fermion

mode is observed under spectral flow. In the case of the magnetic Skyrmion

model, the introduction of the fermion leads to new physics, as it allows

for a multi-soliton bound state which cannot arise in its absence. Recently,

Barsanti and Tallarita [7] have also studied a model of fermions coupled to

baby Skyrmions on a cylinder and determined an analytic sector.

In (3 + 1) dimensions, the Skyrme model on a spatial 3-sphere exhibits a

particularly straightforward BPS solution for topological degree B = 1 [40].

This solution has been used as a background for spin-isospin fermions [23,

37] with analogous coupling to that at (2.8) and (2.9):

L f = iΨγµDµΨ − gΨ (ϕ · τ)Ψ. (2.10)

In this case, the covariant derivative Dµ contains a contribution from the

non-trivial spin connection on the curved space S3. Similarly to the baby

Skyrmion model in (2 + 1) dimensions, there is a generalised angular mo-

mentum of the fermion around the background Skyrmion, the eigenvalue of

which provides a quantum number. A full description of fermion solutions

is possible with some analytical tools by observing that part of the energy
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eigenvalue problem is expressed as a Fuchsian differential equation. A fam-

ily of solutions can be expressed in terms of a basis of spinorial eigenfunc-

tions of the Dirac operator, similar to the role of so-called “spinor harmonics”

or “monopole harmonics” on the 2-sphere [1, 21]. This model of fermions on

a B = 1 Skyrmion on S3 as studied by Goatham and Krusch [23] particularly

motivated our investigation of fermions on a background baby Skyrmion on

S2. Our treatment of fermions and background baby Skyrmion on S2 will

start from a Lagrangian which is exactly analogous to (2.10). We hope that

similar techniques will allow us to classify our fermion solutions. Moreover,

we are interested in seeing whether, when the spatial sphere is made large,

our model becomes similar to the results obtained by Perapechka, Sawado,

and Shnir [51] for fermions on a background baby Skyrmion in flat space.

In general, there is ample evidence that zero modes of Dirac operators

play a significant role in models of topological solitons, both physically and

geometrically. Aside from the mentioned physical qualities of zero-mode

fermions in coupled fermion-soliton systems, for example, Ross and Schroers

have shown that vortices on S2 are linked to magnetic zero modes of Dirac

operators in three dimensions by Cartan geometry [57]. Manton and Schroers

have shown that a vector bundle of Dirac zero modes over a moduli space of

BPS monopoles can be used to explore the quantum interaction of monopoles

and fermions [41].
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Chapter 3

Fermion-kink coupling on S1 × R

In this chapter, we present a (1 + 1)-dimensional model of a (classical) Dirac

fermion coupled to a scalar field as an idealised model of a fermion in the

presence of a topological kink. Our spacetime manifold is R× S1, with an un-

bounded time direction and a periodic space direction. Although the model

is Lorentz-invariant, we break the relativistic symmetry to work in a privi-

leged frame, and consider static solutions for the kink and steady state solu-

tions for the fermion in this non-relativistic perspective, seeking to solve the

energy eigenvalue problem for the fermion. We first consider the case where

the kink is fixed with an idealised uniform winding in the background, so

there is no back-reaction from the fermion on the kink. In this case, the prob-

lem is linear, and a symmetry of the coupling term allows us to define an

appropriate “generalised angular momentum” operator, the square of whose

eigenvalue is a conserved quantum number and permits the organisation of

the fermion solutions by energy levels. The energy levels are typically degen-

erate of dimension 2, and there are two useful bases for such energy levels: a

(signed) angular momentum basis, and a parity basis. There is a conserved

Noether charge W, the axial charge of the fermion, which can be understood

as a measure of how badly the discrete parity symmetry is broken for any

fermion solution: it vanishes for parity eigensolutions, but is maximised, in

an exact sense, for angular momentum eigensolutions.

Next, we take the kink “out of the background” by introducing a Dirichlet
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term for the kink into the action, weighted by a parameter we call the activ-

ity, which resists the back-reaction from the fermion on the kink. In the limit

of infinite activity, the kink is restored to the background and the problem

reduces to the previous special case. In general, the problem with the fully

coupled kink is non-linear. Moreover, the symmetries of the system are al-

tered in such a way that the generalised angular momentum of the previous

case decomposes into two separate symmetries: the usual space translation

of the fields in the Poincaré group, and a new continuous internal symmetry

combining a target space rotation of the kink with an axial spin transforma-

tion of the fermion. There is no longer an immediately clear quantum num-

ber corresponding to the previous role of angular momentum. The angular

momentum eigensolutions of the fermion, with a uniform kink, do remain

as solutions of the general model. However, the parity eigensolutions of the

special case do not remain solutions of the general case, as they violate the

new internal symmetry.

We investigate the system numerically by making suitable ansätze so that

the equations of motion form a boundary value problem. We find solutions

where the kink is not simply uniform, as it would be in the absence of back-

reaction, and where the fermion components appear by inspection to form

parity eigenspinors. To excellent numerical accuracy, these new solutions do

satisfy the conservation equation for the internal symmetry, and have van-

ishing axial charge. We therefore interpret these as the appropriate parity

eigenstates of the system when back-reaction is permitted.

By considering the Lorentz-invariant bispinors of the model, we observe

that under the ansatz of a static kink and a stationary state fermion, the

behaviour of the kink is fully determined by the density profile |ψ|2 of the

fermion field ψ, which itself obeys a non-linear differential equation that ad-

mits solutions in terms of elliptic functions. We employ the theory of the



Chapter 3. Fermion-kink coupling on S1 × R 16

Jacobi elliptic functions to describe a specific class of analytical solutions, ex-

hibiting fermionic states of definite parity, and describe how in this picture

one could try to find physical solutions to the kink-fermion system by hunt-

ing for the intersection points of a pair of transcendental curves. We can

again observe the role of the axial Noether charge W in “interpolating” be-

tween definite-parity solutions and the preserved “angular momentum” so-

lutions. Finally, we demonstrate that, at least for the definite parity solutions,

no information is lost by moving from the original fermionic coordinates to

the picture with just the bispinor coordinates: we can always reconstruct the

underlying fermion field from a solution to the bispinor system.

3.1 Conventions and representations

Throughout, we specifically retain the reduced Planck’s constant h̄, and the

length scale ρ giving the radius of S1, so that we can examine limiting be-

haviour of these parameters in the future. We set c = 1, and take the space-

time metric

g = dt ⊗ dt − ρ2 dθ ⊗ dθ. (3.1)

We take a local orthonormal frame to be e µ
α = diag(1,− 1

ρ ). We denote the

matrix inverse to the frame matrix e µ
α to be eα

µ, such that

eα
µe ν

α = δν
µ, eα

µe µ
β = δα

β. (3.2)

With our choice of frame, the local tangent vector basis is given by

ê0 =
∂

∂t
, ê1 = −1

ρ

∂

∂θ
, (3.3)
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and the local dual basis is

ϑ̂0 = dt, ϑ̂1 = −ρ dθ. (3.4)

With respect to this frame, g(êα, êβ) = ηαβ = diag(1,−1).

For the spin representation, we take the chiral representation of matrices

γα satisfying {γα, γβ} = 2ηαβ:

γ0 =

0 1

1 0

 , γ1 =

0 −1

1 0

 . (3.5)

Given a Clifford algebra Cl(V) on a vector space V, we can construct the

corresponding spin group Spin(V). Thus, a representation of the generators

of the Clifford algebra extends to define a representation of the spin group.

On an even-dimensional space, this representation (3.5) of the spin group is

not irreducible. It decomposes into two chiral or Weyl components, each of

half the dimension of the overall Dirac representation. Here our Dirac rep-

resentation has two complex dimensions, and the Weyl representations are

of complex dimension one. Our choice of representation decomposes as a

direct sum; that is, each of the components of a spinor belongs to a different

Weyl subrepresentation. Correspondingly, there is a chiral γ matrix whose

eigenspaces are the Weyl subrepresentations. It is found here simply as the

product of the γ matrices for the local vector basis elements. It is conven-

tional to refer to it as γn+1 on a Lorentzian manifold of dimension n, as it is

equivalent to the corresponding Dirac matrix for a truly Riemannian (i.e. not

pseudo-Riemannian) manifold of dimension n + 1, which would be labelled

starting from 1 instead of 0. We therefore have the additional γ matrix,

γ3 = γ0γ1 =

1 0

0 −1

 . (3.6)
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Note that the anti-commutation relations of the gamma matrices give us the

equivalent expressions γ3 = −γ1γ0 and γ3 = 1
2

(
γ0γ1 − γ1γ0). It is also

evident that
(
γ3)2

= 1.

We use the frame to construct spacetime gamma matrices γµ from the

local gamma matrices γα by defining

γµ = e µ
α γα. (3.7)

In particular, while γt = γ0, γθ = − 1
ρ γ1. It is useful to introduce an overall

energy scale,

a =
h̄
ρ

. (3.8)

Adopting this notation, the Dirac operator can be expressed quite simply in

terms of the familiar local gamma matrices γ0, γ1 as

ih̄/∂ = ih̄γ0 ∂

∂t
− iaγ1 ∂

∂θ
. (3.9)

(Note that in two dimensions, there is no non-trivial contribution from the

spin connection to the Dirac operator.)

We conventionally view all transformations as active: under a (say, Lorentz)

transformation Λ of spacetime coordinate,

x 7→ Λx, (3.10)

a generic field ϕ(x) on spacetime transforms as

ϕ′(x) = RΛϕ(Λ−1x), (3.11)

where RΛ is the appropriate representation of the transformation Λ on the

field ϕ.
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In the local basis, define the Lorentz invariant and alternating tensor ε̂αβ

according to

ε̂01 = 1 = −ε̂10, (3.12)

the indices of which we can raise with the local Minkowski metric ηαβ. Then

we have the following useful identities in the local Clifford algebra:

(i) γ3 = 1
2 ε̂αβγαγβ,

(ii) γαγβ = ηαβ − ε̂αβγ3,

(iii) γαγ3 = ε̂α
βγβ.

We can contract with the frame to define a Lorentz invariant, alternating ten-

sor in the spacetime basis, ε̂µν = ε̂αβeα
µeβ

ν. Explicitly, the non-zero compo-

nents are easily seen to be

ε̂tθ = −ρ = −ε̂θt. (3.13)

(We see the utility of the hat on ε̂αβ: it serves as a reminder that the corre-

sponding spacetime basis tensor ε̂µν is scaled differently to the usual Levi-

Civita symbol.)

3.2 Overview of the Lagrangian: parameters and

dimensions

Let us introduce, and perform some dimensional analysis upon, the most

general Lagrangian that we will study for this model of fermion-kink cou-

pling. When we admit full coupling between the fermion and the kink, we

will use the Lagrangian density

L =
M2

2
∂µϕ ∂µϕ + ψ

(
ih̄/∂ − geiγ3ϕ

)
ψ. (3.14)
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The dynamical fields are the scalar field ϕ(t, θ) used to model the kink, and

the Dirac spinor field ψ(t, θ). We have chosen a chiral coupling term like the

model studied by Shahkarami, Mohammadi, and Gousheh [62]; the fermionic

terms are the same as those we saw at (2.7), but we denote the chiral Dirac

matrix now by γ3. We have included a Dirichlet term for the scalar field, but

we do not include a potential term for scalar field independent of its interac-

tion with the fermion. The action corresponding to this Lagrangian is

S =
∫

R×S1

[
M2

2
∂µϕ ∂µϕ + ψ

(
ih̄/∂ − geiγ3ϕ

)
ψ

]
ρ dt dθ. (3.15)

Having taken c = 1, there are two basic dimensions we should consider:

energy, which we denote [E], and distance, which we denote [L]. Note that

although the time coordinate t is dimensionful, with [t] = [L], the angular

coordinate θ is dimensionless, i.e. [θ] = 1, and so we must be careful to

include factors of the length scale ρ arising from the metric where necessary.

In particular, this implies that we need to be careful with the dimension of

derivative operators, depending on coordinate and whether the derivative

has covariant or contravariant indices. We have [∂t] = [∂t] = [L]−1 as usual,

but [∂θ] = 1 whereas

∂θ = − 1
ρ2

∂

∂θ
⇒ [∂θ] = [L]−2. (3.16)

The product of ∂µ and ∂µ, either on distinct operands such as in the Dirichlet

term or forming the d’Alembertian on a single operand, satisfies [∂µ][∂µ] =

[L]−2. Similarly, the local gamma matrices γ0, γ1 and γ3 are dimensionless,

but the spacetime gamma matrices defined at (3.7) have dimensions
[
γt] =

1 but
[
γθ
]
= [L]−1. This implies that the Dirac operator /∂ does have the

dimension of a spatial derivative:

[/∂] =
[
γµ∂µ

]
= [L]−1. (3.17)



Chapter 3. Fermion-kink coupling on S1 × R 21

Overall, the action S should have dimension [S] = [E][L], so in our case

with two spacetime dimensions, we see that the Lagrangian (density) should

satisfy [L] = [E][L]−1. Planck’s constant (reduced or not) conventionally has

units of action, so [h̄] = [E][L] also. This lets us determine a consistent set

of dimensions for the remaining parameters and fields. From the Dirac term,

we find the dimension of the fermion field:

[
ih̄ψ/∂ψ

]
= [h̄][/∂] [ψ]2 = [E][ψ]2 ⇒ [ψ] = [L]−

1
2 . (3.18)

The scalar field ϕ should be explicitly dimensionless in order for us to expo-

nentiate it in the coupling term. Therefore, the dimensionful coefficient M2

must be included in the Dirichlet term for consistency. We find in particular

the following:

[
M2

2
∂µϕ ∂µϕ

]
= [M2][L]−2 ⇒ [M2] = [E][L]. (3.19)

We will refer to the nonnegative real coefficient M of dimension [E]
1
2 [L]

1
2 as

the activity of the scalar field ϕ, since its role is to enforce dimensional consis-

tency with the action.

Finally, we quickly observe that the coupling constant g in the interaction

term must have dimension of energy:

[
gψeiγ3ϕψ

]
= [g][L]−1 ⇒ [g] = [E]. (3.20)

We observe three dimensionless combinations of the physical parame-

ters. There is a quantity g̃ defined by

g̃ =
g
a
=

ρg
h̄

, (3.21)

describing the strength of the coupling relative to the energy scale set by the
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size of the system. There is also a dimensionless measure M̃2 of the scalar

field activity,

M̃2 =
M2

h̄
. (3.22)

We will see that the quotient of these quantities,

M̃2

g̃
=

M2

ρg
, (3.23)

gives a measure of the relative inertia of the kink to back-reaction effects

caused by the fermion. In practice, we will mostly be working in units of

the energy scale a, and so will effectively think of this by comparing M2

ρ to

g. However, from around Section 3.6 to the end of this chapter when we dis-

cuss the role of elliptic functions in the fully coupled model, we will usually

rescale to work with dimensionless quantities.

3.3 The prescribed kink

3.3.1 Lagrangian and symmetries

We will first consider the case where the kink is fixed in the background and

experiences no back-reaction owing to the presence of the fermion. As dis-

cussed in Section 2.2, previous treatments have fixed the kink to take the form

of a known soliton solution in a scalar field theory. Since our most general

Lagrangian (3.14) does not include a potential term for the scalar field, the

background solution should be appropriate to the theory of a free scalar field

on the circle (i.e. a massless Klein-Gordon field). For maximal simplicity,

we choose to prescribe the background kink to be static and uniform with

winding number n ∈ Z, i.e.

ϕ(t, θ) = nθ. (3.24)
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We note that this solution is always the lowest-energy solution within the

homotopy class specified by n, so we consider it to be a sensible profile for

the scalar field about which to later test the back-reaction from the fermion.

To consider the dynamics of the fermion chirally coupled to this back-

ground kink, we choose to work with a model of a Dirac fermion ψ(t, θ) with

Lagrangian density

L f = ψ
(

ih̄/∂ − geiγ3nθ
)

ψ. (3.25)

The kink is totally absent except for influencing the form of the coupling

term. The Dirac fermion ψ(t, θ) is the only dynamical field in this treatment.

We apply the variational principle directly to this Lagrangian. The Dirac

equations are

(
ih̄/∂ − geiγ3nθ

)
ψ = 0 (3.26)

and the spinorial conjugate equation.

The Lagrangian is manifestly time-invariant, leading to a conserved Noether

charge corresponding to the total energy,

Etot =
∫ 2π

0
ψ†γ0

(
iaγ1 ∂

∂θ
+ geiγ3nθ

)
ψ ρ dθ =

∫ 2π

0
ψ†Ĥψ ρ dθ, (3.27)

with ∂Etot
∂t = 0. We use the above expression to define the self-adjoint Hamil-

tonian operator Ĥ. The equation of motion (3.26) can be written as a Schrödinger-

type equation,

ih̄
∂ψ

∂t
= Ĥψ. (3.28)

We will seek in particular steady state solutions, of the form

ψ(t, θ) = e−
i
h̄ E f tψ(θ), (3.29)
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where the fermionic energy density E f must therefore be a (real, constant)

eigenvalue of Ĥ.

The fermion has a global U(1) phase symmetry under the transformation

ψ(t, θ) 7→ eiαψ(t, θ), (3.30)

and there is a corresponding conserved U(1) charge T which we choose to

define as

T =
∫ 2π

0
ψ†ψ ρ dθ. (3.31)

Observe that with this definition, T is dimensionless. It therefore effectively

sets a normalisation of the fermion field, and so we will typically refer to

the local quantity |ψ|2 = ψ†ψ just as the “density” of the fermion, without

labouring the point that it is a U(1) Noether charge density.

We will see that while the kink is in the background, the value of T does

not play a role in the physics, so it is convenient to simply take T = 1 until

we move to the fully coupled model. This convention identifies the fermionic

energy density eigenvalue E f with the total energy Etot; we will generally

ignore the distinction, and refer to E f just as the energy of the fermion.

When we have thus prescribed the kink in the background, and are only

free to transform the fermion field, we observe a continuous symmetry under

which

ψ(t, θ) 7→ e−iα n
2 γ3

ψ(t, θ − α), (3.32)

with conserved charge (by Noether’s theorem)

QL =
∫

S1

(
−

∂L f

∂(∂tψ)

(
iγ3 n

2

)
+ ϑt

θ

)
dθ (3.33)
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(where ϑ
µ

ν is the energy-momentum tensor)

=
∫

S1
ψ†
(
−ih̄

∂

∂θ
+ h̄

n
2

γ3
)

ψ dθ =
∫

S1
ψ† L̂ψ dθ. (3.34)

We define the self-adjoint generalised angular momentum operator L̂ according

to the above:

L̂ = h̄
(
−i

∂

∂θ
+

n
2

γ3
)

. (3.35)

The absence of ρ from the integral at (3.33) is of no consequence: in practice

we only work with the operator L̂ rather than the quantity QL. It is easily

checked that

[L̂, Ĥ] = 0, (3.36)

so we can seek a joint eigenbasis of static solutions for both energy and this

angular momentum. There is also a discrete parity symmetry,

ψ(t, θ) 7→ γ0ψ(t, 2π − θ). (3.37)

We should comment that strictly, what we are calling (generalised) angu-

lar momentum is really just (generalised) momentum for this (1+1)-dimensional

system, and in particular it is a Lorentz vector quantity which transforms as

a vector under parity, rather than a pseudovector picking up an extra minus

sign relative to vector quantities, which would be the typical characteristic of

an angular momentum in an odd number of space dimensions. However, we

will still consistently refer to it as angular momentum by virtue of its analogy

to Fourier modes in higher dimensions.
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3.3.2 Solutions in angular momentum and parity bases

Our aim is to solve the eigenvalue equation for a static fermion,

Ĥψ(θ) = Eψ(θ). (3.38)

We first derive the eigenspinors ψl(θ) of the operator L̂ defined above at

(3.35), satisfying

L̂ψl(θ) = h̄lψl(θ). (3.39)

In the chiral basis, we write the fermion as

ψ =

ψR

ψL

 , (3.40)

where the subscripts R and L refer respectively to the right- and left-handed

chiral (Weyl) components. In this basis, equation (3.39) is expressed

h̄

−i ∂
∂θ +

n
2 0

0 −i ∂
∂θ −

n
2


ψR

l

ψL
l

 = h̄l

ψR
l

ψL
l

 . (3.41)

Thus the angular momentum eigenspinors are

ψl(θ) =

Aei(l− n
2 )θ

Bei(l+ n
2 )θ

 , (3.42)

where A, B are complex coefficients and l ± n
2 must be an integer.

Susbstituting the above expression for an angular momentum eigenspinor

into the energy eigenvalue equation (3.38), we observe that the energy eigen-

value problem reduces to the finite-dimensional eigenvalue problem

det(Halg − EI) = 0, (3.43)
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where we define Halg to be the algebraic Hamiltonian for angular momentum

eigenvalue l:

Halg =

−a(l − n
2 ) g

g a(l + n
2 )

 . (3.44)

The algebraic eigenvalue problem (3.43) gives a quadratic equation in the

energy E, (
E − a

(
l +

n
2

)) (
E + a

(
l − n

2

))
− g2 = 0. (3.45)

The solutions give the energy spectrum in terms of n, l and g:

E =
an
2

±
√

a2l2 + g2. (3.46)

Thinking of the spectrum as dependent on the coupling constant g, we see

that there are two branches for each choice of n and l. On the upper branch,

taking E = E+ = an
2 +

√
a2l2 + g2, the eigenvector condition on the coeffi-

cients A, B becomes
B
A

=
al +

√
a2l2 + g2

g
. (3.47)

Thus an explicit (not normalised) solution on the upper energy branch is

ψl,E+(t, θ) = e−
i
h̄

(
an
2 +

√
a2l2+g2

)
t

 gei(l− n
2 )θ

(al +
√

a2l2 + g2)ei(l+ n
2 )θ

 . (3.48)

On the lower energy branch, taking E = E− = an
2 −

√
a2l2 + g2, the condition

on the coefficients is
B
A

=
al −

√
a2l2 + g2

g
, (3.49)

and an explicit solution on the lower branch is

ψl,E−(t, θ) = e−
i
h̄

(
an
2 −

√
a2l2+g2

)
t

 gei(l− n
2 )θ

(al −
√

a2l2 + g2)ei(l+ n
2 )θ

 . (3.50)
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Consider the behaviour of these solutions as g tends to 0. Evaluating the limit

carefully and noting, for example, that

al −
√

a2l2 + g2

g
=

−g
al +

√
a2l2 + g2

, (3.51)

we see that the solution on the upper branch becomes a left-handed Weyl

spinor, while the solution on the lower branch becomes a right-handed Weyl

spinor:

lim
g→0

ψl,E+(θ) =

 0

2alei(l+ n
2 )θ

 , (3.52)

lim
g→0

ψl,E−(θ) =

2alei(l− n
2 )θ

0

 . (3.53)

The parity operation P̂ψ(t, θ) = γ0ψ(t, 2π − θ) commutes with the Hamil-

tonian, but not with the angular momentum operator L̂; parity exchanges

an eigenstate of angular momentum l with the corresponding eigenstate of

angular momentum −l. We define an energy eigenstate ψP
|l|± = ψP

|l|,E± of

definite parity P = ±1 to be a state satisfying

γ0ψP
|l|,E±(t, 2π − θ) = PψP

|l|,E±(t, θ). (3.54)

Since the parity operation changes the sign of angular momentum, we ex-

pect that over the angular momentum basis, states of definite parity can be

constructed as (without loss of generality choosing l ≥ 0):

ψ+1
|l| =

1√
2
(ψl + ψ−l) , (3.55)

ψ−1
|l| =

1√
2
(ψl − ψ−l) . (3.56)

This is valid when the angular momentum eigenstates ψ±l have a consistent
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normalisation, so that |ψl| equals a fixed constant independent of the value

of l.

Explicit coordinate expressions for the parity eigenstates are made com-

pact by adopting the following shorthand: let us define

α±l =

√
g2 +

(
−al ±

√
a2l2 + g2

)2

, (3.57)

β±
l =

√
g2 +

(
al ±

√
a2l2 + g2

)2

. (3.58)

Then, in terms of the above expressions, the parity eigenstates may be written

as the following:

ψ+
|l|±(θ) =

1
4
√

π(a2l2 + g2)



e−i n
2 θ
[(

α±l + β±
l

)
cos(lθ)

+ i
(
α±l − β±

l

)
sin(lθ)

]
ei n

2 θ
[(

β±
l + α±l

)
cos(lθ)

+ i
(

β±
l − α±l

)
sin(lθ)

]


, (3.59)

ψ−
|l|±(θ) =

1
4
√

π(a2l2 + g2)



e−i n
2 θ
[(

α±l − β±
l

)
cos(lθ)

+ i
(
α±l + β±

l

)
sin(lθ)

]
ei n

2 θ
[(

β±
l − α±l

)
cos(lθ)

+ i
(

β±
l + α±l

)
sin(lθ)

]


. (3.60)

We present some plots at Figures 3.1 and 3.2 of the energy spectra E(g) as

functions of g for some small non-negative values of n and l. In all cases we

have set the energy scale at a = 1.

We defined the normalisation constant T at (3.30-3.31) as a total Noether

charge with reference to the typical fermionic U(1) current, Jµ ∝ ψγµψ. In

the context of parity, let us consider this entire current proper. Since the time

component is the fermion density ψ†ψ which is time-independent for station-

ary states, the space component ψ†γ3ψ is independent of θ and proportional
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FIGURE 3.1: Plots of the fermion energy spectra E(g) on the
n = 1 kink for small non-negative values of l. (a = 1)

to |ψR|2 − |ψL|2. It is convenient to define

W = ψ†γ3ψ ∝ Jθ, (3.61)

and call this the axial charge density of the fermion. Note that for parity

solutions, W = 0. For angular momentum solutions ψl,E± , we find

W = ∓ al√
a2l2 + g2

T
2πρ

. (3.62)

We will later show that this strictly maximises the possible value of W2 within

the given energy level.

Having determined the general dependence of the energy spectrum on

n and l, we can comment on the existence of zero-crossing modes. We solve
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FIGURE 3.2: Plots of the fermion energy spectra E(g) on the
n = 2 kink for small non-negative values of l. (a = 1)

the energy spectrum (3.46) for E = 0, obtaining

g2
∗ =

a2n2

4
− a2l2, (3.63)

where g∗ is the value of the coupling constant which admits a zero-energy

solution for the given n and l. Since we require the coupling constant to be

real, we see that the existence of zero-crossing modes is controlled by the

inequality

|2l| ≤ |n|. (3.64)

When this inequality is strictly satisfied, the fermion solution exhibits zero

energy at non-trivial values of the coupling constant, whereas when it is sat-

urated, the fermion goes to zero energy when the coupling constant goes

to zero. We observe that zero-crossing modes can only exist if the angular

momentum of the fermion is sufficiently low in comparison to the winding
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number of the kink.

3.3.3 A numerical perspective

It will be useful to numerically explore soliton-fermion systems where the

determination of the spectrum is not so analytically straightforward. To this

end, we can also demonstrate numerical solutions to the stationary state

equation (3.28) of this model. We use the MATLAB package bvp4c which

can handle ordinary differential equation boundary value problems with un-

known parameters (such as, in our case, the energy eigenvalue E = E f ). In

order to implement this package, it is necessary to re-write the system in

terms of real first order ODEs. We express ψ as

ψ =

y1 + iy2

y3 + iy4

 , (3.65)

with equations of motion:

y′1 =
E
a

y2 −
g
a

y4 cos(nθ) +
g
a

y3 sin(nθ), (3.66)

y′2 = −E
a

y1 +
g
a

y3 cos(nθ) +
g
a

y4 sin(nθ), (3.67)

y′3 = −E
a

y4 +
g
a

y2 cos(nθ) +
g
a

y1 sin(nθ), (3.68)

y′4 =
E
a

y3 −
g
a

y1 cos(nθ) +
g
a

y2 sin(nθ). (3.69)

E is treated as a further unknown which bvp4c will also attempt to determine,

so in total there are five unknown functions. We will need five appropriate

boundary conditions on the vector y(θ), as well as an initial guess of the

solution.

This system of ODEs is linear, and the normalisation of the fermion is in

principle unimportant. As we have alluded to, however, we will see in the
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fully-coupled regime that the choice of normalisation will be physically rel-

evant, and mathematically relevant to solving the equations of motion. It is

useful therefore to also numerically implement the normalisation condition

now. For simplicity we will set ρ = 1 for the entirety of our numerical treat-

ment, so we wish to enforce the integral condition that, for some chosen real

constant T, ∫ 2π

0
ψ†ψ dθ = T. (3.70)

We achieve this by introducing one more a priori unknown function, y5, rep-

resenting the cumulative global fermionic density (formally, a U(1) charge),

y5(θ) =
∫ θ

0
|ψ(θ′)|2 dθ′. (3.71)

Thus, to the above equations, we add

y′5 = y2
1 + y2

2 + y2
3 + y2

4, (3.72)

with the boundary conditions y5(0) = 0 and y5(2π) = T. Even though this

introduces a further unknown, it provides two natural boundary conditions

on the system, so we only require four further boundary conditions; it is

natural to impose periodicity of each real component of the fermion in order

to provide the correct number. (As above, since E is a priori unknown, bvp4c

requires a sixth boundary condition in addition to one for each ODE.)

For our initial guess to an eigensolution for chosen n and l±, we use our

knowledge of the analytic solutions to choose an approximate energy, and
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give a ‘solution’ which has the correct Fourier modes of the fermion compo-

nents active, but scaled uniformly,

y1 =

√
T

4π
cos

((
l − n

2

)
θ
)

, (3.73)

y2 =

√
T

4π
sin
((

l − n
2

)
θ
)

, (3.74)

y3 =

√
T

4π
cos

((
l +

n
2

)
θ
)

, (3.75)

y4 =

√
T

4π
sin
((

l +
n
2

)
θ
)

, (3.76)

and uniform charge density for y5,

y5 =
Tθ

2π
. (3.77)

As long as the initial guess of the energy eigenvalue is not too far from the

true value, bvp4c will typically converge fairly quickly to the correct eigenso-

lution. We display some numerically obtained angular momentum solutions

at Figures 3.3 and 3.4; typically, the calculated energy eigenvalue is accu-

rate to approximately one part in 109. In Figures 3.5 and 3.6, we plot some

numerically determined parity eigenstates along with their local densities,

which are non-constant for parity solutions, unlike for angular momentum

solutions.

As a numerical tool to explore the structure of the energy spectrum for

varying g (which, again, will be useful in more complicated models), we can

iterate this process, by using a numerical solution computed at one value of

g as the initial guess for the code run at a slightly different value of g. Once

again, provided the initial guess of the energy eigenvalue is good, we can

iteratively reproduce the analytic spectra to good accuracy; some results are

plotted at Figure 3.7.
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FIGURE 3.3: Numerical solution for the l = 1
2 eigenfermion of

the uniform n = 1 kink at g = 1. (T = 1).

3.4 The fully coupled model

3.4.1 Adding kink dynamics

To introduce kink dynamics to the model, we restore the Dirichlet energy

term for the kink into the Lagrangian density, and so now work with the full

expression which we previously stated at (3.14):

L =
M2

2
∂µϕ ∂µϕ + ψ

(
ih̄/∂ − geiγ3ϕ

)
ψ. (3.78)

The Euler-Lagrange equations for this Lagrangian are the Dirac equation for

the fermion, (
ih̄/∂ − geiγ3ϕ

)
ψ = 0, (3.79)
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FIGURE 3.4: Numerical solution for the l = − 3
2 eigenfermion

of the uniform n = 1 kink at g = 1. (T = 1).
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FIGURE 3.5: |l|± = 1
2
−

parity eigenstates

FIGURE 3.6: |l|± = 3
2
− parity eigenstates
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FIGURE 3.7: Some iteratively computed energy eigenvalues for
low angular momentum n=1 solutions.
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and the fermionic conjugate Dirac equation, as previously, in addition to a

new equation of motion for the kink,

M2∂µ∂µϕ + igψγ3eiγ3ϕψ = 0. (3.80)

By taking the Hermitian conjugate and using the anticommutation relations

of the γ matrices, we see that this equation is real, as we require for the real

kink. For clarity, let us now explicitly write out the d’Alembertian operator

∂µ∂µ in coordinates to demonstrate the role of the parameters M, ρ and g.

The equation of motion for the kink may be written as

M2 ∂2ϕ

∂t2 − M2

ρ2
∂2ϕ

∂θ2 + igψγ3eiγ3ϕψ = 0. (3.81)

Note that we can bound the term involving the fermion (e.g. with the Cauchy-

Schwarz inequality) by

|ψγ3eiγ3ϕψ| ≤ |ψ|2. (3.82)

If we assume that ρ > 1, and that the maximal value of the fermion density

|ψ|2 is of the same order as the average density T
2πρ , then we see that in the

regime

M2 ≫ ρgT, (3.83)

the effect of the fermion on the kink vanishes, so the kink dynamics decouple

from the fermion.1 (Compare to the comments we made at the end of Section

3.2.)

As the Lagrangian density is explicitly independent of θ, the previous

generalised angular momentum decouples into two distinct continuous sym-

metries: translation of the fields on the base space is now a symmetry in its

1If ρ < 1 then the time-dependence of the kink is more sensitive to the fermion than the
space-dependence, but we will not consider this case.
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own right, while there is also the internal symmetry of the fields

ψ(t, θ) 7→ eiγ3 α
2 ψ(t, θ), ϕ(t, θ) 7→ ϕ(t, θ)− α. (3.84)

We refer to this as the axial transformation. The corresponding axial current

is

Jµ
axial = M2 ∂µϕ +

h̄
2

ψγµγ3ψ, (3.85)

with conservation equation ∂µ Jµ
axial = 0, and time-independent total axial

charge

Q0
axial =

∫ 2π

0

(
M2 ∂ϕ

∂t
+

h̄
2

ψ†γ3ψ

)
ρ dθ. (3.86)

The Lagrangian also exhibits the following discrete parity symmetry:

ψ(t, θ) 7→ γ0ψ(t, 2π − θ), (3.87)

ϕ(t, θ) 7→ 2nπ − ϕ(t, 2π − θ). (3.88)

The effect of the transformation on the kink is specifically chosen to preserve

its overall homotopy class as n, rather than switching it to −n. This some-

what arbitrarily enforces that ϕ is a Lorentz pseudoscalar rather than scalar;

we will comment further on this matter later. Note that the prescribed uni-

form kink ϕ(t, θ) = nθ is invariant under parity, and the parity transform on

the system as a whole squares to the identity.

We take the ansatz that the kink is static, i.e. time-independent, and that

the fermion is a stationary state, as before. Then the axial charge density

W as defined at (3.61) is once again constant. Moreover, the axial current

conservation in this static case gives a relationship between the fermionic

charge density and the non-trivial behaviour of the kink:

∂µ Jµ
axial = −M2

ρ2
∂2ϕ

∂θ2 − h̄
2ρ

∂|ψ|2
∂θ

= 0. (3.89)
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Integrating twice, we fix the constants of integration by knowing the overall

normalisation of the fermion and the homotopy class of the kink, to obtain:

|ψ|2 =
T

2πρ
+

2M2

h̄ρ

(
n − ∂ϕ

∂θ

)
(3.90)

Writing the kink as

ϕ(θ) = nθ + η(θ), (3.91)

the above becomes

|ψ|2 =
T

2πρ
− 2M2

h̄ρ

∂η

∂θ
. (3.92)

Thus the fermion density only deviates from the mean by the derivative of

the non-trivial behaviour of the kink, where by “trivial” behaviour we mean

the uniform winding for its homotopy class. We will frequently refer to the

function η(θ) defined here as the kink’s wobble.

It is straightforward to check that any pair of fields (ϕ, ψ) of the form

(ϕ(t, θ) = nθ, ψ(t, θ) = ψl,E±(t, θ)) (3.93)

solves all the equations of motion for the fully coupled model. This is a con-

sequence of the principle of symmetric criticality [43, 50]. This principle states

that if we have a field theory where we may impose a symmetry reduction,

then under appropriate conditions, solutions of the symmetry reduction are

in fact solutions of the full theory. One example of an appropriate condition is

that the symmetry transformation is the action of a compact Lie group. This

is precisely what we did in prescribing the kink to be uniform and then seek-

ing angular momentum eigenfermion solutions in Section 3.3: we essentially

restricted to a diagonal subgroup of the translation and axial symmetries of

the fully coupled model, reducing over a factor of U(1).

However, the fermionic parity solutions ψP
|l|,E± have non-constant local
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density, so they do not remain solutions when paired with a uniformly wind-

ing kink ψ(t, θ) = nθ because this violates the axial current conservation.

(Of course, they specifically violate the reduced general angular momentum

symmetry, so there is no reason to expect they would persist alongside the

angular momentum solutions.)

3.4.2 Initial numerical treatment of the fully coupled model

To search for new static solutions to the system with non-zero wobble, we

introduce the kink and its derivative as further unknown functions to our

bvp4c code. Writing y5 for ϕ and y6 for ∂ϕ
∂θ , and changing the label of the

cumulative fermionic charge to y7, we have a system of first order ODEs as

follows:

y′1 =
E
a

y2 −
g
a

y4 cos(y5) +
g
a

y3 sin(y5), (3.94)

y′2 = −E
a

y1 +
g
a

y3 cos(y5) +
g
a

y4 sin(y5), (3.95)

y′3 = −E
a

y4 +
g
a

y2 cos(y5) +
g
a

y1 sin(y5), (3.96)

y′4 =
E
a

y3 −
g
a

y1 cos(y5) +
g
a

y2 sin(y5), (3.97)

y′5 = y6, (3.98)

y′6 =
2gρ

M2 [(y1y4 − y2y3) cos(y5)− (y1y3 + y2y4) sin(y5)] , (3.99)

y′7 = y2
1 + y2

2 + y2
3 + y2

4. (3.100)

Including E, we have eight unknowns. We take the following boundary

conditions:

y1(0) = y1(2π), y2(0) = 0, y3(0) = y3(2π), y4(0) = y4(2π),

y5(0) = 0, y5(2π) = 2nπ, y7(0) = 0, y7(2π) = T.
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Observe that we can use the overall phase symmetry to make the right-

handed fermion component (say) real at the origin, and to fix the initial value

of the kink to 0 there also; we make the other fermion modes periodic, give

the kink the correct homotopy class, and implement y7 as the cumulative

fermion charge density. Although we have not explicitly enforced that y2 be

periodic, we have found in practice that the periodicity boundary conditions

on the other components suffice for bvp4c to converge to a solution also peri-

odic in y2, and we find the condition ψR(0) ∈ R to be more useful to compare

and interpret results.

Similarly to the case of the uniform kink, we use the Fourier components

of the previously known solutions as a template for our initial guess. Recall-

ing that the current conservation law tells us that a non-zero wobble on the

kink requires a non-uniform density profile for the fermion, we tweak these

Fourier modes by multiplying them by a non-constant envelope function, for

which we use a cubic polynomial in θ with roots at 0, π and 2π. The overall

amplitude of this cubic is a parameter that we can vary for different initial

guesses. We also add a small relative axial phase between the chiral compo-

nents of the fermion, the magnitude of which is also a variable parameter.

It is straightforward to check that our previously known angular momen-

tum eigensolutions paired with a uniform kink remain solutions to our more

general static system. These solutions are easily recreated by the broader nu-

merical process by taking the perturbation parameters to be extremely small

or zero; see examples at Figure 3.8 and Figure 3.9.

We also found new solutions, with non-zero wobbles. To broad inspec-

tion, the wobbles appear to be simple trigonometric functions, and the nu-

merical results demonstrate very little relative axial phase between the chiral

components of the fermion in the most part. The number of nodes on the

wobble persist, while their amplitude varies, with varying g. Examples fol-

low in Figures 3.10-3.12. We compare these new fermionic solutions with our
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FIGURE 3.8: The n = 1 l = 1
2 (lower energy branch) eigenso-

lution in the static system, generated numerically. The lower
left figure compares the fermion density computed two differ-
ent ways. In blue is plotted the total amplitude summed from
the real and imaginary components appearing in the upper left,
while in orange is plotted the result calculated by substituting
the numerical wobble plotted in the lower right to the axial cur-
rent conservation equation. The blue and orange curves over-

lap almost perfectly at the resolution plotted.
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FIGURE 3.9: The n = 1 l = 3
2 (lower energy branch) eigenso-

lution in the static system, generated numerically. The lower
left figure compares the fermion density computed two differ-
ent ways. In blue is plotted the total amplitude summed from
the real and imaginary components appearing in the upper left,
while in orange is plotted the result calculated by substituting
the numerical wobble plotted in the lower right to the axial cur-
rent conservation equation. The blue and orange curves over-

lap almost perfectly at the resolution plotted.
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FIGURE 3.10: A non-trivial static solution with one-node wob-
ble, at g = 1. The lower left figure compares the fermion den-
sity computed two different ways. In blue is plotted the total
amplitude summed from the real and imaginary components
appearing in the upper left, while in orange is plotted the re-
sult calculated by substituting the numerical wobble plotted in
the lower right to the axial current conservation equation. The
blue and orange curves overlap almost perfectly at the resolu-

tion plotted.

earlier plots of definite-parity solutions in the special case. From the similar-

ity in the shapes of the profiles in the upper left plots of the real and imag-

inary components, it seems plausible by inspection that these new solutions

have definite parity, i.e. that the solutions are preserved up to sign under the

application of the discrete parity transformation given at (3.87-3.88). We have

not yet tried to adapt our numerical approach to explicitly enforce parity, but

we discuss this in our outlook.

The energy eigenvalue of a 2l-node wobble appears to track closely to the
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FIGURE 3.11: A non-trivial static solution with three-node wob-
ble, at g = 1. The lower left figure compares the fermion den-
sity computed two different ways. In blue is plotted the total
amplitude summed from the real and imaginary components
appearing in the upper left, while in orange is plotted the re-
sult calculated by substituting the numerical wobble plotted in
the lower right to the axial current conservation equation. The
blue and orange curves overlap almost perfectly at the resolu-

tion plotted.



Chapter 3. Fermion-kink coupling on S1 × R 48

FIGURE 3.12: A non-trivial static solution with five-node wob-
ble, at g = 1. The lower left figure compares the fermion den-
sity computed two different ways. In blue is plotted the total
amplitude summed from the real and imaginary components
appearing in the upper left, while in orange is plotted the re-
sult calculated by substituting the numerical wobble plotted in
the lower right to the axial current conservation equation. The
blue and orange curves overlap almost perfectly at the resolu-

tion plotted.
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FIGURE 3.13: Energy eigenvalues of nontrivial solutions,
0.02 ≤ g ≤ 1

known spectrum of the angular momentum |l| eigenstates on the uniform

kink, with greater divergence at greater |g|: see Figures 3.13 and 3.14.

Remark 3.1. We are grateful to Nick Manton for a stimulating conversation

wherein he pointed out an oddity in these results. All of our parameters such

as a, g, T, and so on, are of order 1 in these examples, and yet both the order

of the kink wobble, and the effect on the energy, appear to be much smaller.

The author believes this arises because of the inherent interval length of 2π

that we have chosen by modelling this system on a circle of radius 1: it may

be that this introduces a power of 1
2π into our calculated quantities. This is

something we hope to explore in future work.
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FIGURE 3.14: Energy eigenvalues of nontrivial solutions,
1 ≤ g ≤ 5
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3.5 Bispinor coordinates and static solutions

3.5.1 The XYZW picture

We observe that the role of the kink in the coupling term −gψeiγ3ϕψ appears

to act like a local change of basis for the inner product of the fermion with

itself. However, it is not a gauge connection: note that since (in the chiral

representation) the matrix eiγ3ϕ is diagonal, it cannot be written as γµ Aµ for

some gauge connection Aµ. Nonetheless, we can learn something by absorb-

ing this feature of the kink into the fermion, as follows.

Let us change variables to a new fermion field ξ(xµ) given by

ξ(xµ) = eiγ3K(xµ)ψ(xµ), (3.101)

for some as yet unspecified function of spacetime K(xµ). In the new co-

ordinates, the fermionic part of the Lagrangian is

L f = ξ
(

ih̄/∂ − h̄(/∂K)γ3 − geiγ3(ϕ+2K)
)

ξ. (3.102)

If we now take, for example, K = −ϕ
2 , the explicit appearance of the kink is

removed from the Lagrangian, and we are left with

L =
M2

2
∂µϕ∂µϕ + ξ

(
ih̄/∂ +

h̄
2
(/∂ϕ)γ3 − g

)
ξ. (3.103)

In these coordinates, the coupling constant g now appears as a mass term for

the new fermion field ξ, and the kink itself does not explicitly appear, but we

have introduced a coupling between the fermion and the derivative of the

kink field.

Strictly speaking, the change of variables as written gives the new fermion

ξ either periodic or antiperiodic boundary conditions, according to ξ(t, θ +

2π) = (−1)nξ(t, θ). However, in the case of odd n, we could instead choose
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to define e.g. K = −ϕ
2 + nπ to restore truly periodic boundary conditions

to ξ while preserving the new form of the Lagrangian. It is straightforward

to check that ξ still transforms as a Dirac spinor under parity in either case:

P̂ξ(t, θ) = γ0ξ(t, 2π − θ).

In a sense, the kink derivative now resembles a gauge connection even

further: we could write the first two fermionic terms as ξih̄γµ(∂µ + Aµ)ξ

where Aµ = − i
2 γ3∂µϕ = − i

2 ε̂ν
µ∂νϕ. However, recall that parity symmetry

requires that ϕ is a pseudoscalar rather than scalar field, so this “gauge po-

tential” Aµ would be a Lorentz pseudovector rather than vector. Moreover,

even if the original coupling were not chiral (so γ3 would not appear, and ϕ

could be a true scalar field), the kinetic term for the kink would be a mass

term for the gauge connection, M2

2 Aµ Aµ, rather than the typical Lagrangian

contribution from the field strength ∼ FµνFµν. As written, this would be a

system with a zero-energy gauge field and where the gauge symmetry is ex-

plicitly broken by the kink activity, which would be interpreted as a mass for

the gauge field.

The U(1) phase action is unchanged from the previous coordinates, and

the expression for the phase current retains the same form:

Jµ = h̄ψγµψ = h̄ξγµξ. (3.104)

We see that the new fermion ξ is in fact invariant under the axial transfor-

mation; in the new coordinates, then, that axial transformation is simply the

internal translation of the kink. Concordantly, the axial current conservation

equation is simply the Euler-Lagrange equation for ϕ derived from the new
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Lagrangian:

0 = ∂µ

(
∂L

∂(∂µϕ)

)
= ∂µ Jµ

axial (3.105)

= ∂µ

(
M2∂µϕ +

h̄
2

ξγµγ3ξ

)
(3.106)

= ∂µ

(
M2∂µϕ +

1
2

ε̂
µ

ν Jν

)
. (3.107)

Now consider the Lorentz covariant bispinors we can form using ξ. We

have already seen that the phase current is such a Lorentz vector, Jµ = h̄ξγµξ.

Define variables X and W from its components according to Jµ = (h̄X,−aW),

so

X = ξγtξ = ξ†ξ = ψ†ψ, (3.108)

W = −ρξγθξ = ξ†γ3ξ = ψ†γ3ψ. (3.109)

Note that X and W are both real; moreover X is non-negative. Furthermore,

X is the fermionic (phase charge) density, while W is the fermionic contribu-

tion to the axial charge density. X is invariant under parity, but W picks up a

minus sign under a parity transformation: explicitly, P̂W(t, θ) = −W(t,−θ).

There are two more real bispinors Y and Z we can form, defined as

Y = ξξ = ξ†γ0ξ = ψ†γ0eiγ3ϕψ, (3.110)

Z = iξγ3ξ = iξ†γ1ξ = iψ†γ1eiγ3ϕψ. (3.111)

Again, Y is invariant under parity, while Z picks up a minus sign. (Here, Y

is a true Lorentz scalar, while Z is pseudoscalar.)

Any other bispinor can be expressed in terms of these four real coordi-

nates: note, for example, that if we construct the rank two Lorentz tensor
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Vµν = ξγµγνξ, we find

Vµν = ξγµγνξ = ξ
(

gµν − ε̂µνγ3
)

ξ = gµνY + iε̂µνZ. (3.112)

It may be worth noting that since gµν and ε̂µν are themselves invariant under

Lorentz transforms, this tensor Vµν is actually a complex Lorentz-invariant

grade 2 multivector, sent to its complex conjugate under the parity transfor-

mation.

Many of the dynamical features of the kink-fermion system can be cap-

tured using these coordinates X, Y, Z and W, without reference to the under-

lying fermion ξ (or ψ). A key observation is that all possible evolutions of the

system (not just classical solutions) take place on a three-dimensional cone in

this XYZW picture:

X2 − W2 − Y2 − Z2 = 0. (3.113)

This is most easily demonstrated by passing to polar coordinates for the orig-

inal complex components of ψ: writing

ψ(t, θ) =

R(t, θ)eiµ(t,θ)

L(t, θ)eiν(t,θ)

 , (3.114)

with µ, ν periodic real functions and R, L non-negative real functions, it is

easily seen that

X = R2 + L2, (3.115)

W = R2 − L2, (3.116)

Y = 2RL cos(ϕ + µ − ν), (3.117)

Z = −2RL sin(ϕ + µ − ν), (3.118)
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from which (3.113) follows. This can be expressed in a manifestly Lorentz-

invariant form: note that

Jµ Jµ = h̄2(X2 − W2), (3.119)

while, defining Vµν as above at (3.112),

VµνVµν = 2(Y2 + Z2). (3.120)

Thus the equation of the cone (3.113) can be expressed

Jµ Jµ

h̄2 =
1
2

VµνVµν. (3.121)

We stress that this does not require imposing the equations of motion: it is a

consequence of Lorentz covariance alone.

Let us express the conservation laws for classical solutions in the XYZW

picture. We see that the global U(1) current conservation equation, ∂µ Jµ = 0,

takes the form

h̄
(

∂X
∂t

− 1
ρ

∂W
∂θ

)
= 0. (3.122)

The axial current conservation equation, ∂µ Jµ
axial = 0, is expressed as

h̄
(

∂W
∂t

− 1
ρ

∂X
∂θ

)
= −2M2∂µ∂µϕ. (3.123)

By comparison with the global U(1) current conservation, we see that we can

write the left-hand side of (3.123) as ε̂
µ

ν∂µ Jν. This can be a convenient way to

write both conservation laws in terms of the global U(1) current Jµ.
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The Dirac equations for ξ and ξ are

ih̄/∂ξ +
h̄
2
(/∂ϕ)γ3ξ − gξ = 0, (3.124)

ih̄ξ /∂ +
h̄
2

ξγ3(/∂ϕ) + gξ = 0. (3.125)

These provide two further Lorentz-covariant equations of motion by con-

tracting spinors and summing appropriately: one for each combination of

derivatives of X and W seen above in the current conservation equations.

The
(

∂X
∂t , ∂W

∂θ

)
equation is equivalent to the phase current conservation equa-

tion ∂µ Jµ = 0. For
(

∂W
∂t , ∂X

∂θ

)
we obtain

∂µ ε̂
µ

ν Jν = h̄
(

∂W
∂t

− 1
ρ

∂X
∂θ

)
= 2gZ, (3.126)

which by comparison with axial current conservation tells us

−M2∂µ∂µϕ = gZ. (3.127)

Derivatives of Y and Z do not arise in such a neat (fermion-independent)

manner, because for example the contraction needed to isolate ∂Y
∂t introduces

the combination ∂ξ
∂θ γ3ξ − ξγ3 ∂ξ

∂θ , which is not directly expressible in terms of

Z only. In total, the remaining four equations we can derive from the Dirac

equations are:

h̄
∂Y
∂t

= h̄
∂ϕ

∂t
Z − a

[
∂ξ

∂θ
γ3ξ − ξγ3 ∂ξ

∂θ

]
, (3.128)

a
∂Y
∂θ

= a
∂ϕ

∂θ
Z − h̄

[
∂ξ

∂t
γ3ξ − ξγ3 ∂ξ

∂t

]
, (3.129)

h̄
∂Z
∂t

= −h̄
∂ϕ

∂t
Y − 2gW − ia

[
∂ξ

∂θ
ξ − ξ

∂ξ

∂θ

]
, (3.130)

a
∂Z
∂θ

= −a
∂ϕ

∂θ
Y − 2gX − ih̄

[
∂ξ

∂t
ξ − ξ

∂ξ

∂t

]
. (3.131)
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We determined these by expanding the left hand side according to e.g.

h̄
∂Y
∂t

= −iξ
(

ih̄
∂ξ

∂t

)
− i

(
ih̄

∂ξ

∂t

)
ξ, (3.132)

and comparing this to the expressions obtained by e.g. contracting (3.124)

with −iξ from the left and contracting (3.125) with −iξ from the right.

3.5.2 Static kinks and stationary state fermions

We will not discuss here the general dynamics in terms of the XYZW picture.

Instead we will focus on the same ansätze as we did before in the special case:

ϕ(t, θ) = ϕ(θ) only, ψ(t, θ) = e−
i
h̄ E f tψ(θ). (3.133)

The system will vastly simplify. To abbreviate this “Static kink and Stationary

State fermion" ansatz, we will refer to it as the 3S ansatz. Immediately, ∂X
∂t

and ∂W
∂t vanish. Thus by (3.122), W is uniformly constant in both t and θ. Z is

now directly proportional to ∂X
∂θ , as well as acting as a source for ϕ. Moreover,

time-dependence for Y and Z can only possibly arise from the kink, so ∂Y
∂t and

∂Z
∂t also vanish. We are left with the much simpler system of ODEs:

−a
∂X
∂θ

=
2M2

ρ2
∂2ϕ

∂θ2 = 2gZ, (3.134)

a
∂Y
∂θ

=

(
a

∂ϕ

∂θ
− 2E f

)
Z, (3.135)

a
∂Z
∂θ

=

(
−a

∂ϕ

∂θ
+ 2E f

)
Y − 2gX. (3.136)

Recall the definition of the total fermionic (phase charge) density (per

unit radius of the spatial circle), T, as

T =
∫ 2π

0
X(θ) ρ dθ. (3.137)
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Then, we can integrate the first equation at (3.134) and use the known wind-

ing number n of the kink to write

∂ϕ

∂θ
= n +

h̄ρ

2M2

(
T

2πρ
− X(θ)

)
. (3.138)

It is useful now to define two new constants:

λ =
h̄ρ

2M2 ; E′ = E f −
a
2

(
n +

Tλ

2πρ

)
. (3.139)

(Note that λ is a length scale, and may be written in terms of ρ and the di-

mensionless constant M̃2 defined at (3.22) as λ = ρ

2M̃2 .) Substituting the ex-

pression for ∂ϕ
∂θ into the equations for ∂Y

∂θ and ∂Z
∂θ , we observe that the problem

is reduced to the system of four first-order ODEs:

∂ϕ

∂θ
= n + λ

(
T

2πρ
− X

)
, (3.140)

a
∂X
∂θ

= −2gZ, (3.141)

a
∂Y
∂θ

= −
(
2E′ + aλX

)
Z, (3.142)

a
∂Z
∂θ

=
(
2E′ + aλX

)
Y − 2gX. (3.143)

In particular, the equations (3.141-3.143) for the bispinors X, Y and Z are not

explicitly dependent on the kink ϕ. If we can solve for the bispinors first, we

can then deduce the matching kink solution.

It is immediately clear that X2 −Y2 −Z2 is a first integral of the system; of

course, it equals W2. Another first integral is apparent by substituting (3.141)
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into (3.142):

2ag
∂Y
∂θ

=
(
2E′ + aλX

)
(−2gZ) (3.144)

=
(
2E′ + aλX

) (
a

∂X
∂θ

)
(3.145)

= a
∂

∂θ

[
2E′X +

aλ

2
X2
]

(3.146)

Hence there is a constant C0 given by

C0 = 2agY − 2aE′X − a2λ

2
X2. (3.147)

This equation also determines Y in terms of X and C0; so, finally, we can

plug it and (3.141) into (3.143) to reduce the XYZ system to a single non-

linear differential equation in X. It is convenient to express it in the following

manner: multiplying (3.143) by 2ag gives

(2ag)a
∂Z
∂θ

= (2E′ + aλX)(2agY)− 4ag2X. (3.148)

We can use (3.147) to eliminate Y from the right-hand side, and slightly

rewrite the left:

a2
(

2g
∂Z
∂θ

)
= (2E′ + aλX)

(
C0 + 2aE′X +

a2λ

2
X2
)
− 4ag2X. (3.149)

Then we use (3.141) to eliminate Z from the left-hand side, and collect powers

of X on the right to obtain:

a2
(
−a

∂2X
∂θ2

)
=

a3λ2

2
X3 + 3a2λE′X2 +

(
4a
[

E′2 − g2
]
+ aλC0

)
X + 2E′C0.

(3.150)



Chapter 3. Fermion-kink coupling on S1 × R 60

At the cost of introducing one more constant of integration, which we will

call C1, we can multiply by 2∂X
∂θ and integrate once more, yielding

−a3
(

∂X
∂θ

)2

=
a3λ2

4
X4 + 2a2λE′X3 +

(
4a
[

E′2 − g2
]
+ aλC0

)
X2

+ 4E′C0X + C1. (3.151)

In general, a non-linear differential equation of this form can be solved by an

elliptic function, possibly reducing to a trigonometric or hyperbolic function

in certain degenerate cases [68]. However, the specific solution depends on

the coefficients of the polynomial appearing on the RHS above, and at present

the parameters E′, C0 and C1 are all unknown. We can eliminate C1 in terms

of C0 and W by comparing the equation (3.151) to the condition X2 − W2 −

Y2 − Z2 = 0, from which we may eliminate Y and Z in a similar fashion.

First, multiplying by 2a2g and rearranging, we have

−a2 (2gZ)2 = (2agY)2 − 4a2g2X2 + 4a2g2W2. (3.152)

Substituting (3.147) on the left-hand side and (3.143) on the right yields

−a2
(
−a

∂X
∂θ

)2

=

(
C0 + 2aE′X +

a2λ

2
X2
)2

− 4a2g2X2 + 4a2g2W2. (3.153)

Expanding, and collecting powers of X on the left-hand side, we’re left with

−a4
(

∂X
∂θ

)2

=
a4λ2

4
X4 + 2a3λE′X3 +

(
4a2
[

E′2 − g2
]
+ a2λC0

)
X2

+ 4aE′C0X + C2
0 + 4a2g2W2. (3.154)

Hence aC1 = C2
0 + 4a2g2W2. If we specifically consider definite-parity solu-

tions where W = 0, then aC1 = C2
0 , and in fact the quartic in X factorises into
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two real quadratics, giving

−a4
(

∂X
∂θ

)2

=

(
a2λ

2
X2 + 2a

[
E′ − g

]
X + C0

)(
a2λ

2
X2 + 2a

[
E′ + g

]
X + C0

)
.

(3.155)

It is convenient now to perform some rescaling. We rescale E′, g and C0

to be dimensionless by taking

Ẽ′ =
E′

a
; g̃ =

g
a

; C̃0 =
λC0

a2 . (3.156)

This yields

−
(

∂X
∂θ

)2

=
λ2

4
X4 + 2λẼ′X3 +

(
4
[

Ẽ′2 − g̃2
]
+ C̃0

)
X2

+
4Ẽ′C̃0

λ
X +

C̃2
0

λ2 + 4g̃2W2. (3.157)

Finally, when λ is non-zero, we can also rescale X to remove the (remaining)

leading coefficients of λ
2 on the quadratics by setting

X̃(θ) =
λ

2
X(θ), (3.158)

leaving

−
(

∂X̃
∂θ

)2

= X̃4 + 4Ẽ′X̃3 +
(

4
[

Ẽ′2 − g̃2
]
+ C̃0

)
X̃2

+ 2Ẽ′C̃0X̃ +
C̃2

0
4

+ λ2 g̃2W2. (3.159)

3.6 Elliptic function solutions for X̃

We will use the properties of the Jacobi elliptic functions to examine solutions

of (3.155) and its rescalings. We will not derive the theory of these function,

but simply give some properties in Section 3.6.1, and use them as a toolkit.
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References for the theory and its applications include Whittaker and Watson

[68] and the Digital Library of Mathematical Functions [56, Chapter 22].

Our detailed focus is on the case W = 0, but we can describe features of

the more general case by comparing, in the coming Section 3.7, the solutions

of (3.155) to the solutions on the prescribed kink derived in Section 3.3.

3.6.1 Some properties of Jacobi elliptic functions

The Jacobi sn function may be implicitly defined in terms of an elliptic inte-

gral as follows:

sn−1(x, k) =
∫ x

0

dz√
1 − z2

√
1 − k2z2

, (3.160)

for an elliptic modulus k ∈ C satisfying |k|2 ∈ [0, 1], and by analytic continua-

tion otherwise. It is typical to choose the branch cut in the k-plane to be from

−∞ to 0 and from 1 to ∞.

Associated to the elliptic modulus k are two values called the quarter pe-

riods, K(k) and K′(k). These are defined as

K(k) = sn−1(1, k) =
∫ 1

0

dz√
1 − z2

√
1 − k2z2

, (3.161)

and K′(k) = K(k′) where k2 + k′2 = 1 and k′ → 1 as k → 0. By definition, we

see that sn(0, k) = 0 and sn(K(k), k) = 1. iK′(k) is a simple pole of sn(u, k)

with residue 1
k . For |k| ≤ 1, both quarter periods are real. sn(u, k) is a doubly

periodic meromorphic function of the u-plane, and satisfies

sn
(
u + 2αK(k) + 2iβK′(k), k

)
= (−1)α sn (u, k) , α, β ∈ Z. (3.162)

Manipulation of the definition (3.161) establishes that for |k|2 > 1,

K(k) =
1
k

(
K
(

1
k

)
− iK′

(
1
k

))
, (3.163)
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and that for k ∈ R,

K(ik) =
1√

1 + k2
K
(

k√
1 − k2

)
. (3.164)

These can be seen as particular cases of Landen’s transformation, which may

be written in the form

K

(√
a2 − b2

a

)
=

2a
a + b

K
(

a − b
a + b

)
. (3.165)

It can also be established using these formulae that if k is on the unit circle,

i.e. k = eiα, then [44]

K′
(

eiα
)
= e−i α

2 K
(

sin
(α

2

))
. (3.166)

We often do not write the dependence on the elliptic modulus explic-

itly. There are similar Jacobi elliptic functions cn(u) and dn(u) whose ze-

roes, poles and double periodicity may also be understood by permuting the

points 0, K, iK′ and K + iK′ of the complex plane. They satisfy

cn2(u) = 1 − sn2(u), dn2(u) = 1 − k2sn2(u). (3.167)

There are addition theorems expressing elliptic functions of a summand of

each of these, e.g. sn(u + v), as rational functions of sn, cn and dn evaluated

at the points u and v. In the limits k = 0 and k = 1 the Jacobi elliptic functions

become trigonometric and hyperbolic functions respectively, according to

sn(u, 0) = sin(u), cn(u, 0) = cos(u), dn(u, 0) = 1, (3.168)

sn(u, 1) = tanh(u), cn(u, 1) = sech(u), dn(u, 1) = sech(u). (3.169)
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We define the fundamental elliptic integral of the second kind E(u) = E(u, k)

to be

E(u) =
∫ u

0
dn2(z) dz, (3.170)

and subsequently we define the Zeta function Z(u, k) (not to be confused with

our bispinor coordinate Z) as

Z(u, k) = E(u, k)− u
E (K(k))

K(k)
. (3.171)

We further define the fundamental elliptic integral of the third kind Π(u, a, k)

for elliptic modulus k and parameter a to be

Π(u, a, k) =
∫ u

0

k2sn(a)cn(a)dn(a)sn2(z)
1 − k2sn2(a)sn2(z)

dz. (3.172)

Then it is found that

Π(u, a, k) =
1
2

∫ u+a

u−a
Z(z, k) dz + uZ(a, k). (3.173)

The utility of these definitions is that some quantities of interest will be ex-

pressed in terms of integrals of the form

∫ A + Bsn2(u)
C + Dsn2(u)

du. (3.174)

These can be rewritten in terms of a fundamental elliptic integral of the third

kind, and thus evaluated in terms of a Zeta function. The integral term in

equation (3.173) is generically multivalued as Z(u, k) has poles in the u-plane,

but it is periodic with respect to the real period 2K(k). Thus, by clever choices

of the domain of our integral, evaluating expressions such as (3.174) requires

only computing the value Z(a, k). This is a transcendental problem but can

be approached numerically.
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3.6.2 Parity eigensolutions

Performing the rescalings (3.156) and (3.158) on (3.155), we obtain

−
(

∂X̃
∂θ

)2

=

(
X̃2 + 2

[
Ẽ′ − g̃

]
X̃ +

C̃0

2

)(
X̃2 + 2

[
Ẽ′ + g̃

]
X̃ +

C̃0

2

)
. (3.175)

Throughout this section, we will make use of the following nomencla-

ture:

• Let P(X̃) refer to the real, monic polynomial of degree 4 appearing

on the right-hand side of (3.175) above; then P(X̃) is equivalent to the

right-hand side of (3.159) with the substitution W = 0.

• Let P−(X̃) and P+(X̃) label the given (real, monic) quadratic factors

explicitly by the sign appearing between Ẽ′ and g̃ in the linear term of

each.

Having scaled P(X̃) to be monic, there are now four roots x1, x2, x3, x4 ∈

C (not necessarily distinct or real) such that (3.175) is equivalent to

−
(

∂X̃
∂θ

)2

=
(
X̃ − x1

) (
X̃ − x2

) (
X̃ − x3

) (
X̃ − x4

)
. (3.176)

A straightforward application of the chain rule to the integral definition

(3.160) demonstrates that the solution to equation (3.176) may be written as

X̃(θ) =
x1 (x2 − x3)− x2 (x1 − x3) sn2 (p(θ − θc), k)

(x2 − x3)− (x1 − x3) sn2 (p(θ − θc), k)
, (3.177)

where θc is a constant of integration and

p =
i
2

√
(x1 − x4) (x2 − x3), (3.178)

k =

√
(x1 − x3) (x2 − x4)

(x1 − x4) (x2 − x3)
. (3.179)
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FIGURE 3.15: Some generic quartics P
(
X̃
)

for the non-linear
differential equation (3.176). Complex roots occur in conjugate
pairs, so there must be an even number of real roots when
counted with multiplicity. The graph of −P

(
X̃
)

must open
downwards.

Clearly the ordering of the roots in (3.176) is arbitrary, so there are many

similar ways of expressing this generic solution with different orderings of

the roots; the symmetries of the sn function guarantee that these describe the

same meromorphic function X̃(θ). We will consequently use (3.177) as the

canonical expressions for X̃, p and k in terms of the roots of P(X̃), and choose

to label the roots xi according to our convenience.

Observe that since sn(0) = 0, X̃(θc) = x1. Moreover, since iK′ is a pole of

sn, then when p(θ′ − θc) = iK′, X̃(θ′) = x2. Assuming that X̃(θ) remains real

for θ ∈ R, then, x1 and x2 must correspond to extremal values of X̃. Consid-

ering interpreting (3.176) as a dynamical system in X̃ and ∂X̃
∂θ , and plotting

−P(X̃) against X̃. Since P(X̃) is real, the graph of the quartic must have ei-

ther zero, two or four real roots, counted with multiplicity, and −P
(
X̃
)

must

open downwards. We plot some generic possibilities at Figure 3.15.
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Remark 3.2. We’re grateful to Andy Hone for pointing out a geometric in-

terpretation which makes the observations of the previous paragraphs more

straightforward. The general solution given at (3.177) is quickly recognised

as a Möbius transformation M applied to the sn2 function appearing within

it, and more specifically the Möbius transformation defined by the action on

three points:

M(0) = x1,M(∞̂) = x2,M(1) = x3. (3.180)

In principle, we could tell in advance that we’re looking for some transfor-

mation of a Jacobi elliptic function whose image on the real line is bounded

between extrema x1 and x2, so a Möbius transformation obeying the first two

conditions of (3.180) is a sensible thing to try. It is somewhat simpler to start

from this point in order to derive the remaining dependence of the Möbius

map and the parameters p and k upon the roots of (3.176). We briefly com-

ment a little further on this interpretation in our discussion in Section 3.9.

Physical solutions require that there are at least two non-negative real

roots, so without loss of generality, we can restrict to considering x1, x2 ∈ R

such that 0 ≤ x1 ≤ x2. Moreover, since we suppose X̃ to be real, physicality

further requires that
(

∂X̃
∂θ

)2
= −P(X) > 0 for x1 < X̃ < x2. We will for

now discount the case that x1 = x2, since the fermionic solutions of fixed

density are exactly the persistent angular momentum eigenstates of Section

3.3.2. We will moreover discount the case that x1 = 0: we have not found any

numeric solutions where the fermionic density has minimum zero, or where

the computed value of C̃0 is zero.

The factorisation of P(X̃) = P−(X̃)P+(X̃) puts algebraic constraints on

the generic roots xi. To emphasise which roots belong to which quadratic

factors, let us fashion an alternative labelling scheme for the roots as follows.
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Let

P−(X̃) =

(
X̃2 + 2

[
Ẽ′ − g̃

]
X̃ +

C̃0

2

)
=
(
X̃ − r−

) (
X̃ − s−

)
; (3.181)

P+(X̃) =

(
X̃2 + 2

[
Ẽ′ + g̃

]
X̃ +

C̃0

2

)
=
(
X̃ − r+

) (
X̃ − s+

)
. (3.182)

Then we observe the requirements:

r−s− =
C̃0

2
= r+s+, (3.183)

4Ẽ′ = −r− − s− − r+ − s+, (3.184)

4g̃ = r− + s− − r+ − s+. (3.185)

Now, λ ≥ 0 (where we permit the limiting case λ = 0 corresponding to the

kink as the background to the fermion, without backreaction). For illustra-

tive purposes, let us suppose that the sign of Ẽ′ is always opposite that of

C̃0. The demand that the physical roots x1, x2 satisfy 0 < x1 < x2 then sig-

nificantly constrains the possible complex values of the remaining two roots

x3, x4 into a handful of cases, depending on e.g. whether x1 and x2 belong to

the same, or to distinct, quadratic factors of P(X̃), and the signs of the phys-

ical parameters. In particular, there will be two algebraic constraints on the

roots x3, x4. This will allow us to eliminate them in terms of the physical roots

x1, x2. For example, in the case that the physical roots belong to the quadratic

factor P−(X̃), then (3.183) and (3.185) give us the algebraic conditions

x1x2 = x3x4, 4g̃ = x1 + x2 − x3 − x4. (3.186)

A further constraint on physically meaningful solutions is the transla-

tion symmetry θ 7→ θ + 2π. Since we observe that x1 and x2 are specifically
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obtained as extrema of X̃ when p is pure imaginary, and that 2iK′ is the cor-

responding period of sn, we desire that for some integer j ∈ Z,

2πp = 2jiK′, (3.187)

or equivalently

−iπp = jK′. (3.188)

In fact since sn is an odd function and it always appears squared in X̃, we

can restrict to considering j ∈ N. We see now that it is convenient to cancel

the explicit factor of i in the definition of p at (3.178) above, and work instead

in terms of

q =
1
2

√
(x1 − x4) (x2 − x3), (3.189)

and thus with the constraint

πq = jK′, j ∈ N. (3.190)

This is a transcendental constraint on the roots, expressed just in terms of the

physical roots x1 and x2 after using (3.183-3.185) to eliminate x3 and x4.

Finally, we should consider the overall normalisation of the fermion, as

we know this plays a role in the energy eigenvalue. Recall that we defined

T =
∫ 2π

0
X(θ) ρ dθ

=
2ρ

λ

∫ 2π

0
X̃(θ) dθ, (3.191)

or equivalently we might define

T̃ :=
Tλ

2ρ
=
∫ 2π

0
X̃(θ) dθ. (3.192)
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For numerical calculations, it is convenient to exploit the periodicity of

the solution as expressed above at (3.190) to avoid integrating over the sin-

gularities of sn(u) at u = iK′. Suppressing the constant of integration θc, we

can express the above as

T̃ = 2j
∫ π

j

0
X̃(θ) dθ. (3.193)

From (3.177), X̃(θ) takes the generic form:

X̃(θ) =
A + B sn2(pθ)

C + D sn2(pθ)
=

A
C

+

(
BC − AD

C2

)
sn2(pθ)

1 + D
C sn2(pθ)

. (3.194)

Therefore we expect we can express the integral on the right-hand side of

(3.193) in terms of an incomplete elliptic integral of the third kind, as dis-

cussed in Section 3.6.1. By our preferred form of X̃, A
C = x1 in the above

expression. We also find

BC − AD
C2 =

(x1 − x2)(x1 − x3)

(x2 − x3)
, (3.195)

and if we define the parameter χ of the incomplete elliptic integral of the

third kind Π(z, χ, k) via

D
C

= −k2sn2(χ) = −
(

x1 − x3

x2 − x1

)
(3.196)

then

sn2(χ) =
x1 − x4

x2 − x4
; (3.197)

consequently,

cn2(χ) = 1 − sn2(χ) = 1 −
(

x1 − x4

x2 − x4

)
=

x2 − x1

x2 − x4
, (3.198)
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and

dn2(χ) = 1 − k2sn2(χ) = 1 −
(

x1 − x3

x2 − x1

)
=

x2 − x1

x2 − x3
. (3.199)

Integrating (3.194),

T̃ = 2j
∫ π

j

0
X̃(θ) dθ =

2j
p

∫ πp
j

0
X̃(θ) d(pθ) (3.200)

=
2j
p

∫ πp
j

0

[
x1 +

BC − AD
C2

(
sn2(pθ)

1 − k2sn2(χ)sn2(pθ)

)]
d(pθ) (3.201)

= 2πx1 +
BC − AD

C2k2sn(χ)cn(χ)dn(χ)
Π
(

πp
j

, χ, k
)

. (3.202)

Combining the expressions from (3.195) to (3.198), we see that (up to a

possible ambiguity in the sign of the square root, which we can fix)

BC − AD
C2k2sn(χ)cn(χ)dn(χ)

= 2q. (3.203)

Therefore we see that the normalisation of the fermion is expressed by the

transcendental equation

T̃ = 2πx1 + 2q Π
(

πp
j

, χ, k
)

, (3.204)

and the parameters p, q, k and χ can all be written as functions of the physical

roots x1 and x2 by employing the algebraic relations obtained at (3.183-3.185).

The upshot of this discussion is that in principle, the transcendental con-

straints given at Equations (3.190) and (3.193) can be reduced to finding inter-

sections of transcendental curves in the (x1, x2)-plane. By setting the phys-

ical parameters λ, C̃0 and g̃, intersections of the transcendental curves give

the possible physical solutions of the kink-fermion system with these quanti-

ties, and moreover, by Equation (3.184), the shifted energy eigenvalue Ẽ′ can
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be immediately determined by inspection once we identify the intersection

point and determine the two remaining, non-physical, roots x3 and x4. We

have not had time to follow this outlined approach further, but we hope to

explore it in future work.

3.7 Angular momentum eigensolutions and the role

of W

Let us consider how, from the XYZW picture, solutions of the special case

with background kink arise. Moving the kink to the background corresponds

to taking the limit M2 → ∞ (for fixed ρ, g and T), which in the XYZW picture

corresponds to λ → 0. In this limit we cannot perform the final rescaling

(3.158), but (3.157) reduces to

−
(

dX
dθ

)2

= 4
(

Ẽ′2 − g̃2
)

X2 + 4Ẽ′ C̃0

λ
X +

C̃2
0

λ2 + 4g̃2W2. (3.205)

With a little algebra, we can complete the square and then solve the above

with a standard arcsin integral. First we write the right-hand side simply as

AX2 + BX + C, with coefficients given by

A = 4
(

Ẽ′2 − g̃2
)

, B = 4Ẽ′ C̃0

λ
, C =

C̃2
0

λ2 + 4g̃2W2. (3.206)

The discriminant of this quadratic is

∆ = B2 − 4AC = 16g̃2

[
C̃2

0
λ2 − 4W2

(
Ẽ′2 − g̃2

)]
. (3.207)

Completing the square, the differential equation (3.205) can be written as

(
dX
dθ

)2

=
∆

4A

[
1 −

(
2A√

∆
X +

B√
∆

)2
]

. (3.208)
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Integrating, we obtain solutions of the form

X(θ) =

√
∆

2A
sin
(
±
√

A (θ − θ0)
)
− B

2A
, (3.209)

where θ0 is the constant of integration, as long as
√

A = k ∈ Z. Substituting

in our specific values of A, B and C, we obtain two general solutions: one on

each of two (positive and negative) energy branches, according to

X(θ) =
2
k2

g̃

√
C̃2

0
λ2 − k2W2 sin k (θ − θ0)∓

C̃0

λ

√
g̃2 +

k2

4

 , (3.210)

Ẽ′ = ±
√

g̃2 +
k2

4
. (3.211)

We immediately see, for real solutions, the bound on W2:

0 ≤ W2 ≤
C̃2

0
k2λ2 . (3.212)

We will show that we obtain the known parity eigenstates when W2 = 0, and

the known angular momentum eigenstates when W2 =
C̃2

0
k2λ2 ; in each case, the

interpretation of the mode k is that k = 2l where l is the angular momentum

eigenvalue.

Let us consider some effects of setting λ = 0 on the kink and physical

invariants. From the known eigensolutions (either parity or angular momen-

tum), we can exactly determine X, Y, Z and W, whence C0, directly in terms

of constants and invariants such as l, T, and so on. For the angular momen-

tum solutions,

X =
T

2πρ
, Y = ± g√

a2l2 + g2

T
2πρ

, Z = 0, W = ∓ al√
a2l2 + g2

T
2πρ

,

(3.213)
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with the choice of ± sign always corresponding to the energy branch. For the

parity solutions, let P = ±1 be the parity. Then

X =

[
1 + P

alg
a2l2 + g2 cos 2l (θ − θ0)

]
T

2πρ
, (3.214)

Y =

[
g√

a2l2 + g2
+ P cos 2l (θ − θ0)

]
T

2πρ
, (3.215)

Z =

[
P

a2l2

a2l2 + g2 sin 2l (θ − θ0)

]
T

2πρ
, (3.216)

and by construction W = 0.

Consider again the quadratic on the RHS of 3.205. Its roots are

X =
−Ẽ′C̃0 ± g̃

√
C̃2

0 − 4
(
Ẽ′2 − g̃2

)
λ2W2

2λ
(
Ẽ′2 − g̃2

) . (3.217)

For physical periodicity, we require that both roots are non-negative,

since
(
Ẽ′2 − g̃2) > 0 for reality of (3.210). This gives the same physical

bound on W2, and in particular demonstrates the double root when the up-

per bound is saturated. But on such a physical solution where X is constant,

by axial current conservation the kink is uniform – so we immediately re-

duce to the special case as a subset of the general case, implying that the

solution is an angular momentum solution. Some straightforward algebra

then demonstrates that the conditions in equations (3.213-3.216) are obtained

in the respective bounds (3.212).

How do we interpret W in the special case of the prescribed kink? Fix an

energy level E±, determined by |l| ̸= 0 and the choice of branch, and iden-

tify k = 2l. All such energy levels are two-dimensional; we have exhibited

the angular momentum and parity bases. Individual elements of the parity

basis {ψ+, ψ−} have W = 0, while the individual elements of the angular

momentum basis are proportional to linear combinations of the parity basis
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solutions according to

ψl± ∼ (ψ+ + ψ−), (3.218)

ψ−l± ∼ (ψ+ − ψ−). (3.219)

Now, a general solution (of the special case) in the chosen energy level may be

expressed as a linear combination of the parity basis solutions,

ψ = uψ+ + vψ−, u, v ∈ C. (3.220)

Calculating e.g. W, C0, X, Y in terms of the known values for the parity basis,

we find:

W = ∓
(

8al
√

a2l2 + g2
)
(u∗v + v∗u) , (3.221)

C0 = 16a3l2
√

a2l2 + g2
(
|u|2 + |v|2

)
. (3.222)

Then the bound C2
0 − (2alW)2 ≥ 0 simply corresponds to the implication

that, by positive-definiteness and linearity of the complex inner product,

|u + v|2 ≥ 0 ⇒ |u|2 + |v|2 ≥ u∗v + v∗u. (3.223)

In this sense, axial charge arises from the cross-terms in |ψ|2 when expressed

in the parity basis: the projection, or inner product, of the positive and nega-

tive parity components.
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3.8 Consistency with the Dirac equations for W =

0

The XYZW dynamical system was derived from the Dirac equations for the

fermion field(s); it is necessary that any fermion solution must yield bispinors

that satisfy the real dynamical system, but it is not necessary that every solu-

tion to the XYZ equations can arise from a valid solution for the underlying

Dirac equations. For a solution X(θ) to actually provide a valid fermionic

solution, we must be able to construct the fermionic components of ψ con-

sistently. We will use the polar decomposition in terms of real functions

R(θ), L(θ), µ(θ) and ν(θ) as discussed at (3.114). The general obstruction to

obtaining solutions to the Dirac equations is that it is not necessarily clear

that we can solve for the axial phase µ(θ)− ν(θ).

For stationary state fermionic solutions, the Dirac equations expressed in

these components are

E f Reiµ = ia
∂

∂θ

[
Reiµ

]
+ gLe−i(ϕ−ν), (3.224)

E f Leiν = −ia
∂

∂θ

[
Leiν

]
+ gRei(ϕ+µ). (3.225)

Let us restrict to the case W = 0. We have observed that in this case

R(θ) = L(θ), so

E f Reiµ = ia
(

∂R
∂θ

+ i
∂µ

∂θ
R
)

eiµ + gRe−i(ϕ−ν), (3.226)

E f Reiν = −ia
(

∂R
∂θ

+ i
∂ν

∂θ
R
)

eiν + gRei(ϕ+µ). (3.227)

Next we restrict the appearance of complex phases to the coupling terms,
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and write the equations explicitly in terms of their real and imaginary com-

ponents:

E f R = −a
∂µ

∂θ
R + ia

∂R
∂θ

+ gR (cos(ϕ + µ − ν)− i sin(ϕ + µ − ν)) , (3.228)

E f R = a
∂ν

∂θ
R − ia

∂R
∂θ

+ gR (cos(ϕ + µ − ν) + i sin(ϕ + µ − ν)) . (3.229)

Comparing the real parts demonstrates that

∂µ

∂θ
= −∂ν

∂θ
, (3.230)

i.e. ν(θ) = ν0 − µ(θ) for some constant ν0. (3.231)

In fact this constant ν0 is easily determined by the requirement that W =

0 solutions are parity eigenstates; we can show that it is 0 for the positive

parity eigenstate and π for the negative parity eigenstate. (An equivalent

means of deriving this would have been to substitute the polar component

decomposition and the ansatz W = 0 into equations (3.128-3.131).)

We have reduced to a pair of real equations relating R, µ and ϕ; recall that

since X(θ) is considered to be already determined, so are R and ϕ. For this

solution X(θ) to admit a fermion solution, we seek a consistent solution for

µ(θ) from the remaining pair of equations:

E f = −a
∂µ

∂θ
+ g cos(ϕ + 2µ − ν0), (3.232)

0 = a
∂R
∂θ

− gR sin(ϕ + 2µ − ν0). (3.233)

In principle, (3.233) can be solved for µ in terms of the arcsin of a logarithmic

derivative of R, but it is then not so straightforward to determine whether

that complicated expression for µ will be consistent with (3.232) by resulting

in a constant right-hand side. Instead let us differentiate (3.232), and then use
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(3.233) to eliminate the explicit appearance of trigonometric functions. Thus,

0 = −a
∂2µ

∂θ2 − g (sin(ϕ + 2µ − ν0))

(
∂ϕ

∂θ
+ 2

∂µ

∂θ

)
, (3.234)

= −a
∂2µ

∂θ2 − a
(

1
R

∂R
∂θ

)(
∂ϕ

∂θ
+ 2

∂µ

∂θ

)
. (3.235)

Now,

X = 2R2 ⇒ 1
R

∂R
∂θ

=
1

2X
∂X
∂θ

, (3.236)

and from the axial current conservation for the static kink (3.138), we had

∂ϕ

∂θ
= n +

Tλ

2πρ
− λX (3.237)

= 2
(
Ẽ f − Ẽ′)− λX. (3.238)

That is,

∂2µ

∂θ2 +
1

2X
∂X
∂θ

(
2
(
Ẽ f − Ẽ′)− λX + 2

∂µ

∂θ

)
= 0, (3.239)

or
∂2µ

∂θ2 +
1
X

∂X
∂θ

∂µ

∂θ
=

(
Ẽ′ − Ẽ f +

λ

2

)
∂X
∂θ

. (3.240)

Taking an integrating factor of simply X(θ) we see

∂

∂θ

(
X

∂µ

∂θ

)
=

(
Ẽ′ − Ẽ f +

λ

2

)
X

∂X
∂θ

, (3.241)

⇒ X
∂µ

∂θ
=

λ

4
X2 +

(
Ẽ′ − Ẽ f

)
X + C2, (3.242)

⇒ ∂µ

∂θ
=

λ

4
X +

(
Ẽ′ − Ẽ f

)
+

C2

X
. (3.243)

As we know X(θ) is a particularly simple rational function of Jacobi sn func-

tions, we can therefore integrate this equation to obtain an expression for

µ(θ) as an incomplete elliptic integral of the third kind – if we can find an ap-

propriate value for the constant of integration C2 that we introduced during
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these manipulations. Thankfully, the Dirac equations also let us determine

the consistent value of C2. To see this, we will eliminate the messy trigono-

metric functions by relating them algebraically, rather than differentiating

one into the other. We will substitute (3.233) into (3.232) by writing

cos(ϕ + 2µ − ν0) = ±
√

1 − sin2(ϕ + 2µ − ν0) (3.244)

= ±

√
1 −

(
1

g̃R
∂R
∂θ

)2

(3.245)

= ±

√
1 −

(
1

2g̃X
∂X
∂θ

)2

. (3.246)

Substituting this and (3.243) into (3.232),

Ẽ f = −
(

λ

4
X +

(
Ẽ′ − Ẽ f

)
+

C2

X

)
± g̃

√
1 −

(
1

2g̃X
∂X
∂θ

)2

. (3.247)

If we multiply by 2X and rearrange, we see

λ

2
X2 + 2Ẽ′X + 2C2 = ±

√
4g̃2X2 −

(
∂X
∂θ

)2

. (3.248)

This is beginning to look very familiar! We square both sides to find

−
(

∂X
∂θ

)2

=

(
λ

2
X2 + 2Ẽ′X + 2C2

)2

− (2g̃X)2 . (3.249)

This difference of two squares gives us exactly the elegant factorisation ap-

pearing in the defining differential equation of the XYZ system when W = 0,

as long as we take 2C2 = C̃0
λ . This also clarifies that C̃0 is related to the evo-

lution of the phase of the chiral fermion components, which was not obvious

when we first introduced it as a constant of integration.

Returning to (3.243), we’ve now obtained

∂µ

∂θ
=

λ

4
X(θ) +

(
Ẽ′ − Ẽ f

)
+

C̃0

2λ

1
X(θ)

. (3.250)
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In section 3.6.2 we demonstrated how to write a schematic solution for X̃(θ)

as an integrand for an incomplete elliptic integral of the third kind. We can

do similarly for the function 1
X(θ)

by relabelling the coefficients A, B, C and

D, being careful to note that the parameter χ will also be changed by this

rearrangement. Observe from (3.194),

1
X̃(θ)

=
C + D sn2(pθ)

A + B sn2(pθ)
=

C
A
+

(
AD − BC

A2

)
sn2(pθ)

1 + B
A sn2(pθ)

, (3.251)

and we should now define

B
A

= −k2sn2(χ′). (3.252)

Making similar use of identities for the Jacobi elliptic functions and the ex-

pressions for the roots of the quartic P(X̃), we find:

sn2(χ′) =
x2 (x1 − x4)

x1 (x2 − x4)
, (3.253)

cn2(χ′) =
x4 (x2 − x1)

x1 (x2 − x4)
, (3.254)

dn2(χ′) =
x3 (x2 − x1)

x1 (x2 − x3)
, (3.255)

AD − BC
A2 = − (x1 − x2) (x1 − x3)

x2
1 (x2 − x3)

, (3.256)

and so, up to the sign of a square root,

AD − BC
A2k2sn(χ′)cn(χ′)dn(χ′)

= ± 2q√
x1x2x3x4

. (3.257)

Observe that when W = 0, x1x2x3x4 = C̃2
0 , so finally,

1
X̃(θ)

=
1
x1

± 2q
C̃0

[
k2sn(χ′)cn(χ′)dn(χ′)sn2(pθ)

1 − k2sn2(χ′)sn2(pθ)

]
, (3.258)

where the term in square brackets is the integrand of the incomplete elliptic
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integral of the third kind Π(pθ, χ′, k). Thus, in principle, when W = 0, it is

completely possible to solve for the function µ(θ) and evaluate it numerically.

Equipped with that, we can therefore construct all components of the Dirac

spinor ψ from the XYZ solution, with a guarantee that this ψ satisfied the

Dirac equation.

3.9 Discussion

For such a seemingly simple model, our kink-fermion system on R × S1 has

revealed a surprisingly elaborate structure. The ability to recast the dynamics

of a fermion field into the language and technology of elliptic functions was

unexpected at the outset of this project.

There are some outstanding questions which we had initially hoped to

pursue during our research, but were unable to address in time, at least in

part owing to the effects of the COVID-19 pandemic. We made some sim-

plifying assumptions in our illustrative remarks of the framework when we

were discussing the roots of the quartic P
(
X̃
)

in Section 3.6.2. In particu-

lar, we assumed that the lowest nonnegative root was in fact positive, and

moreover that the sign of Ẽ′ was always opposite the sign of C̃0. These as-

sumptions arose because they were satisfied by a very limited set of numer-

ical solutions derived by the methods of Section 3.4.2. To substantiate these

claims we would like to systematically generate a large number of numeri-

cal solutions in order to see whether they hold true. Alternatively, without

making a priori assumptions about the relationships between the physical

quantities Ẽ′, λ and C̃0, we could examine all the possible effects of permut-

ing the quartic roots in the expressions of equations (3.181-3.182), and derive

the corresponding transcendental constraints analogous to equations (3.190)

and (3.193) in each case. A preliminary investigation suggests that there are
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physical solutions just when the resulting elliptic modulus k arising accord-

ing to equation (3.179) lies on the complex unit circle; then by the identity

(3.166), the quarter period relevant to (3.190) can be evaluated. The fact that

this condition is sufficient to give a physical solution follows from the geo-

metric perspective outlined in Remark 3.2. Möbius transformations of CP1

map circles and lines to circles and lines, and the values 0,1 and ∞̂ lie on a

line, so their images x1, x2 and x3 must lie on a circle or a line. If x3 and x4

are not real, then they are complex conjugates, so (for x3 to lie on a circle with

x1 and x2) they must have real part strictly between x1 and x2 and lie on the

circle for which x1x2 is a diameter. But then it is easily seen that as the square

root of the cross ratio [x1, x2, x3, x4], k must lie on the complex unit circle.

In fact, we see that in terms of the Möbius map M implicitly defined at

(3.177),

x4 = M
(

1
k2

)
. (3.259)

We pointed out at (3.180) that that x3 = M(1), but we should perhaps clarify

that, in terms of the quarter period K(k), this can be written

x3 = M(sn K). (3.260)

So all of the roots of the quartic P(X̃) can be related to properties of the

“generic” Jacobi elliptic function sn(z, k) appearing in the preimage of the

Möbius map. We feel that we have certainly not exploited all of this geomet-

ric structure yet. We therefore confidently hope that we will be able push

this perspective further in order to simplify the case-by-case treatment of our

outline for “hunting” physical solutions in the (x1, x2) plane by numerically

solving for the intersection of two transcendental curves.

Although we have some understanding in the XYZW picture of the role

of the quantities E′ and C0, they are lacking a physical interpretation in the

original system. We postulate that E′ is a sort of “free energy” of the fermion,
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accounting for the proportion of its energy that is not used to “bind” to the

kink; and also that C0 can be interpreted as a sort of regularised fermionic

pressure, which remains well-behaved in the limit λ → 0. However, we have

not yet rigourised these ideas.

Of the physical quantities of the system, the axial charge W appears to be

of primary importance. All of the numerical solutions derived by the meth-

ods of Section (3.4.2) converged to states with W = 0, but not by our design.

It seems the bvp4c algorithm simply preferred to converge to these states. We

could add boundary conditions to our numerics enforcing W to be non-zero,

in a similar manner to how we fixed the cumulative value of T, and there-

fore generate numerical solutions with non-zero axial charge. We would like

to understand what happens to a known W = 0 solution if we perturb the

value of W. Consider that, owing to the role of W in Equation (3.159), this

corresponds somewhat to “pushing down” on the graph of −P(X̃). Then the

allowed domain of the density X̃(θ) becomes smaller and smaller, until a crit-

ical point where the physical roots of P
(
X̃
)

coincide, and the upper bound

on W at equation (3.212) is saturated. We illustrate this in Figure 3.16.

As mentioned at Remark 3.1, we believe there is some very small param-

eter inherent to our choice of ρ explaining why full coupling gives only a tiny

deviation to the fermion energy spectra. Our guess is that is more appropri-

ate to normalise the fermion so that it has density 1 per unit length, rather

than 1 per length ρ. This would be more appropriate for modelling a peri-

odic fermion beam, rather than a fermion with periodic boundary conditions

localised on a circle. As a very preliminary example, we adapted our itera-

tive numerical process to begin with a l = 1
2 state with T = 1 at g = 1, and

find solutions evolving T up to a value of 2π. The result is plotted in Figure

3.17. We observe that at T = 2π, the wobble on the kink has become of order

1. The change in the energy eigenvalue is still quite small; as a function of T

it is very well fitted to a quadratic curve. The density function X(θ) appears
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FIGURE 3.16: Illustration of modifying a quartic P
(
X̃
)

by
“pushing” W to a maximal value where only an angular mo-
mentum solution exists. (Illustrative only – the blue curve is

not a guaranteed physical solution.)

broader.

We discuss some other potential areas of future work in Section 5.2.1.
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FIGURE 3.17: A numerical l = 1
2 with T = 2π obtained by

starting with a T = 1 solution and slowly iterating T.
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Chapter 4

Spin-isospin fermion-baby

Skyrmion coupling on S2 × R

In this chapter, we examine a model of fermion-baby Skyrmion coupling on

R × S2. By analogy with the simplicity of the B = 1 BPS Skyrmion on S3 [23,

36, 37, 40], we begin with a fixed scalar field taking values in S2 in the back-

ground of the fermion, prescribed to wind uniformly azimuthally n times

over a period of the base space. We will use a Lagrangian analogous to that

at (2.10) for the dynamical fermion field, but we will first need to take con-

ventions for the spin and isospin representations, and determine the spin

connection on S2.

Once we have done that preliminary work, we can begin the investiga-

tion proper of the fermion dynamics. The ansatz of simple azimuthal wind-

ing in the baby Skyrmion permits a straightforward definition of generalised

angular momentum about the polar axis. Separating variables, we reduce the

eigenvalue problem to solving the latitude profile function of the fermion,

which is a function of the polar angle θ. We observe that the differential

equation for the latitude profile is Fuchsian when considered to extend to the

entire complex plane, and therefore amenable to solution by Frobenius series.

We check the Fuchs relations and observe that, up to the critical exponent fac-

tor, normalisable solutions are polynomials. This algebra on a fourth-order

system is quite taxing to perform by hand; rather than exhibiting the details,
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we include a Maple worksheet in Appendix B.1 which performs the neces-

sary manipulations.

We will then specialise to the case n = 1, where it is particularly appro-

priate to use such a simple isovector map as a model of the baby Skyrmion

[59]. Here we find that angular momentum corresponding to the azimuthal

winding extends to a full SU(2) symmetry of the fermion. We can use the

additional symmetry alongside the Fuchsian analysis to solve the problem

explicitly by looking for the lowest-weight states of the irreducible represen-

tations of SU(2). We are able to determine the exact energy spectrum in this

case, as well as outline the constructive algorithm for explicitly determining

components of the fermion eigensolutions.

Our treatment of the fermion on R× S2 in terms of Fuchsian analysis and

the SU(2) representations draws heavily on the approach of Abrikosov [1],

who solved the spectrum of the Dirac operator for Euclidean spinors on S2.

We wish to comment that in the absence of isospin, a “pure” Dirac fermion

for our purposes is a Lorentzian spinor on R × S2 rather than a Euclidean

spinor on S2. We are solving the eigenvalue problem for the fermionic Hamil-

tonian on our spacetime, which differs from the Euclidean Dirac operator by

a factor of γ0 owing to the difference in the metric signature. Therefore, to

ensure we don’t accidentally compare apples and oranges, we have also in-

cluded a Maple worksheet in Appendix B.2 which performs the analogous

treatment to Abrikosov’s for our Lorentzian Dirac operator. We find that the

key results are unchanged. Eigenstates are classified by their half-integer

total angular momentum l, their half-integer angular momentum about the

polar axis m, and their parity. The energy E f of a state of total angular mo-

mentum l and parity P = ±1 is

E f = P
(

l +
1
2

)
. (4.1)
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This is an illustration of the Lichnerowicz or Lichnerowicz-Weitzenböck the-

orem, which states that on a pseudo-Riemannian manifold with positive scalar

curvature, the square of the Dirac operator is strictly positive [38, 45].

4.1 Constructing the model

4.1.1 Conventions and representations for spinors and isospinors

Here we will briefly review the standard behaviour of spinors on flat space

under rotation, in order to clarify the specific conventions for, and differences

between, Lorentz spinors and Euclidean isospinors.

Consider the local Clifford algebra for R × S2 with Minkowski metric

ηµν = diag(1,−1,−1). The Lie algebra so(1, 2) has three generators: J corre-

sponding to a positive spatial rotation, and K1, K2 corresponding to positive

boosts in the x1, x2 directions respectively. In the vector representation they

are

J =


0 0 0

0 0 −1

0 1 0

 , K1 =


0 1 0

1 0 0

0 0 0

 , K2 =


0 0 1

0 0 0

1 0 0

 . (4.2)

Let us rewrite them as Mµ, where (M0, M1, M2) = (J, K2,−K1). Then Mµ

rotates or boosts the (xµ+1, xµ+2) plane (addition modulo 3) and respects this

orientation. Define the totally alternating tensor ελµν by ε012 = 1 with indices

raised and lowered by η. It’s then easily seen that

(Mµ)λ
ρ = ε

µλ
ρ (4.3)
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and

[Mµ, Mν] = −ε
µν

κ Mκ. (4.4)

A general Lorentz transformation is given in terms of parameters a0, a1, a2 by

Λµ
ν =

(
eaλ Mλ

)µ

ν
. (4.5)

The usual (chiral) representation of the Pauli matrices is

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (4.6)

They have composition σiσj = δij + iεijkσk. The Clifford algebra is generated

by the gamma matrices γµ obeying {γµ, γν} = 2ηµνI. For our purposes, it

is convenient in this chapter to take the so-called standard representation of

the gamma matrices,

γ0 = σ3 =

 1 0

0 −1

 , γ1 = −iσ1 =

 0 −i

−i 0

 , γ2 = −iσ2 =

 0 −1

1 0

 .

(4.7)

They act on the space of Dirac spinors C2 by standard multiplication. We

contrast this representation with the choice of a chiral basis for the (1+1)-

dimensional system of the previous chapter: then, both of the gamma matri-

ces corresponding to space and time directions had only off-diagonal compo-

nents non-zero, while the chiral gamma matrix was diagonal. Here, in (2+1)

dimension, the product γ0γ1γ2 is proportional to the identity, so there is no

further decomposition of the Dirac spinor into Weyl spinors; i.e. there is no

special “chiral gamma matrix.” On the other hand, the standard representa-

tion easily distinguishes between the diagonal γ0 corresponding to the time

direction, and the off-diagonal γ1, γ2 corresponding to space directions. We
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will also see that this representation is convenient for the changes of coordi-

nates we will make use of later.

Recall that the Lorentz action on Dirac spinors is usually given by con-

structing a set of spin generators,

Sµν =
i
4
[γµ, γν] , (4.8)

and showing that these form a representation of the Lorentz algebra. Work-

ing in (2 + 1) dimensions, there is no need to have two indices on the spin

generators. For brevity, let us define

Sµ = − i
2

ε
µ

νλSνλ, (4.9)

and we find that Sµ = − i
2 γµ. It’s then easily checked that

[Sµ, Sν] = −ε
µν

κSκ, (4.10)

so these Sµ do form a representation of the Mµ. Thus, for any Lorentz action

Λ which in the vector representation has Λ = eaλ Mλ
, we can define its action

on spinors S[Λ] via

(S[Λ])α
β =

(
eaλSλ

)α

β
. (4.11)

Let Ψ ∈ C2 be a Dirac spinor. The spinor conjugate Ψ is defined as Ψ =

Ψ†γ0. It remains to show that the spinor bilinear ΨγµΨ belongs to the vector

representation, i.e.

(S[Λ]Ψ)γµ (S[Λ]Ψ) = Λµ
ν(ΨγνΨ) = ΨΛµ

νγνΨ. (4.12)

Recall that (S[Λ]Ψ) = Ψ†S[Λ]†γ0 = ΨS[Λ]−1, so it is sufficient to check

that S[Λ]−1γµS[Λ] = Λµ
νγν. Expanding the transformations as exponentials,
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that is (suppressing spinor indices)

e−aλSλ
γµeaκSκ

=
(

eaρ Mρ
)µ

ν
γν (4.13)

⇔ (1 − aλSλ)γµ(1 + aκSκ) = (1 + aρMρ)
µ

νγν + O(a2). (4.14)

Hence it is sufficient to show that [γµ, Sλ] =
(

Mλ
)µ

ν
γν. By comparison with

(4.10) above, we see that

[γµ, Sλ] = −ε
µλ

νγν = ε
λµ

νγν =
(

Mλ
)µ

ν
γν, (4.15)

as required. Thus indeed the spinor bilinear ΨγµΨ is a Lorentz vector.

We proceed similarly for the isospinor, which is constructed as the “Dirac”

spinor for so(0, 3) = so(3). The Euclidean metric is just the Kronecker delta

δij. As the metric is of definite signature, there is no need to distinguish be-

tween covariant and contravariant indices, so we will write all indices down-

stairs. so(3) is generated by the three elements Ji, each of which generates a

positive rotation in the (xi+1, xi+2) plane (addition modulo 3). In the vector

representation they have matrix elements

(Ji)jk = −εijk. (4.16)

(In particular, J1 is the same as the J given above for so(1, 2).) They obey the

familiar commutation relation

[Ji, Jj] = εijk Jk. (4.17)

A rotation of R3 parametrised by the components of a vector θ = (θ1, θ2, θ3)

is given by

Rij =
(

eθ·J
)

ij
=
(

eθk Jk
)

ij
. (4.18)
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Here the Pauli matrices satisfy to generate the Clifford algebra, as they cer-

tainly obey {σi, σj} = 2δijI. They act by standard multiplication on an isospinor

Ξ ∈ C2. Again, to find “spin generators” proportional to commutators [σi, σj]

it is sufficient to simply rescale the σi. Let

Σi = − i
2

σi. (4.19)

It is immediate that these form a representation of the Ji as

[Σi, Σj] = εijkΣk. (4.20)

Thus a rotation R = eθ·J induces an action on an isospinor according to

(S[R])ab =
(

eθ·Σ
)

ab
. (4.21)

However, in contrast to the spinors in indefinite signature, we see that for the

isospinors the corresponding identity to (4.15) is

[σi, Σj] = − i
2
[σi, σj] = εijkσk = −(Ji)jkσk. (4.22)

The relative minus sign here implies that the isospinor bilinear, Ξ†σiΞ, in

fact belongs to the conjugate of the vector representation: it rotates backwards

under the action of rotations, i.e.

(S[R]Ξ)†σi(S[R]Ξ) = Ξ†(R−1)ijσjΞ. (4.23)

Thus, to create a rotation-invariant scalar of the form Ξ†ϕ · σΞ, the object

ϕ should also be in the dual (iso)vector representation, and transform back-

wards under (iso)rotations.

We wish to clarify that this is not an accidental inconsistency between a
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left action and a right action. It is rather a consequence of our convention

to write all our indices downstairs, and thus not distinguish between the

indices of vector components and basis vectors in Euclidean isospace. We

can demonstrate explicitly that the action given above at (4.23) is consistent

with the requirement that S is a homomorphism from SO(3) to Spin(3). Let

R = R1R2. Then consider:

(S[R1R2])
† σi (S[R1R2]) = (S[R1]S[R2])

† σi (S[R1]S[R2]) (4.24)

= S[R2]
†S[R1]

† σi S[R1]S[R2] (4.25)

= S[R2]
†
[
(R−1

1 )ij σj

]
S[R2] (4.26)

= (R−1
2 )ik(R−1

1 )kj σj (4.27)

= (R−1
2 R−1

1 )ij σj (4.28)

= ([R1R2]
−1)ij σj. (4.29)

Note also that the constant of proportionality of the spin generators to

the basis elements of the Clifford algebras, which was − i
2 in both (4.9) and

(4.19) above, was fixed by the desire to equate the commutator in each case.

In particular, our choice of orientation fixed the sign, and hence our conclu-

sion that the isospinor bilinear transformed backwards relative to the spinor

bilinear. Simply setting Σi = + i
2 σi instead at (4.19), for example, would not

have made the isospinor bilinear transform forwards, because the commuta-

tor would break the orientation of the algebra.

4.1.2 Geometry of the spinor bundle

Formally, a spinor field over a manifold M is a section of a spinor bundle

Λ over M. An obstacle to the construction of the required spin structure is

the second Stiefel-Whitney class, w2(M) ∈ H2(M, Z2) [46]. When w2(M)
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vanishes, the manifold is said to be “spin”. All orientable 3-manifolds are

spin [35].

At each point p of the spin manifold M, we endow the local spinor space

Λp(M) with our chosen representation of the Dirac γ matrices. To construct

a Dirac operator for local coordinates xµ on a chart U of M, we glue these γ

matrices to a local orthonormal frame e µ
a , so that coordinate γ matrices are

defined

γµ = e µ
a γa. (4.30)

We therefore expect that under any change of coordinates, we will also im-

plicitly change the basis of the spinor space.

Let us consider this in general before making specific choices of coordi-

nates. Suppose we have two sets of coordinates, xµ and x̃µ; and correspond-

ing to each, a respectively preferred local orthonormal frame, ea
µ and f̃ a

µ .

We must assume that the components of a Dirac spinor ψ with γ matrices

associated to the frame e and coordinates xµ will transform according to an

element S of the spin group when viewed in the coordinates x̃µ and against

the frame f̃ ; that is,

ψ 7→ ψ̃ = Sψ. (4.31)

We have seen that we may construct a Lorentz vector V from the spinor bi-

linear ψγψ. In the respective coordinates, then,

V = Vµ ∂

∂xµ = Ṽν ∂

∂x̃ν
, (4.32)

where the contravariant components are

Vµ = ψγµψ = ψe µ
a γaψ, (4.33)

Ṽν = ψ̃γ̃νψ̃ = ψ̃ f̃ ν
a γaψ̃. (4.34)
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These contravariant components transform according to Ṽν = ∂x̃ν

∂xµ Vµ. There-

fore, the spinor transition function S must satisfy

(Sψ) f̃ ν
a γaSψ =

∂x̃ν

∂xµ ψe µ
b γbψ, (4.35)

i.e. S†γ0 f̃ ν
a γaS =

∂x̃ν

∂xµ γ0e µ
b γb (4.36)

Now, by definition, ∂x̃ν

∂xµ e µ
b is ẽ ν

b , the expression of the frame e in the coordi-

nates x̃ν. It is still a local orthonormal frame, so it is simply an orthogonal

rotation of the elements of the “preferred” frame f̃ ν
a we associated with the

x̃ν coordinates. Let us denote that local rotation as follows:

ẽ ν
b = T̃ a

b f̃ ν
a . (4.37)

Thus, the condition on the spinor transition function S may be expressed just

in terms of local orthonormal coordinates as

S†γ0γaS = γ0T̃ a
b γb. (4.38)

Note that once we have specified coordinates and frames, we determine the

local rotation matrix T̃ a
b . We use this to solve for the spin transition function

S. In general there will be two possibilities, since if S is a solution then so is

−S. This corresponds to the double cover of the spin group over the isometry

group of the manifold. We will comment further on this in the next section, in

the specific case of coordinate transformation involving polar coordinates. It

will illustrate the spin-1
2 nature of the fermion, naturally having half-integer

angular momentum eigenvalues.

We are nearly ready to construct the Dirac operator on the manifold M.

As is typical on curved manifolds, we must make it covariant with respect to

the local change of basis by augmenting it with a connection term. We define
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the covariant Dirac operator Dµ with respect to coordinate xµ as

Dµ = ∂µ + Ωµ, (4.39)

where the spin connection Ω is a 1-form taking value in the Lie algebra of

the spin group. Under a coordinate transformation xµ 7→ x̃ν with induced

spin transformation S, we desire that the covariant derivative of a spinor

transforms both as a spinor and a vector;

Dµψ 7→ D̃νψ̃ =
∂xµ

∂x̃ν
SDµψ. (4.40)

Thus D transforms as

Dµ 7→∂xµ

∂x̃ν
S
(
∂µ + Ωµ

)
S−1, (4.41)

=
∂xµ

∂x̃ν

(
∂µ + S

[
∂µS−1

]
+ SΩµS−1

)
, (4.42)

and so the spin connection satisfies

Ω̃ν =
∂xµ

∂x̃ν

(
S
[
∂µS−1

]
+ SΩµS−1

)
. (4.43)

This is satisfied by contracting the connection 1-form ωa
b with the spin

generators:

Ωµ = − i
2

ω ab
µ Sab. (4.44)

The connection 1-form ωa
b , taking values in the Lie algebra of the isome-

try group, is the expression of the Levi-Civita connection in the local frame.

To derive its local components, it is easiest to use the metric compatibility

(antisymmetry) condition,

ωab = −ωba, (4.45)
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with the first of Cartan’s structure equations expressing that the connection

is torsion-free,

dθ̂a + ωa
b ∧ θ̂b = 0 (= Ta) . (4.46)

Here, the θ̂a are the dual frame basis,

θ̂a = ea
µdXµ. (4.47)

Recall that the torsion 2-form Ta ∈ T(M)⊗ Ω2M) is obtained as follows.

Given a connection ∇, the torsion tensor in the physicist’s convention1 is the

type-(1,2) tensor T defined by

T(X, Y, ω) = ω(∇XY −∇YX − [X, Y]). (4.48)

Its components are Ta
bc = T(êb, êc, θ̂a), and then the torsion 2-form is ob-

tained by contracting

Ta =
1
2

Ta
bc θ̂b ∧ θ̂c. (4.49)

In terms of the local frame, the connection components are defined via

∇êa(êb) = Γc
ab êc, (4.50)

and the connection 1-form is obtained by the contraction

ωa
b = Γa

cbθ̂c. (4.51)

A developed treatment of the connection 1-form and Cartan structure equa-

tions can be found in textbooks such as Nakahara [48].

Again, once we have chosen specific coordinates and frames, we may

1The mathematician’s convention carries an overall relative minus sign.
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solve Cartan’s structure equation for the components of the connection 1-

form. This allows us to determine the spin connection and complete the con-

struction of the Dirac operator.

4.1.3 Coordinates and transformations on the sphere

To treat Dirac fermions on the sphere, we will employ both spherical polar

coordinates and stereographic projection. Polar coordinates will allow us to

exploit the symmetries of the sphere, and describe fermion solutions in terms

of Fourier modes in the azimuthal angle ϕ and functions of the polar angle θ

akin to spherical harmonics. The description of the spectrum of the Dirac op-

erator for spinors without isospin on S2 in terms of so-called ”spinor spheri-

cal harmonics” has been achieved by Abrikosov [1]. To check the behaviour

of the fermion at the north and south poles of the sphere where the polar co-

ordinates are singular, we will transform to the coordinates of stereographic

projections from the opposite pole, respectively.

For clarity, we will describe these coordinates and their charts in terms

of the usual embedding of our spacetime manifold R × S2 in R × R3, with

coordinates xµ = (t, x, y, z) such that x2 + y2 + z2 = 1. The time coordinate t

will be equivalent in all charts, so we will simply describe our charts in terms

of the spatial manifold S2. Thus when we speak of “removing a point” of S2,

we really mean removing the line of points from spacetime corresponding to

that spatial location for all time. As we will break the full Lorentz invariance

by considering stationary state spinors in a preferred time coordinate, we

will not worry about the effects of Lorentz boosts: the spatial submanifold

will always be a perfect sphere.

We consider three charts and respective local coordinates:

1. The south chart (US, φS), where the point with z = 1, which we call the

north pole, is removed from the sphere. The local coordinates are given
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by stereographic projection from the north pole,

φ
µ
S = Xµ = (t, X, Y) =

(
t,

x
1 − z

,
y

1 − z

)
. (4.52)

It is convenient to define the radial distance in these stereographic co-

ordinates, R, according to

R2 = X2 + Y2. (4.53)

2. Similarly, the north chart (UN, φN), where the south pole with z = −1

is removed from the sphere, and coordinates are given by stereographic

projection from the south pole,

φ
µ
N = X̃µ = (t, X̃, Ỹ),=

(
t,

x
1 + z

,
−y

1 + z

)
. (4.54)

Again, we define radial distance R̃ according to

R̃2 = X̃2 + Ỹ2. (4.55)

It is easy to establish the inversion symmetry between the stereographic

projections from opposite poles:

R̃ =
1
R

. (4.56)

3. The polar coordinate chart (Up, φp) with both poles removed from the

sphere, and with local coordinates including the usual spherical polar

coordinates,

φ
µ
p = xµ

p = (t, θ, ϕ) =

(
t, arctan

√
x2 + y2

z
, arctan

y
x

)
. (4.57)
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N

S

p

φS(p)
φN(p)

FIGURE 4.1: Stereographic projections of a point p on S2 to the
real plane R2, in the north and south charts. Observe the arrows
indicating the relative orientations induced by the respective

coordinates.

Observe that there is a relevant reversal of orientation between the north

and south charts, as illustrated at Figure 4.1, corresponding to the coordinate

transformation identities

tan ϕ =
y
x
=

Y
X

= − Ỹ
X̃

. (4.58)

Note that we have denoted the local coordinates in the northern stereo-

graphic projections a tilde, and subscripted a p to the generalised polar coor-

dinates. We will replicate this convention throughout this section, in order to

clarify exactly which local coordinates we are using to express components.

So, for example, the metric we obtain by pulling back the flat Minkowski met-

ric, ηµν = diag(1,−1,−1,−1), will be denoted g in coordinates Xµ, g̃ in coor-

dinates X̃µ, and gp in coordinates xµ
p ; and similarly for coordinate-dependent

presentations of other objects such as the local orthonormal frames.
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Thus from each chart we take, respectively:

1. On US,

gµνdXµdXν = dt2 − 4

(1 + X2 + Y2)
2

(
dX2 + dY2

)
. (4.59)

A canonical orthonormal frame e is given by

ea
µ = diag

(
1,− 2

1 + X2 + Y2 ,− 2
1 + X2 + Y2

)
(4.60)

⇒ e µ
a = diag

(
1,−1 + X2 + Y2

2
,−1 + X2 + Y2

2

)
. (4.61)

2. On UN,

g̃µνdX̃µdX̃ν = dt2 − 4(
1 + X̃2 + Ỹ2

)2

(
dX̃2 + dỸ2

)
. (4.62)

A canonical orthonormal frame f is given by

f̃ a
µ = diag

(
1,− 2

1 + X̃2 + Ỹ2
,− 2

1 + X̃2 + Ỹ2

)
(4.63)

⇒ f̃ µ
a = diag

(
1,−1 + X̃2 + Ỹ2

2
,−1 + X̃2 + Ỹ2

2

)
. (4.64)

3. On Up,

gpµν
dxµ

pdxν
p = dt2 − dθ2 − sin2 θ dϕ2. (4.65)

A canonical orthonormal frame h is given by

hp
a
µ
= diag (1,−1,− sin θ) (4.66)

⇒ hp
µ

a = diag
(

1,−1,− 1
sin θ

)
. (4.67)

Explicit calculations to determine the connection 1-form(s) and the spinor

transition functions are contained in Appendix A. In summary, we find that
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in the coordinates Xµ of US, the Dirac operator is

/D = γ0 ∂

∂t
− γi

(
(1 + R2)

2
∂

∂Xi −
Xi

2

)
, (4.68)

while in polar coordinates, it is

/D = γ0 ∂

∂t
− γ1

(
∂

∂θ
+

1
2

cot θ

)
− γ2 1

sin θ

∂

∂ϕ
. (4.69)

We further find that the spinor transition function for changing from polars

to stereographic coordinates is S(p→S) = γ1e
i
2 ϕγ0

, i.e.

ψ(S) = γ1e
i
2 ϕγ0

ψ(p). (4.70)

We next wish to introduce the (baby) Skyrme field via the real triplet

isovector ϕ, so the fermion field should also be in a spinor representation for

isospin. We construct our representation as the tensor product of representa-

tions (Spin) ⊗ (Isospin): we promote the spin matrices (i.e. Dirac matrices)

to

γ̂µ = γµ ⊗ I, (4.71)

and take standard (flat) isospin matrices

τ = I ⊗ σ, (4.72)

where σ is the usual vector of Pauli matrices. The spin-isospin coupling is

modelled by a term of the form

gΨτ · ϕΨ, (4.73)

where g is a coupling constant. This term is Lorentz invariant. By construc-

tion, it is also invariant under isorotation assuming that ϕ is a true dynamical
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field (in the correct representation). If instead ϕ is a fixed background field,

the symmetry of this term will involve a transformation of the fermion in-

volving both a spacetime rotation and an internal isorotation, analogous to

the symmetry of the prescribed kink of Section 3.3.

4.1.4 The Lagrangian for the spin-isospin coupled fermion

and baby Skyrmion

The simplest fermionic Lagrangian including spin-isospin coupling will be

L f = Ψ(ih̄ /̂D − gτ · ϕ)Ψ, (4.74)

where now /̂D = γ̂µDµ = γ̂µ(∂µ + Ωµ), Ψ(xµ) is the spin-isospin fermion

field, and Ψ = Ψ†γ̂0 is the spinor conjugate.

Note that the fermion now has four independent complex components

as it is in the tensor product of fundamental representations of both spin and

isospin. We label these components as

Ψα,a, α, a ∈ {1, 2}, (4.75)

where the first index denotes the spin component and the second denotes

the isospin component. We will typically represent this as a vector in C4,

ordering the components as follows:

Ψ =



Ψ1,1

Ψ1,2

Ψ2,1

Ψ2,2


. (4.76)

With this convention, the spin and isospin matrices defined above at (4.71)

and (4.72) as tensor products have straightforward representations as block
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matrices in M4×4(C). For completeness, we note that there is another repre-

sentation of the fermion Ψ as a 2 × 2 complex matrix as follows:

Ψ =

 Ψ1,1 Ψ1,2

Ψ2,1 Ψ2,2

 ∈ M2×2(C). (4.77)

Each row of this 2 × 2 matrix comprises a spin component, and each col-

umn comprises an isospin component. In this convention, the spin matri-

ces γ̂µ act on the Ψ field via multiplication by the 2 × 2 γµ matrices from

the left, and the isospin matrices τi act via multiplication by −σ2σiσ2 from

the right. This schematic representation is generally available for models of

spin-isospin fermions, such as those that couple to Skyrmions on S3. [23, 37]

We prescribe the soliton field to be static, and to have all of its topol-

ogy captured simply by uniform azimuthal winding: we model the “baby

Skyrmion” of topological charge n as the field ϕ : R × S2 → S2, with Eu-

clidean isospace components defined in terms of polar coordinates on space-

time according to

ϕ(t, θ, ϕ) =


sin θ cos nϕ

sin θ sin nϕ

cos θ

 . (4.78)

This is effectively a very simple hedgehog ansatz for the baby Skyrmion.

In Scoccola and Bes [59], the authors found that for n = 1 (in our present

convention), such a simple profile for the θ-dependence arises when the po-

tential term in the Skyrme model is very weak, or the radius of the spatial

2-sphere is small. To identify our ansatz with their model, we note that we

must reverse the boundary conditions on the θ-profile. For our present pur-

poses, this is equivalent to simply “turning isospace upside-down”, which

might be achieved either by reflecting through the ϕ1ϕ2 plane, or rotating by

π about any axis perpendicular to the ϕ3 axis. Without a true, independent
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Skyrmion comprising a set of degrees of freedom in the configuration space,

we are not concerned with how this relates to a condition of energy finiteness.

4.2 Stationary state ansatz and separation of vari-

ables

4.2.1 The Hamiltonian and the generalised angular momen-

tum k

Varying the fermionic Lagrangian (4.74) with respect to Ψ, we obtain the

canonical Dirac equation:

(
ih̄ /̂D − gτ · ϕ

)
Ψ = 0, (4.79)

or in spherical polars,

ih̄γ̂0 ∂Ψ
∂t

− ih̄γ̂1
(

∂Ψ
∂θ

+
1
2

cot θ Ψ
)
− ih̄γ̂2 1

sin θ

∂Ψ
∂ϕ

−g (sin θ cos nϕ τ1 + sin θ sin nϕ τ2 + cos θ τ3)Ψ = 0. (4.80)

We make the ansatz that the fermion is a stationary state,

Ψ(t, θ, ϕ) = e−i
E f
h̄ t Ψ(θ, ϕ), (4.81)

and obtain the Schrödinger-like equation,

E f Ψ(θ, ϕ) = Ĥ f Ψ := γ̂0
[

ih̄γ̂1
(

∂

∂θ
+

1
2

cot θ

)
+ ih̄γ̂2 1

sin θ

∂

∂ϕ

+ g (sin θ cos nϕ τ1 + sin θ sin nϕ τ2 + cos θ τ3)

]
Ψ.

(4.82)
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As usual, the operator implicitly defined here as Ĥ f is the fermionic Hamil-

tonian, and Ψ†Ĥ f Ψ is the energy component ϑt
t of the energy-momentum

tensor ϑ
µ

ν associated with the fermionic Lagrangian (4.74). Ĥ f is self-adjoint,

and the fermionic energy eigenvalue E f is real.

In these polar coordinates, the Hamiltonian is expressed in matrix form

acting on the C4 representation of the fermion as

Ĥ =



g cos θ ge−inϕ sin θ Ĥa 0

geinϕ sin θ −g cos θ 0 Ĥa

Ĥb 0 −g cos θ −ge−inϕ sin θ

0 Ĥb −geinϕ sin θ g cos θ


, (4.83)

where, simply for brevity and ease of typesetting, we have named the ex-

pressions

Ĥa =
∂

∂θ
− i

sin θ

∂

∂ϕ
+

1
2

cot θ, (4.84)

Ĥb = − ∂

∂θ
− i

sin θ

∂

∂ϕ
− 1

2
cot θ = −Ĥ∗

a . (4.85)

The fermionic Lagrangian (4.74) in polar coordinates admits the continu-

ous symmetry whereby

Ψ(t, θ, ϕ) 7→ e−iα n
2 τ3Ψ(t, θ, ϕ − α). (4.86)

The Dirac term is certainly invariant under the spatial rotation, and the isoro-

tations cancel. For the coupling term, we take the same perspective on the

prescribed baby Skyrmion as we did for the prescribed kink in section 3.3:

as it is fixed in the background, we are not free to rotate it azimuthally in

the manner we rotate the fermion. The isorotation of the fermion, however,
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exactly acts to transform the isovector ϕ according to

τ · ϕ(t, θ, ϕ) 7→ eiα n
2 τ3τ · ϕ(t, θ, ϕ)e−iα n

2 τ3 = τ · ϕ(t, θ, ϕ − α), (4.87)

and so overall the effect of this transformation is just to change ϕ to ϕ − α

throughout the Lagrangian. We denote the generator of this symmetry as K̂3:

K̂3 = h̄
(
−i

∂

∂ϕ
+

n
2

τ3

)
. (4.88)

K̂3 is self-adjoint and it is not difficult to check that it commutes with Ĥ f (and

in fact it commutes with the full Dirac operator /̂D). We will therefore seek a

joint eigenbasis of Ĥ f and K̂3 in which to solve the Dirac equation. We will

suppose that K̂3 has eigenvalues h̄k, so we will work over a basis of fermion

states Ψk in which

K̂3Ψk(θ, ϕ) = h̄kΨk(θ, ϕ). (4.89)

(Typically, we will ignore the factors of h̄ on both K̂3 and its eigenvalue from

here forwards.) We refer to this value k as the generalised angular momentum,

or the grand spin, about the azimuthal axis. Solving (4.89) shows that Ψk must

be of the form

Ψk(θ, ϕ) =



Ψ1,1(θ, ϕ)

Ψ1,2(θ, ϕ)

Ψ2,1(θ, ϕ)

Ψ2,2(θ, ϕ)


= ei(k− n

2 τ3)ϕΘk(θ) =



ei(k− n
2 )ϕΘ1,1(θ)

ei(k+ n
2 )ϕΘ1,2(θ)

ei(k− n
2 )ϕΘ2,1(θ)

ei(k+ n
2 )ϕΘ2,2(θ)


, (4.90)

for the as-yet undetermined profile functions of just the θ-coordinate, Θα,a(θ).

Note that in general the solutions Θα,a(u) will also depend on k, but we sup-

press that label for notational convenience when working directly with these

component profile functions.
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As the fermion is in the spin-1
2 representation of Lorentz spin, the Fourier

modes must be strictly half-integers, i.e.

k ± n
2
∈ Z +

1
2

. (4.91)

Thus the generalised angular momentum k will be strictly either an integer or

half-integer, depending on the parity of the baby Skyrmion azimuthal wind-

ing number n:

k ∈


Z for n odd,

Z + 1
2 for n even.

(4.92)

Before investigating the profile functions Θα,a, we will comment further on

this rotational symmetry for Dirac spinors in the context of our coordinate

choices.

4.2.2 Aside: angular momentum of spinors and polar coordi-

nates

Let us consider the standard Dirac spinor without isospin. We’ve seen at

(4.69) that the Dirac operator in polar coordinates is

/D = γ0 ∂

∂t
− γ1

(
∂

∂θ
+

1
2

cot θ

)
− γ2 1

sin θ

∂

∂ϕ
.

It’s obvious that the azimuthal rotation generator −i ∂
∂ϕ commutes with /D.

Eigenstates of azimuthal angular momentum are thereby just the Fourier

modes:

−i
∂ψ

∂ϕ
= kψ ⇒ ψ(θ, ϕ) = eikϕΘ(θ), (4.93)

where this Θ(θ) is a Dirac spinor. But why, the reader may wonder, do we

take the Fourier wavenumber k to be strictly a half-integer? And why do we

not explicitly see a spin generator Sµ acting on the fermion? The answer to
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these questions is the choice of polar coordinates, and the effect they have on

the local neighbourhood of the spinor bundle Λ(Up) living above the polar

coordinate chart Up.

Let’s compare to the symmetry of the Dirac fermion in the southern stere-

ographic coordinates on US. We saw at (4.68) that the Dirac operator in these

coordinates is

/D = γ0 ∂

∂t
− γi

(
(1 + R2)

2
∂

∂Xi −
Xi

2

)
.

Now, the generator of azimuthal spacetime rotation takes the usual form for

rotation in the plane:

L̂3 = i
(

Y
∂

∂X
− X

∂

∂Y

)
. (4.94)

This alone does not commute with /̂D, but we would not expect it: over

(2+1)-dimensional Minkowski space, we would need to add the spin gen-

erator S12 = i
4

[
γ1, γ2] = 1

2 γ0 corresponding to rotation in the xy-plane. The

curvature of the stereographic coordinate system does not affect azimuthal

rotation, and indeed we see that the spinor angular momentum generator

Ĵ3 = i
(

Y
∂

∂X
− X

∂

∂Y

)
+

1
2

γ0 (4.95)

does commute with the Dirac operator:

[
Ĵ3, /D

]
= 0. (4.96)

Changing from the Dirac operator /D to the associated Hamiltonian Ĥ

only removes the time derivative, and adds another factor of γ0, with which

Ĵ3 certainly commutes, so we can seek a joint basis of energy and azimuthal

angular momentum eigenstates. Then an eigenstate ψk of Ĵ3 satisfying

Ĵ3ψk = kψk (4.97)
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is of the form

ψk(X, Y) = ei(k− 1
2 γ0)ϕΘ(θ) =

ei(k− 1
2)ϕ f1(R)

ei(k+ 1
2)ϕ f2(R)

 , (4.98)

where, formally, when we write ϕ it is shorthand for a branch of arctan(Y
X ),

such that the spinor ψk(X, Y) is continuous at the origin (0, 0). This expres-

sion for the spinor ψk is therefore uniquely well-defined for each point of

the XY-plane, so these Fourier wavenumbers k ± 1
2 must be integers. The

local fibre neighbourhood Λ(US) of the spinor bundle over the neighbour-

hood US is just a topologically trivial Cartesian product, US × C2. Under an

active transformation where we rotate the spinor by 2π, we effectively paral-

lel transport from the location we started, and the fibre coordinate changes;

nonetheless, we stress that the integrality of k ± 1
2 is just a question of a given

spinor being well-defined. This is illustrated in Figure 4.2.

To express this eigenstate in spherical coordinates, we must apply the

spinor transition function S(S→p) derived in Appendix A.2. Thus,

(ψk)(p) = S(S→p) (ψk)(S)

= −γ1e
i
2 ϕγ0

(ψk)(S)

=

 0 ie−
i
2 ϕ

ie
i
2 ϕ 0


ei(k− 1

2)ϕ f1 (R(θ))

ei(k+ 1
2)ϕ f2 (R(θ))


= i

eikϕ f2(θ)

eikϕ f1(θ)

 . (4.99)

The change of coordinates has removed the explicit visible effect of the spin

generator on the angular momentum eigenstates. Since k ± 1
2 ∈ Z, we main-

tain that k must be strictly half-integer. There is no contradiction in having

a particular choice of spinor be well defined because the neighbourhood Up
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p = (0, 0)

Rϵ = {(X, Y) = (ϵ cos ϕ, ϵ sin ϕ) | ϕ ∈ [0, 2π)}

↓ π

π−1(p) ≃ C2

US

Λ(US) ≃ US × C2 ψ (Rϵ)

−ψ (Rϵ)

FIGURE 4.2: Illustration of the spinor bundle structure over the
contractible neighbourhood US. We evaluate a section ψ (green)
on a small circle Rϵ near the south pole: it is periodic under ro-
tation by 2π. However, if we start at a particular reference point
on US and then actively rotate azimuthally (purple points), af-
ter a 2π rotation we find the section has picked up a factor of

−1.
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is not contractible. It has coordinate singularities at θ = 0 and π, which are

connected by a branch cut at some value ϕ = ϕc determined by our choice

of the branch of arctan(Y
X ). The local fibre neighbourhood Λ(Up) is not the

topologically trivial space Up × C2, but instead has a twist like a Möbius

strip. The length in the ϕ direction of a closed section is therefore 4π: all

of its sections (which are spinor fields) are antiperiodic under ϕ 7→ ϕ + 2π

but periodic under ϕ 7→ ϕ + 4π. Therefore it is perfectly well-defined for

the Fourier wavenumber to be the strict half-integer k. This is illustrated in

Figure 4.3.

4.2.3 Equations of motion for the profile functions Θα,a

We return to the spin-isospin fermion where the generalised angular momen-

tum has picked up the n
2 τ3 contribution. We have fully separated the depen-

dence of the fermion on the spacetime coordinates when we introduced the

Θα,a functions at (4.90). The Dirac eigenvalue problem is reduced to solving

this system of four coupled first-order differential equations with eigenval-

ues E f and k; explicitly, taking h̄ = 1 henceforth,

E f Θ1,1 = g cos θ Θ1,1 + g sin θ Θ1,2 +

[
d
dθ

+
1
2

cot θ +

(
k − n

2

)
sin θ

]
Θ2,1, (4.100)

E f Θ1,2 = −g cos θ Θ1,1 + g sin θ Θ1,1 +

[
d
dθ

+
1
2

cot θ +

(
k + n

2

)
sin θ

]
Θ2,2,

(4.101)

E f Θ2,1 = −g cos θ Θ2,1 − g sin θ Θ2,2 −
[

d
dθ

+
1
2

cot θ +

(
−k + n

2

)
sin θ

]
Θ1,1,

(4.102)

E f Θ2,2 = g cos θ Θ2,2 − g sin θ Θ2,1 −
[

d
dθ

+
1
2

cot θ +

(
−k − n

2

)
sin θ

]
Θ1,2.

(4.103)
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FIGURE 4.3: An illustration of the spinor bundle structure over
the non-contractible neighbourhood Up. Up (black) is topolog-
ically a cylinder: the sphere with neighbourhoods around each
pole removed. In contrast, the fibre neighbourhood by π−1(Up)
(blue) is non-trivial, and wraps around the cylinder twice. In
polar coordinates, a spinor is a section of the blue bundle, and

also winds around Up twice.
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Making the change of variables

u = cos θ, (4.104)

we can unambiguously take sin θ =
√

1 − u2; moreover, d
dθ = −

√
1 − u2 d

du .

The system (4.100-4.103) becomes:

(E f − gu)Θ1,1 − g
√

1 − u2Θ1,2 −
[
−
√

1 − u2 d
du

+
u

2
√

1 − u2
+

(
k − n

2

)
√

1 − u2

]
Θ2,1 = 0,

(4.105)

(E f + gu)Θ1,2 − g
√

1 − u2Θ1,1 −
[
−
√

1 − u2 d
du

+
u

2
√

1 − u2
+

(
k + n

2

)
√

1 − u2

]
Θ2,2 = 0,

(4.106)

(−E f − gu)Θ2,1 − g
√

1 − u2Θ2,2 −
[
−
√

1 − u2 d
du

+
u

2
√

1 − u2
+

(
−k + n

2

)
√

1 − u2

]
Θ1,1 = 0,

(4.107)

(−E f + gu)Θ2,2 − g
√

1 − u2Θ2,1 −
[
−
√

1 − u2 d
du

+
u

2
√

1 − u2
+

(
−k − n

2

)
√

1 − u2

]
Θ1,2 = 0.

(4.108)

We can reduce the system (4.105-4.108) first to a coupled pair of second-

order differential equations by eliminating two of the four Θα,a component

functions; then, we can ultimately reduce to a single fourth-order differen-

tial equation in just one component function. This algebraic process is made

much less taxing with the assistance of a computer. We used Maple 2022 to

perform the reduction, and for the subsequent Fuchsian analysis. We have

included that code in Appendix B.1.

Observe that in each equation, the profile function which multiplies E f

is coupled to the two other profile functions with which it shares a spin or

isospin state, but not to the component of the opposite state in both spin

and isospin: e.g. in (4.105), Θ1,1 couples to Θ1,2 via g and Θ2,1 via spatial

derivative, but not to Θ2,2. This has the effect of making the algebra the

simplest if the two components we eliminate are opposite in both senses. We
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will therefore begin the reduction by eliminating Θ1,2 and Θ2,1, to result in

the pair of second-order equations coupling Θ1,1 and Θ2,2 as follows:

(
u2 − 1

)2 (
E f + gu

) d2Θ1,1

du2 +
(
u2 − 1

)2 (
gu2 + 2E f u + g

) dΘ1,1

du

+

{
−1

4
gu3 +

[
E f

4
+ (2k − n) g

]
u2 −

[
k − n

2

] [(
k − n

2

)
g − E f

]
u

−
[
k − n

2

]
g − E f

[
1
2
+ k2 +

n2

4
− kn

]
+
[
u2 − 1

] [
g2 − E2

f

] [
E f + gu

] }
Θ1,1

= g
[(

E f − gn
)

u − E f n + g
] (

u2 − 1
)

Θ2,2, (4.109)(
u2 − 1

)2 (
E f + gu

) d2Θ2,2

du2 +
(
u2 − 1

)2 (
gu2 + 2E f u + g

) dΘ2,2

du

+

{
−1

4
gu3 +

[
E f

4
− (2k + n) g

]
u2 −

[
k +

n
2

] [(
k +

n
2

)
g + E f

]
u

+
[
k +

n
2

]
g − E f

[
1
2
+ k2 +

n2

4
+ kn

]
+
[
u2 − 1

] [
g2 − E2

f

] [
E f + gu

] }
Θ2,2

= g
[(

E f − gn
)

u − E f n + g
] (

u2 − 1
)

Θ1,1. (4.110)

(Observe that these equations are transformed into each other by the combi-

nation of swapping Θ1,1 with Θ2,2 and swapping k to −k. This suggests that

when k = 0, we might make ansätze that Θ1,1 = ±Θ2,2; we will return to this

observation later.)

There are frequent factors of u2 − 1 in the above differential equations:

this is unsurprising, as the points u = ±1 correspond to the poles of the

sphere, where we will find coordinate singularities. However, we see that

the spin-isospin coupling has also introduced two other factors which may

give rise to singular behaviour when g ̸= 0:

1.
(
E f + gu

)
, which vanishes at

u = −
E f

g
; (4.111)

2.
[(

E f − gn
)

u − E f n + g
]
, which vanishes at

u =
g − nE f

gn − E f
. (4.112)
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We should pay careful attention to the behaviour of any potential solutions at

these points. Observe in particular that for n = ±1, the point given by (4.112)

coalesces with the pole u = ±1 respectively, so will certainly contribute to

singular behaviour there. We therefore refer to that value of u henceforth as

the coalescent pole.

Finally, we can substitute (4.109) into (4.110) to obtain the single, fourth-

order differential equation for Θ1,1(u). We may sometimes refer to this as the

master equation in this context. It takes the schematic form

R1(u)
d4Θ1,1

du4 + R2(u)
d3Θ1,1

du3 + R3(u)
d2Θ1,1

du2 + R4(u)
dΘ1,1

du
+ R5(u)Θ1,1(u) = 0,

(4.113)

for coefficient functions Ri(u). The expressions for these functions get quite

long, particularly R4(u) and R5(u), and we have not found any elegant way

of making them presentable. Therefore, we will not set out the explicit ex-

pressions here. Maple code which will generate these functions explicitly is

contained in Appendix B.1.1. For now, we will rewrite them in the format

Ri(u) =
(

u2 − 1
)ai (

E f + gu
)bi
[
g
((

E f − gn
)

u − E f n + g
)]ci R̂i(u), (4.114)

so that the structure of the singularities may be easily observed. We may take

R̂1(u) = 1 WLOG. We obtain:

R1(u) =
(

u2 − 1
)4 (

E f + gu
)2 [g ((E f − gn

)
u − E f n + g

)]2 , (4.115)

R2(u) =
(

u2 − 1
)3 (

E f + gu
)2 [g ((E f − gn

)
u − E f n + g

)]
R̂2(u), (4.116)

R3(u) =
(

u2 − 1
)2 (

E f + gu
)2 R̂3(u), (4.117)

R4(u) =
(

u2 − 1
) (

E f + gu
)2 R̂4(u), (4.118)

R5(u) =
(
E f + gu

)2 R̂5(u). (4.119)
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It is immediately clear that the north and south poles of the sphere cor-

responding to u = ±1 are regular singular points of the differential equation

(4.113). Since the power of
(
E f + gu

)
is the same in each term, these may

be cancelled without issue, and we determine that the point u = −E f
g is not

actually a singularity. On the other hand, the coalescent pole (4.112) is a sin-

gularity, but it is also a regular singular point.

By making the substitution u = 1
v throughout, we can also determine that

the point v = 0 is a regular singular point of (4.113). Physically, u only takes

values between −1 and 1, but if we allow it to take values on the Riemann

sphere Ĉ = C ∪ {∞}, then we have seen that the differential equation (4.113)

for Θ1,1(u) has no essential singularities in the complex variable u. We can

therefore seek to find Frobenius series solutions in the neighbourhoods of

each regular singular point.

4.2.4 Fuchsian analysis for general n

If a differential equation for a function y(u) of a complex variable u has a

regular singular point at u = u0, then a Frobenius series about u0 is a power

series of the form

w(u) = (u − u0)
r

[
1 +

∞

∑
m=1

am (u − u0)
m

]
. (4.120)

The value r is a real number called the exponent of the pole u0. By substi-

tuting the Frobenius series into the differential equation for y(u), a condition

on r called the indicial equation is obtained, which says that r is a root of a de-

gree m polynomial, where m is the order of the differential equation. There

is always a series solution corresponding to the strictly greatest value of r

that solves the indicial equation, with a non-negative radius of convergence.

Other roots of the indicial equation will also provide distinct and indepen-

dent Frobenius power series solutions if the exponents do not differ by an



Chapter 4. Spin-isospin fermion-baby Skyrmion coupling on S2 × R 118

Pole Exponent Roots of indicial equation

u = 1 µ ±1
2

(
k + n

2 + 1
2

)
+ 1,±1

2

(
k − n

2 − 1
2

)
u = −1 ν ±1

2

(
k + n

2 − 1
2

)
+ 1,±1

2

(
k − n

2 + 1
2

)
u =

E f n−g
E f −gn κ 0, 1, 3, 4

u = ∞̂ λ ±

√
1+4(E f −gn)+4

(
E2

f −g2
)

2 ,±

√
1−4(E f −gn)+4

(
E2

f −g2
)

2

TABLE 4.1: The poles and respective exponents of (4.113).

integer (including zero). However, if two roots of the indicial equation do

differ by an integer, the corresponding solutions may pick up logarithmic be-

haviour about the pole. (This is similar to the behaviour of special functions

“of the second type” that exist for certain Sturm-Liouville problems, such as

Bessel functions, and especially special functions which are generalisations

of families of orthogonal polynomials, such as the Legendre functions.) This

logarithmic behaviour notwithstanding, there will exist locally at every point

of Ĉ excepting the poles a family of m distinct solutions for y(u) in this man-

ner whenever the Fuchs relation is satisfied:

∑
ui a pole in Ĉ

(
∑

r an exponent at ui

r

)
=

m(m − 1)(p − 1)
2

, (4.121)

where m is the order of the differential equation and p is the number of finite

poles in C. In this calculation, the exponents at u = ∞̂ are taken to be the

roots of the indicial polynomial for v = 1
u about v = 0. A rigorous develop-

ment of the above analysis is developed in Whittaker and Watson [68] and in

Ince [29].

The Maple code in Appendix B.1.2 determines and solves the indicial

equations at u = 1,−1, ∞̂ and at the coalescent pole. We summarise the

results in Table 4.1. For convenience and clarity, we have labelled the possible

exponents distinctly at each pole.

We make a number of observations. First, the Fuchs relation is satisfied:
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the sum of all possible exponents is 12, which matches the RHS of (4.121)

since m = 4 and p = 3. Second, the exponents at u = 1 and u = −1 are

interchanged if we exchange k and n with −k and −n, respectively. This can

be interpreted as the fact that reflecting both space and isospace about their

azimuthal axes is equivalent to reversing both the winding number n of the

soliton and the azimuthal Fourier mode k of the fermion. There appear to be

further discrete symmetries of the energy spectrum under transformations

which also involve reversing the signs of E f and g, but we have not deter-

mined the transformation of the system which exhibits this symmetry.

Fourth, we see that the energy eigenvalue E f actually contributes to the

exponents λ at infinity. Solving for allowed values of E f in terms of λ, we

find:

E f = ±A
1
2
±B

√
λ2 + g (g ∓A n). (4.122)

By the subscript on the signs ±A we indicate that these signs are not inde-

pendent but must take identical values. The sign ±B is independent of the

paired signs ±A.

Equation (4.122) establishes the following:

Remark 4.1 (The energy spectrum of the spin-isospin coupled Dirac fermion

on S2, in terms of profile function asymptotics). Any solution of the Dirac

equation (4.79) which

1. is regular on the spatial manifold S2,

2. is a joint eigenstate of both energy and azimuthal grand spin, and

3. for which Θ1,1(u) ∼ us asymptotically, i.e.

Θ1,1(u) ∈ O(us) ⇐⇒ s ≤ −λ, (4.123)
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has fermionic energy eigenvalue E f equal to one of the four values

±A
1
2
±B

√
λ2 + g (g ∓A n).

Strictly, this remark also holds if we relax to allow the solution to be sin-

gular at u = 1,−1 and at most one other finite point. However, we are only

interested in solutions which are regular for all u ∈ [−1, 1].

4.2.5 Polynomial solutions and energy levels

Our general philosophy from here forwards is to use the Fuchsian analysis

to seek “polynomial” solutions for the profile functions Θα,a(u). By this, we

mean solutions w(u) where the generically infinite sum in the local Frobenius

series (4.120) terminates at finite degree about one (or more) of the regular

singular points:

w(u) = (u − u0)
r P(u − u0), P(u − u0) = 1 +

N

∑
m=1

am (u − u0)
m ; (4.124)

i.e. strictly it is P(u − u0) = (u − u0)
−r w(u) which is polynomial, but we

will be a little imprecise in our terminology and refer to the full solution

w(u) as “polynomial”. Often, it is only possible to seek a solution which is

polynomial about at most one of the poles: when r is not an integer, then the

analytic continuation of (u − u0)
r into the neighbourhood of a different pole

u1 ̸= u0 will not have a terminating power series.

In light of Remark 4.1, the energy E f of a polynomial solution can be

determined in terms of the polynomial degree N = deg P. At large values of

|u|, the asymptotic behaviour of the polynomial solution (4.124) is

w(u) ∼ (u − u0)
r+N ∼ ur+N. (4.125)
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Regardless of the placement of the finite poles, this solution extends to a

neighbourhood of ∞̂. But in such a neighbourhood, we have derived the

local solution

w(u) = u−λ

(
1 +

∞

∑
m=1

bmu−m

)

∼ u−λ. (4.126)

Equating these expressions, we obtain

−λ = r + N. (4.127)

Here, r is an exponent at one of the poles, and we observed in Table 4.1

that the exponents at the north and south pole are defined in terms of the

azimuthal grand spin k (as well as the winding number n). This introduces

k into the expression(s) for the energy E f (4.122). k alone does not determine

the value of λ, but, for fixed n, we see that the combination of k and N does

explicitly determine the value of (each possible branch of) E f . We therefore

see that it is extremely plausible that most energy levels will be degenerate:

there will be a (finite) degeneracy given by the number of partitions of λ into

k and N. For general n, it is not a priori clear how to control for the permitted

values of λ, N and k. However, in the special case n = 1 we will show that

our joint eigenstates of E f and k fall into irreducible SU(2) representations,

and we can therefore completely solve for and classify the energy spectrum.

4.3 The case n = 1

The case n = 1 is the simplest model of the fermion coupled to a baby

Skyrmion with non-zero topological charge. As we have mentioned, Scoc-

cola and Bes [59] shows that our simple prescribed hedgehog form of the
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Pole Exponent Roots of indicial equation
u = 1 µ ±1

2 (k + 1) + 2,±1
2 (k − 1)

u = −1 ν ± k
2 + 1,± k

2

u = ∞̂ λ ±

√
1+4(E f −g)+4

(
E2

f −g2
)

2 ,±

√
1−4(E f −g)+4

(
E2

f −g2
)

2

TABLE 4.2: The poles and respective exponents of (4.113) for
n = 1.

baby Skyrmion is similar to an actual solution in the baby Skyrmion model

with a weak potential. This case is also analogous to the model of the Skyrmion

on S3 studied by Krusch and Goatham [23, 37].

4.3.1 The effect of the coalescent pole

As we mentioned earlier, for n = 1 the coalescent pole given by (4.112) coin-

cides with the north pole of the sphere u = 1. We should therefore redo the

Fuchsian analysis for general k in the case n = 1. The code is in Appendix

B.1.3 and the results are contained in Table 4.2. We observe that the effect of

the coalescent pole at u = 1 is to change the exponents which in the general

case (Table 4.1) were of the form

±1
2

(
k +

n
2
+

1
2

)
+ 1 (4.128)

to now be of the form

±1
2

(
k +

n
2
+

1
2

)
+ 2. (4.129)

The Fuchs relation is satisfied for the new exponents with just the two finite

poles at u = 1 and u = −1.
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The n = 1 eigensolution for general k takes the polar coordinate form,

according to (4.90), of

Ψp(u, ϕ) =



ei(k− 1
2)ϕΘ1,1(u)

ei(k+ 1
2)ϕΘ1,2(u)

ei(k− 1
2)ϕΘ2,1(u)

ei(k+ 1
2)ϕΘ2,2(u)


. (4.130)

Using our now familiar spinor transition functions, we see that in the stereo-

graphic coordinates we obtain

Ψ(u, ϕ) =



ei(k−1)ϕΘ2,1(u)

eikϕΘ2,2(u)

eikϕΘ1,1(u)

ei(k+1)ϕΘ1,2(u)


, Ψ̃(u, ϕ) =



eikϕΘ2,1(u)

ei(k+1)ϕΘ2,2(u)

ei(k−1)ϕΘ1,1(u)

eikϕΘ1,2(u)


. (4.131)

We see therefore that µ = 0 is appropriate only for k = 1, and ν = 0 is

appropriate only for k = 0.

4.3.2 The generalised angular momentum algebra for n = 1

Our hedgehog ansatz preserves the azimuthal axial symmetry of the sphere,

but for general n it breaks the two other independent symmetries of S2. In

the case n = 1, however, the isovector ϕ is simply the identity map from

spatial S2 to isospace S2, and so the full symmetry group is preserved. For the

Dirac fermion on S2 in the absence of isospin, Abrikosov [1] shows that the

fundamental SU(2) representation on S2 is intimately linked to the spectrum

of the Dirac operator. Complementary to

L̂3 = −i
∂

∂ϕ
, (4.132)



Chapter 4. Spin-isospin fermion-baby Skyrmion coupling on S2 × R 124

the other angular momentum generators may be expressed

L̂1 = i sin ϕ
∂

∂θ
+ i cos ϕ cot θ

∂

∂ϕ
+

1
2

cos ϕ

sin θ
γ0, (4.133)

L̂2 = −i cos ϕ
∂

∂θ
+ i sin ϕ cot θ

∂

∂ϕ
+

1
2

sin ϕ

sin θ
γ0. (4.134)

These satisfy the SU(2) Lie algebra,

[
L̂i, L̂j

]
= iϵijk L̂k, (4.135)

and all commute with Abrikosov’s Dirac operator:

[
L̂i, /D

]
= 0. (4.136)

This permits a classification of the Dirac spectrum in terms of joint eigen-

states of L̂3 and L̂2
= L̂1 L̂1 + L̂2 L̂2 + L̂3 L̂3.

An identical approach can be taken for Lorentz spinors on R × S2 in the

absence of isospin, with the same SU(2) representation (4.132-4.134). We will

not re-invent the wheel by giving the details of the calculations, but we in-

clude a demonstration in the Maple worksheet in Appendix B.2.

We have seen that with the inclusion of isospin, the appropriate generali-

sation of the total angular momentum operator L̂3 is our K̂3 given at equation

(4.88), in this case

K̂3 = −i
∂

∂ϕ
+

1
2

τ3. (4.137)

In the case n = 1 where we expect to preserve the full symmetry group of S2,

an obvious attempt at compatible operators is to simply add the appropriate
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τ matrices to L̂1 and L̂2:

K̂1 = i sin ϕ
∂

∂θ
+ i cos ϕ cot θ

∂

∂ϕ
+

1
2

cos ϕ

sin θ
γ̂0 +

1
2

τ1, (4.138)

K̂2 = −i cos ϕ
∂

∂θ
+ i sin ϕ cot θ

∂

∂ϕ
+

1
2

sin ϕ

sin θ
γ̂0 +

1
2

τ2. (4.139)

Since [γa, τi] = 0 for all a and i, it is immediate that these operators satisfy

the SU(2) Lie algebra [
K̂i, K̂j

]
= iϵijkK̂k. (4.140)

A little algebra shows that, in the case n = 1,

[
K̂1, Ĥ f

]
= 0 =

[
K̂2, Ĥ f

]
. (4.141)

Define the total generalised angular momentum, or total grand spin, operator by

K̂2
= K̂1K̂1 + K̂2K̂2 + K̂3K̂3. (4.142)

This is a Casimir operator for the representations of SU(2) that these opera-

tors define. The eigenvalue of K̂2 is mutually conserved with E f and k. We

will use a curly ℓ to label joint eigenstates of K̂2 and K̂3, according to

K̂2Ψ(ℓ,k) = ℓ (ℓ+ 1)Ψ(ℓ,k), K̂3Ψ(ℓ,k) = kΨ(ℓ,k). (4.143)

By the definition (4.142), we see that

ℓ (ℓ+ 1) ≥ 0, (4.144)

so there are no permitted values of ℓ in the open interval (−1, 0). Moreover,

ℓ must also satisfy

ℓ (ℓ+ 1) ≥ k2 (4.145)
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for any state Ψℓ,k, which for a given ℓ can be satisfied by only finitely many

values of k. Thus the irreducible representations of the grand spin algebra

are finite-dimensional, and we unambiguously take ℓ ≥ 0.

We also define grand spin raising and lowering operators,

K̂+ = K̂1 + iK̂2 = eiϕ
(

∂

∂θ
+ i cot θ

∂

∂ϕ
+

1
2 sin θ

γ̂0
)
+

1
2
(τ1 + iτ2) , (4.146)

K̂− = K̂1 − iK̂2 = e−iϕ
(
− ∂

∂θ
+ i cot θ

∂

∂ϕ
+

1
2 sin θ

γ̂0
)
+

1
2
(τ1 − iτ2) .

(4.147)

These satisfy
[
K̂+, K̂−

]
= 2K̂3 and K̂2

= K̂3K̂3 +
1
2

(
K̂+K̂− + K̂−K̂+

)
. Using

these relations we determine conditions on highest and lowest weight states:

K̂+Ψ(ℓ,k) = 0 ⇒ k2 + k = ℓ2 + ℓ, (4.148)

K̂−Ψ(ℓ,k) = 0 ⇒ k2 − k = ℓ2 + ℓ. (4.149)

Thus in the irreducible representation labelled by ℓ, the highest weight state

is k = ℓ and the lowest weight state is k = −ℓ. The dimension of the repre-

sentation is 2ℓ+ 1; it consists of the distinct states

Ψ(ℓ,k), |k| ≤ ℓ. (4.150)

Making the change of coordinates to u = cos θ, we find

K̂+ = eiϕ
(
−
√

1 − u2 ∂

∂u
+

u√
1 − u2

i
∂

∂ϕ
+

1
2
√

1 − u2
γ̂0
)
+

1
2
(τ1 + iτ2) ,

(4.151)

K̂− = e−iϕ
(√

1 − u2 ∂

∂u
+

u√
1 − u2

i
∂

∂ϕ
+

1
2
√

1 − u2
γ̂0
)
+

1
2
(τ1 − iτ2) .

(4.152)
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Now recall from (4.90) that an n = 1 eigenspinor of K̂3 Ψ(ℓ,k)(u, ϕ) is of the

form

Ψ(ℓ,k)(u, ϕ) = ei(k− 1
2 τ3)ϕΘ(ℓ,k)(u) =



ei(k− 1
2)ϕΘ(ℓ,k)

1,1 (u)

ei(k+ 1
2)ϕΘ(ℓ,k)

1,2 (u)

ei(k− 1
2)ϕΘ(ℓ,k)

2,1 (u)

ei(k+ 1
2)ϕΘ(ℓ,k)

2,2 (u)


, (4.153)

where we now explicitly label the profile functions by the eigenvalues ℓ, k.

Then, written out explicitly over the fermion components, we find that

K̂+Ψ(ℓ,k)(u, ϕ) = ei(k+1− 1
2 τ3)ϕ

×



(
−
√

1 − u2 d
du −

(
k − 1

2

) u√
1−u2 +

1
2
√

1−u2

)
Θ(ℓ,k)

1,1 (u) + Θ(ℓ,k)
1,2 (u)(

−
√

1 − u2 d
du −

(
k + 1

2

) u√
1−u2 +

1
2
√

1−u2

)
Θ(ℓ,k)

1,2 (u)(
−
√

1 − u2 d
du −

(
k − 1

2

) u√
1−u2 − 1

2
√

1−u2

)
Θ(ℓ,k)

2,1 (u) + Θ(ℓ,k)
2,2 (u)(

−
√

1 − u2 d
du −

(
k + 1

2

) u√
1−u2 − 1

2
√

1−u2

)
Θ(ℓ,k)

2,2 (u)


,

(4.154)

K̂−Ψ(ℓ,k)(u, ϕ) = ei(k−1− 1
2 τ3)ϕ

×



(√
1 − u2 d

du −
(
k − 1

2

) u√
1−u2 +

1
2
√

1−u2

)
Θ(ℓ,k)

1,1 (u)

Θ(ℓ,k)
1,1 (u) +

(√
1 − u2 d

du −
(
k + 1

2

) u√
1−u2 +

1
2
√

1−u2

)
Θ(ℓ,k)

1,2 (u)(√
1 − u2 d

du −
(
k − 1

2

) u√
1−u2 − 1

2
√

1−u2

)
Θ(ℓ,k)

2,1 (u)

Θ(ℓ,k)
2,1 (u) +

(√
1 − u2 d

du −
(
k + 1

2

) u√
1−u2 − 1

2
√

1−u2

)
Θ(ℓ,k)

2,2 (u)


.

(4.155)

This confirms that the operators K̂± do indeed raise and lower the azimuthal

grand spin of K̂3 eigenspinors by ±1. It also demonstrates that it is partic-

ularly easy to solve for some of the component functions of highest- and

lowest-weight states. We choose to work with lowest-weight states, rather

than highest-weight states which might be more typical, because the lowest-

weight condition provides an immediate and simple calculation of Θ1,1, and



Chapter 4. Spin-isospin fermion-baby Skyrmion coupling on S2 × R 128

our Fuchsian analysis was performed in terms of that component of the spinor.

The Θ1,1 component of a lowest weight state Ψ(ℓ,−ℓ) satisfies

K̂−Ψ(ℓ,−ℓ) = 0. (4.156)

By (4.155),

(√
1 − u2 d

du
−
(
−ℓ− 1

2

)
u√

1 − u2
+

1
2
√

1 − u2

)
Θ(ℓ,−ℓ)

1,1 (u) = 0

(4.157)

⇒
(

1 − u2
) dΘ(ℓ,−ℓ)

1,1

du
=

((
−ℓ− 1

2

)
u − 1

2

)
Θ(ℓ,−ℓ)

1,1 (u). (4.158)

This first-order differential equation is separable and can be quickly solved

with partial fractions as follows:

dΘ(ℓ,−ℓ)
1,1

Θ(ℓ,−ℓ)
1,1

=

(
1
2 +

ℓ
2

u − 1
+

+ ℓ
2

u + 1

)
du

⇒ log Θ(ℓ,−ℓ)
1,1 =

(
1
2
+

ℓ

2

)
log (u − 1) +

(
ℓ

2

)
log (u + 1) + c0

⇒ Θ(ℓ,−ℓ)
1,1 (u) = A0 (1 − u)

1
2+

ℓ
2 (1 + u)

ℓ
2 (4.159)

for a constant of integration A0 ∈ C. By comparison with Table 4.2, we see

that this is certainly consistent with the Fuchsian analysis. This function is

regular on the sphere just when ℓ ≥ 0. We immediately see further that the

energy of this solution is determined by

−λ =
1
2
+ ℓ. (4.160)

We might therefore be tempted to claim the following:

Conjecture 4.2 (Conjecture on the spectrum of n = 1 grand spin eigenstates).

The energy of a stationary state fermion solution Ψℓ,k of total grand spin ℓ ∈
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N0 is one of the four generic values

E f = ±A
1
2
±B

√(
ℓ+

1
2

)2

+ g (g ±A 1), (4.161)

and the degeneracy of each such energy level is generically 2ℓ + 1, corre-

sponding to the distinct possible values of azimuthal grand spin k ∈ Z.

To conceptually highlight the role of the total grand spin, we observe that

we can rewrite this as

E f = ±A
1
2
±B

√
ℓ (ℓ+ 1) +

(
g ∓A

1
2

)2

. (4.162)

After discussing parity in the n = 1 case, we will show evidence that all such

energy levels admit a single non-trivial solution, and outline a constructive

process for determining the specific components of such eigenfermions.

Let us first quickly state one of the other components of the lowest weight

eigenstate Ψ(ℓ,−ℓ). By a similar calculation to (4.157-4.159), we also find

Θ(ℓ,−ℓ)
2,1 (u) = B0 (1 − u)

ℓ
2 (1 + u)

1
2+

ℓ
2 , B0 ∈ C. (4.163)

To simplify the derivation of the remaining components, Θ(ℓ,−ℓ)
1,2 and Θ(ℓ,−ℓ)

2,2 ,

we will exploit parity.

4.3.3 Parity in the n = 1 model and joint eigenstates

Missing from our discussion until now has been any treatment of the spatial

parity of the fermion field. We will now observe that in the absence of back-

reaction, the fermion has a discrete parity relative to the background baby

Skyrmion, in a similar manner to the fermion of the S1 model as described

in Section 3.3.2. We define the (polar coordinate) parity operation P̂ on the

fermion field Ψ as follows: for a given spinor field Ψ = Ψ(t, θ, ϕ), P̂Ψ is the
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spinor field defined according to

P̂Ψ(t, θ, ϕ) = γ̂1Ψ(t, π − θ, ϕ − π). (4.164)

The apparent effect on spacetime variables is to exchange antipodes of the

spatial sphere S2. It is unambiguous that the latitudinal angle θ must be

replaced with π − θ, but there is an ambiguity regarding whether the az-

imuthal angle ϕ is replaced with ϕ + π or ϕ − π. We set the convention that

this parity operation is an active transformation, rotating the fermion “for-

wards” around the azimuthal axis, and therefore take the minus sign in the

definition.

In flat Cartesian coordinates, we would expect the intrinsic parity trans-

formation of the spinor to arise via the action of a γ̂0 matrix; it is not difficult

to see that γ̂1 is the appropriate matrix for our curved, polar coordinates.

First, the appearance of γ̂1 ensures that P̂ is an involution:

P̂P̂Ψ(t, θ, ϕ) = P̂
[
γ̂1Ψ(t, π − θ, ϕ − π)

]
(4.165)

= γ̂1γ̂1Ψ(t, π, ϕ − 2π) (4.166)

= (−1)Ψ(t, θ, ϕ − 2π) (4.167)

= Ψ(t, θ, ϕ), (4.168)

as the minus sign from the 2π rotation of the spin-1
2 fermion is cancelled by

the minus sign from the square of γ̂1.

Second, this definition of parity does provide a symmetry of the La-

grangian, guaranteeing that solutions are mapped to solutions. We demon-

strate this, with particular care given to the points of spacetime at which the

fields are evaluated. In the specific case n = 1, the fermionic Lagrangian
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(4.74) is expressed in polar coordinates as

L f
∣∣
(t,θ,ϕ) = Ψ

∣∣
(t,θ,ϕ)

[
γ̂0 ∂Ψ

∂t

∣∣∣∣
(t,θ,ϕ)

− γ̂1
(

∂Ψ
∂θ

+
1
2

cot (θ)Ψ
)∣∣∣∣

(t,θ,ϕ)

− γ̂2 1
sin θ

∂Ψ
∂ϕ

∣∣∣∣
(t,θ,ϕ)

−g (τ1 sin θ cos ϕ + τ2 sin θ sin ϕ + τ3 cos θ) Ψ|(t,θ,ϕ)

]
.

(4.169)

We must be careful at this point, because the terms on the third line of the

above equation (4.169) arise from the coupling with the baby Skyrmion, of

the form
(
Ψτ · ϕΨ

)∣∣
(t,θ,ϕ). We stress that the notion of parity we have de-

fined at (4.164) is a transformation just of the fermion, with respect to a fixed

background baby Skyrmion. We will not transform the baby Skyrmion under

this operation, and crucially there is no independent global transformation on

spacetime itself: the fermion P̂Ψ is a new field for the same spacetime and

same background baby Skyrmion, whose pointwise behaviour at an event

xµ = (t, θ, ϕ) is related to how the old field Ψ behaved at the antipodal event

yµ = (t, π − θ, ϕ − π).

Let us now substitute P̂Ψ for Ψ in the Lagrangian (4.169). By the chain

rule, we find that
∂P̂Ψ
∂xν

∣∣∣∣
xµ

= γ̂1 ∂Ψ
∂yρ

∣∣∣∣
yµ

∂yρ

∂xν

∣∣∣∣
xµ

. (4.170)

Hence,

∂P̂Ψ
∂t

∣∣∣∣
(t,θ,ϕ)

= γ̂1 ∂Ψ
∂t

∣∣∣∣
(t,π−θ,ϕ−π)

, (4.171)

∂P̂Ψ
∂θ

∣∣∣∣
(t,θ,ϕ)

= −γ̂1 ∂Ψ
∂θ

∣∣∣∣
(t,π−θ,ϕ−π)

, (4.172)

∂P̂Ψ
∂ϕ

∣∣∣∣
(t,θ,ϕ)

= γ̂1 ∂Ψ
∂ϕ

∣∣∣∣
(t,π−θ,ϕ−π)

. (4.173)
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Substituting,

P̂L f
∣∣
(t,θ,ϕ) = P̂Ψ

∣∣∣
(t,θ,ϕ)

[
γ̂0 ∂P̂Ψ

∂t

∣∣∣∣
(t,θ,ϕ)

−

γ̂1
(

∂P̂Ψ
∂θ

+
1
2

cot (θ) P̂Ψ
)∣∣∣∣

(t,θ,ϕ)

−γ̂2 1
sin θ

∂P̂Ψ
∂ϕ

∣∣∣∣
(t,θ,ϕ)

−g (τ1 sin θ cos ϕ + τ2 sin θ sin ϕ + τ3 cos θ) P̂Ψ
∣∣
(t,θ,ϕ)

]
(4.174)

= Ψ
∣∣
(t,π−θ,ϕ−π) γ̂1

[
γ̂0γ̂1 ∂Ψ

∂t

∣∣∣∣
(t,π−θ,ϕ−π)

− γ̂1
(
−γ̂1 ∂Ψ

∂θ
+

1
2

cot (θ) γ̂1Ψ
)∣∣∣∣

(t,π−θ,ϕ−π)

−γ̂2 1
sin θ

γ̂1 ∂Ψ
∂ϕ

∣∣∣∣
(t,π−θ,ϕ−π)

−g (τ1 sin θ cos ϕ + τ2 sin θ sin ϕ + τ3 cos θ) γ̂1Ψ
∣∣∣
(t,π−θ,ϕ−π)

]
.

(4.175)

Before combining γ̂ matrices in this expression, we will make use of the

trigonometric identities

cos (π − θ) = − cos θ, sin (π − θ) = sin θ, (4.176)

cos (ϕ − π) = − cos ϕ, sin(ϕ − π) = − sin ϕ, (4.177)
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to rewrite all the appearances of trigonometric functions of the polar coordi-

nates as follows,

P̂L f
∣∣
(t,θ,ϕ) = Ψ

∣∣
(t,π−θ,ϕ−π)

γ̂1

[
γ̂0γ̂1 ∂Ψ

∂t

∣∣∣∣
(t,π−θ,ϕ−π)

− γ̂1
(
−γ̂1 ∂Ψ

∂θ
− 1

2
cot (π − θ) γ̂1Ψ

)∣∣∣∣
(t,π−θ,ϕ−π)

− γ̂2 1
sin (π − θ)

γ̂1 ∂Ψ
∂ϕ

∣∣∣∣
(t,π−θ,ϕ−π)

− g (−τ1 sin (π − θ) cos (ϕ − π)

−τ2 sin (π − θ) sin (ϕ − π)− τ3 cos (π − θ)) γ̂1Ψ
∣∣∣
(t,π−θ,ϕ−π)

]
. (4.178)

Finally, reducing the combinations of γ̂ matrices, we are left with

P̂L f
∣∣
(t,θ,ϕ) = Ψ

∣∣
(t,π−θ,ϕ−π)

[
γ̂0 ∂Ψ

∂t

∣∣∣∣
(t,π−θ,ϕ−π)

− γ̂1

(
∂Ψ
∂θ

∣∣∣∣
(t,π−θ,ϕ−π)

+
1
2

cot (π − θ) Ψ|(t,π−θ,ϕ−π)

)

− γ̂2 1
sin (π − θ)

∂Ψ
∂ϕ

∣∣∣∣
(t,π−θ,ϕ−π)

− g (τ1 sin (π − θ) cos (ϕ − π)

+τ2 sin (π − θ) sin (ϕ − π) + τ3 cos (π − θ)) Ψ|(t,π−θ,ϕ−π)

]
(4.179)

= L f
∣∣
(t,π−θ,ϕ−π)

. (4.180)

Thus the effect of our defined parity operation on the Lagrangian is equiva-

lent to relabelling spacetime points by exchanging spatial antipodes. In par-

ticular, the action S =
∫
L f d3x is invariant, so the equations of motion from

the variational principle are unchanged. If Ψ is a fermion solution, then so is

P̂Ψ.2

2Observe that the trigonometric identities for antipodal points in the spin-isospin cou-
pling term were essential to counteract the minus sign arising from the factor of

(
γ̂1)2 . A

mass term for the fermion would be pseudoscalar under this parity transformation, i.e.

m f
(
ΨΨ
)∣∣

xµ 7→ −m f
(
ΨΨ
)∣∣

yµ , (4.181)

and thus is never permissible in a parity-invariant Lagrangian under our assumptions.
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An essentially identical manipulation shows that the parity operator P̂

commutes with the fermionic Hamiltonian Ĥ f as defined at equation (4.82):

[
P̂, Ĥ f

]
= 0. (4.182)

It’s also straightforward to check that parity commutes with the generalised

angular momentum generators K̂i defined at equations (4.88) and (4.138):

[
P̂, K̂i

]
= 0. (4.183)

Therefore we can simplify our classification of solutions to the Dirac equa-

tion by seeking steady state, generalised angular momentum eigenstates of

definite parity. As an involution, P̂ has eigenvalues ±1. We refer to the +1

eigenspace as the space of even parity states, and the −1 eigenspace as the

space of odd parity states, and will record the parity of an eigenstate ΨP by

the equivalence class of the signature σP ∈ Z2, where

P̂ΨP = (−1)σP ΨP. (4.184)

We start by returning to the classification of the profile functions just in

terms of the azimuthal grand spin k, as at (4.90),

Ψ(θ, ϕ) =



ei(k− 1
2)ϕΘ1,1(θ)

ei(k+ 1
2)ϕΘ1,2(θ)

ei(k− 1
2)ϕΘ2,1(θ)

ei(k+ 1
2)ϕΘ2,2(θ)


. (4.185)
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Applying the parity transformation to this,

P̂Ψ(θ, ϕ) = γ̂1Ψ(π − θ, ϕ − π) =



−iei(k− 1
2)(ϕ−π)Θ2,1(π − θ)

−iei(k+ 1
2)(ϕ−π)Θ2,2(π − θ)

−iei(k− 1
2)(ϕ−π)Θ1,1(π − θ)

−iei(k+ 1
2)(ϕ−π)Θ1,2(π − θ)


. (4.186)

Now consider

ei(k− 1
2)(ϕ−π) = eiπ( 1

2−k)ei(k− 1
2)ϕ = (−1)k iei(k− 1

2)ϕ, (4.187)

ei(k+ 1
2)(ϕ−π) = eiπ(− 1

2−k)ei(k+ 1
2)ϕ = (−1)k+1 iei(k+ 1

2)ϕ. (4.188)

Thus,

P̂Ψ(θ, ϕ) = (−1)k



ei(k− 1
2)ϕΘ2,1(π − θ)

−ei(k+ 1
2)ϕΘ2,2(π − θ)

ei(k− 1
2)ϕΘ1,1(π − θ)

−ei(k+ 1
2)ϕΘ1,2(π − θ)


. (4.189)

If this is a parity eigenstate obeying (4.184), then we obtain the relations

Θ1,1(θ) = (−1)k+σP Θ2,1(π − θ), (4.190)

Θ1,2(θ) = (−1)k+σP+1 Θ2,2(π − θ). (4.191)

Note that under the change of variables u = cos θ, the map θ 7→ π − θ be-

comes simply u 7→ −u.

Equipped with this extra classification, let us return to the discussion

of lowest-weight eigenstates of angular momentum, as around equations

(4.155-4.163). Recall that solving the lowest-weight conditions for Θ1,1(u)
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and Θ2,1(u) gave us

Θ(ℓ,−ℓ)
1,1 (u) = A1 (1 − u)

ℓ
2+

1
2 (1 + u)

ℓ
2 , (4.192)

Θ(ℓ,−ℓ)
2,1 (u) = A2 (1 − u)

ℓ
2 (1 + u)

ℓ
2+

1
2 . (4.193)

Therefore the parity eigenstate condition (4.190) tells us

A2 = (−1)ℓ+σP A1. (4.194)

Now we solve for the remaining profile functions of a lowest-weight state

using the other components of equation (4.155). For Θ1,2 we have

Θ(ℓ,−ℓ)
1,1 (u) +

√1 − u2 d
du

−

(
−ℓ+ 1

2

)
u

√
1 − u2

+
1
2√

1 − u2

Θ(ℓ,−ℓ)
1,2 (u) = 0.

(4.195)

Substituting in our solution (4.192), we obtain the differential equation

dΘ(ℓ,−ℓ)
1,2

du
+

(
ℓ− 1

2

)
u + 1

2

(1 − u2)
Θ(ℓ,−ℓ)

1,2 = −A1 (1 − u)
ℓ
2 (1 + u)

ℓ
2−

1
2 , (4.196)

the general solution of which is

Θ(ℓ,−ℓ)
1,2 (u) = (1 − u)

ℓ
2 (1 + u)

ℓ
2−

1
2 (B1 − A1u) , (4.197)

where we have introduced another constant of integration, B1. Similarly, the

Θ2,2 component of a lowest-weight state is generally

Θ(ℓ,−ℓ)
2,2 (u) = (1 − u)

ℓ
2−

1
2 (1 + u)

ℓ
2 (B2 − A2u) , (4.198)
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with B2 a constant of integration. For a parity eigenstate, by equations (4.191)

and (4.194) we find that

B2 = (−1)ℓ+σP+1 B1. (4.199)

We observe that these general solutions (4.197-4.198) are well-defined for

ℓ ≥ 1, but may fail to be so for ℓ = 0 unless

(B1 − A1u) ∝ (1 + u) , (4.200)

or equivalently (B1 + A1u) ∝ (1 − u) . (4.201)

Thus for ℓ = 0 we must have

B1 = −A1, (4.202)

and thus, up to normalisation, there are just two ℓ = 0 eigenstates, distin-

guished by their parity σP:

Ψ(0,0)
σP (u, ϕ) = A1e−

i
2 τ3ϕ



(1 − u)
1
2

− (1 + u)
1
2

(−1)σP (1 + u)
1
2

(−1)σP (1 − u)
1
2


, (4.203)

where A1 remains now just as a normalising factor. (We will determine the

corresponding energy eigenvalues shortly.)

We can neaten the general solution by simply rewriting

B1 − A1u = B − A(1 + u), (4.204)
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for new coefficients A and B. Then our most general expression for a lowest-

weight eigenstate so far is a linear combination,

Ψ(ℓ,−ℓ)
σP (u, ϕ) = e(−ℓ− 1

2 τ3)ϕ


A



(1 − u)
ℓ
2+

1
2 (1 + u)

ℓ
2

(−1)(1 − u)
ℓ
2 (1 + u)

ℓ
2+

1
2

(−1)ℓ+σP(1 − u)
ℓ
2 (1 + u)

ℓ
2+

1
2

(−1)ℓ+σP(1 − u)
ℓ
2+

1
2 (1 + u)

ℓ
2



+B



0

(1 − u)
ℓ
2 (1 + u)

ℓ
2−

1
2

0

(−1)ℓ+σP+1(1 − u)
ℓ
2−

1
2 (1 + u)

ℓ
2




.

(4.205)

We see that for ℓ = 0 we must have B = 0, which is equivalent to our dis-

cussion above. More generally, we will need to solve the Dirac equation to

determine the allowed combinations of A and B, which we will do presently.

It is not difficult to see immediately, nonetheless, that for general ℓ, a (non-

trivial) state with A = 0 is not going to solve the Dirac equation, because of

the zeroes in half its components. While this decomposition of parity and

grand spin eigenstates (into what we might call A-states and B-states) is very

useful for collecting the powers of (1 ± u) in the components, it is not also

the eigenbasis for the Hamiltonian Ĥ f .

Let’s proceed to find those combinations which are also Hamiltonian

eigenstates. We can do this by substituting the general expression (4.205)

into the system of equations (4.105-4.108) for the stationary states, now tak-

ing n = 1 and k = −ℓ.

We will explicitly do so just for equation (4.106), as this will be sufficient

to completely determine the relationships between E f , A and B. The terms
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in Θ1,1 and Θ1,2 are

(
E f + gu

)
Θ1,2 − g

√
1 − u2Θ1,1 = (E f + gu) [B − A (1 + u)] (1 − u)

ℓ
2 (1 + u)

ℓ
2−

1
2

− gA (1 − u)
ℓ
2+1 (1 + u)

ℓ
2+

1
2 (4.206)

=

(
E f (B − A)− gA +

[
E f (−A) + g(B − A)

]
u
)

× (1 − u)
ℓ
2 (1 + u)

ℓ
2−

1
2 . (4.207)

For the terms involving Θ2,2, first observe the following useful differen-

tiation identity:

y = C(1 − u)α(1 + u)β ⇒ ln y = ln C + α ln(1 − u) + β ln(1 + u)

⇒ 1
y

dy
du

= − α

1 − u
+

β

1 + u

⇒ dy
du

=
β − α − (α + β) u

1 − u2 y. (4.208)

Thus,

√
1 − u2 dΘ2,2

du
= (−1)ℓ+σP+1 B

[
1
2 −

(
ℓ− 1

2

)
u
]
(1 − u)

ℓ
2−1 (1 + u)

ℓ
2−

1
2

+ (−1)ℓ+σP A
[
−1

2 −
(
ℓ+ 1

2

)
u
]
(1 − u)

ℓ
2 (1 + u)

ℓ
2−

1
2 ,

(4.209)

and

1
2 u − ℓ+ 1

2√
1 − u2

Θ2,2 =
[

1
2 u − ℓ+ 1

2

]
(−1)ℓ+σP+1

[
B (1 − u)

ℓ
2−1 (1 + u)

ℓ
2−

1
2

−A (1 − u)
ℓ
2 (1 + u)

ℓ
2−

1
2
]

. (4.210)
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Combining equations (4.207) and (4.209-4.210), we can extract an overall fac-

tor of (1 − u)
ℓ
2−1 (1 + u)

ℓ
2−

1
2 , to obtain

E f [(B − A)− Au]− g [A + (A − B) u] + (−1)ℓ+σP [(A − B) ℓ− A − A (ℓ+ 1) u] = 0.

(4.211)

Splitting into the coefficients of 1 and of u, we obtain the system,

E f (B − A) = gA + (−1)ℓ+σP+1 [(A − B) ℓ− A] , (4.212)

E f A = g (B − A) + (−1)ℓ+σP+1 A (ℓ+ 1) . (4.213)

This is in fact the totality of information that is obtained by substituting

the general eigenstate given at (4.205) into the Dirac equation(s) in the form

(4.105-4.108): explicitly computing the terms in any of the other three equa-

tions reproduces equations consistent with and no stronger than (4.212-4.213).

This is as we would expect: as there is an as-yet unspecified normalisation

condition on A and B, this is the correct number of conditions to put an ex-

actly determined algebraic condition on E f .

We have observed that for ℓ = 0 we must have B = 0, so both equations

(4.212-4.213) reduce to

E f A =
[
−g + (−1)σP+1

]
A,

i.e. E f = −g + (−1)σP+1 . (4.214)

It is easily checked that these are indeed the correct energy eigenvalues for

the ℓ = 0 eigenstates given at (4.203).

We remark that if A = 0, the system reduces to

E f B = (−1)ℓ+σPℓB, (4.215)

0 = gB. (4.216)
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This is consistent with the observation that for non-trivial spin-isospin cou-

pling, i.e. non-zero g, we cannot have a non-trivial state with A = 0. On

the other hand, if g = 0, our lowest-weight solution reduces to a decoupled,

isospinless fermion à la Abrikosov [1] in the isospin-down components of the

field Ψ, up to the technical point of carefully defining the “grand spin” when

there is no spin-isospin coupling. (Compare this result for the energy to the

relationship (4.1); and see Abrikosov, or implement the code in Appendix

B.2, to confirm that the explicit components of the fermion are equivalent.)

Finally let us consider the non-trivial cases with ℓ ≥ 1. Since A ̸= 0, we

can divide both equations (4.212-4.213) by A, and then eliminate B, to reduce

to a quadratic equation for E f . The solutions give the energy spectrum:

E f =
(−1)ℓ+σP+1

2
±

√
ℓ(ℓ+ 1) +

(
g − (−1)ℓ+σP+1

2

)2

. (4.217)

By comparison with equation (4.162), we see that the sign we called ±A is

determined to be (−1)ℓ+σP+1. The final “quantum number” specifying the

eigenstate is the sign ±B, the choice of upper or lower energy branch, corre-

sponding to the distinct solutions of the quadratic. For notational consistency

we’ll now also replace the notation ±B with (−1)σB . Then we may express

our results on the spectrum and energy levels as follows.

Remark 4.3. The energy levels of the fermion are determined by the total

grand spin ℓ ≥ 0, parity σP ∈ Z2, and for ℓ > 0 the branch sign σB ∈ Z2.

Given this data, the general energy eigenvalue is

E f =
(−1)ℓ+σP+1

2
+ (−1)σB

√
ℓ(ℓ+ 1) +

(
g − (−1)ℓ+σP+1

2

)2

, (4.218)
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although for consistency when ℓ = 0 we must choose σB odd in that case: the

ℓ = 0 energy levels are just

E f = −g + (−1)σP+1. (4.219)

The degeneracy of each energy level is the usual factor of 2ℓ + 1 possible

values of the eigenvalue k of K̂3 for the irreducible representation of SU(2).

Generically, there are 8ℓ+ 4 distinct states of grand spin ℓ, the energy level

degeneracy doubled for each choice of σP and σB. However, for ℓ = 0 there

are only two states, as the only remaining quantum number is the parity sign

σP.

For a given ℓ, σP and σB we determine the relationship between the coef-

ficients A and B (up to normalisation) by then substituting the expression for

E f back into equations (4.212-4.213). We observe the ratio(s):

B
A

=
E f + g + (−1)ℓ+σP+1 (ℓ− 1)

E f + (−1)ℓ+σP+1ℓ
by (4.212), (4.220)

=
g

E f + g − (−1)ℓ+σP+1 (ℓ+ 1)
by (4.213). (4.221)

Of course, both expressions above for the ratio B
A must be generally equal,

except in degenerate cases such as g = 0. In such cases we must correctly

normalise the state and then carefully evaluate the limit as we approach the

degenerate case to examine how such a state of the spin-isospin system de-

couples into isospinless fermions. We’ve already seen that we expect ℓ = 0

lowest weight states to give a decoupled isospin-down state and a vacuum

isospin-up state in the limit g → 0. Similarly, if we take a lowest-weight state

for general ℓ to have

A = E f + g − (−1)ℓ+σP+1 (ℓ+ 1) , B = g, (4.222)
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then by (4.221) we expect that this will also lead to a similar decoupled pair of

isospin-up vacuum and isospin-down lowest weight state in the limit g → 0.

By comparing the form of the raising and lowering grand spin operators

K̂± at equations (4.154-4.155), we conjecture that on the other hand, highest-

weight grand spin states decouple to isospin-up highest weight isospinless

fermions and isospin-down vacuum states. The states of intermediate az-

imuthal grand spin are not observed so easily by inspection, but we certainly

have a constructive process for obtaining them: start with a presentation of a

lowest-weight state and then apply the raising operator K̂+ the appropriate

number of times. It remains to compute some examples in detail and explic-

itly see how they might decouple or be otherwise modified in degenerate

cases of the relations (4.220-4.221).

4.4 Discussion

We have determined that a spin-isospin coupled Dirac fermion in the field of

a background n = 1 baby Skyrmion is totally determined by the combined

representation theory of SU(2) and spatial parity. This closely matches the

results of similar models. The analogous model of the Dirac fermion in the

field of a background Skyrmion on R× S3 [23, 37] also features a generalised

grand spin operator G,

G = L + S + I, (4.223)

the combined contribution of the orbital angular momentum L, the spin S =

1
2 σ and the isospin I = 1

2 τ. It is worth noting that each of these operators has

three spatial components on S3, and acts more similarly to their equivalents

on flat Minkowski space R1 × R3: there is a question of projection onto an

axis of rotation, and so spin states can be distinguished by helicity. Thus the

total grand spin does not fully determine a state on S3, since the contribution
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to G of positive helicity spin can be cancelled by negative helicity isospin,

and vice versa. Indeed, the total grand spin does not alone distinguish an

energy level for the fermion solutions on S3. It must be combined with an

additional quantum number corresponding to the degree of the polynomial

part of the Fuchsian u-equation.

In our case, at any local point, there is only one axis of spatial rotation.

Although our grand spin operators K̂i give a representation of SU(2), at each

point of S2, there is only one a one-dimensional subspace of su(2) which

looks locally like a family of rotation operators. There is no helicity. Our

calculation seems more analogous to solving for scalar spherical harmonics

on R3 in the absence of the radial degree of freedom: there is no “principal

quantum number”, just the analogues of the azimuthal and magnetic num-

bers l, m of the spherical harmonic Yl,m. On the other hand, viewing S3 as the

one-point compactification of R3, a radial degree of freedom is introduced,

so it is natural that there should be an extra quantum number in that case.

Another similar model with which our results seem to broadly agree is

the same spin-isospin coupling to baby Skyrmions on flat Minkowski R×R2

[51]. Numerical investigation in that model finds many distinct fermion

states when the baby Skyrmion profile function is permitted to vary and

is fully coupled to the fermion (rather than being in the background). The

fermion in this model is observed to localise near the “boundary” of the baby

Skyrmion where the topological charge density is falling off at the greatest

rate. In this case there is an azimuthal rotation symmetry generated by an

operator essentially identical to our K̂3, but not a full representation of SU(2)

extending this rotation.

Interestingly, Perapechka, Sawado, and Shnir [51] observe that almost all

of their fermion states drop out as the coupling constant g goes to zero, leav-

ing just one zero mode in the limit, and the states delocalise as their energy

drops. This appears to conflict with our result. From (4.218), when g = 0 the
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generic energy levels for ℓ > 0 are

E f =
(−1)ℓ+σP+1

2
+ (−1)σB

(
ℓ+

1
2

)
. (4.224)

At first glance, it appears that there are two zero modes for ℓ = 0, but we have

already seen that for consistency reasons these possibilities are ruled out, and

so there are no zero modes at g = 0. The fermion on flat Minkowski space

in [51] is massive, but in three dimensions where the Dirac representation

is irreducible, it is not immediately obvious that the fermion mass would

account for the discrepancy.

As an explanation of this disagreement, it may be that our choice of the

baby Skyrmion is “too symmetric” or “too weak” for n = 1. Scoccola and Bes

[59] show that our spherically symmetric baby Skyrmion is appropriate only

when a combined parameter αL4 is sufficiently small, where α is the coupling

constant of the Skyrme potential term and L is the radius of the spatial sphere

S2. In the opposite regime that αL4 is large, the baby Skyrmion localises

at one of the poles of the sphere. From the point of view of stereographic

projection we can see this as localisation of the soliton at the spatial origin

when the radius of the sphere goes to infinity. This is a bifurcation property

shared by Skyrmions on S3 [30, 40]. Even the planar rotational symmetry of a

baby Skyrmion is not inviolable: there are choices of baby Skyrme potentials

in the flat (2 + 1)-dimensional model where higher-charge, static, energy-

minimising baby Skyrmions can have their rotational symmetry broken sur-

prisingly badly. Karliner and Hen [32, 33] demonstrate such as a B = 5

baby Skyrmion whose energy density only permits a single discrete reflec-

tion symmetry. The same authors also show that a rotating baby Skyrmion

on the 2-sphere can dynamically undergo spontaneous symmetry breaking.

A rotating B = 1 baby Skyrmion can at critical values of angular momentum

first break its spherical symmetry to a single axial symmetry, and then break
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that remaining symmetry to be left with a general ellipsoidal distribution of

topological charge.

A final point of curiosity is the observation that we do not naturally re-

cover the full spectrum of the R × S2 Dirac (spin-only) fermion in the limit

of our model as g approaches 0. As we mentioned at the beginning of this

chapter, and demonstrate with the Maple worksheet in Appendix B.2, the

spectrum of the pure Dirac operator is Z \ {0}, as opposed to Z + 1
2 . Even in

the absence of coupling to the background isovector, the decoupled isospin

components of the fermion still seem to “know” that they are isospinors,

rather than isoscalars. Perhaps this should be unsurprising: after all, on

flat (3+1)-dimensional Minkowski space, the Weyl components of a mass-

less Dirac spinor still obey the Weyl equations, rather than an equation for a

scalar field. Nonetheless, even with this interpretation, there is a question of

a seemingly “instantaneous” loss of isospin in the limit g = 0. Consider that

for g = 0, we observe two distinct possible candidates for a rotation operator

about the polar axis:

K̂3 = −i
∂

∂ϕ
+

1
2

τ3, L̂3 = −i
∂

∂ϕ
. (4.225)

Both K̂3 and L̂3 will commute with the fermionic Hamilton when g = 0,

although only K̂3 correctly generalises to non-zero g. They clearly also com-

mute with each other. But a “joint eigenstate” would have Fourier mode

simultaneously equal to k ± n
2 and m, and so for the case g = 0, the fermion

would appear to treat the background field as if it suddenly has even wind-

ing number n. These issues may point to the inherent weakness of modelling

the soliton as living in the background, with a total absence of back-reaction.

As with the prescribed background kink in Chapter 3, our appeal to prin-

ciples of symmetry for background baby Skyrmion required us to construct

operations where the fermion underwent both a spacetime transformation



Chapter 4. Spin-isospin fermion-baby Skyrmion coupling on S2 × R 147

and an internal transformation. This is an undesirable feature of a physi-

cal theory of particles: for a quantum field theory, such a symmetry of the

S-matrix is typically a violation of the Coleman-Mandula theorem [18].

All these features emphasise the importance of the back-reaction of the

fermion onto the baby Skyrmion, and in particular the effect on the soliton’s

profile function, to the qualitative behaviour of the model, in particular in

the context of the zero modes. We discuss some areas of interest for future

work in our outlook in Section 5.2.2.
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Chapter 5

Conclusion

5.1 Summary

We have classified the spectrum of models of spin-isospin coupling between

fermions and topological solitons on the circle S1 and the sphere S2. The in-

vestigations have been very fruitful, although there is still some outstanding

work to be done and we are left with a few further questions in each. The pri-

macy of the bispinors in the kink-fermion model in (1+1)-dimensions leaves

us with many open questions to investigate. We stress our belief that the key

mechanism for our approach is the internal symmetry shared by the fermion

and kink fields. We believe that our argument in Section 4.4 regarding the

flaws of the background baby Skyrmion model on S2 provide further evi-

dence for the importance of a true internal symmetry between fermions and

solitons in order to explore their interaction. Fully coupling the kink to the

fermion gave rise to a rich mathematical structure which can be investigated

with powerful tools from complex analysis.

In each case, the radius of the compact spatial manifold plays a role.

On S1 it affects how the full coupling modifies the energy of fermion solu-

tions; on S2, the compactification of the sphere seems to alter the nature of

fermionic zero modes. The observations by Perapechka, Sawado, and Shnir

[51] that fermion modes drop out in the limit of a weak coupling constant in

flat space, and by Scoccola and Bes [59] that the radius of the sphere acts in
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conjunction with a physical constant in the baby Skyrme model, jointly sug-

gest that we should also include the spherical radius explicitly in our model.

It can be inserted into the metric in much the same way we gave the radius ρ

of S1 and will set an energy scale analogously.

5.2 Outlook

We have outlined some avenues of future research in Sections 3.9 and 4.4. We

finish by mentioning a few more ideas which are not as directly related to the

questions raised in each case, but which we believe would share interesting

features.

5.2.1 Fermions and kinks on R × S1

One aspect of the kink-soliton models that we have not addressed in ei-

ther case is quantisation. However, the fact that the fermion dynamics can

be understood in terms of bosonic coordinates in the S1 model does sug-

gest that quantising the model might be interesting. It is already known in

(1+1)-dimensional field theories that there is a duality between bosons and

fermions. This was first observed by Coleman [17] as a duality in the renor-

malisation structures of the quantum sine-Gordon model and the massive

Thirring four-fermion model, and was expanded further by Witten [71]. The

massive Thirring model contains a Dirac fermion with the Lagrangian

L = ψ (ih̄/∂ − m)ψ − g
2
(
ψγµψ

) (
ψγµψ

)
. (5.1)

The additional four-fermion term is the U(1) current, and we have already

seen that this naturally plays a role in the kink-fermion model. It would be

interesting therefore to see the effects of adding such a term to our model.
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This will require some quantisation; at the very least, we will likely need to

introduce Grassman variables for the Dirac field.

Another interesting modification may be to introduce isospin to the kink-

fermion model, as has been considered by Loginov [39]. We believe isospin

would fix the parity problem of the model: it would permit a kink-fermion

coupling with an internal symmetry without necessitating that the kink be a

pseudoscalar. However, if we wish to preserve the shared symmetry, it’s not

possible to directly introduce Loginov’s potential term for the sigma field ϕ

which admits topological solitons. Similarly, we cannot introduce either a ϕ4

or sine-Gordon potential term for the scalar field to our current model (i.e.

without isospin) without disrupting the shared symmetry.

One possible idea is to give a larger symmetry group to the sigma field

than to the fermion, and break the larger symmetry by a potential term for

the sigma field while preserving the smaller symmetry of the fermion-soliton

coupling term. For example, let ϕ = (ϕ1, ϕ2, ϕ3) now be an isospin triplet

with ϕ · ϕ = 1, but keep Ψ just in the SO(2) isospin representation corre-

sponding to the equator ϕ3 = 0, and use a potential that also respects rotation

about the ϕ3 axis:

L =
1
2

∂µϕ · ∂µϕ + ih̄Ψ/̂∂Ψ − gΨ (ϕ1τ1 + ϕ2τ2)Ψ − V(ϕ3). (5.2)

Example potentials which may be interesting:

• V(ϕ3) = 1 − ϕ3 gives a single vacuum, which therefore may generalise

to higher dimensions with connected boundaries at spatial infinity.

• V(ϕ3) = 1 − ϕ2
3 gives distinct vacua ϕ3 = ±1 and may encourage a

true, topologically protected kink in (1+1)d.

• V(ϕ3) = 1 − cos ϕ3 may encourage periodic solutions.



Chapter 5. Conclusion 151

We expect that the bispinor picture would be vastly more complex and not

as amenable to an analytic solution. Nonetheless, with any such potential,

we would expect the ϕ3 field to be totally determined by suitable fermion

solutions, in such a manner that the appropriate fermionic Noether charge

Ψγ̂3τ3Ψ localises on rapid changes to the ϕ3 field.

5.2.2 Fermions and solitons on R × S2

As we have mentioned, the obvious next step for the S2 model is to fully

couple the baby Skyrmion field to the fermion. This requires a choice of

potential term for the Skyrme field. Since the baby Skyrmion naturally has

SO(3) isospin symmetry, we may also be able to do this in such a way as to

preserve a subgroup of the joint isospin symmetry between the fermion and

the baby Skyrmion.

We are interested in investigating fermions coupled to magnetic skyrmions,

particularly to the exactly solvable model of critically coupled magnetic skyrmions

introduced by Barton-Singer, Ross, and Schroers [8]. We believe this is a nat-

ural subject to investigate for several reasons.

Perapechka and Shnir [52] have already demonstrated that there can be

significant effects to the physics of magnetic skyrmions by including fermions.

Moreover, Walton [67] has shown that exact solutions for critically coupled

magnetic skyrmions exist on a spherical domain. It seems prudent there-

fore to adapt the analytical and numerical tools we have already developed

for baby skyrmions on the sphere to a model of magnetic skyrmions on the

sphere.

There are further reasons to suspect that critically coupled magnetic skyrmions

may be particularly amenable to the addition of fermions. Schroers [58] has

shown that models of critically coupled magnetic skyrmions arise from a

gauged non-linear sigma model for suitably chosen gauge fields. In this
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framework, the Dzyaloshinskii-Moriya interaction which stabilises the soli-

ton is arbitrary, but a gauge transformation changes this interaction and so

leads to a different model of magnetic skyrmions. If the curvature of the

gauge connection vanishes, the solutions can be interpreted as Belavin-Polyakov

monopoles interacting with impurities. Adam, Queiruga, and Wereszczyn-

ski [2] have found supersymmetric extensions of such soliton-impurity mod-

els and noted the relationship with the Dzyaloshinskii-Moriya interaction.

We are therefore curious whether this unifying framework will lead to a sig-

nificant role for fermions coupled to magnetic skyrmions.
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Appendix A

Spinor transformations on R × S2

A.1 Spin connections

We will evaluate the Dirac operator explicitly in the stereographic coordi-

nates (X, Y) of US and in polar coordinates. Let us begin in stereographic

coordinates. The connection 1-form is

ωa
b = ω a

t bdt + ω a
X bdX + ω a

Y bdY. (A.1)

The 9 a priori independent components we wish to solve for are, without loss

of generality, the three components each of ω0
1, ω0

2 and ω1
2. By Cartan’s

structure equation (4.46)

• a = 0

0 = dθ̂0 + ω0
1 ∧ θ̂1 + ω0

2 ∧ θ̂2

=

(
− 2

1 + R2

) (
ω 0

t 1dt ∧ dX + ω 0
Y 1dY ∧ dX + ω 0

t 2dt ∧ dY + ω 0
X 2dX ∧ dY

)
This implies ω 0

t 1 = 0 = ω 0
t 2 and ω 0

Y 1 = ω 0
X 2.
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• a = 1

0 = dθ̂1 + ω1
0 ∧ θ̂0 + ω1

2 ∧ θ̂2

= d
(
− 2

1 + X2 + Y2 dX
)
− ω 0

X 1dX ∧ dt

+
(

ω 1
t 2dt + ω 1

X 2dX
)
∧
(
− 2

1 + X2 + Y2 dY
)

=
4Y

(1 + R2)2 dY ∧ dX − ω 0
X 1dX ∧ dt − 2ω 1

t 2
1 + R2 dt ∧ dY − 2ω 1

X 2
1 + R2 dX ∧ dY

This implies ω 0
X 1 = 0 = ω 1

t 2 and ω 1
X 2 = − 2Y

1+R2 .

• a = 2

0 = dθ̂2 + ω2
0 ∧ θ̂0 + ω2

1 ∧ θ̂1

= d
(
− 2

1 + X2 + Y2 dY
)
− ω 0

X 2dX ∧ dt − ω 0
Y 2dY ∧ dt

− ω 1
Y 2dY ∧

(
− 2

1 + X2 + Y2 dX
)

=
4X

(1 + R2)2 dX ∧ dY − ω 0
X 2dX ∧ dt − ω 0

Y 2dY ∧ dt +
2ω 1

Y 2
1 + R2 dY ∧ dX

We finally obtain ω 0
X 2(= ω 0

Y 1) = 0 = ω 0
Y 2 and ω 1

Y 2 = 2X
1+R2 .

Hence the connection 1-form has as its only non-zero contribution

ω1
2 =

2
1 + R2 (XdY − YdX) , (A.2)

or equivalently

ω12 = − 2
1 + R2 (XdY − YdX) . (A.3)
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The components of the spin connection are

Ωt = 0 (A.4)

ΩX = − i
2

(
ω 12

X Σ12 + ω 21
X Σ21

)
= −i(ω 12

X Σ12)

= −i
(

2Y
1 + R2

)
1
2

γ0

= − iY
1 + R2 γ0 (A.5)

and similarly

ΩY = − i
2
(ω 12

Y Σ12 + ω 21
Y Σ21)

= −i(ω 12
Y Σ12)

= −i
(
− 2X

1 + R2

)
1
2

γ0

=
iX

1 + R2 γ0. (A.6)

We will work with the Dirac operator on spinors in the form /D = γµDµ.

We have established that in stereographic coordinates,

/D = /∂ + /Ω = γµ(∂µ + Ωµ)

= γαe µ
α (∂µ + Ωµ)

= γ0(1)
(

∂

∂t

)
+ γ1

(
−1 + R2

2

)(
∂

∂X
− iY

1 + R2 γ0
)

+ γ2
(
−1 + R2

2

)(
∂

∂Y
+

iX
1 + R2 γ0

)
= γ0∂0 − γi

(
(1 + R2)

2
∂

∂Xi −
Xi

2

)
. (A.7)

Compare this with the expression derived at (11) of Goatham and Krusch

[23]: note that in the contribution for the spin connection, there is a relative
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factor of 1
2 . This is because on the 2-sphere, contributions to the spatial com-

ponent of the spin connection only come from the single other spatial com-

ponent, whereas there are two such contributions from the two other spatial

components on the 3-sphere.

In polar coordinates, the connection 1-form is

ωa
b = ω a

t bdt + ω a
θ bdθ + ω a

ϕ bdϕ. (A.8)

(Since there are already a lot of indices to keep track of, we will not use the

subscript p to indicate polar coordinates.) Cartan’s structure equation gives

us the following.

• a = 0

0 = dθ̂0 + ω0
1 ∧ θ̂1 + ω0

2 ∧ θ̂2

= ω 0
t 1dt ∧ (−dθ) + ω 0

ϕ 1dϕ ∧ (−dθ) + ω 0
t 2dt ∧ (− sin θ dϕ)

+ ω 0
θ 2dθ ∧ (− sin θ dϕ)

This implies ω 0
t 1 = 0 = ω 0

t 2 and ω 0
ϕ 1 = ω 0

θ 2 sin θ.

• a = 1

0 = dθ̂1 + ω1
0 ∧ θ̂0 + ω1

2 ∧ θ̂2

= ω 0
θ 1dθ ∧ dt + ω 1

ϕ 0dϕ ∧ dt + ω 1
t 2dt ∧ (− sin θ dϕ)

+ ω 1
θ 2dθ ∧ (− sin θ dϕ)

Thus ω 1
θ 0 = 0 = ω 1

θ 2, and ω 1
ϕ 0 = −ω 1

t 2 sin θ.
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• a = 2

Here,

dθ̂2 = d [− sin θ dϕ]

= − cos θ dθ ∧ dϕ

= cos θ dϕ ∧ dθ.

Hence,

0 = dθ̂2 + ω2
0 ∧ θ̂0 + ω2

1 ∧ θ̂1

= cos θ dϕ ∧ dθ + ω 2
θ 0dθ ∧ dt + ω 2

ϕ 0dϕ ∧ dt + ω 2
t 1dt ∧ (−dθ)

+ ω 2
ϕ 1dϕ ∧ (−dθ) .

Thus ω 2
ϕ 0 = 0, ω 2

ϕ 1 = cos θ, and ω 2
θ 0 = −ω 2

t 1.

We’ve directly established that the components ω 0
t 1, ω 0

t 2, ω 0
θ 1, ω 1

θ 2 and ω 0
ϕ 2

are all zero. Consider next ω 1
t 2. Combining the above, using the asymme-

try of the connection 1-form, and raising and lowering indices with ηab, we

establish the following identities.

ω 1
t 2 = −ω 2

θ 0 = ωθ20 = −ωθ02 = −ω 0
θ 2

= csc θ ω 0
ϕ 1 = csc θ ωϕ01 = − csc θ ωϕ10 = csc θ ω 1

ϕ 0

= −ω 1
t 2

= 0.

Thus also ω 0
ϕ 1 and ω 0

θ 2 are zero. The only non-zero independent component

of the connection 1-form is therefore ω 1
ϕ 2 = − cos θ, i.e.,

ω12 = cos θ dϕ, (A.9)
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and the spin connection in polar coordinates is

Ω(p) = −iω 12
ϕ

(
1
2

γ0
)

dϕ = − i
2

cos θ γ0dϕ. (A.10)

In polar coordinates, then, the Dirac operator is

/D = h µ
p a γa

(
∂µ + Ωpµ

)
= γ0 ∂

∂t
− γ1 ∂

∂θ
− 1

sin θ
γ2
(

∂

∂ϕ
− i

2
cos θ γ0

)
= γ0 ∂

∂t
− γ1

(
∂

∂θ
+

1
2

cot θ

)
− γ2 1

sin θ

∂

∂ϕ
. (A.11)

A.2 Spinor transition functions

We explicitly compute the spinor transition function from spherical polars to

stereographic coordinates on the southern chart. As in section 4.1.3, let us

denote these sets of coordinates respectively by

xµ = (t, θ, ϕ), (A.12)

x̃µ = (t, X, Y), (A.13)

and canonical frames for each set of coordinates respectively

e µ
a = diag

(
1,−1,− 1

sin θ

)
, (A.14)

f̃ µ
a = diag

(
1,−1 + X2 + Y2

2
,−1 + X2 + Y2

2

)
(A.15)

We intend to solve the spinor transformation equation (4.36) for S, so we

must first express the new (stereographic) coordinates directly in terms of the

old (polar) coordinates. Recall that by reference to the usual embedding of
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S2 in R3, X = x
1−z and Y = y

1−z . Therefore,

X2 + Y2 =
x2 + y2

(1 − z)2 ,

=
1 − z2

(1 − z)2 ,

=
1 + z
1 − z

. (A.16)

In spherical polars, z = cos θ, so

X2 + Y2 =
1 + cos θ

1 − cos θ
= cot2 θ

2
. (A.17)

We also have tan ϕ = Y
X ; thus, the direct expression of the change is

X = cos ϕ cot θ
2 , Y = sin ϕ cot θ

2 . (A.18)

The change of basis for the vector indices is therefore given by

∂x̃µ

∂xν
=

∂(t, X, Y)
∂(t, θ, ϕ)

=


1 0 0

0 −1
2 cos ϕ

(
1 + cot2 θ

2

)
− sin ϕ cot θ

2

0 −1
2 sin ϕ

(
1 + cot2 θ

2

)
cos ϕ cot θ

2

 . (A.19)

In the new basis, the old frame is

ẽ µ
a =

∂x̃µ

∂xν
e ν

a =


1 0 0

0 −1
2 cos ϕ

(
1 + cot2 θ

2

)
− sin ϕ cot θ

2

0 −1
2 sin ϕ

(
1 + cot2 θ

2

)
cos ϕ cot θ

2




1 0 0

0 −1 0

0 0 − 1
sin θ



=


1 0 0

0 1
2 cos ϕ

(
1 + cot2 θ

2

)
sin ϕ

1−cos θ

0 1
2 sin ϕ

(
1 + cot2 θ

2

)
− cos ϕ

1−cos θ

 . (A.20)
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Inverting (A.17) above, we see that

1 − cos θ = 1 − X2 + Y2 − 1
X2 + Y2 + 1

=
2

1 + X2 + Y2 . (A.21)

Thus,

ẽ µ
a =


1 0 0

0 − cos ϕ
(
−1+X2+Y2

2

)
− sin ϕ

(
−1+X2+Y2

2

)
0 − sin ϕ

(
−1+X2+Y2

2

)
cos ϕ

(
−1+X2+Y2

2

)
 . (A.22)

Inspecting this, we read off that the local rotation defined at (4.37) from the

old frame to the new frame is

T̃ b
a =


1 0 0

0 − cos ϕ − sin ϕ

0 − sin ϕ cos ϕ

 (A.23)

We obtain the transformation law in the local coordinates (4.38). Noting that

γ0γ1 = iγ2 and γ0γ2 = −iγ1, after stripping out the factors of i, we find

S†S = 1, (A.24)

S†γ1S = −T̃ 2
1 γ2 + T̃ 2

2 γ1 = sin ϕγ2 + cos ϕγ1, (A.25)

S†γ2S = T̃ 1
1 γ2 − T̃ 1

2 γ1 = − cos ϕγ2 + sin ϕγ1. (A.26)

(It is not surprising that we determine the spinor transition matrix must be

unitary.) The solutions with determinant 1 are

S = (±)γ1e
i
2 ϕγ0

. (A.27)



Appendix A. Spinor transformations on R × S2 161

In the standard representation of the γ matrices which we employ through-

out Chapter 4, this has the expression

S = (∓)

 0 ie−
i
2 ϕ

ie
i
2 ϕ 0

 . (A.28)

To specify the direction of the coordinate change, we may label spin tran-

sition functions with a subscript to indicate the old and new charts, like so:

S(p→S) for this transition from polar coordinates to the south chart stereo-

graphic coordinates.

If instead we change from polar coordinates to the north chart stereo-

graphic coordinates, we find

T̃ b
(p→N)a =


1 0 0

0 cos ϕ − sin ϕ

0 − sin ϕ − cos ϕ

 . (A.29)

The first column of equations (A.24-A.26) holds in general. Solving for Sp→N

of determinant 1, we obtain

S(p→N) = (±) γ2e−
i
2 ϕγ0

= (±)

 0 −e
i
2 ϕ

e−
i
2 ϕ 0

 . (A.30)

Finally, transforming from south to north stereographic coordinates,

T̃ b
(S→N)a =


1 0 0

0 − cos 2ϕ − sin 2ϕ

0 sin 2ϕ − cos 2ϕ

 , (A.31)
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and the determinant 1 solutions are

S(S→N) = (±) iγ0eiγ0ϕ = (±)

ieiϕ 0

0 −ie−iϕ

 . (A.32)

We observe that these are consistent as transition functions, in the sense that

S(p→N)S
−1
(p→S) = (±) γ2e−iγ0ϕγ1 = (±) iγ0eiγ0ϕ = S(S→N). (A.33)

A.2.1 Spin connection transformation

We will check explicitly that these spinor transition functions are consistent

with the spin connections derived in section A.1. Recall the transformation

rule for the spin connection, first derived at (4.43),

Ω̃ν =
∂xµ

∂x̃ν

(
S
[
∂µS−1

]
+ SΩµS−1

)
(A.34)

After (A.10), the only non-zero component of the spin connection for polar

coordinates is

Ωϕ = − i
2

cos θ γ0. (A.35)

The non-trivial components of the spin connection in southern stereo-

graphic coordinates are, therefore,

Ω̃X =
∂ϕ

∂X

(
S

∂S−1

∂ϕ
+ SΩϕS−1

)
(A.36)

Ω̃Y =
∂ϕ

∂Y

(
S

∂S−1

∂ϕ
+ SΩϕS−1

)
, (A.37)
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where S is the spinor transition function S(p→S) = γ1e
i
2 ϕγ0

, arbitrarily fixing

the sign. Some quick calculations show that the common factor is

S
∂S−1

∂ϕ
+ SΩϕS−1 =

i
2

γ0 (1 + cos θ)

= iγ0 X2 + Y2

1 + X2 + Y2 . (A.38)

Then writing ϕ = arctan Y
X , we quickly find

Ω̃X =

(
− Y

X2 + Y2

)
iγ0 X2 + Y2

1 + X2 + Y2 , (A.39)

Ω̃Y =

(
X

X2 + Y2

)
iγ0 X2 + Y2

1 + X2 + Y2 , (A.40)

which exactly matches what we found at (A.5) and (A.6).
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Appendix B

Maple code for deriving the master

Θ(u) equation and performing

Fuchsian analysis

This appendix contains the code for Maple worksheets which perform much

of the laborious algebra for the S2 system(s) in Chapter 4. Section B.1 is a

worksheet for our spin-isospin coupled model, while Section B.2 is a work-

sheet which works out details of a Dirac fermion in the absence of isospin.

For the ease of cross-referencing with the material in Chapter 4, the work-

sheet in section B.1 has been split into subsections – however, all the code in

this section should be run as a single continuous Maple worksheet.

B.1 Code for spin-isospin coupling

B.1.1 The master equation

> EquationI := 0 = (E[f]-g*u)*Theta[1,1](u) - g*sqrt(1-u

^2)*Theta[1,2](u) - a*(-1*sqrt(1-u^2)*diff(Theta[2,1](u

),u)+u/(2*sqrt(1-u^2))*Theta[2,1](u)+(k-n/2)/sqrt(1-u

^2)*Theta[2,1](u));
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EquationII := 0 = (E[f]+g*u)*Theta[1,2](u) - g*sqrt(1-u^2)

*Theta[1,1](u) - a*(-1*sqrt(1-u^2)*diff(Theta[2,2](u),u

)+u/(2*sqrt(1-u^2))*Theta[2,2](u) + (k+n/2)/sqrt(1-u^2)

*Theta[2,2](u));

EquationIII := 0 = (-E[f]-g*u)*Theta[2,1](u) - g*sqrt(1-u

^2)*Theta[2,2](u) - a*(-1*sqrt(1-u^2)*diff(Theta[1,1](u

),u)+u/(2*sqrt(1-u^2))*Theta[1,1](u) + (-k+n/2)/sqrt(1-

u^2)*Theta[1,1](u));

EquationIV := 0 = (-E[f]+g*u)*Theta[2,2](u) - g*sqrt(1-u

^2)*Theta[2,1](u) - a*(-1*sqrt(1-u^2)*diff(Theta[1,2](u

),u)+u/(2*sqrt(1-u^2))*Theta[1,2](u) + (-k-n/2)/sqrt(1-

u^2)*Theta[1,2](u));

> Eq2a := isolate(EquationII, Theta[1,2](u));

> Eq1a := isolate(EquationI, Theta[1,1](u));

> Eq3a := isolate(EquationIII, Theta[2,1](u));

> Eq4a := isolate(EquationIV, Theta[2,2](u));

> ProtoE2 := simplify(subs[eval](Eq2a, Eq4a) assuming(-1<u

, u<1)) assuming(-1<u,u<1):

> LongE2 := simplify(subs[eval](Eq3a, ProtoE2) assuming

(-1<u, u<1)) assuming(-1<u,u<1):

> LongE2a := denom(rhs(LongE2))*lhs(LongE2) = denom(rhs(

LongE2))*rhs(LongE2);

> ProtoE1 := simplify(subs[eval](Eq3a, Eq1a) assuming(-1<u

,u<1)) assuming(-1<u,u<1):
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> LongE1 := simplify(subs[eval](Eq2a, ProtoE1) assuming

(-1<u,u<1)) assuming(-1<u,u<1):

> LongE1a := denom(rhs(LongE1))*lhs(LongE1) = denom(rhs(

LongE1))*rhs(LongE1);

> # At this point, things will be more human-readable if

we start condensing these expressions into coefficient

functions.

> LongE1b := collect(lhs(LongE1a)/4-rhs(LongE1a)/4=0,\\{

diff(Theta[1,1](u),u$2),diff(Theta[1,1](u),u),Theta

[1,1](u),Theta[2,2](u)\\})

> A1 := simplify(subs([diff(Theta[1,1](u),u$2) = 1, diff(

Theta[1,1](u),u)=0,Theta[1,1](u)=0,Theta[2,2](u)=0],lhs

(LongE1b)));

B1 := simplify(subs([diff(Theta[1,1](u),u$2) = 0, diff(

Theta[1,1](u),u)=1,Theta[1,1](u)=0,Theta[2,2](u)=0],lhs

(LongE1b)));

C1 := simplify(subs([diff(Theta[1,1](u),u$2) = 0, diff(

Theta[1,1](u),u)=0,Theta[1,1](u)=1,Theta[2,2](u)=0],lhs

(LongE1b)));

D1 := simplify(subs([diff(Theta[1,1](u),u$2) = 0, diff(

Theta[1,1](u),u)=0,Theta[1,1](u)=0,Theta[2,2](u)=1],lhs

(LongE1b)));

> LongE2b := collect(lhs(LongE2a)/4-rhs(LongE2a)/4=0,\\{

diff(Theta[2,2](u),u$2),diff(Theta[2,2](u),u),Theta

[2,2](u),Theta[1,1](u)\\})
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> A2 := simplify(subs([diff(Theta[2,2](u),u$2) = 1, diff(

Theta[2,2](u),u)=0,Theta[2,2](u)=0,Theta[1,1](u)=0],lhs

(LongE2b)));

B2 := simplify(subs([diff(Theta[2,2](u),u$2) = 0, diff(

Theta[2,2](u),u)=1,Theta[2,2](u)=0,Theta[1,1](u)=0],lhs

(LongE2b)));

C2 := simplify(subs([diff(Theta[2,2](u),u$2) = 0, diff(

Theta[2,2](u),u)=0,Theta[2,2](u)=1,Theta[1,1](u)=0],lhs

(LongE2b)));

D2 := simplify(subs([diff(Theta[2,2](u),u$2) = 0, diff(

Theta[2,2](u),u)=0,Theta[2,2](u)=0,Theta[1,1](u)=1],lhs

(LongE2b)));

> GeneralE1 := A1*diff(Theta[1, 1](u), u, u) + B1*diff(

Theta[1,1](u), u) + C1*Theta[1, 1](u) = D1*Theta[2, 2](

u):

GeneralE2 := A2*diff(Theta[2, 2](u), u, u) + B2*diff(Theta

[2, 2](u), u) + C2*Theta[2, 2](u) = D2*Theta[1, 1](u):

GeneralSystem := [GeneralE1, GeneralE2]:

GeneralSystem[1];

GeneralSystem[2];

> simplify(C1 - subs(k=-k,C2));

> simplify(A1-A2);

> simplify(B1-B2);

> simplify(D1-D2);

> A3 := simplify(subs(m=0, A1/D1));

B3 := simplify(subs(m=0, B1/D1));
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C3 := simplify(subs(m=0, C1/D1));

> LongEq4 := Theta[2,2](u) = A3*diff(Theta[1,1](u),u,u) +

B3*diff(Theta[1,1](u),u) + C3*Theta[1,1](u):

> LongEq5 := subs[eval](LongEq4,GeneralSystem[2]):

> GeneralMasslessDE := collect(lhs(LongEq5)-rhs(LongEq5)

=0,\\{diff(Theta[1,1](u),u$4),diff(Theta[1,1](u),u$3),

diff(Theta[1,1](u),u$2),diff(Theta[1,1](u),u),Theta

[1,1](u)\\}):

> # Now let's sort out the prefactor and put this equation

into normal form.

> Prefactor:= simplify(subs([diff(Theta[1,1](u),u$4)=1,

diff(Theta[1,1](u),u$3)=0,diff(Theta[1,1](u),u$2)=0,

diff(Theta[1,1](u),u)=0,Theta[1,1](u)=0],lhs(

GeneralMasslessDE)));

> NormalFormFactor := a*denom(Prefactor)^3*(u-1)*(u+1);

> GeneralMasslessDENormalForm := collect(simplify(lhs(

GeneralMasslessDE)*NormalFormFactor=0),\\{diff(Theta

[1,1](u),u$4),diff(Theta[1,1](u),u$3),diff(Theta[1,1](u

),u$2),diff(Theta[1,1](u),u),Theta[1,1](u)\\});

> # These expressions are complicated, but we have

succesfully isolated them. Just might need to be

careful about the apparent roots involving E[f] and g.

B.1.2 Fuchsian analysis
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> # Let's look at neatly isolating the coefficient

functions.

> GeneralSystem[1]

> subs([diff(Theta[1,1](u),u$2)=1,diff(Theta[1,1](u),u)=0,

Theta[1,1](u)=0],GeneralSystem[1]);

subs([diff(Theta[1,1](u),u$2)=0,diff(Theta[1,1](u),u)=1,

Theta[1,1](u)=0],GeneralSystem[1]);

subs([diff(Theta[1,1](u),u$2)=0,diff(Theta[1,1](u),u)=0,

Theta[1,1](u)=1],GeneralSystem[1]);

> # That approach seems to work.

> R1 := simplify(subs([diff(Theta[1,1](u),u$4)=1,diff(

Theta[1,1](u),u$3)=0,diff(Theta[1,1](u),u$2)=0,diff(

Theta[1,1](u),u)=0,Theta[1,1](u)=0],lhs(

GeneralMasslessDENormalForm)));

> R2 := simplify(subs([diff(Theta[1,1](u),u$4)=0,diff(

Theta[1,1](u),u$3)=1,diff(Theta[1,1](u),u$2)=0,diff(

Theta[1,1](u),u)=0,Theta[1,1](u)=0],lhs(

GeneralMasslessDENormalForm)));

> R3 := simplify(subs([diff(Theta[1,1](u),u$4)=0,diff(

Theta[1,1](u),u$3)=0,diff(Theta[1,1](u),u$2)=1,diff(

Theta[1,1](u),u)=0,Theta[1,1](u)=0],lhs(

GeneralMasslessDENormalForm)));

> R4 := simplify(subs([diff(Theta[1,1](u),u$4)=0,diff(

Theta[1,1](u),u$3)=0,diff(Theta[1,1](u),u$2)=0,diff(

Theta[1,1](u),u)=1,Theta[1,1](u)=0],lhs(

GeneralMasslessDENormalForm)));
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> R5 := simplify(subs([diff(Theta[1,1](u),u$4)=0,diff(

Theta[1,1](u),u$3)=0,diff(Theta[1,1](u),u$2)=0,diff(

Theta[1,1](u),u)=0,Theta[1,1](u)=1],lhs(

GeneralMasslessDENormalForm)));

> # First, let's see if the Fuchs relations are satisfied

if we just ignore the parameter-dependent pole(s).

> # Check the regularity of the pole at infinity.

> Rv1 := simplify(v^8*subs(u=1/v, R1)):

Rv2 := simplify(12*v^7*subs(u=1/v,R1) - v^6*subs(u=1/v,R2)

):

Rv3 := simplify(subs(u=1/v, 36*v^6*R1 - 6*v^5*R2 + v^4*R3)

):

Rv4 := simplify(subs(u=1/v, 24*v^5*R1 - 6*v^4*R2 + 2*v^3*

R3 - v^2*R4)):

Rv5 := simplify(subs(u=1/v, R5)):

> # In terms of v = 1/u, the DE is

Rv1*diff(Theta[1,1](v),v$4) + Rv2*diff(Theta[1,1](v),v$3)

+ Rv3*diff(Theta[1,1](v),v$2) + Rv2*diff(Theta[1,1](v),

v) + Rv1*Theta[1,1](v) = 0;

> # Isolate the exponent.

> pInf := simplify(Rv2/Rv1*v):

qInf :=simplify(Rv3/Rv1*v^2):

rInf := simplify(Rv4/Rv1*v^3):

sInf := simplify(Rv5/Rv1*v^4):

pInf0 := simplify(subs(v=0, pInf));

qInf0 := simplify(subs(v=0, qInf));
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rInf0 := simplify(subs(v=0, rInf));

sInf0 := simplify(subs(v=0, sInf));

IndicialEquationInf := lambda*(lambda-1)*(lambda-2)*(

lambda-3) + pInf0*lambda*(lambda-1)*(lambda-2) + qInf0*

lambda*(lambda-1) + rInf0*lambda + sInf0 = 0;

ExponentsAtInf := [solve( IndicialEquationInf, lambda)];

> # Check the poles.

> # At the north pole:

pNorth := simplify(R2/R1*(u-1)):

qNorth := simplify(R3/R1*(u-1)^2):

rNorth := simplify(R4/R1*(u-1)^3):

sNorth := simplify(R5/R1*(u-1)^4):

pNorth0 := simplify(subs(u=1, pNorth));

qNorth0 := simplify(subs(u=1, qNorth));

rNorth0 := simplify(subs(u=1, rNorth));

sNorth0 := simplify(subs(u=1, sNorth));

IndicialEquationNorth := mu*(mu-1)*(mu-2)*(mu-3) + pNorth0

*mu*(mu-1)*(mu-2) + qNorth0*mu*(mu-1) + rNorth0*mu +

sNorth0 = 0;

ExponentsAtNorth := [solve( IndicialEquationNorth, mu)];

> # At the south pole:

pSouth := simplify(R2/R1*(u+1)):

qSouth := simplify(R3/R1*(u+1)^2):

rSouth := simplify(R4/R1*(u+1)^3):

sSouth := simplify(R5/R1*(u+1)^4):

pSouth0 := simplify(subs(u=-1, pSouth));

qSouth0 := simplify(subs(u=-1, qSouth));
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rSouth0 := simplify(subs(u=-1, rSouth));

sSouth0 := simplify(subs(u=-1, sSouth));

IndicialEquationSouth := nu*(nu-1)*(nu-2)*(nu-3) + pSouth0

*nu*(nu-1)*(nu-2) + qSouth0*nu*(nu-1) + rSouth0*nu +

sSouth0 = 0;

ExponentsAtSouth := [solve( IndicialEquationSouth, nu)];

> simplify(add(i, i=ExponentsAtInf) + add(j, j=

ExponentsAtNorth) + add(l, l=ExponentsAtSouth));

> # This doesn't satisfy the Fuchs relation yet. We should

be careful of the parameter-dependent pole(s).

> # Now let's look at that coalescent pole for the general

n.

> solve((g*n - E[f])*u + E[f]*n - g=0,u)

> # Consider perhaps that at large n, this looks rather

like the other apparent parameter pole, u = -E[f]/g.

But proceed generally.

> pCoalescent := simplify(R2/R1*(u+(n*E[f] - g)/(g*n - E[f

]))):

qCoalescent := simplify(R3/R1*(u+(n*E[f] - g)/(g*n - E[f])

)^2):

rCoalescent := simplify(R4/R1*(u+(n*E[f] - g)/(g*n - E[f])

)^3):

sCoalescent := simplify(R5/R1*(u+(n*E[f] - g)/(g*n - E[f])

)^4):

pCoalescent0 := simplify(subs(u=-(n*E[f] - g)/(g*n - E[f])

,pCoalescent));
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qCoalescent0 := simplify(subs(u=-(n*E[f] - g)/(g*n - E[f])

,qCoalescent));

rCoalescent0 := simplify(subs(u=-(n*E[f] - g)/(g*n - E[f])

,rCoalescent));

sCoalescent0 := simplify(subs(u=-(n*E[f] - g)/(g*n - E[f])

,sCoalescent));

IndicialEquationCoalescent := kappa*(kappa-1)*(kappa-2)*(

kappa-3) + pCoalescent0*kappa*(kappa-1)*(kappa-2) +

qCoalescent0*kappa*(kappa-1) + rCoalescent0*kappa +

sCoalescent0 = 0;

ExponentsAtCoalescent := [solve(

IndicialEquationCoalescent,kappa)];

> simplify(add(i, i=ExponentsAtInf) + add(i, i=

ExponentsAtNorth) + add(i, i=ExponentsAtSouth) + add(i,

i=ExponentsAtCoalescent))

> # This satisfies the Fuchs relation for general n: the

order of the DE is m=4 and the number of finite

singularities is now p=3, and m*(m-1)*(p-1)/2 = 12.

B.1.3 Fuchsian analysis for n = 1

> # Observe that if n=1, the more complex parameter-

dependent pole coalesces to u=-1.

> # So let's look at that special case.

> simplify(subs(n=1,GeneralMasslessDE))

> MasslessN1DE := simplify(a*subs(n=1,

GeneralMasslessDENormalForm)/(g*u+E[f])^2);
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> # Take the same approach as before. Isolate the

coefficient functions; check the regularity of the pole

at infinity; derive the exponents and check the Fuchs

relation.

> N1R1 := simplify(subs([diff(Theta[1,1](u),u$4)=1,diff(

Theta[1,1](u),u$3)=0,diff(Theta[1,1](u),u$2)=0,diff(

Theta[1,1](u),u)=0,Theta[1,1](u)=0],lhs(MasslessN1DE)))

;

N1R2 := simplify(subs([diff(Theta[1,1](u),u$4)=0,diff(

Theta[1,1](u),u$3)=1,diff(Theta[1,1](u),u$2)=0,diff(

Theta[1,1](u),u)=0,Theta[1,1](u)=0],lhs(MasslessN1DE)))

;

N1R3 := simplify(subs([diff(Theta[1,1](u),u$4)=0,diff(

Theta[1,1](u),u$3)=0,diff(Theta[1,1](u),u$2)=1,diff(

Theta[1,1](u),u)=0,Theta[1,1](u)=0],lhs(MasslessN1DE)))

;

N1R4 := simplify(subs([diff(Theta[1,1](u),u$4)=0,diff(

Theta[1,1](u),u$3)=0,diff(Theta[1,1](u),u$2)=0,diff(

Theta[1,1](u),u)=1,Theta[1,1](u)=0],lhs(MasslessN1DE)))

;

N1R5 := simplify(subs([diff(Theta[1,1](u),u$4)=0,diff(

Theta[1,1](u),u$3)=0,diff(Theta[1,1](u),u$2)=0,diff(

Theta[1,1](u),u)=0,Theta[1,1](u)=1],lhs(MasslessN1DE)))

;

> # Check the regularity of the pole at infinity.

> N1Rv1 := simplify(v^8*subs(u=1/v, N1R1)):
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N1Rv2 := simplify(12*v^7*subs(u=1/v,N1R1) - v^6*subs(u=1/v

,N1R2)):

N1Rv3 := simplify(subs(u=1/v, 36*v^6*N1R1 - 6*v^5*N1R2 + v

^4*N1R3)):

N1Rv4 := simplify(subs(u=1/v, 24*v^5*N1R1 - 6*v^4*N1R2 +

2*v^3*N1R3 - v^2*N1R4)):

N1Rv5 := simplify(subs(u=1/v, N1R5)):

> # In terms of v = 1/u, the DE is

N1Rv1*diff(Theta[1,1](v),v$4) + N1Rv2*diff(Theta[1,1](v),

v$3) + N1Rv3*diff(Theta[1,1](v),v$2) + N1Rv2*diff(Theta

[1,1](v),v) + N1Rv1*Theta[1,1](v) = 0;

> # Isolate the exponent.

> pInfN1 := simplify(N1Rv2/N1Rv1*v):

qInfN1 :=simplify(N1Rv3/N1Rv1*v^2):

rInfN1 := simplify(N1Rv4/N1Rv1*v^3):

sInfN1 := simplify(N1Rv5/N1Rv1*v^4):

pInf0N1 := simplify(subs(v=0, pInfN1));

qInf0N1 := simplify(subs(v=0, qInfN1));

rInf0N1 := simplify(subs(v=0, rInfN1));

sInf0N1 := simplify(subs(v=0, sInfN1));

IndicialEquationInfN1 := lambda*(lambda-1)*(lambda-2)*(

lambda-3) + pInf0N1*lambda*(lambda-1)*(lambda-2) +

qInf0N1*lambda*(lambda-1) + rInf0N1*lambda + sInf0N1 =

0;

ExponentsAtInfN1 := [solve( IndicialEquationInfN1, lambda)

];

> # At the north pole:
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pNorthN1 := simplify(N1R2/N1R1*(u-1)):

qNorthN1 := simplify(N1R3/N1R1*(u-1)^2):

rNorthN1 := simplify(N1R4/N1R1*(u-1)^3):

sNorthN1 := simplify(N1R5/N1R1*(u-1)^4):

pNorth0N1 := simplify(subs(u=1, pNorthN1));

qNorth0N1 := simplify(subs(u=1, qNorthN1));

rNorth0N1 := simplify(subs(u=1, rNorthN1));

sNorth0N1 := simplify(subs(u=1, sNorthN1));

IndicialEquationNorthN1 := mu*(mu-1)*(mu-2)*(mu-3) +

pNorth0N1*mu*(mu-1)*(mu-2) + qNorth0N1*mu*(mu-1) +

rNorth0N1*mu + sNorth0N1 = 0;

ExponentsAtNorthN1 := [solve( IndicialEquationNorthN1, mu)

];

> # At the south pole:

pSouthN1 := simplify(N1R2/N1R1*(u+1)):

qSouthN1 := simplify(N1R3/N1R1*(u+1)^2):

rSouthN1 := simplify(N1R4/N1R1*(u+1)^3):

sSouthN1 := simplify(N1R5/N1R1*(u+1)^4):

pSouth0N1 := simplify(subs(u=-1, pSouthN1));

qSouth0N1 := simplify(subs(u=-1, qSouthN1));

rSouth0N1 := simplify(subs(u=-1, rSouthN1));

sSouth0N1 := simplify(subs(u=-1, sSouthN1));

IndicialEquationSouthN1 := nu*(nu-1)*(nu-2)*(nu-3) +

pSouth0N1*nu*(nu-1)*(nu-2) + qSouth0N1*nu*(nu-1) +

rSouth0N1*nu + sSouth0N1 = 0;

ExponentsAtSouthN1 := [solve( IndicialEquationSouthN1, nu)

];
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> simplify(add(i, i=ExponentsAtInfN1) + add(j, j=

ExponentsAtNorthN1) + add(l, l=ExponentsAtSouthN1));

> # The Fuchs relation remains satisfied considering only

the poles at 1,-1 and infinity when n=1: the order of

the DE is still m=4, while now the number of finite

poles is now p=2, and m*(m-1)*(p-1)/2 = 6.

B.1.4 The energy levels

> EnergyLevelsN1 := [solve(IndicialEquationInfN1,E[f])];

> subs(lambda=-l-1/2,EnergyLevelsN1);

> simplify(%)

B.2 Code for the pure Dirac fermion on R×S2 with-

out isospin

> # The Fuchsian analysis can be quickly performed using

the components of the Dirac equation.

> Equation1 := E[f]*Theta[1](u) = a*(-sqrt(1-u^2)*diff(

Theta[2](u),u)+u/(2*sqrt(1-u^2))*Theta[2](u) + m/sqrt

(1-u^2)*Theta[2](u));

> Equation2 := E[f]*Theta[2](u) = a*(sqrt(1-u^2)*diff(

Theta[1](u),u)-u/(2*sqrt(1-u^2))*Theta[1](u) + m/sqrt

(1-u^2)*Theta[1](u));

> MEq1 := simplify(E[f]*subs(isolate(Equation2,Theta[2](u)

),Equation1) assuming(-1<u,u<1)) assuming(-1<u,u<1);
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> R1 := simplify((u^2-1)*subs([diff(Theta[1](u),u$2)=1,

diff(Theta[1](u),u)=0,Theta[1](u)=0],rhs(MEq1)-lhs(MEq1

)));

R2 := simplify((u^2-1)*subs([diff(Theta[1](u),u$2)=0,diff(

Theta[1](u),u)=1,Theta[1](u)=0],rhs(MEq1)-lhs(MEq1)));

R3 := simplify((u^2-1)*subs([diff(Theta[1](u),u$2)=0,diff(

Theta[1](u),u)=0,Theta[1](u)=1],rhs(MEq1)-lhs(MEq1)));

> PureMasslessDE := R1*diff(Theta[1](u),u$2) + R2*diff(

Theta[1](u),u) + R3*Theta[1](u)=0;

> # Check the pole at infinity.

> Rv1 := simplify(v^4*subs(u=1/v,R1)):

> Rv2 := simplify(2*v^3*subs(u=1/v,R1)-v^2*subs(u=1/v,R2))

:

> Rv3 := simplify(subs(u=1/v,R3)):

> # In terms of v = 1/u, the differential equation is

> Rv1*diff(Theta[1](v),v$2) + Rv2*diff(Theta[1](v),v) +

Rv3*Theta[1](v) = 0;

> # Multiplying by v^2, we can see that v=0 is also a

regular singular point.

> # Let's work out the exponents.

> # About the north pole, u=1:

> pNorth := simplify(R2/R1*(u-1));

qNorth := simplify(R3/R1*(u-1)^2);

pNorth0 := subs(u=1,pNorth);
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qNorth0 := subs(u=1,qNorth);

IndicialEquationNorth := mu*(mu-1) + pNorth0*mu + qNorth0

= 0;

solve(IndicialEquationNorth,mu);

> # About the south pole, u=-1:

> pSouth := simplify(R2/R1*(u+1));

qSouth := simplify(R3/R1*(u+1)^2);

pSouth0 := subs(u=-1,pSouth);

qSouth0 := subs(u=-1,qSouth);

IndicialEquationSouth := nu*(nu-1) + pSouth0*nu + qSouth0

= 0;

solve(IndicialEquationSouth,nu);

> # About complex infinity, v=0:

> pInf := simplify(Rv2/Rv1*v);

qInf := simplify(Rv3/Rv1*v^2);

pInf0 := subs(v=0,pInf);

qInf0 := subs(v=0,qInf);

IndicialEquationInf := kappa*(kappa-1) + pInf0*kappa +

qInf0 = 0;

solve(IndicialEquationInf,kappa);

> # The Fuchs relation is satisfied.
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> # Observe that the contribution from the exponents at

the north and south poles will always be |m|. If we

assume that for a lowest- or highest-weight state,

there is no polynomial contribution, then -kappa = |m|.

Since kappa = 1/2 +/- E[f]/a we have E[f]/a = +/-(

kappa - 1/2) = +/- (|m| + 1/2). This illustrates the

Lichnerowicz-Weitzenboeck theorem.

> # We will work out our SU(2) operators to confirm this

assertion.

>

> # We set up our gamma matrix representation so we can

quickly build operators and evaluate their application.

with(LinearAlgebra):

> g0 := Matrix([[1,0],[0,-1]]); g1 := Matrix([[0,-I],[-I

,0]]); g2 := Matrix([[0,-1],[1,0]]);

> F := Vector(<F1(u,phi),F2(u,phi)>);

> HamF := I*g0.(g1.(-sqrt(1-u^2)*diff(F,u) + u/(2*sqrt(1-u

^2))*F) + g2.(1/sqrt(1-u^2)*diff(F,phi)));

> L3F := -I*diff(F,phi);

> LPlusF := exp(I*phi)*(-sqrt(1-u^2)*diff(F,u) + I*u/sqrt

(1-u^2)*diff(F,phi) + 1/(2*sqrt(1-u^2))*g0.F);

> LMinusF := exp(-I*phi)*(sqrt(1-u^2)*diff(F,u) + I*u/sqrt

(1-u^2)*diff(F,phi) + 1/(2*sqrt(1-u^2))*g0.F);

> # Check the SU(2) commutation relations.
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> LPLMF := simplify(subs([F1(u,phi) = LMinusF[1],F2(u,phi)

=LMinusF[2]],LPlusF)):

> LMLPF := simplify(subs([F1(u,phi) = LPlusF[1],F2(u,phi)=

LPlusF[2]],LMinusF)):

> simplify(LPLMF - LMLPF - 2*L3F);

> L3LPF := simplify(subs([F1(u,phi) = LPlusF[1],F2(u,phi)=

LPlusF[2]],L3F)):

> LPL3F := simplify(subs([F1(u,phi) = L3F[1],F2(u,phi)=L3F

[2]],LPlusF)):

> simplify(L3LPF - LPL3F - LPlusF);

> L3LMF := simplify(subs([F1(u,phi) = LMinusF[1],F2(u,phi)

=LMinusF[2]],L3F)):

> LML3F := simplify(subs([F1(u,phi) = L3F[1],F2(u,phi)=L3F

[2]],LMinusF)):

> simplify(L3LMF - LML3F + LMinusF);

> # This confirms that we have an SU(2) rep. We should

also check that the SU(2) operators commute with the

Hamiltonian.

> HamLPF := simplify(subs([F1(u,phi) = LPlusF[1],F2(u,phi)

=LPlusF[2]],HamF)):

> LPHamF := simplify(subs([F1(u,phi) = HamF[1],F2(u,phi)=

HamF[2]],LPlusF)):
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> HamLMF := simplify(subs([F1(u,phi) = LMinusF[1],F2(u,phi

)=LMinusF[2]],HamF)):

> LMHamF := simplify(subs([F1(u,phi) = HamF[1],F2(u,phi)=

HamF[2]],LMinusF)):

> HamL3F := simplify(subs([F1(u,phi) = L3F[1],F2(u,phi)=

L3F[2]],HamF)):

> L3HamF := simplify(subs([F1(u,phi) = HamF[1],F2(u,phi)=

HamF[2]],L3F)):

> simplify(HamLPF - LPHamF);

> simplify(HamLMF - LMHamF);

> simplify(HamL3F - L3HamF);

> # They do. Finally we construct the Casimir operator.

> LSquaredF := simplify(subs([F1(u,phi) = L3F[1],F2(u,phi)

=L3F[2]],L3F) + (1/2)*(LPLMF + LMLPF));

> HamSquaredF := simplify(subs([F1(u,phi) = HamF[1],F2(u,

phi) = HamF[2]],HamF));

> simplify(HamSquaredF - LSquaredF);

> # So H^2 = L^2 + 1/4; i.e., on a joint eigenstate of

energy E[f] and total angular momentum l, E[f]^2 = l*(l

+1) + 1/4 = (l + 1/2)^2.

> # Thus indeed the energy eigenvalues are non-zero

integers.
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> # Finally let us solve for highest and lowest weight

states, to check our assertion that their polynomial

parts are trivial.

> HighestWeightCondition := simplify(subs(phi=0,simplify(

subs([F1(u,phi) = exp(I*l*phi)*Theta[1](u),F2(u,phi)=

exp(I*l*phi)*Theta[2](u)],LPlusF=0))));

> LowestWeightCondition := simplify(subs(phi=0,simplify(

subs([F1(u,phi) = exp(I*(-l)*phi)*Theta[1](u),F2(u,phi)

=exp(I*(-l)*phi)*Theta[2](u)],LMinusF=0))));

> HighestWeight1 := subs(_C1=A,dsolve(lhs(

HighestWeightCondition)[1]=0,Theta[1](u)));

> LowestWeight1 := subs(_C1=A,dsolve(lhs(

LowestWeightCondition)[1]=0,Theta[1](u)));

> # This proves our assertion.

> # Finally let us look at the degeneracy of such a state,

as a condition on the coefficients of the components

of a lowest weight state.

> HighestWeight2 := subs(_C1=B,dsolve(lhs(

HighestWeightCondition)[2]=0,Theta[2](u))):

> LowestWeight2 := subs(_C1=B,dsolve(lhs(

LowestWeightCondition)[2]=0,Theta[2](u))):

> DiracEquation := E[f]*F = HamF;
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> LowestWeightDiracEquation := simplify(subs[eval]([F1(u,

phi) = exp(I*(-l)*phi)*rhs(LowestWeight1),F2(u,phi) =

exp(I*(-l)*phi)*rhs(LowestWeight2)],DiracEquation))

assuming(-1<u,u<1):

> CoeffEq1 := simplify(subs(phi=0,lhs(

LowestWeightDiracEquation)[1] = rhs(

LowestWeightDiracEquation)[1])):

> CoeffEq2 := simplify(subs(phi=0,lhs(

LowestWeightDiracEquation)[2] = rhs(

LowestWeightDiracEquation)[2])):

> UpperBranch := subs(E[f]=l+1/2,[CoeffEq1,CoeffEq2]):

> LowerBranch := subs(E[f]=-1*(l+1/2),[CoeffEq1,CoeffEq2])

:

> solve(UpperBranch,A) assuming(-1<u,u<1);

> solve(LowerBranch,A) assuming(-1<u,u<1);

> # We observe that the distinct branches account for the

two possible parities of a solution; each has

degeneracy 1.
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