Chapter 12

Clone Detection and Removal
for Erlang/OTP within a
Refactoring Environment

Huiqing L Simon Thompsorﬂ
Category: Research

Abstract: A well-known bad code smell in refactoring and software mainte-
nance is duplicated code, or code clones. A code clone is a code fragment that is
identical or similar to another. Unjustified code clones increase code size, make
maintenance and comprehension more difficult, and also indicate design problems
such as lack of encapsulation or abstraction.

This paper proposes a token and AST based hybrid approach to automatically
detecting code clones in Erlang/OTP programs, underlying a collection of refac-
torings to support user-controlled automatic clone removal, and examines their
application in substantial case studies. Both the clone detector and the refactor-
ings are integrated within Wrangler, the refactoring tool developed at Kent for
Erlang/OTP.

12.1 INTRODUCTION

Duplicated code, or the existence of code clones, is one of the well-known bad
code smells when refactoring and software maintenance is concerned. ‘Dupli-
cated code’, in general, refers to a program fragment that is identical or similar
to another, though the exact meaning of ‘similar’ might vary slightly between
different application contexts.

While some code clones might have a sound reason for their existence [9],
most clones are considered harmful to the quality of software, as code duplication

! Computing Laboratory, University of Kent, UK; H.LiR@kent .ac.uk
2Computing Laboratory, University of Kent, UK; S. J. Thompson@kent .ac.uk

XII-1

XII-2 CHAPTER 12. CLONE DETECTION AND REMOVAL FOR ERLANG

increases the probability of bug propagation, the size of both the source code and
the executable, compile time, and more importantly the maintenance cost [[18},[15]].

Software clones appear for a variety of reasons, among which the most obvi-
ous is the reuse of existing code (by copy and paste for example), logic or design.
Duplicated code introduced for this reason often indicates program design prob-
lems like the lack of encapsulation or abstraction. This kind of design problem
can be corrected by refactoring out the existing clones in a later stage [4} 14} 6],
it could also be avoided by first refactoring the existing code to make it more
reusable, then reuse it without duplicating the code [14]. In the last decade, sub-
stantial research effort has been put into the detection and removal of clones from
software systems; however, few such tools are available for functional programs,
and there is a particular lack of tools that are integrated with existing programming
environments.

Erlang/OTP [1]] is an industrial strength functional programming environment
with built-in support for concurrency, communication, distribution, and fault-
tolerance. This paper investigates the application of clone detection and removal
techniques to Erlang/OTP programs within the refactoring context, proposes a
new hybrid approach to automatically detecting code clones across multiple mod-
ules, and describes three basic refactorings which together help to remove code
clones under the user’s control. Both the clone detector and the refactorings have
been implemented within Wrangler [11]], the refactoring tool developed at Kent
for Erlang/OTP. Wrangler is integrated with both Emacs and Eclipse, and works
with the full Erlang/OTP language.

The proposed clone detection approach is able to report code fragments in an
Erlang program that are syntactically identical after semantic preserving renam-
ing of variables, except for variations in literals, layout and comments. Syntac-
tically, each of these code clones is a sequence of well-formed expressions or
functions. This approach makes use of both token suffix tree and abstract syntax
tree (AST) annotated with location and static semantic information. The use of
token suffix tree allows us to detect clone candidates quickly, whereas the use of
AST ensures that the tool only reports syntactically well-formed clone candidates.
Furthermore, static semantic information annotated in the AST is used to check
to whether two code fragments can be refactored to each other by consistent re-
naming of variables and literals, and thus to ensure that the clones detected are
actually removable.

Three refactorings have been designed and implemented to support the clone
removal process, and they are generalise a function definition, function extrac-
tion, and fold expressions against a function definition. Unlike fully automated
removal of clones, which usually does not give perfect solutions all the times,
these refactorings respect the importance of user intervention during the clone
removal process, and allow clones to be removed step by step under the program-
mer’s control. Apart from removing code clones from legacy programs, these
refactorings are also for programmers to use as part of their daily programming
activities to avoid the introduction of code clones from the very beginning.

The remaining of the paper is organised as follows. In section 2, we clarify

12.2. RELATED WORK XII-3

the definition of related terms, and give an overview of existing and related work.
Section 3 presents the approach taken by the Wrangler clone detector; Section
4 discusses the three major refactorings developed for duplicated code removal
purpose; The usefulness of the tool is demonstrated in section 5, and conclusions
and future work are given in section 6.

12.2 RELATED WORK

The phrase ‘code clones’ in general refers to program fragments that are identi-
cal or similar to each other. Two code fragments can be similar if their program
texts are similar or their functionalities are similar without being textually similar.
Since semantic similarity is generally not decidable, in the research reported here
we only consider textually identical or similar code fragments, which can be com-
pared on the basis of their program text or internal representation, such as parse
trees or ASTs. In this paper, we distinguish the following four types of clones.
All these four types of clones ignore variations in literals, layout and comments.

e Type I: Identical code fragments.

e Type 2: Code fragments that are identical after consistent (i.e. semantic-
preserving) renaming of variable names.

o Type 3: Code fragments that are identical after renaming all variable names to
the same name.

o Type 4: Code fragments that are identical only after renaming all function
names and variable names to the same name respectively.

Obviously, these four types of clones satisfy a subset relation, i.e. clones of Type
i(i=1,2,3) form a subset of clones of Type (i+1). Among the four types of clones,
Type 1 and Type 2 represent the clones that are most suitable for automatic clone
removal because of the semantic equivalence between cloned code fragments, and
they are also the kinds of clones that are reported by the Wrangler clone detector.
Type 3 and Type 4 clones are not suitable for mechanical removal, but they some
reveal structure-level duplication, and are obtainable from the intermediate results
of the Wrangler clone detector.

A typical clone detection process first transforms source code into an internal
representation which allows the use of a comparison algorithm, then carries out
the comparison and finds out the matches. A recent survey on existing techniques
is given by Roy and Cordy in [18]], an overview of which is given now.

Text-based approaches consider the target program as sequence of lines/strings.
Two code fragments, possibly after some pre-processing, are compared with each
other to find sequences of same text/strings. The comparison techniques used may
vary from each other. For example, suffix-tree based matching is used by Baker
in [2], whereas fingerprint-based string comparison is used by Johnson in [18].

Token-based approaches first lex/transform the program to a sequence of
tokens, then apply comparison techniques to find duplicated subsequences of to-
kens. Representative techniques include CCFinder [16], a language-independent

XII-4 CHAPTER 12. CLONE DETECTION AND REMOVAL FOR ERLANG

clone detector that reports clones of Type 3; Dup [3]], which uses the notion of pa-
rameterised matching by a consistent renaming of identifiers; and CP-Miner [13]],
which uses a frequent subsequence mining technique to indentify a similar se-
quence of tokenized statements. Both CCFinder and Dup use suffix-tree based
token matching techniques. Like text-based approaches, token-based approaches
are in general efficient, but can report syntactically non well-formed clones. While
Dup does consistent-renaming checking of variables, without knowing the scop-
ing rules of the target language, false positives are not avoidable.

AST-based approaches search for similar subtrees in the AST with some tree
matching techniques. Since naive comparison of subtrees for equality does not
scale, Baxter et al.’s CloneDR [J5] partitions the sets of comparisons by categoriz-
ing sub-trees with hash values. The use of hash function enables one to do con-
sistent renaming checking (therefore to detect clones of Type 2), to detect near-
miss clones such as clones involving commutative operators with the operands
swapped. In [S], Baxter et al. also suggest to remove code clones with the help
of macros, but they did not carry out clone removal. DECKARD [7]] is another
AST-based language independent clone detection tool, whose main algorithm is
to compute certain characteristic vectors to approximate structural information
within ASTs and then cluster similar vectors, and thus code clones. In [17],
Koschke et al. propose to use suffix tree representation of AST to detect clones,
and point out that their tool could have a better precision if consistent renaming
were checked.

There are also clone detection approaches based on the program dependency
graph, as demonstrated in [16]. Most of the above mentioned clone detection
tools target large legacy programs, and none of them is closely integrated with an
existing programming environment. Without applying deeper knowledge of the
scoping rules of the target programming language, language-independent clone
detection tools tend to have a lower precision, and are not very suitable for me-
chanical clone refactoring.

Our aim is to develop a clone detection and removal tool for a specific lan-
guage, Erlang/OTP in this case. The clone detection tool should be able to handle
large Erlang programs, to report as many clones as possible but without giving
false positives; instead of fully automating the clone refactoring process, which is
not ideal in most cases, the clone removal tool should give the user more control
on which clone to remove and how to remove it. Being part of a programming en-
vironment, the tool is more accessible to working programmers, and has a better
chance to be used in practice.

12.3 THE WRANGLER CLONE DETECTOR

Common terminology for the clone relations between two or more code fragments
are the phrases clone pair and clone class [8]. A clone pair is a pair of code
fragments which are identical or similar to each other; a clone class is the maximal
set of code fragments in which any two of the code fragments form a clone pair.
With Wrangler, clones are reported in the form of clone classes by giving the

12.3. THE WRANGLER CLONE DETECTOR XII-5

[— Source Files ﬁ

I Tokenisation I I Parsing + Static Analysis I
T T
Token Stream A”nmaled ASTs
ianti i Syntactic Consistent Renaming
I Normalisation I I Clone Decomposition Clones Checking
1 T
Normalised Token Stream Type 3 Clones Type 2 Clones
I Suffix Tree Construction I I Clone Filter I I Formatting I

Suffix tree Type 4 Clones

Clone Classes
Clone Collector

FIGURE 12.1. An Overview of the Wrangler Clone Detection Process

number of clones included in a clone class, and each member clone’s start and
end locations in the program source. Two threshold values can be given by the
user to specify the granularity of the clone classes reported by the clone detector,
and they are:

e the minimum number of tokens that a code clone should have, and
e the minimum number of members of a clone class.

Figure [12.1] gives an overview of the Wrangler clone detection process. First, the
target program is tokenised into a token stream with location information attached
to each token. The generated token stream is then normalised with all the atom
identifiers, variables and literals being replaced by a special symbol respectively.
After that a suffix tree is built on the transformed token stream, and the initial
clone classes are collected from the suffix tree. At this stage, the collected clone
classes are clones of Type 4. The collected Type 4 clone classes are further pro-
cessed to filter out those clone classes which are not of Type 3 by token-level
comparison of function name tokens. In order to decompose non-syntactic clones
into syntactic units, and check for consistent renaming of variables names, anno-
tated ASTs of the related Erlang modules are built, and the token representation
of remaining Type 3 clones are mapped to their AST representation. Final clone
classes of Type 2 are reported after the decomposition and consistent renaming
checking processes.

12.3.1 Token-level Clone Detection

As the first step of the clone detection process, the target program is transformed
into a token stream, in which each token is associated with its location information
including the name of the source file, line and column numbers. White spaces
between tokens and comments are not included in the token stream. In the case
that the target program contains more than one Erlang file, tokens of all these files
are concatenated into a single token stream. The generated token stream is further

XII-6 CHAPTER 12. CLONE DETECTION AND REMOVAL FOR ERLANG

-> case lists:subtract (SLocsl, ELocs2) of
[]-> Rl = lists:filter(fun({s, E}) —>
lists:member (E, SLocsl) end, Range),
R2= lists:map(fun({S, E}) -> S end, R1),
{lists:zip(R2, ELocsl), Lenl+Len2, F1};
->

(a)

-> case lists:subtract (ELocsl, SLocs2) of
[l —> R3= lists:filter(fun({S,E}) —>
lists:member (S, ELocsl) end, Range),
R4 = lists:map (fun({S,E}) -> E end, R3),
{lists:zip(SLocsl, R4), Lenl+Len2, F1};

(b)

FIGURE 12.2. A clone pair found in Wrangler

processed by normalising all atom identifiers, variables, and literals to a special
symbol respectively, but keywords and operators are left untouched. Before suffix
tree construction, the whole token stream is mapped into a string over a fixed sized
alphabet by mapping each token into a character from the alphabet. Tokens with
the same value are mapped to the same character.

Suffix tree analysis [19] is the technique used by most token-based clone de-
tection approaches because of its speed [3,8]]. A suffix tree is a representation of
a string as a trie where every suffix is represented through a path from the root to a
leaf. The edges are labelled with the substrings, and paths with common prefixes
share an edge. A clone can be indentified in the suffix tree as an inner node. The
length of the clone is the number of characters from the root to this inner node,
and the number of occurrences of the clone is the number of leaves that can be
reached from this inner node. To save space, instead of labelling edges in the
suffix tree with actual substrings, we label each edge with the substring’s location
in the whole string. As there is a one-to-one mapping between the tokens in the
token stream and the characters in the string, the location of a substring also indi-
cates the location of the corresponding token sequence in the token stream. Once
the suffix tree has been constructed, it is traversed and clone classes are collected.
The clone classes generated at this stage are of Type 4 because of the normalisa-
tion of function and variables names before the suffix tree construction. The clone
classes generated are then processed to take function names into account, during
which an original clone class could be decomposed into smaller clone classes (in

12.3. THE WRANGLER CLONE DETECTOR XII-7

terms of the size of the code fragments or the number of clone members), or be
discarded, because of the differences in function names. After this step, only
clone classes that are of Type 3 are kept.

While the code clones reported at this stage provide useful code duplication
information about the target program, some of these clones might be spurious,
or not very interesting from the code removal perspective. For example, Figure
[12.2]shows a clone class of two code fragments, which are actually from the same
function, found by the above process from the source code of Wrangler. A couple
of problems immediately show from this example:

e The code fragments do not form syntactic units. While in general there could
be one or more meaningful syntactic units embedded in a non-syntactic code
fragments, in some extreme cases, it is possible that, after removing those in-
complete parts, a code clone does not contain any interesting syntactic units at
all, or the contained syntactic units are under the specified thresholds, there-
fore should not be reported to the user. Decomposing code fragments into
meaningful syntactic units needs certain syntax information, which is natu-
rally available from ASTs but not so obvious from the token stream.

e While the two code fragments do look similar, semantically they are differ-
ent. Applying consistent variable renaming to the two code fragments does
not produce the same code, therefore it is not an interesting candidate from
the clone removal perspective. This problem is due to the normalisation pro-
cess applied to the token stream, in which all variables names are treated as
the same. Consistent renaming of variable names at token stream level is in
general complex for programming languages that allow nested scopes.

We make use of ASTs annotated with location and static semantic information
to decompose non-syntactic clones into syntactic ones, and filter out those clones
that do not unify after consistent renaming of variables/literals.

12.3.2 Annotated Abstract Syntax Trees

Like most refactoring tools, Wrangler uses AST as the internal representation of
the program under refactoring. Both program analysis and transformation ma-
nipulate the AST directly. To facilitate the refactoring process, we annotate the
generated ASTs with further syntax, semantic, and location information, therefore
comes the term annotated abstract syntax tree (AAST). Some of the annotation
information was naturally used by the clone detector to post-process the clone
classes reported from the previous step. This information includes:

e Location information. Each AST node is annotated with the start and end
location of the program entity that it represents in the source code. Location
information was originally added for interface purposes, but it also makes it
straightforward to map the token sequence representation of a code fragment
to its AST representation, or vice versa (recalling that each token in the token
stream is also associated with its location in the program source).

XII-8 CHAPTER 12. CLONE DETECTION AND REMOVAL FOR ERLANG

e Binding structure information. The binding structure describes the association
between the uses of an identifier and its definition. In Wrangler, this informa-
tion is incorporated in the AST through the defining and occurrence locations
of an identifier. For example, each occurrence of a variable node in the AST is
annotated with the location of its occurrence in the source code as well as the
location where it is defined. Two occurrences of the same identifier name re-
fer to the same thing if and only if they have the same defining location. With
this kind of binding information, we can easily check whether a code clone
fragment can be transformed to another code fragment in the same clone class
by applying consistent variable renaming.

12.3.3 Decomposing into Syntactic Clones

The previous token-based step produces a set of clone classes each of which con-
tains a maximal set of code clones of Type 3. However these code fragments may
not form complete syntactic units as shown in Figure[12.2] In this step, we decom-
pose these code fragments into sub portions, each of which forms a syntactic unit.
Within the context of Erlang programs, we say that a clone is a syntactic clone, or
forms a syntactic unit, if it consists of an sequence of expressions separated by a
comma, or a sequence of functions separated by a full stop.

To process a clone class, we first choose a code clone from the class, and con-
struct the AAST of the module to which the code clone belongs, then traverse the
generated AAST in a top-down left-to-right order collecting those nodes whose
start and end locations in the program source fall into the range of the code clone,
and whose syntax type is expression or function. Once a node has been col-
lected, its arguments are not to be traversed. These collected nodes are then put
into groups, each group containing a maximal consecutive sequence of expres-
sions/functions. Because all the code fragments in a clone class have identical
syntactical structure, only one fragment’s AAST is needed for the decomposition
purpose; once this fragment has been decomposed, the decomposition of the oth-
ers can be done at token-level by projecting the new code portions to the token
sequence, and removing those unwanted tokens.

Returning to the example in Figure[12.2] this clone class will be decomposed
into two classes, one containing the guard expression of the case expression, and
the other containing the sequence of three expressions of the first case clause.
However because the code clones in the first class contains less than 30 tokens (the
default threshold value), this clone class will be removed from the result. There-
fore after this step, the original clone class become the one shown in Figure|12.3
Here we assume that the two remaining code fragments are not members of other
existing clone classes.

12.3.4 Checking For Consistent Renaming

Checking for consistent renaming of identifiers is another important aspect of a
clone detector. With the Wrangler clone detector, we mainly check the consis-

12.3. THE WRANGLER CLONE DETECTOR XII-9

Rl = lists:filter(fun({S, E}) —>
lists:member (E, SLocsl) end, Range),

R2= lists:map (fun({S, E}) -> S end, R1),

{lists:zip(R2, ELocsl), Lenl+Len2, F1};

(a)

R3= lists:filter (fun({S,E}) —>
lists:member (S, ELocsl) end, Range),

R4 = lists:map (fun({S,E}) -> E end, R3),

{lists:zip(SLocsl, R4), Lenl+Len2, F1};

(b)

FIGURE 12.3. The clone pair after decomposition

12 13 14 15 16
R2 ELocs1 Lent len2 F1

FIGURE 12.4. The binding graph of clone (a)

tent renaming of bound variables, i.e., those variables that are locally declared in
the code fragment under consideration. The checking for consistent renaming is
done by comparing the binding structure of the clone members of a clone class.
This is feasible only because all the code fragments in a clone class are struc-
turally/syntactically identical. Given a code fragment, we can treat each variable
occurrence in it as a node in a graph; we explain the construction of this in more
detail now.

Instead of using variable names as the node names, we replace each variable
occurrence with a number according to their textual occurrence order in the code.
For example, the first variable occurrence is numbered as 1, the second is num-
bered as 2, and so on. If a node represents a use occurrence of a bound variable,
then there is an edge drawn from this node to the node representing the defining
occurrence of this variable (recalling that, in the AAST, each variable occurrence

XII-10CHAPTER 12. CLONE DETECTION AND REMOVAL FOR ERLANG

is associated with its defining location). In the case that the node itself represents
a defining occurrence of a variable, an edge is drawn to itself. No edges are as-
sociated with nodes that representing occurrences of free variables, i.e., variables
that are used, but not declared, in the code fragment. This means that we treat
each free variable occurrence as a different entity, even though some occurrences
might share the same variable name.

In this way, we are able to represent the binding structure of a code fragment as
a graph, and two structurally/syntactically identical code fragments can be trans-
formed to each other by consistent variable renaming only if their binding struc-
ture graphs are the same. As an example, Figure[12.4]shows the binding structure
graph of the code fragment (a) shown in Figure[I2.3] in which we annotated the
variable name to each node for clarity.

Returning to the previous clone example shown in Figure it is obvious
that these two code fragments have different binding structure graphs, therefore
this clone class will be removed from the finial result too.

It is possible, in this step, that a clone class is partitioned into two or more
small clone classes according to their binding structure equivalence. Again, clone
classes under the specified thresholds are discarded. At this point, all the reported
clones are syntactic clones of Type 2.

124 REFACTORING SUPPORT FOR CLONE REMOVAL

Duplicated code often indicates lack of encapsulation and reuse; therefore a pri-
mary purpose of clone detection is to remove them from the system via refac-
toring to improve the system’s quality. As code clones will generally be scat-
tered throughout the program, removing clones manually can be tedious and error
prone. To support the clone removal process, we have developed a set of refactor-
ings which together can help to remove clones efficiently and reliably.

Another scenario for the use of these refactorings is to refactor the existing
code and then to reuse it, thus avoiding the introducing of clones from the be-
ginning. There are other refactorings in Wrangler, such as renaming, moving a
function definition between modules, etc, which were not designed especially for
duplicated code elimination purpose, but still can help in some cases.

Instead of fully automating the clone removal process, we give the user more
control as to which clone instance to remove and how to remove. Furthermore,
the undo feature of Wrangler can always be used to recover a removed clone if
the user changes his/her mind.

Next, we introduce the three main refactorings we have developed for clone
removal purpose, and some examples are given where it is necessary.

12.4.1 Function Extraction

Function extraction is the first step towards clone removal. This refactoring en-
capsulates a sequence of expressions into a new function. To perform this refac-
toring with Wrangler, the user highlights in the editor a sequence of expressions,

12.4. REFACTORING SUPPORT FOR CLONE REMOVAL XII-11

start_loc (Node, Toks)-—->
case refac_syntax:type (Node) of
if_expr -> Cs = if_expr_clauses (Node),
{S, E} = get_range(hd(Cs)),
extend_forwards (Toks,S, 'if’);
cond_exp —> Cs = cond_expr_clauses (Node),
{S, E} =get_range (hd(Cs)),
extend_forwards (Toks, S, ’cond’);
end.

start_loc (Node, Toks) ->
case type (Node) of

if_expr -> Cs = if_expr_clauses (Node),
newfun (Cs, Toks);
cond_exp —->Cs = cond_expr_clauses (Node),

{s, E} = get_range(hd(Cs)),
extend_forwards (Toks, S, ’"cond’);
end.
newfun (Cs, Toks) ->
{s, E} = get_range(hd(Cs)),
extend_ forwards (Toks, S, ’'if’).

FIGURE 12.5. The ‘function extraction’ refactoring

and inputs the new function name when prompted. Wrangler checks whether
the selected expression sequence can be extracted, and whether the new function
name causes conflicts within current module. If all the checking succeeds, a new
function will be created automatically with the selected expression sequence as
its function body, and free variables of the expression sequence as its formal pa-
rameters. The selected expression sequence is then replaced by a function call, or
a match expression with the function call as its right-hand side if the expression
sequence exports values. The newly created function is put right after the enclos-
ing function of the selected expression sequence. In Figure[I2.5] the boldfaced
text in the first code fragment represents the code for extraction, and the result of
this refactoring is shown in the second fragment.

12.4.2 Generalisation of Function Definition

Generalisation of a function definition makes the function more reusable. This
is especially useful when the clone members of a clone class have variations in
literals. With Wrangler, to generalise a function over an expression in its function
body, the user only needs to highlight the expression from the source, and provide

XII-12CHAPTER 12. CLONE DETECTION AND REMOVAL FOR ERLANG

start_loc (Node, Toks) —->
case type (Node) of

if_expr -> Cs = if_expr_clauses (Node),
newfun("if’, Cs, Toks);
cond_exp —->Cs = cond_expr_clauses (Node),

{s, E} = get_range(hd(Cs)),
extend_forwards (Toks, S, ’"cond’);
end.
newfun (Keyword, Cs, Toks) ->
{S, E} = get_range(hd(Cs)),
extend_forwards (Toks, S, Keyword).

FIGURE 12.6. The program after generalisation

a new parameter name when prompted. If the pre-condition checking succeeds,
Wrangler will generalise the function by adding the new parameter to the func-
tion’s definition, replacing the selected expression with the new parameter, and
making the selected expression the actual value of the new parameter at the call
sites of this function. In the case that the selected expression has side-effects or
free variables, it would be wrapped in a function expression before being supplied
to the call sites of the function. Figure shows the program after generalising
function newfun on the literal expression ' 1 £’ .

12.4.3 Folding against a Function Definition

Folding against a function definition is the refactoring which actually removes
code clones from the program. This refactoring searches the program for instances
of the right-hand side of a function clause, and replaces them with applications of
the function to actual parameters under the user’s control. This refactoring can de-
tect not only instances where parameters are replaced by variables or literals, but
also instances where parameters are replaced by arbitrary expressions. Therefore
the instances detected by the refactoring could be a superset of the clone instances
reported by the clone detector.

To apply this refactoring to a program, the user only needs to select the func-
tion clause against which to fold by pointing the cursor to it (or input the function
clause information if it is not defined in the current module), and the refactoring
command from the menu. Wrangler automatically searches for code fragments
that are clones of the selected function clause’s body expression. Once clone in-
stances have been found, the user can decide whether to fold all the clone instance
without any further interaction with Wrangler, or to go through the instances one
by one, and instruct Wrangler whether a particular instance should be replaced
or not. Note that the folding is not performed within the selected function clause

12.5. A CASE STUDY XII-13

T[E4 emacs@HL-LT =B

Fle Edit Options Buffers Tools [Erlang] Help

|
{ Indent > P
3 x < B
De HE S o |
-module (test) . Syntax Highlighting » |
. TAGS »
-import (refac_syntax, ||
[type/l, if_expr ¢ Skeletons , Bes/il).
-import (refac_util, [get_x| Shell 3 L])-
-compile (export_all) . Come :
) Distel »
start_loc (Hoc) - 1)
caze type (N of Refactor b Rename Variable Name
if expr -> |
c= = if_espr_cla Vemin ‘ Rename Function Name
cond exp -> R e Rename Module Name

Generalise Function Definition
Move Function to Another Module

Function Extraction

Fold Expression Against Function

= Detect Duplicated Code
{5, = get ra:

extend_forwards (=yword) . Expression Search

Undo (C-u)
Customize |
—
|--(Unix)-- test.erl A1l (3,21) (Erlang EXT:hl@nhl-1t)
M Would you like to fold this expression? (yes or no} yes| =

FIGURE 12.7. A snapshot of Wrangler showing folding

itself, since doing this will change the program’s semantics.

The snapshot in Figure [I2.7) shows the scenario of folding against the func-
tion newfun: the user has selected the function newfun, selected the Folding
Expression against Function command from the refactor menu, and have decided
to go through the candidates one by one. The snapshot shows that the Wran-
gler highlights the first candidate instance, and asks whether the user wants to
replace this expression sequence with the application of newfun. If the users
types yes within the minibuffer, the highlighted expression will be replaced by
newfun (' cond’, Cs, Toks),otherwise the highlighted expression will re-
main unchanged. In either case, Wrangler will move to the next candidate instance
if there is any, or finish the process if no more candidate instances left.

12.5 A CASE STUDY

As a case study, we have applied the tool to the source code of Wrangler itself.
Wrangler is implemented in Erlang; its current version contains 24 Erlang mod-
ules, 20K lines of code in total. Due to the compactness of programs written in
functional programming languages, this is by no means a small program.

In this case study, we customised the clone detector to report both the final re-
sult and the intermediate results after each step, and we used the default threshold
setting, which is 30 for the minimum number of tokens in a clone, and 2 for the
minimum number of members in a clone class. Within a few minutes, the result
shows that 1210 clone classes of Type 4 were detected based on the information

XII-14CHAPTER 12. CLONE DETECTION AND REMOVAL FOR ERLANG

in the suffix tree. After putting the original function names back to the tokens,
this number dramatically reduced to 191. These are clones of Type 3, but some
of them are not syntactically complete. After the decomposition step, 86 clone
classes remained, all of which are syntactic clones of Type 3; and the final consis-
tent renaming checking step further reduced the previous result to 36 clone classes
of Type 2.

Further examination shows that 12 out of the final 36 clone classes are across
multiple modules, and among which 3 clone classes are function duplications re-
sulting from a ‘copy and paste’ operation. The copy and paste happened when
a module, A say, wants to use a function defined in another module, B say, but
for some reason the author did not want module B to export this function. These
clones have been removed from Wrangler by relocating the related function defi-
nitions to a library module.

In theory, all the detected expression clones, except for one which is an expres-
sion list within a list comprehension expression, are removable from the code. But
in practice, we have refactored out some of them, and left the others unchanged.
The main reason that we left them untouched was because the code fragments
were so simple that we did not feel that it is necessary to encapsulate them into
functions. This kind of clones normally involve applications of functions with a
large number of parameters, and would be filtered out from the final result if we
increase the threshold value of the minimum number of tokens in a clone.

With the same threshold setting, we have also applied the tool a third party
codebase which contains 89 Erlang files, 32K lines of code, and 109 clones of
Type 2 were reported.

12.6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a hybrid clone detection technique which makes
use of both the token stream and the AST to improve performance and efficiency,
and a collection of 3 refactorings which together help to remove clones from code
under the user’s control.

The Wrangler clone detector benefits from both the speed of token-based clone
detection approaches and the accuracy achieved by AST-based approaches. The
usefulness and ease of use of the 3 refactorings were also demonstrated via exam-
ples. Both the clone detector and the refactorings are part of the Erlang refactoring
tool Wrangler, which is embedded in Emacs and Eclipse. Integrating Wrangler
within the program development environment allows it to be used in the normal
development process, and in the spirit of this paper to remove any clone as soon
as it appears.

In the future, we would like to improve the tool in two directions. First we
would like to make use of visualisation techniques to improve the presentation of
the clone results; second, we would like to develop more refactorings to better
support the elimination of function clones.

While the presented tool is especially for Erlang/OTP programs, the idea is
not limited to this single language. In fact, we would like to apply the technique

12.6. CONCLUSIONS AND FUTURE WORK XII-15

to Haskell programs, to add duplicated code detection and elimination support
to HaRe [12} [10], the tool we have developed for refactoring Haskell programs.
Since Haskell is a statically typed language, we can foresee that type information
needs to be taken into account when clone removal is concerned.

REFERENCES

[1] J. Armstrong. Programming Erlang. Pragmatic Bookshelf, 2007.

[2] B. S. Baker. A Program for Identifying Duplicated Code. Computing Science and
Statistics, 24:49-57, 1992.

[3] B. S. Baker. On Finding Duplication and Near-Duplication in Large Software Sys-
tems. In L. Wills, P. Newcomb, and E. Chikofsky, editors, Second Working Confer-
ence on Reverse Engineering, Los Alamitos, California, 1995.

[4] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Partial Re-
design of Java Software Systems Based on Clone Analysis. In Working Conference
on Reverse Engineering, pages 326-336, 1999.

[5] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone Detection Using
Abstract Syntax Trees. In ICSM ’98, Washington, DC, USA, 1998.

[6] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES: Refactoring Support Envi-
ronment Based on Code Clone Analysis. In IASTED Conf. on Software Engineering
and Applications, pages 222-229, 2004.

[7] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, pages 96—105, Washington, DC, USA, 2007.

[8] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multi-Linguistic Token-based
Code Clone Detection System for Large Scale Source Code. IEEE Computer Society
Trans. Software Engineering, 28(7):654-670, 2002.

[9] C. Kapser and M. W. Godfrey. “Clones Considered Harmful” Considered Harmful.

In Proc. Working Conf. Reverse Engineering (WCRE), 2006.

[10] H. Li and S. Thompson. Tool Support for Refactoring Functional Programs. In Par-
tial Evaluation and Program Manipulation, San Francisco, California, USA, 2008.

[11] H. Li, S. Thompson, L. Lovei, Z. Horvith, T. Kozsik, A. Vig, and T. Nagy. Refactor-
ing Erlang/OTP Programs. In EUC’06, Stockholm, Sweden, November 2006.

[12] H. Li, S. Thompson, and C. Reinke. The Haskell Refactorer, HaRe, and its API.
Electr. Notes Theor. Comput. Sci., 141(4):29-34, 2005.

[13] Z. Li, S. Lu, and S. Myagmar. CP-miner: Finding copy-paste and related bugs in
large-scale software code. IEEE Trans. Softw. Eng., 32(3):176-192, 2006.

[14] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[15] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software Quality
Analysis by Code Clones in Industrial Legacy Software. In METRICS ’02, Washing-
ton, DC, USA, 2002.

[16] R. Komondoor and S. Horwitz. Tool Demonstration: Finding Duplicated Code Using

Program Dependences. Lecture Notes in Computer Science, 2028:383-386, 2001.

[17] R. Koschke and R. Falke and P. Frenzel. Clone Detection Using Abstract Syntax
Suffix Trees. In WCRE 06, pages 253-262, Washington, DC, USA, 2006.

[18] C. H. Roy and R. Cordy. A Survey on Software Clone Detection Research. Technical
report, School of Computing, Queen’s University at Kingston, Candada, 2007.

[19] E. Ukkonen. On-Line Construction of Suffix Trees. Algorithmica, 14(3):249-260,
1995.

	Clone Detection and Removal for Erlang
	Introduction
	Related Work
	The Wrangler Clone Detector
	Token-level Clone Detection
	Annotated Abstract Syntax Trees
	Decomposing into Syntactic Clones
	Checking For Consistent Renaming

	Refactoring Support for Clone Removal
	Function Extraction
	Generalisation of Function Definition
	Folding against a Function Definition

	A Case Study
	Conclusions and Future Work
	References

