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40 Abstract 

41 Ecologists have long sought to understand variation in food chain length (FCL) 

42 among natural ecosystems. Various drivers of FCL, including ecosystem size, 

43 resource productivity and disturbance, have been hypothesized. However, when 

44 results are aggregated across existing empirical studies from aquatic ecosystems, we 

45 observe mixed FCL responses to these drivers. To understand this variability, we 

46 develop a unified competition-colonization framework for complex food webs 

47 incorporating all of these drivers. With competition-colonization tradeoffs among 

48 basal species, our model predicts that increasing ecosystem size generally results in a 

49 monotonic increase in FCL, while FCL displays non-linear, oscillatory responses to 

50 resource productivity or disturbance in large ecosystems featuring little disturbance or 

51 high productivity. Interestingly, such complex responses mirror patterns in empirical 

52 data. Therefore, this study offers a novel mechanistic explanation for observed 

53 variations in aquatic FCL driven by multiple environmental factors.
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54 Introduction

55 Food chain length (FCL), i.e., the maximum trophic position among all members of a 

56 food web (Post & Takimoto, 2007), is an important characteristic of ecological 

57 communities. It influences: ecosystem resilience/stability, by altering the organization 

58 of trophic interactions (Pimm & Lawton, 1977; Post et al., 2000); key ecosystem 

59 functions, such as nutrient cycling (Pace et al., 1999; McIntyre et al., 2007), primary 

60 productivity and atmospheric carbon exchange (Schindler et al., 1997); and ecosystem 

61 health, by adjusting the bioaccumulation of contaminants in top predators (Kidd et al., 

62 1995). Given the central role played by FCL in these processes, it is important to 

63 understand what determines FCL.

64 Currently, multiple potential drivers of FCL have been hypothesized, making 

65 significant progress in understanding variation in FCL (Post, 2007; Takimoto et al., 

66 2008, 2012). Among these drivers, the contributions of ecosystem size, resource 

67 productivity and disturbance to FCL have received the most attention. Various 

68 theories have been developed to explain the mechanisms by which each of these 

69 drivers affects FCL. The ecosystem-size hypothesis proposes that larger ecosystems 

70 should have longer food chains, simply because they can provide greater habitat 

71 availability and suitability for top predators (Holt, 1996; Takimoto et al., 2008). The 

72 resource-productivity hypothesis posits that FCL is ultimately constrained by the 

73 efficiency with which energy is transferred between trophic levels. Thus, longer food 

74 chains should occur in more productive systems where basal energy supply is greater 

75 (Post, 2002a; Takimoto et al., 2012, 2013). Similarly, the productive-space hypothesis 
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76 predicts that increasing both ecosystem size and resource productivity will increase 

77 FCL, as both can result in an increase in the resource base of the community (Doi et 

78 al., 2009; Young et al., 2013). Finally, the disturbance hypothesis predicts that 

79 disturbance will reduce FCL, as long food chains are more fragile in environments 

80 subject to more disturbance (Post, 2002a; McHugh et al., 2010).

81 Despite these advances, it appears that these drivers provide only a limited 

82 explanation of the variation in FCL observed empirically (Post, 2002a; Sabo et al., 

83 2010). Several empirical studies have documented no strong effect of ecosystem size 

84 (Warfe et al., 2013; Young et al., 2013) and resource productivity (Hairston & 

85 Hairston, 1993; Post, 2002a) on FCL. Given that the productive-space hypothesis is 

86 based on these two factors (Doi et al., 2009), the mixed evidence for them also applies 

87 to it (Spencer & Warren, 1996; Vander Zanden & Rasmussen, 1999). Furthermore, 

88 there is no strong empirical evidence to directly support the idea that disturbance 

89 could limit FCL through dynamical constraints (Townsend et al., 1998). Thus, no 

90 particular hypothesis has received universal empirical support even within a single 

91 ecosystem type, and what exactly the relationship between these drivers and FCL is 

92 remains a topic of debate. 

93 To reconcile the inconsistency between theoretical hypotheses and empirical 

94 observations, many mechanisms have been proposed, such as vertical energetic 

95 constraints (Arim et al., 2016; Ward & McCann, 2017), adaptive foraging (Kondoh & 

96 Ninomiya, 2009), intraguild predation (IGP; Takimoto et al., 2012), and regional 

97 metacommunity dynamics (Calcagno et al., 2011; Häussler et al., 2020). However, 
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98 these mechanistic models have often used relatively simple trophic modules to 

99 represent complex food webs (except Kondoh & Ninomiya, 2009), so that FCL varies 

100 via the addition, subtraction, or omnivory change of a few species on different trophic 

101 levels (Takimoto et al., 2012; Ward & McCann, 2017). By focusing on single drivers, 

102 these studies also have not assessed how drivers may interact, and their relative 

103 importance, when influencing FCL in more realistic, complex food webs. Thus, a 

104 systematic mechanistic understanding of observed variations in FCL driven by 

105 multiple environmental factors remains lacking, especially in complex trophic 

106 systems. 

107 More importantly, the aforementioned mechanistic models have overlooked a 

108 significant dynamic process: spatial competition. In many aquatic ecosystems, species 

109 richness is primarily driven by competition processes for resources (Sun et al., 1988; 

110 Callaway & Josselyn, 1992; Huisman et al., 1999; Cardinale et al., 2009). A recent 

111 competition-colonization (C-C) model (Li et al., 2020) on the disturbance-diversity 

112 relationship has shown that disturbance and C-C tradeoffs can interact to facilitate 

113 different subsets of competitors to coexist (Liao et al., 2022). This mechanism 

114 produces variation in the effect of the environmental driver. Thus, we hypothesize that 

115 interactions between environmental drivers and C-C tradeoffs among basal species in 

116 complex food webs could be responsible for the mixed responses observed in FCL via 

117 bottom-up control.

118 In this study, we undertake a meta-analysis on an empirical dataset compiled 

119 from diverse aquatic ecosystems, to check the precise form of the relationship 
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120 between FCL and multiple drivers (including ecosystem size, resource productivity 

121 and disturbance). Subsequently, we develop a site-occupancy dynamic framework for 

122 complex trophic structures in the context of aquatic ecosystems, to provide a possible 

123 mechanistic explanation for the empirical analysis. Based on the above hypothesis, 

124 our framework considers the C-C tradeoff among basal species, and incorporates all 

125 of these drivers. Note that this framework is particularly relevant to aquatic 

126 ecosystems, which are often subject to strong spatial constraints. In addition, there is 

127 ample evidence for displacement competition among resource species. Examples 

128 include competition for light among periphyton or phytoplankton (Huisman et al., 

129 1999; Cardinale et al., 2009), the inhibitory effect of water hyacinth on algae (Sun et 

130 al., 1988), and invasive smooth cordgrass competing with local aquatic plants 

131 (Callaway & Josselyn, 1992). These resource species can grow in streams, ponds, 

132 reservoirs, rivers and lakes, documenting the ubiquity of displacement competition in 

133 various aquatic ecosystems. 

134 Methods

135 Meta-analysis of empirical studies

136 We reviewed empirical studies that have explicitly tested the relationships between 

137 FCL and one or more potential drivers. We screened the relevant literature from Web 

138 of Science (1950-present), using keywords related to the environmental variables in 

139 combination with those related to the response variable (FCL). Empirical studies 

140 pertaining to aquatic ecosystems (including lakes, rivers, ponds, reservoirs, streams, 

141 wetlands and freshwater everglades) were selected, while other ecosystems (terrestrial 

Page 7 of 37 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

8

142 or microbial) were excluded. The reported drivers were aggregated into three main 

143 variables: ecosystem size (including ‘lake/pond volume’, 

144 ‘drainage/cross-sectional/watershed area’ and ‘stream/lake size’), resource 

145 productivity (including ‘primary production/productivity’, ‘energy gradients’, 

146 ‘nutrient fertility/concentration’, and ‘primary biomass’), and disturbance (including 

147 ‘a multivariate disturbance index’, ‘dynamic stability’, ‘average disturbance intensity’, 

148 and ‘flow/discharge variation’). We included only studies that explicitly recorded 

149 actual FCL or maximum trophic position estimated from complex food webs, 

150 excluding studies evaluating FCL only by the presence or absence of top or 

151 intermediate predators. With these restrictions, we found 30 relevant papers 

152 (compared to 13 papers in Takimoto & Post, 2013), many of which tested more than 

153 one potential driver of FCL. The resulting dataset (available at Dryad: 

154 https://doi.org/10.5061/dryad.jsxksn0df) consisted of 36 unique cases relating to 

155 ecosystem size, 36 unique cases relating to resource productivity, and 16 unique cases 

156 relating to disturbance. Where response values were not reported, we digitized points 

157 from graphs. 

158 We quantify the effect of variation in each driver on FCL for each unique case 

159 using the log response ratio , where  is the mean response under 𝐿𝑅𝑅 = ln(𝑌𝑒 𝑌𝑐) 𝑌𝑒

160 the experimental condition, and  is the mean response under the control condition 𝑌𝑐

161 (Hedges et al., 1999). In each comparison, we take the smallest value of the 

162 environmental variable as the control condition while the largest value as the 

163 experimental. Thus, negative effect sizes ( ) indicate negative response of FCL to 𝐿𝑅𝑅𝑠
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164 these drivers, while positive effect sizes indicate the reverse. In particular, the LRR, as 

165 a unitless measure, is an appropriate effect size for cross-study comparisons (Hedges 

166 et al., 1999). Additionally, we record the levels ( ) of these variables corresponding 𝑋𝑒

167 to each response value ( ) in each case, so that we can analyze the change in FCL 𝑌𝑒

168 along environmental gradients using linear regressions instead of solely by the 

169 deviation from LRR=0 (Figure 1). Both simple and multiple regressions are applied to 

170 separately test the individual and interactive effects of these variables, which are 

171 logarithmically transformed ( ) for normality (Supporting Information S1; R 𝑙𝑜𝑔𝑋𝑒

172 code available at Zenodo: https://doi.org/10.5281/zenodo.8297624). Note that there 

173 are 46 cases available for multiple regression analysis, which were not tested in 

174 Takimoto and Post (2013).

175 Theoretical framework for complex trophic systems

176 In the context of aquatic ecosystems (illustrated in Figure 2), we consider a 

177 well-mixed system with size , representing the proportion of habitat sites available 𝑆

178 for species colonization. We assume that each habitat site can accommodate one 

179 individual for each species, and species can disperse randomly across the entire 

180 system. Thus, the population size of a species is given by the fraction of habitat sites it 

181 occupies (site occupancy). 

182 We characterize the site-occupancy dynamics for basal species by incorporating 

183 spatial competition and multiple drivers. Following previous models (Tilman, 1994), 

184 we assume that basal species cannot coexist within a habitat site, thus competition can 

185 occur only through displacement of a resident species by a superior competitor 
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186 (competitive displacement). Furthermore, increasing resource productivity is assumed 

187 to enhance the colonization rate of all basal species by scaling them with a unitless 

188 factor R, similar to previous models (Kondoh, 2001; Worm et al., 2002). Therefore, 

189 we model the site-occupancy dynamics of basal species i (  – the site occupancy of 𝑃𝑖

190 basal species i) as

191
𝑑𝑃𝑖

𝑑𝑡 = 𝑐𝑃
𝑖 𝑃𝑖𝑅(𝑆 ― ∑𝑛𝑃

𝑗 = 1𝑃𝑗)
𝐶𝑜𝑙𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛

― 𝑒𝑃
𝑖 𝑃𝑖

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦
+𝑅∑𝑛𝑃

𝑗 = 1(𝑐𝑃
𝑖 𝑃𝑖𝐻𝑖𝑗𝑃𝑗 ― 𝑐𝑃

𝑗 𝑃𝑗𝐻𝑗𝑖𝑃𝑖)
𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

+ 𝑃𝑖𝑓(𝑡,𝐷,𝑇)
𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒

―

192 ,                                                   (1)𝑃𝑖∑
𝑛𝐴

𝑘 = 1𝜃𝑖𝑘𝜇𝑖𝑘𝐴𝑘

𝑃𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛

193 where all parameters are defined in Table 1. 

194 Most of the mathematical terms used in Equation (1) are standard components of 

195 metapopulation models and are widely used, and explained, in the existing literature 

196 (Tilman, 1994; Li et al., 2020; Liao et al., 2022). We give only a brief intuitive 

197 explanation of these terms here to aid understanding of the model. The colonization 

198 term describes an increase in the population of a basal species by colonizing 

199 unoccupied sites. The mortality term describes the intrinsic loss of population, while 

200 the predation term describes population losses due to predation by consumers. The 

201 competitive displacement term describes population changes due to colonizing a site 

202 occupied by a weaker competitor or being displaced from a site by a stronger 

203 competitor (Li et al., 2020; Liao et al., 2022). In particular, coefficients of relative 

204 competition strength  and  are the independent probabilities that an individual 𝐻𝑖𝑗 𝐻𝑗𝑖

205 of species i displaces species j and that an individual of species j displaces species i, 

206 respectively. These coefficients can be used to describe various competition structures, 

207 for example, a strict hierarchical competition by setting  if  and 0 𝐻𝑖𝑗 = 1 𝑖 < 𝑗
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208 otherwise in a matrix H (Tilman, 1994), and intransitive competition by perturbing 

209 the hierarchical competition matrix H (Rojas-Echenique & Allesina, 2011).

210 The disturbance term, including a forcing function , requires some 𝑓(𝑡,𝐷,𝑇)

211 additional explanation. The disturbance regime is characterized by both disturbance 

212 extent ( ) and frequency , i.e., a given fraction  of each basal species is 𝐷 1/𝑇 𝐷

213 removed within every period . This can be conceived of as a sudden reduction in 𝑇

214 species’ site occupancies occurring periodically (i.e., pulse disturbance). Other forms 

215 of disturbance, e.g., alternative shapes or aperiodicity, are also possible. In principle, 

216 all these disturbances are stochastic. As each term in Equation (1) contains a factor of 

217 , the per-capita growth rate ( ) of basal species i is independent of , meaning 𝑃𝑖
1
𝑃𝑖

∙
𝑑𝑃𝑖

𝑑𝑡 𝑃𝑖

218 that it is a linear and additive model. The time-averaged behavior of such model 

219 matches the long-term dynamics of the original (Liao et al., 2022). Consequently, we 

220 can replace this stochastic disturbance with its time average for the long-term 

221 dynamics (cf. Liao et al., 2022), by setting this average as  

222 .                                          (2)𝑓(𝑡,𝐷,𝑇) = 𝑙𝑜𝑔(1 ― 𝐷)/𝑇

223 Our results hold for any specific form of  satisfying this criterion. Liao et al. 𝑓(𝑡,𝐷,𝑇)

224 (2022) have shown that the effects of a disturbance with extent D and periodicity T 

225 are equivalent to the effects of another disturbance with extent  𝐷′ = 1 - (1 - 𝐷)1/𝑇

226 and periodicity =1. Thus, we vary D alone while keeping T=1 throughout, which is 𝑇′

227 sufficient for achieving a full understanding of the impact of disturbance. 

228 Then we construct the site-occupancy dynamics for consumers in complex food 

229 webs. For simplicity, we assume: (i) these consumers can co-occur in the same habitat 
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230 site by ignoring competition among them; (ii) a consumer species has the same 

231 colonization rate when feeding on different prey species; and (iii) environmental 

232 disturbances (i.e., hydrological or geomorphologic variations) have no direct effect on 

233 consumers in aquatic ecosystems (Townsend et al., 1998; Death, 2002; McHugh et al., 

234 2010), as most consumers can react quickly to these disturbances and escape from 

235 them via movement/dispersal, sheltering, or similar activities. Thus, we write the 

236 site-occupancy dynamics for consumer i as 

237 ,          (3)
𝑑𝐴𝑖

𝑑𝑡 = 𝑐𝐴
𝑖 𝐴𝑖(∑𝑛𝑃

𝑗 = 1𝜃𝑗𝑖𝑃𝑗 + ∑𝑛𝐴

𝑘 = 1𝛿𝑘𝑖𝐴𝑘)(𝑆 ― 𝐴𝑖)
𝐶𝑜𝑙𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛

― 𝑒𝐴
𝑖 𝐴𝑖

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦
― 𝐴𝑖∑

𝑛𝐴

𝑘 = 1𝛿𝑖𝑘𝜑𝑖𝑘𝐴𝑘
𝑃𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛

238 where parameters are defined in Table 1. The interpretation of these terms is similar 

239 to that for the basal species, with the additional emphasis on the colonization term 

240 where species need to feed on other consumers or/and basal species for reproduction. 

241 Note that top predators do not suffer from the top-down control, thus the 

242 site-occupancy dynamics lack the predation term present in Equation (3).

243 Model analysis of environmental drivers for FCL

244 Besides stability analysis (i.e., whether the feasible equilibrium point is stable; 

245 Supporting Information S2), we primarily use numerical methods to simulate the 

246 long-term dynamics of the model based on the C-C tradeoff among basal species 

247 (Matlab code available at Zenodo: https://doi.org/10.5281/zenodo.8297624). To 

248 establish the possibility of C-C tradeoffs, we rank basal species according to their 

249 colonization rates, so that species 1 has the lowest colonization rate and species  𝑛𝑃

250 has the highest, i.e., . Then we assume a competitive hierarchy by 𝑐𝑃
1 < 𝑐𝑃

2 < … < 𝑐𝑃
𝑛𝑃

251 ranking the basal species from the best competitor (species 1) to the poorest (species 
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252 ), such that colonization rate is negatively correlated with competition ability 𝑛𝑃

253 (Tilman, 1994). With the model, we explore the individual and interactive effects of 

254 these drivers on FCL in several complex food webs. Then we offer a mechanistic 

255 explanation for the resulting FCL responses by illustrating the changes in basal 

256 species diversity and therefore food web structure along environmental gradients. 

257 Finally, we demonstrate the robustness of our theoretical outcomes to varying food 

258 web complexity.

259 We use the niche model of Williams and Martinez (2000) to generate various 

260 initial food webs (with ), as it can provide an accurate overall fit to the 𝑛𝑃 ≥ 3

261 empirical structure of complex food webs. Note that those food webs with loops or 

262 cannibalism are excluded. The niche model only requires two input parameters: total 

263 number of species N and directed connectance C, which are sampled from truncated 

264 normal distributions (cf. Digel et al., 2011). Specifically, the range of initial species 

265 richness is Nϵ[10,50], with a mean  and a standard deviation SD=10. The 𝑁 = 30

266 initial connectance is sampled from Cϵ[0.05,0.25], with a mean =0.15 and SD=0.05. 𝐶

267 These values fall within the range found in natural communities (Digel et al., 2011), 

268 so that a variety of plausible food webs can be explored. 

269 To find the steady state, each case is run for a long time. Based on numerous 

270 preliminary trials, 50,000 time units are sufficient for all cases to achieve steady state. 

271 Accordingly, we run each case for 55,000 time units, using the time-averaged site 

272 occupancies during the final 5,000 time units to estimate species abundances at steady 

273 state. Species with steady-state abundance less than 10-6 are treated as extinct, because 
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274 such populations are typically eliminated by environmental fluctuations. We obtain 

275 species equilibrium abundances after transient dynamics, and then adopt the 

276 commonly used maximum trophic position to estimate FCL (cf. Post & Takimoto, 

277 2007). 

278 Results

279 Empirical analysis

280 We use a compiled empirical dataset to investigate the effects of these drivers on FCL, 

281 quantified using both LRR and linear regressions (Figure 1; Supporting Information 

282 S1). Generally, ecosystem size and resource productivity predominantly produce 

283 positive responses when measured by LRR (positive versus negative=30:6 for 

284 ecosystem size, and 24:12 for productivity), while responses to disturbance are mixed 

285 (7:9). Furthermore, we find some differences in the median effect size of these 

286 variables (Figure 1A-C). Specifically, effects of ecosystem size are more positive than 

287 effects of resource productivity, whereas negative effects of disturbance occur more 

288 frequently than positive ones. 

289 For each empirical case, we perform a simple linear regression to analyze the 

290 individual effects of these variables on FCL (Figure 1D-F). We observe that the 

291 majority of experiments (29/36 cases) display positive effects of ecosystem size on 

292 FCLs (slope>0, with 17 cases being significant P<0.05), while only 7 cases are 

293 negative but non-significant. For resource productivity, 22 out of 36 cases show 

294 positive responses, but more than half (13 cases) are not significant (P>0.05). In 

295 addition, there are 14 negative cases for productivity, but nearly all of them are not 
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296 significant. Similarly, effects of disturbance on FCL are not significant in most cases 

297 (14 out of 16 cases: negative versus positive = 7:7). Thus, the linear analysis suggests 

298 that increasing ecosystem size leads to a significantly monotonic, linear increase in 

299 FCL; but that responses of FCL to productivity or disturbance may be quite complex, 

300 including non-linear, oscillatory behaviors. 

301 We substantiate this inference with multiple regression analysis of the additive 

302 and interactive effects of these drivers (Figure 1G-L), observing that the majority of 

303 these effects are not significant (Supporting Information S1). Of the few studies with 

304 significant effects, positive effects tend to outnumber negative ones. Thus, there is no 

305 strong evidence that positive or negative correspondences are the rule. Instead, we 

306 suggest that these relationships are typically non-linear, and thus performing linear 

307 analysis produces inconclusive results. 

308 Numerical analysis

309 We implement a basic numerical simulation for several typical food webs with the 

310 C-C tradeoff among basal species (Figures 2-3; Supporting Information S3: Figures 

311 S1-S4). In these simulations, we find that food chains are elongated monotonically as 

312 ecosystem size increases, regardless of productivity or disturbance (Figures 2-3A & 

313 D). However, the effects of productivity and disturbance are more complex, 

314 depending on other environmental conditions. In large ecosystems with little 

315 disturbance, FCL oscillates as productivity increases (Figures 2-3B & E). Similarly, 

316 FCL oscillates with increasing disturbance in large, productive ecosystems (Figures 

317 2-3C & F). In particular, as the range of basal species’ colonization rates increases, 
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318 more FCL oscillations emerge along the productivity or disturbance gradient (Figure 

319 2). However, these oscillations are reduced significantly in small ecosystems with 

320 more disturbance or low productivity (Figure 3B-C & E-F). As environments become 

321 harsher, the FCL responses eventually become monotone increasing with productivity 

322 (Figure 3B &E) and monotone decreasing with disturbance (Figure 3C & F). One 

323 particularly noteworthy observation is that the intact environments (  and ) 𝐷 = 0 𝑅 = 1

324 do not always guarantee the longest food chains (Figures 2-3).

325 To explain these observations, we ignore the effects of top-down predation and 

326 consider only how basal species diversity and their relative abundances vary along 

327 environmental gradients (Figure 4; Supporting Information S3: Figures S5-S7). Basal 

328 species diversity (measured by species richness and the inverse Simpson index) rises 

329 and falls several times along environmental gradients. The points on the 

330 environmental gradient at which a basal species enters or leaves the system are 

331 “turning points”. At these points, trends in abundance reverse, with species in decline 

332 starting to increase in abundance and vice versa, forming a zig-zag pattern. Thus, it is 

333 natural that this zig-zag pattern results in oscillations in basal species diversity (see 

334 proof in Supporting Information S2). Due to the bottom-up control, variation in the 

335 basal species composition, driven by environmental change, can affect how many 

336 consumers are able to survive (Supporting Information S3: Figure S8). Thus, 

337 oscillations in basal species diversity can induce oscillations in overall community 

338 diversity and hence FCL (illustrated in Figure 3). Although basal species diversity 

339 oscillates as ecosystem size changes, this does not result in oscillations in FCL 
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340 (Figure 3). This is because ecosystem size has a more direct, constraining effect on 

341 the entire food web (Equations 1 & 3). This masks the bottom-up effect of variation in 

342 basal species diversity, resulting in a monotonic change in overall diversity and FCL. 

343 So far, we have operated with a set of stringent assumptions: a fully competitive 

344 hierarchy, evenly spaced colonization rates, a small number of basal species ( ), 𝑛𝑃 ≤  6

345 and several typical food webs. However, our predicted outcomes are robust to 

346 relaxing these assumptions. In particular, we obtain qualitatively similar results under 

347 a variety of other conditions (Supporting Information S3: Figures S9-S18), including 

348 trophic systems: (i) without a strict competitive hierarchy; (ii) with irregularly spaced 

349 colonization rates; (iii) with weakened competitive hierarchy; (iv) with more basal 

350 species ( ); and (v) with 100 initial food webs generated by the niche model 𝑛𝑃 = 10

351 (see Methods). To demonstrate the generality of our outcomes, we also consider a 

352 completely different competitive structure: intransitive competition (Supporting 

353 Information S4). Under this competitive structure, we do not impose a global C-C 

354 tradeoff among basal species; instead, local C-C tradeoffs, involving only a subset of 

355 the basal species, are created at random. However, we again obtain qualitatively 

356 similar results. 

357 Finally, we use the 100 initial food webs above to produce 100 simulation cases 

358 in a wide range of parameter settings, to mimic the empirically-available data (Figure 

359 5). When measured by LRR (Figure 5A-C), positive FCL responses to ecosystem size 

360 predominate (positive versus negative=90:8), while positive and negative responses to 

361 productivity (56:41) or disturbance (41:56) occur with similar frequency. In addition, 
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362 we observe some difference in the median effect size of these variables, i.e., 

363 ecosystem size (median≈0.44) has more positive effects than productivity 

364 (median≈0.03), while negative effects of disturbance occur more frequently than 

365 positive ones (median≈-0.021). These predictions are generally consistent with the 

366 empirical pattern in Figure 1A-C. 

367 Using a simple linear regression on FCL against each of these variables (Figure 

368 5D-F), we find that almost all simulation cases (97/100 cases) show positive 

369 responses to ecosystem size (slope>0), with nearly half being significant (P<0.05; 

370 Figure 5D). For resource productivity, nearly all cases show non-significant responses, 

371 with positive versus negative=52:47 (Figure 5E). Similarly, effects of disturbance on 

372 FCL are not significant in solid majority (88 out of 100 cases: negative versus 

373 positive=49:39; Figure 5F). Likewise, these FCL patterns in response to each variable 

374 accord with the empirical analysis in Figure 1D-F. 

375 We further undertake multiple regression analysis of the additive and interactive 

376 effects of these drivers (Figure 5G-L). We again find that the majority of these effects 

377 are not significant. Yet, a few significant effects are found, with positive effects 

378 generally outnumbering negative ones. Thus, this analysis produces similar patterns to 

379 those observed in our empirical analysis (Figure 1G-L), supporting the conclusion that 

380 there is no overall tendency towards either positive or negative relationships between 

381 these drivers and FCL. 

382 Discussion
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383 It is well-established that environmental drivers can influence the complexity of 

384 trophic structures and particularly FCL. Existing hypotheses describing these effects 

385 share a common feature: the response to the driver is monotonic (Post, 2002a). Yet, 

386 how interactions between drivers modify these responses has been rarely considered. 

387 While our empirical meta-analysis is broadly supportive of the ecosystem-size 

388 hypothesis, it suggests that responses to productivity and disturbance are oscillatory 

389 rather than monotonic. Furthermore, we find that the majority of additive and 

390 interactive effects of these drivers are not significant, weakening support for the 

391 simple productive-space hypothesis. The absence of significant linear interactions 

392 between drivers suggests that any such interactions are likely to be non-linear and, in 

393 particular, oscillatory. These observations necessitate a paradigmatic shift in the 

394 debate about relationships between these drivers and FCL; which until now has 

395 focused on linear responses (Post, 2002a; Sabo et al., 2010). 

396 We can draw these conclusions because our dataset includes more aquatic 

397 empirical studies than before (Takimoto & Post, 2013), and because we use linear 

398 regressions in addition to effect size to evaluate responses. However, detection of 

399 oscillatory effects from empirical data ideally requires high resolution data to permit 

400 fitting using oscillating functions. Due to this limitation, we develop a unified C-C 

401 model to further investigate these responses and the interactions between drivers. In 

402 contrast to previous mechanistic models (Kondoh & Ninomiya, 2009; Takimoto et al., 

403 2012; Ward & McCann, 2017), we focus on spatial competition between basal species, 

404 and use complex food web structures rather than simple trophic modules. Interestingly, 

405 simulations obtained from this model are in close agreement with our empirical 
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406 meta-analysis. Furthermore, these modelling outcomes are relatively generic, 

407 requiring only the classic assumption of C-C tradeoffs among basal species.

408 The mechanism by which oscillatory responses emerge in our model is variation 

409 in basal species diversity along environmental gradients due to the C-C tradeoff. 

410 Specifically, if a strong competitor is present at high abundance in the system, it will 

411 suppress the abundance of all weaker competitors. However, the species directly 

412 below it in the competitive ranking will be suppressed most, as it gains the least 

413 compensation for its competitive inferiority from its advantage in colonization rate. In 

414 turn, this benefits the species one step down the competitive ranking. As 

415 environmental conditions change to favor this competitor less, its abundance, and that 

416 of the other basal species its dominance favors, decline while those species that were 

417 suppressed increase in abundance. Eventually, this process results in the extinction of 

418 the original strong competitor and the emergence of a new dominant competitor. This 

419 shapes an alternating pattern of abundance peaks along this ranking (Figure 4G-L) 

420 and oscillations in basal species diversity along the environmental gradient. As each 

421 basal species is required by different predators, variation in the basal species 

422 composition can reassemble the overall food web. Therefore, the interaction between 

423 C-C tradeoffs and environmental changes, which facilitates different subsets of basal 

424 species to coexist, creates oscillating patterns in FCL via bottom-up control. Note that 

425 oscillations in FCL can only be seen if the potential food web is sufficiently complex, 

426 while a community structure consisting of simple trophic modules of similar size 

427 would produce little variation in FCL (Pimm & Lawton, 1977; Holt, 1996). 
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428 Consequently, we do not see this phenomenon in harsh environments (e.g., with low 

429 productivity and/or high disturbance in Figure 3), where the potential food web is 

430 relatively simple. Furthermore, it does not occur in response to ecosystem size, as all 

431 species in the food web are directly constrained by ecosystem size, and such 

432 constrained effects overwhelm the effect of variation in the basal species composition. 

433 Previous empirical (Bengtsson, 1991; Mackey & Currie, 2001; Fraser et al., 2015) 

434 and theoretical (Hastings, 1980; Nee & May, 1992; Banitz et al., 2008; Liao et al., 

435 2022) studies have found variation in biodiversity along environmental gradients. 

436 There are numerous empirical examples of hump-shaped biodiversity responses to 

437 disturbance and productivity (reviews in Mackey & Currie, 2001; Smith, 2007; Fraser 

438 et al., 2015). Furthermore, some experiments have actually observed multiple 

439 distinguishable peaks in biodiversity along disturbance gradients in aquatic 

440 ecosystems (Lenz et al., 2004; Cadotte, 2007; Hall et al., 2012; Gibbons et al., 2016). 

441 These observations demonstrate that the underlying variation in basal species 

442 diversity on which our mechanism for oscillations in FCL relies do occur in nature. 

443 However, this variation has not previously been linked to the effect of environmental 

444 drivers on FCL.

445 Effects of interactions between environmental drivers appear in both empirical 

446 and theoretical analyses. In particular, our results suggest that the effects of 

447 combining changes in productivity or disturbance with changes in ecosystem size are 

448 highly unpredictable without additional knowledge. For example, while increasing 

449 resource productivity will intuitively increase FCL, it can limit FCL in small 
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450 ecosystems by strengthening competition effects. However, this effect can be 

451 ameliorated, in turn, by greater habitat heterogeneity in larger ecosystems (Takimoto 

452 et al., 2012). Similarly, we might intuitively expect disturbance processes to limit 

453 FCL by reducing population levels, an effect that depends on the spatial scale of 

454 disturbance (Takimoto et al., 2008). However, if disturbance disrupts dominance of 

455 basal species, and therefore increases biodiversity (Power et al., 1996), it could have a 

456 positive effect on FCL. In either case, the scale of spatial disturbance, relative to the 

457 ecosystem size, determines how significant its impact will be (Sabo et al., 2010). 

458 Previous models on interactions between drivers (Takimoto et al., 2012; Terui & 

459 Nishijima, 2019) have considered only relatively simple trophic structures, while our 

460 systematic analysis highlights the importance of these interactions and suggests the 

461 need for further work.

462 Predators might mediate such oscillatory responses in FCL via top-down control. 

463 For instance, in a complex food web, each basal species is controlled by different 

464 predators and therefore displays different predation rates. The variation in predation 

465 rates would perturb the C-C tradeoff among basal species and alter their coexistence, 

466 thereby modifying the resulting FCL. In a simple food chain, Liao et al. (2017) found 

467 asymmetric top-down control mechanism that can cause oscillations in species 

468 abundance along habitat loss gradients, similar to our predicted oscillatory responses 

469 in basal species. Thus, we could expect that this mechanism might also induce 

470 oscillations in FCL along environmental gradients in complex food webs (e.g., 

471 addition of omnivory structure). In fact, preliminary models for a simple IGP module 

Page 22 of 37Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

23

472 have shown that omnivory responding to environmental gradients predicts 

473 context-dependency in drivers of FCL (Takimoto et al., 2012; Ward & McCann, 

474 2017). Therefore, this asymmetric top-down control might provide an alternative 

475 mechanism to explain natural variation in FCL.

476 This study demonstrates how environmental drivers can act on FCL through 

477 bottom-up control, i.e., by inducing variation in basal species diversity. This 

478 complements the work of Takimoto et al. (2012) and Ward & McCann (2017) that 

479 showed how top-down control can drive changes in FCL. Future research could 

480 integrate both horizontal competitive and vertical trophic interactions into novel 

481 mechanistic models to further develop understanding of FCL responses to multiple 

482 drivers. Similarly, further empirical data is needed to confirm the existence of 

483 oscillatory responses to productivity and disturbance, and to more completely 

484 characterize interactions between these drivers. To investigate these issues, aquatic 

485 microcosm experiments are perhaps the most effective experimental system, as they 

486 have the key advantage that rapid microbial reproduction allows multigenerational 

487 community dynamics to be studied within short time frames (Gibbons et al., 2016). 

488 Additional comparative analysis of FCL along natural environmental gradients in 

489 aquatic ecosystems is also warranted. For example, the stable isotopes of nitrogen 

490 (δ15N) and carbon (δ13C) permit estimation of species’ trophic positions in complex 

491 food webs (Townsend et al., 1998; Post, 2002b). Overall, our analysis suggests that 

492 the determinants of FCL are much more complex than previously thought, enriching 
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493 our understanding of the relationships between multiple drivers and FCL in complex 

494 trophic systems.
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638 Tables

639 Table 1. Definitions of variables and parameters

Symbols Definitions

R Resource productivity, i.e., resource availability per-unit-ecosystem-size

S
The proportion of habitat sites that are available for species colonization in 

the entire ecosystem, i.e., ecosystem size

D
The fraction of individuals in each basal species being removed within 

every period, i.e., disturbance extent

𝑃𝑖
The fraction of habitat sites that are inhabited by basal species i, i.e., its 

site occupancy

𝐴𝑖
The fraction of habitat sites that are inhabited by consumer species i, i.e., 

its site occupancy

𝑛𝑃 The number of basal species

𝑛𝐴 The number of consumer species, including top predators

𝑐𝑃
𝑖 The colonization rate of basal species i (per unit time)

𝑐𝐴
𝑖 The colonization rate of consumer species i (per unit time)

𝑒𝑃
𝑖 The mortality rate of basal species i (per unit time)

𝑒𝐴
𝑖 The mortality rate of consumer species i (per unit time)

𝐻𝑖𝑗 The competition strength of basal species i relative to basal species j

𝜃𝑖𝑗

The elements in a adjacency matrix for the trophic interaction between 

basal and consumer species, with  if consumer j feeds on basal 𝜃𝑖𝑗 = 1

species i (otherwise )𝜃𝑖𝑗 = 0

𝛿𝑖𝑗

The elements in a adjacency matrix for the trophic interaction between 

consumers, with  if consumer j feeds on another consumer i 𝛿𝑖𝑗 = 1

(otherwise )𝛿𝑖𝑗 = 0

𝜇𝑖𝑗
The top-down mortality rate of basal species i due to predation by 

consumer j (per unit time)

𝜑𝑖𝑗
The top-down mortality rate of consumer i due to predation by another 

consumer j (per unit time)

N Total number of species in the food web ( )𝑁 = 𝑛𝑃 + 𝑛𝐴

C Food web connectance
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641 Figure legends

642 Figure 1. Meta-analysis on FCL responses to multiple environmental variables 

643 (ecosystem size S, resource productivity R and disturbance D) in an empirical dataset 

644 compiled from aquatic ecosystems, using both (A-C) the log response ratio (LRR) and 

645 (D-L) linear regressions. Panels (A-C): effect sizes (LRR – grey circle) of S, R and D 

646 in these empirical cases, summarized by box-plots. Panels (D-L): both simple and 

647 multiple linear regressions on the log-transformed predictors are used to respectively 

648 test the individual (D-F), additive (G-I) and interactive effects (J-L) of these variables, 

649 with the regression coefficients being summarized by box-plots (blue circles – 

650 significant effects at P<0.05; yellow circles – non-significant effects). 

651 Figure 2. Interactive effects of ecosystem size (S), resource productivity (R) and 

652 disturbance extent (D) on food chain length (FCL) in a typical food web (with species 

653 diversity N=20, connectance C=0.15 and basal species richness =4; red circles – 𝑛𝑃

654 species, black lines – trophic links, and dotted lines – competition between basal 

655 species), extracted from a lake ecosystem. The basal species are ranked from the best 

656 competitor (species 1) to the poorest (species ) in a strict competitive hierarchy, i.e., 𝑛𝑃

657  for i<j and 0 otherwise in a matrix H. To establish the possibility of 𝐻𝑖𝑗 = 1

658 competition-colonization (C-C) tradeoffs, basal species’ colonization rates are evenly 

659 spaced in increasing order at both small (A-C: ϵE[0.45, 0.8]) and large (D-F: 𝑐𝑃
𝑖 𝑐𝑃

𝑖

660 ϵE[0.25, 1]) ranges. Other parameters: D=0 in panels (A & D), S=1 in panels (B & E), 

661 and R=1 in panels (C & F), all species mortality rates =0.1, all consumers’ 𝑒𝑃
𝑖 = 𝑒𝐴

𝑖

662 colonization rates =0.625 and all top-down mortality rates due to predation 𝑐𝐴
𝑖 𝜇𝑖𝑘 =

663 =0.05. 𝜑𝑖𝑘

664 Figure 3. Individual effects of ecosystem size (S), resource productivity (R), and 

665 disturbance extent (D) on FCL in a given food web as displayed in Figure 2. Panels 

666 (A & D) R=0.2, 0.6 & 1 with D=0; panels (B & E) S=0.6, 0.8 & 1 with D=0; and 

667 panels (C & F) R=S=0.6, 0.8 & 1. Meanwhile, four food web structures along 

668 different environmental gradients are displayed for each panel. Other parameter 

669 settings are the same as in Figure 2.  
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670 Figure 4. Individual effects of ecosystem size (S), resource productivity (R) and 

671 disturbance extent (D) on basal species diversity (A-F) and their relative abundances 

672 (G-L) for initial richness =4, while ignoring the top-down predation. Basal species 𝑛𝑃

673 diversity is characterized by (A-C) species richness and the inverse Simpson index 

674 ( , with  being the relative abundance of basal species i). Panels (A, 1/∑𝑞2
𝑖 𝑞𝑖 = 𝑃𝑖/∑𝑃𝑗

675 D, G & J): R=1 and D=0; panels (B, E, H & K): S=1 and D=0; and panels (C, F, I & 

676 L): R=S=1. Other parameters are the same as in Figure 2.

677 Figure 5. Analysis of FCL responses to multiple environmental variables in 100 

678 simulation cases, using both (A-C) the log response ratio (LRR) and (D-L) linear 

679 regressions. The niche model is used to generate 100 initial food webs, excluding 

680 those with loops and cannibalism (see Methods). In each case, we first sample 150 

681 values for Sϵ[0, 1], Rϵ[0, 1] and Dϵ[0, 0.6] respectively, and then randomly combine 

682 them into 150 groups as our model input for each initial food web. Finally, these 150 

683 samples are used to estimate LRR and perform linear regressions (ignoring a large 

684 number of samples with FCL=0 & 1). In each initial food web, basal species’ 

685 colonization rates are uniformly drawn from ϵ[0.25, 1] and sorted in increasing 𝑐𝑃
𝑖

686 order, but with a strict competitive hierarchy. Panels (A-C): effect sizes (LRR – grey 

687 circle) of ecosystem size (S), resource productivity (R) and disturbance extent (D) in 

688 these cases, summarized by box-plots. Panels (D-L): both simple and multiple linear 

689 regressions are used to respectively test the individual (D-F), additive (G-I) and 

690 interactive effects (J-L) of these variables, with the regression coefficients being 

691 summarized by box-plots (blue circles – significant effects at P<0.05; yellow circles – 

692 non-significant effects). Others: =0.1, =0.625 and =0.05.𝑒𝑃
𝑖 = 𝑒𝐴

𝑖 𝑐𝐴
𝑖 𝜇𝑖𝑘 = 𝜑𝑖𝑘
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Figure 1. Meta-analysis on FCL responses to multiple environmental variables (ecosystem size S, resource 
productivity R and disturbance D) in an empirical dataset compiled from aquatic ecosystems, using both (A-
C) the log response ratio (LRR) and (D-L) linear regressions. Panels (A-C): effect sizes (LRR – grey circle) of 
S, R and D in these empirical cases, summarized by box-plots. Panels (D-L): both simple and multiple linear 
regressions on the log-transformed predictors are used to respectively test the individual (D-F), additive (G-
I) and interactive effects (J-L) of these variables, with the regression coefficients being summarized by box-

plots (blue circles – significant effects at P<0.05; yellow circles – non-significant effects). 

105x168mm (1200 x 1200 DPI) 

Page 32 of 37Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 

Figure 2. Interactive effects of ecosystem size (S), resource productivity (R) and disturbance extent (D) on 
food chain length (FCL) in a typical food web (with species diversity N=20, connectance C=0.15 and basal 
species richness n_P=4; red circles – species, black lines – trophic links, and dotted lines – competition 
between basal species), extracted from a lake ecosystem. The basal species are ranked from the best 

competitor (species 1) to the poorest (species n_P) in a strict competitive hierarchy, i.e., H_ij=1 for i<j and 
0 otherwise in a matrix H. To establish the possibility of competition-colonization (C-C) tradeoffs, basal 

species’ colonization rates are evenly spaced in increasing order at both small (A-C: c_i^PϵE[0.45, 0.8]) 
and large (D-F: c_i^PϵE[0.25, 1]) ranges. Other parameters: D=0 in panels (A & D), S=1 in panels (B & 
E), and R=1 in panels (C & F), all species mortality rates e_i^P=e_i^A=0.1, all consumers’ colonization 

rates c_i^A=0.625 and all top-down mortality rates due to predation μ_ik=φ_ik=0.05. 
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Figure 3. Individual effects of ecosystem size (S), resource productivity (R), and disturbance extent (D) on 
FCL in a given food web as displayed in Figure 2. Panels (A & D) R=0.2, 0.6 & 1 with D=0; panels (B & E) 

S=0.6, 0.8 & 1 with D=0; and panels (C & F) R=S=0.6, 0.8 & 1. Meanwhile, four food web structures along 
different environmental gradients are displayed for each panel. Other parameter settings are the same as in 

Figure 2.   
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Figure 4. Individual effects of ecosystem size (S), resource productivity (R) and disturbance extent (D) on 
basal species diversity (A-F) and their relative abundances (G-L) for initial richness n_P=4, while ignoring 
the top-down predation. Basal species diversity is characterized by (A-C) species richness and the inverse 
Simpson index (1/∑q_i^2 , with q_i=P_i/∑P_j  being the relative abundance of basal species i). Panels (A, 

D, G & J): R=1 and D=0; panels (B, E, H & K): S=1 and D=0; and panels (C, F, I & L): R=S=1. Other 
parameters are the same as in Figure 2. 
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Figure 5. Analysis of FCL responses to multiple environmental variables in 100 simulation cases, using both 
(A-C) the log response ratio (LRR) and (D-L) linear regressions. The niche model is used to generate 100 
initial food webs, excluding those with loops and cannibalism (see Methods). In each case, we first sample 
150 values for Sϵ[0, 1], Rϵ[0, 1] and Dϵ[0, 0.6] respectively, and then randomly combine them into 150 

groups as our model input for each initial food web. Finally, these 150 samples are used to estimate LRR 
and perform linear regressions (ignoring a large number of samples with FCL=0 & 1). In each initial food 
web, basal species’ colonization rates are uniformly drawn from c_i^Pϵ[0.25, 1] and sorted in increasing 

order, but with a strict competitive hierarchy. Panels (A-C): effect sizes (LRR – grey circle) of ecosystem size 
(S), resource productivity (R) and disturbance extent (D) in these cases, summarized by box-plots. Panels 

(D-L): both simple and multiple linear regressions are used to respectively test the individual (D-F), additive 
(G-I) and interactive effects (J-L) of these variables, with the regression coefficients being summarized by 

box-plots (blue circles – significant effects at P<0.05; yellow circles – non-significant effects). Others: 
e_i^P=e_i^A=0.1, c_i^A=0.625 and μ_ik=φ_ik=0.05. 
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Supporting Information S1 - Statistical analysis 

We begin by loading the empirical dataset: 

library(tidyverse) 
dat <- read_csv("Empirical_food_chain_data.csv") # Read data 
knitr::kable(head(dat)) # Display first few rows of the table 

case reference size resource dist FCL 

1 McHugh et al. 2010 0.3516870 8.6909871 9.750174 3.137930 

1 McHugh et al. 2010 1.4036029 2.5107296 11.775951 2.756533 

1 McHugh et al. 2010 1.1624540 1.5450644 10.767550 3.311276 

1 McHugh et al. 2010 2.5901071 1.1587983 11.670968 3.170593 

1 McHugh et al. 2010 0.3946072 0.5793991 9.996132 3.423433 

1 McHugh et al. 2010 0.3033092 1.8669528 11.651023 3.561813 

Here is a description of the columns of the data: 

• case: The ID number of the case study from which the data were taken. 

• reference: The reference for the original source from which the data were 
taken. 

• size: Measure of ecosystem size (if available). Its units are dependent of the 
case study (and can be found in the original Excel files), but they are always 
consistent within a given study. 

• resource: Measure of resource availability. (Same comments apply as for 
size.) 

• dist: Disturbance magnitude. (Again, same comments apply as for size.) 

• FCL: The observed food chain length. 

Most studies do not contain measurements of all three predictors (ecosystem size, 

resource availability, and disturbance magnitude). More commonly, only two 

predictors are available—and, in some cases, only one. We can see this from the 

table below where size, resource, and dist now represent the availability of data 

in those categories: 

dat %>% 
  group_by(case, reference) %>% 
  summarise(n = n(), across(c(size, resource, dist), ~!all(is.na(.x))))
 %>% 
  ungroup() %>% 
  mutate(across(c(size, resource, dist), ~if_else(.x, "yes", "no"))) %>% 
  knitr::kable() 

case reference n size resource dist 
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case reference n size resource dist 

1 McHugh et al. 2010 15 yes yes yes 

2 Ruhi et al. 2016 9 yes yes yes 

3 He et al. 2020 8 yes yes yes 

4 Sabo et al. 2010 35 yes yes yes 

5 Kautza & Sullivan 2016 12 yes yes yes 

6 Sullivan et al. 2015 7 yes yes yes 

7 Sullivan et al. 2015 5 yes yes yes 

8 Sullivan et al. 2015 7 yes yes yes 

9 Chanut et al. 2020 24 yes yes yes 

10 Chanut et al. 2020 20 yes yes yes 

11 Chanut et al. 2020 12 yes yes yes 

12 Wang et al. 2016 16 yes yes yes 

13 Warfe et al. 2013 66 yes yes yes 

14 Townsend et al. 1998 10 no yes yes 

15 Jackson & Sullivan 2017 31 yes no yes 

16 Schriever & Williams 2013 9 yes no yes 

17 Ward & McCann 2017 62 yes yes no 

18 Post et al. 2000 25 yes yes no 

19 Zanden et al. 1999 17 yes yes no 

20 Reid et al. 2011 10 yes yes no 

21 Reid et al. 2011 8 yes yes no 

22 Thompson & Townsend 2005 18 yes yes no 

23 Doi et al. 2009 15 yes yes no 

24 Parker & Huryn 2013 5 yes yes no 

25 Parker & Huryn 2013 14 yes yes no 

26 Ziegler et al. 2015 20 yes yes no 

27 Doi et al. 2012 7 yes yes no 

28 Doi et al. 2012 10 yes yes no 

29 Doi et al. 2012 3 yes yes no 

30 Zhang et al. 2013 52 yes no no 

31 Zhang et al. 2013 68 yes no no 

32 Zhang et al. 2013 34 yes no no 

33 Tunney et al. 2012 40 yes no no 

34 Zanden & Fetzer 2007 66 yes no no 

35 Zanden & Fetzer 2007 24 yes no no 
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case reference n size resource dist 

36 Zanden & Fetzer 2007 14 yes no no 

37 Fraley et al. 2018 28 yes no no 

38 Doi et al. 2009 14 no yes no 

39 Doi et al. 2009 13 no yes no 

40 Saigo et al. 2016 8 no yes no 

41 Williams & Trexler 2006 17 no yes no 

42 Anderson & Cabana 2009 23 no yes no 

43 Kelly & Schallenberg 2019 5 no yes no 

44 Kelly & Schallenberg 2019 8 no yes no 

45 Kelly & Schallenberg 2019 5 no yes no 

46 Hoeinghaus et al. 2008 10 no yes no 

The column n above shows the number of data points in the corresponding study. 
Thus, out of the 46 case studies, 13 have measurements for all three predictors. 16 
have only two measured predictors, and 17 only one. Here is a summary table: 

dat %>% 
  group_by(case, reference) %>% 
  summarise(n = n(), across(c(size, resource, dist), ~1*!all(is.na(.
x)))) %>% 
  ungroup() %>% 
  mutate(predictors = size + resource + dist) %>% 
  count(predictors, name = "number of studies") %>% 
  knitr::kable() 

predictors number of studies 

1 17 

2 16 

3 13 

This means that using statistical models which take all three predictors into account 
is only feasible for about one third of the cases. But a further problem with using 
three-way models is the scarcity of data. As the above table shows, many of the 17 
cases with all three predictors measured have very few observations, rendering 
such multi-way models inapplicable. In lieu of three-way models, we fit all possible 
one- and two-way models to the data in each of these cases. The following helper 
functions aid in doing that: 

zscore <- function(vec) (vec - mean(vec)) / sd(vec) 
 
transformData <- function(dat, trans = log) { 
  dat %>% 
    # Transform the predictors: 
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    group_by(case) %>% 
    mutate(size = trans(size), 
           resource = trans(resource), 
           dist = trans(dist)) %>% 
    ungroup() %>% 
    # Remove potential infinities arising from the transformation: 
    filter(!is.infinite(size), 
           !is.infinite(resource), 
           !is.infinite(dist)) 
} 
 
buildFormulas <- function(dat) { 
  dat %>% 
    # Combine data with all possible combinations or 1- and 2-factor mo
dels: 
    crossing(formula = c("dist", "resource", "size", 
                         "dist+resource", "dist+size", "resource+size", 
                         "dist*resource", "dist*size", "resource*size")
 %>% 
               # Put "FCL ~ " at the front of each formula: 
               str_c("FCL ~ ", .)) %>% 
    # Discard models for which there isn't appropriate data in `dat`: 
    filter(!(is.na(dist) & str_detect(formula, "dist"))) %>% 
    filter(!(is.na(resource) & str_detect(formula, "resource"))) %>% 
    filter(!(is.na(size) & str_detect(formula, "size"))) 
} 
 
analyzeData <- function(datWithFormula) { 
  datWithFormula %>% 
    # One row per each case-model combination: 
    nest(data = !case & !formula) %>% 
    # Fit the models and put information into tidy tables: 
    mutate(fit = map2(formula, data, lm)) %>% 
    mutate(model = map(fit, compose(broom::tidy, summary))) %>% 
    mutate(quality = map(fit, broom::glance), 
           quality = map(quality, ~select(.x, contains("r."), AIC))) %>% 
    unnest(c(model, quality)) 
} 
 
simplifyFormulas <- function(datWithFormula) { 
  datWithFormula %>% 
    # Refactor & reorder model formulas: 
    mutate(formula = str_remove(formula, "FCL ~ ")) %>% 
    mutate(formula = str_replace_all(formula, c("dist"="D","resource"="
R", 
                                                "size"="S", "\\*"=" x ", 
                                                "\\+"=" + "))) %>% 
    mutate(formula = fct_relevel(formula, "S", "R", "D", "R + S", "D + 
S", 
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                                 "D + R", "R x S", "D x S", "D x R"))
 %>% 
    # Refactor & reorder predictors: 
    mutate(term = str_replace_all(term, c("dist" = "D","resource" = "R", 
                                          "size" = "S"))) %>% 
    mutate(term = fct_relevel(term, "S", "R", "D", "R:S", "D:S", "D:R")) 
} 
 
plotData <- function(datProcessed, signif = 0.05) { 
  datProcessed %>% 
    # Are regression coefficients significant? 
    mutate(result = ifelse(p.value < signif, 
                           "significant", "non-significant")) %>% 
    mutate(result = fct_relevel(result, 
                                "non-significant", "significant")) %>% 
    # Create plot: 
    ggplot(aes(x = term, y = estimate, colour = result, alpha = result))
 + 
    geom_jitter(width = 0.25, alpha = 0.5) + 
    geom_boxplot(aes(x = term, y = estimate), colour = "gray55", alpha 
= 0, 
                 outlier.shape = NA, coef = 100) + 
    geom_hline(yintercept = 0, linetype = "dashed", alpha = 0.5) + 
    ylab("regression coefficient") + 
    scale_colour_manual(values = c("goldenrod", "steelblue")) + 
    scale_alpha_manual(values = c(0.4, 0.7)) + 
    facet_wrap(~formula, scales = "free_y") + 
    theme_bw() + 
    theme(panel.grid = element_blank(), axis.title.x = element_blank(), 
          legend.position = "bottom", legend.title = element_blank()) 
} 

We now fit all possible models to each case study after log-transforming the 
predictors, and visualize the results where two-way models were fitted: 

datProcessed <- dat %>% 
  transformData(trans = log) %>% 
  buildFormulas() %>% 
  analyzeData() %>% 
  simplifyFormulas() %>% 
  filter(term != "(Intercept)") %>% 
  drop_na() 
 
plotData(datProcessed, signif = 0.05) 
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The panels are for the different models. S means size, R resource availability, and D 
disturbance. When they are by themselves (fist row of panels), we are performing 
simple regression with a single predictor. When they are added, as in R + S (second 
row), we are performing two-way regression with main effects only. And when they 
are multiplied, as in R x S (third row), we are performing two-way regression with 
interaction effects also included. Within each panel, the x-axis shows which 
regression coefficient is displayed (the colon means interaction), while the y-axis 
shows the corresponding coefficient values across the case studies. The points have 
been jittered sideways to reduce overlap. Statistically significant coefficients at the 
0.05 level are shown in blue, all other coefficients are in yellow. Box plots 
summarize the distribution of the coefficients, with the whiskers encompassing the 
full range of the data. 

Let us summarize, in a table, how many of the results are significant versus non-
significant, and whether significant coefficients are positive or negative: 
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datProcessed %>% 
  mutate(result = case_when( 
    p.value < 0.05 & estimate >  0 ~ "significant positive", 
    p.value < 0.05 & estimate <= 0 ~ "significant negative", 
    TRUE ~ "non-significant" 
  )) %>% 
  group_by(formula) %>% 
  count(result) %>% 
  mutate(total = sum(n)) %>% 
  ungroup() %>% 
  pivot_wider(names_from = result, values_from = n, values_fill = 0) %>% 
  knitr::kable() 

formula total non-significant significant positive significant negative 

S 36 19 17 0 

R 36 26 9 1 

D 16 14 1 1 

R + S 50 35 14 1 

D + S 30 24 4 2 

D + R 28 23 4 1 

R x S 75 58 12 5 

D x S 45 39 4 2 

D x R 42 39 1 2 

Looking at the above results, we see that the majority of effects are non-significant 
regardless of the model. Furthermore, while significant positive effects tend to 
outnumber significant negative ones, negative effects are not exceptionally 
uncommon either. In conclusion, any tendency towards positive relationships 
between the three predictors and food chain length appears to be sporadic at best, 
and there isn’t a strong case for such positive correspondences to be the rule—with 
the possible exception of the isolated effect of ecosystem size (first row). 

Additionally, one could claim that using a significance threshold of 0.05 is overly 
lenient, due to the problem of multiple testing. Lowering the threshold from 0.05 to 
0.005 leads to a much lower prevalence of significant results, further reinforcing the 
picture that there is no strong general tendency in the data for either positive or 
negative relationships: 

plotData(datProcessed, signif = 0.005) 
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datProcessed %>% 
  mutate(result = case_when( 
    p.value < 0.005 & estimate >  0 ~ "significant positive", 
    p.value < 0.005 & estimate <= 0 ~ "significant negative", 
    TRUE ~ "non-significant" 
  )) %>% 
  group_by(formula) %>% 
  count(result) %>% 
  mutate(total = sum(n)) %>% 
  ungroup() %>% 
  pivot_wider(names_from = result, values_from = n, values_fill = 0) %>% 
  knitr::kable() 
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formula total non-significant significant positive significant negative 

S 36 29 7 0 

R 36 35 0 1 

D 16 14 1 1 

R + S 50 45 5 0 

D + S 30 28 1 1 

D + R 28 27 0 1 

R x S 75 70 3 2 

D x S 45 44 1 0 

D x R 42 41 0 1 
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Session information 

The analyses were done using R version 4.2.2.1 Full session information: 

sessionInfo() 

R version 4.2.2 (2022-10-31) 
Platform: x86_64-apple-darwin17.0 (64-bit) 
Running under: macOS Big Sur ... 10.16 
 
Matrix products: default 
BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libR
blas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libR
lapack.dylib 
 
locale: 
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 
 
attached base packages: 
[1] stats     graphics  grDevices utils     datasets  methods   base   

   
other attached packages: 
 [1] lubridate_1.9.2 forcats_1.0.0   stringr_1.5.0   dplyr_1.1.2     
 [5] purrr_1.0.1     readr_2.1.4     tidyr_1.3.0     tibble_3.2.1    
 [9] ggplot2_3.4.2   tidyverse_2.0.0 
 
loaded via a namespace (and not attached): 
 [1] highr_0.9        pillar_1.9.0     compiler_4.2.2   tools_4.2.2    
 [5] bit_4.0.5        digest_0.6.30    timechange_0.1.1 jsonlite_1.8.4 
 [9] evaluate_0.18    lifecycle_1.0.3  gtable_0.3.1     pkgconfig_2.0.3
 [13] rlang_1.1.1      cli_3.6.1        rstudioapi_0.14  parallel_4.2.2
 [17] yaml_2.3.6       xfun_0.34        fastmap_1.1.0    withr_2.5.0   
 [21] knitr_1.40       hms_1.1.2        generics_0.1.3   vctrs_0.6.2   
 [25] bit64_4.0.5      grid_4.2.2       tidyselect_1.2.0 glue_1.6.2    
 [29] R6_2.5.1         fansi_1.0.3      vroom_1.6.0      rmarkdown_2.18
 [33] farver_2.1.1     tzdb_0.3.0       magrittr_2.0.3  backports_1.4.1
 [37] ellipsis_0.3.2   scales_1.2.1   htmltools_0.5.3  colorspace_2.0-3 
 [41] labeling_0.4.2   utf8_1.2.2       stringi_1.7.8    munsell_0.5.0 
 [45] broom_1.0.4      crayon_1.5.2     

                                                        
1 R Core Team (2022). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-
project.org/. 
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Supporting Information S2 - System analysis  

Stability analysis 

For mathematical tractability, we assume donor-controlled dynamics by ignoring the 

top-down predation, i.e.,            
  
      in Equation (1) and 

           
  
      in Equation (3) (cf. Holt, 1997; Gravel et al., 2011; Häussler et 

al., 2020). However, we relax this assumption with numerical simulations and find 

that our results are robust to recipient-controlled dynamics. Thus, Equation (1) in 

Methods can be rearranged as  

   

  
      

      
                         
  

      
       

       
                 

   

  
  
    .        (S1) 

In this formulation,    is the effective intrinsic growth rate of basal species i, while 

    is the effective interaction coefficient in a matrix M (i.e., the effects of intra- and 

inter-specific competition). The net effect of these two terms in the square bracket is 

the per-capita growth rate    
 

  

   

  
 of basal species i, which is linear with respect 

to the population size   . In particular, the per-capita growth rate has the 

Lotka-Volterra form              
  
   . This linearity allows one to take the 

time average of the per-capita growth rate directly: 

                
  
   ,                                            (S2) 

where the over-bar represents time averaging. Here    declines to         during 

every period T, thus we set                    , which gives the same 

long-term average result as the periodically disturbed model (cf. Liao et al. 2022). 

Since the effects of a disturbance with extent D and periodicity T are equivalent to the 

effects of another disturbance with extent               and periodicity   =1 

in competition-colonization (C-C) tradeoff communities (Liao et al., 2022). Thus, we 

only vary D alone while keeping T=1 throughout, which is sufficient for achieving a 

full understanding of the impact of disturbance. Thus, Equation (S2) has at most one 
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fixed point where all species populations   
  are positive (i.e., a coexistence steady 

state). At this steady state (   =0), we can express the long-term average site occupancy 

of basal species i explicitly by inverting the matrix M: 

   
              

     
               

  
   ,                   (S3) 

where         is the         entry of the inverse of the effective interaction matrix 

M. Furthermore, if the tournament matrix H is fully hierarchical (      if     

and 0 otherwise), the feasible equilibrium point in which the most species survive is 

stable (cf. Liao et al., 2022). 

    For consumers, if we ignore the top-down predation in Equation (3), we have  

   

  
      

        
  
          

  
             

  .                    (S4) 

Given that the equilibrium point is feasible, we can express the long-term 

average occupancies for consumer   at steady state as  

  
 
    

  
 

  
      

  
   

   
        

 
   

    
,                                     (S5) 

in which    
  is already determined from Equation (S3), independent of the 

site-occupancy dynamics of consumers. If      , i.e., the consumer i can feed on 

consumer k, then   
 
  is related to   

 
 , but   

 
  is irrelevant to   

 
 . When      , the 

equilibrium site occupancies of both consumers i and k are mutually independent, as 

we neglect all top-down effects in the whole trophic system. As such, the survival of 

consumer i depends on the abundances of its prey species at lower trophic levels. This 

is actually a recursion relation, with the initial condition for basal species given by 

Equation (S3). Therefore, using these equations, we can express the equilibrium 

occupancies of the whole community, provided that the equilibrium is feasible.  
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The checkerboard pattern of the inverse community matrix 

Similar to Liao et al. (2022), here we show that, along the gradients of multiple 

environmental variables, the observed oscillating patterns in basal species diversity 

(ignoring the top-down predation) can be understood from 

   
              

     
               

  
   ,                    (S6) 

where the effective interaction coefficient       
       

       
  in a matrix M. 

This yields the long-term site occupancies as a function of ecosystem size (S), 

resource productivity (R) and disturbance extent (D). Note that decreasing S, R or 

increasing   (i.e., in harsher environments) will decrease    
     

    

           , the term multiplied by the inverse of    . Since the equilibrium 

occupancies are functions of S, R and D, we can write    
     

        . 

Here we assume that the matrix H is fully hierarchical: Hij = 1 if i < j and 0 

otherwise. In that case,   
       

  cancels each other for upper triangular (i < j) 

entries, and   reduces to −(  
 +  

 ) in the lower triangular entries and to −  
  along 

its diagonal. Introducing the matrices C and L, where C is diagonal with its i-th 

diagonal entry equal to −  
 , and L is lower triangular with entries Lij = −(  

 +  
 )Θij 

(where Θij=1 for i > j and 0 otherwise), we can then write   as the sum of the two: 

 =C+L. 

Since all   
 >0, the diagonal matrix C is invertible. Its inverse C

−1
 is itself a 

diagonal matrix with the −1/  
 along its diagonal. One can then equivalently write 

 =C+L as 

 = C (I + C
−1

L).                                                    (S7) 

The inverse of   as a whole can thus be written as 

M
−1

 = (I + C
−1

L)
−1

C
−1

.                                               (S8) 
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We now use the known identity (I − B)
−1

=    
    that holds for any matrix B with 

eigenvalues falling inside the unit circle (the Neumann series expansion). In our case, 

B = −C
−1

L, a strictly lower triangular matrix. The eigenvalues of strictly lower 

triangular matrices are all equal to 0 (these matrices are nilpotent), which do of course 

fall in the unit circle. The Neumann series expansion therefore holds, and we can 

write 

           
             .                                      (S9) 

Even more is true: since the   -th power of a strictly lower triangular matrix is 

guaranteed to vanish, we can terminate the above infinite sum at   −1: 

          
    
             .                                     (S10) 

For the following, it will be easier if we multiply both sides by C from the right, and 

work with M
−1

C: 

M
−1

C =      
    
          .                                        (S11) 

Let us examine the powers of C
−1

L in more detail. Its 0th power is simply the identity 

matrix: (C
−1

L)
0
 = I, or         

      for its (i, j)th entry (the Kronecker symbol     

is 1 if i = j and 0 otherwise). The (i, j)th entry of the first power (C
−1

L)
1
 = C

−1
L reads, 

using Lij = −(  
 +  

 )Θij, as 

          
 

  
 

  
         

    
         

  
 

  
     ,                    (S12) 

with Θij restricting its nonzero entries below the main diagonal. The (i, j)th entry of 

the second power is 

        
      

  
 

  
  

  
      

  
 

  
             

  
 

  
  

   
        

  
 

  
  ,    (S13) 

where the summation is understood to yield zero if j + 1 > i − 1. Clearly, as long as 
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j+1 ≤ i − 1, the contribution of (C
−1

L)
2
 to the (i, j)the entry always exceeds the 

contribution of C
−1

L (since the   
  are all positive). The condition j + 1≤ i − 1 

restricts the entries of (C
−1

L)
2
 below the first subdiagonal. A similar argument 

establishes that the nonzero entries of (C
−1

L)
3
 exceed the corresponding ones in 

(C
−1

L)
2
 (and are restricted to below the second subdiagonal), and so on: (C

−1
L)

k
 > 

(C
−1

L)
k−1

 for entries below the (k −1)th subdiagonal. 

As seen from Equation (S11), (C
−1

L)
k
 is multiplied by (−1)

k
 in the summation. 

When summing over k, the main diagonal is (−1)
0
(C

−1
L)

0
 = I. The first subdiagonal is 

given by the corresponding entries of −C
−1

L, which are all negative. The second 

subdiagonal is determined by the corresponding entries of −C
−1

L+(C
−1

L)
2
; however, 

since we established that the nonzero entries of (C
−1

L)
k
 exceed those of (C

−1
L)

k−1
, 

these entries will be positive. Continuing the same argument, the entries in the second 

subdiagonal [−C
−1

L+(C
−1

L)
2
−(C

−1
L)

3
] will again be negative; the ones in the 3rd 

subdiagonal positive, and so on: the subdiagonals keep alternating signs. 

All this is true for M
−1

C (Equation S11). To obtain M
−1

 itself, to be used in 

Equation (S6), we multiply from the right with the diagonal matrix C
−1

. Its effect is to 

multiply each column of M
−1

C by −1/  
 . This flips the sign of each entry and adjusts 

the magnitudes of the nonzero entries, without affecting the alternating sign-pattern in 

M, which therefore looks like this: 

    

 

 
 

   
   
   

   
   
   

   
   

   
   

 
 

.                                   (S14) 

Let us now see what happens when the top species in the hierarchy (species 1) goes 

extinct. As the top species also has the lowest   
 , we can assume that this species 

goes extinct firstly with environmental deterioration (decreasing S and R, or 

increasing D). Thus, the reduced growth due to environmental deterioration will bring 

the density of the top species to zero before other species. The effect of species 1 on 
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the other species is summarized by the first column of M: species 2 is positively 

affected by 1, species 3 negatively, species 4 positively again, and so on. Thus, the 

removal of species 1 hurts 2, helps 3, hurts 4 again etc., resulting in a sharp change in 

the trajectories of all    
  as a function of decreasing S, R or increasing D (Equation 

S6). If the effect is strong enough to not just change the trajectory but turn increasing 

ones into decreasing ones and vice versa, then a oscillating biodiversity pattern 

obtains. 

In fact, while we did not manage to find a formal proof, even more is true: any 

entry (M
−1

)ij with i > j is such that 

                  
 
               .                               (S15) 

The consequence is that the extinction of the current top species will indeed change 

increasing    
         curves to decreasing ones, and vice versa. This conjecture 

held in every case we checked, and we suspect it is in fact a theorem. However, even 

if one treats it as just a well-supported conjecture, it helps explain the observed 

oscillating diversity patterns in response to multiple environmental drivers. 

Finally, these results are maintained even if the matrix H is not fully hierarchical. 

By the general continuity of the M↦M
−1

 mapping that holds for any invertible matrix, 

a sufficiently small change in H can only cause a small change in M
−1

. If H is still 

upper triangular, then a small enough change cannot alter the sign pattern of Equation 

(S14). If H is no longer upper triangular, then the upper triangular entries of M
−1

 will 

no longer be exactly zero – however, as long as the deviation of H from upper 

triangularity is small, this will not override the overall    
         patterns. 
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Supporting Information S3 – Figures S1-S18 

 

Figure S1. Interactive effects of ecosystem size (S), resource productivity (R), and 

disturbance extent (D) on food chain length (FCL) in given typical food webs on the 

right (total species number N=20 and connectance C=0.15), with basal species   =3, 

5 & 6 (red circles – species, black lines – trophic links, and dotted lines – basal 

species competition). The basal species are ranked from the best competitor (species 1) 

to the poorest (species   ) in a strict competitive hierarchy, i.e.,       for i<j and 

0 otherwise in a matrix H. To establish the possibility of competition-colonization 

(C-C) tradeoffs, basal species’ colonization rates are evenly spaced in increasing order 

at a small range (  
 ϵE[0.45, 0.8]). Other parameters: all species mortality rates 

  
    

 =0.1, all consumers’ colonization rates   
 =0.625 and all top-down mortality 

rates due to predation        =0.05.  
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Figure S2. Individual effects of ecosystem size (S), resource productivity (R), and 

disturbance extent (D) on FCL in given food webs as displayed on the right. Panels (A, 

D & G) R=0.2, 0.6 & 1 with D=0; panels (B, E & H) S=0.6, 0.8 & 1 with D=0; and 

panels (C, F & I) R=S=0.6, 0.8 & 1. Other parameter settings are the same as in 

Figure S1 above. 
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Figure S3. Interactive effects of ecosystem size (S), resource productivity (R), and 

disturbance extent (D) on FCL in given typical food webs on the right. Basal species’ 

colonization rates are evenly spaced in increasing order at a large range (  
 ϵE[0.25, 

1]). Other parameter settings are the same as in Figure S1 above.   
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Figure S4. Individual effects of ecosystem size (S), resource availability (R), and 

disturbance extent (D) on FCL in given food webs as displayed on the right. Panels (A, 

D & G) R=0.2, 0.6 & 1 with D=0; panels (B, E & H) S=0.6, 0.8 & 1 with D=0; and 

panels (C, F & I) R=S=0.6, 0.8 & 1. Other parameter settings: see Figure S3 above.   
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Figure S5. Individual effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on basal species diversity (A-F) and their relative abundances 

(G-L) at steady state for initial richness   =3, while ignoring the top-down predation. 

Basal species diversity is characterized by (A-C) species richness and (D-F) the 

inverse Simpson index (     
 , with           being the relative abundance of 

basal species i). Panels (A, D, G & J): R=1 & D=0; panels (B, E, H & K): S=1 & D=0; 

and panels (C, F, I & L): R=S=1. To establish the C-C tradeoff, basal species are 

ranked from the best competitor (species 1) to the poorest (species   ) in a strict 

competitive hierarchy (      for i<j and 0 otherwise in a matrix H), while their 

colonization rates are evenly spaced in increasing order at both small (  
 ϵE[0.45, 0.8]) 

and large (  
 ϵE[0.25, 1]) ranges. Other parameters:   

 =0.1 for all basal species.   
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Figure S6. Individual effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on basal species diversity (A-F) and their relative abundances 

(G-L) at steady state for initial richness   =5, while ignoring the top-down predation. 

Others are the same as in Figure S5 above. 
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Figure S7. Individual effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on basal species diversity (A-F) and their relative abundances 

(G-L) at steady state for initial richness   =6, while ignoring the top-down predation. 

Other parameter settings: see Figure S5 above. 
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Figure S8. Individual effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on basal species richness and consumer species richness in 

given food webs on the top, with different initial basal species richness    

         . Panels (A, D, G, J, M, P, S & V): R=1 and D=0; panels (B, E, H, K, N, Q, 

T & W): S=1 and D=0; and panels (C, F, I, L, O, R, U & X): R=S=1. Basal species’ 

colonization rates are evenly spaced in increasing order at both small (on the left half: 

  
 ϵE[0.45, 0.8]) and large (on the right half:   

 ϵE[0.25, 1]) ranges. The basal species 

are ranked from the best competitor (species 1) to the poorest (species   ) in a strict 

competitive hierarchy, i.e.,       for i<j and 0 otherwise in a matrix H. Other 

parameters:   
    

 =0.1,   
 =0.625 and        =0.05. 
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Figure S9. Interactive effects of ecosystem size (S), resource productivity (R), and 

disturbance extent (D) on FCL in given food webs on the right (with basal species 

richness             ). Basal species’ colonization rates are evenly spaced in 

increasing order at a small range (  
 ϵE[0.45, 0.8]), while weakening their competitive 

hierarchy H: the lower and upper triangular entries (Hij) are uniformly sampled from 

U[0, 0.25] and U[0.75, 1], respectively. Other parameters:   
    

 =0.1,   
 =0.625 

and        =0.05. 
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Figure S10. Interactive effects of ecosystem size (S), resource productivity (R), and 

disturbance extent (D) on FCL in given food webs on the right (with basal species 

richness             ). Basal species’ colonization rates are evenly spaced in 

increasing order at a large range (  
 ϵE[0.25, 1]), while weakening their competitive 

hierarchy H: the lower and upper triangular entries (Hij) are uniformly sampled from 

U[0, 0.25] and U[0.75, 1], respectively. Other parameter settings are the same as in 

Figure S9 above. 

  



11 
 

 

Figure S11. Interactive effects of ecosystem size (S), resource productivity (R), and 

disturbance extent (D) on FCL in given food webs on the right (with basal species 

richness             ). Basal species’ colonization rates are uniformly drawn 

from a small range (  
 ϵU[0.45, 0.8]) and sorted in increasing order, but with a strict 

competitive hierarchy H (      for i<j and 0 otherwise). Other parameters: 

  
    

 =0.1,   
 =0.625 and        =0.05. 
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Figure S12. Interactive effects of ecosystem size (S), resource productivity (R), and 

disturbance extent (D) on FCL in given food webs on the right (with basal species 

richness             ). Basal species’ colonization rates are uniformly drawn 

from a large range (  
 ϵU[0.25, 1]) and sorted in increasing order, but with a strict 

competitive hierarchy H (      for i<j and 0 otherwise). Other parameters: 

  
    

 =0.1,   
 =0.625 and        =0.05. 
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Figure S13. Individual effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on FCL in a given food web with     , as displayed in 

Figure 2. Panels (A & D): R=1 & D=0; panels (B & E): S=1 & D=0; and panels (C & 

F): R=S=1. Basal species’ colonization rates are evenly spaced in increasing order at 

both small (A-C:   
 ϵE[0.45, 0.8]) and large (D-F:   

 ϵE[0.25, 1]) ranges, while 

gradually weakening a strict competitive hierarchy H: the upper triangular entries 

Hij=1, 0.8 or 0.6, corresponding to the lower triangular entries Hji=0, 0.2 or 0.4. Other 

parameters:   
    

 =0.1,   
 =0.625 and        =0.05.  
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Figure S14. Interactive effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on FCL in a large food web on the top (with species diversity 

N=44, connectance C=0.1322 and basal species richness   =10). The basal species 

are ranked from the best competitor (species 1) to the poorest (species   ) in a strict 

competitive hierarchy, i.e.,       for i<j and 0 otherwise in a matrix H. To 

establish the possibility of C-C tradeoffs, basal species’ colonization rates are evenly 

spaced in increasing order at both small (A-C:   
 ϵE[0.45, 0.8]) and large (D-F: 

  
 ϵE[0.25, 1]) ranges. Others:   

    
 =0.1,   

 =0.625 and        =0.05. 
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Figure S15. Interactive effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on FCL in a large food web as displayed in Figure S14 above. 

(i) Perturbing competitive hierarchy: basal species’ colonization rates are evenly 

spaced at both small (  
 ϵE[0.45, 0.8]) and large (  

 ϵE[0.25, 1]) ranges while 

weakening their competitive hierarchy H: the upper and lower triangular entries (Hij) 

are uniformly sampled from U[0.75, 1] and U[0, 0.25], respectively. (ii) Perturbing 

colonization rates: basal species’ colonization rates are uniformly drawn from both 

small (  
 ϵU[0.45, 0.8]) and large (  

 ϵU[0.25, 1]) ranges and sorted in increasing 

order, but with a strict competitive hierarchy H (      for i<j and 0 otherwise; 

yellow lines). Other parameters:   
    

 =0.1,   
 =0.625 and        =0.05.  
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Figure S16. Frequency of the monotonic relationship between FCL and each 

environmental driver (ecosystem size S, resource productivity R and disturbance 

extent D) in 100 initial complex food webs simulated by the niche model (excluding 

those food webs with loops and cannibalism; see details in Methods), with varying 

species diversity (10 N 50), connectance (0.05 C 0.25) and basal species richness 

(    ). Other parameter settings: see Figure 3 in the main text.  
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Figure S17. Frequency of the monotonic relationship between FCL and each 

environmental variable (including ecosystem size S, resource productivity R and 

disturbance extent D) in 100 initial food webs simulated by the niche model 

(excluding those food webs with loops and cannibalism), with varying species 

richness (10 N 50), connectance (0.05 C 0.25) and basal species richness (   

 ). Panels (A-C): basal species’ colonization rates are evenly spaced at a small range 

(  
 ϵE[0.45, 0.8]) while perturbing the competitive hierarchy H: the upper and lower 

triangular entries (Hij) are uniformly sampled from U[0.75, 1] and U[0, 0.25], 

respectively. Panels (D-F): basal species’ colonization rates are uniformly drawn from 

a small range (  
 ϵU[0.45, 0.8]) and sorted in increasing order, but with a strict 

competitive hierarchy H (      for i<j and 0 otherwise). Panels (A & D) R=0.2, 

0.6 & 1 with D=0; panels (B & E) S=0.6, 0.8 & 1 with D=0; and panels (C & F) 

R=S=0.6, 0.8 & 1. Other parameters:   
    

 =0.1,   
 =0.625 and        =0.05. 



18 
 

 

Figure S18. Frequency of the monotonic relationship between FCL and each 

environmental variable (including ecosystem size S, resource availability R and 

disturbance extent D) in 100 initial food webs simulated by the niche model 

(excluding those food webs with loops and cannibalism), with varying species 

richness (10 N 50), connectance (0.05 C 0.25) and basal species richness (   

 ). Other parameter settings are the same as in Figure S17 above, except that basal 

species’ colonization rates are set in a large range (  
 ϵE[0.25, 1] or   

 ϵU[0.25, 1]). 
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Supporting Information S4 – Intransitive competition 

Generation of intransitive competition among basal species 

In an   -species competitive community (    ) with a strict zero-sum game 

(         ), any pairwise competition event has a certain winner and loser 

(          ). This can be summarized by the coefficient of variation         

  

  
 with    being the standard deviation for all elements     and    the mean of 

these elements. Following Laird & Schamp (2006, 2008) and Rojas-Echenique & 

Allesina (2011), the degree of intransitivity can be quantified using the relative 

intransitivity (RI) index of the tournament matrix H, with      
             

             
. 

Here        denotes the variance of the row sums,        
 
    or score sequence, 

of the tournament matrix H.        and        are the maximum and minimum 

possible variances for the row sums of a competitive tournament matrix with the same 

number of species as the observed tournament matrix respectively. The minimum 

variance        for the score sequence is obtained when the row sums are as 

uniform as possible. High row sum variance means that a few species win the 

majority of competitions, and hence corresponds to transitive competition. Low row 

sum variance means all species have similar numbers of species that they can 

outcompete, i.e., intransitive competition. When        is close to       , a low RI 

index is obtained, indicating that transitive competition is prevalent in the community. 

When        is close to       , a high RI index is obtained. Note that when 

        is low, all rows are similar and thus a high RI index is always obtained. To 

obtain different values of RI, it is necessary to choose a zero-sum tournament matrix 

H (Hij = 0 or 1) and permute it (Rojas-Echenique & Allesina, 2011). First a matrix 

with purely hierarchical competition is constructed (1>2>3>…>  ), containing all 

ones above the diagonal and all zeros below the diagonal. Then, the interaction 

between each pair of species (i, j) is reversed with probability f (0<f<1), a random 

perturbation of the tournament matrix. By varying the probability f, we can yield a 
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broad range of RI values. For example, in a three-species system, we thus have RI=0 

for a strict competitive hierarchy, while RI=1 for a rock-paper-scissors game. 

    Using this approach, we primarily generate two levels of RI (=0.5 and 1) for 

basal species competition in complex food webs, to investigate how food chain length 

changes along these environmental gradients (including ecosystem size, resource 

productivity and disturbance; see Figures S1-S7 below), while retaining the ranking of 

basal species by colonization rate (  
    

       
 ). As such, a global 

competition-colonization (C-C) tradeoff does not occur, but local C-C tradeoffs 

(encompassing a subset of the species) are possible.  

References 

Laird, R.A. & Schamp, B.S. (2006). Competitive intransitivity promotes species 

coexistence. American Naturalist, 168, 182‒193. 

Laird, R.A. & Schamp, B.S. (2008) Does local competition increase the coexistence 

of species in intransitive networks? Ecology, 89, 237‒247. 

Rojas-Echenique, J. & Allesina, S. (2011) Interaction rules affect species coexistence 

in intransitive networks. Ecology, 92, 1174‒1180. 

  



3 
 

 

Figure S1. Interactive effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on FCL in given food webs on the right (with basal species 

richness            . Basal species’ colonization rates are evenly spaced in 

increasing order at a small range (  
 ϵE[0.45, 0.8]), with their competitive 

intransitivity RI=0.5 (          ). Other parameters: D=0 in panels (A & D), S=1 in 

panels (B & E), R=1 in panels (C & F), all species mortality rates   
    

 =0.1, all 

consumers’ colonization rates   
 =0.625 and all top-down mortality rates due to 

predation        =0.05.   
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Figure S2. Interactive effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on FCL in given food webs on the right (with basal species 

richness            . Basal species’ colonization rates are evenly spaced in 

increasing order at a large range (  
 ϵE[0.25, 1]), with their competitive intransitivity 

RI=0.5 (          ). Other parameters are the same as in Figure S1 above.  
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Figure S3. Interactive effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on FCL in given food webs on the right (with basal species 

richness              . Basal species’ colonization rates are evenly spaced in 

increasing order at a small range (  
 ϵE[0.45, 0.8]), with their competitive 

intransitivity RI=1 (          ). Other parameters are the same as in Figure S1 

above.  
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Figure S4. Interactive effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on FCL in given food webs on the right (with basal species 

richness              . Basal species’ colonization rates are evenly spaced in 

increasing order at a large range (  
 ϵE[0.25, 1]), with RI=1 (          ). Other 

parameters are the same as in Figure S1 above.  
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Figure S5. Interactive effects of ecosystem size (S), resource productivity (R) and 

disturbance extent (D) on FCL in a larger complex food web on the top (with species 

diversity N=44 and basal species       . Basal species’ colonization rates are 

evenly spaced in increasing order at both small (A-F:   
 ϵE[0.45, 0.8]) and large (G-L: 

  
 ϵE[0.25, 1]) ranges, with RI=0.5 or 1 (          ). Other parameters: see Figure 

S1. 
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Figure S6. Frequency of the monotonic relationship between FCL and each 

environmental variable (including ecosystem size S, resource productivity R and 

disturbance extent D) in 100 initial food webs simulated by the niche model 

(excluding those food webs with loops and cannibalism), with varying species 

richness (10 N 50), connectance (0.05 C 0.25) and basal species richness (   

 ). Basal species’ colonization rates are evenly spaced at a small range (  
 ϵE[0.45, 

0.8]), with their competitive intransitivity RI=0.5 or 1 (          ). Panels (A & D): 

R=0.2, 0.6 & 1 with D=0; panels (B & E): S=0.6, 0.8 & 1 with D=0; and panels (C & 

F): R=S=0.6, 0.8 & 1. Others:   
    

 =0.1,   
 =0.625 and        =0.05. 
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Figure S7. Frequency of the monotonic relationship between FCL and each 

environmental driver (ecosystem size S, resource productivity R and disturbance 

extent D) in 100 initial complex food webs simulated by the niche model (excluding 

those food webs with loops and cannibalism), with varying species diversity 

(10 N 50), connectance (0.05 C 0.25) and basal species richness (    ). Basal 

species’ colonization rates are evenly spaced at a large range (  
 ϵE[0.25, 1]), with 

their competitive intransitivity RI=0.5 or 1 (          ). Others: see Figure S6 

above. 
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