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Abstract

Assistive robotics is witnessing a surge in research focusing on designing algorithms

and frameworks that offer personalized support to users, considering their inten-

tions and adapting system responses accordingly. This thesis delves into the inte-

gration of artificial intelligence in assistive technologies for powered wheelchairs,

with a primary emphasis on the challenging problem of shared control through

reinforcement learning.

Shared control, also known as shared autonomy, has been extensively studied,

especially in the context of powered wheelchairs. Many wheelchair users rely on

aid to enhance their everyday autonomy, particularly those who cannot use con-

ventional joystick control interfaces, often encountering frustrations, fatigue, and

compromised safety. Existing shared control methods typically involve blending

human and autonomous controller decisions or predicting user goals to act au-

tonomously. Unfortunately, such approaches often rely on assumptions like known

goal sets, world dynamics models, and user behavior models, which limit adapt-

ability. Motivated by the shortcomings of prior approaches and inspired by recent

machine learning advances, this thesis introduces a novel shared control method

using deep reinforcement learning within a continuous action space, which lifts

the reliance on the aforementioned assumptions.

Initially, a reinforcement learning agent is developed to autonomously navigate

complex indoor environments without the need for a map. The agent is trained

using a virtual robotic wheelchair and rigorously validated against popular path

planning methods. Subsequently, artificial noise is injected into the learned model

to simulate disabled user input, enabling the training of an end-to-end shared

control system. A modification in the typical reinforcement learning objective

ensures compliance with user intentions while simultaneously maximizing future

rewards associated with the assistive nature of the system. The shared control

system receives noisy user commands and sensor data to generate corrective control

commands for the wheelchair. Rigorous simulations and real-world trials with

human users demonstrate significant reductions in collisions and increased obstacle

clearance, albeit with a trade-off in user satisfaction.
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Additionally, this thesis presents a non-intrusive, vision-based head-control inter-

face for powered wheelchairs, employing face detection and head pose estimation.

Through human user trials, the effectiveness and performance of this interface are

benchmarked, confirming its viability as an alternative to the standard joystick

interface. Notably, when combined with the shared control system in further real-

world trials, the proposed assistive system proves adept at compensating for the

less accurate input of this more challenging interface, resulting in a remarkable

92% reduction in collisions and improved overall adequacy.

In summary, this thesis introduces a mapless autonomous navigation method for

powered wheelchairs, a novel shared control framework employing deep reinforce-

ment learning, and a non-intrusive vision-based head-control interface. The pro-

posed assistive system is empirically validated, showcasing its substantial impact

on enhancing user autonomy and safety in powered wheelchairs.
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CHAPTER 1

Introduction

This chapter introduces the core focus of the thesis: the development of assistive

technologies for powered wheelchairs using machine learning methods. It highlights

the motivation behind this research and presents the key research questions and

contributions. Additionally, an overview of the thesis structure is provided to guide

readers through the subsequent chapters.

1.1 Background and Motivation

The field of robotics has the potential to significantly enhance our lives, both in-

dustrially and domestically, by providing support for physical and cognitive tasks.

Over the past decades, technological advancements have greatly improved the

capabilities of robots, enabling them to perform complex computations and in-

teract more effectively with the world through advanced sensors and actuators.

Concurrently, the field of Artificial Intelligence (AI) has undergone a remark-

able revolution, leading to the emergence of Artificially Intelligent Robots. These

robots surpass traditional programming limitations and can undertake intricate

tasks, making decisions beyond predefined instructions. As technology progresses,

we can envision robots collaborating with humans as trusted partners in a wide

range of tasks.

Within this context, assistive robotics has gained considerable traction in recent

1
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Figure 1.1: From Standard to Smart: Augmenting Powered Wheelchair Navi-
gation. The figure showcases the transformation from a conventional powered
wheelchair, navigated using a joystick with potential risks, to a smart robotic
wheelchair. The smart wheelchair utilizes sensors, intelligent algorithms, and an
option of a head-control interface, enabling collaborative control with AI assis-
tance. By incorporating environmental data and intelligent decision-making, the
smart robotic wheelchair enhances safety during navigation, providing personal-
ized assistance to the user.

years. This vast field, which has been the subject of ongoing research for decades,

holds the potential to positively impact a significant portion of the population

and society as a whole. Powered wheelchairs, as mobile assistive robots, play a

particularly crucial role in enhancing the independence, self-esteem, and social

participation of individuals with physical disabilities. With factors such as the

rapidly rising percentage of the geriatric population and the prevalence of chronic

diseases, the global market for powered wheelchairs is expected to experience

substantial growth in the coming years. Recent reports estimate that the disabled

assistive devices market will grow at a compound annual growth rate (CAGR) of

5.5% from 2019 to 2026 [1], and the powered wheelchair market will register a

CAGR of over 6.3% between 2022 and 2030 [2]. These statistics underscore the

importance of relevant technologies and the need for further improvements.

Powered wheelchairs can be categorized into standard powered wheelchairs and

smart wheelchairs, the latter being equipped with additional capabilities beyond
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manual mobility to provide further assistance and enhance patient independence

and comfort [3]. This augmentation involves the use of various sensors, specialized

electronics, and computer algorithms, all of which are necessary to create assis-

tive technologies for robotic wheelchairs. Fig. 1.1 illustrates the transformation

from a conventional powered wheelchair to a smart robotic wheelchair, enabling

collaborative control with AI assistance, aimed at enhancing navigation safety

and providing personalized assistance to the user. Although assistive technolo-

gies encompass a wide range of functions, such as communication aids, posture

improvement, and obstacle-alerting systems, this thesis focuses on the primary

function of navigation and control, as many wheelchair users face challenges in

this regard due to physical and/or cognitive impairments.

Specifically, this thesis centers on the problem of Shared Autonomy (or Shared

Control) within the context of assistive mobile robots. Shared Autonomy refers

to a setup that incorporates inputs from both the user and the robotic system,

executing control actions that optimize the situation while aligning with the user’s

intentions and behavior [4, 5]. The user and the assistive robot collaborate to

achieve a common navigation goal, with an emphasis on safety and user comfort.

Another aspect addressed in this thesis concerns the type of input provided by the

user. While the majority of powered wheelchair users rely on a joystick for control,

individuals with arm movement impairments must utilize alternative interfaces to

operate their wheelchairs.

Existing works on shared control solutions often make several assumptions, such

as a known set of possible goals, a known dynamics model of the world, and a

known user behavior model [6, 7, 8]. Moreover, many of these methods blend

human input with suggestions from conventional path planners, often lacking cer-

tain safety guarantees or flexibility in their objectives [9]. On the other hand,

existing alternative control interfaces, like head-array switches or the Sip ’n Puff

switch [10], are typically invasive methods that are cumbersome to use and offer

limited control resolution. Consequently, there is a pressing need to improve the

current state-of-the-art.

Machine learning, which has shown tremendous promise in recent years and is
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poised to transform the field of robotics, remains underutilized in assistive tech-

nologies for powered wheelchairs. This thesis proposes the utilization of the Re-

inforcement Learning (RL) framework, a branch of machine learning for solving

sequential decision-making problems, to develop a novel shared-control system

that departs from conventional methods while addressing several of their limi-

tations. The proposed method is a self-learning system that can be trained in

simulation without requiring a human user. It can subsequently be transferred to

a real wheelchair to augment the user’s continuous stream of inputs by leveraging

information derived from the smart wheelchair’s onboard sensors. Additionally,

this thesis introduces a novel vision-based interface for controlling a wheelchair

through head movements. This non-invasive, low-cost, and intuitive interface can

be combined with the shared-control system to enhance usability and safety. The

proposed systems are thoroughly analyzed and validated through real-world ex-

perimentation.

1.2 Research Aim and Objectives

Motivated by the significant potential of assistive robotics and the remarkable ad-

vancements in deep learning, this thesis aims to leverage machine learning progress

to enhance the state-of-the-art in assistive technologies for powered wheelchairs.

Specifically, this work focuses on the development of a novel shared-control sys-

tem for wheelchair driving. The system aims to minimize assumptions about the

user and the environment while maintaining flexibility in optimizing objectives.

To achieve this, the thesis proposes the use of reinforcement learning, as its for-

mulation as a sequential decision-making framework is well-suited for this task.

Furthermore, within the same framework, this thesis investigates the viability of

an autonomous navigation strategy formulated as an RL policy, which maps en-

vironmental observations to control actions. This approach seeks to improve cer-

tain aspects of conventional path planning, such as the reliance on maps and high

computational demands. Importantly, as discussed in Chapter 4, this autonomous

navigation model can be utilized in the training process of the shared-control sys-
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tem to simulate a wheelchair user, eliminating the need for actual human input.

Given the sample inefficiency typically associated with RL systems, the use of sim-

ulation environments for training becomes crucial, primarily due to their ability

to provide low-cost and safe training samples. However, despite the remarkable

achievements of RL applications in recent years, such as surpassing human per-

formance in complex games like Go [11] and Dota 2 [12], and predicting protein

structures [13], training reliable RL systems remains notoriously challenging, par-

ticularly when it comes to real-world application. Considering this, this thesis

also explores the effectiveness of the proposed shared-control system, trained in

a simulated environment with a simulated user, when transferred to a physical

robot with human users.

Lastly, the thesis aims to enhance the adequacy of existing alternative control

interfaces for wheelchair users with limited or no arm function by employing a

computer vision approach and combining it with the proposed assistive system.

To realize the aforementioned aims, this thesis establishes the following objectives:

1. Formulate an autonomous navigation strategy for robotic wheelchairs as a

reinforcement learning problem, eliminating the need for a pre-existing map

and relying solely on the robot’s onboard sensors.

2. Utilize the drive actions of the trained autonomous navigation model to

simulate a realistic wheelchair user model by introducing artificial noise.

Incorporate this simulated user model into the training loop of a shared-

control system, also based on the RL framework. The shared-control system

should effectively assist the user in achieving their goals while respecting

their intentions, without requiring knowledge of the user’s behavior model

or predefined goals.

3. Transfer the developed shared-control system to a physical powered wheelchair

and assess its effectiveness through comprehensive validation.

4. Design an innovative vision-based head control interface for powered wheelchairs

that is non-invasive, intuitive to use, and customizable to individual user

preferences.
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5. Enhance the adequacy of the head control interface by integrating it with

the shared-control system, leveraging the capabilities of the shared-control

system to improve usability, user experience, and overall performance.

1.3 Research Questions

Provided the objectives presented in the previous section, this thesis seeks to

answer the following research questions concerning smart robotic wheelchairs:

• Research Question 1: Can we develop an intelligent system capable of

mapless autonomous navigation in complex indoor environments, relying

solely on onboard sensor data and processing? Can this system successfully

execute the necessary maneuvers for proficient wheelchair driving?

• Research Question 2: Is it feasible to design and implement an intelligent

system that takes into account user input and utilizes sensor data to enhance

user driving in various environments with different goals? Can this system

demonstrate effectiveness in both simulated and real-world environments?

• Research Question 3: How can we enhance existing alternative control in-

terfaces, specifically through the design and implementation of a non-invasive

head-control system that can be easily deployed on a powered wheelchair?

• Research Question 4: To what extent can the intelligent shared-control

system improve the adequacy of alternative control interfaces? Can the inte-

gration of the shared-control system enhance the performance and usability

of the head-control interface?

By addressing these research questions, this thesis aims to contribute valuable

insights and advancements in the field of smart robotic wheelchairs, with a primary

focus on the problem of shared control. The findings of this research will not

only enhance our understanding and development of shared control techniques in

the context of wheelchair navigation but also have the potential to extend and
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benefit other domains within the broader field of smart robotics and human-robot

interaction.

1.4 Key Contributions

This section serves to highlight the notable contributions of the thesis, which can

be summarized as follows:

1. Autonomous Navigation: The thesis presents an intelligent system for

mapless autonomous navigation in complex indoor environments using on-

board sensor data and processing. The trained autonomous agent surpasses

human performance and conventional motion planners, demonstrating high

success rates in executing maneuvers required for competent wheelchair driv-

ing. The proposed approach eliminates the need for a map, reduces compu-

tational demands, and can be applied to other non-holonomic mobile robots,

contributing to advancements in the field of smart robotic wheelchairs and

navigation for various robotic platforms.

2. Shared Control: Introducing a novel policy-based shared-control frame-

work, this thesis presents a system that dynamically follows user intentions

while optimizing its own objectives, without relying on preconceived assump-

tions about the user, environment, or task. With its inherent flexibility and

adaptability to the user, task, and sensory input, the proposed system ef-

fectively assists users in reaching their goals and navigating safely. This sig-

nificant contribution enhances the field of shared control and human-robot

interaction, providing new insights and advancements in the field of shared

control and human-robot interaction.

3. Real-World Application: The thesis demonstrates the practical applica-

tion of the proposed shared-control system in a real-world scenario. The

assistive model trained in simulation, and with a simulated user model,

successfully transfers to a physical robot, assisting human users in achiev-

ing their goals with increased clearance and reduced collisions. This high-
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lights the effectiveness and potential real-world application of reinforcement

learning-based systems in the field of smart robotic wheelchairs.

4. Vision-Based Head-Control Interface: A non-intrusive and intuitive-

to-use head-control interface is introduced, leveraging vision-based neural-

network head pose estimation. The system only requires only a standard

web camera and offers continuous turning angles, customization to individ-

ual range of motion, and compatibility with compact computers that can be

installed on electric wheelchairs. Real-world trials validate the practicality

and effectiveness of this head-control interface, contributing to the advance-

ment of control interface design for wheelchair users, with a specific focus

on individuals with quadriplegia.

5. Enhanced Control Interface Adequacy: By combining the head-control

interface with the shared control system, the thesis demonstrates the im-

provement in control interface adequacy. The shared-control system signif-

icantly reduces the number of collisions, maintains a larger clearance, and

improves completion times and user perception of control and safety, particu-

larly for more challenging-to-use interfaces. This underscores the importance

of coupling alternative control interfaces with the shared control system to

enhance their adequacy and overall safety.

1.5 Publications

• Chatzidimitriadis, S., Oprea, P., Gillham, M., & Sirlantzis, K. (2017, Septem-

ber). Evaluation of 3D obstacle avoidance algorithm for smart powered

wheelchairs. In 2017 seventh international conference on emerging security

technologies (EST) (pp. 157-162). IEEE.

• Chatzidimitriadis, S., & Sirlantzis, K. (2022, May). Deep Reinforcement

Learning for Autonomous Navigation in Robotic Wheelchairs. In Interna-

tional Conference on Pattern Recognition and Artificial Intelligence (pp.

271-282). Cham: Springer International Publishing. *
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• Bafti, S. M., Chatzidimitriadis, S., & Sirlantzis, K. (2022). Cross-domain

multitask model for head detection and facial attribute estimation. IEEE

Access, 10, 54703-54712.

• Chatzidimitriadis, S., Bafti, S. M., & Sirlantzis, K. (2023). Non-Intrusive

Head Movement Control for Powered Wheelchairs: A Vision-Based Ap-

proach. IEEE Access. *

Note: Publications marked with an asterisk (*) have directly contributed to the

thesis.

1.6 Thesis Structure

The rest of the thesis is organized as follows. Chapter 2 presents the literature re-

garding autonomous navigation and shared control methods for mobile robots, as

well as the relevant works that have been done specifically for powered wheelchairs.

Chapter 3 establishes some basic concepts of reinforcement learning and based on

that framework it introduces an autonomous navigation method, which is devel-

oped and tested in simulation and is benchmarked against conventional navigation

methods and human performance. Chapter 4 introduces a novel shared control

framework, that makes use of the autonomous method of Ch. 3 and modifies the

objective of maximum entropy reinforcement learning so that the resulting system

is compliant with the user. The system is developed and validated in simulation,

but is also transferred to a real powered wheelchair, where trials with human

participants showcase its efficacy. Chapter 5 focuses on a vision-based control in-

terface for powered wheelchairs. First, the chapter presents the relevant works that

have appeared in the literature and discusses their limitations. Then, it describes

the design of a novel head-control interface and validates its effectiveness through

real-world trials. Lastly, the novel interface is combined with the shared control

system of Ch. 4, where another set of real-world trials shows how the provided

assistance can improve the usability of such an interface, which is less accurate
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compared to the standard joystick interface. Finally, Chapter 6 concludes the

thesis by summarizing its contributions and by proposing future research venues.



CHAPTER 2

Autonomous and Semi-Autonomous

Methods for Mobile Robots

This chapter presents an overview of existing research on autonomous and as-

sisted navigation for Electric Powered Wheelchairs (EPWs). It focuses on the

primary components of these navigation systems and emphasizes relevant litera-

ture concerning powered wheelchairs. Additionally, the chapter explores machine

learning approaches used in these systems, which align with the methodology used

in subsequent technical chapters of the thesis. The literature review serves as a

foundational resource for developing novel autonomous and assistive technologies

for EPWs.

2.1 Introduction

A powered wheelchair serves as a crucial technology for individuals with mobility

issues, enabling them to maintain their independence. The usability of a powered

wheelchair plays a vital role in facilitating daily activities for its users. Hence,

an EPW should strive to provide effortless operation, promote safety, and prevent

fatigue and frustration throughout the day. Assistive technologies have emerged

as solutions with these desired characteristics, offering enhanced capabilities and

ease of use in powered wheelchairs, which individuals with disabilities typically

11
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prefer over more challenging alternatives [14].

To further enhance the wheelchair experience, comfortable seating and proper

posture are also of paramount importance. However, this thesis primarily focuses

on improving the mobility and control aspects of an EPW. Specifically, it aims

to transform a standard powered wheelchair into a “smart robotic wheelchair” by

leveraging various sensors and machine learning algorithms. These technologies

enable the wheelchair to possess autonomous and semi-autonomous capabilities.

In this chapter, we begin by exploring autonomous navigation methods for mobile

robots and the relevant research conducted in the context of powered wheelchairs.

We then delve into the concept of shared control, which serves as the central theme

of this thesis. We discuss prominent methods that have been applied to wheelchair

control, establishing the foundation for the exploration of shared control. Addi-

tionally, we present a departure from conventional approaches and highlight the

utilization of machine learning techniques in addressing the shared control prob-

lem. This alternative approach holds promise as a state-of-the-art solution for

achieving wheelchair semi-autonomy.

2.2 Autonomous Robots

For a robot to be deemed as truly autonomous, it has to be able to navigate

through the environment. In order to achieve that, the robot needs to solve the

following questions: “Where am I?”, “Where to go?” and “How to get there?”.

The foremost question, also called the problem of localization, is about determin-

ing the position of the robot on a given map, at any given time. “Where to

go?” is concerned with the desired destination of the robot, which can be an

input of various forms and from different interfaces, but needs to be mapped to

a position on a map. Finally, “How to get there?” refers to the robot’s capa-

bility of planning a feasible and efficient plan to the destination and executing it

while avoiding obstacles. Figure 2.1 provides a high-level modular architecture for

autonomous navigation in mobile robots, encompassing perception, localization,

cognition, and motion control modules, each contributing to the robot’s ability
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Figure 2.1: Typical Control Structure of Autonomous Navigation in Mobile
Robots. The figure showcases the high-level modular architecture for autonomous
navigation in mobile robots. It includes perception for sensing and data interpre-
tation, localization for map knowledge and positioning, cognition for global path
planning, and motion control for local path execution, enabling efficient real-world
navigation.

to answer these fundamental questions. In the following sections, we provide an

overview of the state-of-the-art methods for localization, path planning and mo-

tion control, providing a base on the family of algorithms that can be used to

make a robot autonomous.

2.2.1 Localization

As mentioned before, the term localization refers to figuring out where a robot is

on a given map, which is an essential requirement to making decisions about future

actions. The pose of the robot in space is defined by its location in the Cartesian

Space, which can be described by its coordinates x, y, z, and its orientation, which

can be described by the Euler angles, or equivalently the roll (r), pitch (p) and

yaw (y) [15].
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Normally, a mobile robot is equipped with sensors to monitor its own motion (e.g.,

wheel encoders, inertial sensors), and when a kinematic model of the robot is avail-

able, it can be used to compute an estimate of its location relative to its starting

position. This is known as odometry or dead reckoning. However, due to errors

present in the sensor measurements, which are integrated over time, the location

estimates become increasingly unreliable as the robot navigates the environment.

To correct the errors in the dead reckoning estimates, localization algorithms can

leverage information from the environment, gathered from additional sensors, and

correlate them to the information contained in a map.

The formulation of the localization problem depends on the type of the sensors

used to observe the environment, as well as the type of the map. Traditionally,

the problem of map building and localization has been addressed with the follow-

ing two approaches: 1) Map building and subsequent localization 2) Continuous

map building and updating. In the first approach, a (usually teleoperated) robot

goes through the environment to collect information from various positions and

then processes it to build a map. Once the map is available, the robot can then

collect information from its current position, and compare it with the constructed

map to estimate its current pose. In the second approach, the robot is able to

autonomously explore the environment and build a map, or update an existing

one, while it is moving. A well-known family of algorithms that fit within this

approach is Simultaneous Localization and Mapping (SLAM)[16].

The types of maps that represent the environment can be generally classified into

two categories: feature-based and location-based [17]. Feature-based maps describe

the shape of the environment at specific locations, which are the locations of

objects contained in the map (e.g., landmarks). On the other hand, location-

based maps offer a label for any location in the world, which means that they

contain information not only about where objects are in the environment, but

also about their absence (i.e., free space). One of the most widely-used location-

based representations is the occupancy grid map, which provides a discretized

representation of an environment, where each coordinate is assigned a binary value

that indicates whether or not a location is occupied by an object.
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Given the existence of a map, the robot can utilize its onboard range sensors

(e.g., laser rangefinder) to measure its distance from the objects of interest in a

feature map or its distance from the nearest occupied regions in a grid map. As

mentioned before, localization algorithms can use this information, along with the

odometry input, to estimate the robot’s location on the map. However, in the real

world the sensor information is corrupted by noise, and therefore, it is necessary to

estimate not only the robot’s location, but also the uncertainty associated with it,

since assuming perfect location estimates can lead to catastrophic consequences.

For that reason, various probabilistic methods have been proposed to solve the

localization problem.

One of the most well-known localization algorithms is Markov localization[18].

Markov localization is a straightforward application of the Bayes filters and works

on both feature and grid maps. A special case of Markov localization is the

Extended Kalman filter localization (EKF) algorithm[19], which is comparatively

more efficient but only works on feature maps. A closely related algorithm is the

unscented Kalman filter localization (UKF)[20], which uses the unscented trans-

form to linearize the motion and measurement models instead of computing their

derivatives, thus, providing an alternative and more accurate approach to consid-

ering the impact of noise on the estimation process. EKF and UKF work on the

problem of position tracking, where it is assumed that the initial robot pose is

known. The multi-hypothesis tracking filter (MHT)[21] is a more computationally

expensive extension of the basic EKF that works on the more generic problem of

global localization, where the initial robot pose is not known.

Other prominent algorithms that can solve the global localization problem are the

grid localization and the Monte Carlo localization (MCL)[22]. Grid localization

uses a histogram filter to represent the posterior belief over the pose space, and

even though it works well, it is quite inefficient when applied on a fine-grained grid

that is required for good results. MCL is a very popular algorithm that utilizes

particle filters to represent the robot’s belief over possible poses. An improvement

upon the basic MCL is the adaptive MCL (AMCL), which can dynamically adjust

the number of particles in the filter to trade-off between localization accuracy and
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processing speed.

Numerous variations of the algorithms presented above, as well as many other

proposed localization techniques, can be found in the literature. Namely, other

approaches include vision-based tracking systems, beacon-based and radio fre-

quency schemes, converting the robot localization to dynamic optimization and

applying particle swarm optimization (PSO)[23] and more. Localization is an as

critical as hard problem in mobile robot navigation, the solution of which depends

on the application domain and the environment of interest, as well as the available

sensors and computing power.

2.2.2 Path Planning

Path planning is one of the most critical capabilities of an intelligent robot. The

problem of path planning refers to finding an optimal, collision-free path to navi-

gate from the current position to a goal position. Due to the huge volume of lit-

erature on conventional path planning, many different classifications can be made

considering how the different algorithms function. However, a common division is

between global planners and local planners.

Global planning algorithms are concerned with static and offline path planning,

given prior knowledge of the environment (existence of a map), and also localiza-

tion knowledge, where their goal is to calculate a path from the current location to

a desired destination. In order to achieve that, these algorithms execute a search

operation in a set of samples, that consists of the different states and configura-

tions that are reachable by the robot, including the initial robot states and the goal

states. Differing in their approach to executing the search, global planner algo-

rithms include graph search algorithms, sampling-based algorithms, and intelligent

algorithms.

As the name implies, graph search algorithms operate on graphs built upon maps

of the environment, as described in the previous section, and are a discretized

representation of all configurations reachable by the robot (also known as the C-

Space). Graph search algorithms visit, fully or partially, this graph until they find
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a subset of samples that can form a path to connect the initial and the goal state.

Widely used algorithms of this family include Dijkstra’s algorithm [24], A⋆ [25],

D⋆ [26], as well as Any-angle algorithms (e.g. T ⋆ [27], Anya [28]), which can

produce paths that are not restricted to specific orientations, since their waypoints

do not have to be placed in neighboring nodes of the graph (in contrast to Edge-

restricted algorithms).

Sampling-based algorithms also operate in the C-space, however, they focus on

creating or modifying the samples within it iteratively. Even after a feasible path

is discovered, they can keep working to find more optimal ones. A complex en-

vironment might require a large number of samples in order to approximate an

optimal solution, thus demanding large memory resources. Two of the most promi-

nent sampling-based algorithms are the Rapidly exploring Random Tree method

(RRT) [29] and the Probabilistic Roadmap Method (RPM) [30]. RRT creates a

tree structure, starting from an initial point, and extending it by sampling new

points from the C-Space. If RRT detects that the goal point has been added to

the tree, it can then backtrack the tree to its origin to recover the path. PRM

starts with a series of C-space samples, and for each one of those initial samples,

it creates a tree by generating more samples and attempting to connect them to

their nearest neighbors. When the goal configuration is included in the resulting

graph, a graph search method (like A⋆) is then used to find the shortest path in

the roadmap.

Lastly, intelligent algorithms include nature-inspired approaches which utilize tech-

niques that simulate biological evolution and insect foraging behaviors in nature

to generate paths that result from the evolution of a population. The Genetic

Algorithm (GA) [31], along with its variations, are based around individuals that

contain binary genes, which encode solutions (i.e., solving the path planning prob-

lem). Those individuals can reproduce, combine their genes and mutate, and given

enough iterations, this evolution process leads to convergence of the algorithm.

Swarm Optimizers use agents (usually modeled after animals) that move in free

space, and through iterations they can create patterns that converge to paths lead-

ing to the goal. The Particle Swarm Optimization (PSO) [23] algorithm and the
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Ant Colony Optimizer (AC0) [32] are prime examples of evolutionary algorithms.

2.2.3 Motion Planning

Motion planning is concerned with generating short, feasible robot trajectories

that satisfy some criteria. The main criterion that all motion planning methods

take into account is collision avoidance, which, as the name implies, considers tra-

jectories that avoid colliding with obstacles. Local motion planning algorithms are

used to calculate collision-free trajectories and can be used either standalone or on

top of a global motion planner, while they focus on dynamic planning considering

the local information of the robot’s environment.

Local planners that react at each instant to the presence of obstacles, are also

known as Reactive planners and need to be efficient in order to be able to produce

a timely reaction, while they also require sufficient real-time feedback provided

by the robot. A major approach for tackling the reactive planning problem is by

utilizing fields, two prominent such methods being the Artificial Potential Fields

(APFs)[33] and the Vector Field Histogram (VFH)[34]. In APF, the resulting

motion of the robot moving in the artificial field is given by a sum of external

virtual forces, which can be either repulsive or attractive. Naturally, surrounding

obstacles generate repulsive forces, so that collision with them is prevented, while

a goal position generates an attractive force so that the robot moves towards it.

In order to tackle a major drawback of this method, which is getting stuck in

local minima, various works have proposed combining APF with other methods,

like evolutionary algorithms [35] or PSO [36]. VFH evaluates the density of

obstacles around the robot by creating a polar histogram and then steers the

robot towards the angle with the lowest density of obstacles. Another class of

reactive planners are the Bug algorithms [37, 38, 39], which are among the earliest

and simplest planners, and perform goal-seeking behaviors while only assuming

local knowledge of the environment. Lastly, a very important reactive planner

that needs to be mentioned is the Dynamic Window Approach (DWA) [40], which

was designed to mitigate the disadvantages of APF. It works by computing a set

of feasible velocities that can be reached in the next time step and then taking
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the subset of only the safe velocities, which are the ones that would not result

in a collision. The algorithm evaluates a score of the trajectories of the sampled

velocities (applied for a specified time frame), based on the speed of the robot,

its clearance (proximity to obstacles), and also its orientation with respect to the

goal. Finally, the velocity command associated with the highest-scoring trajectory

is the one that is sent to the mobile base.

In the family of local planners, local optimization algorithms modify a pre-existing

path according to the obstacles they encounter and place priority on computational

efficiency rather than optimality. Elastic bands is a framework that has been

proposed to close the gap between global and reactive planning [41], and works

with deforming an initial collision-free path to maintain clearance from obstacles,

as changes are detected in the environment. Time Elastic Bands (TEB) [42] is

an extension to Elastic Bands that includes time constraints, using a weighted

multi-objective optimization framework that gives it a high degree of flexibility.

In terms of artificial intelligence, Fuzzy Logic and Machine Learning have been

utilized for producing collision-free paths in known or unknown scenarios. Fuzzy

logic depends on the use of fuzzy rules to produce robust controllers [43] that can

navigate through unstructured terrain [44] or avoid dynamic obstacles [45, 46].

Controllers trained with machine learning mainly include the use of neural net-

works. For example, Engedy [47] introduced a neural network planner, trained on

data that were labeled with the potential field method, to avoid static and dy-

namic obstacles. Tai [48] utilized a deep convolutional neural network to perform

obstacle avoidance, while the control commands acting as the labels during the

training process were provided by a human operator. Other works combine fuzzy

logic with neural networks, to train neuro-fuzzy controllers for robotic navigation

[49, 50, 51].

One of the main arguments for using machine learning in motion planning, but also

robotic systems in general, is its potential to automatically adjust a huge number

of system parameters, that would otherwise need to be manually tuned, therefore

making the system more robust and reducing the effort required by human experts.

Such methods, which are a focus of this work, will be discussed in more detail in
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the following section, with an emphasis on reinforcement learning methods.

2.2.4 Machine Learning in Motion Planning

Within the broadness of the machine learning framework, many works have utilized

Supervised Learning (SL) with deep neural networks, which has proven itself to

be a powerful tool to classify and process data, for mobile robot navigation. An

important work is presented in [52], where semantic information was extracted

from images, through deep networks, to decide driving actions for an autonomous

vehicle. Another major paradigm utilizing the SL framework is presented in [53],

where authors mapped laser range findings and the target position to moving

commands, via a deep learning model, and with Dijkstra’s planner along with

DWA acting as the expert for labeling the data. Producing such datasets, however,

is costly, time-consuming, and prone to errors, which might negatively impact the

training outcome.

Other popular methods include imitation learning (IL) and Inverse Reinforce-

ment Learning (IRL), which both try to solve the problem of optimal control

with a data-driven approach. IL is about learning an expert strategy, as a map-

ping between observations and actions (e.g., neural network), by data provided

by an expert. For example, Hussein et al. [54] learned a policy by combining

demonstrations and active learning, to perform navigation tasks in a 3D simulated

environment based on raw visual input. In IRL the goal is to infer a reward func-

tion from expert demonstrations, instead of directly learning the policy. A good

example of IRL application is that of learned navigational policies in a socially

adaptive manner [55, 56]. However, these methods heavily rely on high-quality

demonstration data, which can be expensive and time-consuming to collect, while

generalization to unseen paradigms is challenging. Other works combine SL with

RL, as in [57], that trains a global planner by mimicking an expert, and a local

planner that is trained with deep Q-learning. The switching strategy between the

planners, though, is simplistic, the global planner can only navigate towards a

specific number of goals, and both planners work with discrete actions.
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In a pure RL framework, many works rely solely on vision to perform navigation.

In [58] a feature vector is extracted from a raw image, which is fed as input to a

RL agent to control a real slot car through four discrete actions. Zhu et al. [59]

used a high-quality rendering simulation framework to perform visual navigation

on a SCITOS robot, again considering four actions. The authors in [60] propose

the use of auxiliary tasks to provide a denser training signal, while their imple-

mentation also works with a discrete action space, and depends on the capacity of

a stacked Long short-term memory (LSTM) architecture which underperforms in

large environments. Using depth instead of RGB images, increases the transfer-

ability of a learned policy in simulation to the real world, as shown in [61] where

a navigational policy was learned through raw depth images. This work utilizes

a rather large network and outputs discrete control commands. In other works,

state representation learning (SRL) is utilized to capture useful and dense infor-

mation from high-dimensional observations, such as in [62], where it is argued that

learning successor features from images can improve knowledge transfer between

tasks and speed up the training process. However, again this implementation sim-

plified the problem by learning discrete actions and was not tested in complicated

environments.

Zeng et al. [63] proposed the addition of a Gated Recurrent Unit (GRU) [64] layer

to the typical architecture of the Asynchronous Advantage Actor Critic (A3C) [65]

actor-network, in order to enhance it with a memory mechanism and improve

the continuous navigation task in challenging environments. Tai et al. [66] is

one of the few other works that learned a continuous control policy, aimed for a

Kobuki-based turtlebot, and relying only on sparse 10-dimensional laser ranges,

the robot’s velocity, and the relative target position. Marchesini [67] suggests that

the discrete action space is a viable solution for performing mapless navigation,

however, the experiments are performed with a turtlebot in simple environments

and only the angular velocity is taken into account, whereas the linear velocity

is set to a constant value (also restricting static rotational movements). Finally,

Francis et al. [68] trained an RL-based local planner and combined it with PRM

as the global planner to provide waypoints for the RL agent.
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The approach to autonomous navigation this thesis adopts is also based on the RL

framework, which has not yet been utilized for powered wheelchair navigation, as

will also be evident in the following section concerning autonomous wheelchairs.

However, due to the characteristics associated with powered wheelchairs, the pro-

posed approach needs to satisfy some requirements that are lacking from the rel-

evant literature presented in this section. These are 1) Use of the continuous

action space to enable fine maneuvering 2) A sensor arrangement that can cover

a bulky robot, such as an EPW, and which can be easily transferred to the real

world 3) A lightweight model that can be deployed on the onboard electronics of

an EPW. Contrary to the above, most methods in the literature use the discrete

action space, they utilize expensive sensors (e.g., LiDARs) or cameras that do not

transfer easily to the real world and often propose complex models that have sig-

nificant computational requirements. More details further justifying those claims

will be provided in Chapter 3.

2.2.5 Autonomous Wheelchairs

The current state-of-the-art in the field of EPW navigation includes systems ca-

pable of performing obstacle avoidance, simultaneous localization and mapping

(SLAM), path planning, and motion control. The majority of the autonomous

navigation solutions[69, 70, 71] rely on constructing a map of an environment and

utilizing a global planner, along with a localization method and a local planner

to reach a desired goal in the map, similar to what was described in the previous

sections.

Aiming for indoor navigation, the method introduced in[72] integrated points of

interest into a floor plan, in which an adjacency matrix was added to enable the use

of the A⋆ algorithm for path planning. Gao et al. [73] focused on synthesizing 3-D

landmark maps to improve localization performance of a smart wheelchair, with

the mapping process, however, requiring a high-fidelity sensor suite, including two

LiDAR modules and a digital video camera. Another method using landmarks is

introduced in [74], where the authors used AprilTags, a type of fiducial marker,

to localize the wheelchair and perform a navigation routine between rooms.
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Morales et al. [75] took into account the human comfort in the path and the

trajectories produced for autonomous navigation, by augmenting the standard

geometric map built via SLAM to a comfort map and using a modification of the

A⋆ algorithm for path planning. In [70], the ROS navigation stack was integrated

with the EPW to perform mapping, localization, and planning. Similarly, the

authors in [71] used SLAM, along with the global planner provided by the ROS

navigation stack, combined with an adaptive controller to account for the changing

system dynamics. Finally, Grewal et al. [69] utilized computer vision to identify

possible destinations for the user to choose, before applying Dijkstra’s algorithm

along with the Dynamic Window Approach to navigate towards the chosen target.

However, the destination scanning process takes a long time to complete, and it

requires high computational power such as a laptop or PC integrated into the

wheelchair.

All these approaches are based on traditional path and motion planning meth-

ods, thus sharing similar disadvantages, such as the dependency on existing maps

and/or landmarks, extensive tuning, use of high-fidelity sensors, and significant

computational demands. This thesis proposes a machine learning approach, that

does not require a map, only utilizes cost-effective sensors, and is also computa-

tionally efficient.

2.3 Shared Control

Despite the various works done in autonomous navigation and its impressive ad-

vances (e.g., automotive/aviation industries), handing over full control to an au-

tonomous system in a realistic setup is not yet possible given the current techno-

logical capabilities. Full automation can be achieved in environments that can be

predicted with high accuracy and where the consequences of failure are acceptable.

However, in more complex environments there is a high likelihood of encountering

conditions for which the automation system cannot guarantee a robust or safe

response, and where at least some level of human control is required to complete

the desired task.
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Shared control is an instance of human-robot collaboration, where a human user

and a robotic system jointly arrive at the decisions or control actions needed to

achieve some goal. Research on this topic has proposed a great variety of methods,

as well as a number of different definitions of what constitutes shared control

varying between different works and application domains. This work adopts the

definition given in [5]:

In shared control, human(s) and robot(s) are interacting congruently in

a perception-action cycle to perform a dynamic task, that either the hu-

man or the robot could execute individually under ideal circumstances.

The definition above is open to many forms of shared control, while it excludes

the cases where the system or the human act individually (full autonomy, manual

control, or traded control). In this context, shared control can be classified into two

general categories: input-mixing shared control and haptic shared control. In the

first approach, the control action of the system is a blend between the human’s

input and a controller’s (autonomous system’s) output, while in haptic shared

control the resulting control action occurs at the force level [76, 77, 78].

Even though the approach followed in this thesis is not that of a typical shared

control system, it is still concerned with the input-mixing shared control type,

where the relevant research differs mostly in how the user’s input is interpreted

and how the blending takes place. This section explores the most widely adopted

shared control methods in the literature, as well as methods utilizing the machine

learning framework which are more relevant to our approach. Special focus is

placed on the methods that are appropriate to use with EPWs.

2.3.1 User intention prediction

In the shared autonomy setup, in order for the assistive system to be an effective

collaborator, it requires, in most cases, knowing the user’s goal. This is usually

something that is not known a priori, and thus it has to either be continuously

indicated by the user, which is hard and impractical, or it needs to be inferred

by the system. A system can achieve this by utilizing the user’s stream of ac-
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tions and/or information from the environment gathered by sensors [6]. Methods

that require knowledge of the user’s goal follow the so-called predict-then-act ap-

proach [79, 80, 81, 82], which splits the task of shared autonomy into two parts:

(1) predict the user’s goal with high probability (2) provide assistance for the pre-

dicted goal, potentially proportional to the level of confidence of the prediction,

or even act autonomously to achieve that goal.

There are various approaches to estimating the user’s intended trajectory, even

though that field of research is still maturing. A straightforward approach is

fixing a goal pose at a short distance in the direction indicated by the user’s

command [83, 84]. However, the assumption of a fixed goal is naive, since it does

not take into account factors like the user’s capability of indicating the proper

direction, or the type of control interface that is used. More accurate estimates

of the intention can be derived by dynamically determining the goal. Since the

user’s intention can be expressed as desired velocities (linear and angular), the

magnitude of the intended direction can also be useful to determine the desired

goal (e.g. deflecting the joystick more may indicate a further distance [79]). More

sophisticated methods like Hidden Markov Model (HMM)-based methods predict

sub-tasks during execution, treating the intent as a latent state [85, 86].

Other successful work for predicting user goals has been done by utilizing maximum-

entropy inverse optimal control (MaxEnt IOC) [87], also known as IRL, where the

user is modeled as a stochastic policy approximately optimizing some cost func-

tion. In this framework, the probability of a trajectory decreases exponentially

with cost, and a distribution over goals from user inputs is derived, depending on

how efficiently the inputs achieve each goal. However, performing IOC in continu-

ous, high-dimensional domains is challenging, because such algorithms are usually

much more computationally demanding than the corresponding “forward” control

methods [88]. Laplace’s method on the optimal trajectory between any two points

has been used to tackle the computational infeasibility of the aforementioned ap-

proach, and thus, approximate the distribution over goals during shared control

teleoperation [80]. Finally, Generative Adversarial Nets (GANs) [89] have been

used to directly learn a policy that mimics the user [90], and also deep neural net-
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works utilizing importance sampling have simultaneously learned a cost function

and a policy consistent with user demonstrations [91].

Despite the various works that have been done on inferring user goals, predict-

then-act methods have only demonstrated their effectiveness in simple scenarios

with few goals [79, 86, 92, 80]. Furthermore, it is often impossible to accurately

predict the user’s goal until the end of execution (e.g., cluttered scenes), in which

case these methods provide little to no assistance. This is contradictory to our

requirement of a system that should be able to provide assistance at all times,

even in the absence of a goal or if the confidence for a single low is low. For that

purpose, and as will be further explained later in Section 4, this thesis adopts a

simpler yet effective approach to represent the intent of the user. That is, modeling

the intent as a probability distribution, as for example, a normal distribution over

the range of goal poses or velocities centered on the indicated direction [93].

2.3.2 Reactive planning

In order to modify the user’s commands in a meaningful way, shared control needs

a group of algorithms capable of planning motion. As discussed in Sec. 2.2.2, the

type of a planner can be classified as either global or local. In the case of shared

control (for powered wheelchairs and mobile robots in general), a local planner,

and more specifically a reactive planner, is better suited to the problem, as by

leveraging information from local sensors it is capable of adapting to unknown

environments and dynamic obstacles. Reactive planners like APF, VFH, DWA or

fuzzy logic controllers, that were described in Section 2.2.3, are particularly suited

for the purpose of producing safe trajectories with a short term scope.

Having described the process of obtaining a model of the user’s intention, as well

suggestions from a local planner, we will now explore the types of techniques used

to combine the two inputs to derive the resulting command of a shared control

system.
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Algorithm 1 The Dynamic Window Approach

1: Begin DWA(robotPose, robotGoal, robotConfig, currentV)
2: desiredV ← calculateV (robotPose, robotGoal)
3: laserscan← getLaserData()
4: Vd ← dynamicWindow(currentV, robotConfig)
5: optcost = −1
6: for (vx, ωz) in Vd do
7: dist← calcObstacleDistance(vx, ω, laserscan, robotConfig)
8: breakDist← calcBreakingDistance(vx)
9: if dist > breakDist then ▷ robot is able to stop before reaching obstacle
10: heading ← hDiff(robotPose, goalPose, vx, ωz)
11: clearance← (dist− breakDist)/(dmax− breakDist)
12: cost← costFunction(heading, clearance, abs(desiredV [0]− vx))
13: if cost > optcost then
14: optvx ← vx
15: optωz ← ωz
16: optcost ← cost
17: end if
18: end if
19: set robot trajectory to optvx , optωz

20: end for
21: END

2.3.3 Blending strategies

Blending is one of the most widely used shared control methods due to its compu-

tational efficiency, simplicity, and empirical effectiveness. It refers to combining

the user’s command or their predicted intention with the trajectory of a motion

planner. Such methods attempt to bridge the gap between highly assistive meth-

ods, which restrict user autonomy and control, and methods that offer minimal

assistance, therefore burdening the user.

The most common approach to blending is called linear blending [94, 79, 81, 95,

82], and is simply a weighted sum of the user’s and the path planner’s trajectories.

Denote the human control input at a given timestep t as uh(t) and the input of

the controller as uc(t). Then, mathematically the linear blending law is defined

as:

uLB(t) = Khu
h(t) +Kcu

c(t), Kh +Kc = 1, (2.1)
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where uLB(t) is the resulting control input, Kh and Kc are arbitration matrices,

and 1 is the identity matrix. Figure 2.2 provides a visual representation of a typ-

ical linear blending strategy, where both the user and the autonomous controller

offer separate suggestions, which are combined using an arbitration function with

a control weight a. The resulting combined action is then executed by the robot,

enabling collaborative control and striking a balance between user autonomy and

system assistance. Linear blending techniques differ in how this weight is com-

puted, usually changing dynamically according to several criteria, such as safety,

directivity, agreement, or some combination of the above [96]. Of course, increas-

ing the weight of the controller equals greater assistance at the expense of user

control. This usually happens when the mobile robot is closer to obstacles in

order to enhance safety. However, several shared control paradigms, especially

in the field of assistive robotics, place special focus on the user being in control.

In order to ensure that the robot acts in a way that most agrees with the user’s

commands, an agreement objective can be used so that more control is given to

the user when the robot’s trajectory is very different from the user’s[97]. Despite

its ease of implementation and its popularity, the formulation of linear blending

is not suitable for complex and dynamic environments, since the simple addition

of trajectories cannot guarantee collision-free movement or stable control of the

robot [9].

Probabilistic shared control (PSC) is a work that attempts to improve on linear

blending, by guaranteeing safety in its theoretical formulation [83]. This frame-

work establishes a joint probability distribution between the user’s intended tra-

jectory and the path planner’s calculated trajectory, which includes an agreeability

function measuring the similarity between those two random variables. The se-

lected control command for each time step is the suggested velocity of the path

planner that maximizes the joint probability distribution. However, the resultant

control law is entirely dependent on the planner’s implementation and its safety

guarantees, and not on the user’s input [98].

Another approach to blending, which is tightly linked to the work done in this

thesis, is with policy-based methods, which assume that the user selects an action
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Arbitration function

Confidence

Figure 2.2: Blending Strategy for Shared Control Teleoperation. Both the user and
the autonomous controller follow their own policy and provide separate suggestions
uh and uc for achieving their goals. An arbitration function (typically a linear one)
is used to combine the two suggestions, with the control-trade-off between the two
determined by a control weight a. The combined action is passed to the robot for
execution.

in order to minimize the user costs according to some function, and the system

policy attempts to minimize its own expected sum of costs (provided with a distri-

bution over goals) given the user input. Contrary to previous blending techniques,

this approach does not treat user and robot actions separately but selects the final

action directly as the optimization output [7, 6]. More details on such methods, as

well as on methods utilizing the reinforcement learning framework, will be given

in the following section.

2.3.4 Policy-based Shared Control

This section focuses on methods that, contrary to methods using blending, directly

output a control action for the robot, by optimizing some cost function that also

takes the user input into account, as also depicted in Fig. 2.3. It also focuses on

methods that model the problem of shared control as a sequential decision-making

problem and utilize the reinforcement learning framework to solve it. The works
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Figure 2.3: Policy-Based Strategy for Shared Control Teleoperation. The user is
modeled as a policy πu which selects actions that minimize the expected sum of
user costs Cu(s). The system is also modeled as a policy πc that minimizes its
own sum of costs Cc(s, uh), conditioned on the user input. The system action
uc, which is optimized given the user action, is directly passed to the robot for
execution.

presented in this section are conceptually close to the work done in this thesis,

more specifically the proposed RL framework for tackling the problem of shared

control, which will be presented in Chapter 4.

In 2013, Hauser [6] presented a policy-based method that provides assistance for a

distribution over goals. The proposed system uses a sampling-based planner (sim-

ilar to RRT) to produce collision-free trajectories which follow the predicted user

goal distribution, while it iteratively updates the distribution given user inputs.

Javdani et al. [99] generalized this work, by formulating the problem of shared

control as a partially observable Markov decision process (POMDP) and assum-

ing that the user’s goal is fixed and does not change based on the autonomous

assistance system’s actions, thus placing the burden of goal inference entirely on

the system. Furthermore, this framework enables the use of any cost function for

which a value function can be computed, instead of assuming a fixed form for the

cost function, while the authors used hindsight optimization to approximate an

optimal solution for the POMDP. Another line of work, which again models the



Chapter 2 – Autonomous and Semi-Autonomous Methods for Mobile Robots 31

shared control problem as a POMDP and is focused on user goals, is presented

in Human-Robot Mutual Adaptation [8] that adopts a game-theoretic approach

to shared control, where either the autonomous system guides an adaptable user

or complies with a stubborn user. The POMDP is used to learn the adaptability

of the user, which models the likelihood of the user adapting to the autonomous

assistance. Even though this is a more general model compared to [99], it is

computationally intractable for continuous states and actions.

Several works have used RL for determining the control weight(s) of a blending

strategy for shared control. For example, the work presented in [100] uses the

value-based RL algorithm State-action-reward-state-action (SARSA) to determine

the control weight between an autonomous motion planner and user intent for

commanding a walking-aid robot, optimizing for safety and control smoothness. In

a similar fashion, Xi [101] also used SARSA to learn the control weight between the

user and the DWA, selected as the motion planner for navigating an EPW, while

both the state and the action space were discretized. Another recent development

following the same concept is presented in [102], which extends the state-of-the-art

Twin Delayed Deep Deterministic Policy Gradient (TD3) to develop an RL agent

that outputs the shared control ratios for a blended control input, which combines

the user’s input along with the input of three autonomous controllers that perform

different functions (i.e., clockwise and counterclockwise wall-following, collision

avoidance) to assist the navigation of a simple mobile robot. Muelling et al. [81]

dynamically adjusts the arbitration factor in a linear blending paradigm, based on

the confidence of the predicted intent, which is assumed to be driven by an agent

that follows a policy to minimize a goal-chasing cost function.

Approaches that adopt the use of an arbitration function, however, share the same

disadvantages as the approaches described in 2.3.3. Catastrophic failure can occur

as a result of combining two independent decisions without evaluating the action

that will be ultimately executed [9]. On the other hand, methods that infer the

user’s goal from their input and autonomously act to achieve it[6, 7, 81, 8] tend to

assume 1) a known dynamics model of the world 2) a known set of possible goals

3) a known user policy given a goal. These assumptions, though, act as a limiting
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factor to an adaptable and general shared control system that should be able to

handle real-world tasks. Deriving an accurate state transition model can be very

challenging in practice, while assuming a fixed goal representation constrains the

flexibility of the system in pursuing goals that have not been taken into account.

Finally, a goal inference algorithm that has been trained to detect specific patterns

or behaviours will not be able to adjust to erratic or suboptimal user input.

Reddy et al. [103] lifted the above assumptions, by proposing an end-to-end ap-

proach to the problem of shared control, where environmental observations and

user input are directly mapped to control actions. This study introduces a shared

control framework based on model-free RL, that removes the need for known dy-

namics, a particular goal representation, or even a user behaviour model. The sys-

tem accepts the environment’s state, the human’s commands, and an inferred goal

(optionally) as inputs and outputs the optimal action that most closely matches

the human command, with the only form of supervision being the task reward. In

order to achieve that, the authors introduce a modification to the typical action

selection process of the popular Deep Q-Network (DQN) algorithm, where the

selected action is a feasible action that is the closest to the user’s suggestion. An

action is considered feasible if it is not much worse than the optimal action (the

one with the highest Q-value), something that is determined by a user-defined

hyperparameter. An extension to this work was done by You et al. [104], who

further modified it to dynamically adapt the arbitration parameter controlling the

tolerance of the system to suboptimal human suggestions defined in [103].

The work on shared control presented in this thesis shares the same motivation

with Reddy’s work, in the context of aiming to train an end-to-end system via

model-free RL, which makes the minimum possible assumptions about the world

and the user. However, Reddy’s proposed approach has an important limitation,

which is that it only works with a discrete action space. Furthermore, even if

the agent does not have direct access to goal-relevant information, it still receives

rewards for completing user goals, which might overfit its behaviour to the envi-

ronment it is trained in and consequently hurt its generalization capabilities.

Inspired by that work, but also its limitations, this thesis builds a flexible and
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generic framework for performing continuous shared control, that does not neces-

sarily assume the existence of specific user goals, but should still be able to provide

meaningful assistance in a versatile manner, depending on its parameterization.

Shared control is formulated as an end-to-end system, which takes as input the

current user intention along with environmental observations, and directly outputs

a control command for the mobile platform, instead of having to explicitly derive

the user intention or requiring input from a local planner. The agreeability of the

system with the user, which is of critical importance, is imposed on an algorithmic

level, as part of the optimization objective that is used to train the shared con-

trol system. The methodology and effectiveness of this approach are presented in

Chapter 4.

2.3.5 Shared Control for Wheelchairs

NavChar [105] was one of the earliest works done towards shared autonomy in pow-

ered wheelchairs. This work, modified the VFH algorithm, replacing it with the

Minimal VFH (MVFH) method, in order to take into account the user input from

a joystick and perform obstacle avoidance, door passing or wall following. Other

projects that proposed a multi-mode solution, include the Bremen Autonomous

Wheelchair [106] with four distinct modes of operation that are manually chosen,

or RobChair [107] that utilised fuzzy logic to switch between different behaviours

(e.g., collision detection, wall following). Some of the main issues with those early

efforts mentioned above, are the pre-determined or heuristic ways of deciding the

mode of operation without taking into account the intent of the user, as well

as the limited control that the user is allowed. More recently, Vanhooydonck et

al. [108] proposed a framework, where modules that implement different assistive

behaviours (e.g., safe stopping, obstacle avoidance etc.) can be selected and ac-

tivated, depending on the most probable user intention which is estimated by an

implicit user model.

Linear blending, which was described in Section 2.3.3, has also been widely used

in shared control for powered wheelchairs. An example is presented in [94], where

the authors dynamically adjusted the control weights of a linear blending between
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the user and a reactive controller, by solving a multi-objective optimization prob-

lem with manually defined indices corresponding to safety, comfort and obedience.

Another closely related work is shown in [101], that uses RL to dynamically adjust

the user’s control authority based on some specified design requirements. Erdo-

gan [109] presented four control-sharing paradigms, where a user signal and an

autonomy signal are linearly blended to assist the user with arriving at their goal,

which can be either an immediate one or a high-level goal. Similarly, [110] imple-

ments a linear blending solution, where the parameter that controls the sharing

between user and autonomy is determined by whether a forward projection of the

user’s command results in a collision, and by a confidence metric associated with

an observed navigation goal. Despite the different variations, the issues associated

with linear blending (see Sec. 2.3.3) are still present in the methods implement-

ing it. The authors in [83] implemented probabilistic blending, using the DWA

to generate safe trajectories, and compared it to a basic type of linear blending

(averaging of trajectories). Their results showed an improvement in safety, with a

trade-off in distance travelled and completion times, still however, relying on the

effectiveness of DWA to produce safe trajectories.

Apart from the popular DWA planner, other local planners (see Section 2.2.3) have

also been adapted and put into use for the problem of shared control in powered

wheelchairs. Carlson [79] introduced a collaborative system which produces safe

mini-trajectories based on the elastic band method and guides the wheelchair

towards the safe mini-trajectory once the system is confident about the goal of the

user, while the user maintains control of the speed. Urdiales et al. [111] utilized

the Potential Fields Approach to return a motion vector that can be combined

with the joystick vector to provide a reactivate layer of assistance in a continuous

and adaptive manner. A similar approach is adopted in [112], where a potential

force field acts as a moderating input on the user’s desired trajectory, while the

geometry of the platform is also taken into account instead of simply being treated

as a point mass. The work in [113] extended this method by splitting the geometry

of the platform into layers based on the shape of the wheelchair and used a 3-D

depth sensor allowing the algorithm to consider the height of the obstacles in

relation to the wheelchair and adjust its correction accordingly.
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In a more relevant framework to this thesis, some approaches have treated the

problem of shared control for powered wheelchairs as a sequential decision-making

problem. Ghorbel et al. [114] proposed a decision-theoretic model of control,

where the collaborative control task is modelled as a POMPD with uncertainty

over the destination. This method utilizes the framework of shared autonomy

for robotic manipulators [7], which was described in the previous section, and

adapted accordingly to address the challenges of navigation. However, that ap-

proach assumes a known set of goals, while it uses dynamic programming to solve

the POMPD, thus, not being well suited to solving environments of high complex-

ity or handling a richer state space. Similar limitations are encountered in [115],

where policy iteration (a Dynamic Programming technique similar to policy-based

RL methods explained in Sec. 3.2.2) is used to solve shared control formulated as

a time-optimal stochastic shortest path problem, after optimal maps of the aver-

age time to hit obstacles ahead of the wheelchair have been pre-computed. This

approach works in mapped environments, for specific user models and for a finite

state space.

This thesis focuses on designing a novel framework that tackles the drawbacks de-

scribed in the methods that are currently used in shared autonomy for EPWs. We

want to allow integration of multiple modes of use (support different modes of

operation/assistive behaviours), enable customization to the individual user, and

also have an implementation that is fast enough to run smoothly on an onboard

computer. More importantly, the approach the thesis adopts does not necessar-

ily assume known maps or goals, but rather assists the users only based on local

information. Shared control for PW navigation is realized as a sequential decision-

making problem and builds on ideas from the broader field of shared control and

the methods presented in Section 2.3.4, to improve upon the existing shared control

methods for EPWs.
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2.4 Summary

This chapter provided the background of methodologies used for autonomous and

semi-autonomous mobile robot navigation, along with their relevant applications

for powered wheelchairs. The most established approach for autonomous naviga-

tion involves mapping the environment and integrating localization methods with

global and local planners. However, recent advancements in deep neural networks

and machine learning have garnered significant attention, aiming to address the

limitations of traditional methods. Notably, the use of the RL framework has

been emphasized, which will be employed in this thesis to design an autonomous

navigation system for powered wheelchairs, a novel application in the existing

literature.

The chapter also introduced the concept of shared control, a form of semi-autonomy,

and deconstructed it into its main elements, particularly in the context of input-

mixing shared control. Similar to the autonomous navigation section, an overview

of the methods that utilize machine learning to perform shared control has been

thoroughly presented. Identified gaps in existing methods include: 1) Blending

methods without safety guarantees, 2) Policy-based methods with several assump-

tions (e.g., known world dynamics, known set of goals, known user policy), and 3)

Methods that address those assumptions but use discrete control. Importantly, the

review on shared control methods concluded with a discussion of the state-of-the-art

in powered wheelchairs, where reinforcement learning has not yet been effectively

proposed or applied as an end-to-end assistive system.

The thesis aims to employ reinforcement learning in developing an autonomous and

semi-autonomous solution for powered wheelchair navigation. In both approaches,

the system directly maps environmental observations to continuous control com-

mands for the robot. To train the shared control system, the autonomous system

acts as a mock user, involving user participation in the process. This concept

is inspired by a modification of the DQN algorithm presented in Reddy et al.’s

work [103], which focuses on discrete shared control and system-user agreeability.

However, in this thesis, a distinct and more versatile adaptation to another RL
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algorithm is proposed to enable continuous shared control. By addressing various

assumptions from previous works, this new algorithm provides a generic shared

control framework for effective human-robot cooperation, specifically tailored for

powered wheelchair application.



CHAPTER 3

Introduction of an Autonomously

Navigated Wheelchair

This chapter introduces a model-free learning approach for autonomous navigation

with nonholonomic robots, specifically powered wheelchairs. The proposed method

employs a reinforcement learning agent capable of autonomously pursuing goals in

a continuous action space, relying solely on environmental information from the

robot’s sensors, without requiring a map. The effectiveness and efficiency of this

approach are extensively evaluated through simulation experiments in both familiar

and unfamiliar environments. Comparisons are made against human performance

and state-of-the-art motion planners. The objectives of this chapter are twofold: 1)

Introduce a novel method for autonomous powered wheelchair navigation using RL,

which improves certain aspects of existing methods in mobile robot navigation.

2) Develop a user model, a crucial component in the methodology presented in

Chapter 4, where a novel shared control methodology will be introduced.

3.1 Introduction

It is not uncommon, that EPW users, due to poor motor control, inconvenient

control interfaces, fatigue, or other reasons, face difficulties with coping with daily

maneuvering tasks. In those cases, an autonomous navigation system would be

38
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greatly beneficial in alleviating part of their daily burden and enhance their inde-

pendence.

As already discussed in Section 2.2.5, the state-of-the-art autonomous navigation

methods for powered wheelchairs rely on mapping the environment of interest,

and proceed to utilize widely adopted global and local planners for following given

goals on the map. The work presented in this chapter takes a different direction,

which adopts a learning approach to the problem, by taking advantage of the

recent advances in the RL field. The advantage of such an approach is that it

can tackle several drawbacks of the traditional methods: a) the need of a map,

b) high computational costs, c) extensive hyperparameter tuning and d) expensive

sensors.

Similar approaches have been encountered in the literature for mobile robot navi-

gation (recall Section 2.2.4), however, this work has some important distinctions,

aimed at building a more realistic system, appropriate to use with an EPW. Con-

trary to most of the methods in the relevant literature which control the robots

through discrete commands, this work addresses the problem of navigation in the

continuous action space. This is a necessary requirement for avoiding rough navi-

gation behaviours, that might cause discomfort to the user, while it enables finer

control for maneuvering in cluttered/challenging environments. Another require-

ment is that the system comes with a sensor setup that can be easily transferred

from simulation to the real world, and that is relatively low-cost. Moreover, the

sensor arrangement should be able to fully cover a bulky robot such as an EPW.

Therefore, the chosen range sensors for detecting obstacles are ultrasonic sensors,

instead of RGB cameras (poor real-world transferability) or LiDARs (expensive).

Finally, a small and easily trainable neural network architecture is utilized, as op-

posed to complex architectures found in other works, that might not be applicable

for real-time use on the onboard electronics of the robot.

The motivation behind the work of this chapter is twofold: to improve upon the

existing state-of-the-art in EPW navigation by proposing the use of the RL frame-

work, and to create a model of an EPW user, which is a necessary requirement

for training an assistive system as will be shown in Chapter 4. The rest of this



Chapter 3 – Introduction of an Autonomously Navigated Wheelchair 40

chapter will focus on the first aspect, by presenting the method, its implementa-

tion and validation, while the use of the trained system as a model user will be

discussed in Section 4.2.1. Before delving into the methodology, a brief overview

of the deep reinforcement learning framework, as well as the simulation setup that

forms the basis for the development and experimentation of the work described in

the following chapters are first presented.

3.2 Background to Reinforcement Learning

The computational field of Reinforcement Learning is a framework that addresses

the problem of sequential decision making, the same way behavioral neuroscience

tries to understand it in terms of how humans and animals select actions in the

face of reward and punishment. RL in its modern form stems from two separate

lines of research; that of Sutton and Barto [117, 116] who developed the core

algorithms and concepts of RL, and that of Bertsekas and Tsitsiklis [118] who

developed stochastic approximations to Dynamic Programming (DP) methods

(neuro-dynamic programming). The fusion of these works, made it possible to

formalize the behaviorally-inspired heuristic RL algorithms in terms of optimality,

while providing tools for analyzing their convergence properties.

In RL the main idea lies in learning through interaction. In the RL setup there

is an agent (e.g., a wheeled robot) that interacts with the environment it is in

and learns to adapt its behaviour based on a reward signal it receives from that

environment. By successive interactions new information is produced, which is

then used by the agent to update its knowledge in a fashion that will maximize

the expected return (cumulative, discounted reward) it will receive over its lifetime

(Fig. 3.1).

Even though RL is not a new area of machine learning, it has lately gained in-

creased momentum due to various successes stemming from its combination with

deep neural networks. This gave birth to Deep Reinforcement Learning (DRL),

which made possible the scaling of prior work in RL to high-dimensional problems,

by taking advantage of the function approximation properties of neural networks
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Source: Sutton’s textbook [116]

Figure 3.1: The Core Principle of Reinforcement Learning.

and their ability of learning low-dimensional feature representations, while pro-

viding a means of tackling the curse of dimensionality, unlike traditional tabular

and non-parametric methods.

3.2.1 Markov Decision Process (MDP)

Any problem in RL can be formulated mathematically as a Markov Decision Pro-

cess (MDP). An MDP is a tuple (S,A, T, γ, R) where:

• S is a set of states

• A is a set of actions

• T (st+1|st, at) are the state transition dynamics that map a state-action pair

at time t onto a distribution of states at time t+1

• γ ∈ [0, 1] is called the discount factor, where lower values place more empha-

sis on immediate rewards and greater values look more into future rewards

• R(st, at, st+1) is the reward function which returns an immediate scalar re-

ward after a transition to a new state

The agent chooses its actions according to a policy π which in general is a mapping

from states to a probability distribution over actions: π : S → p(A = a|S). The
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goal of RL is to find an optimal policy π⋆ that achieves the maximum expected

return from all states:

π⋆ = argmax
π

E[R|π] (3.1)

A key property of MDPs is the Markov property, which states that the next state

is only dependent on the current state, or in other words, that the future is condi-

tionally independent of the past given the present state. This assumption, which

is adopted by the majority of RL algorithms, requires the environment (or the

states) to be fully observable, but of course that rarely applies to the real world.

A generalisation of MDPs is a Partially Observable MDP (POMDP), where the

agent does not have access to the full information regarding the current state, but

receives an observation that is a subset of the state’s information, and which might

also contain information from previous states. The agent uses the observations

it gathers to form a belief of what state the system is currently in, the so-called

belief state, and is expressed as a probability distribution over the states. The

solution of the POMDP is a policy indicating the optimal action for each belief

state.

Finally, an MDP can either be episodic, where the state is reset after each episode

of length T (the trajectory or rollout of the policy) or it can be non-episodic

(continuous), where T =∞, thus the trajectory is of potentially infinite length.

3.2.2 Kinds of RL Algorithms

Since RL is currently a very active research field, and with a rapidly changing

landscape, there is no single algorithm that best works on all problems, but rather

a large pool of them with varying characteristics. The aim (i.e., optimizing an

agent’s policy to maximize expected return) remains the same, but the approach

can change, each algorithm having its own trade-offs and tackling different chal-

lenges out of the numerous that exist in the field. The rest of this section will

provide an overview of the most prominent categories of RL algorithms.
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Model-based vs Model-free

One major distinction between algorithms in RL can be made from whether the

agent has access to or needs to learn a model of the environment. Such a model

refers to a function that predicts state transitions as well as rewards.

Given a model, an agent can predict what is going to happen next without having

to interact with the environment, and can therefore plan accordingly (e.g., use

Dynamic Programming to find the optimal solution). By simulating the environ-

ment and planning ahead, calculated results can then be distilled into a learned

policy, which can grant a substantial improvement to sample efficiency and signif-

icantly speed up learning compared to methods that do not have a model of the

environment available.

However, a ground-truth model of the environment is rarely available to the agent,

in which case an agent that follows a model-based approach will have to learn

the model purely from experience. This can be challenging in many aspects, for

example, bias in the model which can be exploited by the agent, causing it to over-

fit and perform poorly in the real environment, or the existence of inaccuracies

in the model which can cause instability, the more the further into the future the

agent looks.

On the other hand, model-free methods learn policies directly from interactions

with the environment, and even though they tend to be less sample efficient, they

are easier to implement and tune. Currently, those methods are considered more

popular and have been more extensively developed and tested. This thesis only

focuses on model-free RL.

Value-based vs Policy-based

A major branching of model-free RL algorithms lies in what needs to be learned.

Before delving deeper into the two major approaches that are used, it is first useful

to explain what a value function is.
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The value function measures the goodness of a state, giving an estimate of how

much future reward can be gained from that state onwards. The future reward,

also known as return, briefly mentioned in Sec. 3.2.1, is the total sum of dis-

counted rewards going forward. More formally, the return Gt starting from time

t is given by:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
inf∑
k=0

γkRt+k+1, (3.2)

where γ is the discount factor, which penalises the rewards in the future. If γ = 0,

only the immediate reward is taken into account, whereas if γ = 1 all future

rewards are considered with an equal weight.

The state-value of a state s is the expected return when being in this state at

time t:

Vπ(s) = Eπ[Gt|St = s], (3.3)

given a policy π is followed for picking future actions. Similarly, the action-value,

or the Q value, of a state-action pair is defined as:

Qπ(s, a) = Eπ[Gt|St = s, At = a], (3.4)

measuring the value if at state s the agents picks action a and follows policy π

onwards. The probability distribution from policy π over the actions can also be

used to formulate the value function as:

Vπ(s) =
∑
a∈A

Qπ(s, a)π(a|s) (3.5)

The difference between action-value and state-value defines the action advantage

function,
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Aπ(s, a) = Qπ(s, a)− Vπ(s), (3.6)

which intuitively provides an estimate of how good or bad a specific action is for

a given state compared to the others, on average. Naturally, the optimal value

function will produce the maximum return:

V ⋆(s) = max
π

Vπ(s) Q⋆(s, a) = max
π

Qπ(s, a) (3.7)

And it is the optimal policy that achieves the optimal value functions:

π⋆ = argmax
π

Vπ(s) π⋆ = argmax
π

Qπ(s, a) (3.8)

Consequently:

Vπ⋆ = V ⋆(s) Qπ⋆(s, a) = Q⋆(s, a) (3.9)

It is also important to mention the Bellman equation in MDPs, which is ubiq-

uitous in RL and provides the optimization target for value functions. A value

function can be decomposed into a sum of the immediate reward that is received

when transitioning to the next state, and the discounted future rewards that can

be received from that future state onwards, following a policy π. Formally,

Vπ(s) = R(s, π(s)) + γ
∑

s′
P (s′|s, π(s))Vπ(s′), (3.10)

where P is the transition probability distribution over next states the agent can

transition to, when being in state s and picking an action according to policy π.

The equation for the optimal policy is known as the Bellman optimality equation

and is given by:

Vπ⋆(s) = max
a
{R(s, a) + γ

∑
s′
P (s′|s, a)Vπ⋆(s′)} (3.11)
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Since some basic definitions have been established, the following subsection dis-

cusses the major approaches of representing and training agents in model-free

RL.

Q-Learning vs Policy-Optimization

Methods of theQ-learning family focus on learning an approximatorQθ(s, a) of the

optimal action-value function Q⋆(s, a). The objective function that is used to train

the approximator (a neural network in the case of DRL) is based on the Bellman

equation (Eq. 3.11) described in the above section. Each optimization step can

use data collected at any point during training, regardless of the policy followed

by the agent when that data was collected. The optimal policy is obtained by

Eq. 3.8, which links Q⋆ with π⋆, and therefore the actions taken by the Q-learning

agent are given by:

a(s) = argmax
a

Qθ(s, a) (3.12)

Policy optimization methods in DRL also use an approximator, but this time to

explicitly represent a policy as πθ(a|s). They are typically combined with another

approximator that learns the value or the advantage function, used for indicating

how to update the policy. The parameters θ of the policy network are optimized

either directly by gradient ascent on an objective function J(πθ) (which usually

involves the advantage estimate), or indirectly by maximizing local approximations

of J(πθ). The updates in the optimization process use data that are collected each

time acting with the most recent version of the policy.

Directly optimizing the policy to be learned tends to make policy optimization

methods stable and reliable, but this comes with the price of requiring a large

number or samples for the training process. Contrary, Q-learning methods are

more sample efficient, since they can reuse data and experience they gather more

effectively. On the other hand, when the Q function (i.e., reward function) is

too complex to be learned it is likely that Q-learning will fail, whereas policy

gradients can still converge to a good policy since they operate in the policy space.

Furthermore, Q-learning is not capable of learning stochastic policies neither use
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continuous actions, things that policy optimization methods naturally do since

they are designed to model probability distributions. Finally, a big drawback of

policy gradients is the fact that they can suffer from high variance in estimating the

gradient of the expectation of the rewards, which can heavily affect the stability

of the learning algorithm.

Actor-Critic Methods

Since RL methods are rarely mutually exclusive, it is possible to mix different

approaches that complement each other. Actor-critic combines the policy gradient

with value function estimation, in order to improve the sample efficiency of policy

gradient methods and reduce the variance of the advantage function, thus making

the gradient less volatile. The actor is the network that models the policy, whereas

the critic is the network that models the value function. By introducing the critic,

the number of samples that needs to be collected for each policy update is reduced.

Also, the Temporal Difference (TD) technique [119] is used, thus it is not needed

to collect all the samples until the end of an episode. Algorithm 2 summarises the

main principle of the Actor-Critic algorithm.

Algorithm 2 The Actor Critic Algorithm

1: Initialize critic network V π
ϕ and actor network πθ with weights ϕ and θ

2: repeat
3: take action a ∼ πθ(a|s), get (s, a, s, r)
4: update V π

ϕ using target r + γV π
ϕ (s’)

5: evaluate Aπ(s, a) = r(s, a) + γV π
ϕ (s’)− V π

ϕ (s)
6: ∇θJθ ≈ ▽θ log πθ(a|s)Aπ(s, a)
7: θ ←− θ + α∇θJθ
8: until convergence

On-policy vs Off-policy

This categorization of RL algorithms has already been indirectly mentioned. On-

policy methods refer to agents that always follow their own policy. Each time a

policy is updated, new samples from that policy need to be generated. The agent

acts, improves, then acts again, and so on.
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Figure 3.2: On-Policy vs Off-Policy Methods Sample Efficiency.

Off-policy algorithms, on the other hand, can improve the policy without gener-

ating new samples from that policy. This means that the policy being updated

does not have to be the same policy the agent acts on. Off-policy methods provide

better exploration and utilize samples more efficiently.

While policy optimization algorithms are mostly on-policy, Q-learning algorithms

are almost always off-policy. Actor-critic methods, however, can be either on-

policy or off-policy depending on the specific implementation. For a rough map-

ping of on-policy and off-policy methods in terms of their sample efficiency, refer

to Fig. 3.2.

Experience Replay

Learning robust policies in RL requires a significant number of interactions with

the environment, through which the agent improves its knowledge regarding its

behaviour and the value of states and actions, for which the ground truths are not

available in advance. On top of the fundamental challenge of generating sufficient

data to train a RL policy, the inputs (observations) and targets (rewards) are

continuously changing over the course of training, making it difficult to maintain

a stable training process. A simple, yet powerful idea of improving sampling

efficiency (i.e., minimize the number of experiences that need to be generated to

learn robust and high-performing policies) and training stability is the experience

replay, used with off-policy DRL.

The main idea of experience replay lies in storing previously experienced envi-

ronment interactions and use that experience to update the policy, instead of

having to regenerate new experience for every update. Experience is represented
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as a transition, which consists of five signals that compose a training sample.

These are: 1) State (s) 2) Action (a) 3) Reward (r) 4) Next State (s’) 5) Done

signal (d), a binary signal indicating whether the current transition is the final

one in a given rollout/episode. Symbolically, the transition quintuple is given as:

T = (s, a, r, s′, d). Transitions are stored into a buffer, known as the Experience

Replay Buffer, typically in a first-in-first-out (FIFO) fashion.

Over time, the buffer fills with experience gathered by the agent following differ-

ent policies, and forms a diverse dataset that allows the agent to revisit and learn

from their memories. For updating the policy, a random subset of the dataset

can be drawn from the buffer and used to train the involved neural networks

in a mini-batch, supervised learning style. This has be proven to be highly

effective in stabilizing the training, by decorrelating updates and avoiding the

rapid forgetting of rare experiences[120, 121]. Several works in the literature have

proposed more sophisticated and efficient strategies of sampling from the replay

buffer (e.g., Prioritized Experience Replay (PER)[121] or Hindsight Experience

Replay (HER)[122]), however, this thesis is concerned with utilizing a standard

replay buffer implementation.

3.2.3 Maximum Entropy Reinforcement Learning

Entropy, in the context of information theory, measures the amount of informa-

tion or uncertainty associated with the possible outcomes of a random variable.

In the context of RL, entropy relates to the unpredictability of the actions the

agent chooses according to a given policy. Naturally, the greater the entropy, the

more random the actions of the agent. For RL algorithms that define the actions

as a probability distribution (e.g., policy-gradient and actor-critic methods), the

entropy of a policy in a state st is defined by the expected negative log-likelihood

of the policy:

H(πθ(st)) = Ea∼πθ(st)[− log πθ(st, a)] (3.13)
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Source: Berkeley CS 294-112: Deep Reinforcement Learning

Figure 3.3: Example of a Diversified Policy.

A policy that starts randomly and, over the course of training, learns to take spe-

cific sequences of actions to accomplish its task, is expected to converge towards

a more predictable and deterministic behavior, becoming less random. However,

several lines of research have suggested making the action-selecting policy more

unpredictable by adding an ”entropy bonus” term to the loss function. Counterin-

tuitive as this may sound, it is an attempt to tackle one of the greatest challenges

in RL: the exploration vs. exploitation trade-off. Exploitation refers to the agent

exploiting its current knowledge and greedily picking actions with the maximum

expected return. However, this can lead the agent to quickly converge to a locally

optimal policy, but not necessarily a globally optimal one. Exploiting its current

beliefs prevents the agent from exploring different strategies that might lead to

greater long-term rewards. In this case, an entropy bonus forces the agent to act

more randomly, thereby boosting exploration and avoiding local optima.

Adding an entropy-associated term to the loss function (also known as entropy

regularization) as a one-step bonus is a concept found in many current state-

of-the-art, on-policy DRL methods, such as the Asynchronous Advantage Actor

Critic (A3C) [65], or the Proximal Policy Optimization (PPO) algorithm [123].

However, these approaches apply the entropy bonus only to the current state,

without considering future states. In this regard, several lines of work in the

literature [124, 125, 126] suggest that an even better approach is to optimize

for the long-term sum of entropy, similar to how agents learn to maximize the

long-term, cumulative reward. In this case, the optimal policy is the policy that

maximizes both future discounted rewards and long-term entropy:

https://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_14_transfer.pdf
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π⋆ = argmax
π

Eπ

[
inf∑
t=0

γt (rt + αHπ
t ))

]
(3.14)

The definitions of the value and the Q function also change to include the entropy

bonuses from each timestep:

V π(s) = Eπ

[
inf∑
t=0

γt (rt + αHπ
t )

∣∣∣∣s0 = s

]
(3.15)

This formulation results in agents that strive to accumulate as much reward as

possible while retaining adaptability in the long term. The significant advantage

of this approach, compared to the one-step entropy bonus, is that it provides more

robust performance under potential changes both in the agent’s knowledge about

the environment and in the environment itself. Fig. 3.3 showcases a simple exam-

ple of a diversified policy that can follow a different path when the environment

changes, enabling it to reach its goal effectively. This RL framework, formally

known as Maximum Entropy Reinforcement Learning, constitutes the primary fo-

cus of this thesis.

3.3 Simulation Setup

3.3.1 Robot Operating System

The Robot Operating System (ROS) [127] is an open-source framework, which

provides a set of tools and services that help in building robot applications. Its

major functionalities include sensor interfacing, package management, message

passing between processes, communication between different devices, and sensor

output visualisation, among others.

The programs that use the ROS framework are termed as ROS Nodes, and are

most commonly written in either C++ or Python. It is possible to have multiple

nodes running in parallel and independently, but communication between them is
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Figure 3.4: Communication Between ROS Nodes Using Topics.

also possible through the use of topics. The communication between nodes uses

the standard Transmission Control Protocol/Internet Protocol (TCP/IP) and is

established by the ROS Master that provides naming and registration services to

the nodes in the ROS system, so that they can locate each other. A node can act

as a ROS Publisher, sending messages to a topic, as a ROS Subscriber, listening to

messages published on a topic, or as both (see Fig. 3.4). This abstracted function-

ality allows easy and robust communication between different nodes (processes),

a very desired property in robotic applications that contain multiple components,

without having to reinvent the wheel.

This thesis negotiates systems of high complexity, including robot control, mul-

tiple sensors, a simulation environment, a reinforcement learning agent and its

interaction with the environment. Therefore, having access to a direct way of

establishing communication between all of those components is of paramount im-

portance. Furthermore, being able to transfer the technologies that are trained

and tested in the simulation to the real world is also one of the main goals of this

work. ROS makes this transition possible with only minimum interventions in the

code, as long as the real robot has been made compatible with ROS. Because of

these powerful capabilities it offers, ROS has been chosen as the main framework

of this thesis, acting as the backbone of the various system implementations that

will be presented in the following sections and chapters.
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3.3.2 Gazebo

Gazebo [128] is an open-source 3-D simulation tool for designing and testing

robots. Gazebo offers multiple robust and high fidelity physics engines, a wide

variety of sensors useful for robotic applications, as well as programmatic and

graphical interfaces. Additionally, Gazebo provides a set of APIs for interfacing

with ROS, which makes the development of robotic applications very convenient.

The same code that is run in simulation can also be run on the physical robot

with minimal or no changes.

Advantages of Simulation in Robotic Technology Development and Re-

inforcement Learning

Training reinforcement learning policies is hard and usually very time consum-

ing, since typically a great number of data samples is required to learn useful

behaviours for solving the task at hand. Furthermore, those samples are not avail-

able before training, as in supervised learning, but rather need to be collected by

the agent that is interacting with the environment. However, using a real robot to

collect the required experience comes with multiple challenges, which might make

the learning process infeasible. On the other hand, a simulation environment can

tackle many of those challenges and allows learning RL policies in a more reliable,

fast, safe and repeatable way. In this regard, a simulator:

• Is low-cost and low-risk

• Provides easily customizable virtual space for establishing environments for

training and testing

• Allows testing of different sensors and sensor arrangements, without need of

the actual hardware

• Allows speeding up the real-time factor (faster simulation steps), and con-

sequently the training time
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Figure 3.5: The Virtual Wheelchair Model. Each cone is a visualization of an
ultrasonic distance sensor’s field of view.

This thesis uses Gazebo as the main tool for training and testing the reinforcement

learning agents that will be described further on, within custom made virtual en-

vironments. For that purpose, a virtual robotic wheelchair has also been designed,

in a way to closely match the one used in the real physical experiments in terms

of sensor setup and control. The next section will describe the virtual EPW in

detail.

3.3.3 The virtual EPW

In Gazebo, a robot is composed of “links” and “joints”. Links represent the solid

parts of the robot and come with collision, inertial, and visual properties. On the

other hand, joints are the movable parts of the robot (except for the “fixed” joint

type), connecting links, and possessing kinematic and dynamic properties.

Each link is defined by its shape, which can be a basic type like box, sphere,

or cylinder, or a more detailed description using an appropriate mesh file. The

collision tag makes the link a rigid body, while the inertia tag specifies the moment

of inertia (MOI) of that rigid body with mass m. The visual tag enables the link

to become visible in Gazebo. Joints, on the other hand, must be defined as specific

types (e.g., fixed, continuous, revolute, prismatic), which determine the type of

movement they can execute. To fully define a joint, it is necessary to provide the
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links it connects and its axis of movement. All of these aspects are defined in

a Universal Robotic Description Format (URDF) file, the established format for

describing robots in ROS, comprising various XML elements nested in hierarchical

structures. To make the URDF file usable in Gazebo, it needs to be converted

to a Simulation Description Format (SDF) file, which not only specifies the robot

structure but also describes the world in which the robot exists.

The 3D wheelchair model used in this thesis was adapted from the Argallabs

smart wheelchair project [129] (see Fig. 3.5). The wheelchair employs a differential

drive, a two-wheeled drive system where each wheel is controlled independently.

Additionally, there is a pair of free-rolling wheels (caster wheels), allowing the

robot to rotate almost on the spot. The original model was modified from a

front-wheel drive to a rear-wheel drive wheelchair model using URDF, and various

properties such as dimensions (chassis, drive/caster wheels, drive axle length, etc.),

mass, and inertia of the wheelchair were adjusted to match the specifications

of the in-house real-world wheelchair used in the experiments described in later

chapters. In addition, various sensors, which will be detailed in the next section,

were added as links to the EPWmodel. A contact bumper sensor was also included

on the main frame of the EPW model to detect collisions in subsequent simulation

experiments.

For simplicity, the moment of inertia tensor of the wheelchair’s base can be calcu-

lated assuming the chassis has the shape of a solid cuboid with width w, height

h, depth d, and mass m. In this case, the inertia of the base is given by:

I =


1
12
m(h2 + d2) 0 0

0 1
12
m(w2 + h2) 0

0 0 1
12
m(w2 + d2)

 (3.16)

Fig. 3.6 depicts the communication among various components in the simulation

through the ROS framework, including the simulation environment, wheelchair

sensor data, and the controller, which accepts velocity commands and publishes

the robot’s odometry. The “RobotNode” is the high-level process that takes the

simulation and wheelchair data as inputs and generates driving commands for the
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/controller_manager

/RobotNode

Figure 3.6: ROS Gazebo Agent Graph. The graph shows how the different compo-
nents of the system communicate with each other through the use of ROS topics.

virtual wheelchair.
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3.4 Methodology

3.4.1 MDP Formulation

This chapter focuses on an end-to-end learning framework for performing mapless

autonomous navigation in complex environments. The problem is modelled as

an episodic MDP, with a finite time horizon T . As described in Section 3.2.1, a

MDP is a tuple (S,A, T , γ,R), where S is a set of continuous states, A a set of

continuous actions, T an unknown transition function, γ a discount factor, and

R the reward function. The discrete timestep within an episode is denoted with

t ∈ {0, 1, .., T−1}. The state transition dynamics T (st+1|st, at) map a state-action

pair at time t onto a distribution of states at time t+ 1, with st ∈ S and at ∈ A,

however, they will not be used here since a model-free approach will be followed.

The agent, at each timestep, chooses its actions according to a policy at = π(st),

then applies them to the environment, observes a new state st+1 and receives a

reward r(st, at) ∈ R. Given this setting, the goal is to find an optimal policy π⋆

that achieves the maximum expected return Gt =
T∑
t=0

γtr(st, at) from all states.

State Space

Ultimately, the aim of such a system is to be transferred into the real world and

for a real purpose, and thus, the arrangement of sensors that was chosen was

such to closely resemble the real EPW used in the experimental trials described

in Chapter 4 and Chapter 5. The sensors that were used in the virtual model,

as shown in Figure 3.5, consist of 11 ultrasonic sensors surrounding the EPW, a

pair of wheel encoders that provide odometry information, as well as an Inertial

Measurement Unit (IMU). The sonar sensors are positioned in a way to fully cover

the front view, as well as the sides of the EPW, with minimal overlapping between

them. Each of the sonar sensors has a 50-degree field of view and can measure up

to 3 meters far.

Utilizing the sensors described above leads to forming of the state space at each



Chapter 3 – Introduction of an Autonomously Navigated Wheelchair 58

Ranges

     rt|10        

Velocity

      vt|2        

Goal

    dt, ht    

3D Orientation

t, t      

State

st|16        

Normalize 

and

concatenate

Deep RL 

Agent

Input

Odometry

IMU

Sonar

Sensors

Environment

Action at|2

Translate to 

velocity 

command

ct|2

Reward

rt

Send command to

the controller

Receive new 

sensor data

Process data

Figure 3.7: Overview of the Autonomous System Control Process.

timestep t which consists of: 11 sonar range measurements (r⃗t), the linear and

angular velocity of the robot provided by the odometry (v⃗t), the distance and

relative heading to the current goal calculated from the current robot and goal

positions (dt, ht), and finally the pitch (θt) and the yaw (ψt) of the robot converted

from the quaternions provided by the IMU.

Instead of directly including the yaw as part of the state, it was observed that it is

more useful to integrate the robot’s heading information with the angle between

the robot and the current goal. More specifically, the difference between the two

is calculated, essentially encoding the information of how much the robot would

need to turn, in order to align itself with the goal. The process for producing a

sensible angle bounded in [−π, π] is provided below:

The pitch, however, is directly included as part of the state space and it is impor-

tant to help the agent identify inclinations, for example when climbing up a ramp.

In total, the above measurements form a state space of 16 continuous variables,

which are normalized in [0, 1] before being fed to the actor-critic networks.

Since the simulation provides an ideal environment, contrary to the real world,

artificial noise is injected into the aforementioned measurements in order to train
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Algorithm 3 Heading difference between robot and goal

1: Inputs ht, θ
2: Let dd = 0
3: diff = ht − θ
4: d = |diff | (mod 2π)
5: if d > π then
6: dd = 2π − d
7: else
8: dd = d
9: end if
10: if (diff > 0 and diff ≤ π) or (diff ≤ −π and diff ≥ −2π) then
11: sign = 1
12: else
13: sign = −1
14: end if
15: dd = dd * sign

return dd

the agent under more realistic conditions. More details on that will be provided

in section 4.6.1 of the next chapter, which includes real-world experiments.

Actions

The autonomous navigation RL agent has access to two actions, corresponding

to the commands sent to the differential drive controller to move the virtual

wheelchair. These actions are the linear and angular velocities, ranging from

−1 to 1, facilitating convergence of the neural networks. Inside the environment,

these velocities are remapped to the actual desired velocities that will be sent to

the controller to drive the EPW. The differential drive kinematics can be expressed

in terms of robot velocities as follows:

v =
vR + vL

2
ω =

vR − vL
d

(3.17)

Here, v represents the platform body’s linear velocity, ω its angular velocity, vR,L

are the drive wheel velocities, and d is the axial distance between the two drive

wheels.
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The agent’s selection of linear and angular velocity determines the specific ma-

neuver executed by the robot (e.g., moving forwards, moving backwards, rotating

on the spot, etc.). Throughout the training process, the agent needs to implic-

itly understand the outcomes of its actions on the robot. Fig. 3.7 provides an

overview of how the autonomous navigation system receives sensor data from the

environment, processes it to form the state vector fed to the RL agent, and how

the agent outputs actions that are translated into velocity commands and sent to

the robot’s controller for direct control of its movement.

Rewards

The task the agent needs to learn is how to navigate from some point A to another

point B, and therefore needs to be rewarded whenever it manages to reach its

goal. However, if this was the only reward it received, given its initial randomness

and the complex sequence of actions that needs to be followed in order to reach a

rewarding state, the reward would be seen very rarely, and thus the convergence of

the algorithm would require an unreasonable amount of time. This is known as the

sparse reward problem in RL. One of the most straightforward and efficient ways

to tackle this issue is with reward shaping. Reward function shaping attempts to

convert a sparse reward scheme to a dense one using domain/expert knowledge,

and provide additional information to the agent to accelerate learning. Many

different reward functions have been investigated for successfully learning a robust

autonomous goal tracking behaviour, and the most successful one is presented

below.

To ingrain the agent with the desired behavior, the reinforcement learning signal

received from the environment, which is the reward function at timestep t, is

defined as follows:

r(st, at) = ldrd(st, at) + lsrs(st, at) + lgrg(st, at)− tp, (3.18)

where ld, ls and lg are scaling factors. rd is the reward related to the distance

difference from the current goal, between two consecutive timesteps (dt = ∥px,yt −
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gx,y∥ − ∥px,yt−1 − gx,y∥, p
x,y
t being the robot’s position at timestep t and gx,y being

the current goal’s position)

rd(st, at) =


α |dt| < dmin,

−dt dt < 0,

0 otherwise.

(3.19)

The first branch of the above reward penalizes the agent for not moving (when

the distance difference is below a specified threshold, denoted as dmin, given that

the odometry will not return two exactly equal consecutive readings), which is

observed in situations such as when the robot gets stuck at a wall corner, or when

trying to get up a ramp but does not accelerate enough. The second branch of

the positional reward, returns a reward proportional to the distance difference

between the current and the previous timestep. This incentivises the agent to

close the distance between itself and the current goal.

rs is an auxiliary sensor reward to penalize dangerous proximity to obstacles, by

defining two danger zones, and penalizing when any of the range sensors (indicated

as sany) returns a reading smaller than a multiple of the minimum safety range

(smin), at which we consider that we have crashed. This reward is designed to

provide the robot with safety awareness, and thus act as an extra safety feature

for the particular application, given the increased risks of driving an EPW.

rs(st, at) =


β1 sany < 1.5smin,

β2 sany < 2.5smin,

0 otherwise.

(3.20)

Lastly, rg indicates the reward for reaching the current goal within a specified

radius of 0.5 meters.
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rg(st, at) =

γ if current goal achieved,

0 otherwise.

(3.21)

The term tp in the reward function refers to a constant penalty that is given

at every timestep, to incentivize the agent to move towards the goal as soon as

possible, otherwise it would accumulate a large negative reward. This penalty also

prevents the policy from converging to strategies that would lead it to ceaselessly

circle around in order to avoid collisions. For crashing the agent is penalized by

receiving a total reward of r(st, at) = rcrash. Table 3.1 showcases the actual values

of the reward function parameters that were used for training the agent.

Table 3.1: Autonomous Policy Reward Function Parameters.

Parameter Value
dmin 0.1 meters
α −0.25
smin 0.5 meters
β1 −0.25
β2 −0.125
γ 100
tp −0.1

rcrash 100

Terminal States

The episode is reset when the robot crashes, when it overturns, as well as when it

remains in the same position for several consecutive steps (stuck or not moving),

so as not to fill the replay buffer (see Sec. 3.2.2) with useless experience and slow

down the training. Crashing is checked for through the range sensor readings, in

case they fall below the accepted threshold, and through a bumper sensor installed

on the main body of the robot, capable of detecting contacts. Overturning can

take place with specific rotational movements around corners, or by falling off a

ramp. It can be determined by checking whether the robot’s pitch and roll have

exceeded their allowed thresholds. The episode also resets when the maximum

number of timesteps is reached, which discourages the robot from retaining a low
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linear speed when not necessary, since it has to complete the track before the

episode resets.

3.4.2 Solving the MDP

The solution of the above MDP has been achieved by using the maximum en-

tropy reinforcement learning framework, and more specifically the Soft Actor-

Critic (SAC) Algorithm [130]. SAC is an off-policy, actor-critic algorithm that is

used with continuous action spaces and trains a policy that maximizes a trade-off

between expected return and entropy, in order to increase the randomness of the

policy and boost exploration. Its objective is given by:

J(π) =
T∑
t=0

E (st, at)∼ π[r(st, at) + αH(π(·|st))], (3.22)

whereH is the entropy of the policy and α is a parameter that controls the trade-off

between the reward and the entropy. Instead of the original algorithm, a modified

version was used [131], which automatically tunes the α parameter throughout

training, by trying to match a user-defined target for the desired entropy. This

is very convenient because it allows setting an arbitrary reward function, without

having to explicitly tune its magnitude.

SAC concurrently learns a policy πθ and two Q-functions Qϕ1 , Qϕ2 , which are

represented by neural networks with parameters θ, ϕ1 and ϕ2 respectively. During

training, it stores a collection of (s, a, r, s′, d)Ni=1 transition tuples in a replay buffer

D, from which it periodically randomly samples a batch of transitions and performs

stochastic gradient descent for minimizing the following loss objectives:

LQ(ϕi) = Es,a,r,s′,d∼D

[
(Qϕi(s, a)− y(r, s′, d))

2
]
, (3.23)

where the target y is given by:

y(r, s′, d) = r + γ(1− d)
(
min
j=1,2

Qϕtarg,j(s
′, ã′)− α log πθ(ã

′|s′)
)
, ã′ ∼ πθ(·|s′)
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Lπ(θ) = Es∼D,ã′∼πθ

[
α log πθ(ã

′, s)− min
j=1,2

Qϕj(s, ã
′)

]
(3.24)

The stochastic policy in the continuous action space, is represented through a

diagonal Gaussian distribution. A diagonal Gaussian distribution is a special

case of a multivariate Gaussian distribution, described by a mean vector, µ, and a

covariance matrix,Σ, where the covariance matrix only has entries on the diagonal,

and therefore can be represented by a vector. The policy uses a neural network

with parameters θ, which maps states to mean actions, µθ(s), and in the case of

SAC, also maps states to log standard deviations, log σθ(s).

Given a mean µθ(s), a standard deviation σθ = elog σθ(s) and a noise vector ξ from

a spherical Gaussian (ξ ∼ N (0, I)), an action sample can be computed with

aθ(s, ξ) = µθ(s) + σθ(s)⊙ ξ (3.25)

SAC bounds the actions in the finite range [−1, 1], by squashing them through

the tanh function: a = tanh(aθ(s, ξ))

The reasoning behind choosing this particular algorithm is four-fold. First, SAC

deals with the continuous action space, which is a requirement of this work to

allow smoother control of the mobile robot and enable complex maneuvering.

Second, the proven success of the particular algorithm for solving similar MDPs

in an efficient way, being a sample efficient and stable algorithm. Third, the fact

that SAC requires relatively little hyper-parameter tuning compared to other RL

algorithms. Fourth, utilizing the maximum entropy RL framework allows learning

a general policy that can adapt to unseen conditions, a property which is desirable

both for navigating in a variety of different environments, but also for creating a

more diverse and realistic user model that will be needed in the next chapter of

the thesis. The objective function that is optimized in SAC for the policy network

is shown below:



Chapter 3 – Introduction of an Autonomously Navigated Wheelchair 65

1

2
3

4

7

8
9

10

11

6
5

(a) The Training Environment. (b) The Unseen Environment.

Figure 3.8: The Virtual Scenarios Implemented in Gazebo. The green and red
lines indicate the desired paths for the 1st and the 2nd scenario respectively,
whereas the coloured dots show the approximate locations of the subgoals along
those paths.

3.5 Training and Evaluation of the Autonomous

Agent

3.5.1 Training

Setup

For training the autonomous agent, a custom map was designed in the simulation

environment, inspired by the scenario defined in the European project, ADAPT1,

to test wheelchair user skills according to the Wheelchair Skills Test (WST) [132]

protocol. The WST describes a range of driving skills needed for assessing the

capacity and performance of an EPW user, including a series of challenging tasks

as shown in Table 3.2. The track is split into two scenarios, which in turn include

a number of subgoals the agent needs to accomplish, in order to fully navigate the

paths as marked in Figure 3.8a. At each training episode, a scenario is selected

randomly, as well as a random subgoal within that scenario. The initial pose of

the robot is also randomised, within some bounds, along the track. The reason

behind this is to integrate diverse experiences for the replay buffer, so that the

1Assistive Devices for empowering disAbled People through robotic Technologies
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Table 3.2: Wheelchair Skills Test Tasks Integrated in the Training Scenario
(Fig. 3.8a).

Subgoal Task

1 Perform 90 degree turn in narrow corridor (1.5m width)
2 Position for ascending inclined ramp (1.4m width)
3 Ascent of 5% incline
4 Descent 10% incline and turn in place in narrow corridor
5 Ascent of 10% incline
6 Descent of 5% incline
7 Pass through 90cm door and perform 90-degree turn in a very

narrow space
8 Perform U-turn in very narrow corridor (1m width)
9 Exit corridor performing a wide turn
10 Enter lift area through 90cm door and turn in place to exit lift
11 Position under desk/table (for working, eating etc.)

agent learns faster while minimizing the risk of the model getting stuck at a local

minimum, by converging early on to a weak policy unable to explore further and

improve its strategy.

For the purpose of setting up the reinforcement learning problem and creating

the environment for training the autonomous agent, the OpenAI Gym library was

employed [133]. Additionally, the well-established Stable Baselines library was

utilized [134], offering a suite of reinforcement learning algorithms, with the SAC

algorithm specifically employed to train the agent. These choices provided a robust

foundation for conducting the training process and facilitated the exploration of

various RL techniques in the context of the developed system.

Training details

The SAC algorithm’s hyperparameters were tuned through trial and error, re-

sulting in the parameters shown in Table 3.3. The actor-critic neural network

architecture utilized standard Multilayer Perceptron (MLP). During training, the

performance of the agent was periodically evaluated in a separate test environ-

ment, over the span of 5 episodes, in order to identify and save the best one. The

maximum linear speed of the robot was set to 0.67 m/s, while the angular velocity

was bound in [−1.3, 1.3] rad/s.
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Figure 3.9: Average Reward During training for Five Autonomous Navigation
Policies with Different Random Seeds. The x-axis represents the training steps,
while the y-axis represents the average reward achieved by each policy. The policies
are tested to assess their sensitivity to the inherent stochasticity of the training
process. By using different random seeds, we can observe variations in the learning
trajectories and understand the impact of randomness on policy performance.
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Parameter Value

Optimizer Adam
Learning rate 3e-4
Discount(γ) 0.99

Replay buffer size 10e6
Num. of hidden layers (all nets.) 2
Num. of hidden units per layer 256
Num. of samples per minibatch 256

Nonlinearity ReLU
Training steps 15e6

Table 3.3: Hyperparameters of the SAC Algorithm for the Autonomous Navigation
Policy. The table displays the specific hyperparameters used to train the SAC
algorithm, which is employed to develop the autonomous navigation policy, and
play a crucial role in shaping the learning process.
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Table 3.4: Autonomous Policy Performance Statistics on the Training and Eval-
uation Environments. For the path planners only success/failure and completion
times are marked.

Experiment Training env. (Fig. 3.8a) Unseen env. (Fig. 3.8b)

Scenario Method Success Collisions Time Success Collisions Time

Sc.1
(Green
line)

RL 88% 0.12 53.5s 86% 0.14 45.2s
RL(safe) 98% 0 54.7s 94% 0 46.6s
HUM 87.5% 1.6 77.8s 100% 0.4 47.2s
TEB ✓ N/A 75.8s ✓ N/A 58.7s
DWA ✗ N/A 143.1s* ✓ N/A 103.4s

Sc.2
(Red
line)

RL 74% 0.26 79.4s 87% 0.13 47.8s
RL(safe) 89% 0 82.8s 97% 0 49.3s
HUM 75% 5.9 118.7s 100% 2.4 62.3s
TEB ✗ N/A -* ✓ N/A 65.2s
DWA ✗ N/A 210.9s* ✓ N/A 94.6s

* In case of failure, human intervention was used to free the robot and proceed with the
scenario execution. The time before aborting a target and the human intervention time
were not considered in the results.

3.5.2 Evaluation

For evaluating the proposed method, the training process was repeated five times,

using different random seeds, resulting in five policies representing the best agent

of each run. Performing several runs was done to gather quantitative results,

and test the method’s sensitivity to the stochasticity involved in the training

process. Figure 3.9 presents the results, in terms of average reward over the

training course. It can be observed, that given enough training time the models

converge to similar achieved rewards, demonstrating the method’s robustness to

randomness between different runs. This robustness is enhanced by enabling the

agent to start off at various points of the course, as well as the deterministic nature

of the environment. Additionally, all models resulted in high entropy policies (in

the context of RL entropy measures the randomness in actions), which indicates

their ability to generalize and adapt to situations not experienced during training.

The performance of the trained agents was initially tested on the scenarios they

were trained on, for a span of 100 episodes on each scenario, while picking deter-

ministic actions (the mean of the policy’s output). An important tweak employed
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during testing time is the addition of an extra safety mechanism on top of the

agent’s output, to aid collision-free navigation (see Fig. 3.10). In this case, the

agent picks stochastic actions (samples from the policy’s output distribution), and

the mechanism activates when any of the range sensor measurements are below

the minimum safety threshold (smin) and the chosen action would move the robot

towards the direction of the obstacle. Instead of resetting the episode as in during

training, a zero command is instead issued to the controller to prevent the crash,

and allow the agent to continue its task if it manages to pick an action from the

stochastic policy that would move it away from the obstacle. Table 3.4 presents

the average success rate of fully navigating each scenario, the average completion

time (in steps), the overall scenario completion percentage, and the average num-

ber of collisions per episode of the best performing agent, both with and without

using the extra safety mechanism. It is observed that the RL agent scores a high

success rate (88%) for the first scenario, while the success drops for the second

scenario (74%) due to the very demanding maneuvers that are required for com-

pletion. Enabling the safety mechanism drastically improves the success rates of

the agent, while reducing the collisions to zero, only for a very slight trade-off in

completion times.

The models were then tested in a different, unseen scenario (Figure 3.8b), to eval-

uate how well the method has generalized in terms of driving behaviour and goal

tracking. Compared to 3.8a, this one is less linear, more open-spaced, and requires

slightly less complex maneuvers to navigate. Again, two separate paths are de-

signed along the track, each with its respective subgoals, for which the results are

presented in Table 3.4. The results suggest that the agent has not overfitted to the

specific scenarios it was trained on; rather, it can navigate an unseen environment

with high success rates, comparable to those of the training environment. The

number and the positions of the defined subgoals are set arbitrarily, but placing

them relatively close to each other and before steep changes in the map topology

helps the agent progress the track more smoothly, given the absence of global

knowledge of the map. Also, in this case, applying the extra safety mechanism

results in a significant increase in the agent’s success.
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Figure 3.10: Display of the Extra Safety Navigation Mechanism. Red arrows
indicate directions that the safety mechanism prevents from being applied due to
the close proximity of obstacles, whereas green arrows show the directions that
the safety mechanism allows the robot to move towards since there are no nearby
obstacles below the minimum safety threshold.

Baseline Comparison

The deep-RL trained motion planner was compared with human performance, as

well as with two widely used motion planners. For a fair comparison, both the

humans and the path planners were provided with the same subgoals and velocity

limits as the RL agent. A hardware-in-the-loop (HIL) simulation was set up for the

human trials, incorporating a real joystick controller connected via a USB-to-TTL

Serial interface to a Linux machine running the simulation (figure 3.11). Eight

healthy human participants were given some time to familiarize themselves with

the setup and were then asked to navigate the scenarios as fast and accurately as

possible. The trials were not stopped in case of a crash, as was done with the RL

agent.

Traditional path planning was implemented through the navigation stack pro-

vided by ROS. A 2-D occupancy grid map was initially created, using laser-based

SLAM, and the Adaptive Monte Carlo Localization (AMCL) approach was used

for localizing the robot in the map. A global plan was produced by utilizing the
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Figure 3.11: Hardware Joystick Controller, that can be connected to a PC through
TTL Serial communication. Two fake loads are used to emulate the wheelchair’s
drive motors and allow the controller to transmit signals.

A* algorithm on the constructed grid map, whereas for generating velocity com-

mands for collision-free path following, both the Dynamic Window Approach and

the Time Elastic Bands approach (recall section 2.2.3) were explored.

The relevant results are presented in Table 3.4. It is observed that some of the

human participants were not able to complete the scenarios of the training en-

vironment, which was due to getting stuck in tight spots and not being able to

reverse. Overall, it was quite challenging to avoid crashing, at least not without

moving extremely slowly. The path planners were also unable to fully complete

both scenarios of the training environment. Even though the global planner man-

aged to create a valid path to the goals, the local planners were unable to produce

the necessary moving commands to guide the robot through specific spots, and

thus the navigation was aborted. With DWA the robot speed was quite slow, while

the planner was particularly problematic with rotating on the spot. On the other

hand, TEB’s overall performance was better than DWA, producing smoother tra-

jectories and driving the robot faster. However, it was still unable to navigate the

robot through tight spots and narrow pathways, despite significant efforts to tune

it properly. These results occurred even after extensive tuning of various param-

eters of the planners, such as the inflation radius of obstacles in the costmap, the

footprint of the robot, path and goal-related cost factors, etc. In the unseen envi-

ronment, which is simpler in terms of the required maneuvers, both the humans

and the planners were successful in navigating the given scenarios.
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Table 3.5: Autonomous Agent Observation Space Ablation Results.

Experiment Metrics

Scenario Model SucS SucG Collisions Steps Rewards

Sc1 (green)
Baseline 88% 93.3% 0.12 1070 503.4
+2 Past 93% 96.3% 0.07 1089 538.6
No IMU 0% 61.3% 0.42 2155 314.7
LiDAR 0% 68.75% 0.06 2688 702.1

Sc2 (red)
Baseline 74% 83.2% 0.26 1588 297.9
+2 Past 80.0% 89.25% 0.2 1693 375.9
No IMU 0% 44.6% 0.44 2307 93.4
LiDAR 0% 33.2% 0.84 1017 123.8

Ablation study for the Observation Space

An ablation study was also performed, in order to determine the importance of

including specific observations in the state space. More specifically, this section

explores the effect on the performance of the agent when it cannot observe its

orientation through the IMU sensor, or when a history of past measurements

is added to the observation space. It also explores the potential of learning a

successful model, if instead of the chosen sonar arrangement, a LiDAR is used as

the only means of accessing information about obstacles in the environment, as

has been done in other works [66].

For better evaluating the performance between RL agents, the recorded metrics

include the full scenario completion rate (reaching all goals), the partial comple-

tion rate (number of goals reached), the steps per episode (before the episode is

terminated due to completion, crashing or reaching the time limit) and the re-

ward per episode, averaged over a span of 100 test episodes. Table 3.5 presents

the performance of each policy evaluated on the training scenarios. The results

show that including a history of past observations at each state improves the base-

line model in terms of success and collision rates. This result is expected since

including information about the past introduces a form of memory to the model,

that helps it take better decisions in situations where only the current sensor

measurements are not enough to decide the optimal action (e.g., steep changes in

the map topology). Concatenating past information to the current state has also
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been shown to be effective in other works [120], whereas for properly integrating

memory into the model, a different neural network architecture would be required

(e.g., recurrent connections). However, this was purposely omitted in this work to

avoid significantly higher training and inference times.

Excluding the IMU measurements from the observations of the agent, also seemed

to have a significant effect on the trained policy, with the success rates dropping

compared to the baseline model. This is mostly accounted to the absence of

information regarding the robot’s heading. Since the wheelchair is a bulky and

non-symmetrical robot (in contrast to the turtlebot platform for example, which

has been extensively used in closely related works [66, 102]), having a sense of its

own heading provides valuable information for executing fine maneuvers and for

being able to accurately orient itself towards a goal position. Finally, replacing

the sonar sensors with a single forward-facing LiDAR sensor, installed at the

front of the wheelchair, also resulted in a steep decline in performance. Again,

due to the geometry of the wheelchair, a single LiDAR does not provide enough

information about the surrounding obstacles to allow the execution of certain

maneuvers without resulting in a collision.

Continuous vs Discrete Action Space

This section investigates the importance of using a continuous action space versus

a discrete one for performing navigation in challenging environments. A new

policy is learned through the popular DQN (more specifically an improved version

of the original algorithm, using a dueling network architecture and double q-

learning), and is compared to the best-performing continuous agent. In this case,

the observation space, as well as all of the task-related configurations are kept the

same as with the baseline SAC model. The only difference in training the DQN

model is that the action space is discretized so that the agent can choose one out of

15 discrete actions at each timestep. Each action corresponds to a pair of a linear

and an angular velocity command, where the linear command component can take

one out of three values evenly spaced in [0, vxmax], and the angular command can

take one out of five possible values, evenly spaced in [−ωzmax, ωzmax].
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Results show a steep decline in performance when the discrete model is tested on

the training environment. More specifically, in the first scenario the DQN agent

achieves goals with a 75% partial completion success rate, compared to 93% of

the baseline model. In the second scenario, which demands finer maneuvering to

navigate the narrow corridors, the partial success rate drops even further to 37%

compared to 83% that the continuous agent achieves, whereas the DQN agent

never manages to fully complete the scenario, with a crash rate of 100% at goal 7

(perform 90-degree turn in very narrow space). This result justifies the use of the

continuous action space to navigate complex indoor environments, where a limited

degree of control freedom is not sufficient to perform the required maneuvers for

successful navigation. Allowing the discrete agent a larger number of available

actions could tackle this issue, but would result in a more challenging and time-

consuming training process.

3.6 Discussion

The aim of this chapter was to introduce an end-to-end autonomous navigation

method for mobile robots, by leveraging a realistic sensor setup without requiring

the existence of a map. The method was specifically designed for use with pow-

ered wheelchairs, where a simulated model was utilized to learn a goal-following

navigation policy through reinforcement learning, within a virtual scenario that

contained a series of tasks inspired by the WST protocol. Results showed that

the proposed method can effectively learn policies capable of reaching challenging

goal locations, in a collision-free manner, and adapt to situations not experienced

during training. The method was compared with state-of-the-art planners, human

performance, and also variations of itself, highlighting the importance and the ef-

fect of different design choices, especially regarding the observations available to

the agent.

Including human participants in this study was mainly aimed at putting into

perspective the challenging task of controlling a bulky mobile platform. Naturally,

the perceived task for a user would be quite different in the real world compared to
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the simulation, but still, the participants who focused on completing the trials as

fast as possible had a significant number of collisions, whereas those who focused

on accuracy had large completion times. This indicates the challenge of combining

speed and accuracy for non-expert users when fine maneuvering is required, and

without the help of an assistive system. The traditional path planners both failed

in completing the most challenging scenario, while they were successful in the

easier tasks. However, they both required extensive tuning and proved to be slower

in achieving the tasks, while being significantly more computationally intensive

compared to the RL approach. When measured on the same hardware, the average

frequency at which drive commands were sent resulted in 7 Hz with TEB, 13 Hz

with DWA, and 115 Hz with RL (without fixing the control timestep). This is

an important factor to consider when deploying the solution in a real-world robot

with an onboard computer.

Using a sensor setup that can provide sufficient information about the obstacles

surrounding the robot proved to be of paramount importance, as when the sonar

sensors were replaced with a front-facing LiDAR sensor the performance of the

autonomous policy dropped dramatically. The results also showed the benefit of

adding some memory capabilities to the model, as concatenating past observations

to each state improved the resulting model’s performance. The IMU sensor, which

can provide the agent with a sense of the robot’s orientation also seemed to play an

important role in the policy’s maneuvering and goal-following capabilities. Using a

discrete action space, with a limited number of available commands, did not allow

the agent to complete the most challenging tasks, as it led to rough navigation

behaviors compared to the much richer continuous action space.

Finally, an additional safety mechanism was introduced, which works on top of

the trained policy and was shown to greatly aid in avoiding collisions. A more

sophisticated approach would be to calculate the admissible velocities as in the

DWA (trajectories that do not lead to a collision within a given control time

window) and prevent the execution of non-safe trajectories. However, that would

incur an additional computational cost, while a simpler implementation as the one

presented in this work seemed to work well enough, reducing the collisions to zero
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when used along with the autonomous agent.

A limitation of the proposed work is that it does not directly deal with the lo-

calization problem, which is a critical issue to address for transferring the learned

policy to the real world. The odometry that is calculated solely from wheel en-

coders tends to accumulate error over time, leading to wrong estimations of the

robot pose, and therefore erroneous goal-related observations for the autonomous

agent. This issue could be tackled with the current design, by using an EKF to

fuse encoder and IMU information and provide more robust robot pose estimates.

Alternatively, another localization method from the ones presented in Sec. 2.2.1

could be utilized.

3.7 Chapter Summary

This chapter proposed an RL-based method for autonomous wheelchair navigation

in complex indoor environments, only relying on low-cost onboard sensors. More

specifically, the chapter presented an end-to-end system, which takes in sonar

and IMU sensor measurements, along with a desired goal’s information, in the

form of polar coordinates, and directly outputs control commands for the powered

wheelchair. The system was trained in simulation and utilized the maximum

entropy RL framework, and more particularly the Soft Actor-Critic Algorithm, to

learn a robust navigational policy in the continuous action space. The proposed

method is also applicable for any non-holonomic, differential drive robot, however,

particular emphasis was given to the sensor arrangement, and also the design of

the task and the reward function, to account for the specific needs of an EPW, in

terms of its geometry and the requirements of fine maneuvering and safety. Results

in simulation show that the learned policy can effectively complete challenging

tasks and also adapt to new ones, with the aim lying in providing an option for

effortless and safe navigation in the daily routine of EPW users. On top of the

policy’s output, a simple but effective control mechanism can be applied to further

promote safety. The proposed method is able to handle cases the baseline methods

are unable to while being significantly less computationally intensive.



CHAPTER 4

A Novel RL-based Shared Control Method

This chapter presents the main objective of the thesis: a novel shared control

methodology for assisted navigation, building upon the autonomous system intro-

duced in the previous chapter using maximum entropy RL. The modified formula-

tion ensures compliance with the user’s intentions by replacing the added entropy

term with a user-modeling-based term, minimizing the difference between agent

and user actions represented as a probability distribution. The introduction of

a “state risk” formulation aids in identifying cases where the system must devi-

ate from the user’s commands to prevent harm. By leveraging the autonomous

agent from Chapter 3 as a disabled user model with artificial noise injection, we

train a compact neural network to produce real-time corrective driving commands

for wheelchair users, making minimal assumptions about users or the environ-

ment. The experimental section encompasses simulation and real-world experi-

ments, showcasing improved goal-reaching and safety for simulated user models.

Real-world validation demonstrates successful user guidance with a strong empha-

sis on safety, albeit with a slight trade-off in user satisfaction.

4.1 Introduction

The definition of shared control and the various methods found in literature of

realizing it, along with their limitations, have already been discussed in Sec. 2.3.

77
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The motivation behind the work presented in this chapter is to design an end-to-

end system that is able to assist the user in a meaningful way, while making the

minimum possible assumptions about the world and the user’s goals. Ideally, the

system should be able to follow the user’s immediate intention, but gently modify

their input when needed, to produce a safer and more effortless motion. Another

requirement of the system is to be able to provide assistance in the continuous

action space, while being fast enough to run on the onboard electronics of a mobile

robot.

This chapter adopts a policy-based approach to shared control, by designing a

system that optimizes some cost function to directly output a control action for

the robot, while taking into account the user’s input. This is achieved through the

RL framework, and more specifically by modifying the SAC algorithm, which was

also used in the previous chapter to train an autonomous agent. The autonomous

agent is utilized here to emulate a user that will be part of the training process.

The rest of the chapter will describe the different components of the proposed

system and will highlight the relevant contributions. The different aspects of the

system are put under inspection through a number of experiments and comparisons

run in simulation. The system is also transferred to a real robot (EPW), where

further experimentation is conducted to test the proposed method’s effectiveness,

transferability to the real world, and its ability to assist actual human users, while

only having been trained with a simulated user.

4.2 Simulating User Driving

Sec. 2.3 introduced the definition of shared control, summarized as an instance of

human-robot collaboration, where a human user and a robotic system are inter-

acting congruently in a perception-action cycle to arrive at the decisions needed

to achieve some goal. Since this thesis explores a learning-based approach to the

shared control problem, training such a system requires the existence of user in-

put data, which is the very input the system should learn how to correct, when

correction is needed.
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If the shared control problem was framed as a supervised learning problem, it

would be possible to collect human data, along with environmental observations,

label them in an appropriate way (if the optimal actions were known), and thus

create a dataset through which a prediction model could be learned. However,

in the case of reinforcement learning, the learning is achieved through constant

interaction between the agent and the environment, and therefore it is not possible

to use pre-collected data as one would in a supervised learning setup. Rather,

there needs to be a user, or a model of a user, providing a continuous stream of

commands while the learning takes place.

Of course, having a real person producing control commands throughout the train-

ing of such a system would be highly impractical, if not infeasible, due to the sheer

number of interactions that are needed for the convergence of the system. Another

idea would be to utilize a path planning algorithm, along with a motion controller

and a localization algorithm (similar to the autonomous navigation approaches

presented in Sec. 2.2), in order to produce moving commands for the robot in

the place of an actual user. However, this approach would also be problematic

due to the high computational demands of such algorithms, the need for a map,

and their deterministic nature, which would result in a slow and predictable user

model. Finally, a user model could be learned through expert demonstrations

(e.g., imitation learning/behavioral cloning), but that would require high-quality

and sufficiently diverse data, which would be hard and time-consuming to collect.

Instead, this thesis proposes the use of a trained, autonomous reinforcement learn-

ing agent to act as the user. This approach satisfies several requirements that make

it appropriate to use for the purposes of this work:

1. The autonomous navigation agent can provide a single driving command

“on-demand” at any given timestep, which follows the same format as the

training process for the shared control system.

2. The autonomous navigation system shares similar sensory input with the

shared control system (as will be seen later in this chapter), which allows

for an efficient implementation by not requiring additional sensors and by
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reusing the already processed data at each learning step.

3. The decision-making of the autonomous navigation system is quite fast (re-

call Sec. 3.6), therefore, it will only have a minor impact on the training

time of the shared control system. This would not be the case if using a

traditional navigation method which is quite computationally demanding.

4. The autonomous navigation agent can be perturbed with additive noise, but

still take “rational” decisions to navigate towards a goal, similar to what a

user with some disability would do. The following section further clarifies

the importance of this point.

The agent that will be used in the place of a human user is the optimal agent

of the work presented in Chapter 3. The next section discusses how the optimal

trained policy can be corrupted to simulate disabled user input.

4.2.1 Erroneous User Input Models

The purpose of the shared control system is to slightly modify the user input,

when needed, in order to improve driving performance and avoid risky situations

(e.g., collisions). However, the system should fully respect the user’s intention

when the user drives optimally. The autonomous driving agent of Ch. 3 was

trained for optimal performance, and as shown by the relevant results (Sec. 3.5.2),

it is expected to navigate towards targets with significantly high accuracy, while

avoiding collisions. Therefore, directly providing its control commands as user

input for the assistive system would not be very helpful, since the assistive system

would not get to experience faulty driving behavior to learn how it should correct

it accordingly.

Instead, the output of the autonomous agent should be modified to mimic a dis-

abled user and provide flawed input for the assistive system. For that purpose, the

control actions suggested by the autonomous agent can be “polluted” by artificial

noise, before being utilized as user input. Depending on the type of noise that

is injected into the stream of the autonomous commands, it is possible to create
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a variety of disabled user models. The work done within the scope of this thesis

is not to accurately simulate specific real-world disabilities, but rather provide a

noisy, and as diverse as possible range of inputs to the assistive system so that

it can learn how to provide assistance within a wide range of situations and user

behaviours.

The different types of noise and the resulting faulty user models that have been

explored in this work are presented below:

1. Laggy user : A “laggy” user is a user with a slow reaction time (due to either

mental or physical limitations), that lags in changing their control actions.

Such a user can be modelled by repeating the previous control action, instead

of generating a new one, at each timestep, with a fixed probability p. This

way, each action is repeated for a number of steps that follows a geometric

distribution.

Algorithm 4 Laggy User Action Selection

Input: User input at timesteps t and t− 1, u⃗ht ,
⃗uht−1, the probability of repeating

the previous action, p

Output: Corrupted action, u⃗ct

1: Sample random number in [0,1] from the uniform distribution, X ∼ U(0, 1)

2: if p > X then

3: u⃗ct =
⃗uht−1

4: else

5: u⃗ct = u⃗ht
6: end if

7: return u⃗ct

2. Shaky user : A “shaky” user is a user that lacks accuracy in their control

actions due to poor motor control (e.g., Parkinson’s disease). Such a user

can be modelled by injecting Gaussian noise of a fixed standard deviation σ

around their input.
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Algorithm 5 Shaky User Action Selection

Input: User input at timestep t, u⃗ht , action space bounds aLOW , aHIGH , standard

deviation of Gaussian noise, σ

Output: Corrupted action, u⃗ct

1: Calculate n samples from Gaussian distribution, equal to the number of ac-

tions, X1, X2..Xn ∼ N (0, σ2)

2: Add noise to the user’s action, u⃗ct = u⃗ht + X⃗

3: Clip resulting actions to be within the allowed bounds, u⃗ct =

clip(u⃗ct , aLOW , aHIGH)

4: return u⃗ct

3. Twitchy user : A “twitchy” user is a user that sometimes completely loses

control of their actions, possibly due to some neurological condition. Such

a user can be modelled by selecting a completely random action (sampled

from the set of available actions), at each timestep, with a fixed probability

p.

Algorithm 6 Twitchy User Action Selection

Input: User input at timestep t, u⃗ht , the action space A, the probability of choosing

a random action, r

Output: Corrupted action, u⃗ct

1: Sample random number in [0,1] from the uniform distribution, X ∼ U(0, 1)

2: if r > X then

3: Sample a random action from the action space, u⃗ct ∼ A

4: else

5: u⃗ct = u⃗ht
6: end if

7: return u⃗ct

4.2.2 User Intent as a Probability Distribution

Given a noisy user model, its outputs can be used as the desired control actions

which should be corrected, if needed, by the assistive system. However, since the

aim here is to build a generic assistive system that does not necessarily have any

prior knowledge of the user’s disability or goals, it is only the noisy command that

gets exposed to the system, and not the original command or the type of noise

that was injected to it.
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That being said, by simply assuming that there is potentially some error associated

with the provided command, the noisy command can be then represented as a

probability distribution over actions by the assistive system. The usefulness of

that will become evident in the following section, where the methodology will be

explained in depth. Another assumption that is adopted in this work, is that

the user’s velocity distribution is solely based on the current input command,

which should approximately indicate their intended goal trajectory. Assuming

a memory-less probability distribution simplifies the framework, while it allows

users to change their minds and is more tolerant to input errors.

Even though many different distributions can be used to model the noisy action, for

reasons of practicality and convenience, we adopt the formulation presented in [93],

where the intent is modeled as a normal distribution over the range of velocities

centered on the indicated direction. Hence, the noisy command will be modeled

as a random variable uc sampled from a diagonal Gaussian distribution, with

the mean vector µ centered on the current commands and a diagonal covariance

matrix Σ chosen as part of the system design.

uc ∼ N (µ,Σ) (4.1)

Alternatively, a Gaussian distribution could be fitted to a window of n past com-

mands, which could be weighted so that the most recent commands would have

a larger impact on the resulting distribution. This would introduce some form

of short-term memory of the user’s intentions and would dynamically adjust the

covariance matrix. However, such an approach would require more tuning (the

size of the window and the respective weights) and would further complicate the

analysis of the proposed framework’s effectiveness. Therefore, in this work we

will only consider modeling the most recent user command as an indication of the

user’s intentions.
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4.3 User Compliant Reinforcement Learning

This section presents the proposed methodology for realizing shared control through

deep reinforcement learning, by modifying the maximum-entropy RL framework

to incorporate the user’s intention as a prior distribution that guides the agent’s

exploration.

4.3.1 Maximum Entropy RL Objective Modification

A non-negotiable requirement of a shared control system, especially one designed

to enhance a disabled person’s autonomy, is its ability to closely follow the user’s

intentions and intervene only when necessary, rather than solely prioritizing other

objectives and ignoring the user’s input. In other words, such a system should

place particular focus on respecting the user’s intent.

In this work, explicit goal inference is not performed. Instead, the user’s actions

directly influence the assistive policy, which must learn to implicitly decode the

user’s intent. The agent perceives its environment based on observations from var-

ious sensors, and it considers the user’s intention, another source of observations,

as part of the external environment. Thanks to the expressive power of artificial

neural networks, the agent can discover complex relationships between user con-

trols and observations of the physical environment without explicitly assuming the

existence of a goal.

Unlike most approaches to shared control that utilize blending strategies between

the user’s intention and an autonomous controller’s suggestion, the proposed

policy-based system directly outputs the final command for the robot. However, a

fundamental challenge of this approach is adapting standard reinforcement learn-

ing to closely follow the user’s intentions. The system needs to be able to leverage

human input without significantly interfering with the goals they are trying to

achieve. Additionally, ignoring the user’s input, despite it being a source of ir-

ritation, can negatively affect the user’s feedback loop, where they observe the

consequences of their actions and adjust their inputs accordingly.
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The most straightforward approach to address this problem would be to encode

the desired behavior of respecting the user’s intention within the reward function.

However, designing such a reward function that enforces action similarity has

several issues. For instance, it might lead to conflicting terms in the reward

function, possibly rewarding risky actions that match the user’s input but lead to

crashes. Achieving numerical balance by tuning all reward terms is challenging

and may cause the agent to exploit the reward in unpredictable ways.

In addition to the challenge of enforcing action similarity, there is the issue of

quantifying the similarity itself. Numerous distance metrics exist, each leading

to different learned behaviors. Attempts to embed action similarity within the

reward function using metrics like Euclidean distance and cosine similarity proved

unsuccessful, despite extensive parameter fine-tuning. These approaches resulted

in the robot either following random movements while avoiding crashes or sticking

too closely to the user’s input, leading to poor assistance. Consequently, it became

evident that action similarity should be treated as a separate objective, distinct

from maximizing rewards.

A similar challenge was addressed in the literature by Reddy et al. [103]. They

used deep Q-learning to approximate a state-action value function, modifying the

algorithm to choose a high-value action closest to the user’s input, and with the

tolerance of the system to sub-optimal actions controlled by a hyper-parameter

a ∈ [0, 1]. However, this approach is limited to discrete action spaces, which is not

applicable to our work dealing with continuous action spaces.

To enforce action similarity in the continuous action space, we treat both the

user’s input, as well as the agent’s actions as probability distributions, and aim

to keep those distributions close together. The user’s input can be modeled as

a probability distribution, as shown in Sec. 4.2.2. Modeling the agent’s actions

as a probability distribution can be done simply by using an RL algorithm that

deals with continuous, stochastic policies. As described in Sec. 3.2.3, SAC is such

an algorithm, of the actor-critic family, that learns a diagonal Gaussian policy.

Revisiting the objective function 3.22 of maximum entropy RL, it is reminded that

the policy is optimized for maximizing the future rewards, as well as maximizing
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the entropy (i.e., the randomness) of the selected actions.

Maximizing the policy’s randomness aims to address the exploration-exploitation

problem and enhance the policy’s generalization capability. However, since the

assistive system involves a human-in-the-loop, it does not need to explore the en-

tire action space to provide a useful output. Instead, the system should provide

an output as close as possible to the user’s intention and only correct it when

necessary, without deviating significantly from the original command. Therefore,

in order to guide the policy towards a more efficient exploration strategy for the

problem of shared control, the second term of equation 3.22 is replaced with an-

other term, which minimizes the discrepancy between the user’s input and the

system’s output.

To achieve this, we utilize the Kullback-Leibler (KL) divergence [135], also known

as the relative entropy, to measure the similarity between the user’s probability

distribution over actions and the policy’s distribution. The KL divergence, com-

monly used in statistics and machine learning, is a measure of similarity between

two distributions P and Q of a continuous random variable, and is defined as:

DKL(p||q)
def
=

∫
p(x) log

p(x)

q(x)
dx (4.2)

The KL divergence is calculated between the user’s action distribution p(ah | ·),

assumed to be a diagonal Gaussian (recall Sec.4.2.2), and the policy’s distribution

πθ(a | s), which is also a diagonal Gaussian (recall Sec. 3.4.2). The dot (·) in

the user’s distribution indicates the user’s own private state based on which they

select their actions, and which is not accessible to the system, while the policy’s

actions are conditioned on the current state accessible to the agent.

The choice to model the user’s distribution as a Gaussian is motivated by the

closed-form solution for the KL divergence between two Gaussians. This avoids

the need for computationally intensive methods like Monte Carlo rollouts for ap-

proximation. The calculation of the KL divergence between diagonal Gaussians

can be further simplified by evaluating the KL divergence between the respective
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univariate distributions at each action dimension and then summing over them:

DKL(p||π) = −
1

2

n∑
k=1

(
log

σπk
σpk

+
σp

2
k + (µpk − µπk)

2

2σπ2k
− 1

2

)
(4.3)

It’s important to note that the KL divergence is not symmetrical. Given two

distributions p and q, DKL(p||q) ̸= DKL(q||p). When p is the true distribution to

be approximated by a prediction distribution q, DKL(p||q) is known as the forward

KL divergence, and DKL(q||p) is called the reverse KL divergence. In this context,

the user’s action distribution p is assumed to be the true distribution, while the

policy π is the prediction distribution trying to approximate p.

Minimizing the reverse KL divergence would lead the policy π towards a mode-

seeking behavior, where it effectively ignores parts of the true distribution that

are probable, as long as it covers other probable parts. However, for our objective

of enforcing action similarity, the forward KL divergence is chosen. This results

in a mode-covering behavior, where the policy π must cover all regions of high

probability in p, but is not penalized for having high probability masses where p

does not, such as an action that avoids a crash.

By replacing the entropy term of the original maximum entropy RL objective with

the forward KL divergence term, the new objective becomes:

J(π) =
T∑
t=0

E (st, at)∼ π

 r(st, at)︸ ︷︷ ︸
reward term

−αDKL[p(a
h
t |·) ∥ π(at|st)]︸ ︷︷ ︸

forward KLD term

 (4.4)

where aht is the action chosen by either the autonomous agent or the human driving

the EPW.

This new objective now encourages both the maximization of the return and the

minimization of the divergence between the system’s output and the user’s desired

input. The next section explains how the parameter α, which controls the trade-off

between the two terms of the objective function (Eq. 4.4), can be automatically

adjusted.
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4.3.2 Adjusting User Autonomy

In the original Soft Actor-Critic algorithm [130], the authors introduced a temper-

ature parameter α to balance the trade-off between the reward and the entropy

term. However, in the new objective formulation, where the entropy term is re-

placed with the KL divergence term (explained in the previous section), α is now

responsible for adjusting the trade-off between the reward and the similarity of

user-system actions. This parameter essentially influences the policy’s strategy in

finding a balance between maximizing rewards and adhering to the user’s inten-

tions, effectively controlling the autonomy level of the user.

To automatically adjust the parameter α and avoid the need for manual tuning,

Haarnoja et al. [131] proposed an algorithm that treats α as a learnable parame-

ter. This is achieved by formulating policy learning as a constrained optimization

problem:

max
π0:T

Eρπ

[
T∑
t=0

r(st, at)

]
s.t.E(st,at)∼ρπ [− log πt(at|st)] ≥ H̄ ∀t (4.5)

where H̄ is a desired minimum expected entropy. This optimization problem is in

turn formulated as the dual problem, by introducing the temperature parameter

α. The optimal policy at time t is now a function of the dual variable αt, and after

solving for Q⋆
t and π

⋆
t by recursively optimizing Eq. 4.5, the optimal dual variable

a⋆t is given by:

a⋆t = argmin
at

Eat∼π⋆
t

[
−αt log π⋆t (at|st;αt)− αtH̄

]
(4.6)

In a similar fashion, an update mechanism of α for the shared control objective

(Eq. 4.4) can be derived by formulating the following constrained optimization

problem:

max
π0:T

Epπ

[
T∑
t=0

r(st, at)

]
s.t.DKL[p(a

h
t |·) ∥ π(at|st)] ≤ δ ∀t (4.7)
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where δ is a target divergence between user action prior and policy, similar to the

target entropy H̄ in the original SAC formulation. By introducing the temperature

parameter α, and following the proof in [136], the dual problem can be formulated

as:

min
α>0

max
π

T∑
t=0

r(st, at) + α
(
δ −DKL[p(a

h
t |·) ∥ π(at|st)]

)
(4.8)

Which leads to the modified update objective for α:

argmin
a>0

Eat∼π
[
αδ − αDKL[p(a

h
t |·) ∥ π(at|st)]

]
. (4.9)

Now, δ becomes a hyperparameter to the shared control system, that dictates

how closely the assistive system should follow the user commands on average.

The temperature parameter α is in turn automatically adjusted during training,

according to Eq. 4.9, to force the policy to respect that constraint.

4.3.3 Incorporating State Risk Estimation

In the previous sections, we discussed the formulation of the shared control prob-

lem by modifying the maximum reinforcement learning framework and the use of

the hyperparameter δ to adjust the user’s autonomy level. However, δ only con-

trols the average similarity between the system and the user, which may lead to

suboptimal behaviors. For instance, the system might prioritize the reward over

obeying the user’s intentions and end up ignoring the user’s input. Additionally,

even if the user drives in a risk-free way, the system may still deviate from their

input by the amount dictated by δ.

To address these issues, we introduce an additional mechanism to guide the system

in identifying states where assistance is required or not. This mechanism involves

estimating the risk associated with each state and incorporating it into the obser-

vation space. The risk is represented by a scalar value in the range of [0, 1], where

0 indicates no risk, and 1 indicates maximum risk. This risk estimation considers
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the proximity to obstacles and the user’s intended velocities. Specifically, the risk

increases exponentially based on the proximity to obstacles in the direction of the

user’s input, and higher intended velocities near obstacles are considered riskier.

The risk estimation is made accessible to the agent by including it as part of the

observation space. Moreover, it also affects the contribution of the KL divergence

between the user and the system calculated at each timestep as part of the shared

control’s objective (Eq. 4.4).

The risk associated with a state is represented by a vector of two elements, corre-

sponding to the risks of executing the intended linear and angular velocities. Let

r = [rv, rω] denote this risk vector.

The magnitude of the user’s input influences the risk calculation, with higher

intended velocities near obstacles being considered riskier than lower ones. For a

given user intention uht = [vt, ωt]
T at timestep t, the risk in the linear direction is

calculated using the formula:

rv(t) = e
−minFrontRange−minSafetyRange

vt , (4.10)

Similarly, the risk in the angular direction is calculated as:

rω(t) = e
−minSideRange−minSafetyRange

ωt , (4.11)

Here, minFrontRange represents the minimum distance reading from the robot’s

forward-facing sensors,minSideRange is the minimum range from the side sensors

in the direction indicated by the user input, andminSafetyRange is the minimum

distance below which a collision is considered imminent and at which we want the

risk to take its maximum value.

Once the risk values are calculated, they are used to discount the KL divergence

between the user’s and the system’s action probabilities, thereby influencing the

shared control objective (Eq. 4.4). The discounting is represented as follows:
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D′
KL(p||π) = (1− r) ∗DKL(p||π) (4.12)

Essentially, the larger the risk value, the more the KL divergence will be dis-

counted, leading the policy to place greater emphasis on the reward term of the

loss function. This prioritizes the agent’s objectives, such as collision avoidance.

Conversely, lower risk values lead to a higher contribution of the KL divergence

term, resulting in stronger adherence to the user’s intentions.

By incorporating state risk estimation and adjusting the KL divergence based on

the risk values, the shared control system gains the ability to adapt its behavior,

striking a balance between the user’s input and the agent’s objectives, while con-

sidering the potential risks in the environment. This approach ensures safer and

more efficient shared control between the human and the autonomous agent.

4.3.4 Method Overview

The proposed method is summarized below both in a graphical (Fig. 4.1) and an

algorithmic form (Alg. 7).
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Algorithm 7 Modified Soft Actor Critic for Shared Control

1: Inputs Trained autonomous policy pψ(a
u|·), Reward function r(st, at), dis-

count γ, target update rate τ , target divergence δ, learning rates λπ, λQ, λα
etc.

2: Initialize replay buffer D, policy πθ(at|st), critic Qϕ(st, at), target network
Qϕ̄(st, at)

3: for each step in number of training steps do
4: Observe state s and sa and select autonomous agent action au ∼ pψ(·|sa)
5: Inject noise to the selected action to emulate a disabled user’s input ah

6: Model the noisy input as a diagonal Gaussian probability distribution
p(ah|·) = N (ah,Σ), where Σ is either treated as a predefined hyperparam-
eter or is dynamically adjusted with user actions

7: Estimate the risk factor r of the state, where r ∈ [0, 1]
8: Augment the shared control state vector s with user input a′ and risk factor
r

9: Select action a ∼ πθ(·|s)
10: Observe next state s′, reward r, and done signal d to indicate whether s′

is terminal
11: Store (s, a, r, s′, d) in replay buffer D
12: If s′ is terminal, reset environment state.
13: if it’s time to update then
14: for each gradient step do
15: Randomly sample a batch of transitions, B = (s, a, r, s′, d) from D
16: Compute targets for the Q functions:

y = r(s, a)+γ(1−d)
[
min
i=1,2

Qϕtarg,i(s
′, ã′)− αDKL

(
p(ah|·), πθ(ã′|s′)

)]
, ã′ ∼ πθ(·, s′)

17: Update policy weights:

θ ←− θ − λπ∇θ

[
min
i=1,2

Qϕi(s, a)− αDKL

(
p(ah|·), πθ(a|s)

)]
18: Update critic weights:

ϕ←− ϕ− λQ∇ϕ

[
1

2
(Qϕ(s, a)− y)2

]
19: Update target alpha:

α←− α− λα∇α

[
α
(
DKL(p(a

h|·), πθ(a|s))− δ
)]

20: Update target network:

ϕ̄←− τϕ+ (1− τ)ϕ̄

21: end for
22: end if
23: end for

return trained policy πθ(at|st)



Chapter 4 – A Novel RL-based Shared Control Method 93

State

st|16        
Deep RL 

Agent

Sample

action at|2

Translate to velocity 

command

ct|2

Reward

rt

Send command to

the controller
Receive new 

sensor data

Shared control
environment 
observations

Calculate 
state risk

Combine to 
form shared control

state vector

Calculate the KL divergence
between user's and system's

distributions 
(weighted by risk  at each action dimension)

Form autonomous 
policy state vector

Sample action 
from stochastic 

autonomous policy

Inject noise to 
autonomous action

Training/
testing

Environment

Get user
action

Deployment

Fit a Gaussian
distribution

on the user's 
actions

Training signal

Policy's action
distribution

Maximize

Figure 4.1: Overview of User-Compliant Reinforcement Learning. The shared
control system is trained with autonomous input perturbed by artificial noise for
robustness. During deployment, direct user input is used, enabling a seamless tran-
sition to real-world scenarios. The policy maximizes rewards while minimizing KL
divergence between user and system actions, discounted by estimated state risk.
The system’s adaptability is enhanced through the incorporation of the hyperpa-
rameter δ, which allows fine-tuning of the user’s autonomy level. The proposed
approach strikes a balance between user intent and agent efficiency, promoting a
safe and reliable policy-based shared-control approach.

4.4 MDP Formulation

Similar to the methodology followed in Sec. 3.4.1, the shared control problem is

modeled as an episodic MDP, with finite time horizon T . S is a set of continuous

states, A a set of continuous actions, γ a discount factor and R the reward function.

At each discrete timestep t the agent chooses an action at ∈ A according to a

policy π(st), observes a new state st+1 and received a reward r(st, at) ∈ R. The

goal is to find an optimal policy π⋆ that achieves the maximum expected return

Gt =
T∑
t=0

γtr(st, at) from all states, while respecting the user’s intention as much

as possible.

State Space

The shared control system utilizes a similar sensor arrangement with the au-

tonomous navigation system of Ch. 3. The sonar sensor measurements remain
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the same, while the velocity of the robot derived from the odometry is also in-

cluded as part of the state. The IMU, however, is excluded from the assistive

system, since it is meant to be transferred to the real world and an inaccurate

IMU sensor might cause more harm than good. Furthermore, the robot’s heading

is not as important in this case, since in the assistive mode with minimal assump-

tions it is not necessary for the robot to orient itself towards a goal. For the

same reason, goal-related observations are also excluded from the state. Instead,

the user’s intention at each timestep (which during training will be the noisy au-

tonomous agent’s actions) is included as part of the state. Finally, the state space

is augmented with an additional observation for each user command, that corre-

sponds to the risk associated with that particular command at the given state.

Details on how the risk is defined and calculated are provided in Sec. 4.3.3.

Overall, the state at timestep t consists of 17 observations, which are 11 sonar

range measurements (d⃗t), the instantaneous linear and angular velocity of the

robot (v⃗t), the user’s intention (u⃗ht ) and the associated risk factors (r⃗t).

Actions

The actions available to the assistive agent are the same ones available to the user

(and the autonomous agent, Sec. 3.4.1). The shared control policy should be able

to directly output the moving commands for the robot, since the goal is to build

an end-to-end assistive model.

Rewards

The reward signal for the task of assisting a human driver is what will determine

the type of assistance that will be provided by the system. Since the objective of

following the user’s intentions has been decoupled from the reward function, the

latter defines the task the agent should accomplish if it was acting independently.

Even though assistance can take many forms (e.g., smoother trajectories, goal-

following behavior, “parking” assistance, etc.) which could be encoded in the
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reward function, in this work we focus on the simplest, yet the most essential one;

avoiding collisions. For that purpose, the reward function rt, at timestep t, is

defined as:

rt(st, at) = tr + lprp(st, at) + lvrv(st, at), (4.13)

where lp and lv are scaling factors. tr is a constant, positive reward given at

each timestep for incentivizing the survival of the agent. rp is a penalty term for

discouraging proximity to obstacles, hence encouraging increased clearance, and

is defined as:

rp(st, at) = e−k(minSensorRange−minSafetyRange), (4.14)

where k is a coefficient regulating the shape of the exponential. Finally, rv is

a term rewarding the translational velocity of the robot, in a linear fashion, for

encouraging forward motion and helping users reach their goals faster. The agent

is also penalized with a large negative reward if the wheelchair crashes or overturns.

Terminal States

The conditions that terminate an episode are the same as in the autonomous

agent 3.4.1. Namely, those are: crashing, overturning, getting stuck, and reaching

the maximum number of allowed steps per episode.
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Figure 4.2: Training Scenario for Shared Control. The virtual environment in-
cludes periodically re-spawned obstacles in random positions and shapes, along
with randomly generated goal positions within the scenario boundaries. This
deliberate variation creates a diverse range of scenarios, promoting better gener-
alization of the shared control agent during training.
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4.5 Simulation Experiments

4.5.1 Training

Setup

The training of the system takes place in a virtual environment (shown in Fig.

4.2), featuring procedurally generated obstacles of various shapes placed randomly

throughout the map, subject to distance and boundary constraints. At the be-

ginning of each episode, the robotic wheelchair is also randomly positioned within

the environment. The baseline autonomous agent is then assigned a random goal

location within the free space on the map and generates movement commands to

reach it.

To simulate real-world scenarios, one of the noise models (see Sec. 4.2.1) is applied

to corrupt the input received by the baseline agent. This corrupted input, along

with other environmental observations, is then used as the observation input for

the shared control system. During training, the system learns to maximize future

rewards while simultaneously minimizing the KL divergence between its output

and the noisy input, up to a specified target.

The incorporation of randomness in the training task is intentional, as it enhances

the generalization capability of the policy. By exposing the system to a wide

variety of different configurations the policy becomes more adaptable and capable

of handling diverse real-world situations.

Training Details

The modified SAC algorithm for shared control (Alg. 7) is utilized to train multiple

assistive policies. The actor-critic architecture used in the training process is

illustrated in Fig. 4.4, featuring a shared featured network utilized by both the

actor and the critic.
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Figure 4.3: Evaluation of the Autonomous Agent Under Different Noise Models.
Each column represents a distinct noise model, while each row corresponds to
a different performance metric: rewards, episode steps, and success rates. Each
subfigure illustrates the performance of the agent with varying levels of disturbance
specific to that noise model. For example, in the shaky agent subfigure, different
levels of Gaussian noise are depicted. The results provide insights into the agent’s
performance under diverse noise conditions, facilitating the evaluation of potential
user models and their impact on the optimal agent’s behavior.
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Figure 4.4: Architecture of the Actor-Critic Model for Shared Control. The feature
network is shared between the actor and the critic. The actor network generates
the actions, while the critic network outputs the Q state-action value. The actor’s
actions are applied to the environment, while the environment provides rewards
to the critic network used to update it. The observations received from the envi-
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Throughout training, each policy’s performance is periodically evaluated in a sepa-

rate test environment over five episodes, and the best-performing policy is selected

as the optimal one for deployment. The actor-critic architecture and SAC-specific

hyperparameters are kept consistent across different models, while the parameters

of the additional components in the modified version (proposed in the chapter)

are varied to study their impact on the assistive policy. The robot’s controller

parameters and control timestep are tuned according to the physical robot and

are further detailed in Sec. 4.6.2, which covers the real-world experiments.

For choosing the noise parameters of the erroneous user models, we evaluate the

performance of each user model on the scenario of Fig. 3.8a, where all marked

goal positions are combined in a single scenario for the evaluation task. The au-

tonomous agent model deployed for this comparison, and for acting as the user

model in the training loop of the assistive agent, is the optimal one that was

presented in Ch. 3. From 100 runs for each user model, statistics are collected

and presented in Fig. 4.3. We observe that the autonomous agent is quite ro-

bust to Gaussian noise since the shaky agent’s success rates only decrease slightly

when the noise distribution’s standard deviation is increased. Thus, the maxi-

mum tested standard deviation of 0.6 is selected for the shaky user model. For

the laggy and twitchy models, we observe an exponential decrease in performance

when increasing the probability of repeating the previous action and the prob-

ability of selecting a random action, respectively. To ensure the assistive agent

learns to provide meaningful assistance, we select values that lead to suboptimal

performance of the autonomous navigation agent but still enable it to roughly

navigate toward the goal positions. Therefore, based on the obtained statistics,

for the laggy user model, we choose an action repeat probability of 0.55, and for

the twitchy user model, we select a random action sampling probability of 0.45.
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Table 4.1: Success rates of Training and Testing the Shared Control Method with
Different User Models. A different “target divergence” (td) parameter value is
used for each model trained with a different user.

Evaluation user

Training
user (td)

Optimal Shaky Laggy Twitchy

None (-) 0.93 0.81 0.23 0.21
Shaky (0.3) 0.94 0.86 0.51 0.6
Laggy (0.5) 0.96 0.84 0.81 0.55
Twitchy (1.2) 0.59 0.48 0.41 0.56

4.5.2 Evaluation

Testing Shared-Control Performance and Adaptability to Diverse Users

The evaluation begins with an analysis of the proposed method’s performance

under different simulated users. The central hypothesis is that the shared control

method is able to improve a user’s performance, despite not knowing anything

about the world’s dynamics, the user’s policy, or the existence of a particular set

of goals. The simulated users allow the validation and testing of different aspects

of the shared control method before deploying the system in the real world.

Initially, three assistive models are trained in the scenario of Fig. 4.2, each with

a different user model producing the desired driving commands for the robotic

wheelchair. Their performance is then tested on the unseen-during-training sce-

nario of Fig. 3.8a for all the marked goals (1-11) and the associated WST tasks.

We are mainly interested in investigating two things 1) How well can the assistive

policies perform when employed in a challenging environment for which it knows

nothing about (obstacles, goals, etc.) 2) How well can the assistive policies adapt

to users with different behavior policies (distinct types of errors), and especially

to the ones it didn’t experience during training time.

Table 4.1 presents the success rates (ratio of reached goals to total goals) of each as-

sistive model when tested with each user model in a span of 100 episodes. The first

row of the table corresponds to the performance of the pre-trained autonomous
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agent, without any assistance, and under the effect of different noise models. We

observe that the assistive models trained with the shaky and the laggy user im-

prove the performance of the autonomous agent, when the latter performs either

optimally or under a noise model. For example, the assistive agent trained with

the laggy user improves the optimal autonomous agent’s success rate by 3%, the

shaky agent by 3%, the laggy one by 58% and the twitchy one by 34%. The only

case where assistance does not help all the users is with the model trained with

the twitchy agent, which performs worse for both the optimal autonomous agent

(−34%) and the shaky one (−33%), whereas it improves the laggy (18%) and

twitchy (35%) models. Despite this assistive model’s poor performance in terms

of goal completion rates, it still develops a collision avoidance behaviour (as do the

other assistive models), driven by the reward function, as the crash rates reduce

dramatically compared to using no assistance (−2%, −14%, −34% and −86% for

each user model respectively).

As the assistive agent is not provided with any goal-related information or reward,

explicitly reaching goals is not part of its objectives. Rather, the agent follows the

user input to the degree indicated by the “target divergence” parameter, while

trying to maximize the cumulative rewards it receives. Still, the results indicate

that the shared control system does help the users reach their goals more often,

when the system is trained with a user model that provides informative input, even

when the system is tested on an unseen, complex scenario. For example, the shaky

user model has some perturbation around the optimal action, but on average its

input will still point to the desired goal location. Similarly, the laggy user will

delay changing its intended input, but when it does it will be aimed towards a goal.

In both of those cases which implement goal-signaling policies, the shared control

system was able to leverage the erroneous user input, along with the observations

it received from the environment, to successfully follow the user goals. However,

in the case of the twitchy user model, which chooses a completely random action

almost half the time (45% probability), the input was not informative enough for

the system to be able to reach the underlying goals with the same success rates.

Another takeaway is that each assistive model performs best when evaluated with
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Table 4.2: Evaluation of the Proposed Shared Control System on Different Users,
measured by the scenario Success Rate (SR), the robot Crash Rate (CR) and the
Episode Step Ratio (ESR).

No assistance Original SAC User-Compliant SAC

User SR CR ESR SR CR ESR SR CR ESR

Optimal 0.93 0.2±
0.4

0.77±
0.17

0.54 0.12±
0.32

0.88±
0.32

0.96 0.1±
0.3

0.7±
0.2

Shaky 0.81 0.5±
0.5

0.82±
0.23

0.33 0.08±
0.27

0.92±
0.27

0.84 0.24±
0.33

0.76±
0.25

Laggy 0.23 1.0± 0 0.24±
0.19

0.25 0.0±
0.0

1.0±
0.0

0.81 0.36±
0.48

0.69±
0.21

Twitchy 0.21 1.0± 0 0.37±
0.26

0.16 0.17±
0.37

0.84±
0.37

0.55 0.48±
0.5

0.83±
0.17

the user model it was trained with. While this result is expected, we observe

that each policy can still be effective and learn useful assistive behaviors for user

models they did not experience during training. For example, the assistive policy

trained with the laggy user is almost as effective in assisting the shaky user as

the assistive policy trained with the shaky user in the loop. Overall, the policy

trained with the laggy user seems to be the best performing one among the other

policies and the different user models they were evaluated with, and is chosen as

the optimal one for the rest of the comparisons in this section.

It should be noted that the results presented in Table 4.1 occurred with the shown

values of the target divergence (TD) parameter for each user model, which were set

empirically, and not through an exhaustive search for the optimal values. Gener-

ally, decreasing the TD parameter increases the policy’s compliance with the user

input, while increasing it allows the policy to relax its compliance and focus more

on optimizing its own objectives.

Comparison with Maximum Entropy RL

The justification for modifying the maximum entropy RL objective -to minimize

the divergence between the system and the user, instead of maximizing the entropy

of the policy- has been thoroughly explained in Sec. 4.3. In this section, this

justification is experimentally verified by training an assistive policy using the

original maximum entropy RL objective, through the conventional SAC algorithm.
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In this case, incentivizing the system to keep its decisions close to the user’s inten-

tion is achieved by inserting an additional term in the reward function (Eq. 4.13),

which rewards the agent based on a distance metric between its actions and the

user’s. This term, which we call “agreeability” or “action-similarity” function is

defined as:

ψ(aht , at) = e−k(∥a
h
t −at∥), (4.15)

where ∥ah
t − at∥ is the l2-norm of the action vectors’ (human’s and system’s)

difference and k is a free parameter controlling the strength of the attraction

between the two vectors. The smaller the difference between the two vectors the

larger the reward the agent receives. The task and robot related parameters for

training the new model remain the same, as well as the common SAC parameters

and the neural network architectures. The user model used to provide input for

the training process is the laggy user, for consistent comparison with the best

model of the proposed shared control system.

Table 4.2 presents the comparative results of different user models using no as-

sistance, using the assistive model trained with the original SAC algorithm, and

using the proposed user compliant SAC algorithm, evaluated on 100 episodes. The

results are presented in terms of average goal completion rates, crash rates and the

fraction of steps before episode termination (either due to crashing or completing

all goals) to the maximum number of allowed steps. We observe that using the

proposed system significantly improves the statistics across all user models com-

pared to using no assistance. The assistive agent is able to reach goals with higher

success rates than the solo autonomous agent, while reducing the crash rates by

a large margin. The number of steps before episode termination decreases for the

cases of the optimal and the shaky user, due to the term in the reward function

that incentivizes higher translational velocities, while it increases for the cases of

the laggy and the twitchy user, which is accounted to the increased survival rates

(64% and 52% less collisions on average respectively).

On the other hand, for the assistive model trained with the original SAC algo-
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rithm different results are observed. In this case, the goal reaching rates drop

significantly, even when compared to the solo autonomous agent, across all user

models. However, the crash rates decrease by a large margin, while the number

of steps before episode termination approaches the maximum number of allowed

steps, indicating a large “survival” rate. In practice, by following this approach

(embedding the action similarity in the reward function) the learned policy pri-

oritizes avoiding collisions over respecting the user’s intentions, since a collision

would result in a much larger negative reward than the positive reward that would

be gained by following the user. Therefore, the trained agent avoids getting into

states that are highly likely to result in a collision (e.g., narrow corridors) and ig-

nores the respective user prompts by moving away from the obstacles and entering

a circle-following like behavior. When the scaling factors of the reward function

were tuned to place higher importance to the action similarity than avoiding col-

lisions, the opposite behavior was observed. The agent would blindly follow the

erroneous user input leading to crashing into obstacles.

Of course, neither of those policies are appropriate for a shared control system,

indicating that a scalar quantity (the reward) is not sufficient for this purpose,

since it can be easily exploited by an RL agent and lead to undesired behaviors.

These results highlight the importance of decoupling the user compliance objective

with the rest of the shared control objectives.

Comparison with APF method

The proposed method is benchmarked against another shared control method, of

the Artificial Potential Fields family (recall Sec. 2.2.3). The Dynamic Localized

Adjustable Force Field (DLAFF) [112, 113] method employs the concept of an

active window/frame containing a nonlinear adjustable force field which is ellipti-

cally shaped to provide a better mathematical relationship between the repulsive

force and the kinematic of the platform. In this method, the inner ellipse provides

a zone in which the physical boundary of the platform is fully contained and the

outer ellipse provides the furthest extent of the repulsive field, where the repulsive

force is determined by Eq. 4.16 along the vector P − r (Fig. 4.5) to the near-
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Figure 4.5: DLAFF Collision Avoidance Ellipses.

est obstacle in each quadrant, where that repulsive force acts to damp the motor

drive outputs. The shape of the ellipses is dynamically adjusted according to the

platform’s velocity.

F = 1− 1

exp ((R− p)/k)
, (4.16)

where k is a user-defined coefficient that controls the shape of the exponential

(i.e., the steepness of the damping force relative to the obstacle’s distance from

the inner ellipse).

Like other non-learning-based motion planning algorithms, DLAFF requires accu-

rate knowledge of the obstacles in the local environment (polar coordinates of each

obstacle). However, the obstacle information is derived from the platform’s sensor

measurements. We explore two sensor arrangements, with the DLAFF method,

to investigate the utilization of sensor information between a classic approach and

a neural network approximation approach in the shared control context; 1) Using

the same array of sonar sensors available to the assistive agent 2) Using a laser

range finder sensor (a Hokuyo LiDAR).

For each sensor arrangement, the performance of the DLAFF method was recorded

when operating on the output of the optimal, and the erroneous autonomous

navigation policies. The results (Table 4.3) show that with both sensor setups,

the method performs well with the optimal user, slightly improving its success

rate. However, we observe that the performance drops significantly in both cases
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Figure 4.6: Display of the DLAFF Collision Avoidance Method in Simulation.
The algorithm leverages range sensor readings (marked with red) to detect the
two nearest obstacles at each quadrant (white spheres), and calculate a repulsive
force that damps the motor outputs (Eq. 4.16), dependent on the obstacles’
distance from the zone defining the platform’s physical boundary (blue ellipse).

Table 4.3: Comparative Results with the DLAFF Shared Control Method. The
proposed model outperforms DLAFF, which relies on specific obstacle angle knowl-
edge. When using the same sonar setup, DLAFF underperforms, while replacing
the sonars with a LiDAR fails to provide sufficient surrounding information for
safe navigation, leading to worse performance. This demonstrates the advantage
of a neural network-based policy, which can effectively learn collision avoidance
strategies arbitrarily leveraging the available sensor information.

No assistance Shared Control RL APF-Sonar APF-LiDAR

User Success Crashes Success Crashes Success Crashes Success Crashes

Optimal 0.93 0.2±
0.4

0.96 0.1±
0.3

0.95 0.12±
0.32

0.94 0.16±
0.37

Shaky 0.81 0.5±
0.5

0.84 0.24±
0.33

0.7 0.68±
0.47

0.63 0.68±
0.47

Laggy 0.23 1.0± 0 0.81 0.36±
0.48

0.2 1.0± 0 0.26 1.0± 0

Twitchy 0.21 1.0± 0 0.55 0.48±
0.5

0.31 0.92±
0.27

0.23 1.0± 0
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when used with the noisy policies, while the RL shared-control method clearly

outperforms it. In the case of the sonar sensors, which detect obstacles in a cone,

the exact angle to the obstacles is not provided, but instead, the detected obstacles

are always assumed to be in the center of each sensor’s horizontal field of view.

Given the sensors’ 50◦ FoV, this necessary assumption allows a big error margin

that negatively impacts the method’s effectiveness in several cases.

Conversely, the LiDAR sensor is able to provide the exact angles to the detected

obstacles. However, from a practical perspective, the positioning of the sensor is a

critical consideration for it to fulfill its purpose. Fig. 4.6 shows a LiDAR installed

on the virtual EPW, between, and slightly beyond, the footrests of the wheelchair,

able to freely perform its 180◦ scan. However, it is clear that the sensor can only

cover the forward-facing obstacles in respect to the platform, but does not provide

any information on the sides of the bulky EPW. This leads the robot to crash in

multiple cases since the algorithm does not have sufficient information to prevent

collisions when the user sloppily maneuvers it around tight spots.

On the other hand, the neural network-based policy, which maps a given state

(including the range sensor measurements) to control actions for the robot, in

the absence of perfect information can still arbitrarily leverage the available in-

formation to learn an effective collision-avoidance strategy, while also optimizing

for other objectives. Of course, the effectiveness of DLAFF, and all collision-

avoidance methods, can be improved with more sophisticated sensor data process-

ing (filtering, triangulation, etc.), while sensor fusion can be used to exploit the

advantages of different sensors and improve coverage. However, it is important to

note that these solutions come with increased computational and financial costs,

which should be considered accordingly in a real-world implementation.

The Benefit of Risk Awareness

The previous sections were concerned with shared control policies that were trained

with the modified SAC objective for user compliance, but without risk awareness

(RA). Section 4.3.3 described the concept of estimating the risk associated with a
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Figure 4.7: Comparative Results for the Shared Control Model With and Without
Risk Awareness (RA) for Different User Models. The statistics are presented in
terms of goal completion success rates (SR), episode step ratio (ESR), crash rates
(CR), and clearance (CLR).

particular state, and how it can be incorporated in the proposed method to better

guide the policy towards the situations where it should deviate, or not, from the

user. In this section, we train a shared control policy (with the laggy user in the

loop), as before, but also including the risk estimation step, which leads to the

discount of the KL divergence as shown in Eq. 4.12.

The trained model is tested in the combined scenario of Fig. 3.8a, and its per-

formance is benchmarked against the assistive agent trained with the laggy user

presented in the previous sections. Figure 4.7 shows the comparative results be-

tween the two models, measured by the goal completion success rates, the episode

step ratio, the crash rates, and the clearance. We observe that the assistive model

with RA performs consistently better than the baseline model in terms of increased

success rates and reduced crash rates across all user models. Furthermore, when

using RA there is also an increase in clearance, since when the agent approaches

an obstacle it is not forced to follow the user as closely (due to the KL divergence

discount by the risk factor), rather it focuses on optimizing its own objectives, part

of which is to keep away from obstacles. However, this behavior comes with a cost

in larger completion times, due to the robot not following the optimal path to-

wards a goal position (as is the intention of the autonomous agent), but deviating
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from it to keep further away from obstacles when possible.

Despite the increase in completion times, we recall that the agent is agnostic to the

existence of goals or to what the user is trying to achieve. Furthermore, the other

metrics that were considered showed a consistent improvement across different

user models, satisfying the main shared control objective, which is safer driving.

Also, the risk estimation function can be tuned to adjust the risk levels in different

situations according to user preference, thus, providing a more flexible framework

for customizing the shared control system to a wide range of use cases. For the

reasons above, incorporating the concept of risk into the proposed shared control

approach is deemed a beneficial addition that improves the method’s performance

and flexibility.

4.6 Real World Experiments

4.6.1 The Robotic Wheelchair

The wheelchair that was used for the real-world experiments is a Spectra XTR2

model (Figure 4.8), modified accordingly for compatibility with the Robot Oper-

ating System (ROS). Its basic processing unit is a UDOO QUAD/DUAL board,

which is connected to the main sensors of the wheelchair, as well as the control

unit through the joystick controller (a DX2-REM550/551 Advanced Joystick Re-

mote model). A NVIDIA Jetson Xavier board is connected to the UDOO through

Serial, to allow ROS message-passing (i.e., sensor data, control commands), and

to enable the execution of higher level tasks, like running the policy network.

Encoders

A pair of incremental rotary encoders was utilized (one encoder per driving wheel)

for calculating the odometry data (defined as the use of motion sensors to deter-

mine the robot’s change in position over time) and for enabling visualization of

the trajectory executed by the wheelchair throughout the trials. The equations
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Figure 4.8: The Robotic Wheelchair Used in the Real-World Experiments.

below have been used to derive the velocity and the displacement of the EPW via

the encoder information, based on the differential drive kinematics.

For a full revolution of the wheel, the encoder performs a certain number of “ticks”

(tpr). Given that information, along with the radius (r) of the drive wheels, we

can then calculate the distance that corresponds to each of those ticks as

mmsper.tick =
2πr

tpr
. (4.17)

By measuring the difference in ticks between two consecutive measurements of an

encoder (dticks), and from the kinematic equations that describe a differential drive

platform (shown in Eq. 3.17), it is possible to calculate the robot’s displacement

and change in heading from the following equations:

dxy =
mmsper.tick

2
· (dticks.right + dticks.left) (4.18)

and

dth =
mmsper.tick

l
· (dticks.right − dticks.left). (4.19)
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Figure 4.9: Display of the Robotic Wheelchair’s Range Sensors.

Improved Ranging Sensors

A total of 11 sonar sensors were installed around the wheelchair to provide obstacle

information. In contrast to 2D laser scanners that only detect obstacles at a

specific height, sonars are great at detecting obstacles at different heights, which of

course is very much desired from a practical implementation aspect. Furthermore,

they are much cheaper compared to laser scanners, and therefore a number of them

can be installed around the bulky and non-symmetrical shape of a wheelchair to

provide wide coverage.

The simulation environment, in the early stages of experimentation with the au-

tonomous agent, helped in gaining insights about how the sonars should be posi-

tioned in order to account for blind spots and ensure that the agent would have

sufficient information to navigate through challenging spots (e.g., steep turns in

narrow corridors). An older arrangement of the sonars on the wheelchair was then

modified, by changing the sensor positions accordingly. Furthermore, in the orig-

inal setup, the sensors were grouped in zones, each zone using an Arduino Mini

to collect the zone’s sonar data, and then passing the data to the UDOO board

through serial communication, on request. This implementation allowed a refresh
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rate of new data of approximately 5 Hz, which was not fast enough for controlling

the wheelchair at 20 Hz. Instead, this setup was replaced by connecting all sensors

to a single Arduino Nano through I2C, and then passing all the collected data to

the UDOO board through Serial, thus, achieving a much higher sampling rate of

13 Hz.

The sonars that were used were the SRF08. The SRF08 allows customizing the

ranging distance, as well as the analogue gain of the sensor. The ranging distance

was reduced from a maximum of 6 m to 3 m (to match the simulated sonars) and

the gain was tuned accordingly to allow firing the sensors more rapidly, further

increasing the sampling rate. Reducing the sensor’s gain also reduces cross-talk

(interference) between adjacent sensors, since it reduces the module’s sensitivity

to detecting weaker echoes that result from sound waves bouncing off obstacle sur-

faces. However, cross-talk between adjacent sensors was still a big issue causing

quite erroneous measurements. On that end, instead of firing the sonars sequen-

tially, an alternative firing pattern was designed, so that two adjacent sensors

would never fire together, but would instead fire in an alternating manner. This

solution caused a drop in the refresh rate but almost eliminated the effect of

cross-talk between the sensors.

Finally, the accuracy of the readings is affected by multiple factors (e.g., obstacle’s

material and shape, wavelength of the emitted sound wave, the altitude at which

the ranging takes place, etc.), which are hard to take into account. The SRF08’s

manufacturer quotes an error of 3-4 cm, which can be smaller or greater depending

on the situation. In practice, it was observed that the error was very small (∼2 cm)

in a static setup where the wheelchair was not moving, but it greatly varied when

the wheelchair moved, especially so during rotational movements. To compensate

for those errors, median filtering was applied to a window of past measurements,

which greatly smoothed the sonar readings in time and provided more consistent

measurements. The size of the window controls the trade-off between stability in

measurements and refresh rate, and after experimentation, a window size of 3-5

seemed to perform well enough.
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Communication Protocols

The decision to employ the I2C and Serial protocols for inter-board and sensor

communications, as opposed to the widely recognized “golden standard” of the

industry, the Controller Area Network (CAN) protocol, was carefully deliberated,

taking into account various factors such as simplicity, resource limitations, rapid

prototyping, and specific application needs. By opting for the I2C protocol for

sensor communication, the implementation process was streamlined owing to its

inherent simplicity, requiring minimal components and wiring. This resulted in

improved debugging efficiency and heightened reliability of the communication sys-

tem, as it involved minimal overhead and harnessed a two-wire interface. More-

over, the I2C protocol facilitated seamless integration and communication with

multiple sensors. Similarly, the adoption of the serial protocol for inter-Arduino

communication was justified by its straightforwardness and compatibility with

the Arduino platform, synergistically complementing the overall system design.

Given the specific requirements of the sensor data transfer, characterized by low

data rates and short distances, the employment of the I2C and serial protocols

proved to be appropriate, negating the necessity for a more intricate universal bus

like CAN.

4.6.2 From Simulation to the Real World

The advantages and motivation of using simulation for training reinforcement

learning policies, like the ones presented in this thesis, have already been de-

scribed in Sec. 3.3.2, including reasons of scalability, cost, and safety. However,

transferring a learned policy from simulation to the real world is one of the biggest

challenges reinforcement learning currently faces, with policies trained in simula-

tion often suffering from severe degradation in performance when transitioning to

the real world. This is caused due to the simulation’s inability to exactly match

and capture the real world in terms of physics, which can be summarized in two

dimensions in the case of robotics. First is the sensing part, where the simulation

cannot accurately model the noisy sensor data from the robot’s sensors which can
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be affected by several real-world factors. The other aspect is the discrepancy in

the effect of the actuation commands, the robustness of which depends on the

quality of the simulator, the simplifying assumptions of the physics engine, and

the unpredictability in robot dynamics.

To bridge the gaps between simulation and real-world, two lines of actions were

taken; calibration of the simulated robot and domain randomization. Calibration

refers to tuning the design characteristics of the robot in simulation, in a way that

matches the real one as much as possible. More specifically, the design choices

that were taken into account are:

1. The physical properties of the robot - The simulated wheelchair model was

tuned to be as close to the real one as possible. That includes its various di-

mensions (e.g., size of the chassis, size of the wheels, axle length between the

drive wheels), its drive system (rear-wheel drive) and its inertial properties.

2. The controller parameters - The controller of the real wheelchair was pa-

rameterized in a custom way to create a driving profile suitable for the tri-

als. Interfacing with the controller was possible thanks to a special module

that was provided by the wheelchair’s manufacturer. However, the result-

ing maximum allowed velocities and accelerations (linear and angular), are

not directly accessible, but are a result of the aforementioned parameteri-

zation. The exact numbers were derived through repeated experimentation

with the customized profile, measuring traveling distances and time, and

verified through manual recordings and odometry calculations. The discov-

ered parameters were then replicated with the simulated differential drive

controller.

3. The sensors - The number of sensors, their placement on the robot, their

field of view and their error of measurement, as given by the manufacturer,

have been replicated in the simulated wheelchair.

The above steps are the minimum requirements for replicating the real robot in

the simulation. However, a policy that learns a mapping, from environmental ob-

servations to actuation commands, for that robot under the ideal circumstances of
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Figure 4.10: The Domain Randomization Concept. Randomizing the simulation
data increases the variance of their distribution and forces the policy to adapt
better to perturbations and inconsistencies in the input and output space, aiming
to also capture the real-world distribution.

a simulator, will possibly struggle to handle the imperfect real world. A popular

methodology that facilitates the desired “sim-to-real” transition is domain ran-

domization[137]. Domain randomization refers to randomizing different aspects

of the simulated environment, with the aim of training a model that works in a

rich distribution across all variations and randomized properties, hoping that the

real world is a sample of that distribution that the trained model will be able to

capture. More specifically, the aspects that were randomized within the context

of this work are:

1. Raw sensor data - Normal noise N (µ,σ) was added to the measurements

coming from the simulated sonar sensors. Since the manufacturer of the

SRF08 sensors that were used quotes a measurement error of up to 0.03-0.04

m, the standard deviation of the noise was chosen as σ = 0.015, so that

99.73% of the measurement errors fall within 3σ = 0.045m.

2. Wheelchair’s mass/inertia - Once every a fixed number of episodes, the mass

of the robot would be modified as sampled from a uniform distribution, and

the resulting inertia of the wheelchair’s chassis would be recalculated for

that new mass (Eq. 3.16).

3. Control timestep - The timestep ∆t between actions varies every step ac-

cording to ∆t ∼ ∆t0 + Exp(λ), where ∆t0 = 0.05s is the default control
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timestep (20 Hz), and Exp(λ) is an exponential distribution with rate pa-

rameter λ = 1/100. This is to make the system more robust against any

minor delays that might occur in the real system and the hardware’s com-

munication pipeline.

Other physical dynamics features, like damping and friction coefficients of the

joints, friction between the wheels and the floor, or controller-related parameters,

were not randomized, since the commercial wheelchair’s controller should already

be programmed to take these factors into account when converting the joystick

high-level command to currents for the drive motors.

Based on the above, a new shared control policy was trained in simulation, based

on the best-performing model of the experiments presented in the previous section,

with a laggy user in the loop and with risk awareness. The trained model was then

transferred to the “brains” of the wheelchair, the Jetson Xavier, with only minor

modifications to the code for receiving the actual data from the wheelchair’s sen-

sors and the user’s input from the joystick, and for passing the inferred commands

in the appropriate format to the wheelchair’s controller.

4.6.3 Experimental Protocol

Participants were asked to drive the physical wheelchair in the scenario shown in

Fig. 4.11 using the standard joystick controller. The scenario was designed as a

shortened real-world version of the virtual scenario of Fig. 3.8a and includes some

of the WST tasks shown in Table 3.2 (e.g., perform 90-degree turn in a narrow

corridor, enter lift area and turn in place to exit). The task was to complete the

circuit in a as fast and safe manner as possible in two separate trials; one would be

with provided assistance and one without. The participants were unaware whether

the assistive system would be in effect or not, and in order to counterbalance

any order effects [79], odd-numbered participants undertook their first trial with

assistance before moving on to the trials without assistance. Conversely, even-

numbered participants undertook their first try without any assistance and their

second one with the assistive system in effect.
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Figure 4.11: The Real-World Scenario for Testing the Shared Control System with
Human Participants. The task involves driving around the circuit, starting and
finishing at the same location. The scenario includes WST tasks like entering the
lift area and performing a turn in place to exit.

Before the trials started, each participant was given up to 10 minutes to freely drive

the wheelchair around the room and familiarize themselves with using the joystick

controller, as well as the shared control system. In total, 13 able-bodied volunteers

aged between 18 and 57 were recruited to participate in the experiments. Objec-

tive data including the produced control commands, the wheelchair’s trajectory,

and the distance from obstacles were automatically recorded during the trials.

Subjective data were also gathered at the end of each trial, where the participants

were asked to fill in a brief questionnaire about their experience with the control

mode they had just used (without actually knowing which mode it was). The

questionnaire consisted of the statements in Fig. 4.16, for which the participants

were asked to indicate how strongly they agreed on a five-point Likert scale (1 =

strongly disagreed, 5 = strongly agreed).
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4.6.4 Results

Task Metrics

The evaluation metrics that were employed to assess the performance of each par-

ticipant were: distance travelled, task completion time, clearance (average min-

imum distance to nearest obstacle) and number of collisions. Furthermore, the

similarity between the user’s commands and the assistive system’s final control

command was also calculated to measure the level of obedience of the latter to

the user.

Ideally, a better performing control will result in shorter distance, less time, more

clearance and less collisions. However, the most safety-critical measure to quantify

the performance of the shared control system is the number of collisions. Driving

a powered wheelchair through the standard joystick interface is a rather straight-

forward task, especially for a healthy person in body and mind, even without prior

experience of using an EPW. Furthermore, the given task was of moderate diffi-

culty and the wheelchair’s speed profile was set towards the slow side as a health

and safety measure.

As a result, all the participants were able to successfully complete the task, most

of them fast and accurately. Fig. 4.12 shows that only two participants experi-

enced collisions when they were given no assistance, which were caused due to

the users executing sharp turns while trying to complete the task as fast as pos-

sible. Conversely, no collisions took place while the assistive mode was active.

However, the increased safety came at a cost of slower speeds. The trained policy

with risk awareness did not allow fast, sharp turns when in close proximity to

obstacles, especially when the users were deflecting the joystick to the maximum

(recall from Eq. 4.10 that the magnitude of the intention affects the risk), rather

it either pushed the wheelchair away from the nearest obstacle or slowed it down.

This resulted in an inherent cost of using the shared controller in terms of com-

pletion times for the specific course, which has also been observed in other works

on shared control[79, 83, 138]. The participants took an average of 52.1 (SD 4.69)
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Figure 4.12: Number of collisions each participant experienced under each mode
of operation, while using the standard joystick interface.

Figure 4.13: Difference in the participants’ completion times when using the as-
sistive system with the joystick interface. The system trades off speed for safety.
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Figure 4.14: Averaged Action Similarity Score: Indicates the proximity of the
assistive system’s output to the user’s desired trajectories, averaged over the run.

s to complete the run without assistance, which increased by an average of 12 s

to complete the run with assistance. Since not all users require the same amount

of assistance, Figure 4.13 shows the completion times as a percentage difference

between the two modes, for each participant, as a more realistic measure. It can

be observed that for some users (e.g., 2nd, 4th), the completion time difference

is negligible, which shows that the shared controller allows high speeds, when the

robot is not in close proximity to obstacles.

For further exploring the safety aspect of the system, the average clearance of each

run was also calculated. It was found that the shared control system increased

the clearance compared to the runs with no provided assistance by an average of

9.3% among participants, with the average clearance of the runs without assistance

being 38.7 (SD 3.2) cm and the respective metric for the runs with assistance being

42.3 (SD 1.9) cm. This result is consistent with the policy’s reward objective of

trying to keep distance from obstacles in order to receive a smaller penalty. Finally,

the agreeability function (Eq. 4.15) was used to calculate how close the system’s

actions were to the users’ desired trajectories. Calculating the average agreeability

over all the participants resulted in a score of 0.79 (SD 0.02), whereas Fig. 4.14

shows the mean score, along with the deviation, of each participant. Overall,

the scores are on the high side, indicating that the system respected the users’
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Figure 4.15: Participant’s Trial Commands: Demonstrating raw user and system
commands during the assistive system’s usage. The system closely follows the
user’s input, but deviates when necessary to avoid collisions and maintain sufficient
clearance from obstacles.

QUESTIONS

 Q1  THE WHEELCHAIR WAS EASY TO MANOUEVRE

 Q2  THE WHEELCHAIR BEHAVED AS I EXPECTED

 Q3  THE WHEELCHAIR EXECUTED MY COMMANDS

 Q4  I HAD TO CONCENTRATE HARD TO DRIVE THE WHEELCHAIR

 Q5  IT FELT NATURAL DRIVING THE WHEELCHAIR

 Q6  I WAS ABLE TO EXECUTE THE TASKS QUICKLY

 Q7  I FELT SAFE WHILE PERFORMING THE TASKS

Figure 4.16: Shared Control Trials Questionnaire. Each statement is scored by
the degree of the participant’s agreement on a five-level Likert scale (1=strongly
disagree, 5=strongly agree).

intentions, and not too much assistance was required. Indicatively, the plots of

a single participant’s commands and the respective assistive system’s commands

are presented in Fig. 4.15.

Participant Feedback

Each participant indicated the degree to which they agreed with the statements

in Fig.4.16 at the end of each trial (with and without assistance, not having been

informed which mode they had just operated). The results show that, on average,

participants tended to agree that the wheelchair was easy to maneuver, behaved as
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Figure 4.17: Agreement degree with Fig. 4.16 statements when using the shared
control system compared to no assistance.

expected, and was intuitive to use, while they felt safe and only had to concentrate

moderately hard on the task. The largest standard deviation across the subjects’

answers was found in how hard they had to concentrate, and naturally, each person

has their own expectations and perspectives of how they perceive task difficulty

and personal effort.

To better understand how the participants perceived the difference between using

the assistive system or not, the questionnaire data was also used to compare the

Likert ranking of each statement, for each participant. The graph in Fig.4.17 shows

the difference in the degree to which participants agreed with each statement, when

using the assistive system. It can be observed, that most responses were in favour

of using the wheelchair without assistance, with a statistically significant trend

found in statements Q1 (p = 0.029), Q2 (p = 0.011), Q3 (p = 0.012) and Q6

(p = 0.048). This result is not surprising, since all participants were healthy and

did not face any issues in driving the wheelchair efficiently. The shared control

system, however, slowed them down and slightly altered their intended trajectories

to increase clearance from obstacles, preventing them from taking sharp turns and

completing the track as fast as possible. Participants did tend to agree that they

felt safer when using the assistive system, however, no statistical significance was

found(p = 0.174).
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4.7 Discussion

The setting that was examined within the proposed framework for shared control

was mostly concerned with reactive planning. The system did not use any explicit

goal inference to deduce the user’s goals, but instead had to learn to implicitly

decode the user’s intent and comply with it, while optimizing for other objectives

like safety. Results in simulation showed that the system can indeed enhance safety

when used with an erroneous user model, but it also helps users with informative

input reach their goals more often, even in environments it knows nothing about.

Furthermore, the shared-control system exhibited adaptability to different user

behaviors, however, it performed the best when used along with the same type

of driving model it was trained on. This implies that training the system with

user input that mimics a specific type of disability will result in more effective

assistance for that type of disability.

Further customization of the system is also possible in various ways, due to the

flexibility of the proposed framework. More specifically, changing the parameters,

or even the type, of the distribution that models the user input, adjusting the

value of the target divergence parameter, and tuning, or using a different, risk

estimation process, all affect the resulting shared control policy. The same applies

to the reward function that dictates the assistive component of the policy, which

was kept simple within the scope of this work, but could be further engineered

to provide assistance in more intricate ways. On the downside, those components

need to be manually tuned, and reaching the desired result (an optimally per-

forming policy) can be very time consuming and require significant computational

resources. The same limitation was encountered in this work, which had to make

some necessary compromises, like keeping the same user distribution throughout

the various experiments and heuristically tuning the TD parameter and the risk

estimation function. However, the promising results this thesis presented, without

an exhaustive search for optimality, are indicative of the potential of the proposed

framework for improved and specialized performance provided with the required

resources.
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Comparing our method with a conventional RL approach showed the necessity

of the proposed algorithmic modification for compliance of the system with the

user. The conventional approach was not able to maintain a balance between

respecting user intentions and avoiding collisions, resulting in either ignoring the

user or following them too closely and crashing. Another comparison was made

with a more typical shared control approach, not based on machine learning, but on

artificial potential fields. The APF method required precise obstacle information

(distances, but also angles) to calculate an appropriate repulsive force that would

prevent a collision, and thus, it was not able to utilize the sonar sensor setup to

do so reliably. This showcases the advantage of a deep learning approach in such

a case, where a neural network can arbitrarily leverage imperfect information in

an effective manner.

Finally, transferring the shared-control model to the robotic wheelchair made a

strong case for the applicability of an RL system in the robotics domain. The

system that was trained in a simulation environment, and with a simulated user,

was effectively transferred to the real world with no further tuning. Even though

the participants’ subjective feedback hinted at some dissatisfaction with the sys-

tem interfering with their driving, the objective metrics revealed that the system

allowed participants to achieve their goals, and do so in a safer manner. Some

takeaways from the conducted experiments are that: 1) the trial scenario was

relatively simple for healthy users, in which case assistance was not particularly

needed 2) the system was trained in a generic way, in terms of the user model that

was used to train it and the reward function that focused on avoiding obstacles,

and not reaching specific goals 3) the same model was used for all participants,

whereas a more careful selection of hyperparameters or fine-tuning of the model

through user data could potentially improve performance for individual use.

4.8 Chapter Summary

This chapter presented a novel shared-control method based on the RL framework.

The proposed method can be used to train an end-to-end system, which accepts
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as inputs user commands along with sensor data from the robot’s onboard sensors,

and directly outputs control commands for the robot, which should be compliant

with the user’s intention. In order to achieve this compliance, the method modifies

the objective of maximum entropy reinforcement learning, so that instead of maxi-

mizing future rewards and policy entropy, it instead maximizes future rewards and

minimizes the KL divergence between the user’s intention (modeled as a Gaussian

probability distribution) and the system’s policy. This allows the assistive system

to optimize for its own objectives, as dictated by the reward function, while being

forced to keep its decisions close to the user’s intention. To better guide the sys-

tem when to keep close to or deviate from the user, a state risk estimation step

was also introduced, which quantifies the risk of an intended control action based

on the proximity to obstacles and the magnitude of the user intention.

Evaluation of the proposed system in simulation demonstrated its ability to adapt

to users with different driving behaviors and aid them in avoiding collisions and

reaching their goals with greater success, despite the system being agnostic to the

users’ policies or goals. The system was also benchmarked against a conventional

max-entropy RL approach, as well as another shared control method based on

APF, both of which were outperformed by a large margin. Finally, the chapter fo-

cused on transferring the proposed method to a real robotic wheelchair, by training

a shared control policy with several aspects of the simulation being randomized to

bridge the sim-to-real gap. Able-bodied participants used the wheelchair, with and

without the assistive system, to navigate an indoor scenario while the statistics of

the respective trials were recorded. The system, which was trained in a simulated

environment with simulated users, effectively collaborated with all participants to

complete the real-world scenario, with zero collisions recorded opposed to a total

of three when using no assistance. However, the system hindered the users in

navigating the scenario as fast and sharp as possible, resulting in less reported

user satisfaction.

This chapter achieved the second and the third objective that were set in Sec. 1.2

and contributed a novel and generic shared control framework that offers a lot of

flexibility in how it can be used. Different aspects and extensions of the proposed
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system can be further explored in future work, while its realistic applicability as an

assistive technology in powered wheelchair navigation should be verified by trials

with actual wheelchair users.



CHAPTER 5

Extension of the Assistance to an

Alternative Control Interface

In this chapter, a novel, hands-free method for controlling a powered wheelchair is

introduced. The chapter discusses existing alternative interfaces and their limita-

tions, leading to the design and implementation of the proposed system. Utilizing

a simple web-camera to track head movements, the system translates them into

moving commands for an EPW. Real-world trials with healthy participants val-

idate the system’s performance. Furthermore, more challenging trials assess the

head-control interface’s effectiveness when combined with the shared control method

introduced in Chapter 4, resulting in a remarkable 92% decrease in collisions using

the assistive system. This chapter’s objectives are twofold: 1) Introduce a robust

and reliable control method as an alternative to the conventional joystick interface,

addressing the inadequacies of existing interfaces for individuals with quadriplegia.

2) Investigate the impact of the novel shared control method on a less accurate con-

trol interface than the conventional joystick. The findings underscore the potential

of the proposed head-control system in enhancing powered wheelchair accessibility

and safety for users with mobility challenges.

128
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5.1 Introduction

Loss of personal mobility due to spinal cord injury is a major challenge in the lives

of affected individuals. According to a wide study conducted in the U.S. [139],

about 45% of Spinal Cord-Injured (SCI) people end up with incomplete quadriple-

gia, and 13.3% end up with complete quadriplegia, rendering all four limbs par-

alyzed. While motorized wheelchairs have been instrumental in promoting in-

dependence among disabled individuals, traditional interaction interfaces such as

joystick control are not applicable for quadriplegics who have lost hand function.

Until today, some hands-free approaches have been developed for quadriplegia-

disabled people to enable wheelchair control, with the aid of eyes, shoulders,

speech, head, sip ’n puff [10], etc. Due to the nature of the quadriplegia patients’

disability, operating the wheelchair by tracking head movements is a unique alter-

native solution that has drawn the attention of the research community.

Despite the importance of such a wheelchair-driving assistive system, literature

shows that this area is understudied with only a few works having successfully

applied it on a practical level. The relevant research can be classified in two main

approaches regarding head gesture estimation; invasive and non-invasive. As re-

flected by the name, invasive approaches suggest the use of a sensing element

(e.g., tilt sensor, accelerometer, touch sensor, etc.) that requires contact with

the user’s head, and which can limit their movement range or cause discomfort.

For instance, [140] has implemented a combination of a tilt and an accelerometer

sensor, attached on the user’s head for steering the wheelchair, or [141] that used

two vertical and horizontal tilt sensors, requiring direct contact to the user’s head,

to operate a wheelchair. On the other hand, non-invasive approaches are usually

image-oriented and do not require contact with the user’s head. In this case, com-

puter vision techniques can be utilized for image-based head pose estimation [142],

as for instance [143], that proposed the use of a Kinect sensor for head gesture

estimation to enable wheelchair control

The current work proposes a novel non-invasive method, based on visual head

pose estimation, which is implemented on the EPW introduced in Section 4.6.1,
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while its performance is explored in a real-world scenario. Before presenting the

method, the next section summarizes the existing control interfaces for powered

wheelchairs and describes their limitations.

5.2 Powered Wheelchair Interfaces

Following the distinction between invasive and non-invasive approaches made in

the introduction, a broader classification of methods can be made between sensor-

based and vision-based. This section explores the most prominent sensor-based and

vision-based head-controlled wheelchair studies.

5.2.1 Sensor-based Approaches

Due to their simplicity and reliability, sensor-based techniques have been the fo-

cus of hands-free wheelchair control. Currently, the conventional method used

by quadriplegic patients for wheelchair control is the Sip-and-puff system, which

allows basic control through a plastic tube mounted on the wheelchair. This sys-

tem, even though low-cost and easy to use, has been reported to feel cumbersome,

awkward and very slow. An alternative proposal to the Sip-and-puff is the Tongue

Drive System (TDS) [144], which detects the tongue motion by using a magnet

and magnetic sensors. This system, however, requires the tongue to be pierced,

which can be quite uncomfortable, and also allows a limited number of commands.

Other methods that have been explored by the research community rely on track-

ing the head position, which has been achieved with a diversity of sensors including

accelerometer, tilt sensors, touch switches, or ultrasounds.

As one of the first sensor-based head-controlled wheelchairs,[145] introduced a

powered wheelchair steering technique with the aid of head movements, derived by

ultrasonic range measurements. In this study, they have mapped the head orienta-

tion, estimated by two ultrasound sensors, into four discrete commands; right, left,

moving forward and stop. Another contactless sensor-based approach,[146] ex-

plored the performance of a head-controlled EPW, where the motion was recorded
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by an array of four infrared LEDs and a camera. The number of infrared LEDs in

the vision of the camera (installed at the back of the user’s head, on the head rest)

change according to the yaw angle of the user’s face, and the discrete commands

of turning right and left are derived from the number of LEDs that are within the

camera’s field of view. [147] utilized an interface with mounted proximity infrared

sensors, to track the eyeball motion of a user and detect intentional blinks and

eye motions, which are mapped to driving commands for the wheelchair. Using

inertial sensors is another method of deriving the head orientation for control-

ling EPWs, and it is explored in several studies. [148] is such an example, that

used a MPU 6050 triple axis accelerometer and a gyroscope for monitoring the

user’s head motion and ultimately controlling a prototype EPW. However, no ac-

tual experiments verifying the effectiveness of the proposed method are presented.

The authors embedded the accelerometer on the visor of a cap that needs to be

worn by users. Similarly,[149] used an accelerometer to get the head position

feedback before feeding that signal to an Arduino board to process the data and

control a toy car, instead of a wheelchair. As an another example of sensor-based

techniques,[150] used a gyroscope, attached on the user’s head by a headband,

for steering a real wheelchair. The proposed model has limited accuracy, whereas

the accumulative error caused by the integration of the gyroscope output (known

as the drift problem) has been considered negligible. Some other sensor-based

approaches are presented in[141, 151, 140], where tilt sensors were utilized for X

and Y displacement detection, which was then translated to discrete wheelchair

movement commands. The effectiveness of the tilt sensor-based approach in[141]

was verified through trials run on Spinal Cord Injured (SCI) patients, by per-

forming some basic tests like travelling in a straight line or measuring the braking

distance after sending a stop command. Another direction of sensor-based meth-

ods in wheelchair control focuses on the use of the Electroencephalography (EEG)

technique[152, 153, 154]. This approach, however, depends on using an electrode

cap placed on the user’s scalp for acquiring the brain signals, and faces important

challenges, like a small signal-to-noise (SNR) ratio and multiple different noise

sources which corrupt the main signal. It is currently considered very challenging

to design and implement such a system, that is also reliable, accurate and flexible.
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The methods presented above, usually come with a number of drawbacks. In-

stalling the sensors, as well as maintaining them, due to the high probability

of getting damaged, can incur high costs. Furthermore, the inconvenience, or

the wearing discomfort, caused to the users by solutions such as the TDS, head

switches, devices attached to the user’s head etc., is as another important draw-

back. Finally, the majority of the existing approaches operate with a discrete set

of moving commands, thus, limiting the amount of available control to the user.

5.2.2 Vision-based Approaches

Vision-based approaches for powered wheelchair control are much rarer compared

to sensor-based approaches. The most widely explored vision-based approach is

based on eye-tracking, where a number of different methods have been proposed for

implementing it in a robust manner [155, 156, 157, 158]. Such methods typically

work with capturing images of an eye, and using image processing techniques (e.g.,

Hough transform) to track the position of the eye pupil and then map it to a control

direction for the wheelchair. One major shortcoming of such an approach is the

limited reliability of tracking the eye pupil. Results can greatly vary depending on

the quality of the image, the size or the colour of the pupil, the lighting conditions

and the use of glasses or contact lenses. Furthermore, eye gaze control can be

quite taxing to its user, since it requires constant eye movement and focus, which

can cause dizziness or similar symptoms.

Despite eye-tracking, other methods utilizing cameras and computer vision algo-

rithms have also been used on head-controlled wheelchairs, however, their number

is limited. One such method is proposed in [143], where the head position is esti-

mated with the aid of a Kinect and three landmarks on the head, by utilizing the

optical flow technique. The estimated position is then mapped to four discrete

commands for steering a wheelchair. However, the proposed method was only

tested in controlling a pointer for following the path on a screen. Hu et al. [159]

proposed a head gesture based interface for controlling a wheelchair, by using a

combination of Viola-Jones [160], a well known face detection algorithm based on

Haar features, and the Camshift algorithm for face detection and template match-



Chapter 5 – Extension of the Assistance to an Alternative Control Interface 133

ing for classifying the face posture. The reliability of these algorithms, though, is

limited for such an application (Viola-Jones is not as effective detecting tilted or

turned faces, while Camshift has poor accuracy). In a similar manner, [161] used

a Haar cascade classifier for face and eyes detection, estimating their position to

generate control commands for the wheelchair’s motors. Notwithstanding the fast

speed of the Haar classifier, it requires careful tuning, while it is known for high

false positive detection rates and for being sensitive to the lighting conditions. No

validation experiments were conducted for the aforementioned studies.

Other works propose using additional inputs, like mouth movements [162] or eye

winking [163] along with the head position. However, this approach results in

added complexity and discomfort using the system, while it allows more room for

errors both from the system and the user side. Some studies including [162, 164],

that have demonstrated their proposed systems in real world scenarios, provide im-

plementations on laptops mounted on the wheelchair, which can harm the practical

viability of a system that demands a low-power and mobile solution. Furthermore,

in these works there is absence of subjective metrics and overall user experience

evaluation, which is vital for assessing the actual usability of such systems.

A different type of approach is presented in [165], where the authors proposed an

active vision approach, and instead of using a frontal camera pointing at the user’s

face they use an on-head camera. Halawani et al. used SIFT (Scale-Invariant Fea-

ture Transform) points to monitor head motion, and by comparing interest points

extracted from consecutive image frames they obtain the movement direction in

a discrete manner and steer the wheelchair in a real-world scenario. This method

relies on identifying and matching stable and repeatable points in different images,

and even though it is a vision-based approach, it requires contact between the user

and the camera (being installed on their head), which might cause inconvenience

similar to sensor-based approaches.
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5.2.3 Limitations of Head Control Interfaces

Exploring the literature on head-controlled wheelchairs reveals that very few of

the proposed solutions have been put into real use. Namely, the Sip-and-puff, TDS

and eye-gaze technologies are the ones being used today by quadriplegic patients.

Sip-and-puff and TDS are invasive methods, that can be burdensome to use for

prolonged periods of time, while they offer limited control freedom. Eye-gaze,

though vision-based and non-invasive, also does not allow fine control, while it

can be unreliable and taxing to the user. Other works based on computer-vision

are quite rare, and are usually sensitive to environmental conditions (including

varying illumination, indoor and outdoor environments, cluttered backgrounds,

and shadows[166]), or their effectiveness has not been explored in depth by being

applied to a real system and tested with human subjects.

This study presents a vision-based, non-intrusive, cost-efficient system for control-

ling a wheelchair via head movements, only relying on a simple web camera. The

system robustly performs face detection and head pose estimation, improving upon

similar existing methods[159, 161], by combining a state-of-the-art neural network

and a fast and accurate facial landmark detector. Furthermore, the system de-

sign includes a calibration process that allows customization to each individual’s

range of motion and a control logic which allows users to maintain full control

over a powered wheelchair. Furthermore, the control can be done in a continuous

manner, something that is not present in other works. The system has been de-

ployed on a commercial wheelchair and its effectiveness has been evaluated on a

real world scenario with healthy human participants, which will be presented later

in Section 5.4.

5.3 Methodology

A robust head-controlled wheelchair requires two important elements; a reliable

head pose estimation algorithm and a robust translation of the orientation to

commands for the robotic wheelchair. Therefore, the proposed method consists of
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Figure 5.1: The Head Control System’s Flowchart.

two main modules, one for estimating the head orientation (pitch and yaw), and

another one for translating the derived orientation to velocity commands, before

passing them to the control module of the EPW. The head pose estimation step

utilizes “YOLO” (You Only Look Once), a widely-used Convolutional Neural Net-

work (CNN), along with a facial landmark detector, which enables the calculation

of the head pose. The output of the head pose estimation is mapped to moving

commands for the robotic wheelchair, using both discrete control commands (pre-

determined velocity values for turning), as well as continuous control commands

(turning is a linear function of the head’s yaw). A more detailed explanation is

provided in the rest of this section, where the relevant methodology is described.

5.3.1 Head Pose Estimation

For estimating the head orientation, in the pitch and yaw dimensions, two modules

combining machine learning and more traditional computer vision techniques are

utilized. The first module is responsible for detecting the head of a person within

an image, whereas the second one is used to approximate the orientation of the

detected head. Head detection uses the well-known YOLOv3 network [167], which
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Figure 5.2: An overview of the Mini-YOLOv3, by Qi-Chao-Mao et al. , licensed
under CC BY 4.0.

is a fast and efficient Fully Convolutional Neural Network (FCNN), capable of

detecting multiple objects in almost real-time. More specifically, for this study

the mini-YOLOv3 network was used (a miniature version of the full YOLOv3),

which was retrained to specifically detect faces. The reason mini-YOLOv3 was

used is for improving the performance, in terms of frames per second (fps), due

to its much smaller size compared to the full YOLOv3 network. The accuracy of

mini-YOLOv3 is comparable to the original one, and even more so in this case,

where we only care about detecting the closest face to the camera, a rather easy

task for the particular network. Furthermore, the effectiveness of mini-YOLOv3

as a real-time object detector for embedded applications has also been shown in

the literature [168]. The implementation that was used was “DarknetROS” [169],

which, as the name implies, plays well with using it alongside ROS, that acts

as the backbone of the overall system (details about ROS have been provided in

Section 3.3.1).

The detected face is then passed on to the second module, which uses computer

vision techniques in order to locate the facial features contained in the image. For

specifically, the feature extraction is realized with the facial landmark detector

included in the “Dlib” library, which is an implementation of the work done in

[170], that learns an ensemble of randomized regression trees to detect landmarks

on a face image. The particular method was chosen for its proved effectiveness

and high speed [171], vital for achieving real-time processing times. The feature

of interest that is selected is the tip of the nose, the position of which provides

a good approximation of the head’s orientation. The nose position is given in x

and y coordinates of the given frame, but since the bounding box of the face is

https://www.researchgate.net/scientific-contributions/Qi-Chao-Mao-2161203606
https://creativecommons.org/licenses/by/4.0/
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Figure 5.3: Left - The detected face (red bounding box) and the calibration
boundaries, against which the nose tip position (red circle) is checked. The orange
bounding box indicates the limits of the neutral zone, and the blue the limits of
the maximum motion in both directions, as calibrated by the user (see Sec. 5.3.2)
Right - FT: The threshold for initiating forward movement BT: The threshold
for initiating backward movement TT: The threshold for initiating turning LM:
The interval at which the horizontal nose tip position is linearly mapped to an-
gular velocities (only in continuous mode) MT: The threshold beyond which the
maximum allowed turning speed is set

of variant size (depending on the distance of the face to the camera), the head

orientation is calculated as percentages of the nose’s location in the image relative

to the current frame’s size (rows × columns). Naturally, the vertical coordinate

changes along with the pitch movement of the head, whereas the horizontal with

the yaw movement as shown in Figure 5.4a.

Smoothing the input

Given the noisy nature of the pose estimation, instead of directly using the cur-

rent pitch and yaw values for moving the EPW, a moving average is computed

using the sliding window method for the past k frames. This makes the imple-

mentation much more robust for two reasons: Firstly, it prevents the translation

of noisy estimates to immediate driving commands, and secondly, it allows space
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(a) Mapping of head position to moving
commands.

FORWARD LEFT FORWARD FORWARD RIGHT

ROTATION LEFT NEUTRAL ROTATION RIGHT

REVERSE LEFT REVERSE REVERSE RIGHT

(b) The moving commands dis-
played as a virtual joystick to the
user.

Figure 5.4: Visualization of the Head Control System’s Functionality.

for the user to make errors, like for example sudden tweaks of the head, without

instantaneously altering their driving course. Of course, the size of the window is

adjustable and dependent both on the hardware (fps of the head detection) and

also the preference/capability of the individual user, and therefore needs to be

tuned accordingly. For example, given the last k pitch measurements, the current

smoothed pitch value would be given by: p̄n = 1
k

∑k
i=1 pi

For the next moving average calculation, and in order to save processing time,

the calculation can be simplified by reusing the previous moving average. A new

pitch value pn+1 comes into the window, whereas the oldest value pn−k+1 drops

out, thus we get: p̄n+1 = p̄n +
1
k
(pn+1 − pn−k+1).

5.3.2 Head Pose to Control of the Robotic Wheelchair

Following the extraction of the values corresponding to the pitch and the yaw of

the head, the control script responsible for translating those values to velocity

commands, as well as implementing the control logic to operate the EPW, is

applied. Here, it is important to mention that in the case where either the camera

loses the user’s face, or in the exceptional case that there is no valid face detection

or pose estimate, no control command will be issued to the wheelchair, which will

cause it to come to a halt.
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A valid head pose can be translated in either a discrete or a continuous manner,

where in the first case the discrete mode (DM) maps the pitch values to three

regions (“moving forward”, “moving backward”, “neutral”), and likewise the yaw

values to three regions (“turning right”, “turning left”, “neutral/inactive”). In the

second case, the continuous mode (CM) retains the same mapping for the pitch,

but uses a linear mapping for the yaw values to angular velocities. The robot

velocities obey the differential drive kinematics, as expressed in Eq. 3.17.

The two modes and the control flow of the system, which is also summarized in

Figure 5.1, are further explained below.

Discrete control

Before sending commands to move the robotic wheelchair, a calibration phase

needs to first take place. In the calibration phase, the user is given some fixed

time to set their “neutral zone”, which is defined by the maximum and minimum

values of the pitch and yaw estimates, when the user moves their head very slightly

in all directions, while seated in their neutral/comfortable straight position. The

neutral zone can be visualized as a virtual box around the user’s nose, where,

while the nose remains there, no velocity commands are being sent to the EPW.

After the calibration is complete, we enter the driving phase, during which the

current orientation is checked relative to the neutral zone. When the pitch value

exceeds the upper bound of the neutral zone in the vertical direction, the linear

velocity vx of the EPW is set to a predefined positive value, and remains so as

long as the vertical position does not exceed the lower bound of the neutral zone.

If the latter happens, then the linear velocity is set back to zero, unless it remains

there for a set amount of time, in which case “reverse” is enabled, setting the

linear speed to a predefined negative value. Reverse can then be cancelled by

again exceeding the upper vertical bound.

Similarly, the angular speed ω of the EPW is set to a predefined positive or negative

value, when the yaw value exceeds the right or left boundaries (in the horizontal

direction) of the neutral zone respectively. The difference when turning, is that
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the head position needs to remain either right or left, and beyond the neutral

thresholds, to maintain a non-zero angular speed. This is done purposely to make

turning more responsive, as well as easily cancelable simply by moving the head

back to the neutral position. When the linear velocity is set to zero, the user can

turn their head right or left to make the EPW rotate on the spot towards the

desired direction.

Continuous control

With “continuous control” we refer to producing continuous, instead of constant

values, for controlling the angular speed of the EPW. In this mode, the linear

speed again remains constant as previously described. The control process for

continuous mapping is similar to the discrete one, with two important differences.

Firstly, an additional step is added in the calibration phase, where the user has

to also set their maximum (comfortable) range of motion in the yaw direction, in

order to obtain another boundary in the horizontal direction outside the neutral

one. Given this additional boundary, any right or left head movement that exceeds

the neutral zone, can now be mapped to a continuous value between a minimum

one (a fraction of the maximum angular speed, ωmin = α · ωmax, α ∈ [0, 1)), up

to the maximum allowed one (ωmax) when the head is at (or exceeds) the edge

of the outer boundary. For example, in the case of a right turn of the head, and

given the calibrated right neutral boundary nbr, the far right boundary br, and

the estimated yaw value y, the angular velocity mapping is described below:

ω(y) =


0, if y ≤ nbr

ωmin +
ωmax−ωmin

br−nbr (y − nbr), if y > nbr and y ≤ br

ωmax, otherwise.

(5.1)

The same calculation also applies for a left turn, but checked in respect to the

left calibrated boundaries and mapped to negative angular speeds. A graphic

depiction of the above process is provided in Figure 5.3.
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Figure 5.5: The Robotic Wheelchair’s Hardware Setup.

5.4 Validating the Novel Vision-based Interface

In order to test the performance of both approaches, a set of experimental tests was

conducted on a real EPW, in which the behavior of users, models and wheelchair

has been extensively explored.

5.4.1 Experimental Protocol

In this study, 14 healthy people were recruited to participate in the experimen-

tal tests. We run three experiments per participant, where they were asked to

navigate the wheelchair through the designed track (as shown in Figure 5.6) in

the following modes: (i) using the manufacturer’s standard joystick interface (ii)

using the head-control method in DM (iii) using the head-control in CM. The age

of the participants ranged between 21 and 56 years old. For safety reasons, an

emergency button was connected to the wheelchair to disconnect the main power

in the case of an emergency, and for overall safety. The participants were also

instructed to use the joystick (which would override the remote head commands)
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Figure 5.6: The Experimental Route Layout for Validating the Novel Head-
Control Interface.

in case they lost control and were about to collide, but not for correcting the tra-

jectory of the wheelchair. Before each trial, every participant was provided with

three opportunities to calibrate the system.

The participants were given up to 15 minutes to familiarize themselves with the

setup as well as the driving behaviour of the EPW, and also a 2-minute break

between the different experimental rounds, in order to minimize the effect of tired-

ness or any other unwanted factors. An interview was conducted after the trial to

gauge the participant’s satisfaction with the system and to collect some subjective

measurements. The participants were asked to provide a number between one and

five (1-5), stating their experience with using a powered wheelchair.1

For the sake of performance evaluation, the trajectory, number of collisions, trav-

elling time and travelling distance were recorded throughout the trial runs. The

number of collisions, as well as the travelling time, were recorded by the researchers

overviewing the trials, whereas the trajectory and the travelling distance were ex-

tracted from the odometry data derived from the pair of encoders installed at the

EPW’s wheels (see Sec. 4.6.1). The performance of the participants has been eval-

uated qualitatively and quantitatively and is discussed in the following chapter.

1Some of the participants were members of the research teams working in the area of assistive
technologies, therefore having experience with wheelchairs, despite being non-disabled.
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(a) Joystick (b) Head control in DM (c) Head control in CM

Figure 5.7: The Trial Trajectories as Recorded from the Odometry.

Table 5.1: Participant Trial Results in the Three Driving Modes.

Mode Statistics

Distance (m) Time (s) Collisions*

Mean Std Mean Std Mean Std
Joystick 21.2 1.31 67 0.08 0 0
DM 23.4 2.73 92 0.29 2.84 2.07
CM 23.2 2.13 81 0.23 2.5 2.44

* As collision we regard any contact of the wheelchair with obstacles, plus any momentarily
intervention with the standard joystick controller, in cases where users felt they were not in
control or panicked

5.4.2 Results

The participants’ performance was evaluated in each of the three modes with a

set of evaluation metrics as:

• Mean and standard deviation of traveling time

• Mean and standard deviation of traveling distance

• Number of collisions

• A number of subjective measurements inspired by the Nasa Task Load In-

dex [172] (only in head-control mode)

The summary statistics of the travelling distance, travelling time and the number

of collision are presented in Table 5.1. For gaining a better insight of the partici-

pants’ performance in each mode, the travelling trajectories, constructed from the

recorded odometry, are also presented in Figure 5.7.
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(a) Recorded trajectories of an experi-
enced (5) user.

(b) Recorded trajectories of an inexperi-
enced (1) user.

Figure 5.8: Trajectories of an Experienced vs an Inexperienced User of Head
Control in DM and CM. The experienced user takes better advantage of the CM,
managing to perform sharper and more accurate turns compared to the DM. On
the other hand, the inexperienced user has a more “shaky” performance in the
CM, thus performing worse than the DM which has a more predictable behaviour.

Analysis

For the 14 participants a total of 28 distinct runs were conducted using the head

control system (2 modes per participant) and another 14 using the standard joy-

stick interface, making a total of 42 runs. For a fair comparison, the commands

issued from the joystick were limited to match the maximum allowed velocities of

the head control mode. Out of the 28 head-controlled runs, 27 were successfully

completed, whereas there was 1 case where the participant could not complete the

trial, due to poor calibration of the system (“reverse” could not be activated). As

stated in the study protocol (Section 5.4.1), each participant had up to three tries

to successfully calibrate the system.

Comparing the discrete versus the continuous translation of the head pose estima-

tion to moving commands reveals that the continuous performed slightly better,

in terms of completion times, but also shorter trajectories and smaller number of

collisions. This can also be verified visually by comparing the resulting trajecto-

ries between Figure 5.7b (discrete) and Figure 5.7c (continuous). This result was

expected, and is accounted to the finer control (or greater resolution) for turning

that the continuous implementation allows. However it was observed that the CM

performed better for some participants, while for others the DM was the better
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option, especially for the ones who had no prior experience with using an EPW.

To explore this observation further, the completion times of the participants are

split into two groups; one with the absolute amateurs in wheelchair driving (1),

and the other with the rest of the participants that had little to much experience

(2-5). On those groups a two sample t-test (Welch’s t-test, alpha level of 0.05) was

performed, where a statistical significance was found in completion times when us-

ing the CM (p = 0.045). On the other hand, a significant trend was not found for

the respective test in the DM (p = 0.41).

Furthermore, a correlation analysis was run between the participants’ self-reported

wheelchair experience and the users’ performance in terms of completion times.

The metric that was used was the Pearsons correlation coefficient (PCC) [173],

which is an interpretable measure of linear correlation between two sets of data.

The scores of −0.19 and −0.46 were obtained for the discrete and continuous mode

respectively. The negative correlation shows an inverse relationship between com-

pletion times and experience (the more experience the shorter the completion

times), with the correlation in the DM being small, and in the CM being moder-

ately high. This is an indication, that having no prior experience with driving a

wheelchair does not greatly affect the performance in the DM, but does affect the

performance in the CM, making it possibly a better option for experienced users.

The DM working better for inexperienced users also makes sense intuitively, since

it allows more room for error, while the CM might be harder to operate (more

sensitive to horizontal head movements), but also has the capacity of performing

better than the DM due to the finer control it allows. Figure. 5.8 shows an exam-

ple of recorded trajectories by an experienced and an inexperienced user, which

highlights the results presented above.

To compare the performance between the joystick and head-control modes, we

conducted pairwise statistical comparisons using the completion times of the par-

ticipants. We first compared the joystick and head control in discrete mode using

a two-sample t-test (Welch’s t-test, alpha level of 0.05). The analysis showed

a significant difference between the two modes (t(24.67) = −6.04, p < 0.001),

with the joystick mode having significantly shorter completion times. We then
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compared the joystick and head-control in continuous mode using the same sta-

tistical test. The results revealed a significant difference between the two modes

(t(18.12) = −4.58, p < 0.001), with the joystick mode again having significantly

shorter completion times. Furthermore, in the DM we have an increase of 10.4%

for the trajectory length compared to the joystick, whereas in the CM we have

an increase of 9.4%. These findings suggest that the joystick mode offers better

performance than the head-control modes, which is in line with our expectations

due to the easier use and better accuracy of the joystick. However, it is worth

noting that the head-control modes were not significantly inferior to the joystick

mode, indicating that they could serve as a viable alternative for individuals who

struggle with operating a joystick.

Looking at the statistics of the collisions that occurred during the head-control

runs, we observe high standard deviations (2.07 in DM, and 2.44 in CM). The

people that got accustomed to the system, drove with a good level of control and

had no to very few collisions. On the other hand, some participants were unable

to adjust to the system within the allotted time of 15 minutes. This was due to

either failing to calibrate the system properly or getting nervous during the trials.

As a result, they lost control and crashed multiple times before completing the

course.

Subjective Measurements

Despite the objective measurements that were recorded and analyzed, evaluat-

ing the participants’ experience of using the system is also important. For that

purpose, measurements of the NASA Task Load Index (NASA-TLX), a widely

used, multidimensional assessment tool that rates perceived workload in order to

assess a system’s effectiveness, were utilized. More specifically, the NASA-TLX

measurements were used to quantify the following questions:

• Mental demand - How mentally demanding was the task?

• Physical demand - How physically demanding was the task?
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• Performance - How successful were you in accomplishing what you were

asked to do?

• Frustration - How insecure, discouraged, irritated, stressed, or annoyed were

you?

The participants were asked to provide their own evaluation on the above cate-

gories on a scale of 1-20, 1 being ”Very low” and 20 being ”Very high”, in order

to assess their overall experience with using the head control system (not differ-

entiating between the two modes). The results are presented in Table 5.2.

Overall, we can see that the participants reported a low physical demand (mean

of 5.6), but higher mental demand and frustration (9.3 and 7.1 respectively),

although still reasonably low. The physical demand has a low standard deviation

(3.9), indicating agreement of the participants, whereas the deviation increases

when it comes to the mental demand (5.2) and frustration (5.5), showing that

the task was less taxing for some of the participants, but more taxing to others.

This result also agrees with the observation of the previous section, since running

a correlation analysis between the experience and the frustration and the mental

demand of the participants resulted in a PCC of -0.34 and -0.29 respectively,

indicating an effect of the experience on the perceived effort of the users. On

the contrary, a PCC of -0.13 between experience and physical demand shows a

weak correlation of how the users’ physical comfort was affected by experience.

Additionally, calculating the PCC between mental demand and the number of

collisions, results in 0.04 in DM and 0.44 in CM. These results reveal that the

mental demand that was experienced by the participants was mostly accounted to

the CM, rather than the DM, for which the correlation was negligible. On the other

hand, the participants reported a high evaluation of their own performance (15.0),

with the lowest deviation (2.8), implying that overall they felt confident with their

ability of using our system successfully for the task they were given.
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Table 5.2: Participants’ Subjective Measurements Results.

Metrics Statistics

Mean Std Median
Mental Demand(1-20) 9.3 5.2 8
Physical Demand(1-20) 5.6 3.9 5
Performance(1-20) 15.0 2.8 15
Frustration(1-20) 7.1 5.5 5

Wheelchair Experience(1-5) 2.4 1.5 2.0

5.4.3 Discussion

The results of the conducted trials showed that the non-disabled participants were

able to successfully use the head-controlled system and complete the designed

track, demonstrating the effectiveness of the system in matching the use of a stan-

dard joystick controller. Although the joystick proved to be a faster and more

accurate means of control, the head-controlled system was not far behind, espe-

cially given the difficulty difference between the tasks and the limited experience

of the participants with the head-controlled system.

In terms of the head-control mode, the comparison between the continuous and

discrete modes showed that the continuous mode performed slightly better in terms

of smoother and more accurate control, particularly for users with more experience

in driving a wheelchair. However, this was not the case for all participants, and the

discrete mode may be a better option for inexperienced users as it provides more

room for error. The statistical comparisons performed in the study support these

findings, with a significant difference in completion times between the continuous

and discrete mode for users with some experience in wheelchair driving, and a

moderate negative correlation between completion time and experience for the

continuous mode.

Furthermore, the comparison with the joystick control mode revealed that head-

control with either the continuous or discrete mode can produce comparable re-

sults, albeit with slightly longer completion times and trajectory lengths. How-

ever, the absence of collisions during joystick runs indicates that joystick control

remains the most reliable and safe option.
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Calibration of the head-controlled system was found to be an essential factor in

successful runs, with good calibration allowing full control of the wheelchair within

a reasonable range of head movement. More work will need to be done on this

aspect to ensure more consistent calibration results, as for example adding more

visual cues to guide the user, while an additional step that allows users to set

their desired velocity ranges would provide better customization. Changes in user

posture, which can occur due to factors such as fatigue or differences in terrain,

can have a considerable impact on the accuracy of the calibrated system during

use. To address this, a dynamic re-calibration process during driving would be

a valuable addition, allowing the system to adapt to such changes, leading to a

more comprehensive and resilient solution.

The reports of the participants revealed that the most demanding part of the

experiment was the calibration/training part, where they needed to familiarize

themselves with the system and build confidence in using it. However, given the

low reported physical demand and the potential reduction of mental demand and

frustration with more experience, the head-controlled system may be a realistic

and appropriate option for usage by actual wheelchair users. Further research and

experimentation will need to be conducted to verify this hypothesis.

The findings through experimentation revealed the operational characteristics of

the system and identified factors contributing to its performance, including control

frequency, calibration process, and user experience. The control frequency of the

system was addressed by achieving an overall frequency of around 30Hz, which

proved adequate to smoothly control our EPW. The use of mini-YOLOv3 played

a crucial role in this, as when using the full YOLOv3 instead, we only achieved

a frequency of ∼5Hz, which significantly affected the final performance of the

system at a preliminary testing stage. The calibration process was found to be

sensitive and not very intuitive for some users, however, building more experience

with the system makes the process easier and more effective over time, which in

some cases was not possible to be achieved within the short training time provided

in the experiment. We are confident that adding more visual cues to guide the

calibration process will greatly improve its robustness, and therefore, the driving
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performance.

Reverse movement is supported by our design, but it should be combined with the

feed of a rear-view camera to make it fully usable. Alternative filtering methods

could be used to translate head position to velocity commands, and combining

the output of our system with a collision avoidance module would ensure safe

navigation. Finally, and most importantly, the system needs to be tested with

real powered wheelchair users (especially quadriplegics in a clinical trial setting)

to verify its end goal effectiveness for the target population.

5.5 Investigating the Effects of Assistance to the

Usability of Alternative Control Interfaces

Now that the novel vision-based interface has been introduced, and validated as

a viable, yet less accurate, control interface for an EPW, this section explores

whether the shared control method, introduced in Ch. 4, can be used to improve

the usability of such a system. This section presents real-world experimentation

combining the vision-based interface for controlling the EPW with the RL-based

assistive system, and analyzes the relevant findings. The head control mode was

set to the continuous mode, in order to better match the continuous nature of the

shared control system, but also to provide a bigger challenge to the participants

and highlight the effects of the assistance.

5.5.1 Experimental Protocol

The experimental protocol that was followed, is identical to the protocol described

in Sec. 4.6.3, where the shared control system was tested with the standard joystick

interface. 13 participants were asked to navigate the scenario shown in Fig. 4.11

to the best of their ability, while using the head-based control interface, in two

separate trials. One of the trials would be with the assistive system active and

the other one without, while that occurred in a pseudo-randomized way, with
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Figure 5.9: Differences in Participants’ Completion Times when Using the Assis-
tive System with the Head-Control Interface. The faster completion times while
using assistance are directly attributed to fewer collisions occurring.

the participants being unaware of the mode they would operate each time. The

participants were given up to 10 minutes to familiarize themselves with the control

interface, and at the end of each trial they were asked to fill a questionnaire about

their experience (Fig. 4.16).

5.5.2 Results

Task Metrics

The objective metrics that were used to assess the performance of each run were

again: distance travelled, task completion time, clearance (average minimum dis-

tance to nearest obstacle), number of collisions, as well as the agreeability between

the user’s (head) commands and the assistive system’s final control command.

In contrast to the joystick trials (Sec. 4.6), where the able-bodied users faced little

difficulty in maneuvering the designed track, the head-control trials proved to be

much more challenging for the majority of the participants. The completion times

between the trials with different control interfaces are not directly comparable in
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Figure 5.10: Number of Collisions Each Participant Experienced Under Each Mode
of Operation, while using the head-control interface.

this case, since the linear speed command of the head control was a constant value,

at a fraction of the maximum allowed speed of the wheelchair. However, when

using no assistance, participants took 159.36 (SD 51.16) s, on average, to complete

the track with the head control, whereas when using assistance the completion time

dropped to an average of 135.4 s (SD 33). This is a decrease of 15%, compared

to the respective trials with the joystick, where there was an increase of 22.3%

in completion times when using assistance. Even though the assistive system was

shown to slow down near obstacles, this decrease in completion times was a direct

effect of the collisions that were prevented. During the runs with no provided

assistance, all participants experienced at least 1 collision, with an average of

4.77 (SD 2.58) for all participants, while when assistance was provided collisions

significantly dropped to an average of 0.38 (SD 0.62); a decrease of 92%. Fig. 5.9

shows the difference in completion times between the two modes (with and without

assistance) for each participant, while the number of collisions is shown in Fig. 5.10.

In terms of the average minimum distance to obstacles, the no-assistance runs

had an average clearance of 31.8 (SD 3.3) cm, whereas the clearance for the runs

with assistance had an average of 36.8 (SD 3.4) cm. Again, as with the joystick

trials, the shared control system exhibited its ability to maintain a greater distance
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Figure 5.11: Averaged Action Similarity Score: Measures the closeness between
the assistive system’s output and the user’s intended trajectories, averaged over
the run.

from obstacles. Finally, in terms of action similarity between user and system,

the average similarity had a score of 0.74 (SD 0.08), which is lower and with

greater deviation compared to the respective result of the joystick trials (0.79 (SD

0.02)). This shows that the assistive system needed to deviate more from the

users on average, which is an expected result since the driving performance of the

participants with the head-control interface was significantly worse compared with

the joystick interface. Fig. 5.11 shows the agreeability score of each participant’s

run with the shared control system.

Participant Feedback

At the end of each trial the participants were asked to indicate their degree of

agreement with the statements in Fig. 4.16. The results show that the landscape of

answers changes dramatically compared to the respective one for the joystick trials.

Fig. 5.12 shows the difference in the degree of agreement between participants

for each statement. Users, on average, felt that when they were provided with

assistance the wheelchair was easier to manoeuvre, behaved more as they expected,

had to concentrate less to drive it and they felt safer while performing the tasks.
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Figure 5.12: Agreement Degree with Fig. 4.16 Statements When Using the Shared
Control System Compared to No Assistance.

A one-way ANOVA revealed that there was a statistically significant difference

in mean Likert score between using assistance, or not, for the statements Q1 -

“The wheelchair behaved as I expected” (p=0.035) and Q7 - “I felt safe while

performing the task” (p=0.005).

Discussion

The majority of the collisions took place within the quite restricted space of 2x1.5

m (emulating an elevator) at the end of the enclosed circuit. After entering that

space, in order to escape it, participants had to get the wheelchair to come to a halt

and then proceed to carefully turn on the spot until the wheelchair was aligned

with the narrow corridor. However, due to a number of factors, like the short

reaction time that was required, inaccurate calibration of the head-control system,

lack of experience with using it, and poor initial alignment of the wheelchair

within the enclosed space, this maneuver proved to be the most challenging one

for the majority of the participants. Users that were close to the walls while

rotating, would often panic, executing sudden head movements (the system is
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best driven with short, smooth head movements) that resulted in either faster

rotation or initiating forward movement of the robot, which in turn resulted in

several collisions. In those cases, when assistance was provided, the system would

stop the wheelchair before colliding, or slightly push it toward the direction of free

space. This greatly helped participants escape the enclosed space and overcome

the fear of colliding, allowing them to regain control of the wheelchair and complete

the circuit.

An interesting behavior the shared control system exhibited, and which was noted

by the majority of the participants, was the wheelchair aligning itself with the

walls when turning to face a corridor. This was particularly evident in the nar-

rowest corridor (1 m.), which several users found it challenging to traverse without

assistance. While using the assistive system and turning to face that corridor, the

wheelchair would position itself parallel to the corridor walls and then keep a

straight trajectory even if a turn command was issued by the user.

These observations, regarding the shared control system, were also imprinted in

both the objective metrics (e.g., shorter completion times, fewer collisions), but

also the subjective feedback provided by the participants (i.e., easier maneuvering,

felt safer). Those results are in contrast with the respective results when oper-

ating the wheelchair with the standard joystick interface, which the able-bodied

users could handle easily and felt that the shared control system was more of an

impediment rather than helpful. However, when using a less accurate and more

erroneous interface, the shared control system provided much-needed assistance,

as reflected by both the evaluation metrics and the participants’ opinions.

5.6 Chapter Summary

This chapter introduced a novel vision-based interface for controlling a powered

wheelchair through head movements. The method relies on using a simple web

camera directed at the user’s face, with the stream of frames being passed to a

Convolutional Neural Network, that performs face detection in a fast and robust

manner. The detected face is then passed to a facial landmark detector that locates
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the user’s nose as a reference point, through which the pose (orientation) of the face

is estimated. The estimated pose is finally translated to moving commands for the

robotic wheelchair, which can be either discrete or continuous. The method was

validated through real-world experiments, which showed that novice users were

able to successfully use the head-control interface, executing a series of maneuvers

to navigate a simple track (96% success rate). Furthermore, users reported that

using the interface was not physically demanding, but was moderately mentally

demanding, while they felt confident in being able to perform well with it.

After validating the head-control interface, the chapter presented more real-world

experiments, in a different and more challenging scenario, where head-control was

combined with the shared control system introduced in Ch. 4. The aim was to

investigate the efficacy of shared control when used with a less accurate and more

erroneous interface compared to the standard joystick. The results showed that

when provided with assistance, users were able to complete the navigation task in

a safer and faster manner, compared to having no assistance (92% fewer collisions

and 15% decrease in completion times). Furthermore, their overall satisfaction

with using the head-control interface also increased, with users reporting, with

statistical significance, that the wheelchair behaved more as they expected, and

that they felt safer while operating it.



CHAPTER 6

Conclusions

This concluding chapter provides a comprehensive overview of the thesis, em-

phasizing its significant contributions to the fields of shared control and assis-

tive technologies for powered wheelchair navigation. It begins by discussing the

main achievements, including the successful development of a shared control sys-

tem and its promising real-world application. The chapter then delves into the key

steps taken to transfer the shared control system to real-world scenarios. Follow-

ing that, it explores future research directions, proposing potential enhancements

to the shared control framework. Finally, the chapter concludes with insightful

remarks, highlighting the research’s impact and identifying related challenges for

future exploration.

6.1 Discussion of Contributions

The principal aim of this thesis was to explore improvements in assistive technolo-

gies for robotic wheelchairs through machine learning methods, with a focus on

the problem of shared control using the reinforcement learning framework. Ex-

isting methods for autonomous navigation in powered wheelchairs often rely on

expensive sensors and have significant computational demands. Semi-autonomous

navigation systems, including shared control systems, typically use linear blending

or rely on conventional local planners and accurate prediction of user goals. In

157
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addition, current head-control interfaces for powered wheelchairs are often inva-

sive and offer limited control freedom. Motivated by recent progress in artificial

intelligence, we posed the following research questions:

• Can we develop an intelligent system capable of mapless autonomous naviga-

tion in complex indoor environments, relying solely on onboard sensor data

and processing, while executing proficient wheelchair driving maneuvers?

• Is it feasible to design and implement an intelligent system that enhances

user driving in various environments with different goals, utilizing sensor

data and user input, and demonstrating effectiveness in both simulated and

real-world environments?

• How can we enhance existing alternative control interfaces, specifically through

the design and implementation of a non-invasive head-control system that

can be easily deployed on a powered wheelchair?

• To what extent can the intelligent shared-control system improve the ad-

equacy of alternative control interfaces, and how does the integration of

shared control enhance the performance and usability of the head-control

interface?

In Chapter 3, we investigated the first research question by training an autonomous

agent using continuous driving actions and onboard sensor data. The agent ex-

celled in challenging scenarios, surpassing human performance with significantly

reduced collision rates (by approximately 85%) and faster completion times (around

30% faster). In comparison to conventional motion planners, which struggled to

finish certain scenarios and took longer to complete others, the autonomous agent

performed notably better. Additionally, the trained model demonstrated a sig-

nificant computational advantage over conventional planners, boasting an average

control frequency approximately 9-16 times higher. Furthermore, it eliminated the

necessity for a map, showcasing its ability to adapt and navigate without relying

on pre-existing environmental data, as opposed to traditional approaches. How-

ever, due to the lack of a map and the lack of long-term memory, the RL-based
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agent should be provided with a series of subsequent goals in order to reach long-

term navigation goals. Taking those characteristics into consideration, a potential

real-world application could involve realizing short-term goals of a wheelchair user

in a demanding indoor environment for alleviating part of their daily burden (e.g.,

enter/exit elevator, park under table, drive to bed, etc.). From a more general per-

spective, the proposed method can be used with any non-holonomic mobile robot

to perform navigation with continuous actions in a safe and efficient manner.

Chapter 4 introduced a novel shared-control framework to address the second re-

search question. Through the modification of the objective in maximum entropy

reinforcement learning, the proposed system effectively aligns with user intentions

while optimizing its own objectives. This leads to increased goal achievement and

collision avoidance, despite the system’s lack of awareness regarding the environ-

ment’s goals or user policies. In simulation experiments, the shared-control sys-

tem significantly improved the success rates of baseline and erroneous autonomous

models by up to 58%. Moreover, the system’s risk awareness aspect, which dis-

counts compliance based on the risk associated with obstacles and user actions,

was validated in simulations. The risk-awareness model consistently achieved over

5% higher success rates, approximately 8% increased clearance, and reduced crash

rates. However, this came with a trade-off in completion times, reaching up to

10%. Compared to a conventional, artificial potential fields-based shared control

method, the proposed system demonstrated notably higher success rates (up to

60%) and lower crash rates (up to 64%). Distinguished from other techniques

like blending, the shared control method adopts a unique policy-based, efficient,

and flexible framework that can be customized for various user models, tasks, and

sensor arrangements.

To further investigate the second research question, real-world experiments were

conducted using a physical robot. The shared-control system, trained in simula-

tion and with a simulated user, successfully assisted human users in a real-world

scenario, resulting in a 9.3% improvement in clearance and a complete elimination

of collisions compared to using no assistance. These outcomes confirm the efficacy

of the proposed shared-control method and provide compelling evidence for its
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practical applicability in real-world settings.

In Chapter 5, we addressed the third research question by introducing a vision-

based non-invasive head-control interface. Unlike invasive methods found in the

wheelchair market and literature, the proposed interface only required the instal-

lation of a normal web camera, making it easy to set up. The system utilized

head pose estimation, powered by a state-of-the-art convolutional neural network,

to enable wheelchair control with continuous turning angles. Real-world trials

demonstrated that users could successfully execute maneuvers and navigate a

track with high success rates (96%) and reasonable completion times, with in-

creased trajectory lengths ( 10%) compared to the standard joystick interface.

The resulting implementation was efficient, running on a compact computer like

the Jetson Xavier, which can be easily integrated into an electric wheelchair and

powered by its battery. A calibration process allowed for system customization

based on individual ranges of motion. Overall, the findings suggest that the in-

troduced head-control interface presents a promising and practical solution for

quadriplegic patients, offering enhanced user experience and improved wheelchair

control without the need for invasive methods.

In our investigation of the fourth research question, we integrated the head-control

system with the trained assistive agent from Chapter 4. This combined system was

evaluated with able-bodied human participants in a demanding task, involving the

navigation of a narrow corridor, avoiding static obstacles, and maneuvering in a

confined space resembling an elevator. When coupled with the assistive agent, the

head-control system exhibited remarkable performance improvements compared

to using the head-control system without assistance, with a substantial 92% re-

duction in collisions and a notable 16% increase in clearance. For the standard

joystick interface, which is generally easier to use, the assistive system reduced

collisions but resulted in longer completion times and decreased user satisfaction.

In contrast, for the more challenging head-control interface, the assistive system

achieved notable reductions in completion times (15%) and statistically signifi-

cant improved user perception of control and safety. These results emphasized

the effectiveness of our shared-control framework and highlighted the importance
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of integrating it with alternative control interfaces to enhance their adequacy and

safety.

Through detailed evaluations and experimentation, this thesis has made signifi-

cant contributions to the field of assistive technologies for robotic wheelchairs and

advanced the state-of-the-art in shared-control. The achievements include the de-

velopment of an intelligent system for mapless autonomous navigation, the intro-

duction of a flexible shared-control framework, the design of a non-invasive head-

control interface, and the enhancement of alternative control interfaces. These

advancements pave the way for more efficient and user-friendly assistive technolo-

gies, ultimately improving the lives of individuals who rely on robotic wheelchairs.

Incorporating these advancements into real-world applications has the potential

to empower individuals with mobility impairments, granting them greater inde-

pendence and opportunities for social inclusion. The outcomes of this research

not only address the research questions but also contribute to the growing body

of knowledge in the field of assistive robotics, offering practical and impactful

solutions for those in need.

6.2 Key Steps in Transferring the Shared Con-

trol System to the Real World

One of the most challenging aspects of this work, which we also consider one of

its major contributions, was transferring the shared control system to the real

world. Despite not being a perfected commercially-ready system, the self-learning

system trained solely in simulation and with a simulated user was able to provide

assistance to human users driving the real robot. The process of transferring the

shared control system to the real world involved the following key steps:

1. Use of a simulator with a high-fidelity physics engine and tuning of the

physical parameters of the virtual robot to match the real robot.

2. Training of a high-entropy autonomous navigation policy to produce diverse
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input similar to an ideal user following goals.

3. Corrupting the autonomous policy with artificial noise to simulate user dis-

ability and model erroneous input as a probability distribution.

4. Modifying the RL objective to minimize the KL divergence between the

user’s and the system’s action distributions, in addition to maximizing re-

wards.

5. Designing an appropriate training task for the shared control agent to learn

a generic assistive behavior.

6. Randomizing sensor measurements and robot-related parameters during train-

ing to bridge the simulation-real world gap.

7. Choosing an appropriate range sensor arrangement to provide sufficient in-

formation for collision avoidance while ensuring acceptable update rates.

6.3 Future Work

In this section, we outline the potential directions for future work to enhance the

proposed shared control framework:

6.3.1 Adaptability to the User

The adaptability of the shared control system to individual users is an important

area of further investigation. While the current work used generic noise models to

simulate disabled user behavior, additional customization options can be explored

to improve the system’s effectiveness. These options include:

• Fitting different distributions to model specific disabilities, as long as an

analytical solution exists for the KL divergence with the policy network’s

output distribution.
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• Optimizing the target KL divergence according to user needs, taking into

account specific user preferences and requirements.

• Tuning the risk estimation function based on user preferences to achieve an

appropriate balance between cautiousness and efficiency.

• Fine-tuning the policy using real user driving data to further personalize the

assistive behavior.

6.3.2 Adaptability to the Task

The shared control framework can be further adapted to specific tasks and ob-

jectives. While the thesis focused on a reward function encouraging clearance

from obstacles and collision avoidance, customization of the reward function can

yield more specialized assistive policies. Additional objectives or considerations

can be incorporated, such as compliance with social norms, producing smoother

trajectories, or accounting for specific disabilities.

Furthermore, the system’s adaptability to the task can be improved by considering

the availability of user goals or intentions. By augmenting the system’s observa-

tions and rewards to incorporate this information, the shared control system can

become a more effective collaborator in helping users reach their goals.

6.3.3 Adaptability to the Sensory Input

Providing sufficient information to the shared control agent is crucial for effective

learning and decision-making. While the proposed ultrasonic sensor arrangement

proved effective in this work, alternative or additional sensors can be explored

to enhance the system’s perception capabilities. Sensor fusion techniques can be

utilized to combine the advantages of different sensors, such as ultrasonic and

Time-of-Flight (ToF) sensors, to provide richer and more robust environmental

information.
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For example, augmenting the proposed setup with ToF sensors can enable obstacle

detection at longer distances and with better accuracy, while the sonars can pro-

vide more useful information for shorter distances and obstacles at different height

levels. This kind of sensor fusion setup would be more robust towards different

obstacle materials and light conditions.

It is worth noting that the use of cameras can provide very rich information about

the environment, but it comes with trade-offs such as longer training times, more

powerful hardware requirements, and challenges in transferring the system to the

real world. Careful consideration should be given to the cost and feasibility of

using camera-based systems in practical applications.

6.4 Conclusions and Final Remarks

In conclusion, this work has successfully developed a flexible, self-learning frame-

work for sharing control between a wheelchair user and an intelligent system, with

minimal assumptions about the environment or the user. The framework’s adapt-

ability to the user, task, and sensory input provides ample room for customiza-

tion and optimization based on individual needs and preferences. Moreover, the

presented framework goes beyond robotic wheelchairs and holds potential for var-

ious human-robot collaboration instances, such as piloting drones or performing

robotic-assisted surgeries. As smart wheelchairs serve as excellent test benches,

they offer a unique opportunity to explore and advance novel robotic technologies,

including control algorithms, sensors, and human-robot interaction paradigms.

However, several significant barriers still need to be addressed before widespread

adoption of smart wheelchair technologies, as presented in this thesis, can be

achieved for real-world use. Autonomous or semi-autonomous navigation methods

must consider social conventions and adapt to prevent potentially embarrassing or

dangerous situations, while effectively accounting for the movements of people and

objects in dynamic environments. Another critical focus area is the improvement

of sensing systems to provide cost-effective solutions that operate reliably across

diverse environmental conditions and surface materials.
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Deep Reinforcement Learning, the primary framework utilized in this thesis, is

still in its early stages and faces several challenges that demand further inves-

tigation for broader applicability in real-world scenarios. Sample efficiency in

high-dimensional state and action spaces remains a critical concern. Additionally,

addressing robust reward assignment for multi-dimensional or hierarchical tasks,

handling partial observability, and ensuring the preservation of safety constraints

during exploratory learning phases or system operation are important areas for

future exploration.

In light of these challenges, it is evident that reinforcement and machine learning

techniques are poised to play an increasingly vital role in various aspects of our

daily lives, particularly in the crucial field of healthcare. This work makes a

compelling case for the application of deep RL in the real world and contributes to

the advancement of assistive technologies, ultimately aiming to improve the quality

of life and promote the independence of individuals who require such technologies.

By pushing the boundaries of smart wheelchair technologies and reinforcement

learning, this research drives the realization of a future where technology empowers

individuals and enhances their overall well-being.
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Del Toro, F. Galluppi, U. Cortés, R. Annichiaricco, C. Caltagirone, and F. Sandoval, “A

new multi-criteria optimization strategy for shared control in wheelchair assisted naviga-

tion,” Auton. Robots, vol. 30, no. 2, pp. 179–197, 2011.

[112] M. Gillham and G. Howells, “A Dynamic Localized Adjustable Force Field Method for

Real-Time Assistive Non-Holonomic Mobile Robotics,” Int. J. Adv. Robot. Syst., vol. 12,

no. 10, 2015.

[113] S. Chatzidimitriadis, P. Oprea, M. Gillham, and K. Sirlantzis, “Evaluation of 3D obstacle

avoidance algorithm for smart powered wheelchairs,” Proc. - 2017 7th Int. Conf. Emerg.

Secur. Technol. EST 2017, pp. 157–162, 2017.

[114] M. Ghorbel, J. Pineau, R. Gourdeau, S. Javdani, and S. Srinivasa, “A Decision-Theoretic

Approach for the Collaborative Control of a Smart Wheelchair,” Int. J. Soc. Robot., vol. 10,

no. 1, pp. 131–145, 2018.

[115] C. S. Teodorescu and T. Carlson, “Assistme: Policy iteration for the longitudinal control

of a non-holonomic vehicle,” arXiv preprint arXiv:2202.02569, 2022.

[116] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning. MIT press

Cambridge, 1998, vol. 135.

[117] A. G. Barto, R. S. Sutton, and C. Watkins, Learning and sequential decision making.

University of Massachusetts Amherst, MA, 1989.

[118] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming. Athena Scientific,

1996.

[119] H. Seijen and R. Sutton, “True online TD (lambda),” in Int. Conf. Mach. Learn. PMLR,

2014, pp. 692–700.

http://dx.doi.org/10.1016/j.robot.2010.04.002
http://dx.doi.org/10.1016/j.robot.2017.04.013


Chapter 6 – BIBLIOGRAPHY 175

[120] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,

“Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,

pp. 529–533, 2015. [Online]. Available: http://dx.doi.org/10.1038/nature14236

[121] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” arXiv

Prepr. arXiv1511.05952, 2015.

[122] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,

J. Tobin, O. Pieter Abbeel, and W. Zaremba, “Hindsight experience replay,” Adv. Neural

Inf. Process. Syst., vol. 30, 2017.

[123] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy opti-

mization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[124] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with deep

energy-based policies,” 34th Int. Conf. Mach. Learn. ICML 2017, vol. 3, pp. 2171–2186,

2017.

[125] S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial and

review,” arXiv preprint arXiv:1805.00909, 2018.

[126] J. Schulman, X. Chen, and P. Abbeel, “Equivalence between policy gradients and soft

q-learning,” arXiv preprint arXiv:1704.06440, 2017.

[127] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and

A. Ng, “ROS: an open-source Robot Operating System,” in ICRA Work. Open Source

Softw., vol. 3, no. Figure 1, 2009.

[128] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source multi-

robot simulator,” 2004 IEEE/RSJ Int. Conf. Intell. Robot. Syst., vol. 3, pp. 2149–2154,

2004.

[129] M. Derry and B. Argall, “Automated doorway detection for assistive shared-control

wheelchairs,” in 2013 IEEE Int. Conf. Robot. Autom. IEEE, 2013, pp. 1254–1259.

[130] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor,” in Int. Conf. Mach. Learn.,

2018, pp. 1861–1870.

[131] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,

A. Gupta, P. Abbeel, and Others, “Soft actor-critic algorithms and applications,” arXiv

Prepr. arXiv1812.05905, 2018.

[132] R. L. Kirby, J. Swuste, D. J. Dupuis, D. A. MacLeod, and R. Monroe, “The Wheelchair

Skills Test: A pilot study of a new outcome measure,” Arch. Phys. Med. Rehabil., vol. 83,

no. 1, pp. 10–18, 2002.

http://dx.doi.org/10.1038/nature14236


Chapter 6 – BIBLIOGRAPHY 176

[133] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[134] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,

“Stable-baselines3: Reliable reinforcement learning implementations,” Journal of

Machine Learning Research, vol. 22, no. 268, pp. 1–8, 2021. [Online]. Available:

http://jmlr.org/papers/v22/20-1364.html

[135] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” Ann. Math. Stat., vol. 22,

no. 1, pp. 79–86, 1951. [Online]. Available: https://doi.org/10.1214/aoms/1177729694

[136] K. Pertsch, Y. Lee, and J. Lim, “Accelerating reinforcement learning with learned skill

priors,” in Conference on robot learning. PMLR, 2021, pp. 188–204.

[137] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain random-

ization for transferring deep neural networks from simulation to the real world,” in 2017

IEEE/RSJ Int. Conf. Intell. Robot. Syst. IEEE, 2017, pp. 23–30.

[138] S. P. Parikh, V. Grassi, V. Kumar, and J. J. Okamoto, “Usability study of a control

framework for an intelligent wheelchair,” in Proc. 2005 IEEE Int. Conf. Robot. Autom.

IEEE, 2005, pp. 4745–4750.

[139] National Spinal Cord Injury Statistical Center, “Spinal cord injury facts and figures at a

glance.” J. Spinal Cord Med., vol. 33, no. 4, pp. 439–440, 2016.

[140] S. Kumar, N. Dheeraj, and S. Kumar, “Design and Development of Head Motion Con-

trolled Wheelchair,” Int. J. Adv. Eng. Technol., vol. 8, no. 5, pp. 816–822, 2015.

[141] Y. L. Chen, S. C. Chen, W. L. Chen, and J. F. Lin, “A head oriented wheelchair for people

with disabilities,” Disabil. Rehabil., vol. 25, no. 6, pp. 249–253, 2003.

[142] S. M. Bafti, S. Chatzidimitriadis, and K. Sirlantzis, “Cross-Domain Multitask Model for

Head Detection and Facial Attribute Estimation,” IEEE Access, vol. 10, pp. 54 703–54 712,

2022.

[143] F. Abedan Kondori, S. Yousefi, L. Liu, and H. Li, “Head operated electric wheelchair,”

Proc. IEEE Southwest Symp. Image Anal. Interpret., pp. 53–56, 2014.

[144] J. Kim, H. Park, J. Bruce, D. Rowles, J. Holbrook, B. Nardone, D. P. West, A. Laumann,

E. J. Roth, and M. Ghovanloo, “Assessment of the tongue-drive system using a computer,

a smartphone, and a powered-wheelchair by people with tetraplegia,” IEEE Trans. Neural

Syst. Rehabil. Eng., vol. 24, no. 1, pp. 68–78, 2016.

[145] J. M. Ford and S. J. Sheredos, “Ultrasonic head controller for powered wheelchairs,” J.

Rehabil. Res. Dev., vol. 32, no. 3, pp. 280–284, 1995.

[146] D. J. Kupetz, S. A. Wentzell, and B. F. BuSha, “Head motion controlled power

wheelchair,” Proc. 2010 IEEE 36th Annu. Northeast Bioeng. Conf. NEBEC 2010, pp.

2–3, 2010.

http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1214/aoms/1177729694


Chapter 6 – BIBLIOGRAPHY 177

[147] M. Jain, S. Puri, and S. Unishree, “Eyeball Motion Controlled Wheelchair Using IR Sen-

sors,” Int. J. Comput. Inf. Eng., vol. 9, no. 4, pp. 1012–1015, 2015.

[148] J. W. Machangpa and T. S. Chingtham, “Head Gesture Controlled Wheelchair for

Quadriplegic Patients,” Procedia Comput. Sci., vol. 132, no. Iccids, pp. 342–351, 2018.

[Online]. Available: https://doi.org/10.1016/j.procs.2018.05.189

[149] S. Prasad, D. Sakpal, P. Rakhe, and S. Rawool, “Head-motion controlled wheelchair,”

RTEICT 2017 - 2nd IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol.

Proc., vol. 2018-Janua, pp. 1636–1640, 2017.

[150] M. Bureau, J. M. Azkoitia, G. Ezmendi, I. Manterola, H. Zabaleta, M. Perez, and J. Med-

ina, “Non-invasive, wireless and universal interface for the control of peripheral devices

by means of head movements,” 2007 IEEE 10th Int. Conf. Rehabil. Robot. ICORR’07,

vol. 00, no. c, pp. 124–131, 2007.

[151] S. H. Chen, Y. L. Chen, T. S. Kuo, C. Y. Chu, and C. N. Hung, “M3S-based electrical

wheelchair with head-controlled device,” Annu. Int. Conf. IEEE Eng. Med. Biol. - Proc.,

pp. 4917–4920, 2006.

[152] E. J. Rechy-Ramirez and H. Hu, “An electric wheelchair controlled by head movements

and facial expressions: uni-modal, bi-modal, and fuzzy bi-modal modes,” in Handb. Res.

Investig. Artif. Life Res. Dev. IGI Global, 2018, pp. 1–30.

[153] Z. T. Al-qaysi, B. B. Zaidan, A. A. Zaidan, and M. S. Suzani, “A review of disability

EEG based wheelchair control system: Coherent taxonomy, open challenges and

recommendations,” Comput. Methods Programs Biomed., vol. 164, pp. 221–237, 2018.

[Online]. Available: https://doi.org/10.1016/j.cmpb.2018.06.012

[154] I. A. Mirza, A. Tripathy, S. Chopra, M. D’Sa, K. Rajagopalan, A. D’Souza, and N. Sharma,

“Mind-controlled wheelchair using an EEG headset and arduino microcontroller,” in 2015

Int. Conf. Technol. Sustain. Dev., 2015, pp. 1–5.

[155] F. Ben Taher, N. Ben Amor, and M. Jallouli, “A multimodal wheelchair control system

based on EEG signals and Eye tracking fusion,” INISTA 2015 - 2015 Int. Symp. Innov.

Intell. Syst. Appl. Proc., 2015.

[156] P. S. Gajwani and S. A. Chhabria, “Eye motion tracking for wheelchair control,” Int. J.

Inf. Technol. Knowl. Manag., vol. 2, no. 2, pp. 185–187, 2010.

[157] C. S. Lin, C. W. Ho, W. C. Chen, C. C. Chiu, and M. S. Yeh, “Powered wheelchair

controlled by eye-tracking system,” Opt. Appl., vol. 36, no. 2-3, pp. 401–412, 2006.

[158] N. Wanluk, S. Visitsattapongse, A. Juhong, and C. Pintavirooj, “Smart wheelchair based

on eye tracking,” BMEiCON 2016 - 9th Biomed. Eng. Int. Conf., 2017.

[159] H. H. Hu, P. Jia, T. Lu, and K. Yuan, “Head gesture recognition for hands-free control of

an intelligent wheelchair,” Ind. Rob., vol. 34, no. 1, pp. 60–68, 2007.

https://doi.org/10.1016/j.procs.2018.05.189
https://doi.org/10.1016/j.cmpb.2018.06.012


Chapter 6 – BIBLIOGRAPHY 178

[160] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,”

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1, 2001.

[161] R. Solea, A. Margarit, D. Cernega, and A. Serbencu, “Head movement control of powered

wheelchair,” 2019 23rd Int. Conf. Syst. Theory, Control Comput. ICSTCC 2019 - Proc.,

pp. 632–637, 2019.

[162] J. S. Ju, Y. Shin, and E. Y. Kim, “Vision based interface system for hands free control of

an intelligent wheelchair,” J. Neuroeng. Rehabil., vol. 6, no. 1, pp. 1–17, 2009.

[163] L. M. Bergasa, M. Mazo, A. Gardel, R. Barea, and L. Boquete, “Commands generation

by face movements applied to the guidance of a wheelchair for handicapped people,” Proc.

- Int. Conf. Pattern Recognit., vol. 15, no. 4, pp. 660–663, 2000.

[164] E. Perez, C. Soria, O. Nasisi, T. F. Bastos, and V. Mut, “Robotic wheelchair controlled

through a vision-based interface,” Robotica, vol. 30, no. 5, pp. 691–708, 2012.

[165] A. Halawani, S. ur Réhman, H. Li, and A. Anani, “Active vision for controlling an electric

wheelchair,” Intell. Serv. Robot., vol. 5, no. 2, pp. 89–98, 2012.

[166] H. G. Yashoda, A. M. Piumal, P. G. Polgahapitiya, M. M. Mubeen, M. A. Muthugala, and

A. G. Jayasekara, “Design and development of a smart wheelchair with multiple control

interfaces,” MERCon 2018 - 4th Int. Multidiscip. Moratuwa Eng. Res. Conf., pp. 324–329,

2018.

[167] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-

time object detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

vol. 2016-Decem, pp. 779–788, 2016.

[168] Q. C. Mao, H. M. Sun, Y. B. Liu, and R. S. Jia, “Mini-YOLOv3: Real-Time Object

Detector for Embedded Applications,” IEEE Access, vol. 7, pp. 133 529–133 538, 2019.

[169] M. Bjelonic, “YOLO ROS: Real-Time Object Detection for ROS.” [Online]. Available:

https://github.com/leggedrobotics/darknet{ }ros

[170] V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of regression

trees,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 1867–1874,

2014.

[171] K. Khabarlak and L. Koriashkina, “Fast Facial Landmark Detection and Applications: A

Survey,” J. Comput. Sci. Technol., vol. 22, no. 1, pp. 12–41, 2022.

[172] S. G. Hart, “NASA-task load index (NASA-TLX); 20 years later,” in Proc. Hum. factors

Ergon. Soc. Annu. Meet., vol. 50, no. 9. Sage publications Sage CA: Los Angeles, CA,

2006, pp. 904–908.

[173] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in Noise

Reduct. speech Process. Springer, 2009, pp. 1–4.

https://github.com/leggedrobotics/darknet{_}ros

	Abstract
	Acknowledgements
	Originality Statement
	Introduction
	Background and Motivation
	Research Aim and Objectives
	Research Questions
	Key Contributions
	Publications
	Thesis Structure

	Autonomous and Semi-Autonomous Methods for Mobile Robots
	Introduction
	Autonomous Robots
	Localization
	Path Planning
	Motion Planning
	Machine Learning in Motion Planning
	Autonomous Wheelchairs

	Shared Control
	User intention prediction
	Reactive planning
	Blending strategies
	Policy-based Shared Control
	Shared Control for Wheelchairs

	Summary

	Introduction of an Autonomously Navigated Wheelchair
	Introduction
	Background to Reinforcement Learning
	Markov Decision Process (MDP)
	Kinds of RL Algorithms
	Maximum Entropy Reinforcement Learning

	Simulation Setup
	Robot Operating System
	Gazebo
	The virtual EPW

	Methodology
	MDP Formulation
	Solving the MDP

	Training and Evaluation of the Autonomous Agent
	Training
	Evaluation

	Discussion
	Chapter Summary

	A Novel RL-based Shared Control Method
	Introduction
	Simulating User Driving
	Erroneous User Input Models
	User Intent as a Probability Distribution

	User Compliant Reinforcement Learning
	Maximum Entropy RL Objective Modification
	Adjusting User Autonomy
	Incorporating State Risk Estimation
	Method Overview

	MDP Formulation
	Simulation Experiments
	Training
	Evaluation

	Real World Experiments
	The Robotic Wheelchair
	From Simulation to the Real World
	Experimental Protocol
	Results

	Discussion
	Chapter Summary

	Extension of the Assistance to an Alternative Control Interface
	Introduction
	Powered Wheelchair Interfaces
	Sensor-based Approaches
	Vision-based Approaches
	Limitations of Head Control Interfaces

	Methodology
	Head Pose Estimation
	Head Pose to Control of the Robotic Wheelchair

	Validating the Novel Vision-based Interface
	Experimental Protocol
	Results
	Discussion

	Investigating the Effects of Assistance to the Usability of Alternative Control Interfaces
	Experimental Protocol
	Results

	Chapter Summary

	Conclusions
	Discussion of Contributions
	Key Steps in Transferring the Shared Control System to the Real World
	Future Work
	Adaptability to the User
	Adaptability to the Task
	Adaptability to the Sensory Input

	Conclusions and Final Remarks

	Bibliography

