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ABSTRACT

With the advances in science and technology, nonlinear large-scale interconnected sys-

tems have widely appeared in the real life. Traditional centralised control methods have

inevitable disadvantages when they are used to deal with complex nonlinear intercon-

nected systems with uncertainties. In connection with this, people desire to develop the

novel control strategy which can be applied to complex interconnected systems. There-

fore, decentralised sliding mode control (SMC) for interconnected systems has attracted

great attention in related fields due to its advantages, for instance, simple structure, low

cost of calculation, fast response, reduced-order sliding mode dynamics and insensitivity

to matched variation of parameters and disturbances in systems.

This thesis focuses on the development of decentralised SMC for nonlinear inter-

connected systems with uncertainties under certain assumptions. Several methods and

different techniques have been considered in design of the controller to improve the ro-

bustness. The main contributions of this thesis include:

• The state feedback decentralised SMC is developed for nonlinear interconnected

systems with matched uncertainty and mismatched unknown interconnections. A

state feedback decentralised SMC strategy, under the assumption that all system

states are accessible, is proposed to attenuate the impact of the uncertainties by us-

ing bounds on uncertainties and interconnections. The bounds used in the design

are fully nonlinear which provide higher applicability for different complex inter-

connected systems. Especially, for this fully nonlinear system, the proposed method

does not need to use the technique of linearisation, which is widely used in existing

work to deal with nonlinear interconnected systems with uncertainties.

• The dynamic observer is applied to complex nonlinear interconnected systems with

matched and mismatched uncertainties. This dynamic observer can estimate the

system states which can not be achieved during the controller design. The proposed

method has great identification ability with small estimated errors for the states of

nonlinear interconnected systems with matched and mismatched uncertainties. It

should be pointed out that the considered uncertainties of nonlinear interconnected
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systems have general forms, which means that the proposed method can be effec-

tively used in more generalised nonlinear interconnected systems.

• A variable structure observer-based decentralised SMC is proposed to control a

class of nonlinear interconnected systems with matched and mismatched uncer-

tainties. Based on the designed dynamic observer, a dynamic decentralised output

feedback SMC using outputs and estimated states is presented to control the in-

terconnected systems with matched and mismatched uncertainties. The nonlinear

interconnections are employed in the control design to reduce the conservatism of

the developed results. The bounds of the uncertainties are relaxed which are non-

linear and take more general forms. Moreover, the limitation for the interconnected

system is reduced when compared with the existing results in which the proposed

strategies adopt the full-order observer. Besides that, the presented method im-

proves the robustness of nonlinear interconnected systems to be against the effects

of uncertainties.

This thesis also provides several numerical and practical simulations to demonstrate

the effectiveness of the proposed decentralised SMC for nonlinear interconnected systems

with matched uncertainty, mismatched uncertainty and nonlinear interconnections.
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NOTATION AND SYMBOLS
∀ For all

∈ Belongs to

⇒ Implies

R The set of real numbers

R+ The set of nonnegative real numbers

Rn The n dimensional Euclidean space

Rn×m The set of n×m matrices with elements in R

|a| The absolute value of a scaler a

∥ · ∥ The Euclidean norm or its induced norm

In The unit matrix with dimension n

AT The transpose of matrix A

A > 0 A is a symmetric positive definite matrix

A < 0 A is a symmetric negative definite matrix

λmin(A) The minimum eigenvalue of the squar matrix A

λmax(A) The maximum eigenvalue of the squar matrix A

Lf The Lipschitz constant of the function f(·)

Jf (x) or
∂f(x)
∂x

The Jacobian matrix of the function f(x)

ẏ The first derivative of y with respect to time

col(x1, x2, · · · , xn) The column vector [x1, x2, · · · , xn]
T where xi ∈ R for i =

1, 2, · · · , n

A := B A is defined by B

A ⇒ B A implies B

sgn(·) The signum function
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CHAPTER. 1

INTRODUCTION

With the development of society, the structure of actual controlled systems with different

functions becomes more and more complex. Therefore, the requirements of the related

controllers need to be improved. Especially, for complex interconnected systems which

widely exist in the practical world, in order to enhance system performance, it needs to de-

sign controllers using different modern control technologies due to the existence of distur-

bances and interconnections [1, 2, 3]. Modern control theory has been widely concerned

and deeply studied in recent decades. In modern control theory, the control problem of

nonlinear interconnected systems with uncertainties is very important. For example, in-

dustrial robots, aerospace vehicles and modern power systems are all typical nonlinear

interconnected control systems. In these control objects, there are usually various com-

plex uncertainties, such as modelling error, parameter perturbation, external disturbance

and input nonlinearity. These factors may not only reduce the control accuracy, but also

may destroy stability of systems [4]. Therefore, how to design a reasonable and effective

robust controller to make the controlled object achieve the desired performance index has

been one of the main topics of general interests in the fields of modern control theory.

This thesis will be focused on decentralised SMC for nonlinear interconnected systems

1
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with uncertainties which has been carried out with a detailed background.

1.1. RESEARCH BACKGROUND

The interconnected system is a composite large-scale system composed of low di-

mensional subsystems interconnected in specific ways [5]. In many practical control ap-

plications, system models can be described in the form of interconnected systems, such

as power systems, chemical production systems, intelligent transportation systems, com-

puter network communication systems and economic operation systems. Therefore, the

research on control problems of interconnected systems has attracted great attention of

researchers. In a complex interconnected system, subsystems are interconnected together

which result in high dimensions, strong coupling, strong uncertainty and other complex

characteristics. Traditional control methods for centralised systems are difficult to be ap-

plied to analyse and control interconnected systems.

Interconnected systems exist in many fields of practical applications regarding in-

dustry and real life. With the strong expectations to analyse and control this kind of

complex systems, the study of interconnected systems has become essential and imper-

ative for modern control theory and practical engineering. People need to improve the

performance of interconnected systems to achieve desired control results. Therefore, the

related control strategies tend to be increasingly sophisticated. This topic has motivated a

great number of modern control methods to be applied with aiming at high-performance

of interconnected systems [6, 7].

There are many different characteristics in the various kinds of interconnected sys-

tems. Several inherent characteristics of interconnected systems have been pointed out

summarised by many researchers, including nonlinearity, high dimensionality and un-

certainty [8]. Due to these reasons, the complexity of traditional control methods for

interconnected systems always depends on the structure of interconnected systems and

specific working environments. Then, most of traditional control approaches for inter-

connected systems are inefficient and unfeasible. In connection with these, the proposed

approaches in this thesis mainly concentrate on solving the problems of these inherent

CHAPTER 1. INTRODUCTION
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characteristics to improve the performance of the whole interconnected system.

Firstly, nonlinearity is a very common characteristic and widely exists in real world.

In practical applications, most of interconnected systems have the characteristic of non-

linearity due to the complex structure and unknown external disturbances [9]. Linear

control strategies which have developed and achieved lots of great results in the long-time

research are usually the first choice, but traditional linear control methods sometimes can

not be adopted to complex nonlinear interconnected systems. So, control strategies for

nonlinear interconnected systems are needed to further develop. For example, the most

common and convenient technology is named as the linearisation technique which can

transform the nonlinear form into the linear form [10]. Nevertheless, for many specific

situations, linearisation is not available because of the existence of finite time escape,

multiple isolated equilibria, limit cycles and harmonic oscillation in the nonlinear sys-

tems [11]. Based on these reasons, linearisation is not an appropriate selection in these

specific situations above. Thus, it needs to develop more effective and general methods

for nonlinear interconnected systems.

Secondly, the characteristic of dimensionality is obvious in interconnected systems,

specifically in large-scale systems. Large-scale interconnected systems with different

functions mean that this kind of systems distributed over a large range sometimes has

complex structure and high dimension. In this situation, centralised control which is

realised as a common control method can cost great calculation. Besides that the sub-

systems of interconnected systems can be distributed in different spaces, the centralised

controller is hard to be implemented due to poor data transmission between subsystems

[12]. So such problems of efficiency and robustness often occur, and they usually have

negative impacts on the performance of interconnected systems in the centralised strategy.

To solve this kind of problems and ensure the high-performance of objects, many modern

control approaches have had great development in recent years, but many existing meth-

ods are very complex and inefficient which may result in computation burden, specifically

for large-scale interconnected systems. Therefore the problem of dimensionality is still

very thorny for interconnected systems.

Last but not the least, uncertainty is an inevitable problem in the modern control

CHAPTER 1. INTRODUCTION
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design for interconnected systems, though some previous methods under ideal conditions

do not consider it. In actual systems, it is very hard to establish an accurate mathemati-

cal model which can describe the dynamics of the object accurately due to the existence

of various uncertain factors [13]. Most of the uncertainties are without rules and unpre-

dictable. This thorny issue stimulates the development of the robust control theory which

can guarantee the performance index of the practical system in the presence of uncertain-

ties. Different complex uncertainties widely exist in practical systems. Robust control

can not have the general synthesis to deal with them. Therefore, uncertainty is a very

challenging issue for the control of interconnected systems, specifically when it appears

in interconnections.

Due to the ubiquitous existence of nonlinearities and uncertainties, robust control

has been an attractive issue of research in many years. The research on robust control

began in the 1950s. The so-called robustness refers to the characteristic that the control

system maintains certain performance under certain parameter perturbation and uncer-

tainties. According to different definitions of system performance, it can be divided into

stability robustness and performance robustness. The fixed controller designed with the

robustness of the closed-loop system as the objective becomes a robust controller. Some

technologies, for instance, mode-free adaptive control [14, 15], variable structure control

(VSC) [16], H∞ control [17, 18] and minimum gain control [19], have great progress to

enhance the robustness of interconnected systems with uncertainties. There are two main

different uncertainties according to the structure, the first one is included in the input chan-

nel and named as matched uncertainty, and the other one which is out of the input channel

is named as mismatched uncertainty [20]. Based on the sources of the uncertainties, they

can be classified as external uncertainty and internal uncertainty. The main difference

between external uncertainty and internal uncertainty is that the first one usually does not

depend on the system variables, such as states, inputs or outputs. Disturbance observer-

based control which is widely adopted in practical systems can only eliminate the impact

of the external uncertainty. So, disturbance observer-based control can not achieve great

results when the system has both external and internal uncertainties [21].

SMC, which is a special kind of VSC, is realised as the high robustness to solve

CHAPTER 1. INTRODUCTION
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the problem of nonlinear systems with matched uncertainty. SMC is a typical discon-

tinuous control which can drive the system into a pre-defined sliding surface and keeps

the sliding motion on it. When selecting an appropriate surface, the object system will

be forced to the designed sliding surface in time. Besides that, the system can be trans-

ferred as a reduced-order system when it keeps on the sliding motion. SMC due to its

high robustness against uncertainties, has been recognised as an effective method for con-

trolling systems with matched uncertainties, and thus many SMC strategies have been

developed by combining different techniques. [22] proposed a modified SMC which was

able to deal with mismatched uncertainty, where dynamic feedback was employed. [23]

presented an innovative SMC to stabilise a kind of under-actuated systems in the cascade

case. [24] proposed a novel dynamic integral sliding mode controller for state-dependent

matched and mismatched uncertainties. State output feedback SMC was designed for

time delay systems in [25], where the designed controller was independent of the time

delay. [26] focused on designing an H∞ SMC for neutral-type stochastic systems with

Markovian switching parameters and nonlinear uncertainties. [27] used the SMC method

to uncertain multi-input multi-output linear Markovian jump systems. [28] imposed a

SMC combined with the backstepping method to control a cascade of equation-ODE sys-

tem with matched and mismatched disturbances. [29] presented the second-order SMC to

improve the closed-loop performance of nonlinear affine systems with quantised uncer-

tainty. A neural network fuzzy SMC presented by [30] was applied to pneumatic muscle

actuators, where an adaptive training used neural network was able to establish a fuzzy

SMC controller, and an integrator could minimise the tracking error. [31] adopted the

terminal SMC and the full-order terminal SMC to improve the performance of multiple-

input multiple-output systems with mismatched uncertainty, respectively. [32] proposed a

SMC for discrete-time switched systems via an event-triggered strategy. [33] adopted in-

cremental nonsingular terminal SMC for multi-input multi-output nonlinear systems with

uncertainties, disturbances, and sudden actuator faults. [34] used chattering-free model-

free adaptive SMC to gas collection process with data dropout. It should be mentioned

that all of the achievements above are only for centralised systems.

There are two main different strategies defined as centralised control and decen-

tralised control for interconnected systems. Decentralised control only uses local infor-

CHAPTER 1. INTRODUCTION
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mation while centralised control can employ all the information of the whole system in

control design. Therefore, decentralised control does not need data transmission from

the other subsystems and can reduce the complexity of calculation in practical applica-

tions [12]. Although centralised control has low conservatism, it will not work when the

channels of data transferring between subsystems are blocked, in this case, decentralised

control can still work well. Moreover, the structure of decentralised controllers is usually

simpler than that of centralised controllers. In general, decentralised control is easy to

implement in the complex and harsh industrial environments. Due to these advantages of

decentralised control, lots of researchers devoted themselves to this field and got many

dazzling results [35, 36, 37]. The novel decentralised control strategy with finite-time

convergence was developed for the trajectory tracking of a space manipulator in [38].

The decentralised voltage control strategy based on the gradient projection method was

presented for the wind farm in [39]. The decentralised composite suboptimal control

strategy was presented to solve the optimal control problem for a class of two-time-scale

networks in [40]. [41] investigated a decentralised event-triggered adaptive control prob-

lem of uncertain interconnected lower-triangular nonlinear systems using corrupted local

state feedback. [42] presented a decentralised output-feedback control scheme for a class

of nonstrict-feedback nonlinear large-scale systems with input delay, saturation and un-

known virtual control gains. [43] presented a decentralised adaptive neural asymptotic

tracking for switched nonlinear interconnected systems with unknown strong intercon-

nections and predefined transient performance. The acceleration feedback-based finite

time platoon control for the interconnected vehicular system was proposed in [44]. [45]

put forward a decentralised adaptive control for uncertain interconnected systems with

triggering state signals. [46] proposed a neural network decentralised observer-based

fault-tolerant control for the nonlinear interconnected fractional-order systems. [47] in-

vestigated the problems of stability and decentralised control for a class of interconnected

fractional-order systems. [48] presented the fault-tolerant load frequency control for the

interconnected wind power systems. Although, there are many great achievements related

to interconnected systems, there are just a few results using the technology of SMC.

Motivated by the existing problems in traditional control methods and practical ap-

plications, this thesis focuses on the topic of the decentralised SMC for nonlinear intercon-

CHAPTER 1. INTRODUCTION
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nected systems with uncertainties. The considered interconnected systems are nonlinear

with matched uncertainty, mismatched uncertainty and interconnections. Moreover, the

situations of interconnected systems with known states and unknown states are both con-

sidered. Furthermore, the proposed approaches have general forms, which can improve

the robustness of performance for many kinds of nonlinear interconnected systems with

uncertainties.

1.2. CONTRIBUTIONS AND THESIS ORGANISA-

TION

This thesis focuses on the development of decentralised SMC for nonlinear inter-

connected systems with uncertainties. Several methods and different techniques based on

SMC have been provided to design the controllers to improve the robustness. The main

contributions of this thesis are summarised as follows:

• A decentralised SMC scheme for nonlinear interconnected systems is proposed un-

der the assumption that all system states are accessible. For systems with matched

uncertainty and mismatched uncertainty, a state feedback decentralised SMC strat-

egy is proposed to eliminate the effect of the uncertainties by using the bounds on

uncertainties and interconnections. The bounds used in the design are fully non-

linear which has higher applicability for different complex interconnected systems.

Especially, for fully nonlinear systems, the proposed method does not need to use

the technique of linearisation, which is widely used in the existing works to deal

with nonlinear interconnected systems with uncertainties.

• The dynamic observer is presented to complex nonlinear interconnected systems

in the presence of matched and mismatched uncertainties. This dynamic observer

can estimate the states which can not be measured in the system. The presented

approach has excellent identification ability with small estimated errors for states

of nonlinear interconnected systems with matched and mismatched uncertainties. It

should be pointed out that the considered uncertainties of nonlinear interconnected

CHAPTER 1. INTRODUCTION
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systems have general forms, which mean that the proposed method can be effec-

tively used in more generalised nonlinear interconnected systems.

• A variable structure observer-based decentralised SMC is developed to control non-

linear interconnected systems with matched and mismatched uncertainties. Based

on the designed dynamic observer, a decentralised output feedback SMC using out-

puts and estimated states is given to control the interconnected systems in the pres-

ence of matched and mismatched uncertainties. The nonlinear interconnections are

employed in the control design to reduce the conservatism of the developed results.

The bounds of the uncertainties has the variable range, which have more general

structures. Moreover, the limitation for this interconnected system is reduced when

compared with the existing achievements in which the previous approaches use the

full-order observer. Besides that, the proposed approach improves the robustness of

nonlinear interconnected systems in the presence of uncertainties.

This thesis, for readers’ convenience in understanding the developed methodology,

also provides several numerical and practical simulations to demonstrate the effectiveness

of the proposed decentralised SMC for nonlinear interconnected systems with matched

uncertainty, mismatched uncertainty and nonlinear interconnections.

The rest of this thesis is structured as follows:

Chapter 2 gives some mathematical preliminaries needed for the following chapters. Es-

pecially, the essential concepts and main results of the Lipschitz function, the existence

and uniqueness of system solution, the Lyapunov stability theory, and the converse Lya-

punov theory are presented in this chapter.

Chapter 3 provides basic concepts and fundamental knowledge to help readers to under-

stand this thesis. First of all, the fundamental concepts of observability and controlla-

bility of linear systems are explained. Then, basic knowledge of feedback control, state

observer and SMC are described. Moreover, some important knowledge related to inter-

connected systems is introduced, such as the architecture and different control methods

for interconnected systems. Two different practical systems are also presented in this part.

The necessity and superiority of the decentralised SMC are given in the summary of this
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chapter.

Chapter 4 proposes a novel decentralised robust state feedback SMC which can be used

to stabilise a class of nonlinear interconnected systems with matched and mismatched un-

certainties. A composite sliding surface is designed, and a set of conditions are developed

to guarantee that the corresponding sliding motion is uniformly asymptotically stable.

Then, a decentralised state feedback sliding mode control is proposed to drive the inter-

connected system to the designed sliding surface in finite time, and a sliding motion is

maintained thereafter. The bounds on the uncertainties and interconnections are allowed

to have more general nonlinear forms, which are employed in control design to reject the

effects of uncertainties and unknown interconnections and enhance the robustness. It is

not required either the isolated nominal subsystems linearisable or the interconnections

linearisable. At last, a numerical example and a practical simulation of the two coupled

inverted pendula on carts are presented to demonstrate the effectiveness of the proposed

control strategy.

Chapter 5 presents a dynamic observer which is applied to the complex interconnected

systems with matched and mismatched uncertainties. This dynamic observer can identify

all state variables which are required in the design of the controller. The proposed method

has great identification ability with small state estimated errors for interconnected sys-

tems. A numerical simulation and a practical example of the lateral flight control system

are presented to demonstrate the effectiveness of the proposed observer.

Chapter 6 proposes a variable structure observer-based decentralised SMC which can

be applied to control a class of nonlinear interconnected systems with matched and mis-

matched uncertainties. Based on the estimated states from the dynamic observer, a com-

posite sliding surface is designed, and the stability of the sliding motion is analysed based

on the regular form of the interconnected system. Using the pre-designed observer, a

dynamic decentralised output feedback SMC is presented to drive the interconnected sys-

tems to the designed sliding surface in finite time, and then the sliding motion is main-

tained thereafter. The nonlinear interconnections are employed in the control design to

reduce the conservatism of the developed results. The bounds on the uncertainties are

relaxed which are nonlinear and take more general forms. Finally, a numerical simulation
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example is presented to illustrate the developed strategy.

Chapter 7 presents a summary of the main conclusions of this thesis. Discussion for the

potential future work is also provided in this chapter.

CHAPTER 1. INTRODUCTION



CHAPTER. 2

MATHEMATICAL PRELIMINARIES

In this chapter, fundamental mathematical concepts and definitions are introduced which

will be used in the following chapters. To be specific, the Lipschitz function is explained

in section 2.1. The existence and uniqueness of system solution are described in section

2.2. Definitions related to the Lyapunov stability theory are given in section 2.3, and

section 2.4 provides the converse Lyapunov theory.

2.1. LIPSCHITZ FUNCTION

This section will explain the concepts of the Lipschitz condition and the generalised

Lipschitz condition.

2.1.1. LIPSCHITZ CONDITION

Firstly, two important concepts are introduced which are named as the time-invariant

system and the time-variant system. The time-invariant system means that the character-

istic of the system does not change with time, and the dynamics of the system which is

11
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independent of time only depends on the input signal and the structure of the system [49].

The time-variant system is defined as a system that its characteristic is changing over time

[49].

Theorem 2.1. (Lipschitz condition of time-invariant function [50]). Consider a time-

invariant function f(x). If any two points x1 and x2 in a domain D satisfy

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥ (2.1)

where L is a nonnegative constant, then, the function (2.1) is called as the Lipschitz con-

dition, L and f(x) are named as Lipschitz constant and Lipschitz function, respectively.

If D = Rn, it is said that f(x) satisfies the global Lipschitz condition. If D ⊂ Rn, it is

said that f(x) satisfies the local Lipschitz condition.

Theorem 2.2. (Lipschitz condition of time-variant function [50]). Consider a time-

variant function f(t, x), if ∀t ∈ [a, b], and ∀x1, x2 ∈ D, there is a constant L satisfying

∥f(t, x1)− f(t, x2)∥ ≤ L∥x1 − x2∥ (2.2)

it is said that f(t, x) satisfies the Lipschitz condition related to t ∈ [a, b] in the domain

D, where a and b are nonnegative constants. L and f(t, x) are named as Lipschitz con-

stant and Lipschitz function, respectively. If D = Rn, it is said that f(t, x) satisfies the

global Lipschitz condition. If D ⊂ Rn, it is said that f(t, x) satisfies the local Lipschitz

condition.

2.1.2. GENERALISED LIPSCHITZ CONDITION

The Lipschitz condition presented in the previous subsection can be extended to

the vector function. Another important concept called generalised Lipschitz condition is

presented in this subsection.

Theorem 2.3. (Generalised Lipschitz condition [20]). Consider a function f(x1, x2, x3),

where x1 ∈ D1 ⊂ Rn1 , x2 ∈ D2 ⊂ Rn2 and x3 ∈ D3 ⊂ Rn3 , D1 × D2 × D3 7→ Rn,

if there exists the nonnegative continuous functions L1(x3) and L2(x3) in the domain D3

such that the inequality

∥f(x1, x2, x3)− f(x̄1, x̄2, x3)∥ ≤ L1(x3)∥x1 − x̄1∥+ L2(x3)∥x2 − x̄2∥ (2.3)
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holds for ∀x3 ∈ D3, where x̄1 ∈ D1 and x̄2 ∈ D2, it is said that f(x1, x2, x3) satisfies

the generalised Lipschitz condition related to x1 and x2 uniformly for x3. Moreover, if

D1 = Rn1 and D2 = Rn2 , f(x1, x2, x3) is said to satisfy the global generalised Lipschitz

condition related to x1 and x2 uniformly for x3. If D1 ⊂ Rn1 and D2 ⊂ Rn2 , f(x1, x2, x3)

is said to satisfy the local generalised Lipschitz condition related to x1 and x2 uniformly

for x3.

In (2.3), L1(x3) and L2(x3) are named as the generalised Lipschitz bounds which

are nonnegative continuous functions. This is different from the Lipschitz condition that

L in (2.1) or (2.2) is the constant. Therefore, the generalised Lipschitz condition is an

extension of the Lipschitz condition discussed in the subsection 2.1.1.

2.2. EXISTENCE AND UNIQUENESS OF SYSTEM

SOLUTION

This subsection presents some concepts and definitions related to the existence and

uniqueness of system solution.

Consider a system described as follows

ẋ = f(t, x), x(t0) = x0 (2.4)

where x ∈ Rn denotes the system state, and t is time.

Definition 2.1. (Existence and uniqueness of the solution [51]). For the system (2.4), if

there exists a continuous differentiable function x(t) satisfying (2.4) in [t0, t1), then this

function x(t) is named as a solution of the system (2.4). In the other words, this situation

is called as the existence of the solution of the system (2.4). If there is only one solution

x(t) satisfying by the system (2.4), this x(t) has the characteristic of uniqueness, and the

system (2.4) is said to have the unique solution.

In the practical application, many mathematical models similar to the system (2.4)

are used to describe the dynamic behaviour of the object from t0 to t1. These mathematical
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models have a unique solution to predict the dynamics of systems in future. If solutions

of mathematical models are multiple, these systems will be unpredictable in the future.

This class of unpredictable systems is very hard to control in practical application.

If f(t, x) is a continuous function related to time t and state x, then the solution x(t)

of f(t, x) is continuously differentiable. In practical apects, people usually use computers

which only give control signals by sampling. So the closed-loop system is piecewise

continuous related to time t. Therefore, the research about continuous systems sometimes

focuses on the time segment continuous situation.

It is very important to make the judgement about the existence and uniqueness of

system solution.

Theorem 2.4. (Local existence and uniqueness of the solution [51]). Consider the

system (2.4), if the function f(t, x) is piecewise continuous related to the time t for

∀x1, x2 ∈ D = {x ∈ Rn|∥x− x0∥ ≤ δ} in [t, t1] and satisfies the Lipschitz condition

∥f(t, x1)− f(t, x2)∥ ≤ L∥x1 − x2∥ (2.5)

Then, there exists a positive constant ϵ such that the state equation ẋ = f(t, x) with

x(t0) = x0 has a unique solution over [t0, t0 + ϵ].

Theorem 2.4 presents conditions under which the system (2.4) has the unique solu-

tion. During the process of the proof for Theorem 2.4, it is easy to get that ϵ ≤ t1 − t0,

therefore, [t0, t0 + ϵ] ⊂ [t0, t1] and the solution x(t) ∈ D.

Theorem 2.5. (Global existence and uniqueness of the solution [51]). If the function

f(t, x) in (2.4) is piecewise continuous related to the time t for ∀x1, x2 ∈ Rn in [t0, t1]

and satisfies the Lipschitz condition (2.5). Then, the state equation ẋ = f(t, x) with

x(t0) = x0 has a unique solution over [t0, t1].

Compared with the two Theorems 2.4 and 2.5, if the function f(t, x) in (2.4) satisfies

the local Lipschitz condition related to x and t, there exists a locally unique solution for

this system. If the function (2.4) meets the global Lipschitz condition related to x and t,

there exists a globally unique solution for this system. For the local Lipschitz condition

in Theorem 2.4, it is easy to realise in practical applications. Theorem 2.5 is usually very
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conservative. In practical applications, some nonlinear systems which may not satisfy

the condition of Theorem 2.5 still have a unique solution. Therefore, it is necessary to

develop some results with more relaxed conditions to determine the global existence and

uniqueness of system solution. Then, another theorem is given to use the local Lipschitz

condition to determine the global existence and uniqueness of system solution.

Theorem 2.6. (Global existence and uniqueness of the solution [51]). If the function

f(t, x) in (2.4) is piecewise continuous in t and locally Lipschitz in x for all t ≥ t0 and

all x in a domain D ⊂ Rn. Let W be a compact subset of D, x0 ∈ W , and suppose it is

known that every solution of the system (2.4) lies entirely in W . Then, there is a unique

solution that is defined for all t ≥ t0.

Theorem 2.6 is a more general result which can help people to determine the ex-

istence and uniqueness of the solution of continuous systems. This theorem needs all

signals of closed-loop to be bounded. So the unique solution x(t) is bounded. In this

case, we just need to ensure that the systems satisfy the local Lipschitz condition related

to x to guarantee that the systems have a unique solution.

2.3. LYAPUNOV STABILITY THEORY

The Lyapunov stability theory used to analyse the stability of the system was es-

tablished by a Russian mathematician and mechanist named as A.M. Lyapunov in 1892

[51]. With the development of the system theory, the stability theory is very important in

the analysis and the design of controllers for systems. For control design, stability is an

essential issue which needs to be considered as unstable systems can not work in reality.

In the study of linear time-invariant systems, there are many criteria such as algebraic

stability criteria, Nyquist stability criteria and so on, which can be used to determine the

stability of systems. In this thesis, the Lyapunov stability theory is used as one of the main

methods. Therefore, some main results of the Lyapunov stability theory are presented in

this part.
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Take consideration of a general time-invariant system

ẋ = f(x) (2.6)

where x ∈ D ⊂ Rn, and f(·) is a continuous function satisfying Lipschitz conditions.

Definition 2.2. (Stability, uniformly stability and asymptotically stability [20]). The

equilibrium point x = 0 of the system (2.6) is considered to be

(i) stable if there is ζ = ζ(ϱ, t0) > 0 for ∀ϱ > 0,

∥x(t0)∥ < ζ ⇒ ∥x(t)∥ < ϱ, ∀t ≥ t0 ≥ 0 (2.7)

(ii) unstable if it does not satisfy the condition (2.7).

(iii) uniformly stable if there is the ζ = ζ(ϱ) > 0 for ∀ϱ > 0 which is independent

of t0 to make (2.7) hold.

(iv) asymptotically stable if it satisfies (2.7), there exists a positive constant m =

m(t0) such that x(t) → 0 when t → ∞ for all ∥x(t0)∥ < m.

Now, take consideration of a general linear system as follows

ẋ = Ax (2.8)

where x ∈ Rn, A is a matrix with appropriate dimensions.

Theorem 2.7. (Stability of linear system [20]). The linear system (2.8) is

(i) stable if all real parts of eigenvalues of the matrix A are negative.

(ii) unstable if there exists the positive real part of eigenvalues of the matrix A.

Definition 2.3. (Lyapunov equation [20]). The coefficient matrix A in system (2.8) is

stable if for the given positive definite symmetric matrix Q, there is an unique positive

definite symmetric matrix P such that

PA+ ATP = −Q (2.9)

Then, the function (2.9) is called as the Lyapunov equation.
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Theorem 2.7 and Definition 2.3 are usually used for linear systems. The following

theorems of Lyapunov stability are for nonlinear systems.

Theorem 2.8. (Lyapunov stability theorem of nonlinear systems [20]). For the system

(2.6) defined in x ∈ D ⊂ Rn. The function V is a continuously differentiable function

satisfying

V (0) = 0 (2.10)

V (x) > 0, x ∈ D\{0} (2.11)

Then, the system (2.6) is

(i) stable if for ∀x ∈ D

V̇ (x) ≤ 0 (2.12)

(ii) asymptotically stable if for ∀x ∈ D\{0}

V̇ (x) < 0 (2.13)

(iii) unstable if for ∀x ∈ D\{0}

V̇ (x) > 0 (2.14)

Consider a time-varying nonlinear system as follows

ẋ = f(t, x) (2.15)

where x ∈ D ⊂ Rn, and D includes the origin x0 = 0 and f(·) in the system (2.15) is

piecewise continuous related to time t and locally Lipschitz regard of x.

Theorem 2.9. (Expanded Lyapunov asymptotically stability theorem [20]). For the sys-

tem (2.15) defined in x ∈ D ⊂ Rn, ∀t ≥ 0, if there exists a continuously differentiable

function V satisfying

M1(x) ≤ V (t, x) ≤ M2(x) (2.16)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −M3(x) (2.17)

where Mi(x) for i = 1, 2, 3 are continuous positive definite functions in domain D, then

the system (2.15) is uniformly asymptotically stable.
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2.4. CONVERSE LYAPUNOV THEORY

In this subsection, the converse Lyapunov theory is to be introduced.

Definition 2.4. (Class K functions [20]). A continuous function α : [0, a) −→ [0,∞) is

said to belong to class K if it is strictly increasing and α(0) = 0.

Definition 2.5. (Class KC1 functions [20]). A class K function is said to belong to class

KC1 if it is continuously differentiable.

Theorem 2.10. (Converse Lyapunov theorem [20]). Consider a time-varying nonlinear

system as follows

ẋ = f(t, x) (2.18)

where x ∈ H ⊂ Rn , and H = {x ∈ Rn|∥x∥ < η, η > 0}. f(·) is a contin-

uously differentiable function, and the Jacobian matrix ∂f/∂x is bounded in the do-

main H uniformly in t. Choose m, ϵ and η0 as the positive constants, and η0 < η/m,

H0 = {x ∈ Rn|∥x∥ < η0}. If the system meets the following condition

∥x∥ ≤ m∥x(t0)∥e−ϵ(t−t0), ∀x(t0) ∈ H0, ∀t ≥ t0 ≥ 0

then, there is a continuously differentiable equation V (t, x) satisfying

β1(∥x∥) ≤ V (·) ≤ β2(∥x∥) (2.19)

∂V (·)
∂t

+
∂V (·)
∂x

f(·) ≤ −β3(∥x∥) (2.20)∥∥∥∥∂V (·)
∂x

∥∥∥∥ ≤ β4(∥x∥) (2.21)

where βi(·) for i = 1, 2, 3, 4 are class K functions in the domain [0, r0]. If the system is

autonomous, V is independent of time t.

Theorem 2.10 shows that there exists a Lyapunov function for the system (2.18) if

all the conditions of Theorem 2.10 are satisfied.
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FUNDAMENTAL CONTROL THEORY

AND BASIC CONCEPTS

In this chapter, fundamental control theory and basic concepts are to be presented for

readers’ convenience. The basic knowledge of SMC theory as one of the main techniques

used in this thesis will be introduced in this chapter as well. The basic definitions of

stability, observability and controllability of the linear system are described in section

3.1. The concepts of state space and feedback control are presented in section 3.2. A

brief description of the state observer is written in section 3.3. Some basic definitions

and popular control methods of SMC are introduced in Section 3.4. The review related to

interconnected systems is presented in section 3.5. In section 3.6, two practical systems

which will be analysed in the following chapters are described. At last, the summary of

the previous fundamental knowledge is given in section 3.7.
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3.1. OBSERVABILITY AND CONTROLLABILITY

OF LINEAR SYSTEM

This section presents the related analysis based on the linear model to describe ob-

servability and controllability. The basic knowledge of observability and controllability is

essential for late analysis and design. Observability and controllability of a control system

need to be considered before the control design [49].

Consider a simple time-variant linear system

ẋ(t) = Ax(t) +Bu(t) (3.1)

y(t) = Cx(t) (3.2)

where A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n, x(·) ∈ Rn, u(·) ∈ R and y(·) ∈ R are state,

input and output, respectively.

Definition 3.1. (Controllability) [52]. A time-variant linear system (3.1)-(3.2) is said to

be controllable at t0 ∈ T if it possible to find the input u(t) defined over t ∈ T (T is time

interval), which will transfer the initial state x(t0) to the origin at the finite time t1 ∈ T

and t1 > t0. If this is true for all initial time t0 ∈ T and all initial states x(t0), the system

(3.1)-(3.2) is completely controllable.

Controllability means that the control signal can control the states of the linear sys-

tem from initial value to final value in finite time. The input signal can not have an impact

on the whole system when the system is uncontrollable. A system (3.1)-(3.2) is control-

lable when the controllability matrix K is full rank [49], where K is defined as

K = [B AB A2B · · · An−1B] (3.3)

Definition 3.2. (Observability) [52]. A time-variant linear system (3.1)-(3.2) is said to

be observable at t0 if for any x(t0) ̸= 0, it can be determined from the output y(t), where

t ∈ [t0, t1] ⊂ T , and t1 ≥ t0 is the finite time belonging to the domain T . If this is true

for all t0 ∈ T and x(t0) ̸= 0, the system (3.1)-(3.2) is said to be completely observable.
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Observability means that states of the linear system can be observed via measured

output. If the system is not observable, it can be stable when the unobservable linear

system is stable. Then, the output feedback controller can not be applied to stabilise

the linear system when this unobservable system is not stable. The system (3.1)-(3.2) is

observable when the observability matrix E is full rank [49], where E is described as

E = [C CA CA2 · · · CAn−1]T (3.4)

It is essential to analyse the controllability and observability of the object system be-

fore design of the control law. When partial system is neither controllable nor observable,

then the dynamics of these parts of the system usually can not be changed. A linear system

can achieve high performance when the whole system is controllable and observable.

3.2. STATE SPACE AND FEEDBACK CONTROL

Feedback control is realised as one of the fundamental and important control strate-

gies in control fields. This classic control method is widely applied to practical systems,

such as intelligent robots, mechanical arms and transport networks. Feedback control is

a control mechanism which employs information/data from measurements to manipulate

variables to achieve the desired performance. The control law can be designed based

on the comparison between the actual values and related desired values of system vari-

ables [53]. However, this working mechanism of feedback control is affected by the

disturbances which are inevitable in practical applications. Disturbances and uncertain-

ties must be considered in the design of controller for feedback control. Many researchers

have been working on this field for a long time.

State space is widely used to describe control systems. State refers to an ordered set

that the minimum number of variables in the system, which can determine the dynamics

of the system [53]. The so-called state space denotes the set of all possible states of the

system. In short, the state space can be regarded as a space with the state variable as

the coordinate axis. So states of the system can be expressed as a vector in this space.

State space is a mathematical model including a set of inputs, outputs and states. In the
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state space, the relationship between inputs, outputs and states is expressed by a set of

first-order differential functions. State space provides a convenient and simple method to

analyse the multi-input and multi-output systems. An n-th order system with m inputs

and p outputs is presented in Fig 3.1.

Figure 3.1: State space.

Consider the mathematical formula, which can describe the state space in Fig 3.1, as

follows

ẋi(t) = fi(t, x, u), i = 1, 2, 3, · · · , n (3.5)

where ẋi(t) = dxi

dt
, and x(t) = col(x1, x2, · · · , xn) ∈ Rn, u ∈ Rm and t ∈ R+ denote

the state, input and time, respectively. The function fi(·) can describe the system dynam-

ics related to xi for i = 1, 2, 3, · · · , n. Equation (3.5) is a typical expression about the

n−dimensional state space.

The system output in Fig 3.1 can be described by

yi(t) = gi(t, x), i = 1, 2, 3, · · · , p (3.6)

Let

y(t) = col(y1(t), y2(t), · · · , yp(t))

f(·) = col(f1(·), f2(·), · · · , fn(·))

g(·) = col(g1(·), g2(·), · · · , gp(·))
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Then the system (3.5) with the output (3.6) can be written in a compact form as

ẋ(t) = f(t, x, u) (3.7)

y(t) = g(t, x) (3.8)

If m, p = 1 in equations (3.5) and (3.6), the system is defined as the single-input single-

output system. If m, p > 1 in equations (3.5) and (3.6), the system is called as the

multi-input multi-output system.

Take consideration of the time-invariant linear system,

ẋ = Ax+Bu (3.9)

y = Cx (3.10)

where the matrices A, B and C have the appropriate dimensions. (A,B) and (A,C) are

controllable and observable, respectively. If the control law u = −Ksx is designed based

on the accessible states of the system (3.9)-(3.10), where Ks is the constant matrix with

appropriate dimensions. This kind of control is defined as state feedback control. The

related closed-loop dynamics can be written as

ẋ = (A−BKs)x (3.11)

Then the main objective is to design an appropriate feedback gain matrix Ks to make the

matrix (A − BKs) become stable. The block diagram in Fig 3.2 shows the structure of

state feedback control framework.

 

  Integrator  

 

 

  u 

  - 

         

Figure 3.2: Structure of state feedback control.
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In the actual situation, because of the harsh operating environment or intrinsic com-

plexity of the system, values of states for the object system may be unavailable. In this

case, the state feedback control is unsuitable for this class of systems. Instead of state

feedback control, output feedback control which is only based on the measured outputs

is an effective approach used in systems with unknown states. The control law of output

feedback control can usually be expressed as u = −Koy, where Ko is the gain matrix.

Based on output feedback control, the corresponding closed-loop dynamics can be de-

scribed as

ẋ = (A−BKoC)x (3.12)

This strategy needs to guarantee the stability of the matrix (A−BKoC) by designing an

appropriate gain matrix Ko. The detailed structure is presented in Fig 3.3.

 

   Integrator  

 

 

  u 

  - 

   
      

Figure 3.3: Structure of output feedback control.

Both state feedback control and output feedback control are widely applied in many

practical systems. Lots of researchers have obtained great achievements and make indeli-

ble contributions to this field [54, 55].

3.3. STATE OBSERVER

In this subsection, the concept of state observer is to be introduced. The state ob-

server is a class of dynamical systems in which the estimated states are obtained from
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   Integrator  

 

 

  u 
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Figure 3.4: Structure of the state observer.

the measured values of the external variables including input variables and output vari-

ables of the original system, which is also known as the state configurator. In the early

1960s, in order to implement state feedback control for systems with inaccessible states,

D. G. Luenberg, R. W. Bass and J. E. Bertrand proposed the concept of state observer

and constructed the corresponding method [56]. This control strategy solved the problem

that states can not be directly measured through sensors. With development of science

and technology, the state observer not only gives a practical possible approach for state

feedback control; but also has been adopted in modern control theories [57, 58, 59].

Now, consider the state observer design. The state observer can be designed for the

system (3.9)-(3.10) as

˙̂x = Ax̂+Bu+M(Cx− Cx̂) (3.13)

where M is the designed gain matrix. The structure of the state observer is presented by

the block chart in Fig 3.4.

According to equations (3.9) and (3.13), the estimated error es of states can be given
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as

ės = (A−MC)es (3.14)

The suitable selection of M lets the matrix (A−MC) be stable if (A,C) is observ-

able, and then the value of es tends to zero when the time tends to infinity.

lim
t→∞

es(t) → 0 (3.15)

State observers can be classified as full-order state observers and reduced-order state

observers according to the dimensions of observers. If dimensions of state observers

and original systems are equal, this class of state observers is named as full-order state

observers. If the dimensions of state observers are less than that of the original system,

this kind of state observers is called as reduced-order state observers. In other words,

the reduced-order state observer just estimated the partial states of original systems [60].

These two different kinds of state observers have their advantages and disadvantages,

respectively. People usually choose the appropriate kind of state observer based on system

structures and characteristics of the object systems as well as the practical requirements.

3.4. SLIDING MODE CONTROL

This part is to describe the background and important concepts related to the SMC.

3.4.1. RESEARCH BACKGROUND OF SLIDING MODE CONTROL

In daily life, people will meet various control systems, for instance, water circula-

tion systems, waste recycling systems and air purification systems. These control systems

may belong to different research areas, such as sociology, economics, biology, mechanical

engineering, electrical engineering, etc. In the control theory, it is essential to build math-

ematical models for specific control systems. For different mathematical models, various

control concepts and approaches have been developed, such as optimal control [61], fuzzy

logic control [62], intelligent control [63], etc. However, both the earlier classical control
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theory and the popular modern control theory require that the mathematical model of the

control system is known more accurately. In the practical process of modelling, there

usually exists a deviation between the actual system and the mathematical model. This

deviation may come from unmodelled dynamics, perturbation and approximation of the

considered systems. Therefore, the designed controller must ensure the control system

work with the desired performance under the existence of modelling deviation [64]. This

class of problems is the well-known robust control problem.

SMC is a typical VSC. In the 1950s, a VSC method was proposed for the second-

order linear systems for the first time [64]. Different feedback gains were set for differ-

ent systems. The control system could obtain certain characteristics which could not be

achieved if the controller’s structure was not variable. In the early 1960s, the term named

as variable structure first appeared. The second-order nonlinear system with multiple un-

stable equilibrium points was asymptotically stable where the system states moved on a

hyperplane in the state space to approach zero [65]. The hyperplane was the so-called

sliding surface, and this method was called as SMC. Traditional VSC requires detailed

information about the structure of the system. It is very difficult to be implemented in

high-order systems. In view of this, Emelyanov did some research on the controllable

single-input system with high-order based on the technique of SMC. According to the

sign of the sliding function, the different control gains are selected to change the direction

of the sliding function which is opposite to the sign of the sliding function [66]. Some

characteristics of interference suppression and chattering are also revealed during the re-

search, and many useful conclusions for controllable systems are summarised in related

books [64]. From the 1970s to the early 1980s, this kind of control strategy was gradually

extended to the multi-input systems. However, it could only achieve very conservative

results with the respect to the multi-input systems [66]. Additionally, the characteristics

of the robustness of SMC had not been systematically researched, and thus, in this period,

SMC did not attracted more attention of researchers.

With the publication of a famous review article written by Utkin [67], SMC entered

a new stage of development that ideas of VSC and SMC were known by many researchers

around the world. Especially in the late 1980s, robust control became a hot topic in the
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control field, and SMC was developed rapidly because of its inherent characteristics of

robustness against matched disturbances [68]. From the late 1980s to nowadays, many

great results of SMC have been achieved [64, 69, 70, 71, 72].

3.4.2. EXISTENCE OF SLIDING MOTION

Traditional SMC has two phases exhibiting different responses which are the sliding

phase and the reaching phase. Sliding phase is defined as the period when the object

system enters to the designed sliding surface and keeps the motion on it. The order of

the system will be reduced when the system moves on the sliding surface. This kind of

dynamics is defined as sliding mode dynamics. The reaching phase means the period

that the system starts from the initial point driven by the control law until it arrives at the

sliding surface.

Take consideration of the nonlinear control system written as follows

ẋ = f(t, x) + q(t, x)u (3.16)

where x ∈ Rn and u ∈ Rm are system states and inputs, respectively. f(·) ∈ Rn and

q(·) ∈ Rn×m are continuous. Select the control law written by

u =

{
u+(t, x), σ(x) > 0 (3.17)

u−(t, x), σ(x) < 0 (3.18)

where σ(x) is the sliding function defined by

σ(x) = col(σ1(x), σ2(x), · · · , σm(x)) (3.19)

Definition 3.3. (Sliding mode domain [67]). The domain S in the manifold σ(x) = 0

can be defined as the sliding mode domain, if for any ϵ > 0, there is a δ > 0 such that

any motion from the n dimensional ϵ vicinity of the domain S can only leave there via its

boundary.

Fig 3.5 shows the detailed explanation about the sliding domain.

Theorem 3.1. (Existence of sliding motion [67]). For the (n −m) dimensional sliding

mode domain S, it is sufficient that in the n dimensional domain D, S ⊂ D, there is

CHAPTER 3. FUNDAMENTAL CONTROL THEORY AND BASIC CONCEPTS



3.4. SLIDING MODE CONTROL 29

Figure 3.5: Sliding mode domain [20].

a continuously differential function V for (3.16) which is satisfied with conditions as

follows

(i) The continuously differential function V is positive definite with respect to σ and

for any x ∈ S and t,

inf
∥σ∥=τ

V = ξ (3.20)

sup
∥σ∥=τ

V = ϖ (3.21)

where ξ ̸= 0 if τ > 0, and ξ and ϖ depend on τ .

(ii) Time derivative of the function V has negative supremum on small enough

spheres ∥σ∥ = τ with removed points on the discontinuity surfaces where this deriva-

tive does not exist.

After the confirmation of the existence of sliding motion, then, an appropriate control

law needs to be designed to satisfy the reachability condition to guarantee the system to

CHAPTER 3. FUNDAMENTAL CONTROL THEORY AND BASIC CONCEPTS



3.4. SLIDING MODE CONTROL 30

be driven to the sliding surface. This condition can be described as

σT (x)σ(x) < 0 (3.22)

where σ(x) is the pre-designed sliding function. This initial reachability condition can

only ensure the system move to the sliding surface asymptotically. So, several researchers

modified this original reachability condition in (3.22) as follows

σT (x)σ(x) < −η∥σ(x)∥ (3.23)

This modified condition is called as η reachability condition which can ensure the system

move to the sliding surface in finite time. The constant η is named as reach gain which

can be determined in the design of the SMC controller.

3.4.3. EQUIVALENT CONTROL APPROACH

There are two main methods which can be used to analyse the stability of sliding

motion. One is named as the equivalent control, and the other one is called as the regular

form. Firstly, we briefly introduce the approach of equivalent control.

Consider a system described as follows

ẋ = Ax+B(u+ ϕ(x)) (3.24)

where x ∈ Rn is system state, and u ∈ Rm is input, m ≤ n, the matrices A and B are

known with appropriate dimensions. ϕ(x) is the unknown matched uncertainty.

If the system (3.24) is driven to the pre-designed sliding function σ(x) defined as

σ(x) = Fx (3.25)

Based on the fact that in the sliding surface σ(x) = 0, then σ̇(x) = 0, it is easy to get the

related equivalent control as follows

ueq = −(FB)−1FAx− ϕ(x) (3.26)

where the matrix F is selected satisfying that FB has full rank. It ensures that this equiv-

alent control has a unique solution. Then, the sliding mode dynamics can be presented
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as

ẋ = (In −B(FB)−1F )Ax (3.27)

Fx = 0 (3.28)

This control strategy is widely used in many systems in which states are all accessible

in the ideal situation. In actual projects, the equivalent control technique is sometimes

used to practical systems combined with the identification technology to overcome the

problem of unknown states [66].

3.4.4. REGULAR FORM APPROACH

The other strategy is the regular form method which can also be applied to analyse

the dynamics of the sliding motion.

Consider a simple system as follows

ẋ = Ax+Bu (3.29)

where x ∈ Rn and u ∈ Rm are state and input, respectively, m ≤ n. the matrices A and

B are known with appropriate dimensions. Assume that rank(B) = m. Then, there exists

a coordinate transformation z = Tx such that

TB =

 0
B̃

 (3.30)

where B̃ ∈ Rm×m is a nonsingular matrix. The coordinate transformation matrix T is

nonsingular. The system (3.29) can be transferred to a new system via the coordinate

transformation. In the new coordinates z, the system (3.29) can be described by

ż1 = Ã11z1 + Ã12z2 (3.31)

ż2 = Ã13z1 + Ã14z2 + B̃u (3.32)

where z1 ∈ Rn−m, z2 ∈ Rm, z = col(z1, z2) and

Ã =

Ã11 Ã12

Ã13 Ã14

 = TAT−1 (3.33)
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and B̃ is given in (3.30).

There is no control signal u in the equation (3.31), the control signal u is only in the

equation (3.32). The equations (3.31)-(3.32) are called as the regular form of the system

(3.29).

Then, select a suitable sliding function as follows

σ(x) = F1z1 + F2z2 (3.34)

where F1 ∈ Rm×(n−m) and F2 ∈ Rm×m are design matrices with F2 being invertible.

σ(x) = 0 is the sliding surface. On the sliding surface,

z2 = −F−1
2 F1z1 (3.35)

Substitute the equation (3.35) to (3.31), the sliding mode dynamics can be described

by

ż1 = Ã11z1 − Ã12F
−1
2 F1z1

= (Ã11 − Ã12F
−1
2 F1)z1 (3.36)

The only objective is that find the suitable F1 and F2 to ensure the stability of (Ã11−

Ã12F
−1
2 F1). Then, the whole system is asymptotically stable. The matrix pair (A11, A12)

is controllable if and only if the pair (A,B) is controllable. It is easy to see that the

dynamics of the sliding mode is reduced-order. Therefore, sliding mode dynamics (3.36)

is a reduced-order system when compared with the original system (3.29).

Insensitivity property is another inherent characteristic of the regular form method

[66]. Consider a system with matched and mismatched uncertainties described by

ẋ = Ax+B(u+ ϕ(x)) + φ(x) (3.37)

where x ∈ Rn and u ∈ Rm are state and input, respectively, m ≤ n, the matrices A and B

are known with appropriate dimensions. ϕ(x) is the matched uncertainty, and φ(x) is the

mismatched uncertainty. Use the transformation z = Tx given above to get the following

system

ż1 = Ã11z1 + Ã12z2 + φ̃1(z1, z2) (3.38)
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ż2 = Ã13z1 + Ã14z2 + B̃(u+ ϕ̃(z1, z2)) + φ̃2(z1, z2) (3.39)

where z = col(z1, z2) with z1 ∈ Rn−m and z2 ∈ Rm, and

TB =

 0
B̃

 (3.40)

Ã =

Ã11 Ã12

Ã13 Ã14

 = TAT−1 (3.41)

φ̃1(z1, z2) = Tφ(T−1z) =

φ̃1(z1, z2)

φ̃2(z1, z2)

 (3.42)

ϕ̃(z1, z2) = ϕ(T−1z) (3.43)

where φ̃1(z1, z2) ∈ R(n−m) and φ̃2(z1, z2) ∈ Rm. Then, choose the sliding function

σ(x) = F1z1+F2z2, where F1 ∈ Rm×(n−m) and F2 ∈ Rm×m are design matrices with F2

being invertible. It is easy to get the dynamics of sliding motion given by

ż1 = Ã11z1 + Ã12F
−1
2 F1z1 + φ̃1s(z1) (3.44)

where φ̃1s(z1) = φ̃1(z1, z2)|z2=−F−1
2 F1z1

.

From the equation (3.44), the dynamic of the sliding motion is independent of the

matched uncertainty ϕ̃(·) and uncertainty φ̃2(·). This kind of phenomenon is called as the

insensitive characteristic of sliding motion to matched uncertainties.

3.5. INTERCONNECTED SYSTEM

A detailed introduction related to interconnected systems is presented in this section,

including research background, description and main control methods for interconnected

systems.

3.5.1. BACKGROUND OF INTERCONNECTED SYSTEMS

In practical applications, ideal linear systems are very rare because of the wide ex-

istence of nonlinearity in actual control systems. If the degree of nonlinearity in systems
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is not very high to some extent, the nonlinear system can be approximated or simplified

as a linear system using the linearisation technique, and then this nonlinear system can be

analysed and controlled via the control theory for linear systems. However, with the great

development of science and technology, especially, in high-tech fields such as aircrafts

and robots, the requirements of the performance for control systems are increasing. In

order to achieve better control results, the nonlinear system control theory must be es-

tablished to solve the problem of nonlinear systems which can be well modelled for real

systems [51].

At the same time, in various fields of industry and daily life, a variety of large-scale

complex systems widely exist. In order to describe and analyse these systems, people

put forward a concept of interconnected system [73]. The interconnected system is a

composite large-scale system composed of low dimension subsystems interconnected in

a specific way, which generally has the following basic characteristics [74, 75, 76]:

(i) Large scale. Interconnected systems tend to have high dimensions and a large

number of subsystems and variables.

(ii) Complex structure. Interconnected systems usually can be decomposed into

several isolated subsystems, and dynamics of each subsystem can be integrated to form

the dynamics of the whole system.

(iii) Multiple controllers. Interconnected systems are generally controlled by more

controllers.

(iv) Suboptimum. It can be controlled suboptimally. In control of interconnected

systems, there may be multiple objectives. These multiple objectives cause that the con-

trollers usually can not achieve the optimal results.

(v) Various influencing factors. Interconnected systems are complex systems with

multiple inputs and outputs with strong uncertainties. The interconnected system may

have strong interconnections between subsystems, and there may be different control

strategies for each subsystem. It makes the analysis and design of interconnected sys-

tems become more difficult.

Interconnected systems usually represent actual complex systems, and their hier-
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archical or multi-level structure is suitable for describing systems related to economic

management, aviation, aerospace, navigation, robotics, etc [77]. The characteristics of

interconnected systems determine that their theories and methods have various applica-

tions. The control strategies of many practical problems of interconnected systems are

based on the inherent characteristics of systems themselves. According to the continuity

of states in interconnected systems, they can be classified as continuous interconnected

systems and discrete interconnected systems. According to the expression of states in

interconnected systems, they can be classified as linear interconnected systems and non-

linear interconnected systems. According to the time term in the interconnected system,

it can be classified as time-delay interconnected systems and non-delay interconnected

systems [78, 76]. In essence, the most important task in studying interconnected systems

is to analyse the interconnections, which describe the influence of each subsystem on the

other subsystems. Therefore, for interconnected systems, the structure of interconnection

comes very naturally to become the main topic of research to distinguish interconnected

systems from the traditional centralised systems.

3.5.2. DESCRIPTION OF INTERCONNECTED SYSTEMS

This subsection gives a brief description of interconnected systems.

Consider the mathematical model of a complex nonlinear interconnected system

which is composed of several subsystems described by

ẋi = ϵi(t, xi) + ςi(t, xi)(ui + ϱi(t, xi)) +Hi(t, x), i = 1, 2, · · · , n (3.45)

where xi ∈ Ωi ⊂ Rni (Ωi denotes a neighbourhood of the origin), and ui ∈ Rmi

are, respectively, state variables and inputs of the i-th subsystem with mi < ni, x :=

col(x1, x2, · · · , xn) ∈ Ω = Ω1 × Ω2 × · · · × Ωn. The matrix function ςi(·) ∈ Rni×mi and

the nonlinear vector ϵi(·) ∈ Rni . The term ϱi(·) denotes matched disturbance, and Hi(·)

represents the interconnection.

Some definitions for the system (3.45) are to be introduced as follows.

Definition 3.4. (Isolated subsystem [79]). Consider the system (3.45). The following
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system

ẋi = ϵi(t, xi) + ςi(t, xi)(ui + ϱi(t, xi)), i = 1, 2, · · · , n (3.46)

is called the i-th isolated subsystem of the system (3.45).

Definition 3.5. (Nominal isolated subsystem [79]). From the system (3.45), the system

ẋi = ϵi(t, xi) + ςi(t, xi)ui, i = 1, 2, · · · , n (3.47)

is called the i-th nominal isolated subsystem of the system (3.45).

Each subsystem has its own control law ui, and the interconnection denotes the mu-

tual influence of each other.

3.5.3. MAIN CONTROL METHODS FOR INTERCONNECTED SYSTEMS

Control methods for interconnected systems mainly include centralised control, dis-

tributed control, hierarchical control and decentralised control, among which the decen-

tralised control method is widely used in the control of interconnected systems. These

methods are to be briefly discussed in this subsection.

Figure 3.6: Centralised control method [80].

Centralised control: Firstly, centralised control is introduced. Fig 3.6 gives an

explanation of centralised control for an interconnected system [80]. In the design of
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centralised control, based on the traditional control theory and methods, people usually

consider the overall interconnected system as the research object, then they analyse the

characteristics of the overall interconnected system and adopt the overall modelling, order

reduction to analyse and calculate the whole system before proposing the control strategy

[80]. Common control methods include feedback control [81], optimal control [82], PID

control [83], robust control [84], intelligent control [63], neural network control [85],

fuzzy control [86], etc. These control strategies are fully developed and widely used. Lots

of practical applications have proved that centralised control has satisfactory performance

for centralised systems with low dimensions. However, for interconnected systems with

high dimensions and complex structures, there are many constraints which should be

considered in the process of control design. In some cases, the dimension of the designed

controller is very high which will cause the problem of dimension disaster. For large-

scale interconnected systems, centralised control makes the information exchange of the

whole system become extremely complex, which leads to an increase in the calculation

of integration and operation for the control system. Moreover, when local faults occur

in one or several subsystems of the interconnected system, it is necessary to analyse the

dynamics of the whole system, which leads to the poor reliability and low fault tolerance

of the entire interconnected system [87].

Figure 3.7: Distributed control method [88].
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Distributed control: In the distributed control method, controllers of subsystems

in the interconnected system are distributed according to the detailed situation of subsys-

tems. The control objectives of the interconnected system are allocated to the subsystems

in a certain way, and there is limited information exchange between them [88, 89]. This

distributed layout improves the reliability and flexibility of the related controllers. More-

over, it reduces the communication cost between subsystems. In essence, distributed

control is a control method between centralised control and decentralised control. Fig 3.7

presents the structure of the common distributed control for interconnected systems [88].

Figure 3.8: Hierarchical control method [90].

Hierarchical control: The fundamental idea of hierarchical control is to let each

controller of the interconnected system not only construct its own dynamic compensator

independently; but also establish a high-level dynamic coordinator to determine the re-

lated control strategy of the subsystem, this characteristic enhances the performance of

each controller of the subsystem [90]. Fig 3.8 gives an example of hierarchical con-

trol [90]. Interconnected systems usually have two general structures. One is called as

the multi-layer structure, which divides the interconnected system into multiple layers

according to its functions. The lowest layer is the direct control layer, which directly

controls the subsystem of the interconnected system. The related parameters of the di-

rect control layer are determined by its upper layer named as the layer of optimization.

CHAPTER 3. FUNDAMENTAL CONTROL THEORY AND BASIC CONCEPTS



3.5. INTERCONNECTED SYSTEM 39

The parameters related to the environment are set in the layer of optimization, which is

calculated by the adaptive function layer. In the multi-layer structure, the lower layer

is only directly controlled by the corresponding upper layer, and there is no information

exchange between the same layers. The second structure is called the multi-level struc-

ture. This structure is to add a coordinator to the local controller of subsystems to solve

the problem of cooperation between subsystems. The coordinator is designed to provide

necessary information for each controller of the local subsystem [91]. The hierarchical

control, which can get global optimization via achieving local optimization, has a lot of

information exchange between the upper and lower layers. In some cases, the complex-

ity of the hierarchical system may lead to the decline of the reliability of interconnected

systems, and it is mainly used to the open-loop control system. So the applications of the

hierarchical control are limited [92]. In addition, the hierarchical control law requires to

collect the information from all subsystems. In a sense, hierarchical control is a gener-

alised centralised control.

Decentralised control: Complex characteristics of interconnected systems inevitably

lead to the appearance of decentralised control. Decentralised control theory as an impor-

tant branch of large-scale system control theory has achieved great development since it

was proposed at the end of the 1960s [93]. Currently, decentralised control is still one of

the hot topics in control theory research of interconnected systems.

Most interconnected systems are multi-input multi-output systems. For example,

there are many control substations in the power system, and each substation is responsi-

ble for its own function. In the process of control system design, this situation is called

as decentralisation. Fig 3.9 describes the structure of decentralised control [94]. When

designing a controller for the subsystem, it is necessary to determine a structure and al-

locate the input of the subsystem to a local controller. This controller only uses the state

or output of the subsystem, and such a kind of control methods is called as decentralised

control [94]. In other words, in a decentralised control system, the interconnected sys-

tem is decomposed into several subsystems which are controlled by independent local

controllers. The cooperation of these local controllers helps the interconnected system

meet the requirements of the performance. Each subsystem is only controlled based on
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Figure 3.9: Decentralised control method [94].

its own information. Therefore, in decentralised control, local controllers do not need

to exchange information with other subsystems, which can save transmission cost [95].

It can also improve the reliability of the entire interconnected system, and overcome the

problem caused by the collection of information of storage [96]. In practical engineer-

ing applications, the idea of decentralised control can be effectively used to deal with the

problems of dimension, uncertainty and structure constraints.

3.6. SEVERAL PRACTICAL SYSTEMS

This section introduces several practical systems which are typical interconnected

systems.

3.6.1. COUPLED INVERTED PENDULA ON CARTS

Take consideration of a coupled inverted pendulum connected via a spring on two

carts which is a typical nonlinear interconnected system described in Fig 3.10 [20]. In this

system, the pivot position of the spring can be changed with the variation of the length

l of two pendulums due to the equation regarding time t. The input signal ui of two
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pendulums is the torque applied at the pivot [97]. In the common situation, this input

signal is produced by the external force Fi.

Figure 3.10: The general structure of coupled inverted pendula on carts [20].

Consider the dynamic mathematical model for this system as follows

ẋ1 =

 0 1

g
cl
− ka(t)(a(t)−cl)

cml2
0

x11

x12

+

 0

1
cml2

u1 +

 0 0

ka(t)(a(t)−cl)
cml2

0

x21

x22


−

 0

m
M
x2
12 sinx11 +

ka(t)(a(t)−cl)
cml2

(s1 − s2)

 (3.48)

ẋ2 =

 0 1

g
cl
− ka(t)(a(t)−cl)

cml2
0

x21

x22

+

 0

1
cml2

u2 +

 0 0

ka(t)(a(t)−cl)
cml2

0

x11

x12


−

 0

m
M
x2
22 sinx21 +

ka(t)(a(t)−cl)
cml2

(s2 − s1)

 (3.49)

where x1 = col(x11, x12) and x2 = col(x21, x22), x11 and x12 denote the angle and angular

velocity of θ1, respectively. x21 and x22 denote the angle and angular velocity of θ2,

respectively. s1 and s2 are the positions of carts,

c =
M

M +m
(3.50)

k and g are spring and gravity constants, respectively.

3.6.2. LATERAL FLIGHT CONTROL SYSTEM

This part has the simple introduction of the lateral flight control system for aircrafts,

which is widely used in civil airliners (see Fig 3.11). For easy implementation of the

CHAPTER 3. FUNDAMENTAL CONTROL THEORY AND BASIC CONCEPTS



3.6. SEVERAL PRACTICAL SYSTEMS 42

control of lateral flight control systems, linearisation technology is adopted to this kind of

complex flight control systems. The dynamics of the aileron and the rudder actuator need

to be modelled in this progress. The yaw rate which can be applied as the input to deal

with the problem of damping can be measured by a class of high pass filters [98]. The

dynamics of aileron and rudder actuators for aero craft are generally expressed as

 

Figure 3.11: The civil airliner [99].

Aileron:
ϱ(s)

ϱu(s)
=

25

s+ 25
(3.51)

Rudder:
ϖ(s)

ϖu(s)
=

20

s+ 20
(3.52)

where ϱ(s), ϱu(s), ϖ(s) and ϖu(s) are aileron deflection, the perturbed aileron deflection

command, rudder deflection and the perturbed rudder deflection command, respectively.

The high-frequency yaw manoeuvring components of the yaw rate can be achieved

via the high pass filter named as washout filter, which is described as follows

ζ(s)

υ̇(s)
=

σs

σs+ 1
(3.53)

where ζ(s) and υ(s) denote the output of washout filter and yaw rare, respectively. σ

denotes a time constant.
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Based on the equations (3.51)-(3.53), the lateral flight control system at the cruising

flight condition can be described as linear equations via the linearisation technology,

ẋ = Ax+Bu (3.54)

y = Cx (3.55)

where

x = col(α, δ̇, υ̇, δ, ζ, ϱ,ϖ) (3.56)

u = col(ϱu, ϖu) (3.57)

y = col(δ, ζ, ϱ,ϖ) (3.58)

The variables α, δ̇, υ̇, δ, ζ , ϱ and ϖ are sideslip angle, roll rate, yaw rate, bank angle,

washout filter output, aileron deflection, and rudder deflection, respectively. ϱu and ϖu are

the perturbed aileron deflection command and the perturbed rudder deflection command,

respectively. The matrices A, B and C, which are dependent on the structure of the

aircraft, are constants with appropriate dimensions.

According to [20], the lateral flight control system can also be described in the form

of interconnected systems as follows

ẋ1 = A1x1 +B1u1 +H1(x) (3.59)

y1 = C1x1 (3.60)

ẋ2 = A2x2 +B2u2 +H2(x) (3.61)

y2 = C2x2 (3.62)

where x1 = col(x11, x12, x13) and x2 = col(x21, x22, x23, x24) denote roll rate, bank angle,

aileron deflection, sideslip angle, yaw rate, washout filter output and rudder deflection,

respectively. Input signals u1 and u2 are the perturbed aileron deflection command and

the perturbed rudder deflection command, respectively. Functions H1(·) and H2(·) are

interconnections. Outputs y1 = col(y11, y12) and y2 = col(y21, y22) denote bank angle,

aileron deflection, washout filter output and rudder deflection, respectively. The matrices

A1, B1, C1, A2, B2 and C2, which are dependent on the structure of the aircraft, are

constants with appropriate dimensions.
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The lateral flight control system is just related to the lateral movement of the aircraft.

The complete flight control system includes pitch, roll and yaw control [99], lift and drag

increase control [100], manual trim [101], direct force control [102] and other configura-

tion change control of aircraft [103, 104]. Different control systems composed of many

subsystems have the cooperation with each other to realise the objective of controlling

aircraft.

3.7. SUMMARY

In this chapter, the fundamental knowledge of observability, controllability, feed-

back control, state observer, SMC and interconnected systems has been presented. SMC

is an effective method for interconnected systems due to its advantages, such as the fast

response, reduced-order dynamics and insensitivity to variation of parameters and distur-

bances in systems. After a preliminary understanding of the four main control strategies

for interconnected systems, decentralised control due to its simple structure, low cost of

calculation and reliability is a better choice compared with the other three methods for

interconnected systems. Besides to overcome the problem of unknown states in intercon-

nected systems, the technique of state observer is also essential. Based on these reasons,

SMC, state observer and decentralised control are considered as the main methodology

for interconnected systems in the following chapters.
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CHAPTER. 4

DECENTRALISED STATE FEEDBACK

SLIDING MODE CONTROL FOR

INTERCONNECTED SYSTEMS

In this chapter, a novel decentralised robust state feedback SMC is presented to stabilise

a class of nonlinear interconnected systems with matched uncertainty and mismatched

unknown interconnections. In section 4.1, the introduction of the research background

is presented. Section 4.2 is about the system description and problem formulation. In

section 4.3, a composite sliding surface is designed, and a set of conditions are developed

to guarantee that the corresponding sliding motion is uniformly asymptotically stable.

Then, a decentralised state feedback SMC is proposed to drive the interconnected systems

to the designed sliding surface in finite time, and a sliding motion is maintained thereafter.

In section 4.4, a numerical simulation example and a practical simulation example of two

coupled inverted pendula on carts are presented to demonstrate the effectiveness of the

proposed control strategy. The summary is given in section 4.5.
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4.1. INTRODUCTION

With the advance of scientific technology, many industrial and commercial systems

are modelled by interconnected systems with high complexity and large-scale. These sys-

tems usually consist of a set of composite objects through interactions, which are possibly

different sorts of physical, natural, and artificial dynamics. Such a class of systems widely

exist in the real world, for instance, modern power systems, transportation systems, air-

crafts and robots [20, 105, 106]. In reality, the existence of nonlinearities, uncertainties

and interconnections increases the difficulty of analysis and design for interconnected

systems. Besides that, practical systems are affected by internal and external disturbances

including modelling errors, parameter variation, temperature change, pressure and me-

chanical loss etc. Therefore, the exploration of complex interconnected systems with

unknown uncertainties and disturbances is full of challenges.

Due to the advantages of SMC and decentralised control, many researchers have fo-

cused on the decentralised SMC of interconnected systems recently. [107] applied the

decentralised SMC to the distributed simulation of differential-algebraic equation sys-

tems. But the proposed method could not be applied to general nonlinear systems. An

adaptive decentralised SMC for a class of non-affine stochastic nonlinear interconnected

systems was presented in [108], which was used to estimate one adaptive parameter of

each subsystem. Moreover, uncertainties were not considered in [108]. A kind of novel

decentralised state-feedback adaptive SMC was proposed in [109] for large-scale inter-

connected systems with nonlinear interconnections and time-delay. The global decen-

tralised discrete SMC for interconnected systems based on output feedback was employed

by [110]. These two strategies achieved good results for specified interconnected systems,

though all isolated subsystems are linear. A decentralised integral SMC combined with

PID was proposed in [111] for unmanned aerial vehicles, where the control sensitivity

with respect to the network topology was analysed, but the mismatched uncertainties

were not considered. [112] investigated a sliding variable-based decentralised static out-

put feedback SMC for interconnected descriptor systems, where it required that the in-

terconnected systems was linear. [113] presented a strategy of SMC for load frequency
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problems in two area interconnected power systems, though SMC was only applied to

specific interconnected systems without considering mismatched uncertainties. Although

many researchers have obtained the remarkable achievements of decentralised SMC, few

people concentrated on the nonlinear interconnected systems with mismatched uncertain-

ties and unknown interconnections at the same time. Due to the complexity of nonlinear

systems, the technology of SMC combined with decentralised control for nonlinear inter-

connected systems with unknown interconnections is challenging and significant.

In this chapter, a state feedback decentralised SMC scheme is proposed to stabilise

a class of nonlinear interconnected systems. The considered interconnected systems pos-

sess both nonlinear interconnections and nonlinear isolated subsystems. A coordinate

transformation is applied to transform all the isolated subsystems into the regular form to

facilitate the controller design as well as the interconnected system analysis. Then, for the

transformed system, a composite sliding surface is designed, and a set of conditions are

developed to guarantee that the corresponding sliding motion is uniformly asymptotically

stable based on the Lyapunov theory. A state feedback SMC law is established to drive

the system to the sliding surface in finite time and maintain the sliding motion after that.

The bounds on all uncertainties and interconnections have general nonlinear forms related

to system states, which are employed in decentralised control design to reduce the effects

of uncertainties. It is shown that under certain conditions, the effect of the unknown in-

terconnections can be completely cancelled by an appropriately designed decentralised

controllers with regard to the reachability analysis. At last, a numerical simulation and a

practical example are provided to demonstrate the effectiveness of the proposed control

strategy.
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4.2. SYSTEM DESCRIPTION AND PROBLEM FOR-

MULATION

Consider nonlinear time-varying interconnected systems with matched disturbances

and unknown interconnections consisted of n interconnected subsystems,

ẋi = fi(t, xi) + gi(t, xi)(ui + φi(t, xi)) + hi(t, x), i = 1, 2, · · · , n (4.1)

where xi ∈ Ωi ⊂ Rni (Ωi denotes a neighbourhood of the origin), and ui ∈ Rmi

are, respectively, state variables and inputs of the i-th subsystem with mi < ni, x :=

col(x1, x2, · · · , xn) ∈ Ω = Ω1 × Ω2 × · · · × Ωn. It is assumed that the matrix function

gi(·) ∈ Rni×mi is known and has full column rank; the nonlinear vector fi(·) ∈ Rni is

known. The term φi(·) denotes matched disturbance, and hi(·) represents the unknown

interconnection. All nonlinear functions are assumed to be continuous in their arguments

in the considered domain to guarantee the existence of system solutions.

Now, consider a nonlinear transformation,

zi = Ti(xi), i = 1, 2, · · · , n (4.2)

which is a diffeomorphism. The Jacobian matrices ∂Ti/∂xi are nonsingular in the consid-

ered domain for i = 1, 2, · · · , n. Then, the transformation (4.2) defines a new coordinate

z = col(z1, z2, · · · , zn). In the new coordinate z, system (4.1) can be described by

żi =

[
∂Ti

∂xi

ẋi

]
xi=T−1

i (zi)

=

[
∂Ti

∂xi

(
fi(t, xi) + gi(t, xi) · (ui + φi(t, xi)) + hi(t, x)

)]
xi=T−1

i (zi)

i = 1, 2, · · · , n

(4.3)

It is assumed that system (4.1) in the new coordinate z can be described by

żi1 =Fi1(t, zi1, zi2) +Hi1(t, z) (4.4)

żi2 =Fi2(t, zi1, zi2) +Gi(t, zi1, zi2) · (ui + Φi(t, zi1, zi2)) +Hi2(t, z) (4.5)
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where zi1 ∈ Ωzi1 ⊂ Rni−mi , zi2 ∈ Ωzi2 ⊂ Rmi , z = col(z1, z2, · · · , zn), zi = col(zi1, zi2) ∈

ΩTi
⊂ Rni ,

ΩTi
:= Ωzi1 × Ωzi2 := {(zi1, zi2) | (zi1, zi2) = Ti(xi), xi ∈ Ωi}

and Fi1(·)

Fi2(·)

 :=

[
∂Ti

∂xi

fi(t, xi)

]
xi=T−1

i (zi)

(4.6)

Hi(·) :=

Hi1(·)

Hi2(·)

 :=

[
∂Ti

∂xi

hi(t, x)

]
xi=T−1

i (zi)

(4.7)

 0

Gi(·)

 :=

[
∂Ti

∂xi

gi(t, xi)

]
xi=T−1

i (zi)

(4.8)

Φi(·) := [φi(t, xi)]xi=T−1
i (zi)

(4.9)

where Gi(·) ∈ Rmi×mi is nonsingular in the considered domain ΩTi
for i = 1, 2, . . . , n.

It should be noted that systems (4.4)−(4.5) are in the traditional regular form, which

is very useful for the constructive application of the sliding mode paradigm.

Remark 4.1. It should be pointed out that there is no systematic method to find a coordi-

nate transformation (4.2) to transfer system (4.1) to the regular form (4.4)-(4.5). But the

work in [114] and [115] can be referred to construct the corresponding transformation in

certain cases.

In the following, the nonlinear interconnected system (4.4)-(4.5) is focused on. The

objective of this chapter is to develop a state feedback decentralised SMC scheme, such

that the controlled systems (4.4)−(4.5) are uniformly asymptotically stable irrespective

of disturbances and unknown interconnections. It should be emphasised that the results

developed in this chapter can be easily extended to all interconnected systems (4.1) which

can be transformed to the systems (4.4)−(4.5) by a known nonsingular transformation.
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4.3. SLIDING MOTION ANALYSIS AND CONTROL

DESIGN

In this section, the sliding surface will be designed and the corresponding sliding

motion is to be analysed. Then, a novel decentralised SMC strategy is to be proposed

under the assumption that all system states are accessible.

4.3.1. STABILITY OF SLIDING MOTION

Based on the specific structure of the system (4.4)-(4.5), the switching function for

the i-th subsystem can be selected as

si(zi) = zi2, i = 1, 2, · · · , n (4.10)

Then, the composite sliding function for the interconnected system (4.4)−(4.5) is given

as
S(z) = col (s1(z1), s2(z2), · · · , sn(zn))

= col (z12, z22, · · · , zn2)
(4.11)

So, the composite sliding surface is written by

{col(z1, z2, . . . , zn) | zi2 = 0 for i = 1, 2, . . . , n} (4.12)

When the interconnected system is limited to moving on the sliding surface (4.12), zi2 =

0 for i = 1, 2, . . . , n. It follows from the structure of the system (4.4)-(4.5) that the

corresponding sliding mode dynamics can be described by

żi1 = Fi1s(t, zi1) +Hi1s(t, z11, z21, · · · , zn1), i = 1, 2, . . . , n (4.13)

where zi1 ∈ Ωzi1 ⊂ Rni−mi denotes the state of the sliding mode dynamics, and

Fi1s(·) := Fi1(t, zi1, zi2)|zi2=0 (4.14)

Hi1s(·) := Hi1(t, z)|z12=0,··· ,zn2=0 (4.15)

where Fi1(·) and Hi1(·) are defined in (4.6) and (4.7), respectively. From (4.7), it is

clear to see that the term Hi1s(·) comes from hi(t, x), which represents the unknown

interconnection of the i-th subsystems in (4.13) for i = 1, 2, . . . , n.

CHAPTER 4. DECENTRALISED STATE FEEDBACK SLIDING MODE CONTROL
FOR INTERCONNECTED SYSTEMS



4.3. SLIDING MOTION ANALYSIS AND CONTROL DESIGN 51

In order to analyse the sliding motion governed by interconnected system (4.13) and

related to the composite sliding surface (4.12), the following assumptions are needed.

Assumption 4.1. There exists the continuously differentiable functions Vi(t, zi1) : R+ ×

Rni−mi 7→ R+ for i = 1, 2, . . . , n, such that for any zi1 ∈ Ωzi1 the following inequalities

hold:

(i) p2i1(∥zi1∥) ≤ Vi(t, zi1) ≤ p2i2(∥zi1∥);

(ii) ∂Vi(·)
∂t

+
(

∂Vi(·)
∂zi1

)T
Fi1s(t, zi1) ≤ −p2i3(∥zi1∥);

(iii)
∥∥∥∥(∂Vi(·)

∂zi1

)T∥∥∥∥ ≤ pi4(∥zi1∥),

where the functions pil(·) for l = 1, 2, 3, 4 are class KC1 functions.

There are continuous functions ςil(·) such that for any zi1 ∈ Ωzi1 , pil(·) can be de-

composed as

pil(∥zi1∥) = ςil(∥zi1∥)∥zi1∥, l = 1, 2, 3, 4 (4.16)

where ςil(·) are continuous functions in R+ for i = 1, 2, . . . , n and l = 1, 2, 3, 4.

Remark 4.2. Assumption 4.1 implies that all nominal isolated subsystems of the inter-

connected system (4.13) are uniformly asymptotically stable. It is worth clarifying that

Assumption 4.1 is usually required when the nominal sliding mode dynamics are fully

nonlinear [115, 116]. Moreover, if the nominal system is exponentially stable, then As-

sumption 4.1 will be satisfied. It should be mentioned that, the fact that żi1 = Fi1s(t, zi1) is

uniformly asymptotically stable does not mean that the nominal system (4.4) is uniformly

asymptotically stable. It should be pointed out that in [110, 112, 116], the whole inter-

connected systems need to satisfy the constraint conditions to ensure all nominal isolated

subsystems of (4.4)-(4.5) are asymptotically stable, while only (4.13) needs to satisfy the

related conditions to guarantee that nominal isolated subsystems of the reduced-order sub-

systems (4.13) are asymptotically stable. Therefore, the approach proposed in this chapter

can reduce the constraint conditions and calculate burden compared with the work men-

tioned above in this regard.

Assumption 4.2. The interconnection term Hi1s(·) in the system (4.13) satisfies

∥Hi1s(t, z11, z21, · · · , zn1)∥ ≤ βi(t, z11, z21, · · · , zn1)
∑n

j=1 ∥zj1∥ (4.17)
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where βi(·) are known continuous functions for i = 1, 2, · · · , n.

Remark 4.3. Assumption 4.2 ensures that the interconnections in (4.13) are bounded by

known functions related to states of the system (4.13). However, the method developed in

this chapter can be applied to a wider class of interconnections, for example, (4.17) can

be replace by

∥Hi1s(·)∥ ≤ β1i(·)∥z11∥+ β2i(·)∥z21∥+ · · ·+ βni(·)∥zn1∥

It is required that βji are the constants for i, j = 1, 2, · · · , n in [110]. Note, in this chapter,

βji(·) are known continuous functions which include the interconnections considered in

[110] as a special case in this regard. In reality, the bounds on uncertainties for a specific

practical system usually can be obtained/estimated based on the prior knowledge and

engineering experiences as well as statistical/historical data collected for the considered

system. It should be noted that under certain conditions, the method proposed in [117]

can be applied if the bounds on uncertainties are unknown.

The following result is ready to be presented.

Theorem 4.1. Under Assumptions 4.1 and 4.2, the sliding motion associated with the

sliding surface (4.12) of the system (4.4)−(4.5) is uniformly asymptotically stable if the

function matrix MT (·)+M(·) > 0 in the considered domain zi1 ∈ Ωzi1 ⊂ Rni−mi , where

M = (mij(·))n×n is a n× n function matrix with its entries defined by

mij =

ς2i3(·)− ςi4(·)βi(·), i = j

− ςi4(·)βi(·), i ̸= j
(4.18)

where ςi3(·) and ςi4(·) are given in (4.16) and βi(·) is defined in (4.17) for i, j = 1, 2, . . . , n.

Proof . From the analysis above, it is clear to see that system (4.13) is the sliding mode

dynamics related to the composite sliding surface (4.12). The remain is to show that the

system (4.13) is uniformly asymptotically stable.

Under the condition that pil(·) is class KC1 function, the equations in (4.16) hold.

For system (4.13), consider the candidate Lyapunov function

V (t, z11, z21, · · · , zn1) =
n∑

i=1

Vi(t, zi1) (4.19)
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where Vi(·) is defined in Assumption 4.1. The time derivative of V (·) along the trajectory

of system (4.13) is described as

V̇ (t, z11, z21, · · · , zn1) =
n∑

i=1

V̇i(t, zi1)

=
n∑

i=1

(
∂Vi(·)
∂t

+

(
∂Vi(·)
∂zi1

)T

(Fi1s(·) +Hi1s(·))

)

≤
n∑

i=1

(
∂Vi(·)
∂t

+

(
∂Vi(·)
∂zi1

)T

Fi1s(·) +

∥∥∥∥∥
(
∂Vi(·)
∂zi1

)T
∥∥∥∥∥ · ∥Hi1s(·)∥

)
(4.20)

From Assumptions 4.1 and 4.2, the equation (4.20) can be written as follows

V̇ (t, z11, z21, · · · , zn1) ≤
n∑

i=1

(
− p2i3(∥zi1∥) + pi4(∥zi1∥) · βi(·)

n∑
j=1

∥zj1∥
)

(4.21)

According to equation (4.16), it follows that

V̇ (t, z11, z21, · · · , zn1)

≤
n∑

i=1

(
−ς2i3(∥zi1∥)∥zi1∥2 + ςi4(∥zi1∥)∥zi1∥βi(·)

n∑
j=1

∥zj1∥

)

=−
n∑

i=1

(
ς2i3(∥zi1∥)− ςi4(∥zi1∥)βi(·)

)
∥zi1∥2

−
n∑

i=1

n∑
j=1,j ̸=i

ςi4(∥zi1∥) · βi(·)∥zi1∥ · ∥zj1∥

=− 1

2
ZT
(
MT +M

)
Z (4.22)

where Z := col(∥z11∥, ∥z21∥, · · · , ∥zn1∥) and M is the n× n matrix with entries defined

in (4.18). Hence, the result follows from MT +M > 0. □

Remark 4.4. Theorem 4.1 provides a set of sufficient conditions under which the sliding

mode is uniformly asymptotically stable. The function matrix M in Theorem 4.1 only

depends on ςi3(·), ςi4(·) and βi(·), which are determined by the given system. The condi-

tion that MT +M > 0 with M defined in (4.18) implies the limitation to the mismatched

interconnections.
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4.3.2. REACHABILITY ANALYSIS

A set of conditions have been developed in Theorem 4.1 above to guarantee the slid-

ing motion stability of the considered interconnected systems (4.4)−(4.5). The objective

now is to design a decentralised state feedback SMC such that the interconnected system

is driven to the sliding surface (4.12) in finite time.

For the interconnected system (4.4)−(4.5), the corresponding reachability condition

based on the composite sliding surface is described by

ST (z)Ṡ(z) ≤ −η∥S(z)∥ (4.23)

where S(z) is defined by (4.11), and η is a positive constant.

Consider the system (4.4)−(4.5), the following assumption is introduced for further

analysis and control design.

Assumption 4.3. The uncertainty Φi(t, zi1, zi2) and the interconnection Hi2(t, z) in (4.5)

satisfy

∥Φi(t, zi1, zi2)∥ ≤ ξi1(t, zi1, zi2) (4.24)

∥Hi2(t, z)∥ ≤
n∑

j=1

ϵij(t, zj) (4.25)

where ξi1(t, zi1, zi2) and ϵij(t, zj) are known continuous functions.

It should be noted that Assumption 4.3 is the limitation to system uncertainties as

well as interconnections. It is clear to see that the bounds on the uncertainties and inter-

connections are fully nonlinear, which are to be employed in the control design to reject

the effects of them on system performance. Construct the control law

ui =−G−1
i (t, zi1, zi2)Fi2(t, zi1, zi2)−G−1

i (t, zi1, zi2)ki · sgn(zi2)

−G−1
i (t, zi1, zi2)

(
∥Gi(t, zi1, zi2)∥ξi1(t, zi1, zi2)sgn(zi2)

+
n

2
zi2 +

1

2

zi2
∥zi2∥2

n∑
j=1

ϵ2ji(t, zi)
)
, i = 1, 2, . . . , n

(4.26)

where Fi2(·) is given in (4.6), ξi1(·) and
∑n

j=1 ϵij(t, zj) are given in (4.24) and (4.25),

respectively, sgn(·) is the usual signum function, and ki is the control gain which is a

positive constant.
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Remark 4.5. From the control structure in (4.26), it follows that the functions ϵij(t, zj)

need to be vanished at zj = 0 for i, j = 1, 2, . . . , n. This implies that the unknown

interconnections Hi2(t, z) must be vanished at the origin zi2 = 0 for i = 1, 2, . . . , n.

Otherwise, it may result in infinite control due to the term zi2
∥zi2∥2 .

Theorem 4.2. Under Assumption 4.3, the nonlinear interconnected system (4.4)−(4.5)

can be driven to the sliding surface (4.12) in finite time by the designed controller in

(4.26) and maintains a sliding motion on it thereafter.

Proof . From the definition of S(z) in (4.11) and the system (4.5), it follows that

ST (z)Ṡ(z) =
n∑

i=1

zTi2żi2

=
n∑

i=1

zTi2

(
Fi2(t, zi1, zi2) +Gi(t, zi1, zi2)

(
ui + Φi(t, zi1, zi2)

)
+Hi2(t, z)

) (4.27)

Substituting the control ui in (4.26) into equation (4.27),

ST (z)Ṡ(z) =
n∑

i=1

zTi2

(
Fi2(·) +Gi(·)

(
−G−1

i (·)Fi2(·)

−G−1
i (·)

(
∥Gi(·)∥ξi1(·)sgn(zi2) +

n

2
zi2 +

1

2

zi2
∥zi2∥2

n∑
j=1

ϵ2ji(·)
)

−G−1
i (·)ki · sgn(zi2) + Φi(·)

)
+Hi2(·)

)
(4.28)

Rearrange the associated terms in (4.28), it follows that

ST (z)Ṡ(z)

=
n∑

i=1

(
zTi2Gi(·)Φi(·)− ∥Gi(·)∥ξi1(·)zTi2sgn(zi2)

+zTi2Hi2(·)−
(n
2
zTi2zi2 +

1

2

zTi2zi2
∥zi2∥2

n∑
j=1

ϵ2ji(·)
)
− kiz

T
i2sgn(zi2)

)

=
n∑

i=1

(
zTi2Gi(·)Φi(·)− ∥Gi(·)∥ξi1(·)zTi2sgn(zi2)

)
+
( n∑

i=1

zTi2Hi2(·)−
n∑

i=1

n

2
zTi2zi2 −

n∑
i=1

n∑
j=1

1

2

zTi2zi2
∥zi2∥2

ϵ2ji(·)
)

−
n∑

i=1

kiz
T
i2sgn(zi2) (4.29)
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Based on (4.24), (4.25) and the fact that sT sgn(s) ≥∥ s ∥ for any vectors s (see Lemma 1

in [118]), it follows that

n∑
i=1

(
zTi2Gi(·)Φi(·)− ∥Gi(·)∥ξi1(·)zTi2sgn(zi2)

)
≤

n∑
i=1

(
∥zi2∥ · ∥Gi(·)∥ · ∥Φi(·)∥ − ∥zi2∥ · ∥Gi(·)∥ · ξi1(·)

)
≤ 0 (4.30)

Then, by similar reasoning as in (4.30), and from (4.25)

n∑
i=1

zTi2Hi2(·)−
n∑

i=1

n

2
zTi2zi2 −

n∑
i=1

n∑
j=1

1

2

zTi2zi2
∥zi2∥2

ϵ2ji(·)

≤
n∑

i=1

∥zi2∥ · ∥Hi2(·)∥ −
n∑

i=1

n∑
j=1

1

2
∥zi2∥2 −

n∑
i=1

n∑
j=1

1

2
ϵ2ji(t, zi)

=
n∑

i=1

∥zi2∥ · ∥Hi2(·)∥ −
n∑

i=1

n∑
j=1

1

2
∥zi2∥2 −

n∑
i=1

n∑
j=1

1

2
ϵ2ij(t, zj) (4.31)

From the fact that a2+b2

2
≥ |a| |b|, it follows that

n∑
i=1

n∑
j=1

1

2
∥zi2∥2 +

n∑
i=1

n∑
j=1

1

2
ϵ2ij(t, zj)

=
n∑

i=1

n∑
j=1

1

2

(
∥zi2∥2 + ϵ2ij(t, zj)

)
≥

n∑
i=1

n∑
j=1

∥zi2∥ϵij(t, zj)

=
n∑

i=1

∥zi2∥
n∑

j=1

ϵij(t, zj)

≥
n∑

i=1

∥zi2∥ · ∥Hi2(·)∥ (4.32)

From (4.32) and (4.31),

n∑
i=1

zTi2Hi2(·)−
n∑

i=1

n

2
zTi2zi2 −

n∑
i=1

n∑
j=1

1

2

zTi2zi2
∥zi2∥2

ϵ2ji(·) ≤ 0 (4.33)

Substituting (4.30) and (4.33) into (4.29) yields

ST (z)Ṡ(z) ≤ −
n∑

i=1

kiz
T
i2sgn(zi2) ≤ −η

n∑
i=1

zTi2sgn(zi2) ≤ −η∥S∥ (4.34)

where η is chosen such that η ≤ min{k1, k2, · · · , kn}.
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The inequality (4.34) shows that the reachability condition (4.23) is satisfied, and

thus the interconnected system (4.4)−(4.5) can be driven to the sliding surface (4.12) in

finite time and maintain a sliding motion on it thereafter. Hence, the result follows. □

According to SMC theory, Theorems 4.1 and 4.2 together show that the closed-loop

system formed by applying control law (4.26) to interconnected system (4.4)−(4.5) is

uniformly asymptotically stable.

Remark 4.6. From the proof of Theorem 4.2 above, it is clear to see that both the matched

uncertainties and the mismatched interconnection terms can be cancelled by the designed

decentralised controllers in the reachability analysis, which is one of the main contri-

butions in this chapter. Such controllers can enhance the robustness against unknown

interconnections even in the framework of decentralised scheme. Moreover, the devel-

oped decentralised controllers can guarantee that the interconnected systems are driven to

the composite sliding surfaces in finite time. As for how to estimate the finite reaching

time, refer to the recent work in [119]. It should be noted that the effect of the mismatched

interconnections can not be rejected by designing controller. Actually the limitation to the

mismatched interconnection is necessary for sliding phase, which can be seen from the

comments in Remark 4.4.

Remark 4.7. It should be emphasised that in this chapter, the considered systems are fully

nonlinear with nonlinear disturbances and nonlinear interconnections. It is not required

that the nominal subsystems are linear, or the nominal subsystems are linearizable or par-

tial linearizable. This is in comparison with the most of existing work [120]. Therefore,

the methodology developed in this chapter can be applied to a wide class of interconnected

systems.

4.4. SIMULATION EXAMPLES

This section presents the simulation results of a numerical example and a practical

example to prove the effectiveness of the proposed method.
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4.4.1. NUMERICAL SIMULATION

Consider the nonlinear interconnected system which is composed of two third-order

subsystems

ẋ1 =


−6x2

12x
2
13 − 4x2

12 − 2x11

−3x12x
2
13 − 3x12 +

1
16
(x2

12 − x11)
2

3x2
12x13 − 3x13 − 1

4
(x2

12 − x11) exp{−t} cos(x13t)


︸ ︷︷ ︸

f1(·)

+


−4(x2

13 sin
2 t+ 1)

0

0

 (u1 + φ1(t, x1)) + h1(t, x) (4.35)

ẋ2 =


−8x21 + x23

−7x22 + x23

x21


︸ ︷︷ ︸

f2(·)

+


0

0

1

 (u2 + φ2(t, x2)) + h2(t, x) (4.36)

where xi = col(xi1, xi2, xi3) ∈ R3 and ui ∈ R are, respectively, the state variables and

inputs of the i-th subsystem for i = 1, 2. The terms φi(·) and hi(·) for i = 1, 2 are

matched disturbances and unknown interconnections, respectively.

Consider the transformation T1 and T2 defined by

T1 :


za11 = x12

zb11 = x13

z12 =
1

4
(x2

12 − x11)

and T2 :


za21 = x21

zb21 = x21 + x22

z22 = x23

It is easy to find that the Jacobian matrices of T1 and T2 are given by
0 1 0

0 0 1

−(1/4) (1/2)x12 0

 and


1 0 0

1 1 0

0 0 1


which are nonsingular in whole state space. By direct calculation, the system (4.35)-(4.36)
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in the new coordinates is given by

ż11 =

 −3za11
(
zb11
)2 − 3za11 + z212

3 (za11)
2 zb11 − 3zb11 − z12 exp{−t} cos

(
zb11t
)
+H11(·) (4.37)

ż12 = −2z12 +
1

2
za11z

2
12 + (1 +

(
zb11
)2

sin2 t)(u1 + Φ1(·)) +H12(·) (4.38)

ż21 =
[
−8za21 + z22 − 7zb21 − za21 + 2z22

]
+H21(·) (4.39)

ż22 = za21 + (u2 + Φ2(·)) +H22(·) (4.40)

where Hi1(·) ∈ R2 and Hi2(·) ∈ R1 for i = 1, 2.

In order to demonstrate the theoretical results obtained in this chapter, it is assumed

that the uncertainties in (4.37)-(4.40) satisfy

|Φ1(·)| ≤ (∥zb11∥+ 1) exp{−t} (4.41)

∥H11∥ ≤ ∥za11∥ sin2 t+ ∥z12∥+ ∥z22∥ (4.42)

∥H12∥ ≤
2∑

j=1

ϵ1j(t, zj) ≤ 0.25(∥za11∥ sin2 t+ ∥z12∥+ ∥z22∥) (4.43)

2∑
j=1

ϵ21j(t, zj) ≤ 0.06(∥za11∥ sin2 t+ ∥z12∥+ ∥z22∥)2 (4.44)

|Φ2(·)| ≤ ∥zb21∥ sin2 z22 (4.45)

∥H21∥ ≤ 1.618(za11 + (za11)
2 − 4z12)

2 sin2 z22 (4.46)

∥H22∥ ≤
2∑

j=1

ϵ2j(t, zj) ≤ 0.40(za11 + (za11)
2 − 4z12)

2 sin2 z22 (4.47)

2∑
j=1

ϵ22j(t, zj) ≤ 0.32(za11 + (za11)
2 − 4z12)

4 sin4 z22 (4.48)

For (4.37)-(4.40), select the switching function S(z) := col (z12, z22). When the

sliding motion occurs, z12 = z22 = 0. It can be obtained by direct calculation that the

sliding mode dynamics are written as follows

ż11 =

−3za11
(
zb11
)2 − 3za11

3 (za11)
2 zb11 − 3zb11

+H11s(·) (4.49)

ż21 =

 −8za21

−7zb21 − za21

+H21s(·) (4.50)
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Figure 4.1: Time responses of the switching function s1 and control signal u1 of the

subsystem (4.35) (Upper); time responses of the switching function s2 and control signal

u2 of the subsystem (4.36) (Bottom) for k1 = 0.2 and k2 = 1.5.

It is clear to see from (4.42) and (4.46) that

∥H11s(·)∥ ≤ ∥za11∥ sin2 t ≤ ∥z∥ (4.51)

∥H21s(·)∥ = 0 (4.52)

and thus β1 = 1 and β2 = 0.

For the system (4.37)-(4.40), consider the candidate Lyapunov function as

V (·) = V1(·) + V2(·)
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Figure 4.2: Time responses of the state variables of the subsystem (4.35) (Upper); time

responses of the state variables of the subsystem (4.36) (Bottom) for k1 = 0.2 and k2 =

1.5.

where V1 = (za11)
2 +

(
zb11
)2 and V2 = (za21)

2 +
(
zb21
)2. By direct calculation,

pil(∥zi1∥) = τil∥zi1∥, i = 1, 2, l = 1, 2, 3, 4 (4.53)

where τil for i = 1, 2, l = 1, 2, 3, 4 are the positive constants. It is easy to find that
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Assumption 4.1 holds and the pil(·) satisfy (4.53) with

τ11 = τ12 = 1, τ13 =
√
6, τ14 = 2

τ21 = τ22 = 1, τ23 =
√
13, τ24 = 2

Then from (4.18), it follows by direct calculation that

MT +M > 0 (4.54)

According to Theorem 4.1, the designed sliding mode is asymptotically stable.

Based on (4.26), the designed control is given by

u1(·) =
−3z12 + 0.5za11z

2
12

1 +
(
zb11
)2

sin2 t
− k1sgn(z12)

1 +
(
zb11
)2

sin2 t

−
(
(∥zb11∥+ 1) exp{−t}sgn(z12) +

0.03z12(∥za11∥ sin2 t+ ∥z12∥+ ∥z22∥)2

∥z12∥2
(
1 +

(
zb11
)2

sin2 t
) )

(4.55)
u2(·) = za21 − k2sgn(z22)− z22

−
(
∥zb21∥ sin2 z22sgn(z22) +

0.16z22
∥z22∥2

(
za11 + (za11)

2 − 4z12

)4
· sin4 z22

) (4.56)

where constants k1 and k2 are chosen as

k1 = 0.2 and k2 = 1.5

From Theorems 4.1 and 4.2, it follows that the controller (4.55)-(4.56) can stabilise the

interconnected system (4.37)-(4.40) uniformly asymptotically.

For simulation purposes, the initial states are chosen as x10 = (−2, 7.5, 5) and x20 =

(6, 2, 3.5), and the uncertainties and interconnections are chosen as

H11 =

−0.5
(
∥za11∥ sin2 t+ ∥z12∥+ ∥z22∥

)
0.7
(
∥za11∥ sin2 t+ ∥z12∥+ ∥z22∥

)
 (4.57)

H12 = 0.05(∥za11∥ sin2 t+ ∥z12∥+ ∥z22∥) (4.58)

Φ1(·) = 0.9 · (∥zb11∥+ 1) exp{−t} (4.59)

H21 =

−0.647(za11 + (za11)
2 − 4z12)

2 sin2 z22

0.323(za11 + (za11)
2 − 4z12)

2 sin2 z22

 (4.60)

H22 = 0.32(za11 + (za11)
2 − 4z12)

2 sin2 z22 (4.61)
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Φ2(·) = 0.7∥zb21∥ sin2 z22 (4.62)

Fig 4.1 shows the control signals and the sliding functions with respect to time. The

simulation results in Fig 4.2 show that the closed-loop system formed by applying con-

trol (4.55)-(4.56) to the interconnected system (4.37)-(4.40) is uniformly asymptotically

stable which is in consistence with the obtained theoretical results.
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Figure 4.3: Time responses of the switching function s1 and control signal u1 (Upper);

time responses of the switching function s2 and control signal u2 (Bottom) for k1 = 2.5

and k2 = 5.

It should be noted that the reachability constant depends on the parameters k1 and k2

CHAPTER 4. DECENTRALISED STATE FEEDBACK SLIDING MODE CONTROL
FOR INTERCONNECTED SYSTEMS



4.4. SIMULATION EXAMPLES 64

0 0.5 1 1.5 2 2.5 3

time (s)

-20

-10

0

10

20

s
t
a

t
e

s
 x

1
x

11

x
12

x
13

0 0.5 1 1.5 2 2.5 3

time (s)

-10

-5

0

5

10

s
t
a

t
e

s
 x

2

x
21

x
22

x
23

Figure 4.4: Time responses of the state variables of the subsystem (4.35) (Upper); time

responses of the state variables of the subsystem (4.36) (Bottom) for k1 = 2.5 and k2 = 5.

which affect the convergent rates of sliding functions as well as system state variables. In

order to demonstrate this, keep all the other parameters the same but increase k1 and k2 to

k1 = 2.5 and k1 = 5. The simulation results are presented in Figs 4.3 and 4.4. It is clear

to see, by comparing Figs 4.1 and 4.2 with Figs 4.3 and 4.4, that the bigger the values of

k1 and k2 are, the faster the sliding functions and system state variables converge. In the

practical situation, ki is selected according the actual systems, and values of ki are not

infinity. Excessive values of ki can cause the problem of the chattering.

Remark 4.8. It should be noted that the interconnected system (4.35)-(4.36) are fully non-
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linear where both matched uncertainties and unmatched interconnections are involved.

Therefore, the methods proposed in the recent work [121, 122] cannot be applied to

system (4.35)-(4.36). Although the considered interconnected systems are nonlinear in

[121, 122], it is required that the nominal subsystems have a triangle structure and the

uncertainties/interconnections have a linear growth rate in [121]. Moreover, it is required

that the interconnections are matched in [122].

4.4.2. SIMULATION RESULTS OF TWO COUPLED INVERTED PEN-

DULA ON CARTS

Consider a nonlinear interconnected system of the two coupled inverted pendula on

carts [20] as follows

ẋ1 =

 x12

0.25 sin(3t)− 0.25 sin(2t) + 0.75x11 − 0.02x2
12 sinx11


︸ ︷︷ ︸

f1(·)

+

 0

0.5

u1 +

 0

h1(t, x)

 (4.63)

ẋ2 =

 x22

0.25 sin(2t)− 0.25 sin(3t) + 0.75x21 − 0.02x2
22 sinx21


︸ ︷︷ ︸

f2(·)

+

 0

0.5

u2 +

 0

h2(t, x)

 (4.64)

where xi = col(xi1, xi2) ∈ R2 and ui ∈ R are the state variables and inputs of the i-th

subsystem for i = 1, 2, respectively. xi1 and xi2 denote the angle θi and angular velocity

θ̇i for i = 1, 2. hi(·) ∈ R for i = 1, 2 are unknown interconnections. Fig 4.5 shows the

structure of this nonlinear interconnected system.

It is easy to find that the system (4.63)-(4.64) has the regular form. So choose the

transformation T1 = I2 and T2 = I2. The system (4.63)-(4.64) is rewritten in the regular
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Figure 4.5: The structure of the two coupled inverted pendula on carts [20].

form as follows

ẋ11 = x12 (4.65)

ẋ12 = 0.25 sin(3t)− 0.25 sin(2t) + 0.75x11 − 0.02x2
12 sinx11 + 0.5u1 + h1(t, x)

(4.66)

ẋ21 = x22 (4.67)

ẋ22 = 0.25 sin(2t)− 0.25 sin(3t) + 0.75x21 − 0.02x2
22 sinx21 + 0.5u2 + h2(t, x)

(4.68)

It is assumed that the interconnections hi(·) for i = 1, 2 in (4.65)-(4.68) satisfy

∥h1∥ ≤
2∑

j=1

ϵ1j(t, zj)

≤ (0.25∥x11∥+ 0.5∥x12∥+ 0.5∥x21∥+ 0.5∥x22∥)0.5(2x11 + x12)
0.5 sin t (4.69)

∥h2∥ ≤
2∑

j=1

ϵ2j(t, zj)

≤ (0.7∥x11∥+ 0.6∥x12∥+ 0.25∥x21∥+ 0.4∥x22∥)0.5(2x21 + x22)
0.5 sin t (4.70)
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Figure 4.6: Time responses of the switching function s1 and control signal u1 for the

subsystem (4.63) (Upper); time responses of the switching function s2 and control signal

u2 for the subsystem (4.64) (Bottom).

For (4.65)-(4.68), select the switching function S(z) := col (s1, s2), where si =

2xi1 + xi2 for i = 1, 2. When the sliding motion occurs,

2x11 + x12 = 2x21 + x22 = 0 (4.71)

It can be obtained by direct calculation that the sliding mode dynamics are written

as follows

ẋ11 = −2x11 (4.72)

CHAPTER 4. DECENTRALISED STATE FEEDBACK SLIDING MODE CONTROL
FOR INTERCONNECTED SYSTEMS



4.4. SIMULATION EXAMPLES 68

0 1 2 3 4 5 6 7 8 9 10

time (s)

-1

0

1

2

p
e

n
d

u
lu

m
 1

angle 
1

angular velocity

0 1 2 3 4 5 6 7 8 9 10

time (s)

-0.5

0

0.5

1

p
e

n
d

u
lu

m
 2

angle 
2

angular velocity

Figure 4.7: Time responses of angle θ1 and angular velocity θ̇1 (Upper); time responses

of angle θ2 and angular velocity θ̇2 (Bottom).

ẋ21 = −2x21 (4.73)

It is easy to achieve that β1 = 0 and β2 = 0.

For the system (4.65)-(4.68), consider the candidate Lyapunov function as

V (·) = V1(·) + V2(·)

where V1 = x2
11 and V2 = x2

21. By direct calculation,

pil(∥xi1∥) = τil∥xi1∥, i = 1, 2, l = 1, 2, 3, 4 (4.74)
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where τil for i = 1, 2, l = 1, 2, 3, 4 are the positive constants. It is easy to find that

Assumption 4.1 holds and the pil(·) satisfy (4.74) with

τ11 = τ12 = 1, τ13 = τ14 = 2

τ21 = τ22 = 1, τ23 = τ24 = 2

Then from (4.18), it follows by direct calculation that

MT +M > 0 (4.75)

According to Theorem 4.1, the designed sliding mode is asymptotically stable.

Based on (4.26), the designed control is given by

u1(·) =− 0.5 sin 3t+ 0.5 sin 2t− 5.5x11 − 6x12 + 0.04x2
12 sinx11 − 2k1sgn(2x11 + x12)

− (2x11 + x12)
2(0.25∥x11∥+ 0.5∥x12∥+ 0.5∥x21∥+ 0.5∥x22∥) sin2 t

2∥2x11 + x12∥2
(4.76)

u2(·) =− 0.5 sin 2t+ 0.5 sin 3t− 5.5x21 − 6x22 + 0.04x2
22 sinx21 − 2k2sgn(2x21 + x22)

− (2x21 + x22)
2(0.7∥x11∥+ 0.6∥x12∥+ 0.25∥x21∥+ 0.4∥x22∥) sin2 t

2∥2x21 + x22∥2
(4.77)

where constants k1 and k2 are chosen as

k1 = 0.5 and k2 = 0.6

According to Theorems 4.1 and 4.2, it follows that the controller (4.76)-(4.77) can sta-

bilise the interconnected system (4.65)-(4.68) uniformly asymptotically.

For simulation purposes, the initial states are chosen as x10 = (0.7, 0.5) and x20 =

(0.2, 0.9), and interconnections h1 and h2 are selected as

h1 = 0.2(0.25∥x11∥+ 0.5∥x12∥+ 0.5∥x21∥+ 0.5∥x22∥)0.5(2x11 + x12)
0.5 sin t (4.78)

h2 = 0.3(0.7∥x11∥+ 0.6∥x12∥+ 0.25∥x21∥+ 0.4∥x22∥)0.5(2x21 + x22)
0.5 sin t (4.79)

Fig 4.6 shows the time responses of control signals and the sliding functions. The

simulation results in Fig 4.7 show that the closed-loop system formed by applying con-

trol (4.76)-(4.77) to the interconnected system (4.65)-(4.68) is uniformly asymptotically

stable. Simulation results for the two coupled inverted pendula on carts prove the effec-

tiveness and feasibility of the proposed method. It is mentioned that there is the chattering
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in Fig 4.6, which is a general phenomena in SMC. It will not cause the unstabitily of sys-

tems, when the amplitude of the chattering is within a reasonable range. The future work

of this chapter will be focused on solving the problem of chattering.

Remark 4.9. For this nonlinear interconnected system of the two coupled inverted pendula

on carts (4.65)-(4.68), the sliding surface is selected as 2xi1 + xi2 instead of xi2 in (4.10)

due to the specific structure of this system. The proposed method in this chapter can adopt

any sliding surface related to the states, because all states of object system are available.

In the common situation, choosing si = xi2 can reduce the cost of calculation.

4.5. SUMMARY

A class of fully nonlinear interconnected systems with unknown nonlinear inter-

connections has been considered in this chapter. A composite sliding surface has been

designed, and a set of conditions has been developed to guarantee that the corresponding

sliding motion is uniformly asymptotically stable. A novel decentralised state feedback

control law is designed for the nonlinear interconnected systems to ensure that the inter-

connected system is driven to the designed sliding surface in finite time. The proposed

strategy supplies an approach to improve the robustness of nonlinear interconnected sys-

tems in that effects of all matched uncertainties and mismatched interconnections can be

rejected by the designed decentralised control regarding the reaching phase using fully

nonlinear bounds of uncertainties and interconnections. This chapter focuses on fully

nonlinear systems, the proposed method does not need to use the technique of linearisa-

tion, which is widely used in existing works to deal with nonlinear interconnected systems

with uncertainties. Finally, numerical and practical simulation results have been presented

to show the effectiveness of the proposed methods.
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DYNAMIC OBSERVER FOR

NONLINEAR INTERCONNECTED

SYSTEMS WITH UNCERTAINTIES

In this chapter, a dynamic observer for a class of complex nonlinear interconnected sys-

tems with matched and mismatched uncertainties is presented. The research background

and the system description are given in sections 5.1 and 5.2, respectively. In section 5.3,

the dynamic observer is applied to estimate the states of the nonlinear interconnected sys-

tems. The simulation results of a numerical example and a practical example called as the

lateral flight control system are presented to demonstrate the effectiveness of the proposed

strategy in section 5.4. Section 5.5 concludes this chapter.

5.1. RESEARCH BACKGROUND

In recent years, systems in both industry and daily life have become larger and more

complex. They are usually not simple which just has a single function. Most of these
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complex systems are composed of several subsystems, and all subsystems are interacted

with each other. Some of these complex systems can be named as interconnected systems.

Interconnected systems which widely exist in practical world consist of many subsystems

with various functions and structures. For instance, quadrotors, smart cars and electronic

monitoring systems are all typical interconnected systems which are popular in daily life.

Because of nonlinearity, uncertainties, high dimensions and complex components in these

interconnected systems, it is very hard to get the accurate values of system states. So, it is

difficult to analyse and control the interconnected systems effectively.

In practical cases, some states of practical systems are unavailable due to inaccurate

modelling or poor operating environment. Many classic control theories based on the

accurate values of states in systems can not achieve high performance in this situation.

In the case when system states are not available, one way is to establish an observer to

estimate the system states, and then the estimated states are used to form feedback loop if

possible. The observer is a kind of dynamic system which is dependent on the inputs and

outputs of the original system. With the development of control theory, there are many

different kinds of observers which are applied in the practical systems, such as unknown

input observers, deadbeat observers, SMC observers and backstepping observers etc. A

novel state observer for nonlinear systems with non-negligible and different time delays

was proposed in [123]. Cascade high-gain observer was applied to output feedback con-

trol which overcame the problem of high dimension in traditional high-gain observers in

[124]. An actuator fault and disturbance estimation scheme using sliding mode observer

based on TS fuzzy system model was proposed in [125]. State observers whose conver-

gence rate was faster than the standard asymptotic observers for reaction systems were de-

scribed in [126]. A sensor-less speed estimator based on an adaptive non-linear high gain

observer which only used the measured stator currents and control voltages was presented

to estimate the speed of an induction motor in [127]. Event-triggered observers were de-

signed for output-sampled nonlinear state affine systems in [128]. A strategy related to

the reduced-order observer of the Boolean control networks for fault diagnosis using the

semi-tensor product of matrices was proposed in [129]. State estimation using a network

of distributed observers with unknown inputs for a class of linear time-invariant systems

was presented in [130]. The output feedback SMC based on dynamic gain observer for an
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uncertain linear system with unstable zeros was considered in [131]. It should be noted

that these observers mentioned above are only for centralised control systems.

It is a common situation that values of states are not available for complex nonlin-

ear interconnected systems. Therefore, the observer is required to identify/estimate state

variables for interconnected systems. A full-order nonlinear observer-based control for

interconnected power systems was proposed in [132]. The approach of feedback lineari-

sation was used to design the nonlinear observer when the power system was fully lin-

earised. However, the linearisation of the nonlinear interconnected systems could greatly

reduce the accuracy as well as the resulting performance. A novel distributed observer

for interconnected multi-rate systems was presented and achieved great results in [133].

But it ignored the existence of matched uncertainty, and the interconnection of the system

was in linear form. The new method for designing distributed reduced-order functional

observers of a class of interconnected systems with time delays was considered in [134].

In this strategy, interconnected systems without matched uncertainty were not fully non-

linear. Besides that, it had several restrictive conditions due to using the reduced-order

observer. Observer-based fuzzy adaptive optimal stabilization control for completely un-

known nonlinear interconnected systems was presented in [135], this strategy did not

consider the matched uncertainty, and the interconnections had the specific form which

needed to satisfy the conditions of fuzzy logic. [136] investigated a decentralised track-

ing control problem for a class of strict-feedback interconnected systems with unknown

parameters, the interconnected systems needed to meet several conditions which might

not be used in the complex interconnected systems. Based on these reasons above, the

dynamic observer design for nonlinear interconnected systems with matched and mis-

matched uncertainties is full of challenges and meaningful.

In this chapter, the dynamic observer is applied to complex nonlinear interconnected

systems in the presence of both matched and mismatched uncertainties. This dynamic ob-

server can estimate the states which may not be available for control design. The proposed

method has great identification ability with small estimated state errors for nonlinear in-

terconnected systems. It is pointed out that the uncertainties of nonlinear interconnected

systems considered in this chapter have general structures, which indicates that the pre-
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sented strategy can be effectively used in generalised nonlinear interconnected systems

with uncertainties.

5.2. SYSTEM DESCRIPTION

Consider the system

ẋi = Aixi +Bi(ui +Giφi(xi, t)) + Eifi(xi, t) +
n∑

j=1

Hij(xj, t) (5.1)

yi = Cixi, i = 1, 2, · · · , n (5.2)

where xi ∈ Ωi ⊂ Rni (Ωi is a neighbourhood of the origin), ui ∈ Rmi and yi ∈ Rqi

with mi ≤ qi < ni are the state, input and output of the i-th subsystem, respectively.

Ai, Bi, Ci, Ei and Gi are known constant matrices with appropriate dimensions, where

Bi is of full row rank, and Ci is of full column rank. Eifi(xi, t) and Giφi(xi, t) are mis-

matched uncertainty and matched uncertainty, respectively, where fi(xi, t) and φi(xi, t)

are unknown functions with appropriate dimensions, and the matrices Gi and Ei are

used to describe the structure of matched and mismatched uncertainties, respectively.∑n
j=1Hij(xj, t) is the known nonlinear interconnection of the i-th subsystem. It is as-

sumed that all nonlinear terms involved in this chapter are continuous in the considered

domain to guarantee the existence of the solutions of the system (5.1)-(5.2).

Assumption 5.1. The unknown functions fi(xi, t) and φi(xi, t) satisfy

∥fi(xi, t)∥ ≤ ϵi(xi, t) (5.3)

∥φi(xi, t)∥ ≤ ϑi(xi, t) (5.4)

where ϵi(xi, t) and ϑi(xi, t) are known Lipschitz functions with respect to xi in the domain

Ωi ⊂ Rni and uniformly about t. The known nonlinear interconnection Hij(·) is Lipschitz

with respect to xj in the domain Ωj ⊂ Rnj and uniformly about t for i, j = 1, 2, · · · , n.

From Assumption 5.1, it follows that for any xi, x̂i, xj and x̂j in the considered

domain,

∥ϵi(xi, t)− ϵi(x̂i, t)∥ ≤ Lϵi(t)∥xi − x̂i∥ (5.5)
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∥ϑi(xi, t)− ϑi(x̂i, t)∥ ≤ Lϑi
(t)∥xi − x̂i∥ (5.6)

∥Hij(xj, t)−Hij(x̂j, t)∥ ≤ LHij
(t)∥xj − x̂j∥ (5.7)

where Lϵi(t), Lϑi
(t) and LHij

(t) are nonnegative functions in R+ = {t|t ≥ 0}.

Remark 5.1. The matrices Ei and Gi are employed to describe the structural character-

istics of the nonlinear mismatched and matched uncertainties, respectively. fi(xi, t) and

φi(xi, t) are unknown functions with known bounds which will be used in analysis and

observer design later.

Assumption 5.2. The matrix pair (Ai, Ci) is observable for i = 1, 2, · · · , n.

Assumption 5.2 is a basic limitation for the matrix pair (Ai, Ci). A dynamic observer

is to be designed in next section.

5.3. DYNAMIC OBSERVER DESIGN

In view of the observability of the pair (Ai, Ci) in Assumption 5.2, there exists a

matrix Li such that (Ai−LiCi) is stable and thus for any Qi > 0 the following Lyapunov

equation has a unique solution Pi > 0,

(Ai − LiCi)
TPi + Pi(Ai − LiCi) = −Qi (5.8)

Assumption 5.3. There exists known matrices Fi, Ji and Pi such that [Ei BiGi]
TPi =

[Fi Ji]Ci holds, where Pi satisfies (5.8), and the matrices Bi, Ci, Ei and Gi are given in

equations (5.1) and (5.2).

Consider the following dynamic system

˙̂xi = Aix̂i +Bi(ui +Υi(x̂i, yi, t)) + Li(yi − Cix̂i) + Ψi(x̂i, yi, t) +
n∑

j=1

Hij(x̂j, t)

(5.9)

where x̂i ∈ Rni , Li ∈ Rni×qi satisfy (5.8), and

Ψi(x̂i, yi, t) =

Ei
Fi(yi − Cix̂i)

∥Fi(yi − Cix̂i)∥
ϵi(x̂i, t), Fi(yi − Cix̂i) ̸= 0 (5.10)

0, Fi(yi − Cix̂i) = 0 (5.11)
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Υi(x̂i, yi, t) =

Gi
Ji(yi − Cix̂i)

∥Ji(yi − Cix̂i)∥
ϑi(x̂i, t), Ji(yi − Cix̂i) ̸= 0 (5.12)

0, Ji(yi − Cix̂i) = 0 (5.13)

where Ei, Fi, Gi and Ji satisfy Assumption 5.3, the known functions ϵi(·) and ϑi(·) are

given in Assumption 5.1.

Let state estimated error ei = xi − x̂i. It follows from (5.1) and (5.9) that the error

dynamic is given by

ėi =(Ai − LiCi)ei + (Eifi(xi, t)−Ψi(x̂i, yi, t)) +Bi(Giφi(xi, t)−Υi(x̂i, yi, t))

+
n∑

j=1

(Hij(xj, t)−Hij(x̂j, t))

(5.14)

The following results are presented to underpin subsequent analysis.

Lemma 5.1. Suppose that Assumptions 5.1-5.3 are satisfied, the following results hold:

(i) eTi Pi(Eifi(xi, t)−Ψi(x̂i, yi, t)) ≤ Lϵi(t)∥FiCi∥∥ei∥2

(ii) eTi PiBi(Giφi(xi, t)−Υi(x̂i, yi, t)) ≤ Lϑi
(t)∥JiCi∥∥ei∥2

(iii) eTi Pi

∑n
j=1(Hij(xj, t)−Hij(x̂j, t)) ≤

∑n
j=1 λ̄(Pi)LHij

(t)∥ej∥∥ei∥

where Lϵi(t), Lϑi
(t) and LHij

(t) are satisfied (5.5), (5.6) and (5.7), respectively. λ̄(Pi) is

the maximum eigenvalue of the matrix Pi.

Proof. From Assumptions 5.1 and 5.3, combining with equations (5.10) and (5.11), if

FiCiei ̸= 0,

eTi Pi(Eifi(xi, t)−Ψi(x̂i, yi, t))

= (FiCiei)
Tfi(xi, t)−

(FiCiei)
TFiCiei

∥FiCiei∥
ϵi(x̂i, t)

≤ ∥FiCiei∥ϵi(xi, t)− ∥FiCiei∥ϵi(x̂i, t)

≤ Lϵi(t)∥FiCi∥∥ei∥2 (5.15)

Otherwise if FiCiei = 0, then from ET
i Pi = FiCi in Assumption 5.3, there is

eTi PiEi = (ET
i Piei)

T = (FiCiei)
T = 0 (5.16)
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Therefore, from analysis above,

eTi Pi(Eifi(xi, t)−Ψi(x̂i, yi, t)) = 0 ≤ Lϵi(t)∥FiCi∥∥ei∥2 (5.17)

Hence the conclusion (i) follows.

From Assumptions 5.1 and 5.3, combining with the equations (5.12) and (5.13), if

JiCiei ̸= 0,

eTi PiBi(Giφi(xi, t)−Υi(x̂i, yi, t))

= (JiCiei)
Tφi(xi, t)−

(JiCiei)
TJiCiei

∥JiCiei∥
ϑi(x̂i, t)

≤ ∥JiCiei∥ϑi(xi, t)− ∥JiCiei∥ϑi(x̂i, t)

≤ Lϑi
(t)∥JiCi∥∥ei∥2 (5.18)

Otherwise if JiCiei = 0, then from (BiGi)
TPi = JiCi in Assumption 5.3, there is

eTi PiBiGi = ((BiGi)
TPiei)

T = (JiCiei)
T = 0 (5.19)

Therefore, from analysis above,

eTi PiBi(Giφi(xi, t)−Υi(x̂i, yi, t)) ≤ Lϑi
(t)∥JiCi∥∥ei∥2 (5.20)

Hence the conclusion (ii) follows.

Based on (5.7), it follows

eTi Pi

n∑
j=1

(Hij(xj, t)−Hij(x̂j, t))

≤ ∥ei∥λ̄(Pi)
n∑

j=1

(LHij
(t)∥xj − x̂j∥)

=
n∑

j=1

λ̄(Pi)LHij
(t)∥ej∥∥ei∥ (5.21)

Hence conclusion (iii) follows.

Theorem 5.1. Suppose that Assumptions 5.1-5.3 are satisfied. Then, there exists positive

constants α1 and α2 such that

∥ei∥ ≤ α2exp{−α1t} (5.22)
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if (M +MT ) is positive definite with M = (mij)n×n defined by

mij =

{
λ(Qi)− 2Lϵi(t)∥FiCi∥ − 2Lϑi

(t)∥JiCi∥ − 2λ(Pi)LHij
(t), i = j (5.23)

−2λ(Pi)LHij
(t), i ̸= j (5.24)

where Qi is satisfied in equation (5.8), Fi and Ji are defined in Assumption 5.3. λ(Qi) is

the minimum eigenvalue of the matrix Qi, λ(Pi) is the maximum eigenvalue of the matrix

Pi.

Proof. For the system (5.14), consider a Lyapunov function candidate V1 =
∑n

i=1 e
T
i Piei.

Then, the time derivative of V1 along the trajectories of system (5.14) is given by

V̇1 =
n∑

i=1

(
− eTi Qiei + 2eTi Pi(Eifi(xi, t)−Ψi(x̂i, yi, t)) + 2eTi PiBi(Giφi(xi, t)

−Υi(x̂i, yi, t)) + 2eTi Pi

n∑
j=1

(Hij(xj, t)−Hij(x̂j, t))

)
where equation (5.8) is used above. From conclusions (i)-(iii) of Lemma 5.1, it follows

that

V̇1 ≤
n∑

i=1

(−λ(Qi)∥ei∥2 + 2Lϵi(t)∥FiCi∥∥ei∥2

+ 2Lϑi
(t)∥JiCi∥∥ei∥2 + 2

n∑
j=1

λ̄(Pi)LHij
(t)∥ei∥∥ej∥)

=−
n∑

i=1

(λ(Qi)− 2Lϵi(t)∥FiCi∥ − 2Lϑi
(t)∥JiCi∥ − 2λ(Pi)LHij

(t))∥ei∥2

+
n∑

i=1

n∑
j=1,j ̸=i

2λ(Pi)LHij
(t)∥ei∥∥ej∥

=− 1

2
[∥e1∥∥e2∥ . . . ∥en∥](M +MT )[∥e1∥∥e2∥ . . . ∥en∥]T

≤− 1

2
λ(M +MT )

n∑
i=1

∥ei∥2 (5.25)

Given that
n∑

i=1

eTi Piei ≤ maxi{λ(Pi)}
n∑

i=1

∥ei∥2 (5.26)
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then, according to (5.25) and (5.26), it follows that

V̇1 ≤− λ(M +MT )

2maxi{λ(Pi)}

n∑
i=1

eTi Piei

=− λ(M +MT )

2maxi{λ(Pi)}
V1

=− α1V1

where

α1 ≡:
λ(M +MT )

2maxi{λ(Pi)}
> 0 (5.27)

Based on the analysis above, it follows that

V1(t) ≤ V̄1(0)exp{−α1t}

Since mini{λ(Pi)}∥ei∥2 ≤ eTi Piei ≤
∑n

i=1 e
T
i Piei = V1, the conclusion ∥ei∥ ≤ α2exp{−α1t}

follows by letting

α2 >
√

V̄1(0)/mini{λ(Pi)} (5.28)

Hence, the result is obtained.

Remark 5.2. Theorem 5.1 shows that the dynamic observer in (5.9) is an exponential

observer for the system (5.1)-(5.2). This can be seen from the inequality (5.22). The

proof is also constructive and provides a method to determine the values of α1 and α2.

5.4. SIMULATION RESULTS

This part shows the results of both numerical and practical simulations to demon-

strate the effectiveness of the presented observer design above.

5.4.1. NUMERICAL EXAMPLE

Take consideration of the interconnected system composed of two subsystems as

follows

ẋ1 =


−7 0 1

0 −6 1

1 0 0



x11

x12

x13


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+


0

0

1

 (u1 + φ1(t, x1)) +


0.9126 1.1776

1 1.2

0.5 1

 f1(x1, t) +


0.14(∥x21∥+ sin(x13))

0

0.07(sin(x21) + ∥x11∥)


(5.29)

y1 =

1 1 0

0 0 1



x11

x12

x13

 (5.30)

ẋ2 =

−2 1

1 0

x21

x22


+

0
1

u2 +

4.5 2.25

1 0.5

 f2(x2, t) +

0.05(∥x11∥+ ∥x22∥)

0.04sin(x12)

 (5.31)

y2 =
[
1 1

]x21

x22

 (5.32)

where x1 = col(x11, x12, x13) and x2 = col(x21, x22) denote states of subsystems. The

uncertainties are assumed to satisfy

∥f1(·)∥ ≤ ϵ1(·) = 0.2(sin(x12) + ∥x13∥) (5.33)

∥f2(·)∥ ≤ ϵ2(·) = 0.02∥x22∥ (5.34)

∥φ1(·)∥ ≤ ϑ1(·) = 0.13sin(x11) (5.35)

Lϵ1(·) = 0.4 (5.36)

Lϵ2(·) = 0.02 (5.37)

Lϑ1(·) = 0.13 (5.38)

and

LH1j
(·) = 0.313 (5.39)

LH2j
(·) = 0.108 (5.40)

where

H1j(·) =


0.14(∥x21∥+ sin(x13))

0

0.07(sin(x21) + ∥x11∥)

 (5.41)
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H2j(·) =

0.05(∥x11∥+ ∥x22∥)

0.04sin(x12)

 (5.42)
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Figure 5.1: Time responses of the estimated states of the system (5.29)-(5.32).

In the system (5.29)-(5.32),

A1 =


−7 0 1

0 −6 1

1 0 0

 (5.43)

A2 =

−2 1

1 0

 (5.44)
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B1 =


0

0

1

 (5.45)

B2 =

0
1

 (5.46)

C1 =

1 1 0

0 0 1

 (5.47)

C2 =
[
1 1

]
(5.48)

By direct verification, (A1, C1) and (A2, C2) are observable, thus Assumption 5.2 is sat-

isfied.

Choose

L1 =


−3.5979 5.3943

0.2988 −1.7078

1.3056 2.2992

 (5.49)

L2 =

 −0.5

1.0000

 (5.50)

By calculation, (A1 − L1C1) and (A2 − L2C2) are stable. For Q1 = I3 and Q2 = I2,

the solutions of Lyapunov equation (5.8) are

P1 =


0.1497 0.0668 −0.0960

0.0668 0.1339 −0.0789

−0.0960 −0.0789 0.3081

 (5.51)

P2 =

0.3333 0.2000

0.2000 0.8000

 (5.52)

Let

E1 =


0.9126 1.1776

1 1.2

0.5 1

 (5.53)
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Figure 5.2: Time responses of observation errors.

F1 =

0.1554 −0.0125

0.1604 0.1004

 (5.54)

E2 =

4.5 2.25

1 0.5

 (5.55)

F2 =

 1.7

0.85

 (5.56)

J1 =
[
−0.0875 0.3081

]
(5.57)

G1 = I1 (5.58)

According to (5.23)-(5.24),

(M +MT ) =

 1.0658 −0.3111

−0.3111 1.4084

 (5.59)
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Figure 5.3: Time responses of control laws.

where (M +MT ) is positive definite, thus Theorem 5.1 is satisfied. Based on (5.27) and

(5.28), α1 = 1.1 and α2 = 0.15.

Then, for simulation purpose, the control law is selected as follows

u1 = −(x̂11 + 8x̂13) (5.60)

u2 = −(x̂21 + 3x̂22) (5.61)

The initial conditions are selected as x1 = col(2, 4, 2), x2 = col(3, 1), x̂1 = col(1, 4, 0)

and x̂2 = col(1, 0). f1(·), f2(·) and φ1(·) are selected as

f1(·) = 0.05(sin(x12) + ∥x13∥) (5.62)

f2(·) = 0.01∥x22∥ (5.63)

φ1(·) = 0.13sin(x11) (5.64)

Fig 5.1 shows the time responses of the estimated states, Fig 5.2 shows the time responses

CHAPTER 5. DYNAMIC OBSERVER FOR NONLINEAR INTERCONNECTED
SYSTEMS WITH UNCERTAINTIES



5.4. SIMULATION RESULTS 85

of observation errors, and Fig 5.3 presents the time responses of control laws. The results

of this numerical simulation show the effectiveness of the presented observer.

5.4.2. OBSERVER DESIGN FOR LATERAL FLIGHT CONTROL SYS-

TEM

Consider a lateral flight control system. The nominal aircraft lateral mode at the

cruising flight condition can be presented as (see [98])

ẋ1 =


−1.588 0 −0.883

1 0 0

0 0 −25



x11

x12

x13



+


0

0

25

u1 +


−0.2164 −0.1625

1 0.75

2 1.4

 f1(x1, t) +


0.07x21 + 0.045x22 + 0.037x24

0

0


(5.65)

y1 =

0 1 0

0 0 1



x11

x12

x13

 (5.66)

ẋ2 =


−0.161 1 0 −0.052

−5.446 −0.386 0 −2.185

−5.446 −0.386 −0.5 −2.185

0 0 0 −20




x21

x22

x23

x24



+


0

0

0

20

u2 +


1 0.4

−3.685 −1.474

−5.741 −2.2964

1.2 1.9

 f2(x2, t) +


0.02x11 + 0.01x12

0.01x11

0.01x11

0

 (5.67)

y2 =

0 0 1 0

0 0 0 1



x21

x22

x23

x24

 (5.68)
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where x1 = col(x11, x12, x13) and x2 = col(x21, x22, x23, x24) denote roll rate, bank angle,

, sideslip angle, yaw rate, washout filter output and rudder deflection, respectively. It is

assumed that bank angle, aileron deflection, washout filter output and rudder deflection are

available which take as the outputs of the system (5.65)-(5.68). Input signals u1 and u2 are

the perturbed aileron deflection command and the perturbed rudder deflection command,

respectively. The dynamic coefficients represent a Boeing 707 aircraft cruising at the

specific speed [98]. The uncertainties are assumed to satisfy

∥f1(·)∥ ≤ ϵ1(·) = 0.045(sin(x11) + ∥x12∥) (5.69)

∥f2(·)∥ ≤ ϵ2(·) = 0.02(sin(x21) + sin(x22) + ∥x23∥) (5.70)

Lϵ1(·) = 0.09 (5.71)

Lϵ2(·) = 0.06 (5.72)

and

LH1j
(·) = 0.2 (5.73)

LH2j
(·) = 0.07 (5.74)

where

H1j(·) =


0.07x21 + 0.045x22 + 0.037x24

0

0

 (5.75)

H2j(·) =


0.02x11 + 0.01x12

0.01x11

0.01x11

0

 (5.76)

In the lateral flight control system (5.65)-(5.68),

A1 =


−1.588 0 −0.883

1 0 0

0 0 −25

 (5.77)
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Figure 5.4: Time responses of the estimated states of the lateral flight control system.

A2 =


−0.161 1 0 −0.052

−5.446 −0.386 0 −2.185

−5.446 −0.386 −0.5 −2.185

0 0 0 −20

 (5.78)

B1 =


0

0

25

 (5.79)
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B2 =


0

0

0

20

 (5.80)

C1 =

0 1 0

0 0 1

 (5.81)

C2 =

0 0 1 0

0 0 0 1

 (5.82)

By direct verification, (A1, C1) and (A2, C2) are observable, thus Assumption 5.2 is sat-

isfied.

Choose

L1 =


−0.0363 −0.8830

1.9120 0

0 −24.0000

 (5.83)

L2 =


−0.8884 −0.0520

4.0914 −2.1850

4.9530 −2.1850

0 −19.0000

 (5.84)

By calculation, (A1 − L1C1) and (A2 − L2C2) are stable. For Q1 = I3 and Q2 = I4,

the solutions of Lyapunov equation (5.8) are

P1 =


0.3646 0.0789 0

0.0789 0.2630 0

0 0 0.5000

 (5.85)

P2 =


1.1772 −0.4134 0.4704 0

−0.4134 0.8277 −0.6033 0

0.4704 −0.6033 0.6210 0

0 0 0 0.5000

 (5.86)
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Figure 5.5: Time responses of observation errors of the lateral flight control system.

Let

E1 =


−0.2164 −0.1625

1 0.75

2 1.4

 (5.87)

F1 =

0.2459 1

0.1844 0.7

 (5.88)

E2 =


1 0.4

−3.685 −1.474

−5.741 −2.2964

1.2 1.9

 (5.89)

F2 =

−0.8716 0.6

−0.3486 0.95

 (5.90)
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Figure 5.6: Time responses of control laws of the lateral flight control system.

According to (5.23)-(5.24),

(M +MT ) =

 1.1468 −0.4637

−0.4637 1.1378

 (5.91)

where (M +MT ) is positive definite, thus Theorem 5.1 is satisfied. Based on (5.27) and

(5.28), α1 = 0.18 and α2 = 0.3.

Then, choose the control law for simulation as follows

u1 = −(−0.0850x̂11 − 0.1359x̂12 − 0.8835x̂13) (5.92)

u2 = −(0.4032x̂21 + 0.0057x̂22 − 0.1465x̂23 − 0.7024x̂24) (5.93)

The initial values of simulation are selected as x1 = col(2, 4, 2), x2 = col(3, 1, 2, 1.5),

x̂1 = col(1, 1, 0) and x̂2 = col(1, 0, 0, 0). f1(·) and f2(·) are selected as

f1(·) = 0.0112(sin(x11) + ∥x12∥) (5.94)
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f2(·) = 0.005(sin(x21) + sin(x22) + ∥x23∥) (5.95)

Fig 5.4 describes the time responses of the estimated states of the lateral flight control

system, Fig 5.5 shows the time responses of observation errors related to states of the

lateral flight control system, and Fig 5.6 presents time responses of the control laws for

the lateral flight control system. The simulation results of the lateral flight control system

demonstrate that the proposed dynamic observer is effective.

5.5. SUMMARY

In this chapter, the dynamic observer is presented for complex nonlinear intercon-

nected systems with matched and mismatched uncertainties. This dynamic observer can

estimate the values of states which can not be accessed for controller design. The pro-

posed method has great identification ability with small estimated state errors for non-

linear interconnected systems. It should be mentioned that the uncertainties of nonlinear

interconnected systems have general structures, which means that the proposed method

can be effectively used in generalised nonlinear interconnected systems.
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CHAPTER. 6

ROBUST DECENTRALISED SLIDING

MODE CONTROL FOR NONLINEAR

INTERCONNECTED SYSTEMS USING A

DYNAMIC OBSERVER

In this chapter, a variable structure observer-based decentralised SMC will be proposed,

which can be applied to control a class of nonlinear interconnected systems with matched

and mismatched uncertainties. The observer developed in chapter 5 will be used in this

chapter to form the decentralised dynamical controller to stabilise the considered non-

linear interconnected systems. The background is introduced in section 6.1. Section

6.2 gives the problem formulation and basic concepts. In section 6.3, a composite slid-

ing surface is designed, and the stability of the sliding motion is analysed based on the

regular form of the interconnected system. Using the pre-designed observer, a dynamic

decentralised output feedback SMC is presented to drive the interconnected systems to the

designed sliding surface in finite time, and then the sliding motion is maintained there-
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after. In section 6.4, the simulation of a numerical example is given to demonstrate the

effectiveness of the presented approach. The summary is described in section 6.5.

6.1. INTRODUCTION

In recent decades, nonlinear large-scale interconnected systems have widely ap-

peared in the real life. This class of complex systems consists of many subsystems with

different functions and structures. However, it is difficult to analyse and control the in-

terconnected systems because of the existence of nonlinearity, uncertainties and intercon-

nections between subsystems [20, 137].

In practical systems, states of dynamic systems are sometimes not available, and

in this case, state feedback can not be applied. Therefore, an observer is required to

estimate the value of states for dynamic systems. Observers, such as unknown input

observers, deadbeat observers, reduce-order observers etc [138], are the special useful

tools for control design when system states are not available. A unified H∞ dynamic ob-

server was presented for linear systems with unknown inputs and disturbances in [139].

[140] proposed a variable structure observer-based control design which could guarantee

asymptotic convergence of the trajectory of the object to the equilibrium in the presence

of both matched and mismatched uncertainties. [141] designed a linear observer for a

multi-link flexible manipulator to overcome the difficulty of parameter uncertainties, un-

known nonlinearities, and exogenous disturbances input. [142] adopted an extended state

observer and adaptive dynamic programming approach to solve the problem of spacecraft

output feedback attitude control. [143] presented four sliding mode observers based on

Takagi-Sugeno fuzzy modelling of multi-input multi-output nonlinear systems with non-

differentiable operating points. All of these observers mentioned above are for centralised

control systems.

SMC, because of its outstanding advantages, for instance, fast response and insensi-

tivity to variation of parameters and disturbances in systems, is a preferred selection for

many complex systems with uncertainties [20]. Especially, decentralised control based

SMC including the merits of both SMC and decentralised control has widely been ap-
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plied to many fields. An observer-based fuzzy neural SMC scheme was designed for

interconnected unknown chaotic systems though they ignored the matched uncertainty

[144]. Global decentralised SMC of interconnected systems using only output informa-

tion was considered in [145], where neither matched nor mismatched uncertainties were

considered. A decentralised control was designed to stabilise a class of fully time de-

lay nonlinear interconnected systems in [146] where strong conditions were imposed on

the considered systems and interconnections due to the static output feedback employed.

A new decentralised SMC strategy for the complex interconnected systems subjected to

non-smooth nonlinearities was presented in [147]. This strategy could achieve the results

only under the condition that the interconnection had linear structure. A reduced or-

der observer-based integral SMC was proposed for the interconnected descriptor systems

where the mismatched uncertainty was not considered, and the interconnected system

needed to have the specific structure [148]. Decentralised SMC for nonlinear intercon-

nected systems was designed using static state feedback, and thus all states of the intercon-

nected systems needed to be known [149, 79]. Although the great results of decentralised

SMC have been achieved, the results for nonlinear interconnected systems with unknown

states, matched and mismatched uncertainties are few. So decentralised SMC for nonlin-

ear interconnected systems with unknown states, matched and mismatched uncertainties

deserves to be studied.

In this chapter, a dynamic observer-based decentralised SMC strategy is specifically

proposed to stabilise a class of nonlinear interconnected systems with matched and mis-

matched uncertainties. The dynamic observer proposed in chapter 5 is used to estimate

the states of interconnected systems. A coordinate transformation is used to transform

each isolated subsystem into the regular form which is convenient for the design of SMC.

Using the pre-designed observer, a composite sliding surface is designed, and sufficient

conditions are developed to ensure that the sliding motion is uniformly asymptotically

stable via the Lyapunov theory. A dynamic decentralised output feedback SMC law is

designed to drive the object to the sliding surface in finite time and maintain the sliding

motion on it. The impact of matched and mismatched uncertainties can be completely re-

moved during the reachability analysis under the certainty conditions, and the presented

method can reduce the conservatism of the developed results. The bounds of the uncer-
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tainties are relaxed which are nonlinear and take more general forms. Finally, the results

of the numerical simulation are used to demonstrate the effectiveness of the proposed

approach.

6.2. PROBLEM FORMULATION AND DYNAMIC

OBSERVER DESIGN

Consider the system

ẋi = Aixi +Bi(ui +Giφi(xi, t)) + Eifi(xi, t) +
n∑

j=1

Hij(xj, t) (6.1)

yi = Cixi, i = 1, 2, · · · , n (6.2)

where xi ∈ Ωi ⊂ Rni (Ωi is a neighbourhood of the origin), ui ∈ Rmi and yi ∈ Rqi with

mi ≤ qi < ni are the state, input and output of the i-th subsystem for i = 1, 2, · · · , n,

respectively. Ai, Bi, Ci, Ei and Gi are known constant matrices with appropriate di-

mensions, where Bi is of full row rank, and Ci is of full column rank. Eifi(xi, t)

and Giφi(xi, t) are mismatched uncertainty and matched uncertainty, respectively, where

fi(xi, t) and φi(xi, t) are unknown functions with appropriate dimensions, and the matri-

ces Gi and Ei are used to describe the structure of matched and mismatched uncertainties,

respectively.
∑n

j=1Hij(xj, t) is the known nonlinear interconnection of the i-th subsys-

tem. It is assumed that all the nonlinear terms involved in this chapter are continuous in

the considered domain to guarantee the existence of the solutions of system (6.1)-(6.2).

Assumption 6.1. The matrix pair (Ai, Bi) is controllable for i = 1, 2, · · · , n.

Assumption 6.1 is a basic limitation for the matrix pair (Ai, Bi). The related assump-

tions about the unknown functions fi(xi, t) and φi(xi, t) are described in Assumption 5.1

in chapter 5. The conditions of matrix Ai and Ci are presented in Assumption 5.2 in chap-

ter 5. The detailed design and results of dynamic observer is presented in section 5.3 in

chapter 5. This chapter focuses on the decentralised SMC based on the previous dynamic

observer for nonlinear interconnected systems with uncertainties.
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6.3. SLIDING MOTION ANALYSIS AND CONTROL

SYNTHESIS

In this section, the dynamic observer (5.9) is used to form the dynamic feedback

control to stabilise the system (6.1)-(6.2). The stability of sliding motion is analysed at

first. Then, the controller is designed to satisfy the reachability condition.

6.3.1. SYSTEM TRANSFORMATION

Consider the system (6.1)-(6.2), since Bi is full row rank, there exists a coordinate

Ti such that

TiBi =

 0

B̃i

 (6.3)

where B̃i ∈ Rmi×mi is a nonsingular matrix for i = 1, 2, · · · , n.

For systems (5.9), (6.1) and (6.2), consider a transformationzi
ẑi

 :=

Ti 0

0 Ti

xi

x̂i

 (6.4)

where Ti is the nonsingular matrix satisfying (6.3). Let ẽi = zi − ẑi, from (6.4) and

ei = xi − x̂i, it follows that

ẽi = Tixi − Tix̂i = Tiei (6.5)

In the new coordinates, the system (5.14), (6.1) and (6.2) can be rewritten as

żi1 = Ãi1zi1 + Ãi2zi2 + f̃i1(zi1, zi2, t) +
n∑

j=1

H̃ij1(zj1, zj2, t) (6.6)

˙̃ei = (Ãi − L̃iC̃i)ẽi + (f̃i(zi1, zi2, t)− Ψ̃i(ẑi1, ẑi2, yi, t))

+ B̃i(φ̃i(zi1, zi2, t)− Υ̃i(ẑi1, ẑi2, yi, t)) +
n∑

j=1

(H̃ij(zj1, zj2, t)− H̃ij(ẑj1, ẑj2, t))

(6.7)
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żi2 = Ãi3zi1 + Ãi4zi2 + B̃i(ui + φ̃i(zi1, zi2, t)) + f̃i2(zi1, zi2, t) +
n∑

j=1

H̃ij2(zj1, zj2, t)

(6.8)

yi = C̃izi (6.9)

where zi1 ∈ Ωzi1 ⊂ Rni−mi , zi2 ∈ Ωzi2 ⊂ Rmi , zi = col(zi1, zi2) ∈ ΩTi
⊂ Rni , and

ΩTi
= Ωzi1 × Ωzi2 = {(zi1; zi2)|(zi1; zi2) = Tixi, xi ∈ Ωi ⊂ Rni}

ẑi1 ∈ Ωẑi1 ⊂ Rni−mi , ẑi2 ∈ Ωẑi2 ⊂ Rmi , ẑi = col(ẑi1, ẑi2) ∈ ΩT̂i
⊂ Rni , and

ΩT̂i
= Ωẑi1 × Ωẑi2 = {(ẑi1; ẑi2)|(ẑi1; ẑi2) = Tix̂i, x̂i ∈ Rni}

and

C̃i = CiT
−1
i (6.10)

L̃i = TiLi (6.11)

Ψ̃i(ẑi, yi, t) = TiΨi(T
−1
i ẑi, yi, t) (6.12)

φ̃i(zi, t) = Giφi(T
−1
i zi, t)) (6.13)

Υ̃i(ẑi, yi, t) = Υi(T
−1
i ẑi, yi, t) (6.14)

Ẽi = TiEi (6.15)

f̄i(zi, t) = fi(T
−1
i zi, t) (6.16)

Ãi =

Ãi1 Ãi2

Ãi3 Ãi4

 = TiAiT
−1
i (6.17)

f̃i(zi, t) =

f̃i1(·)
f̃i2(·)

 = Ẽif̄i(zi, t) (6.18)

H̃ij(zj, t) =

H̃ij1(·)

H̃ij2(·)

 = TiHij(T
−1
j zj, t) (6.19)

where Ãi1 ∈ R(ni−mi)×(ni−mi), Ãi2 ∈ R(ni−mi)×mi , Ãi3 ∈ Rmi×(ni−mi), Ãi4 ∈ Rmi×mi ,

f̃i1(·) ∈ Rni−mi , f̃i2(·) ∈ Rmi , H̃ij1(·) ∈ Rni−mi and H̃ij2(·) ∈ Rmi .

In the following part, the interconnected system (6.6)-(6.9) is to be focused using the

sliding mode technique.
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6.3.2. SLIDING SURFACE DESIGN AND STABILITY OF SLIDING MO-

TION

From the Assumption 6.1, the matrix pair (Ai, Bi) is controllable. Therefore, from

[150], the matrix pair (Ai1, Ai2) is controllable. Then, there exists matrix K̃i such that

(Ãi1 − Ãi2K̃i) is stable, and thus for any Q̄i > 0, the following Lyapunov equation has a

unique solution P̄i > 0,

(Ãi1 − Ãi2K̃i)
T P̄i + P̄i(Ãi1 − Ãi2K̃i) = −Q̄i (6.20)

Based on the specific structure of the system (6.6)-(6.9), the switching function for

the system (6.6)-(6.9) can be selected by

σi(ẑi) = Si1ẑi1 + Si2ẑi2, i = 1, 2, · · · , n (6.21)

where Si1 ∈ Rmi×(ni−mi) and Si2 ∈ Rmi×mi are designed parameters with Si2 being

nonsingular. The matrix Si1 is selected as

Si1 = Si2K̃i (6.22)

where Si2 is a nonsingular matrix to be designed later, and K̃i satisfies (6.20). Then, from

(6.20) and (6.22),

(Ãi1 − Ãi2S
−1
i2 Si1)

T P̄i + P̄i(Ãi1 − Ãi2S
−1
i2 Si1) = −Q̄i (6.23)

Then, the composite sliding function for the interconnected system (6.6)-(6.9) is

given as

σ(ẑ) = col(σ1(ẑ1), σ2(ẑ2), · · · , σn(ẑn)) (6.24)

where σi(·) for i = 1, 2, 3, · · · , n are defined in (6.21). So, the composite sliding surface

is written as

{col(ẑ1, ẑ2, · · · , ẑn)|σi(ẑi) = Si1ẑi1 + Si2ẑi2 = 0, i = 1, 2, · · · , n} (6.25)

Let ẽi1 = zi1 − ẑi1 and ẽi2 = zi2 − ẑi2, where ẽi1 ∈ Rni−mi , ẽi2 ∈ Rmi , ẽi =

col(ẽi1, ẽi2) ∈ Rni . The sliding surface can be rewritten as

σi(ẑi) = Si1ẑi1 + Si2ẑi2 = Si1zi1 + Si2zi2 − Si1ẽi1 − Si2ẽi2, i = 1, 2, · · · , n
(6.26)
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When the system is limited on the sliding surface (6.25), σi(ẑi) = 0. Thus, from

(6.26),

zi2 = −S−1
i2 Si1zi1 + S−1

i2 Si1ẽi1 + ẽi2, i = 1, 2, · · · , n (6.27)

Therefore, the sliding mode dynamics of the system (6.6)-(6.9) corresponding to the slid-

ing surface (6.25) can be described by

żi1 =(Ãi1 − Ãi2S
−1
i2 Si1)zi1 + Ãi2S

−1
i2 Si1ẽi1 + Ãi2ẽi2

+ f̃i1s(zi1, ẽi, t) +
n∑

j=1

H̃ij1s(zj1, ẽj, t) (6.28)

˙̃ei =(Ãi − L̃iC̃i)ẽi + (f̃is(zi1, ẽi, t)− Ψ̃i(ẑi1, ẑi2, yi, t)) + B̃i(φ̃is(zi1, ẽi, t)

− Υ̃i(ẑi1, ẑi2, yi, t)) +
n∑

j=1

(H̃ijs(zj1, ẽj, t)− H̃ij(ẑj1, ẑj2, t)) (6.29)

where

f̃i1s(·) = f̃i1(zi1, zi2, t)|zi2=−S−1
i2 Si1zi1+S−1

i2 Si1ẽi1+ẽi2
(6.30)

H̃ij1s(·) = H̃ij1(zj1, zj2, t)|zj2=−S−1
j2 Sj1zj1+S−1

j2 Sj1ẽj1+ẽj2
(6.31)

φ̃is(·) = φ̃i(zi1, zi2, t)|zi2=−S−1
i2 Si1zi1+S−1

i2 Si1ẽi1+ẽi2
(6.32)

f̃is(·) = f̃i(zi1, zi2, t)|zi2=−S−1
i2 Si1zi1+S−1

i2 Si1ẽi1+ẽi2
(6.33)

H̃ijs(·) = H̃ij(zj1, zj2, t)|zj2=−S−1
j2 Sj1zi1+S−1

j2 Sj1ẽj1+ẽj2
(6.34)

From Assumption 5.2 and equations (5.8), (6.10), (6.11), (6.15) and (6.17), it is easy

to get

(T−1
i ÃiTi − T−1

i L̃iC̃iTi)
TPi + Pi(T

−1
i ÃiTi − T−1

i L̃iC̃iTi) = −Qi

ÃT
i (T

−1
i )TPiT

−1
i − C̃T

i L̃
T
i (T

−1
i )TPiT

−1
i + (T−1

i )TPiT
−1
i Ãi − (T−1

i )TPiT
−1
i L̃iC̃i

= −(T T
i )

−1QiT
−1
i (6.35)

Let

(T−1
i )TPiT

−1
i = P̃i (6.36)

(T T
i )

−1QiT
−1
i = Q̃i (6.37)

Then, equations (6.35)-(6.37) imply that for any Q̃i > 0, the Lyapunov equation

(Ãi − L̃iC̃i)
T P̃i + P̃i(Ãi − L̃iC̃i) = −Q̃i (6.38)
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has a unique solution P̃i > 0.

Assumption 6.2. It assumed that

∥ f̃i1s(zi1, ẽi, t) ∥ ≤ χi1(zi1, ẽi, t) ∥ zi1 ∥ +χi2(zi1, ẽi, t) ∥ ẽi ∥ (6.39)
n∑

j=1

∥H̃ij1s(zj1, ẽj, t)∥ ≤
n∑

j=1

(ϱij1(zj1, ẽj, t) ∥ zj1 ∥ +ϱij2(zj1, ẽj, t) ∥ ẽj ∥) (6.40)

where χi1(·), χi2(·), ϱij1(·) and ϱij2(·) are known functions.

Theorem 6.1. Suppose Assumptions 5.1-5.3 and Assumption 6.2 are satisfied. Then, the

sliding motion dynamics (6.28)-(6.29) are asymptotically stable if W + W T is positive

definite with W defined by

W =

wa
ij wb

ij

wb
ij wc

ij

 (6.41)

wa
ij =

{
λ(Q̄i)− 2λ(P̄i)χi1(·)− 2λ(P̄i)ϱij1(·), i = j (6.42)

−2λ(P̄i)ϱij1(·), i ̸= j (6.43)

wb
ij =

{
−
(
2∥P̄iD̄i∥+ 2λ(P̄i)χi2(·) + 2λ(P̄i)ϱij2(·)

)
, i = j (6.44)

−2λ(P̄i)ϱij2(·), i ̸= j (6.45)

wc
ij =

λ(Q̃i)− 2Lϵ̃i(t)∥FiC̃i∥ − 2Lϑ̃i
(t)∥JiC̃i∥ − 2λ(P̃i)LH̃ij

(t), i = j (6.46)

−2λ(P̃i)LH̃ij
(t), i ̸= j (6.47)

where ϵ̃i(zi, t) = ϵi(T
−1
i zi, t), ϑ̃i(zi, t) = ϑi(T

−1
i zi, t) and D̄i = [Ãi2S

−1
i2 Si1, Ãi2]. P̄i and

Q̄i are defined in (6.23). P̃i and Q̃i satisfy (6.38). λ(Q̄i) and λ(Q̃i) are the minimum

eigenvalues of Q̄i and Q̃i, respectively. λ(P̄i) and λ(P̃i) are the maximum eigenvalues

of P̄i and P̃i, respectively. χi1(·), χi2(·), ϱij1(·) and ϱij2(·) are given in Assumption 6.2.

Lϵ̃i(t) = Lϵi(t)∥T−1
i ∥, Lϑ̃i

(t) = Lϑi
(t)∥T−1

i ∥ and LH̃ij
(t) = ∥Ti∥LHij

(t)∥T−1
i ∥ are

nonnegative continuous Lipschitz functions, where Lϵi(t), Lϑi
(t), and LHij

(t) given in

(5.5)-(5.7), respectively.

Proof. For the system (6.28)-(6.29), consider the Lyapunov function candidate V2 =∑n
i=1(z

T
i1P̄izi1 + ẽTi P̃iẽi). Then, the time derivative of V2 along the trajectories of the

dynamic system (6.28)-(6.29) is given as

V̇2 =
n∑

i=1

(żTi1P̄izi1 + zTi1P̄iżi1 + ˙̃eTi P̃iẽi + ẽTi P̃i
˙̃ei)
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=
n∑

i=1

(
− zTi1Q̄izi1 + 2zTi1P̄i(Ãi2S

−1
i2 Si1ẽi1 + Ãi2ẽi2 + f̃i1s(·) +

n∑
j=1

H̃ij1s(·))

− ẽTi Q̃iẽi + 2ẽTi P̃i(ϖ1 +ϖ2 +ϖ3)

)
(6.48)

where

ϖ1 = f̃is(zi1, ẽi, t)− Ψ̃i(ẑi1, ẑi2, yi, t) (6.49)

ϖ2 = B̃i(φ̃is(zi1, ẽi, t)− Υ̃i(ẑi1, ẑi2, yi, t)) (6.50)

ϖ3 =
n∑

j=1

(H̃ijs(zj1, ẽj, t)− H̃ij(ẑj1, ẑj2, t)) (6.51)

From ẽi = col[ẽi1, ẽi2]

zTi1P̄i(Ãi2S
−1
i2 Si1ẽi1 + Ãi2ẽi2) = zTi1P̄iD̄iẽi (6.52)

where D̄i = [Ãi2S
−1
i2 Si1, Ãi2]. Then,

zTi1P̄i(Ãi2S
−1
i2 Si1ẽi1 + Ãi2ẽi2) ≤ ∥P̄iD̄i∥∥zi1∥∥ẽi∥ (6.53)

According to (6.39), it follows

zTi1P̄if̃i1s(·) ≤ λ(P̄i)χi1(·)∥zi1∥2 + λ(P̄i)χi2(·)∥ẽi∥∥zi1∥ (6.54)

From (6.40),

zTi1P̄i

n∑
j=1

H̃ij1s(·) ≤ ∥zi1∥λ(P̄i)
n∑

j=1

ϱij1(·)∥zj1∥+ ∥zi1∥λ(P̄i)
n∑

j=1

ϱij2(·)∥ẽj∥ (6.55)

where H̃ij1s(·) is the first ni −mi rows of H̃ij(zj, t)|zj2=−S−1
j2 Sj1zj1+S−1

j2 Sj1ẽj1+ẽj2
.

Based on equations (5.10), (5.11) and (6.12),

Ψ̃i(ẑi1, ẑi2, yi, t) = Ψ̃i(ẑi, yi, t)

Ψ̃i(ẑi, yi, t) =

Ẽi
FiC̃iẽi

∥FiC̃iẽi∥
ϵ̃i(ẑi, t), FiC̃iẽi ̸= 0 (6.56)

0, FiC̃iẽi = 0 (6.57)

where ϵ̃i(ẑi, t) = ϵi(T
−1
i ẑi, t).
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From equations (5.12), (5.13) and (6.14),

Υ̃i(ẑi, yi, t) =

Gi
JiC̃iẽi

∥JiC̃iẽi∥
ϑ̃i(ẑi, t), JiC̃iẽi ̸= 0 (6.58)

0, JiC̃iẽi = 0 (6.59)

where ϑ̃i(ẑi, t) = ϑi(T
−1
i ẑi, t).

According to Assumption 5.3, and equations (6.10), (6.15) and (6.36),

(T−1
i Ẽi)

TT T
i P̃iTi = FiC̃iTi

ẼT
i P̃i = FiC̃i (6.60)

By the similar reasoning as (6.60),

GT
i B̃

T
i P̃i = JiC̃i (6.61)

From (6.56) and (6.60), if FiC̃iẽi ̸= 0,

ẽTi P̃iϖ1 = ẽTi P̃i

(
Ẽif̄is(zi1, ẽi, t)− Ẽi

FiC̃iẽi

∥FiC̃iẽi∥
ϵ̃i(ẑi, t)

)
= (FiC̃iẽi)

T f̄is(zi1, ẽi, t)−
(FiC̃iẽi)

TFiC̃iẽi

∥FiC̃iẽi∥
ϵ̃i(ẑi, t)

≤ ∥FiC̃iẽi∥∥f̄is(zi1, ẽi, t)∥ − ∥FiC̃iẽi∥ϵ̃i(ẑi, t)

≤ ∥FiC̃iẽi∥∥f̄i(zi, t)∥ − ∥FiC̃iẽi∥ϵ̃i(ẑi, t)

≤ ∥FiC̃iẽi∥ϵ̃i(zi, t)− ∥FiC̃iẽi∥ϵ̃i(ẑi, t)

≤ Lϵ̃i(t)∥FiC̃i∥∥ẽi∥2 (6.62)

where f̄is(zi1, ẽi, t) = f̄i(zi1, zi2, t)|zi2=−S−1
i2 Si1zi1+S−1

i2 Si1ẽi1+ẽi2
. If FiC̃iẽi = 0,

ẽTi P̃iϖ1 = (FiC̃iẽi)
T f̄is(zi1, ẽi, t) = 0 ≤ Lϵ̃i(t)∥FiC̃i∥∥ẽi∥2 (6.63)

So, from (6.62) and (6.63),

ẽTi P̃iϖ1 ≤ Lϵ̃i(t)∥FiC̃i∥∥ẽi∥2 (6.64)

Following the similar reasoning as (6.64), it follows from (6.58), (6.59) and (6.61),

ẽTi P̃iϖ2 ≤ Lϑ̃i
(t)∥JiC̃i∥∥ẽi∥2 (6.65)
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According to (5.7), (6.19) and (6.51), similar as (6.65),

ẽTi P̃iϖ3 ≤
n∑

j=1

λ(P̃i)LH̃ij
(t)∥ẽi∥∥ẽj∥ (6.66)

Substituting (6.53)-(6.55) and (6.64)-(6.66) into (6.48), V̇2 can be described as

V̇2 ≤
n∑

i=1

(
− λ(Q̄i)∥zi1∥2 + 2∥P̄iD̄i∥∥zi1∥∥ẽi∥+ 2λ(P̄i)χi1(·)∥zi1∥2

+ 2λ(P̄i)χi2(·)∥ẽi∥∥zi1∥+ 2∥zi1∥λ(P̄i)
n∑

j=1

ϱij1(·)∥zj1∥

+ 2∥zi1∥λ(P̄i)
n∑

j=1

ϱij2(·)∥ẽj∥ − λ(Q̃i))∥ei∥2 + 2Lϵ̃i(t)∥FiC̃i∥∥ẽi∥2

+ 2Lϑ̃i
(t)∥JiC̃i∥∥ẽi∥2 + 2

n∑
j=1

λ(P̃i)LH̃ij
(t)∥ẽi∥∥ẽj∥

)

=−
n∑

i=1

(
λ(Q̄i)− 2λ(P̄i)χi1(·)− 2λ(P̄i)ϱij1(·)

)
∥zi1∥2

−
n∑

i=1

(
λ(Q̃i)− 2Lϵ̃i(t)∥FiC̃i∥ − 2Lϑ̃i

(t)∥JiC̃i∥ − 2λ(P̃i)LH̃ij
(t)

)
∥ẽi∥2

+
n∑

i=1

(
2∥P̄iD̄i∥+ 2λ(P̄i)χi2(·) + 2λ(P̄i)ϱij2(·)

)
∥ẽi∥∥zi1∥

+
n∑

i=1

n∑
j=1,j ̸=i

2λ(P̄i)ϱij1(·)∥zi1∥∥zj1∥+
n∑

i=1

n∑
j=1,j ̸=i

2λ(P̄i)ϱij2(·)∥zi1∥∥ẽj∥

+
n∑

i=1

n∑
j=1,j ̸=i

2λ(P̃i)LH̃ij
(t)∥ẽi∥∥ẽj∥

=− 1

2
[∥z11∥∥z21∥ · · · ∥zn1∥∥ẽ1∥∥ẽ2∥ · · · ∥ẽn∥](W +W T )

· [∥z11∥∥z21∥ · · · ∥zn1∥∥ẽ1∥∥ẽ2∥ · · · ∥ẽn∥]T (6.67)

Hence, the conclusion follows from W +W T > 0.

Theorem 6.1 shows that the sliding motion of the system (6.6)-(6.9) relating to the

sliding surface (6.25) is asymptotically stable. In the next section, sliding mode controller

will be designed to drive the system to the sliding surface (6.25).
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6.3.3. DYNAMIC SLIDING MODE CONTROLLER DESIGN

The objective now is to design a control law such that the reachability condition [20]

n∑
i=1

σT
i (ẑi)σ̇i(ẑi)

∥σi(ẑi)∥
< 0 (6.68)

is satisfied where σi(ẑi) is the composite sliding function given in (6.25). If condition

(6.68) is satisfied by some controllers, the system (6.6)-(6.9) will be driven to the sliding

surface and maintained a slding motion on it.

Based on the estimated state ẑi = col(ẑi1, ẑi2) and ẽi = col(ẽi1, ẽi2) given by (6.6)-

(6.9), the following decentralised SMC is proposed

ui =− (Si2B̃i)
−1

(
(Si1Ãi1 + Si2Ãi3)ẑi1 + (Si1Ãi2 + Si2Ãi4)ẑi2

+
σi(·)

∥σi(·)∥
(
∥Si1∥∥Ψ̃i1(ẑi, yi, t)∥+ ∥Si2∥∥Ψ̃i2(ẑi, yi, t)∥+

n∑
j=1

∥Sj1∥∥H̃ji1(ẑi, t)∥

+ ∥Si2B̃i∥∥Υ̃i(ẑi, yi, t)∥+
n∑

j=1

∥Sj2∥∥H̃ji2(ẑi, t)∥+ ki(ẑi, t)
))

(6.69)

where ki(ẑi, t) is the control gain to be determined later. Ψ̃i1(ẑi, yi, t) is the first ni −mi

rows of Ψ̃i(ẑi, yi, t), and Ψ̃i2(ẑi, yi, t) is the last mi rows of Ψ̃i(ẑi, yi, t).

Theorem 6.2. Suppose that Assumptions 5.1-5.3 and Assumptions 6.1-6.2 are satisfied.

The control law in (6.69) drives the system (6.6)-(6.9) to the sliding surface (6.25) and

maintains a sliding motion on it thereafter if

ki(ẑi, t) >∥Ti∥α2exp{−α1t}
(
∥Si1Ãi1 + Si2Ãi3∥+ ∥Si1Ãi2 + Si2Ãi4∥

+ (∥Si1∥+ ∥Si2∥)∥Ãi − L̃iC̃i∥
)

(6.70)

where α1 and α2 are given in (5.27) and (5.28), respectively.

Proof. From the definition of σi(ẑi) in (6.21) and the system (6.6)-(6.8), it follows that

n∑
i=1

σT
i (ẑi)σ̇i(ẑi)

∥σi(ẑi)∥

=
n∑

i=1

σT
i (·)

∥σi(·)∥

(
Si1

(
Ãi1zi1 + Ãi2zi2 + f̃i1(·) +

n∑
j=1

H̃ij1(·)
)
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+ Si2

(
Ãi3zi1 + Ãi4zi2 + B̃i(ui + φ̃i(·)) + f̃i2(·) +

n∑
j=1

H̃ij2(·)
)

− Si1

(
Di1ẽi + (f̃i1(·)− Ψ̃i1(ẑi1, ẑi2, yi, t))

+
n∑

j=1

(H̃ij1(·)− H̃ij1(ẑj1, ẑj2, t))
)

− Si2

(
Di2ẽi + (f̃i2(·)− Ψ̃i2(ẑi1, ẑi2, yi, t))

+ B̃i(φ̃i(·)− Υ̃i(ẑi1, ẑi2, yi, t)) +
n∑

j=1

(H̃ij2(·)− H̃ij2(ẑj1, ẑj2, t))
))

=
n∑

i=1

σT
i (·)

∥σi(·)∥

(
(Si1Ãi1 + Si2Ãi3)zi1 + (Si1Ãi2 + Si2Ãi4)zi2

+ Si1Ψ̃i1(ẑi, yi, t) + Si1

n∑
j=1

H̃ij1(ẑj, t) + Si2B̃iui + Si2Ψ̃i2(ẑi, yi, t))

+ Si2B̃iΥ̃i(ẑi, yi, t) + Si2

n∑
j=1

H̃ij2(ẑj, t)− (Si2Di2 + Si1Di1)ẽi

)
(6.71)

where Di1 is the first ni−mi rows of (Ãi− L̃iC̃i). Di2 is the last mi rows of (Ãi− L̃iC̃i).

Substituting the control law (6.69) into (6.71),

n∑
i=1

σT
i (ẑi)σ̇i(ẑi)

∥σi(ẑi)∥

=
n∑

i=1

σT
i (·)

∥σi(·)∥

(
(Si1Ãi1 + Si2Ãi3)ẽi1 + (Si1Ãi2 + Si2Ãi4)ẽi2

+ (Si1Ψ̃i1(ẑi, yi, t)−
σi(·)

∥σi(·)∥
∥Si1∥∥Ψ̃i1(ẑi, yi, t)∥)

+ (Si1

n∑
j=1

H̃ij1(ẑj, t)−
σi(·)

∥σi(·)∥

n∑
j=1

∥Sj1∥∥H̃ji1(ẑi, t)∥)

+ (Si2Ψ̃i2(ẑi, yi, t))−
σi(·)
∥σi(·)∥

∥Si2∥∥Ψ̃i2(ẑi, yi, t)∥)

+ (Si2B̃iΥ̃i(ẑi, yi, t)−
σi(·)

∥σi(·)∥
∥Si2B̃i∥∥Υ̃i(ẑi, yi, t)∥)

+ (Si2

n∑
j=1

H̃ij2(ẑj, t)−
σi(·)

∥σi(·)∥

n∑
j=1

∥Sj2∥∥H̃ji2(ẑi, t)∥)

− (Si1Di1 + Si2Di2)ẽi −
σi(·)

∥σi(·)∥
ki(ẑi, t)

)
(6.72)

where ẽi1 = zi1 − ẑi1 and ẽi2 = zi2 − ẑi2.
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From (6.4)

∥T−1
i (zi − ẑi)∥ = ∥T−1

i ẽi∥ = ∥ei∥ (6.73)

Then, from (5.22) and (6.73),

∥ẽi∥ ≤ ∥Ti∥∥T−1
i ẽi∥ ≤ ∥Ti∥α2exp{−α1t} (6.74)

In equation (6.72),
n∑

i=1

σT
i (·)

∥σi(·)∥
((Si1Ãi1 + Si2Ãi3)ẽi1 + (Si1Ãi2 + Si2Ãi4)ẽi2)

≤
n∑

i=1

(∥Si1Ãi1 + Si2Ãi3∥+ ∥Si1Ãi2 + Si2Ãi4∥)∥ẽi∥ (6.75)

From (6.56) and (6.57),
n∑

i=1

σT
i (·)

∥σi(·)∥

(
Si1Ψ̃i1(ẑi, yi, t)−

σi(·)
∥σi(·)∥

∥Si1∥∥Ψ̃i1(ẑi, yi, t)∥
)

=
n∑

i=1

(
σT
i (·)

∥σi(·)∥
Si1Ψ̃i1(ẑi, yi, t)− ∥Si1∥∥Ψ̃i1(ẑi, yi, t)∥

)
≤ 0 (6.76)

Based on equation (6.19), and from the fact that
n∑

i=1

n∑
j=1

Si1H̃ij1(ẑj, t) =
n∑

i=1

n∑
j=1

Sj1H̃ji1(ẑi, t) (6.77)

It follows that
n∑

i=1

σT
i (·)

∥σi(·)∥

(
Si1

n∑
j=1

H̃ij1(ẑj, t)−
σi(·)
∥σi(·)∥

n∑
j=1

∥Sj1∥∥H̃ji1(ẑi, t)∥
)

=
n∑

i=1

(
σT
i (·)

∥σi(·)∥
Si1

n∑
j=1

H̃ij1(ẑj, t)−
n∑

j=1

∥Sj1∥∥H̃ji1(ẑi, t)∥
)

≤ 0 (6.78)

Take consideration of (6.56) and (6.57),
n∑

i=1

σT
i (·)

∥σi(·)∥

(
Si2Ψ̃i2(ẑi, yi, t))−

σi(·)
∥σi(·)∥

∥Si2∥∥Ψ̃i2(ẑi, yi, t)∥
)

=
n∑

i=1

(
σT
i (·)

∥σi(·)∥
Si2Ψ̃i2(ẑi, yi, t))− ∥Si2∥∥Ψ̃i2(ẑi, yi, t)∥

)
≤ 0 (6.79)

Following similar reasoning as used to obtain (6.79), it follows that
n∑

i=1

σT
i (·)

∥σi(·)∥

(
Si2B̃iΥ̃i(ẑi, yi, t)−

σi(·)
∥σi(·)∥

∥Si2B̃i∥∥Υ̃i(ẑi, yi, t)∥
)

≤ 0 (6.80)
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n∑
i=1

σT
i (·)

∥σi(·)∥

(
Si2

n∑
j=1

H̃ij2(ẑj, t)−
σi(·)
∥σi(·)∥

n∑
j=1

∥Sj2H̃ji2(ẑi, t)∥
)

≤ 0 (6.81)

n∑
i=1

σT
i (·)

∥σi(·)∥
(Si1Di1 + Si2Di2)ẽi ≤ (∥Si1∥+ ∥Si2∥)∥Ãi − L̃iC̃i∥∥ẽi∥ (6.82)

Based on (6.75)-(6.76) and (6.78)-(6.82),

n∑
i=1

σT
i (ẑi)σ̇i(ẑi)

∥σi(ẑi)∥

≤
n∑

i=1

(
(∥Si1Ãi1 + Si2Ãi3∥+ ∥Si1Ãi2 + Si2Ãi4∥)∥ẽi∥

+ (∥Si1∥+ ∥Si2∥)∥Ãi − L̃iC̃i∥∥ẽi∥ − ki(ẑi, t)

)
=

n∑
i=1

((
∥Si1Ãi1 + Si2Ãi3∥+ ∥Si1Ãi2 + Si2Ãi4∥

+ (∥Si1∥+ ∥Si2∥)∥Ãi − L̃iC̃i∥
)
∥ẽi∥ − ki(ẑi, t)

)
(6.83)

Hence, from (6.70), (6.74) and (6.83),

n∑
i=1

σT
i (ẑi)σ̇i(ẑi)

∥σi(ẑi)∥
< 0 (6.84)

Then, the composite reachability condition is satisfied.

Remark 6.1. In this section, a dynamic decentralised output feedback SMC is presented to

drive an interconnected system to the designed sliding surface in finite time using the pre-

designed observer. The sliding motion is then maintained thereafter. The interconnections

are employed in the control design to reduce the conservatism of the developed results.

The bounds of the uncertainties, which are nonlinear and take more general forms, are

relaxed. This strategy improves the robust of the whole system and manages the impact

of matched and mismatched uncertainties by appropriate reachability analysis.
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6.4. SIMULATIONS

Take consideration of the interconnected system composed of two subsystems

ẋ1 =


−7 0 1

0 −6 1

1 0 0



x11

x12

x13



+


0

0

1

 (u1 + φ1(t, x1)) +


0.9126 1.1776

1 1.2

0.5 1

 f1(x1, t) +


0.14(∥x21∥+ sin(x13))

0

0.07(sin(x21) + ∥x11∥)


(6.85)

y1 =

1 1 0

0 0 1



x11

x12

x13

 (6.86)

ẋ2 =

−2 1

1 0

x21

x22


+

0
1

u2 +

4.5 2.25

1 0.5

 f2(x2, t) +

0.05(∥x11∥+ ∥x22∥)

0.04sin(x12)

 (6.87)

y2 =
[
1 1

]x21

x22

 (6.88)

where x1 = col(x11, x12, x13) and x2 = col(x21, x22) denote the states of subsystems. The

uncertainties are assumed to satisfy

∥f1(·)∥ ≤ ϵ1(·) = 0.2(sin(x12) + ∥x13∥) (6.89)

∥f2(·)∥ ≤ ϵ2(·) = 0.02∥x22∥ (6.90)

∥φ1(·)∥ ≤ ϑ1(·) = 0.13sin(x11) (6.91)

Lϵ1(·) = 0.4 (6.92)

Lϵ2(·) = 0.02 (6.93)

Lϑ1(·) = 0.13 (6.94)

CHAPTER 6. ROBUST DECENTRALISED SLIDING MODE CONTROL FOR
NONLINEAR INTERCONNECTED SYSTEMS USING A DYNAMIC OBSERVER



6.4. SIMULATIONS 109

and

LH1j
(·) = 0.313 (6.95)

LH2j
(·) = 0.108 (6.96)

where

H1j(·) =


0.14(∥x21∥+ sin(x13))

0

0.07(sin(x21) + ∥x11∥)

 (6.97)

H2j(·) =

0.05(∥x11∥+ ∥x22∥)

0.04sin(x12)

 (6.98)

In the interconnected system (6.85)-(6.88),

A1 =


−7 0 1

0 −6 1

1 0 0

 (6.99)

A2 =

−2 1

1 0

 (6.100)

B1 =


0

0

1

 (6.101)

B2 =

0
1

 (6.102)

C1 =

1 1 0

0 0 1

 (6.103)

C2 =
[
1 1

]
(6.104)

By direct verification, (A1, B1) and (A2, B2) are controllable, thus Assumption 6.1 is

satisfied. (A1, C1) and (A2, C2) are observable, thus Assumption 5.2 is satisfied.
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Choose

L1 =


−3.5979 5.3943

0.2988 −1.7078

1.3056 2.2992

 (6.105)

L2 =

 −0.5

1.0000

 (6.106)

By calculation, (A1 − L1C1) and (A2 − L2C2) are stable. For Q1 = I3 and Q2 = I2,

the solutions of Lyapunov equation (5.8) are

P1 =


0.1497 0.0668 −0.0960

0.0668 0.1339 −0.0789

−0.0960 −0.0789 0.3081

 (6.107)

P2 =

0.3333 0.2000

0.2000 0.8000

 (6.108)

Let

E1 =


0.9126 1.1776

1 1.2

0.5 1

 (6.109)

F1 =

0.1554 −0.0125

0.1604 0.1004

 (6.110)

E2 =

4.5 2.25

1 0.5

 (6.111)

F2 =

 1.7

0.85

 (6.112)

J1 =
[
−0.0875 0.3081

]
(6.113)

G1 = I1 (6.114)

According to (5.23)-(5.24),

(M +MT ) =

 1.0658 −0.3111

−0.3111 1.4084

 (6.115)
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where (M +MT ) is positive definite, thus Theorem 5.1 is satisfied. Based on (5.27) and

(5.28), α1 = 1.1 and α2 = 0.15.

The system (6.85)-(6.88) satisfies the equation (6.3), so consider the transformation

T1 and T2 selected by

T1 = I3 (6.116)

T2 = I2 (6.117)

Then, z1
ẑ1

 :=

T1 0

0 T1

x1

x̂1

 (6.118)

z2
ẑ2

 :=

T2 0

0 T2

x2

x̂2

 (6.119)

where z1 = col(za11, z
b
11, z12) = col(x11, x12, x13), z2 = col(z21, z22) = col(x21, x22),

ẑ1 = col(ẑa11, ẑ
b
11, ẑ12) = col(x̂11, x̂12, x̂13) and ẑ2 = col(ẑ21, ẑ22) = col(x̂21, x̂22). From

(6.116)-(6.119), it is straightforward to determine that, for i = 1, 2,

C̃i = Ci (6.120)

L̃i = Li (6.121)

Ẽi = Ei (6.122)

f̃i(·) = Eifi(·) (6.123)

Ãi = Ai (6.124)

B̃i = Bi (6.125)

H̃ij(·) = Hij(·) (6.126)

Lϵ̃i(·) = Lϵi(·) (6.127)

Lϑ̃i
(·) = Lϑi

(·) (6.128)

LH̃ij
(·) = LHij

(·) (6.129)

Based on equations (6.56)-(6.59),

Ψ̃1(·) =

Ẽ1
F1C̃1ẽ1

∥F1C̃1ẽ1∥
ϵ̃1(·), F1C̃1ẽ1 ̸= 0 (6.130)

0, F1C̃1ẽ1 = 0 (6.131)
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Ψ̃2(·) =

Ẽ2
F2C̃2ẽ2

∥F2C̃2ẽ2∥
ϵ̃2(·), F2C̃2ẽ2 ̸= 0 (6.132)

0, F2C̃2ẽ2 = 0 (6.133)

Υ̃1(·) =

G1
J1C̃1ẽ1

∥J1C̃1ẽ1∥
ϑ̃1(·), J1C̃1ẽ1 ̸= 0 (6.134)

0, J1C̃1ẽ1 = 0 (6.135)

Consider (6.39)-(6.40),

χ11(·) = χ12(·) = 0.4444 (6.136)

χ21(·) = 0.1006 (6.137)

χ22(·) = 0.2012 (6.138)

ϱ1j1(·) = ϱ1j2(·) = 0.14 (6.139)

ϱ2j1(·) = ϱ2j2(·) = 0.1 (6.140)
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Figure 6.1: Time responses of the states of the interconnected system (6.85)-(6.88).
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Figure 6.2: Time responses of the control laws u1 and u2 (Upper); time responses of the

switching functions σ1 and σ2 (Bottom).

Choose Q̄1 = I2 and Q̄2 = I1, S11 = 0, S12 = 1, S21 = 2, S22 = 2. According to

equation (6.23)

P̄1 =

0.0714 0

0 0.0833

 (6.141)

P̄2 = 0.1667 (6.142)

And based on the equations (6.36) and (6.37), it can be seen that P̃1 = P1, P̃2 = P2,

Q̃1 = Q1 and Q̃2 = Q2.
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Based on the equations (6.41)-(6.47), it follows that

W +W T =


1.8052 −0.0567 −0.6659 −0.0567

−0.0567 1.8662 −0.0567 −1.1436

−0.6659 −0.0567 0.8201 −0.4339

−0.0567 −1.1436 −0.4339 1.4084

 (6.143)

where W + W T is positive definite. Then, Theorem 6.1 is satisfied. From (6.70), k1(·)

and k2(·) are selected as

k1(·) = 1.97952e−1.1t + b1 (6.144)

k2(·) = 2.59864e−1.1t + b2 (6.145)

where b1 and b2 are selected as 0.1 and 0.1, respectively. Then, the control law can be

described as

u1 =−
(
ẑa11 +

σ1(·)
∥σ1(·)∥

(
∥Ψ̃12(·)∥+ ∥Υ̃1(·)∥+ ∥0.07(sin(ẑ21) + ∥ẑa11∥)∥+ k1

))
(6.146)

u2 =− 0.5

(
− 2ẑ21 + 2ẑ22 +

σ2(·)
∥σ2(·)∥

(
2∥Ψ̃21(·)∥+ 2∥Ψ̃22(·)∥+ 0.1(∥ẑa11∥+ ∥ẑ22∥)

+ 0.08∥sin(ẑb11)∥+ k2
))

(6.147)

where σ1(·) = ẑ12, σ2(·) = 2ẑ21 + 2ẑ22, Ψ̃12(·) is the last row of Ψ̃1(·), Ψ̃21(·) is the first

row of Ψ̃2(·), Ψ̃22(·) is the last row of Ψ̃2(·).

For simulation, the initial conditions are selected as z1 = col(2, 4, 2), z2 = col(3, 0),

ẑ1 = col(0, 4, 0) and ẑ2 = col(1, 0). Fig 6.1 presents time responses of the states of the

interconnected system (6.85)-(6.88), and Fig 6.2 presents time responses of the control

laws and sliding functions. The results of this numerical simulation show the effectiveness

of the presented approach.

6.5. SUMMARY

A dynamic observer-based decentralised SMC strategy is proposed to stabilise a

class of nonlinear interconnected systems in the presence of both matched and mis-
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matched uncertainties. The dynamic observer is designed to estimate the states of inter-

connected systems. A coordinate transformation is used to transform each isolated sub-

system into the regular form which is to facilitate the decentralised SMC design. Then, a

composite sliding surface is proposed incorporating the states from the dynamic observer.

A decentralised feedback SMC law based on the estimated states and outputs of the sys-

tem is designed to drive the interconnected system to the sliding surface in finite time

and maintain sliding motion on it. The nonlinear interconnections are employed in the

control design to reduce the conservatism of the developed results. The bounds of the un-

certainties, which are nonlinear and take more general forms, are relaxed. The presented

method improves the robustness of nonlinear interconnected systems in the presence of

uncertainties.
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CONCLUSIONS AND FUTURE WORK

This chapter is to summarise the contributions of this thesis and give brief discussions of

relevant potential future work.

7.1. CONCLUSIONS

In this thesis, the research background of the whole thesis has been presented in

Chapter 1. The survey of research background gave some reasonable motivations to make

the research on decentralised SMC for nonlinear interconnected systems with uncertain-

ties. Some necessary mathematical concepts, definitions and theorems which were used

in the following chapters were given in Chapter 2. After that, many fundamental con-

trol theories and concepts which played an important role in control analysis and design

have been introduced in Chapter 3. Besides that, a simple introduction of some practical

systems which were analysed in the following chapters was described in Chapter 3 at the

same time. Chapters 2 and 3 have built the fundamental knowledge for this thesis.

In Chapter 4, decentralised state feedback stabilisation for nonlinear interconnected
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systems using SMC has been presented. For systems with matched uncertainty, mis-

matched uncertainty and unknown interconnections, a state feedback decentralised SMC

strategy, under the assumption that all system states were accessible, was proposed to

eliminate the effect of uncertainties by using the bounds on uncertainties and intercon-

nections. The bounds used in the design were fully nonlinear which could have a higher

applicability for complex interconnected systems. Especially, for fully nonlinear systems,

the proposed method did not need to use the technique of linearisation, which was widely

used in the existing work to deal with nonlinear interconnected systems with uncertainties.

The results of numerical and practical simulations related to coupled inverted pendula on

carts demonstrated the effectiveness of the proposed method.

In Chapter 5, the dynamic observer has been applied to the complex nonlinear inter-

connected systems with matched and mismatched uncertainties. This dynamic observer

could estimate the system states which could not be achieved during the design of the

controller. The proposed method had great identification ability with small estimated state

errors for nonlinear interconnected systems. It should be pointed out that the considered

uncertainties of nonlinear interconnected systems had general forms, which meant that

the proposed method could be effectively used in more generalised nonlinear intercon-

nected systems. The results of numerical and practical simulations related to the lateral

flight control system proved the superiority of the presented strategy.

The research in Chapter 6 was based on the achievement of Chapter 5. A variable

structure observer-based decentralised SMC has been proposed to control a class of non-

linear interconnected systems with matched and mismatched uncertainties. Based on the

designed dynamic observer, a dynamic decentralised output feedback SMC using outputs

and estimated states was presented to control the interconnected systems. The nonlinear

interconnections were employed in the control design to reduce the conservatism of the

developed results. The bounds of the uncertainties were relaxed which were nonlinear

and took more general forms. Moreover, the limitation for the interconnected system was

reduced when compared with the existing results. In this chapter, the proposed strate-

gies adopted the full-order observer. Besides that, the presented method improved the

robustness of nonlinear interconnected systems to be against the effects of uncertainties.
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The results of the numerical simulation example proved the availability of the proposed

approach.

7.2. FUTURE WORK

In practical systems, due to the error of measurement, time-space lag switch, system

inertia, system delay and other factors, the sliding motion can travel back and forth around

the ideal sliding surface, instead of accurately occurring on the ideal sliding surface. This

situation can produce chattering. The chattering of SMC actually comes from the dis-

continuous switching characteristics of SMC. The problem of chattering can reduce the

control accuracy and performance, result in unnecessary wear and tear on the actuator

components, increase energy consumption, stimulate the unmodelled high-frequency dy-

namics of the system, or even destroy the stability of the system resulting in unpredictable

serious disasters sometimes. Therefore, one of the important issues of SMC is to elim-

inate the effect of chattering. There are two main methods to deal with the problem of

chattering. One method of overcoming this drawback is to introduce a boundary layer

about the discontinuous surfaces which may affect the control accuracy. Another strategy

is to use higher order sliding mode techniques, but it requires the considered system to

have a certain structure.

For uncertain nonlinear systems, SMC is robust and adaptive to uncertainties and

external disturbances on the premise that the uncertainties are bounded. In this thesis,

all uncertainties of nonlinear interconnected systems are assumed to be bounded and have

certain bounds. However, there are many nonlinear systems with uncertainties which have

unknown bounds due to the special structure or tough operating environment. Methods

proposed in this thesis are hard to be applied to such a kind of systems. In this situation,

the neural network can be used to approach the uncertain dynamics, which does not need

to know the bound of uncertainty. The theory of the neural network has developed for

many years. It combines the research results of modern neurobiology, which simulates

the biological evolution process to reflect the computing structure of some characteristics

of the human brain. The neural network can change the weight or topology to make the
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network output constantly close to the expected output. The obvious merits of neural

networks are abilities of strong learning and highly parallel computing, which can fully

approximate any complex nonlinear systems and enhance strong robustness. Besides that,

fuzzy logic control is also an effective method to deal with the unknown bound of uncer-

tainties, it can use a fuzzy system to estimate the uncertainties of the system to construct

an equivalent control dynamically. The decentralised SMC for nonlinear interconnected

systems combines with the neural network or fuzzy logic control can improve the perfor-

mance of the whole control strategy and overcome the problem of unknown bounds of

uncertainties.

In this thesis, the selection of the sliding surface can be optimised so that the dynamic

sliding surface can be applied. It adds an additional integral term to the sliding surface,

which can provide one more degree of freedom. Moreover, time delay which widely exists

in practical systems can be considered in the design of decentralised SMC for nonlinear

interconnected systems. In general, there is still a lot of work which can improve the

proposed methods in this thesis, I will continue to modify and improve the strategies of

decentralised SMC for nonlinear interconnected systems with uncertainties in future.
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