Journal Pre-proof

Computers &
h

Comprehensive quantity discount model for dynamic green supplier
selection and order allocation

Sadeque Hamdan, Ali Cheaitou, Amir Shikhli, Imad Alsyouf

PII: S0305-0548(23)00236-8

DOIL: https://doi.org/10.1016/j.cor.2023.106372
Reference: CAOR 106372

To appear in:  Computers and Operations Research

Received date: 5 July 2022
Revised date: 1 August 2023
Accepted date: 3 August 2023

Please cite this article as: S. Hamdan, A. Cheaitou, A. Shikhli et al., Comprehensive quantity
discount model for dynamic green supplier selection and order allocation. Computers and
Operations Research (2023), doi: https://doi.org/10.1016/j.cor.2023.106372.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.cor.2023.106372
https://doi.org/10.1016/j.cor.2023.106372
http://creativecommons.org/licenses/by/4.0/

Highlights

Comprehensive quantity discount model for dynamic green supplier selection and
order allocation

Sadeque HAMDAN,Ali CHEAITOU,Amir SHIKHLI,Imad ALSYOUF

e We study a supplier selection and order allocation problem with green criteria.
o Three quantity discount configurations are considered: all-unit, incremental and combined.
e A bi-objective model is solved using both exact and population-based approaches.

e An extensive numerical study shows the effectiveness of the approach.

A software is developed to guide procurement managers in making decisions
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Abstract

‘We model and solve a deterministic multi-period single-product green supplier selection
and order allocation problem in which the considered suppliers’ availability, cost, and
green performance change from one period to another in the planning horizon. More-
over, the available suppliers may offer an all-unit or an incremental quantity discount
(QD) scheme, resulting in three problem configurations. In one configuration, all sup-
pliers offer all-unit QD. In the second, all suppliers offer incremental QD. In the third,
some suppliers offer all-unit QD, and others offer incremental QD. The problem is mod-
elled using a bi-objective integer linear programming formulation that maximizes the
total green value of the purchased items from all the suppliers and minimizes their to-
tal corresponding cost, including the fixed cost, variable cost, inventory holding cost,
and shortage cost. The proposed bi-objective model is scalarized and solved using the
branch-and-cut algorithm and a population-based heuristic. A numerical analysis is con-
ducted, which allows first to validate the heuristic approach using small-size instances by
comparing its results with those of the exact approach. Moreover, an extensive compari-
son between the exact and heuristic solution approaches is carried out. The results reveal
different findings. First, the economic and environmental solutions of an instance are dif-
ferent, and the environmental solution is independent of the suppliers’ pricing schemes.
Second, the maximum difference between the heuristic approach and the exact approach
in terms of the bi-objective function value is 4.72%, which makes the proposed heuristic
recommended for large-size instances due to its short computation time and good ac-
curacy. Third, there is no difference in terms of the heuristic performance between the
combined model and the models with a single type of discount. Fourth, the all-unit dis-
count scheme seems to be generally better in terms of the trade-off between the green
value of purchasing and cost.

1. Introduction

Recently, effective and efficient supply chain management (SCM) has become crucial especially for large
and multi-national companies to keep improving their economic but also environmental performance in or-
der to remain competitive in a changing global market. In addition, the importance of sustainability and
environment protection has become essential for businesses and for the society in general. For instance, at
least four out of the 17 Sustainable Development Goals that the United Nations has adopted are related to
the management of companies’ operations (United Nations, 2021): SDG-9, SDG-11, SDG-12, and SDG-
13. This pressure has led many companies worldwide to adopt more environmental friendly operations and
therefore to rely on green SCM. Moreover, in the particular context of the 2019 coronavirus pandemic, many
companies could have regretted their reliance on a single supplier, which led some factories to close due
to the shortage of supplies that resulted because of the lockdowns that happened in many countries. This
fact confirms the necessity of increasing supply chain resilience by relying on more than one supply source

especially for important items.
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In this context, supplier selection is a tactical tool of SCM that or nizations use to reduce their costs,
minimize disruption risks, and improve the quality of their products (Alkahtani and Kaid, 2018). Choosing
the best suppliers whether for manufacturing or service organizations has become a complex task that de-
pends on multiple-criteria such as cost, quality, reliability, risk, social and environmental performance etc..
On the other hand, due to awareness, governmental regulations, and globalization, organizations are consid-
ering more and more the environmental aspects in their supplier selection process. As mentioned earlier,
international competition but also national regulations are constraining companies to achieve sustainability
objectives in their operations.

Indeed, international competition has led companies to prioritize environmental factors in various SCM
stages (Akman, 2015; Hafezalkotob, 2015; Zhang et al., 2014). As a result, the process of choosing the
best supplier(s) to contract with from a panel of available suppliers while considering the environmental
aspects is known as green supplier selection. Moreover, on a tactical level, in addition to choosing the best
supplier(s), the decision of determining the quantities to be purchased from each selected supplier leads
to a problem known as the supplier selection and order allocation (SSOA) problem. In the literature, it is
formulated as an optimization problem (Kaviani et al., 2020). This problem is shown to be NP-hard and
solved using heuristics approaches such as genetic algorithms (GA) in (Basa et al., 2020; Hashemzahi et al.,
2020). Usually, the SSOA problem considers variable parameters, such as demand, capacity and cost, in a
fixed planning horizon.

Suppliers usually offer to their customers, especially in a business-to-business environment, quantity dis-
counts (QD) that can take different forms, such as the “all-unit” QD, “incremental” QD or other forms (Ayhan
and Kilic, 2015). Most of the works in the literature (as it will be shown in the literature review section) have
focused on one type of QD assuming that all suppliers offer the same policy while in reality, it may differ.
Moreover, the QD problem formulations may not be solved optimally for large-size instances. Therefore, this
paper attempts to bridge these gaps in the literature. Indeed, the contribution of this paper compared to the ex-
isting literature is threefold. First, this paper extends the green multiple-period and multiple-supplier SSOA
problem by proposing a formulation that considers three QD policies: all-unit, incremental, and both (com-
prehensive or combined). This formulation integrates both discount schemes while considering the dynamic
nature of the problem allowing, for example, the supplier availability to vary from one period to another in
the planning horizon and therefore the available number of suppliers may vary from one period to another.
Second, this work proposes a new population-based heuristic to solve large-size instances of the formulated
problem and provides an extensive comparative analysis that shows the effectiveness of the proposed heuristic
for large-size instances allowing to obtain good quality solutions in a reasonable time and with a good level
of accuracy. Third, this paper proposes a decision support system that implements the mathematical formu-
lation which helps procurement managers in the supplier selection and order allocation process in practice
while allowing them to consider the practiced QD schemes and the green aspect. Therefore, the objectives
of this study are as follows:

e To propose a new formulation of the multiple-period and multiple-supplier dynamic SSOA problem
that considers the environmental performance of suppliers in addition to three QD schemes: all-unit,
incremental, and both.

e To develop a heuristic solution approach to solve large-size instances of the formulated problem in a
reasonable time and with a good level of accuracy.

e To develop a computer software that implements the proposed approach so that it can be used by
decision-makers in the industry.

The rest of this paper proceeds as follows: In Section 2, we provide a literature review on the SSOA
problem. In Section 3, we explain the mathematical formulation and the developed software. In addition,
we present the bi-objective solution technique and the population-based heuristic used to solve large-sized
instances and we illustrate the developed software in Section 4. In Section 5, we conduct a numerical study
and discuss the results. Finally, Section 6 provides concluding remarks.
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2. Literature review

The SSOA problem is a critical tactical tool in SCM. Indeed, for every organization, the accurate eval-
uation of the available suppliers to procure a good or a service and the selection process of the best one(s)
to fulfill the organization needs and objectives is very important since it usually lasts for months and some-
times years. In this process, order allocation to the selected suppliers is often neglected, and considered as a
supplementary part (Pasquale et al., 2020). However, SSOA is a core process in supply chain planning and
with high complexity, because it should meet qualitative and quantitative criteria such as cost, quality, envi-
ronmental aspects, etc. (Polat et al., 2017; Chen et al., 2016). Therefore, researchers have used multi-criteria
decision-making (MCDM) models to address SSOA problem. SSOA problems have been widely investi-
gated in the literature. The focus of this literature review is on studies related to SSOA, QD policies, and
the use of green (environmental) criteria in SSOA. The scope of the literature review is mainly including the
works published in the last two decades given that a very large number of related works has been published
recently. The literature review comprises six sections: supplier selection, green supplier selection, SSOA,
QD policies, datasets for the SSOA problem, and the research gap.

2.1. Supplier selection

Supplier selection has been studied for more than a decade utilizing various methods and criteria con-
siderations. Researchers have employed integrated MCDM methods extensively in assessing suppliers and
rating criteria in a variety of perspectives, including different working environments such as industry, small
and medium businesses, and government. Thus, the supplier selection problem has been viewed and studied
as an MCDM problem. Sorting, ranking, and selection, as well as determining criteria weight, are the key
selection tasks addressed by these MCDM methods (Hashemi et al., 2015). For example, the analytic hierar-
chy process (AHP) has been used by Levary (2008) to rank and evaluate the available suppliers based on the
risk criteria. Another well-known MCDM method, namely VIseKriterijumska Optimizacija I Kompromisno
Resenje (VIKOR), has been used by Chen and Wang (2009) to evaluate suppliers and rank them to find the
preferred suppliers. Kannan et al. (2014a) have used fuzzy axiomatic design. In addition, Saen (2010) and
Rouyendegh et al. (2020) have used the technique for order of preference by similarity to ideal solution (TOP-
SIS) to rank and select the suppliers using real application data in a convenient way. Other researchers have
used the analytic network process (ANP) to figure out the determinants in the supplier selection problem for a
sustainable transportation case and to evaluate the transportation policies respectively (Sayyadi and Awasthi,
2018, 2016). Banaeian et al. (2018) presented a comparative study between fuzzy TOPSIS, fuzzy VIKOR,
and fuzzy grey relational analysis (GRA) in the context of supplier selection. Sevkli (2010) has proposed the
elimination choice translating reality and cross-industry standard process methods and compared them based
on real data of three suppliers from a manufacturing company. Rahimi et al. (2021) introduced an intuition-
istic fuzzy entropy measure, a novel fuzzy decision-making technique for selecting and ranking suppliers
based on attributes. Finally, the decision-making trial and evaluation laboratory (DEMATEL) method has
been used in (Chang et al., 2011) to illustrate the factors and criteria that affect the supplier selection process.

Moreover, instead of using a single MCDM approach to assess and select the best suppliers, some re-
searchers have used hybrid approaches, which consist of combinations of methods. An example is the com-
bination of the weighted aggregated sum product assessment method and interval fuzzy sets (Ghorabaee et al.,
2016). Other examples integrate composite indicators, data envelopment analysis, and common weights anal-
ysis (Dobos and Vorosmarty, 2014), ANP and improved GRA (Hashemi et al., 2015), Kano model and fuzzy
MCDM (Ghorbani et al., 2013), best worst method (BWM) and extended VIKOR (Wu et al., 2019), and
BWM and fuzzy TOPSIS (Javad et al., 2020). Readers can refer to the work of Manucharyan (2021) for a
recent review.

Recently, with the growth in the use of artificial intelligence algorithms, some researchers have utilized
them in supplier evaluation and classification. For example, neural networks have been used for price fore-
casting and supplier evaluation (Lee et al., 2009), while grey system theory has been used in analyzing and
evaluating suppliers’ criteria (Li et al., 2007; Wu, 2009). Guo et al. (2009) have applied the support vec-
tor machine to classify suppliers with less computation time and high performance. GA has been used as a
heuristic algorithm in the supplier selection problem to find the optimal solution, and as an example, Yeh and
Chuang (2011) have developed a multi-objective model using GA that aims to minimize the cost and time
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while maximizing product quality and environmental criteria. While Jouida and Krichen (2020) designed a
hybrid GA to assist each organization in making the best procurement policy decision possible. They consid-
ered two scenarios for the single objective model that aims to minimize the cost when dealing with different
businesses and suppliers: first, allocating each firm to one supplier separately, and second, accumulating the
amounts of the participating firms and then assigning each coalition to the proper provider.

Moreover, optimization techniques have been used in different contexts involving supplier selection. For
instance, Amorim et al. (2016) have proposed a mixed-integer linear programming (MILP) model to max-
imize a food organization’s profit and minimize the risk. The authors indicated that the proposed model
improved the solutions in the supplier selection problem, especially in large instances. Furthermore, Yoon
et al. (2018) have proposed a multi-objective MILP model to address the supplier selection problem in a
multi-period framework. Some studies, such as Torabi et al. (2015), have used a bi-objective model with
stochastic programming aiming to improve the organization’s response while considering uncertainties and
disruption risks in a supplier selection problem. They have used a real case study to show the applicability
of their approach. Finally, goal programming has been used for different objectives, which are minimizing
price, rejected items, lead-time, and to evaluate the risks and product life cycles in a supplier selection prob-
lem respectively (Jadidi et al., 2015; Kull and Talluri, 2008). In pharmaceutical industries and using fuzzy
TOPSIS, Modibbo et al. (2022) proposed a MILP model to choose the best supplier. A numerical example
was used to show the effectiveness of the presented model. The proposed model is simple, and it can be solved
using readily available commercial software such as LINDO/ LINGO and GAMS. Several supplier selection
literature reviews have been published recently. These authors focused on sourcing strategy, decision scope,
selection criteria, and solution methods as key elements in supplier selection and evaluation, see for instance
Dutta et al. (2022); Saputro et al. (2022).

2.2. Green supplier selection

In recent years, green criteria have been playing a major role in supplier selection, due to customer con-
cerns and government rules. Therefore, many researchers have focused on the consideration of green criteria,
such as the amount of recycled materials, mode of transportation, environmental certification, etc. in the
evaluation of suppliers using different techniques. For instance, Yeh and Chuang (2011) have developed a
multi-objective model to maximize product quality and environmental criteria in a supplier selection prob-
lem. Kannan et al. (2014b) have tried to consider green and capacity criteria while modeling the supplier
selection problem. Moreover, Biiyiikozkan and Cif¢i (2012) have applied fuzzy DEMATEL, fuzzy ANP,
and fuzzy TOPSIS to evaluate and select suppliers based on environmental aspects. In addition, Darabi and
Heydari (2016) have proposed an interval-valued hesitant fuzzy approach to rank the green suppliers. Fur-
thermore, Galankashi et al. (2015) used the nominal group technique to measure the critical performance
of the suppliers and select based on green criteria. Liao et al. (2016) have proposed new integrated fuzzy
techniques and fuzzy additive ratio assessment with multi-segment goal programming model to evaluate and
select the green suppliers. In the last two years, many studies have considered environmental criteria in the
supplier selection process for different purposes and applications. We refer the reader to (Ecer, 2022; Gupta
et al., 2019; Haeri and Rezaei, 2019; Kilic and Yalcin, 2020; Krishankumar et al., 2020; Javad et al., 2020;
Rouyendegh et al., 2020; Watrébski, 2019; Wu et al., 2019; Pinar et al., 2021; Tirkolaee et al., 2021; Wei
et al., 2021). Recently, many publications have done a comprehensive assessment of existing literature on
supplier selection by highlighting the inclusion of green aspects into supplier selection, with the goal of pre-
senting a summary of the developed models and approaches to support different industries in identifying the
best green/sustainable suppliers such as Zhang et al. (2020); Ograh et al. (2021). The two works studied and
analyzed publications from 2009 to 2020.

2.3. Green SSOA

Supplier capacity is an important factor that determines whether a single supplier or multiple suppliers
are required to fulfill the demand. While MCDM tools only rank suppliers based on multiple criteria, re-
searchers have developed different optimization models that consider multiple factors and at the same time
specific constraints that translate features of the systems. These models aim at selecting the optimal suppliers
and allocating the orders to the selected suppliers while considering the supplier capacities. For example, Lin
et al. (2011) have used a linear programming (LP) approach to allocate orders after the supplier is evaluated
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and selected, while non-linear programming is used in (Hsu et al., 2010). In addition, order allocation is con-
sidered as a critical and complicated process especially within multi-product and multi-period frameworks.
For that reason, there are some studies that have focused on the order allocation problem separately such as
(Basnet and Leung, 2005; Ruiz-Torres and Mahmoodi, 2006). In addition, Xiang et al. (2014) have devel-
oped a mathematical model based on capacity and load equilibrium for multi-period and multi-suppliers that
uses two order allocation strategies. Another proposed model clusters suppliers and evaluates order alloca-
tion strategies in a way that considers the market conditions and environmental criteria (Renna and Perrone,
2015). Recently, Gupta et al. (2018) have developed a multi-objective optimization model for order allocation
using goal programming. The authors considered fuzzy demand and aimed to maximize the satisfaction of
suppliers and customers. Zheng et al. (2021) studied the SSOA problem under stochastic demand and project
life cycle using the scenario tree approach and used chaos optimization algorithm and maximum similarity
method to solve the problem. Sun et al. (2022) considered a stochastic Poisson demand in a multi-echelon
order-splitting optimization model for the SSOA problem.

However, given the dynamic nature of the market and the capacity limitations of the suppliers, it is very
common to decide on a tactical level about the selection of the suppliers and the allocation of the orders in a
SSOA context. Most of the studies on the SSOA problem use combined supplier evaluation approaches along
with multiple objectives. In addition, with the recent development of green SCM, researchers have started to
consider the green criteria in supplier evaluation as mentioned earlier, which led to some works focusing on
green SSOA. For example, capacity limitations of suppliers have been considered by Kannan et al. (2014b) in
a model that is based on fuzzy TOPSIS and fuzzy multi-objective optimization. Mafakheri et al. (2011) have
introduced a SSOA model considering green criteria and using fuzzy AHP (FAHP) and bi-objective integer
LP model. Hamdan and Jarndal (2017) have proposed a two-stage SSOA using GA. Sadeghi (2018) has
introduced a multi-objective model using FAHP and fuzzy TOPSIS while considering green criteria instead
of traditional criteria to address SSOA. Aiming to generalize the SSOA problem, Mirzaee et al. (2018) have
proposed a multi-objective model for multiple periods, multiple products, and multiple suppliers using fuzzy
goal programming. Additionally, Lo et al. (2018) have developed a multi-objective LP model that integrates
BWM, and modified fuzzy TOPSIS, to address SSOA with green criteria.

Recently, Torgul and Paksoy (2019) have introduced a multi-objective LP model integrating lean and
green paradigms for SSOA using fuzzy TOPSIS. Moreover, Kilic and Yalcin (2020) and many other stud-
ies have tried to overcome the weaknesses of previous models by developing two-phase approaches using
fuzzy goal programming with intuitionistic fuzzy TOPSIS to address multi-period, multi-supplier, and multi-
product SSOA. In addition, by combining AHP, non-linear programming, and GA approaches, Hashemzahi
et al. (2020) have developed a green SSOA model with multiple suppliers. Ali and Zhang (2023) introduced
a holistic model for global green SSOA, which combines the international transportation risk criteria with
economic and environmental aspects. They used fuzzy TOPSIS and multi-objective linear programming to
solve and validate the problem through a real case study. Table 1 summarizes the SSOA-related studies and
shows the used criteria and approaches of each study. In the topic of SSOA, several authors have written
literature review papers, and Naqvi and Amin (2021) wrote the most recent one.

2.4. SSOA with QDs

Based on a win-win relationship that can provide benefits to suppliers and customers, the QD offered by
suppliers to customers plays a determining role in product pricing and the size of orders placed by customers.
Many researchers have considered different QD policies (linear, total business, all-unit, and incremental).
Burke et al. (2008) studied three supplier pricing schemes (linear, all-unit, and incremental) while consid-
ering the supplier’s capacities using three different models for one period. Ebrahim et al. (2009) developed
an optimization model for SSOA considering three QD policies. Razmi and Maghool (2010) proposed a
bi-objective multi-product multi-period fuzzy optimization model considering all-unit, total business, and
incremental QD. The literature review revealed that total or all-unit QD stands out as the most popular form
among other recently used policies. Some works, such as that by Kamali et al. (2011), have considered only
one type of QD policies. Kamali et al. (2011) addressed the multi-objective SSOA problem using a MILP
model considering all-unit QD. In addition, AHP and fuzzy compromise programming have been used to
formulate a mathematical model considering all-unit QD (Wang and Yang, 2009). Ayhan and Kilic (2015)
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developed an integrated approach of fuzzy TOPSIS, AHP, and a multi-objective MILP model in a single
period framework with one QD policy. Mirzaee et al. (2018) developed an MILP model using fuzzy goal
programming considering incremental discount. Hammami et al. (2014) developed a stochastic model that
considers all-unit QD and exchange rate uncertainties. Cheraghalipour and Farsad (2018) utilized the best
worst method and revised multi-choice goal programming to solve the SSOA with QD. Hamdan and Cheaitou
(2017b) also considered all-unit QD and varying suppliers in the green SSOA problem. Hamdan and Cheaitou
(2017¢) modified the model presented in (Hamdan and Cheaitou, 2017b) to consider incremental QD. Stadtler
(2007) proposed a single-objective general QD model for the SSOA problem. The author used CPLEX with
a time limit to obtain near-optimal solutions. On the other hand, total QD is another scheme similar to all-unit
QD. In total QD, a discount is provided on all purchased quantities. Goossens et al. (2007) studied the total
QD and demonstrated its NP-hardness. Goossens et al. (2007) presented a branch-and-bound approach based
on a reformulation of the min-cost flow to solve the problem. Manerba and Mansini (2012) used a heuristic
enhancement from LP, and Manerba and Mansini (2014) used an integer linear programming (ILP) refine-
ment approach to solve the capacitated total QD problem. In Manerba et al. (2018), the authors extended the
problem by utilizing a two-stage stochastic programming formulation with recourse, which helps in adapta-
tion actions when product prices or product demand are stochastic. They considered uncertainty conditions
and activation costs. Later, by using several scenarios with large numbers of up to 20 suppliers and 30 prod-
ucts, Manerba and Perboli (2019) successfully solved the same problem using Stochastic Programming with
multiple versions of a Progressive Hedging-based heuristic technique, as well as the Benders algorithm, in
the testing process. On the other hand, the all-unit QD policy can also be found in several routing or pur-
chasing problems for inbound and outbound logistics that are not covered in the existing literature. Lee et al.
(2013) and other scholars considered all-unit or incremental QD using MILP models with GA algorithms
for multiple suppliers and in multiple-period environments. Pereira and Costa (2015), who covered the most
relevant literature from 1995 to 2013, was one of the few articles that provided a literature review on models
developed for the economic order quantity and the applicable QD policies. Readers can refer to (Munson and
Jackson, 2014) for a literature review on QD policies, with an emphasis on the differences between theoretical
concepts and actual applications and considering all QD scenarios.

2.5. Datasets for the SSOA problem

In order to verify and validate the developed model, we have thoroughly investigated real-world datasets
or benchmark instances utilized in SSOA problems in the literature review. The available datasets are catego-
rized into two categories: random designed data and real data. For instance, Goossens et al. (2007) provided
some randomly generated benchmark instances for the non-capacitated total QD problem. Manerba et al.
(2018) described how structured instances can be randomly generated for the SSOA problem with total QD.
Other scholars used simple numerical examples to test their models, such as (Abrishami et al., 2020; Baek
and Kim, 2020; Beauchamp et al., 2015; Hamdan and Cheaitou, 2017a). On the other hand, many researchers
used real data to test their models, such as data from the plastic industry (Cheraghalipour and Farsad, 2018),
electronic medical device industry (Ghadimi et al., 2018), packaging industry (Nourmohamadi Shalke et al.,
2018), auto parts (Amin et al., 2011), and metal industry (Mohammed et al., 2019). Table 1 classifies ar-
ticles based on data source and availability. Note that not all datasets can be used for testing, as either the
models’ structures and assumptions are incompatible (Mohammed et al., 2019; Torres-Ruiz and Ravindran,
2019; Hashemzahi et al., 2020), or the datasets are not completely available in the articles, requiring some
assumptions to be useful in the testing process, such as (Li et al., 2021).

Table 1: Datasets for SSOA models.

Data availability
in the article

Stadtler (2007) v Randomly designed datasets

Authors Data source

Continued on next page
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Table 1: Datasets for SSOA models. (Continued)

Authors

Data availability

. . Data source
in the article

Goossens et al. (2007)
Demirtas and Ustiin (2008)

Amin et al. (2011)
Shaw et al. (2012)
Kannan et al. (2013)

Choudhary and Shankar (2014)
Beauchamp et al. (2015)
Torabi et al. (2015)

Hamdan and Cheaitou (2017a)

Manerba et al. (2018); Manerba and
Mansini (2014)
Sabouhi et al. (2018)

Vahidi et al. (2018)
Lo et al. (2018)

Nourmohamadi Shalke et al. (2018)

Cheraghalipour and Farsad (2018)
Mirzaee et al. (2018)
Ghadimi et al. (2018)

Lamba and Singh (2019)
Lamba and Singh (2019)
Mohammed et al. (2019)

Torres-Ruiz and Ravindran (2019)
Abrishami et al. (2020)

Baek and Kim (2020)

v Randomly designed datasets

v Real data from four different plastic
molding firms working with a refrigerator
plant are evaluated according to 14 crite-

ria

4 Real data from company of auto parts
(S.G. Company) in Iran

4 Indian based garment manufacturing
company

v Iranian automobile manufacturing com-
pany

v Ilustrative case

v Randomly designed datasets
Randomly designed datasets

v Randomly designed datasets
Benchmark instances with a generation
algorithm
Real data from pharmaceutical company
(APC) in Iran

v Randomly designed datasets

v Actual data provided by an electronics
company in Taiwan

v Real data from the protein materials pack-
aging industry in Iran

v Real data from plastic industry in Iran

4 Data from literature

v Real data from an industrial case study

operating in the electronics sector in med-
ical device industry in Ireland

v Randomly generated datasets
v Randomly designed datasets

Real data from raw materials for a metal
factory in Saudi Arabia

v Data obtained from an international auto
parts manufacturer in Mexico

4 A designed numerical example based on
manufacturer data

v Randomly designed datasets

Continued on next page
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Table 1: Datasets for SSOA models. (Continued)

Data availability

Authors . . Data source
in the article
Hashemzabhi et al. (2020) v Real data from steel baskets manufacturer
in Malaysia
Suprasongsin et al. (2020) v Randomly designed experiments
Rezaei et al. (2020) Real data from car manufacturing case

study in Iran
Jia et al. (2020)

Feng and Gong (2020) 4 Real data from automotive manufacturing
enterprise in China

AN

Real data from steel company in China

Sahebjamnia (2020) v Real data from furniture company in Iran

Lietal. (2021) v Real data from new energy vehicles in-
dustry

Beiki et al. (2021) v Real data from automotive manufacturing
company

Kaur and Singh (2021) v Real data from automobile company in
India

Khalili Nasr et al. (2021) v Real data from suit production and distri-
bution chain

Sun et al. (2022) v Randomly designed experiment

Ahmad et al. (2022) v Real data from major belt conveyor com-

pany in India

2.6. Findings and research gap

Based on the literature review, Table 2 shows a comparison between the current study and the studies
related to the SSOA problem ranked based on the year of publication for the last two decades. This comparison
presents the research gap especially when our work is compared to the study (Kilic and Yalcin, 2020) which
has introduced a multi-supplier, multi-period, and multi-item model but without considering any QD policy.
Indeed, the contribution of this paper fills the gap illustrated in Table 1 by proposing a multi-objective MILP
model with multiple periods and multiple suppliers that considers green criteria to address the SSOA problem
with three QD policies, namely all-unit, incremental, and both (comprehensive or combined). It extends
the works of the literature on green SSOA (Hamdan and Cheaitou, 2015, 2017b,d) by considering the QD
policies and solving the resulting model using a GA based approach. In addition, Table 2 demonstrates
that most works considered all-unit QD scheme in SSOA models, while fewer considered incremental QD.
To summarize, our contribution is twofold. First, conceptual, since we model and solve a variant of SSOA
problem in which a comprehensive QD policy is considered. Second, practical, with the easy-to-use software
that allows managers to use the proposed approach.
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Table 2: SSOA studies comparison and the research gap.

Authors Criteria Multiple QD policy Models and approaches
¥ w =
g2 2 Ef 28 ¢
=] = o el =] Q
e g o = . B @
=5 ° % T g g
o % § a
=R
Stadtler (2007) v o/ v  / MIP
Wang et al. (2008) v 4 integer LP
Demirtas and Ustiin (2008) v v ANP and MILP
Lee and Ou-Yang (2009) v / v Neural networks
Ebrahim et al. (2009) v v v / mathematical model
Wang and Yang (2009) v 4 v AHP and MILP
Lin (2009) v 4 Fuzzy ANP and LP
Razmi and Maghool (2010) v 7/ v / meta-heuristic model
Fazlollahtabar et al. (2011) v v / AHP and TOPSIS
Kamali et al. (2011) v 4 v mixed-integer non-linear pro-
gramming model
Mafakheri et al. (2011) v 4 AHP and multiple criteria dy-
namic programming
Manerba and Mansini (2012) v v v Heuristic enhancement from LP
Biiyiikozkan and Cifci (2012) v  / 4 ANP, TOPSIS and DEMATEL
Lee et al. (2013) v o/ v / MIP and GA
Kannan et al. (2014a) v / 4 fuzzy axiomatic design
Manerba and Mansini (2014) v v v* ILP refinement approach
Hammami et al. (2014) v v v mixed integer scenario-based
stochastic programming
Dobos and Vorosmarty (2014) v 7/ v composite indicators, data en-
velopment analysis and common
weights analysis
Kazemi et al. (2014) v 4 v fuzzy preference programming,
interval based TOPSIS and LP
Singh (2014) v v MILP and TOPSIS
Galankashi et al. (2015) v / v nominal group technique and
fuzzy ANP
Torabi et al. (2015) v v stochastic programming
Hashemi et al. (2015) v / v ANP and traditional GRA
Ayhan and Kilic (2015) v v v FAHP and MILP

Continued on next page
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Table 2: SSOA studies comparison and the research gap. (Continued)

Authors Criteria Multiple QD policy = Models and approaches
¥ w =
g2 2 Ef 28 ¢
=] = o el =] Q
S o a = . B @
=5 ° % T g g
o % § a
=R
Tsai (2015) v v mixed-integer non-linear pro-
gramming
Moghaddam (2015) v v Monte Carlo simulation inte-
grated with fuzzy goal program-
ming
Scott et al. (2015) v v AHP and quality function deploy-
ment
Hamdan and Cheaitou (2015) v v/ Fuzzy TOPSIS, AHP and integer
programming
Ghorabaee et al. (2016) v v Type-2 fuzzy sets and weighted
aggregated sum product assess-
ment
Darabi and Heydari (2016) v v interval-valued hesitant fuzzy
ranking
Liao et al. (2016) v / v/ FAHP, fuzzy additive ratio assess-
ment and multi-segment goal pro-
gramming
Meena and Sarmah (2016) v v v Analytical model and solution
procedure
Hamdan and Cheaitou (2017d) v v / / fuzzy TOPSIS, AHP and integer
programming
Hamdan and Cheaitou (2017b) v v v/ v fuzzy TOPSIS, and integer pro-
gramming
Banaeian et al. (2018) v Ve Fuzzy TOPSIS, VIKOR and GRA
Manerba et al. (2018) v v v two-stage stochastic program-
ming formulation with recourse
Sadeghi (2018) v / v FAHP and mathematical pro-
gramming
Mirzaee et al. (2018) v v 7/ v MILP and fuzzy goal program-
ming
Lo et al. (2018) v / Ve BWM, fuzzy TOPSIS and LP
Nasiri et al. (2018) v / v MILP
Torgul and Paksoy (2019) v / v fuzzy TOPSIS
Alegoz and Yapicioglu (2019) v v v fuzzy TOPSIS, trapezoidal type-2

FAHP and goal programming

Continued on next page
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Table 2: SSOA studies comparison and the research gap. (Continued)

Authors Criteria Multiple QD policy = Models and approaches
m o U w»n =
£ 98 28§
=] = o el =] Q
S o a = . B @
=5 ° % T g g
o % § a
(=5
Manerba and Perboli (2019) v v v Stochastic mathematical model
using Progressive Hedging based
heuristic and a Benders algorithm
Govindan et al. (2020) v / 4 fuzzy ANP, fuzzy DEMATEL
and MILP
Basa et al. (2020) v v v mixed-integer non-linear program
and GA
Hashemzahi et al. (2020) v / v FAHP, non-linear LP and GA
Kaviani et al. (2020) v v intuitionistic FAHP and fuzzy
multi objective optimization
Wang et al. (2020) v  / 4 ANP and integer programming
Kilic and Yalcin (2020) v v v / intuitionistic fuzzy TOPSIS and
fuzzy goal programming
Qazvini et al. (2021) v v v/ FAHP and MILP
Rezaei et al. (2021) v  / v mixed-integer non-linear pro-
gramming models, risk reduction
strategies and  grasshopper
optimization algorithm
Esmaeili-Najafabadi et al. (2021) v v mixed-integer non-linear pro-
gramming and particle swarm
optimization
Firouzi and Jadidi (2021) v 4 fuzzy multi-objective model
Alejo-Reyes et al. (2021) v  / particle swarm optimization and
differential evolution
Kaur and Singh (2021) v v 7/ data  envelopment  analysis,
FAHP-TOPSIS and MIP
Ecer (2022) v / 4 Type 2 FAHP
Lakshmanpriya et al. (2022) v v v/ grey theory and updated MCDM
with  multi-objective  mixed-
integer non-linear program
Amin-Tahmasbi et al. (2023) v o/ multi-objective particle swarm
optimization and multi-objective
vibration damping optimization
Jadidi et al. (2022) v v TOPSIS and optimization algo-

rithm

Continued on next page
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Table 2: SSOA studies comparison and the research gap. (Continued)

Authors Criteria Multiple QD policy Models and approaches

JTWOU00Hq
SpoLIdg
szoriddng
nun v
[eruswaIOuy
paurquio))

< | [PIuswuoIAuyg

This work

AN
\
\
AN
AN
AN

Fuzzy =~ TOPSIS and ILP,
branch-and-cut algorithm and
population-based heuristic

* Known as total QD since the policy considers the discount on the total purchased quantity of different products.

3. Model

The studied problem consists in selecting the best suppliers and determining the quantities to buy from
them in order to satisfy the deterministic demand of a single product in every period of a fixed planning
horizon. If the demand in a given period exceeds the available amount of items, then a shortage happens and
a corresponding penalty shortage cost is incurred. On the other hand, if the available amount at the end of
a period is positive, then it is carried out to the next period and an inventory holding cost is incurred. The
selection of the suppliers is based on maximizing the total green value of the purchased products and at the
same time minimizing the total cost. The green value of the products is based on an assessment of the suppliers
green performance using fuzzy TOPSIS while the total cost includes the fixed and variable purchasing costs,
the inventory holding cost and the shortage cost. The supplier’s availability changes from period to period
as well as the corresponding supply capacities, their fixed and variable costs, and their green performance.
In addition, each supplier proposes a QD scheme that can be either of the type “all-unit” or “incremental”.
A supplier offering “all-unit” QDs in one period cannot change to “incremental” QDs in the other periods
and vice-versa. Thus, the QD scheme is used as an input to the mathematical model. A generalization of this
model that optimizes the QD scheme selection is provided in the Appendix for interested readers. We model
this problem using a bi-objective integer LP approach in which the total green value of the purchased items
(TGVP) from all selected suppliers in all the periods is maximized while the total cost of purchasing (TCP)
is minimized. The model considers the constraints of availability and capacity of the suppliers as well as the
dynamic behavior of the system.

3.1. Model notations
3.1.1. Model parameters
e T': Number of discrete periods of same duration in the planning horizon.

e g, and b, : Set of suppliers offering all-unit QD in period ¢ and increment QD in period ¢, respectively.

e n,: Total number of available suppliers in period ¢. n; = |a,|+|b,];t = 1,...,T. Note that the elements
in a, and b, are non-repeated integers from 1 to n, representing the available suppliers who can either
be in a, or b,.

e R;: Number of QD interval ranges (all-unit or incremental) for supplieri;i = 1, ...,n,.

e GW,,: Green performance of supplier i in period ¢ obtained using fuzzy TOPSIS withi = 1, ...,n,

andt = 1,...,T.
e vc;;,: Unit variable cost of supplier i, i = 1,...,n, in period ¢ corresponding to the QD interval
r,r=1.,R

i
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e FC;: Fixed ordering cost per period incurred if a positive quantity is ordered from supplier i, i =
I,..,n;inperiodt; t = 1,..,T.

e H,: Unit inventory storage costin periodt; t = 1,...,T.
o S;: Unit penalty shortage costin period ;¢ = 1,...,T.

o [, u;,.: Lower and upper limits of the QD interval (“all-unit” or “incremental”) r, r = 1,..., R; of
supplieri,i = 1,..., n, inperiod t; t = 1,...,T. Note that we define u;,; = 0 for modeling purposes.

e D,: Deterministic demand of the product to be fulfilled in period ¢, = 1,...,T.

e M: A big positive number; it can be equal to a factor (larger than or equal to one) multiplied by the
total demand.

e ¢: A positive number less than one. We assume it equal to 0.5.

3.1.2. Decision variables
e Q;,: Amount purchased from supplieri, i = 1,...,n, inperiod ¢, t = 1,...,T within the QD interval
range r, r = 1,.., R;.

e Y. A binary decision variables equals to 1 if a non-zero amount is purchased from supplier i, i =
1,..,n;inperiodt,t = 1,..,T withinthe QD ranger, r = 1,...,R; (Y, = 1) or not (Y;,, = 0).

itr tr

3.1.3. State variables
o ] tH : Inventory level available at the end of period ¢, + = 1,...,T. I is the initial inventory level that
is available at the beginning of the first period.

o ] IS : Unsatisfied demand units (shortage) at the end of period ¢, t = 1,...,T.

e Y.*: Abinary variable that is equal to one (Y, = 1) if the inventory at the end of period 7, 1 = 1, ..., T
is positive and zero otherwise (YtH =0).

. YtS : A binary variable that is equal to one (YIS = 1) if the inventory at the end of period ¢,z = 1,...,T
is negative and zero otherwise (YIS =0).

3.2. Fuzzy TOPSIS

We use fuzzy TOPSIS in a way similar to the way that it was used by (Hamdan and Cheaitou, 2017d) in
order to estimate the green performance of supplier i in period ¢, i.e. GWj,. In order to do so, we express
the fuzziness in the decision-makers’ assessment of the environmental performance of suppliers using the
most widely used format of fuzzy numbers, i.e. triangular fuzzy numbers (TFNs). A TFN can be defined
as a triplet ( &, .#, %), with a membership function as defined in (Hamdan and Cheaitou, 2017d) where
£ is the minimum possible value, .# is the most possible value, and %/ is the maximum possible value.
Moreover, linguistic variables are used to account for the uncertainty in the decision-makers judgment since
they are simple enough to be represented as fuzzy numbers. In this work, we use the five-point linguistic
scale proposed by (Lau et al., 2003) as shown in Tables 3 and 4. The decision makers assign a weight to
every green criterion considered in the assessment of the green performance of the suppliers such as having
an environmental management system, using recycled materials, using renewable energy, etc.. Moreover, the
decision makers also assign a weight to every supplier with respect to each criterion. The assignment of the
weights to the criteria is based on the available knowledge and expertise of the decision makers as well as
the relative importance of each criterion to the company. The assignment of weights to the suppliers with
respect to the criteria can be done using available historical data, the capability studies on the suppliers, and
the laboratory testing and analysis of the product to be purchased.

Fuzzy TOPSIS calculations are then done in five steps.
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Table 3

Criterion rating scale.
Linguistic Variable TFN
Little importance (LI) (0.00, 0.00, 0.25)
Moderately important (MI)  (0.00, 0.25, 0.50)
Important (1) (0.25, 0.50, 0.75)
Very important (VI) (0.50, 0.75, 1.00)

Absolutely important (Al) (0.75, 1.00, 1.00)

Table 4
Alternative rating scale.

Linguistic Variable TFN

Very low (VL) (0.00, 0.00, 0.25)
Low (L) (0.00, 0.25, 0.50)
Good (G) (0.25, 0.50, 0.75)
High (H) (0.50, 0.75, 1.00)

Very high (VH) (0.75, 1.00, 1.00)

Step 1: In every period ¢, = 1,...,T of the planning horizon, each decision maker DM,k = 1, ..., K,

uses the linguistic variables defined in Table 3 to assign a weight transformed into TFN, w’g to each criterion

¢,¢ = 1,...,C. The decision makers use also the linguistic variables defined in Table 4 to assign a linguistic
weight transformed into TFN, x’c‘il, to each supplier i = 1,...,n, available in period ¢ with respect to each
criterion c. The weights are then aggregated according to the following equations:

T = (Tl W) = g (wlhal bt k) O
— = = = 1
Xpy = (.,?c,-,,///c,-,,%c[,) =% (xl” + x%it +..+ xgt) , 2

where wf = (.27‘ ///lk %lk) a fuzzy number, is the weight of criterion ¢ given by decision maker DM,
an.d x?i = (.Zc ’jt, //lcki " 42/6 ]z(r) a fuzzy number, is the weight of supplier i available in period ¢ with respect to
criterion c given by decision maker DM;,.

Step 2: A normalization approach is then used to eliminate the different units of measurement of the

weights x,;, as follows:

Lo My U,
% = cn" Clt, cit , 3
for every benefit criterion ¢, and
Reir = <_” L= == > )
%cit ‘/{cit "gcit

for every cost criterion, ¢, where Z,;, is the normalized value of X, and %, = max,%,.; and £, =
min.Z;,. We then combine the matrix [ %, ](cxn,) With the vector [w, ]y to form the decision matrix.

Step 3: In this step, the weight of each supplier in each period is multiplied by the weight of each criterion
to obtain the weighted normalized fuzzy decision matrix as in the following equation:

V= [Ucit](an,)7 where Uit = %cit ® We. (5)
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Indeed, V is the result of the multiplication of the last row in the decision matrix obtained in Step 2, w,,
by each row of that matrix.

Step 4: The fuzzy positive ideal solution (FPIS) and the fuzzy negative ideal solution (FNIS) are then
identified. Given that normalized values of v ;; are from O to 1, the FPIS is defined as (1,1,1), while the FNIS
is defined as (0,0,0). These values are then used to determine the distance from the positive ideal (dist[*;) and
the negative ideal (dist;,) solutions for each supplier i in each period  as follows:

dist! = 2 dist(v,;,, FPIS), (6)
c

dist;; = )" dist(v,,,, FNIS). )

The distances dist:; and dist;, are estimated using following the equation that calculates the distance

between the two fuzzy numbers A = (L, # 4, %) and B = (Ly, Mg, Up):

dist(A, B) = \/ % [(Ly— L)+ (My— M)+ Uy — Up)|. ®)

Step 5: Finally, the closeness coefficient, i.e. the green weight of each supplier i available in each period
t, GW},, is calculated as follows:

oW dist;, ©
" disty + dist

3.3. Mathematical model
The bi-objective integer LP model is defined as follows:

max TGVP = Z Z Z GW,, X Q. (10)

=1 i=1 r=

R; T
min TCP = ZZ( ZY,,,XFC>+Z(H,><ItH+S,><IIS), (11)

t=1 i t=1

where

R;
Vv (Q ) Z,. 1 UCm.Qm,, for i € a; (12)
ir) = R; )
l 2,21 (Ucitr (Qitr — Uit(r— I)thr) ( itr Zk=1 UCjtk (uitk - ”ir(k—l)))) , fori € b,
Subject to
R;
Y, <1, Vi=1,...,n,t=1,....T, (13)
r=1
Yirlir < Qitr < Yigplhiyy Vi=1,...,n,t=1,....T, r=1,...,R,, (14)
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n, R;
H S H S
Ir—l - 1:—1 + 2 2 Qi — 1" + 17 =D, 15)

i=1 r=1

2_ > Ou+Ily= ) D, (16)

eY® <15 < MY?®, vi=1,...T, (17)
Y <1 < My, vi=1,...T, (18)
Yo +v5 <1, vi=1,...,T, (19)
0,,eN, Y, €{0,1}, Vi=1,..,n, ,t=1,....,T, r=1,...,R,, (20)
"enN, 1 eN, Y (0,1}, Y5 € {0, 1}, Vi=1,..,T. (1)

Although the model proposed in this paper considers two QD policies allowing some suppliers to provide
the “all-unit” policy and some others to provide the “incremental” policy, it can also be used as a pure “all-
unit” or pure “incremental” QD model. The choice implementation of one of the three possible configurations
of the model can simply be achieved by changing the set of suppliers offering the two types of discounts and
the number of suppliers in theses sets, i.e. a, and b;.

The model maximizes the TGVP (Eq. (10)) and minimizes the TCP (Eq. (11)) of the products purchased
from all suppliers in all periods. Eq. (10) is a weighted sum of the purchased amounts in which the quantities
are multiplied by the green performance levels of the corresponding suppliers. The first part of Eq. (11)
represents the total variable and fixed costs of the purchased items, while the second part represents the
inventory holding and shortage costs. Moreover, Eq. (12) represents the total variable cost as function of the
QD policy. The first part of Eq. (12) represents the variable cost for the planning horizon and all suppliers
offering an “all-unit” QD scheme while the second part applies on suppliers offering “incremental” QDs.

Constraint (13) ensures that only one QD interval range, at most, is chosen for every supplier in each
period. In addition, constraint (14) ensures that the quantity from every selected supplier lies within the
corresponding chosen QD interval range. Constraint (15) controls the dynamic behavior of the inventory
levels in the periods of the planning horizon, while constraint (16) guarantees that, at the end of the planning
horizon, all the deterministic demand is fulfilled either using the initial inventory or the ordered quantities
from the suppliers during the planning horizon periods.

Constraints (17) and (18) ensure respectively that YIS and YtH are equal to one if [ IS and [ [H are positive.
Constraint (19) ensures that at most one of the two binary variables representing the status of the inventory
at the end of each period (positive inventory or shortage) may equal to one. Finally, Constraints (20) and
(21) ensure that the decision variables Q;,., 1 tH and I tS are non-negative integers, and Y;,., YtH and YtS are
binary.

Moreover, although the proposed model considers the backlog case, the lost sales case can be also consid-
ered by incorporating few changes into the model. Indeed, removing I i | from the left-hand side of constraint
(15) and ignoring constraint (16) will result in a lost sales model.
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Remark 1. The model presented in this section can be extended to optimize the QD scheme (as shown in
Appendix A). This extension is achieved by introducing another index j to the decision variables Q;,. and
Y, This index accounts for the different QD schemes. For instance, j = 1 represents an all-unit QD scheme,
and j = 2 represents an incremental QD scheme. Then, Constraint (13) in Appendix A can be modified to
ensure that at most one range and one scheme is chosen. To obtain meaningful results, the buyer-oriented
objective function must be replaced to consider both the buyer’s and the suppliers’ interests. This aspect is
beyond the scope of this paper.

3.4. Bi-objective solution

In order to determine the Pareto front and the corresponding Pareto solutions of the model defined in Eqs.
(10)-(21), we use a scalarization technique called the weighted comprehensive criterion method (WCCM)
(Kamali et al., 2011; Hamdan and Cheaitou, 2017b; Abdallah et al., 2021; Alsyouf et al., 2021). This method
requires solving the model in three steps.

Step 1:
The model that maximizes the TGVP only is solved, i.e. Eq. (10), subject to constraints (13)-(21). This step
gives the optimal value TGVP,,..

Step 2:
The model that minimizes the TCP only is solved, i.e. Egs. (11) and (12), subject to constraints (13)-(21).
This step results in the optimal value TCP;,,.

Step 3:
Steps 1 and 2 focus on single objective formulation to obtain the two ideal values TGVP,,, and TCP,.
These two values will be used in defining a new objective function that solves the cost and the value simulta-
neously by combining them. Since the two objective functions have different order of magnitudes and units,
their optimal values (TGVP,,,, and TCP ;) are used to normalize the objective functions. These normalize
functions are:

max

TGVP,,. — TGVP

max

_ , 22
TGVP TGVP, . (22)
TCP — TCP,;
TCP = —_— 23)
TCP, ..

Eq. (22) calculates the relative difference between the ideal green value (TGVP,,,, obtained from Step
1 and the TGVP calculated using Eq. (10). Similarly, Eq. (23) calculates the relative difference between the
TCP calculated using Eq. (11) and ideal cost (TCP,;,) obtained from Step 2. Eqgs. (22) and (23) target to
bring objective functions (10) and (11) when combined together close to their optimal values after eliminating
the effect of the units. Thus, a model consisting of a weighted combination of Eqs. (22) and (23), as given
in Eq. (24) and the same constraints defined in Egs. (13)-(21) is solved. The solution of this model gives the
bi-objective optimal solution.

min f = a; frgyvp + @ f1cp- 24

a; and a, are two weights between 0 and 1 with | + &, = 1. Varying the values of ¢; and a, and solving
(24) subject to (13)-(21) results in different Pareto solutions that help identify the problem Pareto front.

3.5. Solution approach

We propose a population-based heuristic to solve large-sized instances within a reasonable computation
time as shown in Algorithm 1. This heuristic starts by generating ¥ individuals (¥ is a multiple of eight),
each of which (v = 1, ..., V) consisting of a random feasible solution (i.e., selected suppliers, quantities to
be ordered and inventory levels) for each period ¢t (t = 1,...,T). The design of the used chromosomes is
given in Figures 1 and 2. Note that the inventory chromosome is created based on the quantity chromosome
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Period 1 Period T
Supplier 1 | Supplier 2 Supplier n, Supplier 1 Supplier 2 Supplier n,
Individual 1 50 100 320 124 123 0
Individual 2 214 245 59 74 0 0
Individual 3 145 312 54 41 21 35
Individual N 41 210 21 78 78 78

Figure 1: The quantity chromosome with the rows for the individuals and columns for the suppliers and periods.
The cells contain the quantity value Q

itr*

‘ Period 1 ‘ Period 2 ‘ ‘ Period T
Inventory (I[)
Individual 1 12 0 32
Individual 2 0 45 5
Individual 3 15 32 4
Individual N 1 0 0
Unsatisfied demand (1)
Individual 1 0 10 0
Individual 2 14 0 0
Individual 3 0 0 0
Individual N 0 21 . 0

Figure 2: The inventory chromosome with the rows for the individuals and columns for the periods. The cells
contain the inventory levels (positive inventory, I,H, and unsatisfied demand, ItS).

for each individual. For each individual y, a list of suppliers and periods (w,,) is randomly generated, such
that the selected suppliers and periods are enough to fulfill the demand (Constraint (16)). Then, a quantity is
randomly assigned for each period and supplier in the list while not exceeding the capacity of supplier i in
period ¢ (u;; g ). That is, constraint (14) is respected. A feasible solution is ensured by randomly modifying
the assigned ’quantities such that constraint (16) is satisfied. After that the inventory level chromosome in
each period ¢ is created using 27;1 Zi"l 0, — D,, which results in the decision variables / IH and ItS in
Constraint (15).

The algorithm then sets the ideal TGVP (TGVP,,, ), the ideal TCP (TCP,;,), and the global total variation
(fg) to —o0,, +00 and +oo, respectively. In eachiteration 5,6 = 1, ..., A, the heuristic performs the following
steps:

1. It computes the TGVP for each individual (TCP,, ) using Eq. (10).

2. Itidentifies the best TGVP among the individuals in the iteration as max,,—; g TGVP,, and saves its
value in TGVPp.

3. It computes the TCP for each individual (TCP,, ) using Eq. (11).

4. Ttidentifies the best TCP among the individuals in the iteration as min
in TCPp.

5. It then compares TGVP g and TCPy with the current ideal values (TGVP,,,,, TCP,;,) and updates the
ideal values if better values are found and recalculates f, ;.

6. Next, it computes the total variation for each individual ( fy) using Eq. (24).

7. Finally, it selects the best total variation (fp) as min,_;  f,, and updates the ideal total variation

fmin'

w=1,...w TCP, and saves its value
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If the best total variation f5 in any iteration is better than the global total variation f,,;,, then the algorithm
updates f,;, and resets the counter 7 to zero. When f, ;. is not updated, then the counter 7 is increased by
one. The counter 7 stores the consecutive number of iterations without improvement in f,;,. This technique
allows escaping local optimum solutions and enhances the solution diversity.

To explore other potential solutions, the heuristic in each iteration splits the ¥ individuals into subgroups,
each of eight individuals. It then performs the following steps on each subgroup:

1. It selects the best individual based on Sy
2. It performs eight operations on best individual to create eight new individuals.
3. Itreplaces the individuals with the new ones.

The eight operations used to create new individuals are:

Do nothing, that is keep the best.

Change quantity Q;,. between two locations (suppliers and periods) on the quantity chromosome.
Change quantity Q;,. between two suppliers in the same period ¢.

Change quantity Q;,. between two periods from the same supplier i.

Increase the capacity utilization of supplier i.

Decrease the shortage in a randomly selected period.

Decrease the amount of inventory holding in a randomly selected period.

Switch the quantities for a randomly selected supplier between different periods.

itr

NN WD

If 7 reaches the maximum predefined number of iterations allowed without change (z,,,,), then all indi-
viduals are removed and new individuals are generated randomly.

Moreover, in order to guarantee a stable heuristic solution and to reduce the randomness impact when
comparing it with the exact approach, the heuristic is solved a certain number of times for each instance
and the average objective value of the solutions is considered and compared with the corresponding exact
objective value.

4. Implementation software

In order to facilitate the implementation of the proposed mathematical model and the solution approach
in practice for decision-makers and users in the industry, a MATLAB-based software has been developed.
The software has a graphical user interface that was designed using the “App Designer” package available in
MATLAB 2021a. Figure 3 shows the fuzzy TOPSIS tab in the developed software. The software requires
the user to input the fuzzy TOPSIS scale and the evaluations in Excel format “.xlsx”. It returns the green
(and non-green) weights.

Figure 4 illustrates the optimization tab in the software. The user must upload inventory data (holding
and shortage costs), demand data and suppliers’ data (green weights, fixed costs, variable costs for each QD
interval range, capacity details, QD type, and availability) as Excel files “.xIsx”. The user also needs to
specify the weight of the TCP objective function, and consequently, the importance of the TGVP objective
function will be automatically calculated. The user needs to identify whether the QD scheme is uniform for
all suppliers or mixed and to select the desired optimization method. The software returns the chosen supplier
selection and the order allocation decisions for every period as shown in Figure 4.

5. Numerical study

In Section 5.1, we construct an illustrative example using the case study data presented in Choudhary and
Shankar (2014). We show the impact of different QD schemes on the selected suppliers, inventory levels,
TCP value, and TGVP value using this illustrative example. In addition, we generate the Pareto frontier
and illustrate the trade-offs between TCP and TGVP under different QD schemes. Then, in Section 5.2,
we generate large-sized instances to test the developed model and the solution approaches. The instance
generation technique is similar to the one discussed in Manerba et al. (2018) and adapted for our problem.
Table 5 provides details on the parameter generation rules used to generate the parameter values used in this
section. For each instance, three QD scenarios have been considered:

Hamdan et al.: Preprint submitted to Elsevier Page 19 of 35



QD model for dynamic SSOA

Algorithm 1: Population-based heuristic.

o 9! R W N =

T O T R B S SR T SO TR R SR SR € S C U C R C RN PN RN R = = _ o e e e
5 28 B 2 8 8 R I XKLV T REIEVRURNREZTRISTH B a0 =28

46

input  : Sets and parameters defined in the Section 3.1.1
output : Selected suppliers and corresponding orders and inventory levels
set TGVP, ., = —00, TCP;, = 00, fipin = 00,7 =0, 7,

max ax

initialize W individuals;
fory < 170¥do

generate a random list of suppliers and periods (w,,);
assign random Q;,, for suppliers and periods in @
calculate I and IIS foreacht=1,...,T;

check and fix violations in Constraints (14)—(16)

s

end
for 56 < 11t Ado

for y < 110¥ do
calculate TGVPV, and TCPW using Eqgs. (10) and (11)-(12), respectively;

end
set TGVPp = max
set TCPp = min,,_;
if TGVPgp > TGVP,,,, then
set TGVP,,, = TGVPp;
if 6 # 1 then

| recalculate f;, using the updated TGVP
end

v=1,...,

max >

end
if TCP, < TCP,,. then
set TCP,, = TCP,;
if 6 # 1 then
| recalculate f;, using the updated TCP,;
end

end
foreach v < 110 ¥ do
| calculate f, using Eq. (24);
end
set fp = minwzlw’\y fw;
if fp < f,nin then
set fiin = B3
store the best individual as the global best;
sett=0
else
‘ sett=7+1
end
for k < 110 ¥/8 do

= 2000 and A = 200, 000 ;

select randomly eight individuals with their corresponding TCP,,, TGVP,,, and f,,;

identify best individual in the subgroup based on f,;

perform the eight operations listed in Section 3.5;

replace the individuals in the subgroup with the newly created ones;
end
if 7 > 7, then
‘ discard all individuals and create new ones;

end

47 end
48 return the global best solution.
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@ Comprehensive quantity discount mod

Purchasing value | Allocation schedule

General input Green ranking input MNon-green ranking input

Number of decision makers

| Import fuzzy TOPSIS scale | | Import fuzzy TOPSIS scale |
Number of suppliers e E— S E—

]
N
Number of green aileria | Import green criteria evaluation | | Import non-green criteria evaluation |

Mumber of non-green criteria | Import suppliers' evaluation | | Import suppliers’ evaluation |
1 T ————— _
| Calculate! | | Calculate! |
Credits Green weight (GW) Non-green weight
This software is developed by supplier 1 0.1430
Sadeque Hamdan Supplier 2 0.3220
(sadeque.hamdan.1991@gmail.com) Supplier 3 05350

Itis based on & research work titled
"Comprehensive guaniity discount
model for dynamic green supplier
selection and order allocation”

Figure 3: Fuzzy TOPSIS tab in the developed decision-making software.

[#] Comprehensive quantity

count model for dynamic green SS0A - By Sadeque Hamdar
Purchasing value Allocation schedule
Input tab Optimization seftings

| Import inventory data | Status O Exact approach ) Population-based heuristic

|ml Status Q MNumber of individuals | 0 |Run—\ Status O
— Number of iterations | 0  —
| Import suppliers' data | Status Q

Cost objective importance Result: Selection and allocation schedule
P o Period 1 Period 2 Period 3 Period 4
0 0102030405060703509 1 Supplier 1 300 0 0 0
Quantity discount (QD) scheme Supplier 2 0 334 0 516
(") Unified: all-unit QD Supplier 3 700 0 700 0

() Unified: incremental QD

(®) Mixed: all-unit and incremental

Credits

This software is developed by: Sadeque Hamdan (sadeque.hamdan. 1991@gmail.com)

It is based on a research werk titled "Comprehensive guantity discount model for dynamic green supplier selection and order allocation”

Figure 4: Optimization tab in the developed decision-making software.

e Scenario 1: all suppliers offer “all-unit” QDs.
e Scenario 2: all the suppliers offer “incremental” QDs.

e Scenario 3: some suppliers offer “all-unit” QD while others offer “incremental” QDs.

We use the notation PN-T-4-S to represent different instance configurations and problem sizes, where
N represents the maximum number of suppliers in the instance, T is the number of periods, A represents the
level of the number of suppliers required to fulfill the demand. The values of A are defined as follows: “L” for
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Table 5
Instance generation rules.

Parameter Formula Explanation
N U: a discrete uniform distribution
g o~ UGN N: maximum number of suppliers
R; R, ~U(3,5)
Uig, Uig, ~ U(1,15)
10, | V': a continuous uniform distribution
Ly 6,.,[’~”1]}‘(0.6, D 0,: a percentage to define the lower limit

of the QD interval

ve, ~ U(10, 18)
ve;, ~ U(0.9vc¢,, 1.1vc,)

vy, 0, = (1=, )ve, u;, - discount rate
w, € {0,0.1,0.15,0.2,0.25,0.3}
A~T(0,1) ) . ) ) .
D, D! = [Amax, g + (1= A) 3 | ﬁ, ;s ifun:czftlo:' of varlabble c?st, max(;mum |<.:apaC|ty and 4
D,=[D,-(D,-1)* —Z””;C : factor affecting number of required suppliers
-_— 21 UCip  — __ Zf E: Uf:r ' . . .
FC Ve, = = 6= =0 F FC, is a function of the average variable cost
it CF, = (E+ %) Xy X, g, and the maximum capacity
10% — 20% — The annual inventory cost is between
H, H, ~ V(S5 ve, 500) 10% and 20% of the purchasing cost
25% — 35% The annual shortage cost is between
S S~ Ul55ve, 55700) 25% and 35% of the purchasing cost
GW, GW, ~ 1(0.2,0.7)
ayand @, a;,=0.5,0a,=05 Equal importance

low, “M” for medium and “H” (see Table 5). The last letter in the notation, S, represents the studied scenario,
with “A” for Scenario 1, “I”” for Scenario 2 and “C” for Scenario 3. The asterisk (*) indicates that the exact
solution is not optimal as the solver reached the maximum time limit without providing the optimal solution
(three hours in this work). For example, P10-40-L-I* is an instance with ten suppliers using only incremental
QDs (Scenario 2), forty periods and low number of suppliers required to fulfill the demand. The solver did
not reach the optimal solution for this instance due to the time limit. All instances have been solved using
the exact approach and the proposed population-based heuristic. In the heuristic approach, the maximum
number of iterations (A) and the number of individuals, i.e. solutions (¥), are 200,000 and 24, respectively.
All experiments were conducted using a laptop equipped with Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
2.59 GHz, 16.0 GB of RAM and Windows 11. CPLEX 12.6 was used to obtain the exact solution.

5.1. Illustrative example

We utilize the data presented in Choudhary and Shankar (2014) to demonstrate the impact of the QD
scheme on various parameters. The demand is given as D, = {650,520,500, 650} for t = 1,...,4. The
example in Choudhary and Shankar (2014) employs a fixed discount of 1 per unit for each QD interval,
which we refer to as “Case Study 1”. We then introduce “Case Study 2”, which uses the same parameters as
in “Case Study 1” but with variable costs for different QD intervals. In this case, we assume distinct discount
levels for each supplier, as shown in Table 6. For Scenario 3, titled “Combined QD”, suppliers are assumed to
employ different QD schemes. We define six sub-scenarios, ranging from “Combined-1" to “Combined-6,
each with variations in the two sets a, and b, (Table 7).

Table 8 displays the optimal quantities and inventory levels in each period for Cases 1 and 2. In Case Study
1, the ordered quantities and selected suppliers remain unchanged despite alterations in the QD schemes. This
can be attributed to the cost structure, where Supplier 1 is the most affordable option across all price intervals,
followed by Supplier 3. Moreover, a positive inventory level can be noticed at the end of periods 1 through
3. The reason may be attributed to the savings that can be generated from ordering larger quantities than the
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Table 6
Parameters used in the illustrative example.

UCiyy
QD intervals  Case Study 1  Case Study 2 ke, 6w,
0 <149 62 62
Supplier 1 150 < QO < 299 61 61 1000 0.19
300 < Q0 <500 60 57
0 <199 72 72
Supplier 2 200 < Q < 349 71 65 1500 0.46
350 < Q <450 70 55
0 <249 68 68
Supplier 3 250 < Q0 < 399 67 60 1400 0.32
400 < 0 <620 66 59
Table 7
Sub-scenarios under the combined QD scheme.
a, b,
Combined-1  {Supplier 1, Supplier 2} {Supplier 3}
Combined-2  {Supplier 1, Supplier 3} {Supplier 2}
Combined-3  {Supplier 2, Supplier 3} {Supplier 1}
Combined-4 {Supplier 3}  {Supplier 1, Supplier 2}
Combined-5 {Supplier 2}  {Supplier 1, Supplier 3}
Combined-6 {Supplier 1}  {Supplier 2, Supplier 3}

demand and storing part of the ordered quantities to benefit from the QD. The savings related to QD are more
important than the additional inventory holding costs.

Under Case Study 2, and in the all-unit QD scheme, Supplier 2 is mainly used to fulfill the demand
followed by Supplier 1 as they are the least expensive suppliers in the third QD interval. The same applies to
“Combined-1" as both suppliers offer all-unit QD in this case. In the incremental QD scheme, Supplier 1 is
the main used source followed by Supplier 3. This result is related to the price structure, as the price impact
is cumulative depending on the ordered quantity. Consequently, utilizing Supplier 1 is ideal due to the least
expensive price in the first interval, and the second least expensive price in the second and third intervals.
A similar situation can be seen in the “Combined-6" scenario. In the combined scenarios, the general trend
is to rely on one main supplier offering all-unit QD as this results in a less expensive procurement plan than
relying on suppliers offering incremental QD. Moreover, almost all the cases, the inventory levels are positive
throughout the planning horizon, except in the last period, due to the quantities ordered and that are larger
than the demand so that price discounts can be achieved. Only for the scenario “Combined-4”, it is less
expensive to have shortages in the first period than ordering larger quantities and storing for the following
period. Note that in the case of maximizing the TGVP objective function, Supplier 2 is mainly used followed
by Supplier 3 regardless of the QD scheme. The reason is related to the fact that GW, has the highest value
for Supplier 2 followed by Supplier 3 and that the TGVP objective function is independent of the unit price
of the products and therefore of the QD schemes.

The bi-objective behavior is studied through the Pareto frontier by varying «; from 0 to 1 with a step
of 0.01. Figure 5 shows the TCP and TGVP values for the two cases, Case Study 1 and Case Study 2. For
both cases, Scenarios 1 and 2 are the two extreme scenarios, and the different combined sub-scenarios within
Scenario 3 are bounded between them. The first observation that one can draw from the results is that the all-
unit QD scheme allows the customer company to reconcile cost and environmental performance in an easier
way that the incremental QD scheme. This result can be seen from the Pareto frontiers in both cases, Case
Study 1 and Case Study 2, where the Pareto frontier course of the all-unit scheme is the lowest allowing a
better trade-off between the two objective functions, TCP and TGVP. Moreover, the average trade-off between
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Optimal solution for minimizing the TCP under Case Study 1 and Case Study 2.

t=1 t=2 t=3 t=4
. 0,,3=500 _ _ A
Case Study 1 All schemes Quantities 04,=320 Q123 =500 ©153=500  0,;3=500
Inventory IIH=170 IZH=150 I3H=150 If=0
0,,,=470
- 13= — — —
Al unit Quantities 0,,=450 0,,;=450  0,;;=450  0,,;=500
Inventory 1{12270 IZH:200 13H=150 I4H=0
e 0,,;=500 _ . .
Incremental Quantities 0,,=320 0,,;=500 Q,53=500 Q,,;=500
Inventory I1'=170  I'=150 I1/'=150 17=0
0,,;=470
- 13= — — —
Combined-1 Quantities 0,,=450 0,,;=450  0,;;=450 0Q;,;=500
Case Study 2 Inventory 17=270  17=200 I}'=150 1;'=0
0,,;=420
- 3= — — —
Combined-2 Quantities 0,,,=400 0,,3=500 Q,5;=500 Q,,;=500
Inventory I'=170  I'=150  I1'=150 17=0
0,,;=450
- 23= — — —
Combined-3 Quantities 0..=520 0,,;=450  0,;;=450 Q,,;=450
Inventory IIHZ320 12H:250 13H=200 I4H=0
. Quantities  0543=620 0;;=580 Q,5;=500 Q;,;=620
Combined-4 Inventory 15=30 1=30 17=30 1=
. 0,,;=500 . . 0,,=20
Combined-5 Quantities 5 " 4gg  Om=450 00 =450 " " 459
Inventory I177=300 I'=230 1[=180 If=
ey 0,;=500 _ _ _
Combined-6 Quantities 0,,=320 0,,;=500 0,;;=500 Q,;=500
Inventory Ilel70 12H=150 13H=150 14H=0

Table 9

Increase in the TGVP for 1% of TCP increase in Case Study 1 and Case Study 2.

Case Study 1

Case Study 2

All-unit

Incremental
Combined-1
Combined-2
Combined-3
Combined-4
Combined-5
Combined-6

6.12%
6.00%
6.00%
5.79%
6.57%
6.13%
6.47%
5.47%

25.85%
9.17%
8.56%
5.99%

n/a
3.18%
7.02%
6.68%

the TCP and the TGVP is calculated and reported in Table 9. As a confirmation to the better performance of
the all-unit scheme in terms of reconciliation of the economic and environmental performances, an average of
25.85% improvement of the TGVP of the purchased products can be achieved in Case Study 2 for an increase
in the TCP by only 1%. Moreover, increasing the TCP by 1% in Case Study 1 enhances the TGVP by 6.07%
on the average. An increase in the TGVP between 3.18% and 25.85% can be observed in Case Study 2 for
an increase of the TCP by 1%. Note that in the sub-scenario “Combined-3” of Case Study 2, no trade-off
exists since the optimal solution in the case of cost minimization is the same as that in the case of TGVP

maximization.
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—%— All-unit —*— Combined-1 —8—Combined-2 —&— Combined-3 —A— Combined-4 Combined-5 Combined

-400 T -400 T
(Case Study 1) (Case Study 2)

-600 T -600 -

-700 - 700 -

-1x TGVP
-1x TGVP

TCP %10° ' TP x10°
Figure 5: Pareto frontier for Case Study 1 and Case Study 2.

5.2. Heuristic performance

The population-based heuristic (Algorithm 1) is compared with the exact approach to judge its perfor-
mance. We generated instances, as explained in Section 5 and used a time limit of three hours as a stopping
criterion for the exact approach. All the instances have been solved following the three scenarios defined in
Section 5. Table 10 provides the percentage difference between the objective function values obtained using

the exact and the heuristic approaches. More precisely, the percentage difference between the TCP values ob-

TCP; ~TCPp,
TCPg,

Moreover, the percentage difference for the TGVP value between the exact and heuristic bi-objective solu-

TGVP g, ~TGVP :
IOV, —TGVPy TovP SYPi  Note that the subscript Ex and H denote
Ex

the exact and the heuristic solutions. The exact solution is either the optimal one or the best solution within
the time limit. The bi-objective error (E) is calculated as a; Epcp + @ Ergyp, Which is also equivalent to
the difference between f, and fg. This is because the bi-objective solution is characterized by two values
(TCP and TGVP).

Table 10 shows that the average bi-objective error (E ;) is equal to 2.96%, 2.51% and 2.28% for Scenarios
1, 2 and 3 respectively. This indicates that the heuristic approach provides solutions with comparable quality
for the different QD schemes. In addition, for some instances, the percentage difference between the exact
and heuristic objective function is found to be high for one objective function while it is low for the other
objective function, resulting in an overall acceptable (i.e. for the bi-objective function). This is the case for
example for P20-40-H-A* and P10-60-M-A. This is due to the contribution of each objective function in the
final solution, i.e. due to values of a; = a, = 0.5.

Table 11 reports the computation time in seconds for the exact and heuristic approaches (T, and Ty

respectively). The time saving is calculated as a percentage using 100 X TE;;TH It is worth noting that

tained from the exact and heuristic bi-objective solutions, Etcp, is calculated as Epcp = 100 X

tiOIlS, ETGVP’ is obtained uSing ETGVP = 100 x

Ex
if the exact approach reaches the optimal solution faster than the heuristic approach then the time saving is
labeled as n/a. Moreover, for the instances for which the exact solver could not reach and optimal solution
after three hours of run time, then Ty, = 10800 seconds. The results suggest that the heuristic may yield
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Table 10
Difference between the exact and heuristic approaches.

Instance Ercp (%)  Eqgup (%)  E; (%) Instance Ercp (%) Ergyp (%) E; (%)
P10-40-H-A 4.00 0.62 2.31 P10-60-H-A* 3.01 2.91 2.96
P10-40-M-A 0.78 1.42 1.10 P10-60-M-A 9.29 -3.76 2.77
P10-40-L-A 2.90 1.55 2.22  P10-60-L-A* 3.60 1.81 2.70
P15-40-H-A 3.91 0.80 2.36  P15-60-H-A* 3.18 5.28 4.23
P15-40-M-A 5.11 0.49 2.80 P15-60-M-A* 6.48 2.47 4.47
P15-40-L-A 4.13 0.62 2.38 P15-60-L-A* 1.89 3.95 2.92
P20-40-H-A* 8.74 -1.68 3.563 P20-60-H-A 3.60 0.15 1.87
P20-40-M-A 8.73 0.71 4.72 P20-60-M-A* 5.10 2.65 3.88
P20-40-L-A 3.37 3.42 3.40 P20-60-L-A* 3.39 0.40 1.89
P25-40-H-A 7.43 0.97 420 P25-60-H-A 1.74 3.84 2.79
P25-40-M-A 7.45 0.74 410 P25-60-M-A* 6.30 -0.73 2.79
P25-40-L-A 4.30 3.38 3.84 P25-60-L-A* 3.04 -0.35 1.34
P30-40-H-A 2.27 0.93 1.60 P30-60-H-A* 4.65 3.09 3.87
P30-40-M-A 5.45 0.74 3.09 P30-60-M-A* 6.31 1.82 4.07
P30-40-L-A 3.11 2.50 2.81 P30-60-L-A* 2.50 1.16 1.83
P10-40-H-1* -0.49 2.38 0.94 P10-60-H-I* 3.17 3.06 3.11
P10-40-M-I 2.72 0.03 1.37 P10-60-M-I 3.99 0.13 2.06
P10-40-L-I 0.80 0.00 0.40 P10-60-L-I* 5.39 0.62 3.00
P15-40-H-1 0.84 -0.09 0.38 P15-60-H-I 3.96 2.05 3.00
P15-40-M-I 3.53 -0.04 1.74 P15-60-M-I* 3.88 0.99 2.44
P15-40-L-I 2.29 3.94 3.12  P15-60-L-I 2.43 -0.02 1.20
P20-40-H-I 3.82 -0.11 1.86 P20-60-H-I 3.72 1.83 2.77
P20-40-M-I 6.14 -1.32 2.41 P20-60-M-I* 7.41 1.73 4.57
P20-40-L-1 3.87 2.07 2.97 P20-60-L-I 4.20 4.26 4.23
P25-40-H-1 2.90 0.56 1.73  P25-60-H-I 3.13 2.20 2.66
P25-40-M-I 5.19 0.67 2.93 P25-60-M-I 4.85 1.49 3.17
P25-40-L-1 4.35 3.20 3.77 P25-60-L-I* 3.50 0.65 2.08
P30-40-H-1* 2.63 0.33 1.48  P30-60-H-1* 6.62 1.73 4.17
P30-40-M-I 2.65 4.13 3.39  P30-60-M-I* 6.64 2.56 4.60
P30-40-L-1 1.82 1.56 1.69 P30-60-L-1* 3.52 0.66 2.09
P10-40-H-C 3.70 -2.18 0.76  P10-60-H-C* 1.26 4.23 2.74
P10-40-M-C 0.61 1.70 1.15 P10-60-M-C 7.36 -1.46 2.95
P10-40-L-C 0.09 0.00 0.04 P10-60-L-C* 1.99 0.16 1.07
P15-40-H-C* 0.14 0.34 0.24 P15-60-H-C* 8.16 -1.29 3.44
P15-40-M-C 0.86 1.22 1.04 P15-60-M-C* 2.23 2.10 2.16
P15-40-L-C 0.64 5.31 2.98 P15-60-L-C 4.34 -0.23 2.06
P20-40-H-C* 2.91 -0.88 1.02 P20-60-H-C 2.81 0.87 1.84
P20-40-M-C 6.38 2.13 425 P20-60-M-C* 7.61 -3.90 1.85
P20-40-L-C* 5.49 0.01 2.75 P20-60-L-C* 3.82 3.39 3.61
P25-40-H-C 7.03 -1.03 3.00 P25-60-H-C* 6.61 -1.43 2.59
P25-40-M-C 6.56 -2.36 2.10 P25-60-M-C 5.50 1.36 3.43
P25-40-L-C* 3.66 2.25 2.95 P25-60-L-C* 3.68 0.19 1.93
P30-40-H-C 2.74 1.92 2.33  P30-60-H-C* 7.10 -1.09 3.00
P30-40-M-C 4.45 141 2.93 P30-60-M-C* 6.93 -0.49 3.22
P30-40-L-C 1.11 2.70 1.90 P30-60-L-C* 4.93 0.91 2.92

a time saving between 4.2% and 98% with an average of 87.3% compared to the exact approach for large-
sized instances when the solver time limit is set to three hours. Note that the 4.2% time saving corresponds
to the instance “P25-60-M-I", which took 550 seconds in the exact approach to reach optimality. Figure 6
shows the dispersion of the computation time of the heuristic approach based on all the considered instances
for the three scenarios. Figure 6 indicates that the median computation time is 421, 408, and 1318 seconds
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Table 11
Computation time of the exact and heuristic approaches under all scenarios.

Instance T, (s) Ty (s) ;I\r/?:g (%) Instance T, (s) Ty (s) :;\rl?:g (%)
P10-40-H-A 3651.98 234.88 93.57 P10-60-H-A*  10800.00 278.26 97.42
P10-40-M-A 42.69 239.04 n/a P10-60-M-A 728.59 242.68 66.69
P10-40-L-A 104.32 242.95 n/a P10-60-L-A*  10800.00 253.84 97.65
P15-40-H-A 825.61 287.40 65.19 P15-60-H-A*  10800.00 425.46 96.06
P15-40-M-A 47.23 297.59 n/a P15-60-M-A* 10800.00 397.39 96.32
P15-40-L-A 2529.10 201.17 88.49 P15-60-L-A* 10800.00 396.80 96.33
P20-40-H-A*  10800.00 382.82 96.46 P20-60-H-A 679.91 441.06 35.13
P20-40-M-A 3670.37 353.91 90.36  P20-60-M-A*  10800.00 445.10 95.88
P20-40-L-A 1473.76 378.27 74.33  P20-60-L-A* 10800.00 470.79 95.64
P25-40-H-A 309.80 416.98 n/a P25-60-H-A 4095.77 537.43 86.88
P25-40-M-A 4068.48 430.01 89.43 P25-60-M-A*  10800.00 531.43 95.08
P25-40-L-A 4216.13 448.89 89.35 P25-60-L-A*  10800.00 522.15 95.17
P30-40-H-A 5338.03 517.29 90.31 P30-60-H-A*  10800.00 537.52 95.02
P30-40-M-A 293.41 459.37 n/a P30-60-M-A* 10800.00 551.12 94.90
P30-40-L-A 4301.07 452.13 89.49 P30-60-L-A* 10800.00 538.27 95.02
P10-40-H-1* 10800.00 209.44 98.06 P10-60-H-I1* 10800.00 253.12 97.66
P10-40-M-I 34.88 200.35 n/a P10-60-M-I 46.66 267.29 n/a
P10-40-L-1 14.82 220.68 n/a P10-60-L-I* 10800.00 254.74 97.64
P15-40-H-I 39.07 255.46 n/a P15-60-H-I 5490.46 385.90 92.97
P15-40-M-1 2189.51 256.55 88.28 P15-60-M-I* 10800.00 444.87 95.88
P15-40-L-1 2529.10 265.83 89.49  P15-60-L-I 4168.23 393.51 90.56
P20-40-H-I 85.82 355.06 n/a P20-60-H-I 310.86 461.81 n/a
P20-40-M-I 3670.37 371.93 89.87 P20-60-M-I* 10800.00 451.09 95.82
P20-40-L-1 78.66 372.04 n/a  P20-60-L-I 3921.00 468.96 88.04
P25-40-H-I 111.54 404.70 n/a  P25-60-H-I 5185.49 524.43 89.89
P25-40-M-I 4049.77 410.99 89.85 P25-60-M-I 550.70 527.58 4.20
P25-40-L-1 154.45 431.25 n/a P25-60-L-I* 10800.00 549.67 94.91
P30-40-H-1* 10800.00 453.10 95.80 P30-60-H-I* 10800.00 582.02 94.61
P30-40-M-I 240.34 446.47 n/a P30-60-M-1* 10800.00 605.53 94.39
P30-40-L-I 224.68 476.60 n/a  P30-60-L-I* 10800.00 657.29 93.91
P10-40-H-C 3651.98 425.45 88.35 P10-60-H-C*  10800.00 695.46 93.56
P10-40-M-C 120.62 365.84 n/a P10-60-M-C 220.38 552.47 n/a
P10-40-L-C 32.49 383.16 n/a P10-60-L-C* 10800.00 603.80 94.41
P15-40-H-C*  10800.00 612.54 94.33 P15-60-H-C* 10800.00 1163.64 89.23
P15-40-M-C 85.86 636.29 n/a P15-60-M-C*  10800.00 941.24 91.28
P15-40-L-C 2529.10 629.77 75.10 P15-60-L-C 379.87 1089.40 n/a
P20-40-H-C*  10800.00 778.69 92.79 P20-60-H-C 296.95 1611.30 n/a
P20-40-M-C 3670.37 969.17 73.59 P20-60-M-C* 10800.00 1363.03 87.38
P20-40-L-C*  10800.00 1093.63 89.87 P20-60-L-C*  10800.00 1336.90 87.62
P25-40-H-C 527.78 1231.29 n/a P25-60-H-C*  10800.00 1754.27 83.76
P25-40-M-C 4049.77  1099.86 72.84 P25-60-M-C 1120.13 1735.81 n/a
P25-40-L-C*  10800.00 1364.81 87.36  P25-60-L-C* 10800.00 1671.17 84.53
P30-40-H-C 3463.71 1344.02 61.20 P30-60-H-C* 10800.00 1803.32 83.30
P30-40-M-C 179.43 1240.10 n/a P30-60-M-C* 10800.00 1781.55 83.50
P30-40-L-C 696.76 1350.19 n/a P30-60-L-C*  10800.00 1833.46 83.02

for the all-unit, incremental and combined QD schemes respectively. The combined scenario requires the
longest computation time with the largest computation time variability, which reflects the high impact of the
problem size on the computation time. In contrast, the all-unit QD scheme is the least sensitive to problem
size changes.
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Figure 6: Heuristic computation time under the three scenarios.

6. Conclusion

In this paper, we have proposed a SSOA model that considers two schemes of QDs, i.e. the all-unit and
incremental QD schemes in addition to their combination. The proposed model can be easily used with only
“all-unit” or only “incremental” discounts or with both schemes for different suppliers. The proposed model
considers also the variable availability and performance of suppliers in terms of cost and green aspects over a
predetermined planning horizon. The objective is to select the suppliers to contract with and the quantities to
be ordered for every period of the planning horizon in order to satisfy a deterministic single-product demand.
The problem has been modelled using a bi-objective MILP formulation and the model has been solved using
the weighted comprehensive criterion method with an exact approach based on the branch-and-cut algorithm
and a population-based heuristic approach. Moreover, a numerical analysis has been conducted to analyze
the results including the obtained solutions and the corresponding computation time of the exact and heuristic
approaches. The exact approach has been effective for the all-unit, incremental, and combined QDs models
but only for small to medium-size problems. The optimal solution could not be reached even after a quite
long computation time for large-size instances. In addition, the comparison between exact and heuristic ap-
proaches has shown that the percentage difference in terms of cost and green value has been small, especially
for a large number of iterations of the heuristic approach which led to conclude that the exact approach can be
used for small to medium size problems while the heuristic approach is recommended for large size problems,
and without any difference in the quality of the heuristic solutions between the considered discount schemes.
Moreover, the results have shown that the cost-based solutions and the green-value-based solutions are dif-
ferent and the latter is not sensitive to the discount scheme, which can be expected. Moreover, the all-unit
discounts appeared to be better for the green-oriented solutions in the bi-objective configuration. Finally,
different avenues for future research can be suggested based on the findings of this paper. First, considering
stochastic demand instead of deterministic demand would make the model more realistic although it would
become more challenging to be solved. Second, considering other sustainability aspects such as the social
performance of the suppliers would be of interest. In addition, considering this problem along with the rout-
ing problem between the suppliers to collect the purchased products, while minimizing cost and the CO,
emissions from the transportation vehicles is worth investigating.
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A. Appendix: Mathematical model with optimal QD scheme selection

The bi-objective integer LP model that allows to optimize the selection of the QD scheme is defined by
introducing a new index j = 1, ..., J that represents the QD scheme. We use j = 1 to indicate “all-unit” QD
and j = 2 to indicate “incremental” QD. The formulation can be given as follows:

max TGVP = Z Z Z GW,;, X Z o . 25)

t=1 i=1 r=1

=

i

T n J T
min TCP = Z<V( )+ ZYlferC,,>+Z (H,x 11 +5,x15), (26)
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Highlights
1. We study a supplier selection and order allocation problem with green criteria.
2. Three quantity discount configurations are considered: all-unit, incremental and combined.
3. A bi-objective model is solved using both exact and population-based approaches.
4. An extensive numerical study shows the effectiveness of the approach.

5. A software is developed to guide procurement managers in making decisions



CRediT authorship contribution statement

Sadeque HAMDAN: Conceptualization, Methodology, Software, Validation,
Formal analysis, Investigation, Visualization, Writing - Original Draft, Writing
- Review & Editing.

Ali CHEAITOU: Conceptualization, Methodology, Formal analysis, Writing -
Original Draft, Writing - Review & Editing.

Amir SHIKHLI: Writing - Original Draft, Writing - Review & Editing.

Imad ALSYOUF: Writing - Review & Editing.



	Comprehensive quantity discount model for dynamic green supplier selection and order allocation
	CRediT authorship contribution statement
	Data availability


