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ehensive quantity discount model for dynamic green supplier selection and
llocation
HAMDAN,Ali CHEAITOU,Amir SHIKHLI,Imad ALSYOUF

study a supplier selection and order allocation problem with green criteria.
ree quantity discount configurations are considered: all-unit, incremental and combined.
i-objective model is solved using both exact and population-based approaches.
extensive numerical study shows the effectiveness of the approach.
oftware is developed to guide procurement managers in making decisions
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Abstract
We model and solve a deterministic multi-period single-product green supplier selection
and order allocation problem in which the considered suppliers’ availability, cost, and
green performance change from one period to another in the planning horizon. More-
over, the available suppliers may offer an all-unit or an incremental quantity discount
(QD) scheme, resulting in three problem configurations. In one configuration, all sup-
pliers offer all-unit QD. In the second, all suppliers offer incremental QD. In the third,
some suppliers offer all-unit QD, and others offer incremental QD. The problem is mod-
elled using a bi-objective integer linear programming formulation that maximizes the
total green value of the purchased items from all the suppliers and minimizes their to-
tal corresponding cost, including the fixed cost, variable cost, inventory holding cost,
and shortage cost. The proposed bi-objective model is scalarized and solved using the
branch-and-cut algorithm and a population-based heuristic. A numerical analysis is con-
ducted, which allows first to validate the heuristic approach using small-size instances by
comparing its results with those of the exact approach. Moreover, an extensive compari-
son between the exact and heuristic solution approaches is carried out. The results reveal
different findings. First, the economic and environmental solutions of an instance are dif-
ferent, and the environmental solution is independent of the suppliers’ pricing schemes.
Second, the maximum difference between the heuristic approach and the exact approach
in terms of the bi-objective function value is 4.72%, which makes the proposed heuristic
recommended for large-size instances due to its short computation time and good ac-
curacy. Third, there is no difference in terms of the heuristic performance between the
combined model and the models with a single type of discount. Fourth, the all-unit dis-
count scheme seems to be generally better in terms of the trade-off between the green
value of purchasing and cost.

oduction
tly, effective and efficient supply chain management (SCM) has become crucial especially for large

i-national companies to keep improving their economic but also environmental performance in or-
main competitive in a changing global market. In addition, the importance of sustainability and
ent protection has become essential for businesses and for the society in general. For instance, at
out of the 17 Sustainable Development Goals that the United Nations has adopted are related to

gement of companies’ operations (United Nations, 2021): SDG-9, SDG-11, SDG-12, and SDG-
pressure has led many companies worldwide to adopt more environmental friendly operations and
to rely on green SCM. Moreover, in the particular context of the 2019 coronavirus pandemic, many
s could have regretted their reliance on a single supplier, which led some factories to close due

ortage of supplies that resulted because of the lockdowns that happened in many countries. This
rms the necessity of increasing supply chain resilience by relying on more than one supply source
for important items.
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QD model for dynamic SSOA

s context, supplier selection is a tactical tool of SCM that or nizations use to reduce their costs,
disruption risks, and improve the quality of their products (Alkahtani and Kaid, 2018). Choosing
uppliers whether for manufacturing or service organizations has become a complex task that de-
multiple-criteria such as cost, quality, reliability, risk, social and environmental performance etc..
her hand, due to awareness, governmental regulations, and globalization, organizations are consid-
re and more the environmental aspects in their supplier selection process. As mentioned earlier,
nal competition but also national regulations are constraining companies to achieve sustainability
s in their operations.
d, international competition has led companies to prioritize environmental factors in various SCM
kman, 2015; Hafezalkotob, 2015; Zhang et al., 2014). As a result, the process of choosing the
lier(s) to contract with from a panel of available suppliers while considering the environmental
known as green supplier selection. Moreover, on a tactical level, in addition to choosing the best

s), the decision of determining the quantities to be purchased from each selected supplier leads
lem known as the supplier selection and order allocation (SSOA) problem. In the literature, it is
d as an optimization problem (Kaviani et al., 2020). This problem is shown to be NP-hard and
ing heuristics approaches such as genetic algorithms (GA) in (Basa et al., 2020; Hashemzahi et al.,
sually, the SSOA problem considers variable parameters, such as demand, capacity and cost, in a
ning horizon.

liers usually offer to their customers, especially in a business-to-business environment, quantity dis-
D) that can take different forms, such as the “all-unit” QD, “incremental” QD or other forms (Ayhan
, 2015). Most of the works in the literature (as it will be shown in the literature review section) have
n one type of QD assuming that all suppliers offer the same policy while in reality, it may differ.

r, the QD problem formulations may not be solved optimally for large-size instances. Therefore, this
mpts to bridge these gaps in the literature. Indeed, the contribution of this paper compared to the ex-
rature is threefold. First, this paper extends the green multiple-period and multiple-supplier SSOA
by proposing a formulation that considers three QD policies: all-unit, incremental, and both (com-
e or combined). This formulation integrates both discount schemes while considering the dynamic
the problem allowing, for example, the supplier availability to vary from one period to another in
ing horizon and therefore the available number of suppliers may vary from one period to another.
his work proposes a new population-based heuristic to solve large-size instances of the formulated
nd provides an extensive comparative analysis that shows the effectiveness of the proposed heuristic

size instances allowing to obtain good quality solutions in a reasonable time and with a good level
cy. Third, this paper proposes a decision support system that implements the mathematical formu-
ich helps procurement managers in the supplier selection and order allocation process in practice
wing them to consider the practiced QD schemes and the green aspect. Therefore, the objectives
dy are as follows:
propose a new formulation of the multiple-period and multiple-supplier dynamic SSOA problem
t considers the environmental performance of suppliers in addition to three QD schemes: all-unit,
remental, and both.
develop a heuristic solution approach to solve large-size instances of the formulated problem in a
sonable time and with a good level of accuracy.
develop a computer software that implements the proposed approach so that it can be used by
ision-makers in the industry.
est of this paper proceeds as follows: In Section 2, we provide a literature review on the SSOA
In Section 3, we explain the mathematical formulation and the developed software. In addition,

nt the bi-objective solution technique and the population-based heuristic used to solve large-sized
and we illustrate the developed software in Section 4. In Section 5, we conduct a numerical study
ss the results. Finally, Section 6 provides concluding remarks.
et al.: Preprint submitted to Elsevier Page 2 of 35
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rature review
SOA problem is a critical tactical tool in SCM. Indeed, for every organization, the accurate eval-
the available suppliers to procure a good or a service and the selection process of the best one(s)

the organization needs and objectives is very important since it usually lasts for months and some-
rs. In this process, order allocation to the selected suppliers is often neglected, and considered as a
ntary part (Pasquale et al., 2020). However, SSOA is a core process in supply chain planning and
complexity, because it should meet qualitative and quantitative criteria such as cost, quality, envi-

l aspects, etc. (Polat et al., 2017; Chen et al., 2016). Therefore, researchers have used multi-criteria
making (MCDM) models to address SSOA problem. SSOA problems have been widely investi-
the literature. The focus of this literature review is on studies related to SSOA, QD policies, and
f green (environmental) criteria in SSOA. The scope of the literature review is mainly including the
blished in the last two decades given that a very large number of related works has been published
The literature review comprises six sections: supplier selection, green supplier selection, SSOA,
ies, datasets for the SSOA problem, and the research gap.
plier selection

lier selection has been studied for more than a decade utilizing various methods and criteria con-
s. Researchers have employed integrated MCDM methods extensively in assessing suppliers and

teria in a variety of perspectives, including different working environments such as industry, small
um businesses, and government. Thus, the supplier selection problem has been viewed and studied
DM problem. Sorting, ranking, and selection, as well as determining criteria weight, are the key
tasks addressed by these MCDM methods (Hashemi et al., 2015). For example, the analytic hierar-
ss (AHP) has been used by Levary (2008) to rank and evaluate the available suppliers based on the

ria. Another well-known MCDM method, namely VIseKriterijumska Optimizacija I Kompromisno
VIKOR), has been used by Chen and Wang (2009) to evaluate suppliers and rank them to find the
suppliers. Kannan et al. (2014a) have used fuzzy axiomatic design. In addition, Saen (2010) and

egh et al. (2020) have used the technique for order of preference by similarity to ideal solution (TOP-
nk and select the suppliers using real application data in a convenient way. Other researchers have
nalytic network process (ANP) to figure out the determinants in the supplier selection problem for a
le transportation case and to evaluate the transportation policies respectively (Sayyadi and Awasthi,
16). Banaeian et al. (2018) presented a comparative study between fuzzy TOPSIS, fuzzy VIKOR,

grey relational analysis (GRA) in the context of supplier selection. Sevkli (2010) has proposed the
on choice translating reality and cross-industry standard process methods and compared them based
ta of three suppliers from a manufacturing company. Rahimi et al. (2021) introduced an intuition-
y entropy measure, a novel fuzzy decision-making technique for selecting and ranking suppliers
attributes. Finally, the decision-making trial and evaluation laboratory (DEMATEL) method has
in (Chang et al., 2011) to illustrate the factors and criteria that affect the supplier selection process.

over, instead of using a single MCDM approach to assess and select the best suppliers, some re-
have used hybrid approaches, which consist of combinations of methods. An example is the com-
f the weighted aggregated sum product assessment method and interval fuzzy sets (Ghorabaee et al.,

ther examples integrate composite indicators, data envelopment analysis, and common weights anal-
os and Vörösmarty, 2014), ANP and improved GRA (Hashemi et al., 2015), Kano model and fuzzy
Ghorbani et al., 2013), best worst method (BWM) and extended VIKOR (Wu et al., 2019), and
d fuzzy TOPSIS (Javad et al., 2020). Readers can refer to the work of Manucharyan (2021) for a
iew.
tly, with the growth in the use of artificial intelligence algorithms, some researchers have utilized

upplier evaluation and classification. For example, neural networks have been used for price fore-
nd supplier evaluation (Lee et al., 2009), while grey system theory has been used in analyzing and
g suppliers’ criteria (Li et al., 2007; Wu, 2009). Guo et al. (2009) have applied the support vec-
ine to classify suppliers with less computation time and high performance. GA has been used as a
algorithm in the supplier selection problem to find the optimal solution, and as an example, Yeh and
2011) have developed a multi-objective model using GA that aims to minimize the cost and time
et al.: Preprint submitted to Elsevier Page 3 of 35
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ximizing product quality and environmental criteria. While Jouida and Krichen (2020) designed a
A to assist each organization in making the best procurement policy decision possible. They consid-
scenarios for the single objective model that aims to minimize the cost when dealing with different
s and suppliers: first, allocating each firm to one supplier separately, and second, accumulating the
of the participating firms and then assigning each coalition to the proper provider.
over, optimization techniques have been used in different contexts involving supplier selection. For
Amorim et al. (2016) have proposed a mixed-integer linear programming (MILP) model to max-
ood organization’s profit and minimize the risk. The authors indicated that the proposed model
the solutions in the supplier selection problem, especially in large instances. Furthermore, Yoon

18) have proposed a multi-objective MILP model to address the supplier selection problem in a
iod framework. Some studies, such as Torabi et al. (2015), have used a bi-objective model with
programming aiming to improve the organization’s response while considering uncertainties and

n risks in a supplier selection problem. They have used a real case study to show the applicability
pproach. Finally, goal programming has been used for different objectives, which are minimizing
ected items, lead-time, and to evaluate the risks and product life cycles in a supplier selection prob-
ctively (Jadidi et al., 2015; Kull and Talluri, 2008). In pharmaceutical industries and using fuzzy
Modibbo et al. (2022) proposed a MILP model to choose the best supplier. A numerical example
to show the effectiveness of the presented model. The proposed model is simple, and it can be solved
dily available commercial software such as LINDO/ LINGO and GAMS. Several supplier selection
reviews have been published recently. These authors focused on sourcing strategy, decision scope,
criteria, and solution methods as key elements in supplier selection and evaluation, see for instance
l. (2022); Saputro et al. (2022).

een supplier selection
ent years, green criteria have been playing a major role in supplier selection, due to customer con-
government rules. Therefore, many researchers have focused on the consideration of green criteria,

he amount of recycled materials, mode of transportation, environmental certification, etc. in the
n of suppliers using different techniques. For instance, Yeh and Chuang (2011) have developed a
ective model to maximize product quality and environmental criteria in a supplier selection prob-
nan et al. (2014b) have tried to consider green and capacity criteria while modeling the supplier
problem. Moreover, Büyüközkan and Çifçi (2012) have applied fuzzy DEMATEL, fuzzy ANP,
TOPSIS to evaluate and select suppliers based on environmental aspects. In addition, Darabi and

2016) have proposed an interval-valued hesitant fuzzy approach to rank the green suppliers. Fur-
, Galankashi et al. (2015) used the nominal group technique to measure the critical performance
ppliers and select based on green criteria. Liao et al. (2016) have proposed new integrated fuzzy
s and fuzzy additive ratio assessment with multi-segment goal programming model to evaluate and
green suppliers. In the last two years, many studies have considered environmental criteria in the
election process for different purposes and applications. We refer the reader to (Ecer, 2022; Gupta
9; Haeri and Rezaei, 2019; Kilic and Yalcin, 2020; Krishankumar et al., 2020; Javad et al., 2020;

egh et al., 2020; Watróbski, 2019; Wu et al., 2019; Pınar et al., 2021; Tirkolaee et al., 2021; Wei
21). Recently, many publications have done a comprehensive assessment of existing literature on
election by highlighting the inclusion of green aspects into supplier selection, with the goal of pre-
summary of the developed models and approaches to support different industries in identifying the
n/sustainable suppliers such as Zhang et al. (2020); Ograh et al. (2021). The two works studied and
publications from 2009 to 2020.
een SSOA
lier capacity is an important factor that determines whether a single supplier or multiple suppliers
red to fulfill the demand. While MCDM tools only rank suppliers based on multiple criteria, re-
have developed different optimization models that consider multiple factors and at the same time

onstraints that translate features of the systems. These models aim at selecting the optimal suppliers
ating the orders to the selected suppliers while considering the supplier capacities. For example, Lin
11) have used a linear programming (LP) approach to allocate orders after the supplier is evaluated

et al.: Preprint submitted to Elsevier Page 4 of 35
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ted, while non-linear programming is used in (Hsu et al., 2010). In addition, order allocation is con-
s a critical and complicated process especially within multi-product and multi-period frameworks.
eason, there are some studies that have focused on the order allocation problem separately such as
nd Leung, 2005; Ruiz-Torres and Mahmoodi, 2006). In addition, Xiang et al. (2014) have devel-
athematical model based on capacity and load equilibrium for multi-period and multi-suppliers that
order allocation strategies. Another proposed model clusters suppliers and evaluates order alloca-
egies in a way that considers the market conditions and environmental criteria (Renna and Perrone,
ecently, Gupta et al. (2018) have developed a multi-objective optimization model for order allocation
l programming. The authors considered fuzzy demand and aimed to maximize the satisfaction of
and customers. Zheng et al. (2021) studied the SSOA problem under stochastic demand and project
using the scenario tree approach and used chaos optimization algorithm and maximum similarity

o solve the problem. Sun et al. (2022) considered a stochastic Poisson demand in a multi-echelon
itting optimization model for the SSOA problem.
ver, given the dynamic nature of the market and the capacity limitations of the suppliers, it is very
to decide on a tactical level about the selection of the suppliers and the allocation of the orders in a
ntext. Most of the studies on the SSOA problem use combined supplier evaluation approaches along
tiple objectives. In addition, with the recent development of green SCM, researchers have started to
the green criteria in supplier evaluation as mentioned earlier, which led to some works focusing on
OA. For example, capacity limitations of suppliers have been considered by Kannan et al. (2014b) in
hat is based on fuzzy TOPSIS and fuzzy multi-objective optimization. Mafakheri et al. (2011) have
d a SSOA model considering green criteria and using fuzzy AHP (FAHP) and bi-objective integer
l. Hamdan and Jarndal (2017) have proposed a two-stage SSOA using GA. Sadeghi (2018) has
d a multi-objective model using FAHP and fuzzy TOPSIS while considering green criteria instead
nal criteria to address SSOA. Aiming to generalize the SSOA problem, Mirzaee et al. (2018) have
a multi-objective model for multiple periods, multiple products, and multiple suppliers using fuzzy
ramming. Additionally, Lo et al. (2018) have developed a multi-objective LP model that integrates
d modified fuzzy TOPSIS, to address SSOA with green criteria.
tly, Torğul and Paksoy (2019) have introduced a multi-objective LP model integrating lean and
adigms for SSOA using fuzzy TOPSIS. Moreover, Kilic and Yalcin (2020) and many other stud-
tried to overcome the weaknesses of previous models by developing two-phase approaches using
l programming with intuitionistic fuzzy TOPSIS to address multi-period, multi-supplier, and multi-
SOA. In addition, by combining AHP, non-linear programming, and GA approaches, Hashemzahi
0) have developed a green SSOA model with multiple suppliers. Ali and Zhang (2023) introduced
model for global green SSOA, which combines the international transportation risk criteria with
and environmental aspects. They used fuzzy TOPSIS and multi-objective linear programming to
validate the problem through a real case study. Table 1 summarizes the SSOA-related studies and

e used criteria and approaches of each study. In the topic of SSOA, several authors have written
review papers, and Naqvi and Amin (2021) wrote the most recent one.
A with QDs
on a win-win relationship that can provide benefits to suppliers and customers, the QD offered by

to customers plays a determining role in product pricing and the size of orders placed by customers.
earchers have considered different QD policies (linear, total business, all-unit, and incremental).
al. (2008) studied three supplier pricing schemes (linear, all-unit, and incremental) while consid-
supplier’s capacities using three different models for one period. Ebrahim et al. (2009) developed
ization model for SSOA considering three QD policies. Razmi and Maghool (2010) proposed a
ive multi-product multi-period fuzzy optimization model considering all-unit, total business, and
tal QD. The literature review revealed that total or all-unit QD stands out as the most popular form
her recently used policies. Some works, such as that by Kamali et al. (2011), have considered only
of QD policies. Kamali et al. (2011) addressed the multi-objective SSOA problem using a MILP
nsidering all-unit QD. In addition, AHP and fuzzy compromise programming have been used to
a mathematical model considering all-unit QD (Wang and Yang, 2009). Ayhan and Kilic (2015)
et al.: Preprint submitted to Elsevier Page 5 of 35
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d an integrated approach of fuzzy TOPSIS, AHP, and a multi-objective MILP model in a single
amework with one QD policy. Mirzaee et al. (2018) developed an MILP model using fuzzy goal

ing considering incremental discount. Hammami et al. (2014) developed a stochastic model that
all-unit QD and exchange rate uncertainties. Cheraghalipour and Farsad (2018) utilized the best

thod and revised multi-choice goal programming to solve the SSOA with QD. Hamdan and Cheaitou
lso considered all-unit QD and varying suppliers in the green SSOA problem. Hamdan and Cheaitou
odified the model presented in (Hamdan and Cheaitou, 2017b) to consider incremental QD. Stadtler

oposed a single-objective general QD model for the SSOA problem. The author used CPLEX with
it to obtain near-optimal solutions. On the other hand, total QD is another scheme similar to all-unit
tal QD, a discount is provided on all purchased quantities. Goossens et al. (2007) studied the total
emonstrated its NP-hardness. Goossens et al. (2007) presented a branch-and-bound approach based

rmulation of the min-cost flow to solve the problem. Manerba and Mansini (2012) used a heuristic
ent from LP, and Manerba and Mansini (2014) used an integer linear programming (ILP) refine-

roach to solve the capacitated total QD problem. In Manerba et al. (2018), the authors extended the
by utilizing a two-stage stochastic programming formulation with recourse, which helps in adapta-
ns when product prices or product demand are stochastic. They considered uncertainty conditions
ation costs. Later, by using several scenarios with large numbers of up to 20 suppliers and 30 prod-
erba and Perboli (2019) successfully solved the same problem using Stochastic Programming with

versions of a Progressive Hedging-based heuristic technique, as well as the Benders algorithm, in
g process. On the other hand, the all-unit QD policy can also be found in several routing or pur-
roblems for inbound and outbound logistics that are not covered in the existing literature. Lee et al.
d other scholars considered all-unit or incremental QD using MILP models with GA algorithms
le suppliers and in multiple-period environments. Pereira and Costa (2015), who covered the most

iterature from 1995 to 2013, was one of the few articles that provided a literature review on models
d for the economic order quantity and the applicable QD policies. Readers can refer to (Munson and
2014) for a literature review on QD policies, with an emphasis on the differences between theoretical
and actual applications and considering all QD scenarios.
tasets for the SSOA problem
er to verify and validate the developed model, we have thoroughly investigated real-world datasets
ark instances utilized in SSOA problems in the literature review. The available datasets are catego-
two categories: random designed data and real data. For instance, Goossens et al. (2007) provided

domly generated benchmark instances for the non-capacitated total QD problem. Manerba et al.
scribed how structured instances can be randomly generated for the SSOA problem with total QD.
olars used simple numerical examples to test their models, such as (Abrishami et al., 2020; Baek
2020; Beauchamp et al., 2015; Hamdan and Cheaitou, 2017a). On the other hand, many researchers
data to test their models, such as data from the plastic industry (Cheraghalipour and Farsad, 2018),
medical device industry (Ghadimi et al., 2018), packaging industry (Nourmohamadi Shalke et al.,

to parts (Amin et al., 2011), and metal industry (Mohammed et al., 2019). Table 1 classifies ar-
ed on data source and availability. Note that not all datasets can be used for testing, as either the
tructures and assumptions are incompatible (Mohammed et al., 2019; Torres-Ruiz and Ravindran,
shemzahi et al., 2020), or the datasets are not completely available in the articles, requiring some
ons to be useful in the testing process, such as (Li et al., 2021).

Table 1: Datasets for SSOA models.

(2007) ✓ Randomly designed datasets
Authors Data availability

in the article Data source

Continued on next page
et al.: Preprint submitted to Elsevier Page 6 of 35
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Table 1: Datasets for SSOA models. (Continued)

ns et al. (2007) ✓ Randomly designed datasets
s and Üstün (2008) ✓ Real data from four different plastic

molding firms working with a refrigerator
plant are evaluated according to 14 crite-
ria

t al. (2011) ✓ Real data from company of auto parts
(S.G. Company) in Iran

al. (2012) ✓ Indian based garment manufacturing
company

et al. (2013) ✓ Iranian automobile manufacturing com-
pany

ary and Shankar (2014) ✓ Illustrative case
amp et al. (2015) ✓ Randomly designed datasets
t al. (2015) Randomly designed datasets
and Cheaitou (2017a) ✓ Randomly designed datasets

a et al. (2018); Manerba and
i (2014)

Benchmark instances with a generation
algorithm

i et al. (2018) Real data from pharmaceutical company
(APC) in Iran

t al. (2018) ✓ Randomly designed datasets
. (2018) ✓ Actual data provided by an electronics

company in Taiwan
hamadi Shalke et al. (2018) ✓ Real data from the protein materials pack-

aging industry in Iran
alipour and Farsad (2018) ✓ Real data from plastic industry in Iran
et al. (2018) ✓ Data from literature

i et al. (2018) ✓ Real data from an industrial case study
operating in the electronics sector in med-
ical device industry in Ireland

and Singh (2019) ✓ Randomly generated datasets
and Singh (2019) ✓ Randomly designed datasets
med et al. (2019) Real data from raw materials for a metal

factory in Saudi Arabia
Ruiz and Ravindran (2019) ✓ Data obtained from an international auto

parts manufacturer in Mexico
mi et al. (2020) ✓ A designed numerical example based on

manufacturer data
d Kim (2020) ✓ Randomly designed datasets

Authors Data availability
in the article Data source

Continued on next page
et al.: Preprint submitted to Elsevier Page 7 of 35
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Table 1: Datasets for SSOA models. (Continued)

zahi et al. (2020) ✓ Real data from steel baskets manufacturer
in Malaysia

ngsin et al. (2020) ✓ Randomly designed experiments
et al. (2020) Real data from car manufacturing case

study in Iran
. (2020) ✓ Real data from steel company in China
d Gong (2020) ✓ Real data from automotive manufacturing

enterprise in China
mnia (2020) ✓ Real data from furniture company in Iran
(2021) ✓ Real data from new energy vehicles in-

dustry
al. (2021) ✓ Real data from automotive manufacturing

company
d Singh (2021) ✓ Real data from automobile company in

India
Nasr et al. (2021) ✓ Real data from suit production and distri-

bution chain
l. (2022) ✓ Randomly designed experiment
et al. (2022) ✓ Real data from major belt conveyor com-

pany in India

Authors Data availability
in the article Data source

dings and research gap
on the literature review, Table 2 shows a comparison between the current study and the studies

the SSOA problem ranked based on the year of publication for the last two decades. This comparison
the research gap especially when our work is compared to the study (Kilic and Yalcin, 2020) which
uced a multi-supplier, multi-period, and multi-item model but without considering any QD policy.
e contribution of this paper fills the gap illustrated in Table 1 by proposing a multi-objective MILP

th multiple periods and multiple suppliers that considers green criteria to address the SSOA problem
e QD policies, namely all-unit, incremental, and both (comprehensive or combined). It extends
s of the literature on green SSOA (Hamdan and Cheaitou, 2015, 2017b,d) by considering the QD
nd solving the resulting model using a GA based approach. In addition, Table 2 demonstrates
works considered all-unit QD scheme in SSOA models, while fewer considered incremental QD.
arize, our contribution is twofold. First, conceptual, since we model and solve a variant of SSOA

in which a comprehensive QD policy is considered. Second, practical, with the easy-to-use software
s managers to use the proposed approach.
et al.: Preprint submitted to Elsevier Page 8 of 35
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Table 2: SSOA studies comparison and the research gap.

(2007) ✓ ✓ ✓ ✓ ✓ MIP
t al. (2008) ✓ ✓ integer LP
s and Üstün (2008) ✓ ✓ ANP and MILP
Ou-Yang (2009) ✓ ✓ ✓ Neural networks
et al. (2009) ✓ ✓ ✓ ✓ mathematical model

nd Yang (2009) ✓ ✓ ✓ AHP and MILP
09) ✓ ✓ Fuzzy ANP and LP
nd Maghool (2010) ✓ ✓ ✓ ✓ ✓ meta-heuristic model
htabar et al. (2011) ✓ ✓ ✓ AHP and TOPSIS
et al. (2011) ✓ ✓ ✓ mixed-integer non-linear pro-

gramming model
eri et al. (2011) ✓ ✓ AHP and multiple criteria dy-

namic programming
a and Mansini (2012) ✓ ✓ ✓∗ Heuristic enhancement from LP
zkan and Çifçi (2012) ✓ ✓ ✓ ANP, TOPSIS and DEMATEL
l. (2013) ✓ ✓ ✓ ✓ ✓ MIP and GA
et al. (2014a) ✓ ✓ ✓ fuzzy axiomatic design

a and Mansini (2014) ✓ ✓ ✓∗ ILP refinement approach
mi et al. (2014) ✓ ✓ ✓ mixed integer scenario-based

stochastic programming
nd Vörösmarty (2014) ✓ ✓ ✓ composite indicators, data en-

velopment analysis and common
weights analysis

et al. (2014) ✓ ✓ ✓ fuzzy preference programming,
interval based TOPSIS and LP

2014) ✓ ✓ MILP and TOPSIS
shi et al. (2015) ✓ ✓ ✓ nominal group technique and

fuzzy ANP
t al. (2015) ✓ ✓ stochastic programming
i et al. (2015) ✓ ✓ ✓ ANP and traditional GRA
nd Kilic (2015) ✓ ✓ ✓ FAHP and MILP

Authors Criteria Multiple QD policy Models and approaches

Economic
Environmental
Periods
Suppliers

Allunit
Incremental
Combined

Continued on next page
et al.: Preprint submitted to Elsevier Page 9 of 35
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Table 2: SSOA studies comparison and the research gap. (Continued)

15) ✓ ✓ mixed-integer non-linear pro-
gramming

dam (2015) ✓ ✓ Monte Carlo simulation inte-
grated with fuzzy goal program-
ming

al. (2015) ✓ ✓ AHP and quality function deploy-
ment

and Cheaitou (2015) ✓ ✓ ✓ Fuzzy TOPSIS, AHP and integer
programming

aee et al. (2016) ✓ ✓ Type-2 fuzzy sets and weighted
aggregated sum product assess-
ment

and Heydari (2016) ✓ ✓ interval-valued hesitant fuzzy
ranking

al. (2016) ✓ ✓ ✓ FAHP, fuzzy additive ratio assess-
ment and multi-segment goal pro-
gramming

and Sarmah (2016) ✓ ✓ ✓ Analytical model and solution
procedure

and Cheaitou (2017d) ✓ ✓ ✓ ✓ fuzzy TOPSIS, AHP and integer
programming

and Cheaitou (2017b) ✓ ✓ ✓ ✓ ✓ fuzzy TOPSIS, and integer pro-
gramming

n et al. (2018) ✓ ✓ Fuzzy TOPSIS, VIKOR and GRA
a et al. (2018) ✓ ✓ ✓∗ two-stage stochastic program-

ming formulation with recourse
i (2018) ✓ ✓ ✓ FAHP and mathematical pro-

gramming
et al. (2018) ✓ ✓ ✓ ✓ MILP and fuzzy goal program-

ming
. (2018) ✓ ✓ ✓ BWM, fuzzy TOPSIS and LP
t al. (2018) ✓ ✓ ✓ MILP
and Paksoy (2019) ✓ ✓ ✓ fuzzy TOPSIS
and Yapicioglu (2019) ✓ ✓ ✓ fuzzy TOPSIS, trapezoidal type-2

FAHP and goal programming

Authors Criteria Multiple QD policy Models and approaches

Economic
Environmental
Periods
Suppliers

Allunit
Incremental
Combined

Continued on next page
et al.: Preprint submitted to Elsevier Page 10 of 35
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Table 2: SSOA studies comparison and the research gap. (Continued)

a and Perboli (2019) ✓ ✓ ✓∗ Stochastic mathematical model
using Progressive Hedging based
heuristic and a Benders algorithm

an et al. (2020) ✓ ✓ ✓ fuzzy ANP, fuzzy DEMATEL
and MILP

al. (2020) ✓ ✓ ✓ mixed-integer non-linear program
and GA

zahi et al. (2020) ✓ ✓ ✓ FAHP, non-linear LP and GA
et al. (2020) ✓ ✓ intuitionistic FAHP and fuzzy

multi objective optimization
t al. (2020) ✓ ✓ ✓ ANP and integer programming
d Yalcin (2020) ✓ ✓ ✓ ✓ intuitionistic fuzzy TOPSIS and

fuzzy goal programming
et al. (2021) ✓ ✓ ✓ ✓ FAHP and MILP

et al. (2021) ✓ ✓ ✓ mixed-integer non-linear pro-
gramming models, risk reduction
strategies and grasshopper
optimization algorithm

li-Najafabadi et al. (2021) ✓ ✓ mixed-integer non-linear pro-
gramming and particle swarm
optimization

and Jadidi (2021) ✓ ✓ fuzzy multi-objective model
eyes et al. (2021) ✓ ✓ ✓ particle swarm optimization and

differential evolution
d Singh (2021) ✓ ✓ ✓ data envelopment analysis,

FAHP-TOPSIS and MIP
22) ✓ ✓ ✓ Type 2 FAHP
anpriya et al. (2022) ✓ ✓ ✓ ✓ grey theory and updated MCDM

with multi-objective mixed-
integer non-linear program

ahmasbi et al. (2023) ✓ ✓ ✓ multi-objective particle swarm
optimization and multi-objective
vibration damping optimization

t al. (2022) ✓ ✓ TOPSIS and optimization algo-
rithm

Authors Criteria Multiple QD policy Models and approaches

Economic
Environmental
Periods
Suppliers

Allunit
Incremental
Combined

Continued on next page
et al.: Preprint submitted to Elsevier Page 11 of 35
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Table 2: SSOA studies comparison and the research gap. (Continued)

rk ✓ ✓ ✓ ✓ ✓ ✓ ✓ Fuzzy TOPSIS and ILP,
branch-and-cut algorithm and
population-based heuristic

Authors Criteria Multiple QD policy Models and approaches

Economic
Environmental
Periods
Suppliers

Allunit
Incremental
Combined

as total QD since the policy considers the discount on the total purchased quantity of different products.

el
tudied problem consists in selecting the best suppliers and determining the quantities to buy from
rder to satisfy the deterministic demand of a single product in every period of a fixed planning

If the demand in a given period exceeds the available amount of items, then a shortage happens and
onding penalty shortage cost is incurred. On the other hand, if the available amount at the end of
is positive, then it is carried out to the next period and an inventory holding cost is incurred. The
of the suppliers is based on maximizing the total green value of the purchased products and at the

e minimizing the total cost. The green value of the products is based on an assessment of the suppliers
formance using fuzzy TOPSIS while the total cost includes the fixed and variable purchasing costs,
tory holding cost and the shortage cost. The supplier’s availability changes from period to period
s the corresponding supply capacities, their fixed and variable costs, and their green performance.
n, each supplier proposes a QD scheme that can be either of the type “all-unit” or “incremental”.
r offering “all-unit” QDs in one period cannot change to “incremental” QDs in the other periods
versa. Thus, the QD scheme is used as an input to the mathematical model. A generalization of this
at optimizes the QD scheme selection is provided in the Appendix for interested readers. We model
lem using a bi-objective integer LP approach in which the total green value of the purchased items
from all selected suppliers in all the periods is maximized while the total cost of purchasing (TCP)
ized. The model considers the constraints of availability and capacity of the suppliers as well as the
behavior of the system.
del notations
odel parameters
Number of discrete periods of same duration in the planning horizon.

and 𝑏𝑡 : Set of suppliers offering all-unit QD in period 𝑡 and increment QD in period 𝑡, respectively.
Total number of available suppliers in period 𝑡. 𝑛𝑡 = |𝑎𝑡|+ |𝑏𝑡|; 𝑡 = 1,… , 𝑇 . Note that the elements
𝑎𝑡 and 𝑏𝑡 are non-repeated integers from 1 to 𝑛𝑡 representing the available suppliers who can either
in 𝑎𝑡 or 𝑏𝑡.
: Number of QD interval ranges (all-unit or incremental) for supplier 𝑖; 𝑖 = 1 , ..., 𝑛𝑡.
𝑖𝑡: Green performance of supplier 𝑖 in period 𝑡 obtained using fuzzy TOPSIS with 𝑖 = 1, ..., 𝑛𝑡
𝑡 = 1, ..., 𝑇 .

𝑡𝑟: Unit variable cost of supplier 𝑖, 𝑖 = 1, ..., 𝑛𝑡 in period 𝑡 corresponding to the QD interval
𝑟 = 1, ..., 𝑅𝑖.
et al.: Preprint submitted to Elsevier Page 12 of 35
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𝑖𝑡: Fixed ordering cost per period incurred if a positive quantity is ordered from supplier 𝑖, 𝑖 =
.., 𝑛𝑡 in period t; 𝑡 = 1, ..., 𝑇 .
: Unit inventory storage cost in period 𝑡 ; 𝑡 = 1, ..., 𝑇 .
Unit penalty shortage cost in period 𝑡; 𝑡 = 1, ..., 𝑇 .
, 𝑢𝑖𝑡𝑟: Lower and upper limits of the QD interval (“all-unit” or “incremental”) 𝑟, 𝑟 = 1, ..., 𝑅𝑖 of
plier 𝑖, 𝑖 = 1,. . . , 𝑛𝑡 in period 𝑡; 𝑡 = 1, ..., 𝑇 . Note that we define 𝑢𝑖𝑡0 = 0 for modeling purposes.

: Deterministic demand of the product to be fulfilled in period 𝑡, 𝑡 = 1, ..., 𝑇 .

: A big positive number; it can be equal to a factor (larger than or equal to one) multiplied by the
al demand.
A positive number less than one. We assume it equal to 0.5.
ecision variables
𝑟: Amount purchased from supplier 𝑖, 𝑖 = 1, ..., 𝑛𝑡 in period 𝑡, 𝑡 = 1, ..., 𝑇 within the QD interval
ge 𝑟, 𝑟 = 1, ..., 𝑅𝑖.
: A binary decision variables equals to 1 if a non-zero amount is purchased from supplier 𝑖, 𝑖 =
.., 𝑛𝑡 in period 𝑡, 𝑡 = 1, ..., 𝑇 within the QD range 𝑟, 𝑟 = 1, ..., 𝑅𝑖 (𝑌 𝑖𝑡𝑟 = 1) or not (𝑌𝑖𝑡𝑟 = 0).
ate variables
: Inventory level available at the end of period 𝑡, 𝑡 = 1, ..., 𝑇 . 𝐼0 is the initial inventory level that

vailable at the beginning of the first period.
: Unsatisfied demand units (shortage) at the end of period 𝑡, 𝑡 = 1, ..., 𝑇 .
: A binary variable that is equal to one (𝑌 𝐻𝑡 = 1 ) if the inventory at the end of period 𝑡, 𝑡 = 1,… , 𝑇
ositive and zero otherwise (𝑌 𝐻𝑡 = 0).
: A binary variable that is equal to one (𝑌 𝑆𝑡 = 1) if the inventory at the end of period 𝑡, 𝑡 = 1, ..., 𝑇
egative and zero otherwise (𝑌 𝑆𝑡 = 0).
zy TOPSIS

se fuzzy TOPSIS in a way similar to the way that it was used by (Hamdan and Cheaitou, 2017d) in
stimate the green performance of supplier 𝑖 in period 𝑡, i.e. 𝐺𝑊𝑖𝑡. In order to do so, we express

ness in the decision-makers’ assessment of the environmental performance of suppliers using the
ely used format of fuzzy numbers, i.e. triangular fuzzy numbers (TFNs). A TFN can be defined
et ( L , M , U ), with a membership function as defined in (Hamdan and Cheaitou, 2017d) where
minimum possible value, M is the most possible value, and U is the maximum possible value.

r, linguistic variables are used to account for the uncertainty in the decision-makers judgment since
simple enough to be represented as fuzzy numbers. In this work, we use the five-point linguistic
posed by (Lau et al., 2003) as shown in Tables 3 and 4. The decision makers assign a weight to
en criterion considered in the assessment of the green performance of the suppliers such as having
nmental management system, using recycled materials, using renewable energy, etc.. Moreover, the
makers also assign a weight to every supplier with respect to each criterion. The assignment of the
o the criteria is based on the available knowledge and expertise of the decision makers as well as
ve importance of each criterion to the company. The assignment of weights to the suppliers with

the criteria can be done using available historical data, the capability studies on the suppliers, and
atory testing and analysis of the product to be purchased.

TOPSIS calculations are then done in five steps.
et al.: Preprint submitted to Elsevier Page 13 of 35
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rating scale.

Linguistic Variable TFN

Little importance (LI) (0.00, 0.00, 0.25)
Moderately important (MI) (0.00, 0.25, 0.50)
Important (I) (0.25, 0.50, 0.75)
Very important (VI) (0.50, 0.75, 1.00)
Absolutely important (AI) (0.75, 1.00, 1.00)

e rating scale.

Linguistic Variable TFN

Very low (VL) (0.00, 0.00, 0.25)
Low (L) (0.00, 0.25, 0.50)
Good (G) (0.25, 0.50, 0.75)
High (H) (0.50, 0.75, 1.00)
Very high (VH) (0.75, 1.00, 1.00)

1: In every period 𝑡, 𝑡 = 1, ..., 𝑇 of the planning horizon, each decision maker DM𝑘, 𝑘 = 1, ..., 𝐾 ,
inguistic variables defined in Table 3 to assign a weight transformed into TFN,𝑤𝑘𝑐 , to each criterion
..., 𝐶 . The decision makers use also the linguistic variables defined in Table 4 to assign a linguistic
ansformed into TFN, 𝑥𝑘𝑐𝑖𝑡, to each supplier 𝑖 = 1, ..., 𝑛𝑡 available in period 𝑡 with respect to each
𝑐. The weights are then aggregated according to the following equations:

=
(
L 𝑐 ,M 𝑐 ,U 𝑐

)
= 1
𝐾

(
𝑤1
𝑐 +𝑤

2
𝑐 + ... +𝑤

𝐾
𝑐
)
, (1)

𝑡 =
(
L 𝑐𝑖𝑡,M 𝑐𝑖𝑡,U 𝑐𝑖𝑡

)
= 1
𝐾

(
𝑥1𝑐𝑖𝑡 + 𝑥

2
𝑐𝑖𝑡 + ... + 𝑥

𝐾
𝑐𝑖𝑡
)
, (2)

𝑤𝑘𝑐 =
(
L 𝑘
𝑖 ,M

𝑘
𝑖 ,U

𝑘
𝑖
), a fuzzy number, is the weight of criterion 𝑐 given by decision maker DM𝑘,(

L 𝑘
𝑐𝑖𝑡,M

𝑘
𝑐𝑖𝑡,U

𝑘
𝑐𝑖𝑡
), a fuzzy number, is the weight of supplier 𝑖 available in period 𝑡 with respect to

𝑐 given by decision maker DM𝑘.
2: A normalization approach is then used to eliminate the different units of measurement of the
𝑐𝑖𝑡 as follows:

𝑖𝑡 =

(
L 𝑐𝑖𝑡
U𝑖𝑡

,
M 𝑐𝑖𝑡
U𝑖𝑡

,
U 𝑐𝑖𝑡
U𝑖𝑡

)
, (3)

benefit criterion 𝑐, and

𝑖𝑡 =

(
L𝑖𝑡

U 𝑐𝑖𝑡

,
L𝑖𝑡

M 𝑐𝑖𝑡

,
L𝑖𝑡

L 𝑐𝑖𝑡

)
, (4)

ery cost criterion, 𝑐, where R𝑐𝑖𝑡 is the normalized value of 𝑥𝑐𝑖𝑡 and U𝑖𝑡 = 𝑚𝑎𝑥𝑐U𝑐𝑖𝑡 and L𝑖𝑡 =. We then combine the matrix [R𝑐𝑖𝑡](𝐶×𝑛𝑡) with the vector [𝑤𝑐](1×𝐶) to form the decision matrix.
3: In this step, the weight of each supplier in each period is multiplied by the weight of each criterion
the weighted normalized fuzzy decision matrix as in the following equation:
= [𝑣 ] , where 𝑣 = R ⊗𝑤 . (5)
𝑐𝑖𝑡 (𝐶×𝑛𝑡) 𝑐𝑖𝑡 𝑐𝑖𝑡 𝑐

et al.: Preprint submitted to Elsevier Page 14 of 35
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d, 𝑉 is the result of the multiplication of the last row in the decision matrix obtained in Step 2, 𝑤𝑐 ,ow of that matrix.
4: The fuzzy positive ideal solution (FPIS) and the fuzzy negative ideal solution (FNIS) are then
. Given that normalized values of 𝑣𝑐𝑖𝑡 are from 0 to 1, the FPIS is defined as (1,1,1), while the FNIS
as (0,0,0). These values are then used to determine the distance from the positive ideal (dist+𝑖𝑡) and

ive ideal (dist−𝑖𝑡) solutions for each supplier 𝑖 in each period 𝑡 as follows:

t+𝑖𝑡 =
∑
𝑐

dist(𝑣𝑐𝑖𝑡,FPIS), (6)

t−𝑖𝑡 =
∑
𝑐

dist(𝑣𝑐𝑖𝑡,FNIS). (7)

istances dist+𝑖𝑡 and dist−𝑖𝑡 are estimated using following the equation that calculates the distance
the two fuzzy numbers 𝐴 = (L𝐴,M𝐴,U𝐴) and 𝐵 = (L𝐵 ,M𝐵 ,U𝐵):

t(𝐴,𝐵) =
√

1
3
[
(L𝐴 − L𝐵)2 + (M𝐴 − M𝐵)2 + (U𝐴 − U𝐵)2

]
. (8)

5: Finally, the closeness coefficient, i.e. the green weight of each supplier 𝑖 available in each period
s calculated as follows:

𝑖𝑡 =
dist−𝑖𝑡

dist−𝑖𝑡 + dist+𝑖𝑡
. (9)

thematical model
i-objective integer LP model is defined as follows:

xTGVP =
𝑇∑
𝑡=1

𝑛𝑡∑
𝑖=1

𝑅𝑖∑
𝑟=1

𝐺𝑊𝑖𝑡 ×𝑄𝑖𝑡𝑟, (10)

nTCP =
𝑇∑
𝑡=1

𝑛𝑡∑
𝑖=1

(
𝑉
(
𝑄𝑖𝑡

)
+

𝑅𝑖∑
𝑟=1

𝑌𝑖𝑡𝑟 × 𝐹𝐶𝑖𝑡

)
+

𝑇∑
𝑡=1

(
𝐻𝑡 × 𝐼𝐻𝑡 + 𝑆𝑡 × 𝐼𝑆𝑡

)
, (11)

𝑄𝑖𝑡
)
=

{ ∑𝑅𝑖
𝑟=1 𝑣𝑐𝑖𝑡𝑟𝑄𝑖𝑡𝑟, for 𝑖 ∈ 𝑎𝑡∑𝑅𝑖

𝑟=1

(
𝑣𝑐𝑖𝑡𝑟

(
𝑄𝑖𝑡𝑟 − 𝑢𝑖𝑡(𝑟−1)𝑌𝑖𝑡𝑟

)
+
(
𝑌𝑖𝑡𝑟

∑𝑟−1
𝑘=1 𝑣𝑐𝑖𝑡𝑘

(
𝑢𝑖𝑡𝑘 − 𝑢𝑖𝑡(𝑘−1)

)))
, for 𝑖 ∈ 𝑏𝑡

(12)

ct to

𝑌𝑖𝑡𝑟 ≤ 1, ∀𝑖 = 1,… , 𝑛𝑡, 𝑡 = 1,… , 𝑇 , (13)

𝑙𝑖𝑡𝑟 ≤ 𝑄𝑖𝑡𝑟 ≤ 𝑌𝑖𝑡𝑟𝑢𝑖𝑡𝑟 ∀𝑖 = 1,… , 𝑛𝑡, 𝑡 = 1,… , 𝑇 , 𝑟 = 1,… , 𝑅𝑖, (14)
et al.: Preprint submitted to Elsevier Page 15 of 35



Journal Pre-proof

𝐼𝐻𝑡−

𝑇∑
𝑡=1

𝜖𝑌𝑡

𝜖𝑌𝑡

𝑌 𝐻𝑡

𝑄𝑖𝑡

𝐼𝐻𝑡

Altho
the “all-u
unit” or p
of the mo
the numb

The m
from all s
are multi
represent
inventory
QD polic
offering a

Cons
period. I
correspon
levels in
horizon,
from the

Cons
Constrain
at the en
(21) ensu
binary.

More
ered by in
(15) and
Hamdan
Jo
ur

na
l P

re
-p

ro
of

QD model for dynamic SSOA

1 − 𝐼
𝑆
𝑡−1 +

𝑛𝑡∑
𝑖=1

𝑅𝑖∑
𝑟=1

𝑄𝑖𝑡𝑟 − 𝐼𝐻𝑡 + 𝐼𝑆𝑡 = 𝐷𝑡, (15)

𝑛𝑡∑
𝑖=1

𝑅𝑖∑
𝑟=1

𝑄𝑖𝑡𝑟 + 𝐼0 =
𝑇∑
𝑡=1

𝐷𝑡, (16)

𝑆 ≤ 𝐼𝑆𝑡 ≤ 𝑀𝑌 𝑆𝑡 , ∀𝑡 = 1,… , 𝑇 , (17)

𝐻 ≤ 𝐼𝐻𝑡 ≤ 𝑀𝑌 𝐻𝑡 , ∀𝑡 = 1,… , 𝑇 , (18)

+ 𝑌 𝑆𝑡 ≤ 1, ∀𝑡 = 1,… , 𝑇 , (19)

𝑟∈ ℕ, 𝑌𝑖𝑡𝑟 ∈ {0, 1} , ∀𝑖 = 1,… , 𝑛𝑡 , 𝑡 = 1,… , 𝑇 , 𝑟 = 1,… , 𝑅𝑖, (20)

∈ ℕ, 𝐼𝑆𝑡 ∈ ℕ, 𝑌 𝐻𝑡 ∈ {0, 1} , 𝑌 𝑆𝑡 ∈ {0, 1} , ∀𝑡 = 1,… , 𝑇 . (21)
ugh the model proposed in this paper considers two QD policies allowing some suppliers to provide
nit” policy and some others to provide the “incremental” policy, it can also be used as a pure “all-
ure “incremental” QD model. The choice implementation of one of the three possible configurations
del can simply be achieved by changing the set of suppliers offering the two types of discounts and
er of suppliers in theses sets, i.e. 𝑎𝑡 and 𝑏𝑡.odel maximizes the TGVP (Eq. (10)) and minimizes the TCP (Eq. (11)) of the products purchased
uppliers in all periods. Eq. (10) is a weighted sum of the purchased amounts in which the quantities
plied by the green performance levels of the corresponding suppliers. The first part of Eq. (11)
s the total variable and fixed costs of the purchased items, while the second part represents the
holding and shortage costs. Moreover, Eq. (12) represents the total variable cost as function of the

y. The first part of Eq. (12) represents the variable cost for the planning horizon and all suppliers
n “all-unit” QD scheme while the second part applies on suppliers offering “incremental” QDs.

traint (13) ensures that only one QD interval range, at most, is chosen for every supplier in each
n addition, constraint (14) ensures that the quantity from every selected supplier lies within the
ding chosen QD interval range. Constraint (15) controls the dynamic behavior of the inventory

the periods of the planning horizon, while constraint (16) guarantees that, at the end of the planning
all the deterministic demand is fulfilled either using the initial inventory or the ordered quantities
suppliers during the planning horizon periods.
traints (17) and (18) ensure respectively that 𝑌 𝑆𝑡 and 𝑌 𝐻𝑡 are equal to one if 𝐼𝑆𝑡 and 𝐼𝐻𝑡 are positive.
t (19) ensures that at most one of the two binary variables representing the status of the inventory

d of each period (positive inventory or shortage) may equal to one. Finally, Constraints (20) and
re that the decision variables 𝑄𝑖𝑡𝑟, 𝐼𝐻𝑡 and 𝐼𝑆𝑡 are non-negative integers, and 𝑌𝑖𝑡𝑟, 𝑌 𝐻𝑡 and 𝑌 𝑆𝑡 are
over, although the proposed model considers the backlog case, the lost sales case can be also consid-
corporating few changes into the model. Indeed, removing 𝐼𝑆𝑡−1 from the left-hand side of constraint
ignoring constraint (16) will result in a lost sales model.

et al.: Preprint submitted to Elsevier Page 16 of 35
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1. The model presented in this section can be extended to optimize the QD scheme (as shown in
A). This extension is achieved by introducing another index 𝑗 to the decision variables 𝑄𝑖𝑡𝑟 and
index accounts for the different QD schemes. For instance, 𝑗 = 1 represents an all-unit QD scheme,
2 represents an incremental QD scheme. Then, Constraint (13) in Appendix A can be modified to
at at most one range and one scheme is chosen. To obtain meaningful results, the buyer-oriented
function must be replaced to consider both the buyer’s and the suppliers’ interests. This aspect is
e scope of this paper.

objective solution
er to determine the Pareto front and the corresponding Pareto solutions of the model defined in Eqs.
, we use a scalarization technique called the weighted comprehensive criterion method (WCCM)
t al., 2011; Hamdan and Cheaitou, 2017b; Abdallah et al., 2021; Alsyouf et al., 2021). This method
olving the model in three steps.

1:
el that maximizes the TGVP only is solved, i.e. Eq. (10), subject to constraints (13)-(21). This step
optimal value TGVPmax.

2:
el that minimizes the TCP only is solved, i.e. Eqs. (11) and (12), subject to constraints (13)-(21).
results in the optimal value TCPmin.

3:
nd 2 focus on single objective formulation to obtain the two ideal values TGVPmax and TCPmin.
o values will be used in defining a new objective function that solves the cost and the value simulta-
y combining them. Since the two objective functions have different order of magnitudes and units,
mal values (TGVPmax and TCPmin) are used to normalize the objective functions. These normalize
are:

VP =
TGVPmax − TGVP

TGVPmax
, (22)

P =
TCP − TCPmin

TCPmin
, (23)

22) calculates the relative difference between the ideal green value (TGVPmax obtained from Step
TGVP calculated using Eq. (10). Similarly, Eq. (23) calculates the relative difference between the
ulated using Eq. (11) and ideal cost (TCPmin) obtained from Step 2. Eqs. (22) and (23) target to
ective functions (10) and (11) when combined together close to their optimal values after eliminating
of the units. Thus, a model consisting of a weighted combination of Eqs. (22) and (23), as given

4) and the same constraints defined in Eqs. (13)-(21) is solved. The solution of this model gives the
ive optimal solution.

n 𝑓 = 𝛼1𝑓TGVP + 𝛼2𝑓TCP. (24)
d 𝛼2 are two weights between 0 and 1 with 𝛼1+𝛼2 = 1. Varying the values of 𝛼1 and 𝛼2 and solving
ect to (13)-(21) results in different Pareto solutions that help identify the problem Pareto front.
ution approach
ropose a population-based heuristic to solve large-sized instances within a reasonable computation
hown in Algorithm 1. This heuristic starts by generating Ψ individuals (Ψ is a multiple of eight),
hich (𝜓 = 1,… ,Ψ) consisting of a random feasible solution (i.e., selected suppliers, quantities to
d and inventory levels) for each period 𝑡 (𝑡 = 1,… , 𝑇 ). The design of the used chromosomes is
igures 1 and 2. Note that the inventory chromosome is created based on the quantity chromosome
et al.: Preprint submitted to Elsevier Page 17 of 35
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The quantity chromosome with the rows for the individuals and columns for the suppliers and periods.
contain the quantity value 𝑄𝑖𝑡𝑟.

The inventory chromosome with the rows for the individuals and columns for the periods. The cells
e inventory levels (positive inventory, 𝐼𝐻𝑡 , and unsatis�ed demand, 𝐼𝑆𝑡 ).

ndividual. For each individual 𝜓 , a list of suppliers and periods (𝜔𝜓 ) is randomly generated, such
elected suppliers and periods are enough to fulfill the demand (Constraint (16)). Then, a quantity is
assigned for each period and supplier in the list while not exceeding the capacity of supplier 𝑖 in
𝑢𝑖𝑡𝑅𝑖 ). That is, constraint (14) is respected. A feasible solution is ensured by randomly modifying
ned quantities such that constraint (16) is satisfied. After that the inventory level chromosome in
od 𝑡 is created using ∑𝑛𝑡

𝑖=1
∑𝑅𝑖
𝑟=1𝑄𝑖𝑡𝑟 − 𝐷𝑡, which results in the decision variables 𝐼𝐻𝑡 and 𝐼𝑆𝑡 in

t (15).
lgorithm then sets the ideal TGVP (TGVPmax), the ideal TCP (TCPmin), and the global total variation
∞,, +∞ and+∞, respectively. In each iteration 𝛿, 𝛿 = 1,… ,Δ, the heuristic performs the following

omputes the TGVP for each individual (TCP𝜓 ) using Eq. (10).
dentifies the best TGVP among the individuals in the iteration as max𝜓=1,…,Ψ TGVP𝜓 and saves its
ue in TGVP𝐵 .
omputes the TCP for each individual (TCP𝜓 ) using Eq. (11).
dentifies the best TCP among the individuals in the iteration as min𝜓=1,…,Ψ TCP𝜓 and saves its value
TCP𝐵 .
hen compares TGVP𝐵 and TCP𝐵 with the current ideal values (TGVPmax, TCPmin) and updates the
al values if better values are found and recalculates 𝑓min.
xt, it computes the total variation for each individual (𝑓𝜓 ) using Eq. (24).
ally, it selects the best total variation (𝑓𝐵) as min𝜓=1,…,Ψ 𝑓𝜓 and updates the ideal total variation
.
in

et al.: Preprint submitted to Elsevier Page 18 of 35
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best total variation 𝑓𝐵 in any iteration is better than the global total variation 𝑓min, then the algorithm
min and resets the counter 𝜏 to zero. When 𝑓min is not updated, then the counter 𝜏 is increased by
counter 𝜏 stores the consecutive number of iterations without improvement in 𝑓min. This technique
caping local optimum solutions and enhances the solution diversity.
plore other potential solutions, the heuristic in each iteration splits the Ψ individuals into subgroups,
ight individuals. It then performs the following steps on each subgroup:
elects the best individual based on 𝑓𝜓
erforms eight operations on best individual to create eight new individuals.
eplaces the individuals with the new ones.
ight operations used to create new individuals are:
nothing, that is keep the best.

ange quantity 𝑄𝑖𝑡𝑟 between two locations (suppliers and periods) on the quantity chromosome.
ange quantity 𝑄𝑖𝑡𝑟 between two suppliers in the same period 𝑡.
ange quantity 𝑄𝑖𝑡𝑟 between two periods from the same supplier 𝑖.
rease the capacity utilization of supplier 𝑖.
crease the shortage in a randomly selected period.
crease the amount of inventory holding in a randomly selected period.
itch the quantities for a randomly selected supplier between different periods.
eaches the maximum predefined number of iterations allowed without change (𝜏max), then all indi-
re removed and new individuals are generated randomly.
over, in order to guarantee a stable heuristic solution and to reduce the randomness impact when
g it with the exact approach, the heuristic is solved a certain number of times for each instance
verage objective value of the solutions is considered and compared with the corresponding exact
value.

lementation software
er to facilitate the implementation of the proposed mathematical model and the solution approach
e for decision-makers and users in the industry, a MATLAB-based software has been developed.
are has a graphical user interface that was designed using the “App Designer” package available in
2021a. Figure 3 shows the fuzzy TOPSIS tab in the developed software. The software requires

o input the fuzzy TOPSIS scale and the evaluations in Excel format “.xlsx”. It returns the green
-green) weights.
e 4 illustrates the optimization tab in the software. The user must upload inventory data (holding
age costs), demand data and suppliers’ data (green weights, fixed costs, variable costs for each QD
ange, capacity details, QD type, and availability) as Excel files “.xlsx”. The user also needs to
e weight of the TCP objective function, and consequently, the importance of the TGVP objective

will be automatically calculated. The user needs to identify whether the QD scheme is uniform for
ers or mixed and to select the desired optimization method. The software returns the chosen supplier
and the order allocation decisions for every period as shown in Figure 4.

erical study
ction 5.1, we construct an illustrative example using the case study data presented in Choudhary and
(2014). We show the impact of different QD schemes on the selected suppliers, inventory levels,
e, and TGVP value using this illustrative example. In addition, we generate the Pareto frontier
rate the trade-offs between TCP and TGVP under different QD schemes. Then, in Section 5.2,
ate large-sized instances to test the developed model and the solution approaches. The instance
n technique is similar to the one discussed in Manerba et al. (2018) and adapted for our problem.
rovides details on the parameter generation rules used to generate the parameter values used in this
or each instance, three QD scenarios have been considered:

et al.: Preprint submitted to Elsevier Page 19 of 35
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hm 1: Population-based heuristic.
ut : Sets and parameters defined in the Section 3.1.1

tput : Selected suppliers and corresponding orders and inventory levels
t TGVPmax = −∞, TCPmin = ∞, 𝑓min = ∞, 𝜏 = 0, 𝜏max = 2000 and Δ = 200, 000 ;
itialize Ψ individuals;
𝜓 ← 1 to Ψ do
generate a random list of suppliers and periods (𝜔𝜓 );
assign random 𝑄𝑖𝑡𝑟 for suppliers and periods in 𝜔𝜓 ;
calculate 𝐼𝐻𝑡 and 𝐼𝑆𝑡 for each 𝑡 = 1,… , 𝑇 ;
check and fix violations in Constraints (14)–(16)

𝛿 ← 1 to Δ do
for 𝜓 ← 1 to Ψ do

calculate TGVP𝜓 and TCP𝜓 using Eqs. (10) and (11)-(12), respectively;
end
set TGVP𝐵 = max𝜓=1,…,Ψ TGVP𝜓 ;
set TCP𝐵 = min𝜓=1,…,Ψ TCP𝜓 ;
if TGVP𝐵 > TGVPmax then

set TGVPmax = TGVP𝐵;
if 𝛿 ≠ 1 then

recalculate 𝑓min using the updated TGVPmax;
end

end
if TCP𝐵 < TCPmin then

set TCPmin = TCP𝐵;
if 𝛿 ≠ 1 then

recalculate 𝑓min using the updated TCPmin;
end

end
foreach 𝜓 ← 1 to Ψ do

calculate 𝑓𝜓 using Eq. (24);
end
set 𝑓𝐵 = min𝜓=1,…,Ψ 𝑓𝜓 ;
if 𝑓𝐵 < 𝑓min then

set 𝑓min = 𝑓𝐵;
store the best individual as the global best;
set 𝜏 = 0

else
set 𝜏 = 𝜏 + 1

end
for 𝑘← 1 to Ψ∕8 do

select randomly eight individuals with their corresponding TCP𝜓 , TGVP𝜓 , and 𝑓𝜓 ;
identify best individual in the subgroup based on 𝑓𝜓 ;
perform the eight operations listed in Section 3.5;
replace the individuals in the subgroup with the newly created ones;

end
if 𝜏 ≥ 𝜏max then

discard all individuals and create new ones;
end
urn the global best solution.
et al.: Preprint submitted to Elsevier Page 20 of 35
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Fuzzy TOPSIS tab in the developed decision-making software.

Optimization tab in the developed decision-making software.

nario 1: all suppliers offer “all-unit” QDs.
nario 2: all the suppliers offer “incremental” QDs.
nario 3: some suppliers offer “all-unit” QD while others offer “incremental” QDs.

se the notation P𝑁-𝑇 -𝜆- to represent different instance configurations and problem sizes, where
ents the maximum number of suppliers in the instance, 𝑇 is the number of periods, 𝜆 represents the
e number of suppliers required to fulfill the demand. The values of 𝜆 are defined as follows: “L” for

et al.: Preprint submitted to Elsevier Page 21 of 35
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eneration rules.

er Formula Explanation

𝑛𝑡 ∼ 𝑈 (𝑁
3
, 𝑁) 𝑈 : a discrete uniform distribution

𝑁 : maximum number of suppliers

𝑅𝑖 ∼ 𝑈 (3, 5)
𝑢𝑖𝑡𝑅𝑖 ∼ 𝑈 (1, 15)

⌊𝜃𝑖𝑟𝑢𝑖𝑡𝑅𝑖⌋
𝜃𝑖𝑟 ∼  (0.6, 1)

 : a continuous uniform distribution
𝜃𝑖𝑟: a percentage to de�ne the lower limit
of the QD interval

𝑣𝑐𝑡 ∼  (10, 18)
𝑣𝑐𝑖𝑡 ∼  (0.9𝑣𝑐𝑡, 1.1𝑣𝑐𝑡)
𝑣𝑖𝑡𝑟 = (1 − 𝜇𝑖𝑟)𝑣𝑐𝑖𝑡
𝜇𝑖𝑟 ∈ {0, 0.1, 0.15, 0.2, 0.25, 0.3}

𝜇𝑖𝑟 ∶ discount rate

𝜆 ∼  (0, 1)
𝐷′
𝑡 = ⌈𝜆max𝑖 𝑢𝑖𝑡𝑅𝑖 + (1 − 𝜆)

∑
𝑖 𝑢𝑖𝑡𝑅𝑖⌉

𝐷𝑡 = ⌈𝐷′
𝑡 − (𝐷′

𝑡 − 1) ∗ 𝑣𝑐𝑡∑
𝑡 𝑣𝑐𝑡

⌉
𝐷𝑡 is a function of variable cost, maximum capacity and 𝜆
𝜆: factor a�ecting number of required suppliers

𝑣𝑐𝑖 =
∑
𝑡 𝑣𝑐𝑖𝑡
𝑇

, 𝑣𝑐 =
∑
𝑖
∑
𝑡 𝑣𝑐𝑖𝑡

𝑁×𝑇

𝐶𝐹𝑖𝑡 =
(
𝑣𝑐 + 𝑣𝑐

𝑣𝑐𝑖

)
× 𝛾

∑
𝑡 𝑢𝑖𝑡𝑅𝑖

𝐹𝐶𝑖𝑡 is a function of the average variable cost
and the maximum capacity

𝐻𝑡 ∼  ( 10%
12
𝑣𝑐, 20%

12
𝑣𝑐) The annual inventory cost is between

10% and 20% of the purchasing cost

𝑆𝑡 ∼  ( 25%
12
𝑣𝑐, 35%

12
𝑣𝑐) The annual shortage cost is between

25% and 35% of the purchasing cost

𝐺𝑊𝑖𝑡 ∼  (0.2, 0.7)
2 𝛼1 = 0.5, 𝛼2 = 0.5 Equal importance

for medium and “H” (see Table 5). The last letter in the notation,  , represents the studied scenario,
for Scenario 1, “I” for Scenario 2 and “C” for Scenario 3. The asterisk (*) indicates that the exact
s not optimal as the solver reached the maximum time limit without providing the optimal solution
urs in this work). For example, P10-40-L-I* is an instance with ten suppliers using only incremental
nario 2), forty periods and low number of suppliers required to fulfill the demand. The solver did
the optimal solution for this instance due to the time limit. All instances have been solved using
approach and the proposed population-based heuristic. In the heuristic approach, the maximum
f iterations (Δ) and the number of individuals, i.e. solutions (Ψ), are 200,000 and 24, respectively.
iments were conducted using a laptop equipped with Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
, 16.0 GB of RAM and Windows 11. CPLEX 12.6 was used to obtain the exact solution.
strative example
tilize the data presented in Choudhary and Shankar (2014) to demonstrate the impact of the QD
n various parameters. The demand is given as 𝐷𝑡 = {650, 520, 500, 650} for 𝑡 = 1, ..., 4. The
in Choudhary and Shankar (2014) employs a fixed discount of 1 per unit for each QD interval,
refer to as “Case Study 1”. We then introduce “Case Study 2”, which uses the same parameters as

Study 1” but with variable costs for different QD intervals. In this case, we assume distinct discount
each supplier, as shown in Table 6. For Scenario 3, titled “Combined QD”, suppliers are assumed to
ifferent QD schemes. We define six sub-scenarios, ranging from “Combined-1” to “Combined-6”,
variations in the two sets 𝑎𝑡 and 𝑏𝑡 (Table 7).
8 displays the optimal quantities and inventory levels in each period for Cases 1 and 2. In Case Study
ered quantities and selected suppliers remain unchanged despite alterations in the QD schemes. This
ributed to the cost structure, where Supplier 1 is the most affordable option across all price intervals,
by Supplier 3. Moreover, a positive inventory level can be noticed at the end of periods 1 through
ason may be attributed to the savings that can be generated from ordering larger quantities than the
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rs used in the illustrative example.

𝑣𝑐𝑖𝑡𝑟 𝐹𝐶𝑖𝑡 𝐺𝑊𝑖𝑡QD intervals Case Study 1 Case Study 2

Supplier 1
𝑄 ≤ 149 62 62

1000 0.19150 ≤ 𝑄 ≤ 299 61 61
300 ≤ 𝑄 ≤ 500 60 57

Supplier 2
𝑄 ≤ 199 72 72

1500 0.46200 ≤ 𝑄 ≤ 349 71 65
350 ≤ 𝑄 ≤ 450 70 55

Supplier 3
𝑄 ≤ 249 68 68

1400 0.32250 ≤ 𝑄 ≤ 399 67 60
400 ≤ 𝑄 ≤ 620 66 59

rios under the combined QD scheme.

𝑎𝑡 𝑏𝑡
Combined-1 {Supplier 1, Supplier 2} {Supplier 3}
Combined-2 {Supplier 1, Supplier 3} {Supplier 2}
Combined-3 {Supplier 2, Supplier 3} {Supplier 1}
Combined-4 {Supplier 3} {Supplier 1, Supplier 2}
Combined-5 {Supplier 2} {Supplier 1, Supplier 3}
Combined-6 {Supplier 1} {Supplier 2, Supplier 3}

nd storing part of the ordered quantities to benefit from the QD. The savings related to QD are more
t than the additional inventory holding costs.
r Case Study 2, and in the all-unit QD scheme, Supplier 2 is mainly used to fulfill the demand
by Supplier 1 as they are the least expensive suppliers in the third QD interval. The same applies to
ed-1” as both suppliers offer all-unit QD in this case. In the incremental QD scheme, Supplier 1 is
used source followed by Supplier 3. This result is related to the price structure, as the price impact
tive depending on the ordered quantity. Consequently, utilizing Supplier 1 is ideal due to the least
price in the first interval, and the second least expensive price in the second and third intervals.
situation can be seen in the “Combined-6” scenario. In the combined scenarios, the general trend

on one main supplier offering all-unit QD as this results in a less expensive procurement plan than
suppliers offering incremental QD. Moreover, almost all the cases, the inventory levels are positive

ut the planning horizon, except in the last period, due to the quantities ordered and that are larger
demand so that price discounts can be achieved. Only for the scenario “Combined-4”, it is less

to have shortages in the first period than ordering larger quantities and storing for the following
ote that in the case of maximizing the TGVP objective function, Supplier 2 is mainly used followed

ier 3 regardless of the QD scheme. The reason is related to the fact that 𝐺𝑊𝑖𝑡 has the highest value
ier 2 followed by Supplier 3 and that the TGVP objective function is independent of the unit price
ducts and therefore of the QD schemes.
i-objective behavior is studied through the Pareto frontier by varying 𝛼1 from 0 to 1 with a step

Figure 5 shows the TCP and TGVP values for the two cases, Case Study 1 and Case Study 2. For
s, Scenarios 1 and 2 are the two extreme scenarios, and the different combined sub-scenarios within
3 are bounded between them. The first observation that one can draw from the results is that the all-
cheme allows the customer company to reconcile cost and environmental performance in an easier
the incremental QD scheme. This result can be seen from the Pareto frontiers in both cases, Case
nd Case Study 2, where the Pareto frontier course of the all-unit scheme is the lowest allowing a
e-off between the two objective functions, TCP and TGVP. Moreover, the average trade-off between
et al.: Preprint submitted to Elsevier Page 23 of 35
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olution for minimizing the TCP under Case Study 1 and Case Study 2.

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4

Case Study 1 All schemes
Quantities

𝑄113=500
𝑄312=320

𝑄123=500 𝑄133=500 𝑄143=500

Inventory 𝐼𝐻1 =170 𝐼𝐻2 =150 𝐼𝐻3 =150 𝐼𝐻4 =0

Case Study 2

All unit
Quantities

𝑄113=470
𝑄213=450

𝑄223=450 𝑄233=450 𝑄143=500

Inventory 𝐼𝐻1 =270 𝐼𝐻2 =200 𝐼𝐻3 =150 𝐼𝐻4 =0

Incremental
Quantities

𝑄113=500
𝑄312=320

𝑄123=500 𝑄133=500 𝑄143=500

Inventory 𝐼𝐻1 =170 𝐼𝐻2 =150 𝐼𝐻3 =150 𝐼𝐻4 =0

Combined-1
Quantities

𝑄113=470
𝑄213=450

𝑄223=450 𝑄233=450 𝑄143=500

Inventory 𝐼𝐻1 =270 𝐼𝐻2 =200 𝐼𝐻3 =150 𝐼𝐻4 =0

Combined-2
Quantities

𝑄113=420
𝑄313=400

𝑄123=500 𝑄133=500 𝑄143=500

Inventory 𝐼𝐻1 =170 𝐼𝐻2 =150 𝐼𝐻3 =150 𝐼𝐻4 =0

Combined-3
Quantities

𝑄213=450
𝑄313=520

𝑄223=450 𝑄233=450 𝑄243=450

Inventory 𝐼𝐻1 =320 𝐼𝐻2 =250 𝐼𝐻3 =200 𝐼𝐻4 =0

Combined-4
Quantities 𝑄313=620 𝑄323=580 𝑄133=500 𝑄343=620
Inventory 𝐼𝑆1 =30 𝐼𝐻2 =30 𝐼𝐻3 =30 𝐼𝐻4 =0

Combined-5
Quantities

𝑄113=500
𝑄213=450

𝑄223=450 𝑄233=450
𝑄141=20
𝑄243=450

Inventory 𝐼𝐻1 =300 𝐼𝐻2 =230 𝐼𝐻3 =180 𝐼𝐻4 =0

Combined-6
Quantities

𝑄113=500
𝑄312=320

𝑄123=500 𝑄133=500 𝑄143=500

Inventory 𝐼𝐻1 =170 𝐼𝐻2 =150 𝐼𝐻3 =150 𝐼𝐻4 =0

n the TGVP for 1% of TCP increase in Case Study 1 and Case Study 2.

Case Study 1 Case Study 2

All-unit 6.12% 25.85%
Incremental 6.00% 9.17%
Combined-1 6.00% 8.56%
Combined-2 5.79% 5.99%
Combined-3 6.57% 𝑛∕𝑎
Combined-4 6.13% 3.18%
Combined-5 6.47% 7.02%
Combined-6 5.47% 6.68%

and the TGVP is calculated and reported in Table 9. As a confirmation to the better performance of
it scheme in terms of reconciliation of the economic and environmental performances, an average of

provement of the TGVP of the purchased products can be achieved in Case Study 2 for an increase
P by only 1%. Moreover, increasing the TCP by 1% in Case Study 1 enhances the TGVP by 6.07%
erage. An increase in the TGVP between 3.18% and 25.85% can be observed in Case Study 2 for
se of the TCP by 1%. Note that in the sub-scenario “Combined-3” of Case Study 2, no trade-off
ce the optimal solution in the case of cost minimization is the same as that in the case of TGVP
tion.
et al.: Preprint submitted to Elsevier Page 24 of 35
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Pareto frontier for Case Study 1 and Case Study 2.

uristic performance
opulation-based heuristic (Algorithm 1) is compared with the exact approach to judge its perfor-
e generated instances, as explained in Section 5 and used a time limit of three hours as a stopping

for the exact approach. All the instances have been solved following the three scenarios defined in
. Table 10 provides the percentage difference between the objective function values obtained using
and the heuristic approaches. More precisely, the percentage difference between the TCP values ob-
m the exact and heuristic bi-objective solutions, 𝐸TCP, is calculated as 𝐸TCP = 100 × TCP𝐻−TCP𝐸𝑥

TCP𝐸𝑥 .
r, the percentage difference for the TGVP value between the exact and heuristic bi-objective solu-
GVP, is obtained using 𝐸TGVP = 100 × TGVP𝐸𝑥−TGVP𝐻

TGVP𝐸𝑥 . Note that the subscript 𝐸𝑥 and 𝐻 denote
and the heuristic solutions. The exact solution is either the optimal one or the best solution within

limit. The bi-objective error (𝐸𝑓 ) is calculated as 𝛼1𝐸TCP + 𝛼2𝐸TGVP, which is also equivalent to
ence between 𝑓𝐸𝑥 and 𝑓𝐻 . This is because the bi-objective solution is characterized by two values
TGVP).
10 shows that the average bi-objective error (𝐸𝑓 ) is equal to 2.96%, 2.51% and 2.28% for Scenarios
respectively. This indicates that the heuristic approach provides solutions with comparable quality

fferent QD schemes. In addition, for some instances, the percentage difference between the exact
istic objective function is found to be high for one objective function while it is low for the other
function, resulting in an overall acceptable (i.e. for the bi-objective function). This is the case for

for P20-40-H-A* and P10-60-M-A. This is due to the contribution of each objective function in the
tion, i.e. due to values of 𝛼1 = 𝛼2 = 0.5.
11 reports the computation time in seconds for the exact and heuristic approaches (𝑇𝐸𝑥 and 𝑇𝐻

ely). The time saving is calculated as a percentage using 100 × 𝑇𝐸𝑥−𝑇𝐻
𝑇𝐸𝑥

. It is worth noting that
ct approach reaches the optimal solution faster than the heuristic approach then the time saving is
s 𝑛∕𝑎. Moreover, for the instances for which the exact solver could not reach and optimal solution
e hours of run time, then 𝑇𝐸𝑥 = 10800 seconds. The results suggest that the heuristic may yield
et al.: Preprint submitted to Elsevier Page 25 of 35
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between the exact and heuristic approaches.

ce 𝐸
TCP

(%) 𝐸
TGVP

(%) 𝐸𝑓 (%) Instance 𝐸
TCP

(%) 𝐸
TGVP

(%) 𝐸𝑓 (%)

0-H-A 4.00 0.62 2.31 P10-60-H-A* 3.01 2.91 2.96
0-M-A 0.78 1.42 1.10 P10-60-M-A 9.29 -3.76 2.77
0-L-A 2.90 1.55 2.22 P10-60-L-A* 3.60 1.81 2.70
0-H-A 3.91 0.80 2.36 P15-60-H-A* 3.18 5.28 4.23
0-M-A 5.11 0.49 2.80 P15-60-M-A* 6.48 2.47 4.47
0-L-A 4.13 0.62 2.38 P15-60-L-A* 1.89 3.95 2.92
0-H-A* 8.74 -1.68 3.53 P20-60-H-A 3.60 0.15 1.87
0-M-A 8.73 0.71 4.72 P20-60-M-A* 5.10 2.65 3.88
0-L-A 3.37 3.42 3.40 P20-60-L-A* 3.39 0.40 1.89
0-H-A 7.43 0.97 4.20 P25-60-H-A 1.74 3.84 2.79
0-M-A 7.45 0.74 4.10 P25-60-M-A* 6.30 -0.73 2.79
0-L-A 4.30 3.38 3.84 P25-60-L-A* 3.04 -0.35 1.34
0-H-A 2.27 0.93 1.60 P30-60-H-A* 4.65 3.09 3.87
0-M-A 5.45 0.74 3.09 P30-60-M-A* 6.31 1.82 4.07
0-L-A 3.11 2.50 2.81 P30-60-L-A* 2.50 1.16 1.83

0-H-I* -0.49 2.38 0.94 P10-60-H-I* 3.17 3.06 3.11
0-M-I 2.72 0.03 1.37 P10-60-M-I 3.99 0.13 2.06
0-L-I 0.80 0.00 0.40 P10-60-L-I* 5.39 0.62 3.00
0-H-I 0.84 -0.09 0.38 P15-60-H-I 3.96 2.05 3.00
0-M-I 3.53 -0.04 1.74 P15-60-M-I* 3.88 0.99 2.44
0-L-I 2.29 3.94 3.12 P15-60-L-I 2.43 -0.02 1.20
0-H-I 3.82 -0.11 1.86 P20-60-H-I 3.72 1.83 2.77
0-M-I 6.14 -1.32 2.41 P20-60-M-I* 7.41 1.73 4.57
0-L-I 3.87 2.07 2.97 P20-60-L-I 4.20 4.26 4.23
0-H-I 2.90 0.56 1.73 P25-60-H-I 3.13 2.20 2.66
0-M-I 5.19 0.67 2.93 P25-60-M-I 4.85 1.49 3.17
0-L-I 4.35 3.20 3.77 P25-60-L-I* 3.50 0.65 2.08
0-H-I* 2.63 0.33 1.48 P30-60-H-I* 6.62 1.73 4.17
0-M-I 2.65 4.13 3.39 P30-60-M-I* 6.64 2.56 4.60
0-L-I 1.82 1.56 1.69 P30-60-L-I* 3.52 0.66 2.09

0-H-C 3.70 -2.18 0.76 P10-60-H-C* 1.26 4.23 2.74
0-M-C 0.61 1.70 1.15 P10-60-M-C 7.36 -1.46 2.95
0-L-C 0.09 0.00 0.04 P10-60-L-C* 1.99 0.16 1.07
0-H-C* 0.14 0.34 0.24 P15-60-H-C* 8.16 -1.29 3.44
0-M-C 0.86 1.22 1.04 P15-60-M-C* 2.23 2.10 2.16
0-L-C 0.64 5.31 2.98 P15-60-L-C 4.34 -0.23 2.06
0-H-C* 2.91 -0.88 1.02 P20-60-H-C 2.81 0.87 1.84
0-M-C 6.38 2.13 4.25 P20-60-M-C* 7.61 -3.90 1.85
0-L-C* 5.49 0.01 2.75 P20-60-L-C* 3.82 3.39 3.61
0-H-C 7.03 -1.03 3.00 P25-60-H-C* 6.61 -1.43 2.59
0-M-C 6.56 -2.36 2.10 P25-60-M-C 5.50 1.36 3.43
0-L-C* 3.66 2.25 2.95 P25-60-L-C* 3.68 0.19 1.93
0-H-C 2.74 1.92 2.33 P30-60-H-C* 7.10 -1.09 3.00
0-M-C 4.45 1.41 2.93 P30-60-M-C* 6.93 -0.49 3.22
0-L-C 1.11 2.70 1.90 P30-60-L-C* 4.93 0.91 2.92

ving between 4.2% and 98% with an average of 87.3% compared to the exact approach for large-
ances when the solver time limit is set to three hours. Note that the 4.2% time saving corresponds
tance “P25-60-M-I”, which took 550 seconds in the exact approach to reach optimality. Figure 6
dispersion of the computation time of the heuristic approach based on all the considered instances

ree scenarios. Figure 6 indicates that the median computation time is 421, 408, and 1318 seconds
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tion time of the exact and heuristic approaches under all scenarios.

ance 𝑇𝐸𝑥 (s) 𝑇𝐻 (s)
Time
saving (%)

Instance 𝑇𝐸𝑥 (s) 𝑇𝐻 (s)
Time
saving (%)

-40-H-A 3651.98 234.88 93.57 P10-60-H-A* 10800.00 278.26 97.42
-40-M-A 42.69 239.04 n/a P10-60-M-A 728.59 242.68 66.69
-40-L-A 104.32 242.95 n/a P10-60-L-A* 10800.00 253.84 97.65
-40-H-A 825.61 287.40 65.19 P15-60-H-A* 10800.00 425.46 96.06
-40-M-A 47.23 297.59 n/a P15-60-M-A* 10800.00 397.39 96.32
-40-L-A 2529.10 291.17 88.49 P15-60-L-A* 10800.00 396.80 96.33
-40-H-A* 10800.00 382.82 96.46 P20-60-H-A 679.91 441.06 35.13
-40-M-A 3670.37 353.91 90.36 P20-60-M-A* 10800.00 445.10 95.88
-40-L-A 1473.76 378.27 74.33 P20-60-L-A* 10800.00 470.79 95.64
-40-H-A 309.80 416.98 n/a P25-60-H-A 4095.77 537.43 86.88
-40-M-A 4068.48 430.01 89.43 P25-60-M-A* 10800.00 531.43 95.08
-40-L-A 4216.13 448.89 89.35 P25-60-L-A* 10800.00 522.15 95.17
-40-H-A 5338.03 517.29 90.31 P30-60-H-A* 10800.00 537.52 95.02
-40-M-A 293.41 459.37 n/a P30-60-M-A* 10800.00 551.12 94.90
-40-L-A 4301.07 452.13 89.49 P30-60-L-A* 10800.00 538.27 95.02

-40-H-I* 10800.00 209.44 98.06 P10-60-H-I* 10800.00 253.12 97.66
-40-M-I 34.88 200.35 n/a P10-60-M-I 46.66 267.29 n/a
-40-L-I 14.82 220.68 n/a P10-60-L-I* 10800.00 254.74 97.64
-40-H-I 39.07 255.46 n/a P15-60-H-I 5490.46 385.90 92.97
-40-M-I 2189.51 256.55 88.28 P15-60-M-I* 10800.00 444.87 95.88
-40-L-I 2529.10 265.83 89.49 P15-60-L-I 4168.23 393.51 90.56
-40-H-I 85.82 355.06 n/a P20-60-H-I 310.86 461.81 n/a
-40-M-I 3670.37 371.93 89.87 P20-60-M-I* 10800.00 451.09 95.82
-40-L-I 78.66 372.04 n/a P20-60-L-I 3921.00 468.96 88.04
-40-H-I 111.54 404.70 n/a P25-60-H-I 5185.49 524.43 89.89
-40-M-I 4049.77 410.99 89.85 P25-60-M-I 550.70 527.58 4.20
-40-L-I 154.45 431.25 n/a P25-60-L-I* 10800.00 549.67 94.91
-40-H-I* 10800.00 453.10 95.80 P30-60-H-I* 10800.00 582.02 94.61
-40-M-I 240.34 446.47 n/a P30-60-M-I* 10800.00 605.53 94.39
-40-L-I 224.68 476.60 n/a P30-60-L-I* 10800.00 657.29 93.91

-40-H-C 3651.98 425.45 88.35 P10-60-H-C* 10800.00 695.46 93.56
-40-M-C 120.62 365.84 n/a P10-60-M-C 220.38 552.47 n/a
-40-L-C 32.49 383.16 n/a P10-60-L-C* 10800.00 603.80 94.41
-40-H-C* 10800.00 612.54 94.33 P15-60-H-C* 10800.00 1163.64 89.23
-40-M-C 85.86 636.29 n/a P15-60-M-C* 10800.00 941.24 91.28
-40-L-C 2529.10 629.77 75.10 P15-60-L-C 379.87 1089.40 n/a
-40-H-C* 10800.00 778.69 92.79 P20-60-H-C 296.95 1611.30 n/a
-40-M-C 3670.37 969.17 73.59 P20-60-M-C* 10800.00 1363.03 87.38
-40-L-C* 10800.00 1093.63 89.87 P20-60-L-C* 10800.00 1336.90 87.62
-40-H-C 527.78 1231.29 n/a P25-60-H-C* 10800.00 1754.27 83.76
-40-M-C 4049.77 1099.86 72.84 P25-60-M-C 1120.13 1735.81 n/a
-40-L-C* 10800.00 1364.81 87.36 P25-60-L-C* 10800.00 1671.17 84.53
-40-H-C 3463.71 1344.02 61.20 P30-60-H-C* 10800.00 1803.32 83.30
-40-M-C 179.43 1240.10 n/a P30-60-M-C* 10800.00 1781.55 83.50
-40-L-C 696.76 1350.19 n/a P30-60-L-C* 10800.00 1833.46 83.02

l-unit, incremental and combined QD schemes respectively. The combined scenario requires the
omputation time with the largest computation time variability, which reflects the high impact of the
size on the computation time. In contrast, the all-unit QD scheme is the least sensitive to problem
ges.
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Heuristic computation time under the three scenarios.

clusion
s paper, we have proposed a SSOA model that considers two schemes of QDs, i.e. the all-unit and
tal QD schemes in addition to their combination. The proposed model can be easily used with only
or only “incremental” discounts or with both schemes for different suppliers. The proposed model
also the variable availability and performance of suppliers in terms of cost and green aspects over a
ined planning horizon. The objective is to select the suppliers to contract with and the quantities to

d for every period of the planning horizon in order to satisfy a deterministic single-product demand.
lem has been modelled using a bi-objective MILP formulation and the model has been solved using
ted comprehensive criterion method with an exact approach based on the branch-and-cut algorithm
ulation-based heuristic approach. Moreover, a numerical analysis has been conducted to analyze

s including the obtained solutions and the corresponding computation time of the exact and heuristic
es. The exact approach has been effective for the all-unit, incremental, and combined QDs models
for small to medium-size problems. The optimal solution could not be reached even after a quite
putation time for large-size instances. In addition, the comparison between exact and heuristic ap-
has shown that the percentage difference in terms of cost and green value has been small, especially
number of iterations of the heuristic approach which led to conclude that the exact approach can be

mall to medium size problems while the heuristic approach is recommended for large size problems,
ut any difference in the quality of the heuristic solutions between the considered discount schemes.

r, the results have shown that the cost-based solutions and the green-value-based solutions are dif-
d the latter is not sensitive to the discount scheme, which can be expected. Moreover, the all-unit

appeared to be better for the green-oriented solutions in the bi-objective configuration. Finally,
avenues for future research can be suggested based on the findings of this paper. First, considering

demand instead of deterministic demand would make the model more realistic although it would
ore challenging to be solved. Second, considering other sustainability aspects such as the social

nce of the suppliers would be of interest. In addition, considering this problem along with the rout-
em between the suppliers to collect the purchased products, while minimizing cost and the 𝐶𝑂2s from the transportation vehicles is worth investigating.
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endix: Mathematical model with optimal QD scheme selection
i-objective integer LP model that allows to optimize the selection of the QD scheme is defined by
ng a new index 𝑗 = 1, ..., 𝐽 that represents the QD scheme. We use 𝑗 = 1 to indicate “all-unit“ QD

to indicate “incremental” QD. The formulation can be given as follows:

xTGVP =
𝑇∑
𝑡=1

𝑛𝑡∑
𝑖=1

𝑅𝑖∑
𝑟=1

𝐺𝑊𝑖𝑡 ×
𝐽∑
𝑗=1

𝑄𝑗𝑖𝑡𝑟, (25)

nTCP =
𝑇∑
𝑡=1

𝑛𝑡∑
𝑖=1

(
𝑉
(
𝑄𝑖𝑡

)
+

𝑅𝑖∑
𝑟=1

𝐽∑
𝑗=1

𝑌 𝑗𝑖𝑡𝑟 × 𝐹𝐶𝑖𝑡

)
+

𝑇∑
𝑡=1

(
𝐻𝑡 × 𝐼𝐻𝑡 + 𝑆𝑡 × 𝐼𝑆𝑡

)
, (26)

𝑖𝑡
)
=

𝑅𝑖∑
𝑟=1

𝑣𝑐𝑖𝑡𝑟𝑄
𝑗=1
𝑖𝑡𝑟 +

𝑅𝑖∑
𝑟=1

(
𝑣𝑐𝑖𝑡𝑟

(
𝑄𝑗=2𝑖𝑡𝑟 − 𝑢𝑖𝑡(𝑟−1)𝑌

𝑗=2
𝑖𝑡𝑟

)
+
(
𝑌 𝑗=2𝑖𝑡𝑟

𝑟−1∑
𝑘=1

𝑣𝑐𝑖𝑡𝑘
(
𝑢𝑖𝑡𝑘 − 𝑢𝑖𝑡(𝑘−1)

))) (27)

ct to
𝑅𝑖∑
𝑟=1

𝑌 𝑗𝑖𝑡𝑟 ≤ 1, ∀𝑖 = 1,… , 𝑛𝑡 , 𝑡 = 1 ,… , 𝑇 , (28)

𝑙𝑖𝑡𝑟 ≤ 𝑄𝑗𝑖𝑡𝑟 ≤ 𝑌 𝑗𝑖𝑡𝑟𝑢𝑖𝑡𝑟 ∀𝑖 = 1,… , 𝑛𝑡 , 𝑡 = 1 ,… , 𝑇 , 𝑗 = 1,… , 𝐽 , 𝑟 = 1 ,… , 𝑅𝑖, (29)

1 − 𝐼
𝑆
𝑡−1 +

𝑛𝑡∑
𝑖=1

𝐽∑
𝑗=1

𝑅𝑖∑
𝑟=1

𝑄𝑗𝑖𝑡𝑟 − 𝐼
𝐻
𝑡 + 𝐼𝑆𝑡 = 𝐷𝑡, (30)

𝑛𝑡∑
𝑖=1

𝐽∑
𝑗=1

𝑅𝑖∑
𝑟=1

𝑄𝑗𝑖𝑡𝑟 + 𝐼0 =
𝑇∑
𝑡=1

𝐷𝑡, (31)

𝑆 ≤ 𝐼𝑆𝑡 ≤ 𝑀𝑌 𝑆𝑡 , ∀𝑡 = 1 ,… , 𝑇 , (32)

𝐻 ≤ 𝐼𝐻𝑡 ≤ 𝑀𝑌 𝐻𝑡 , ∀𝑡 = 1 ,… , 𝑇 , (33)

+ 𝑌 𝑆𝑡 ≤ 1, ∀𝑡 = 1 ,… , 𝑇 , (34)

𝑟∈ ℕ, 𝑌 𝑗𝑖𝑡𝑟 ∈ {0, 1} , ∀𝑖 = 1,… , 𝑛𝑡, 𝑡 = 1 ,… , 𝑇 , 𝑟 = 1 ,… , 𝑅𝑖, (35)

∈ ℕ, 𝐼𝑆𝑡 ∈ ℕ, 𝑌 𝐻𝑡 ∈ {0, 1} , 𝑌 𝑆𝑡 ∈ {0, 1} , ∀𝑡 = 1 ,… , 𝑇 . (36)
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. We study a supplier selection and order allocation problem with green criteria.

. Three quantity discount configurations are considered: all-unit, incremental and combined.

. A bi-objective model is solved using both exact and population-based approaches.

. An extensive numerical study shows the effectiveness of the approach.

. A software is developed to guide procurement managers in making decisions
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