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Abstract.

Background. Honeypots are cybersecurity mechanisms that are set up
as decoys in networks to lure and monitor attackers trying to compro-
mise vulnerable systems. Two commonly used honeypot designs are high-
interaction and low-interaction honeypots, which differ in the amount of
interplay that the attackers are allowed to do. So far, the effectiveness of
high-interaction and low-interaction honeypots has been understudied,
making it difficult for security teams to choose between different honey-
pot technologies.

Aim. The aim of this paper is to compare the effectiveness of high-
interaction and low-interaction honeypots through real-world data.
Method. We deployed multiple Elasticsearch honeypot implementations
to collect data: a closed-source high-interaction honeypot developed by
the authors, and three types of open-source low-interaction honeypots
(namely Elastichoney, Delilah and Elasticpot). The collected data came
from 48 instances of high-interaction honeypots and 111 instances of low-
interaction honeypots, over a period of 14 days.

Results. We found that low-interaction honeypots captured only a frac-
tion of the attacks that high-interaction honeypots can catch. On the
other hand, low-interaction honeypots are simpler, more efficient to run
due to their low usage of resources, and easier to deploy. In our dataset,
high-interaction honeypots captured 76.12% of the total attack packets
and attracted 70.61% of the unique attacker IPs. In comparison, low-
interaction honeypots performed a lot worse in collecting attack data;
they only managed to capture 23.88% of the total attack packets and
attracted 29.39% of the unique attacker IPs.

Conclusions. In this paper, we present an experiment that evaluated
and compared the effectiveness of high-interaction and low-interaction
honeypots in terms of the amount and the type of information collected
from attacks targeting them. It follows from our findings that it would be
wiser to either concentrate solely on using high-interaction honeypots,
or to increase the effectiveness of low-interaction ones by automatically
changing each static value during deployment and/or by increasing the
mimicking capabilities of low-interaction honeypots.
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1 Introduction

Honeypots are one of those essential cybersecurity systems that can be useful in
detecting network compromises, while learning the behaviour of the attackers at
the same time. These systems are set up to mimic vulnerable assets that could
be infiltrated by attackers. A honeypot typically has monitoring and logging
capabilities that would allow security researchers (the honeypot operators) to
gather information about attackers’ behaviour, including the tools and exploits
used by these attackers. In other words, a honeypot can be thought of as a “dig-
ital network bait” which is used to discover potential attackers — both insiders
and remote [17] and to gather evidence about them.

Honeypots can serve as a valuable tool, as long as attackers interact with
them [14]. In the simplest form, there are two different categories of honey-
pot interaction: high and low. High-interaction honeypots offer a fully func-
tional decoy system that can be compromised by the attackers [20]. This allows
high-interaction honeypots to collect more information regarding attackers’ be-
haviour, as well as their attack tools [17]. However, high-interaction honeypots
are harder to develop — and typically more resource-intensive — in comparison
to low-interaction honeypots.

On the other hand, low-interaction honeypots provide attackers with minimal
access — for example, they do not let attackers to access the operating system
but instead they provide some minimalist implementation of a limited number
of Internet protocols and services [14]. This limitation — while reducing the pos-
sibility of the honeypot getting completely compromised by the intruder — also
restricts the honeypot’s ability to emulate the full functionality of a vulnerable
system [17]. Low-interaction honeypots are also usually easier to develop, deploy
and maintain, as they require less computational resources.

Challenges and motivation. Nowadays, some attackers are becoming increas-
ingly aware of the presence of honeypots. As they try to navigate their way
through their victim’s devices, those attackers would keep an eye for honeypot-
like features on the systems they hit, in order to avoid being monitored — or even
worse, captured [30]. They would also like to avoid wasting their time and effort
on not-real systems, and naturally, they do not want to give away valuable and
incriminating information about themselves.

At the same time, security community knows remarkably little about which
type of honeypot would attract more attackers, and how much of the attackers’
data can be captured by using either the high- or low-interaction honeypots.

This means that any claims within the security community that high-interaction
honeypots are outperforming low-interaction honeypots currently lack numerical
evidence. Furthermore, the extent of such a proposed performance difference is
currently unexplored. These observations provide the key challenges and moti-
vation for the research we present in this paper.
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Most importantly — and in relation to the socio-technical aspects of security —
this gap in knowledge makes it difficult for practitioners (with varying degrees of
expertise) to make decision whilst trying to build a secure system. This is espe-
cially true for real-world systems, in which diverse sets of needs would come up,
due to different budgets, environments and demands. Furthermore, not knowing
enough about how high- and low-interaction honeypots would perform in the
real-world setting may lead to a false sense of security by the users of such sys-
tems. As a consequence, this false sense of security may increase the possibility
of errors due to the human element.

To address the challenges above, this paper compares the effectiveness of
high-interaction and low-interaction honeypots in terms of attracting attacks
in a real-world setting. We conducted an experiment in which we contrasted
network traffic data captured by one custom high-interaction honeypot group
and three popular low-interaction ones, within a 14-day period. We deemed this
14-day observation period would be sufficient, since first and foremost, we were
only interested in the initial and short term effects, rather than the long term
and historic data of honeypot operations (the latter is a valuable research in
its own right, but it is beyond the scope of the research we wanted to focus on
here).

Contributions. The main contributions of our paper are:

— we analyse and compare the efficacy of high- and low-interaction honeypots
based on the data we collected from our experiment;

— we provide some insights into the geographical spread of potential attackers;

— finally, we come up with a set of recommendations that may help security
researchers in choosing the type of honeypots suitable for their work.

The rest of the paper is organised as follows. Section 2 provides some back-
ground information regarding the honeypot systems we used in our study, as
well as our rationale in using Elasticsearch for this study. Section 3 focuses on
our deployment methodology and our rule set for evaluating incoming attacks.
Section 4 presents the results by (a) comparing the performances of high- and
low-interaction honeypots, (b) comparing the three types of low-interaction hon-
eypots we used with each other, and (c) analysing the geographical locations of
the attackers. Section 5 outlines and briefly discusses related work, while Sec-
tion 6 concludes our paper and provides several ideas for future research.

2 Elasticsearch Honeypots

Elasticsearch is a NoSQL database that can store, search, and analyse large
amounts of data [22]. It currently has eight common vulnerabilities and exploits
(CVEs) listed on the Exploit Database [5]. While six of these CVEs are from
2014 and 2015 and are currently legacy problems affecting older versions, two of
them are relatively recent, from July 2021 [5].

In 2021, Paganini scanned 334,013 servers that used port 9200 and discovered
that 9,202 were running instances of Elasticsearch and 5,740 were accessible
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without any authorisation [23]. Elasticsearch servers are heavily targeted by
cyber criminals to steal and ransom victims’ data. In another recent example,
an attacker wiped and defaced more than 15,000 Elasticsearch servers and tried
to pin the blame on Night Lion Security, a US cyber-security firm [10]. These
vulnerabilities and recent attacks are the main reasons behind our decision to
focus on Elasticsearch honeypots.

In order to respond to these threats, security community has designed various
open-source honeypot implementations. Most of these are low-interaction, and
their source code is available on GitHub. These honeypots usually provide an
easy to set up and easy to use approach with ready-made default configurations.
In addition to this, since low-interaction honeypots are less resource hungry, sim-
ply cloning a low-interaction Elasticsearch honeypot from GitHub and following
the provided setup instructions is a cheap and effortless way of setting up hon-
eypots. However, these low-interaction honeypots have several limitations, most
notably the lack of useful information about the attackers’ behaviour that can
be collected.

2.1 Designing High-Interaction Elasticsearch Honeypot

In order to avoid the shortcomings of low-interaction honeypot implementations
(and the lack of readily available high-interaction honeypots), we decided to
construct our own high-interaction Elasticsearch honeypot, based on the lat-
est version of the Elasticsearch services which we deployed into a Docker image.
This allows our honeypot to return exactly the same responses that any compro-
mised Elasticsearch servers would do. Moreover, in order to increase the decoy
capabilities of our honeypot, we created random (yet believable) business and
organisation, and related datasets to fill the indices of the Elasticsearch servers
with realistic data. Moreover, index names were randomly selected from a list
of 16 business-related database tables. Random indices data creation and name
selection were performed every time a honeypot was deployed, to reduce the risk
of potential attackers recognising “already seen” data.

Lastly, a tcpdump script was placed outside of the Docker image to record
Internet traffic coming from all the visiting and attacking IP addresses. These
traffic data were stored in packet capture (or pcap) files. These files were regu-
larly parsed by automated scripts using the rule set mentioned in Section 3.2.

2.2 Low-Interaction Elasticsearch Honeypots

In comparison to high-interaction honeypots, low-interaction honeypots only
allow attackers a limited access to the system [9, 27, 30].

This lack of freedom means that low-interaction honeypots use fewer re-
sources than high-interaction honeypots. However, whilst easy to deploy and
maintain, low-interaction honeypots do not behave like a real production sys-
tem, and hence typically do not collect so much valuable data [27].
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There are many open-source low-interaction Elasticsearch honeypots readily
available on the Internet. For the purpose of our research, we selected widely-
used low-interaction honeypots in the wild, taking into account their ease of
deployment, as well as the clarity and availability of their documentation. These
selection criteria would allow for the deployment of the chosen honeypots without
demanding high technical knowledge or specific configurations.

For these reasons, we selected all three Elasticsearch honeypots (only the ones
that are listed as database honeypots) that are being listed in popular honeypot
lists [1, 16, 32]. These three honeypots are:

— FElastichoney is an open-source low-interaction Elasticsearch honeypot. It
was “designed to catch attackers exploiting RCE vulnerabilities in Elastic-
search” [13]. It takes requests in the /, /_search and /_nodes endpoints and
mimics an Elasticsearch database by replying with a JSON response that
emulates what an actual vulnerable Elasticsearch instance would send [24].
Elastichoney keeps track of the attacks it receives and writes them into a log
file. We deployed it with the default configuration in order to standardize our
deployment process and capture the real world scenarios as more systems be-
ing deployed with default configurations rather than specific configurations.

— Delilah is another open-source low-interaction Elasticsearch honeypot that
aims to catch attackers who are using the Elasticsearch Groovy vulnerability
(CVE-2015-1427) [15, 26]. Delilah mimics a vulnerable Elasticsearch instance
and “detects and identifies attack commands, reconnaissance attempts, and
download commands (specifically wget and curl)” [26]. Delilah is capable
of downloading files an attacker is trying to insert into the system and it
can also send email notifications to the managers of the system for real-time
analysis.

— FElasticpot is an open-source low-interaction Elasticsearch honeypot that
mimics a vulnerable Elasticsearch instance and stores the logs of incom-
ing attacks [8]. It does not use Docker by default; however, deploying the
honeypot into a Docker container is an option. This honeypot responds to
an attacker by mimicking an old version of a vulnerable Elasticsearch server.
However, it is possible to change the responses it gives to attackers if the
honeypot owner would like the system to behave in a certain way (for in-
stance, if they would like to focus on certain types of interaction), by editing
the configuration file.

3 Methodology

We carried out a study design process to prepare the set up to be used for
running our honeypots, as well as the strategy for collecting the data, and the
rule set for examining the traffic behaviour.

3.1 Honeypot Deployment

Before starting the data collection, it is necessary to make critical decisions re-
garding the deployment process, which includes parameters such as deployment
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Fig. 1: The number of attacks for each of the six types of attack behaviour (high-
interaction honeypot)
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Fig. 2: The number of attacks for each of the six types of attack behaviour (low-
interaction honeypot)

locations, cloud providers and the deployment period. In order to minimise the
chance of attackers identifying our honeypots collectively, the deployment pro-
cess was randomised.
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The deployment of our 48 high-interaction and 111 low-interaction honeypots
was deployed consecutively, over a period of 14 days in order to understand initial
and short term effects of fidelity and degree of honeypot interaction. Using this
deployment strategy — instead of simultaneously deploying all our honeypots
at once — ensured that the likelihood of attackers finding any link between our
honeypots would be low.

We randomised the location of both high- and low-interaction honeypots to
avoid any region-specific trends. The randomly selected regions for deployment
were Europe, US, as well as some parts of Asia, Australia and Africa.

Furthermore, to avoid any cloud-provider-specific issue, we selected them
randomly from a list of companies such as Alibaba, Amazon, Azure, Digital
Ocean, Google Cloud, Hetzner, Linode and OVH. We selected well-known and
widely-used cloud providers to include in this set in order to have our honeypots
hosted at IP addresses that are commonly scanned and attacked by potential
intruders. Additionally, the number of honeypots that we deployed was also
randomised for the same reason (to avoid identification of all our honeypots as a
collective). We restricted the randomisation of the number of instances in order
to avoid widely different numbers of instances for each honeypot type. This
process resulted in 48 high-interaction honeypots, 35 Elastichoney honeypots,
38 Delilah honeypots and 38 Elasticpot honeypots. We also conducted a “per
honeypot type” analysis in Figure 1 and Figure 2 to mitigate the risk of having
a different number of instances affecting the results.

3.2 Evaluation and Rule Set

We manually classified six different types of traffic behaviour towards our hon-
eypots. We explain these below.

— Data Steal. We have classified data steal attacks as attempts to send a request
to endpoints where reading critical information is possible. For example, a
request sent to the /_search endpoint may access critical information inside
the honeypot; thus, we classified such a request as a “data steal” attempt.

— Information Gathering. Information gathering consists of reconnaissance at-
tempts, i.e. activities that are attempting to acquire information about the
clusters and nodes of the system, rather than attempting to access the con-
tent inside of our honeypot. They normally precede an attack. So, requests
that we classify as “information gathering” try to gain details about the
system, rather than the information inside.

— Data Modification. This type of traffic behaviour includes POST and PUT
requests that try to write data inside the honeypot, or attempt to alter
existing data.

— Secript Injection. Script injection attacks are associated with requests that
abuse the known vulnerabilities of Elasticsearch to run malicious code or
conduct a code injection into the server which allow attackers to gain full
control of the the compromised system.
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— Destructive. We classified as “destructive” traffic behaviour requests that
attempt to remove existing data in the server. These requests usually include
the keyword DELETE.

— Unclassified. This traffic category is a catch-all type group, and consists of
requests that do not fall easily into any of the other five categories above. For
example, a request meant to target another service can fall into this category.
Only 0.5% of the total packets we collected belong to this category.

4 Results

In this section, we discuss the efficacy of high- and low-interaction honeypots.
First, we evaluated how the honeypots performed, in terms of their handling
upon receiving attacks. After that, we analysed and evaluated the impact of
honeypot locations. Lastly, we reported the possible origins of these attacks.

4.1 Efficacy of High-Interaction Honeypots

Honeypots are valuable tools in network security as long as they capture attacks.
In this section of our paper, we analyse how good high-interaction honeypots are
at capturing attacks compared to low-interaction honeypots.

First, we would like to determine whether using high-interaction honeypots
would attract more attacks than low-interaction honeypots. Table 1 provides a
statistical summary of the packets received for each type of attack, in relation
to each type of honeypot. This table shows that the high-interaction honeypot
received more packets than any of the low-interaction honeypots. For instance,
high-interaction honeypots captured 1412 (67.66%) script injection attempts,
compared to 253 (12.12%), 207 (9.92%) and 215 (10.30%) script injection at-
tempts for those that belonged to Elastichoney, Delilah and Elasticpot, respec-
tively. Similarly, high-interaction honeypots received 96% of the data steal at-
tempts and 98% of data modification attempts. Moreover, only high-interaction
honeypots received attacks designed to remove data from the database (this
is typically associated with an effort to demand a ransom from the database
owners).

We also investigated the number of unique IP addresses captured by the
honeypots. Table 2 displays the number of unique IP addresses captured by
each honeypot group, per attack type. Some IP addresses are involved in mul-
tiple attack types. For example, attackers often gather information about the
database before performing data steal or modification attempts from the same
IP. As shown in Table 2, high-interaction honeypots captured fewer unique IP
addresses for data steal and information gathering attacks in comparison to two
of the low-interaction honeypots. However, high-interaction honeypots captured
significantly higher numbers of unique IP addresses for more involved attacks
such as data modification, script injection and data removal. One way to inter-
pret these results is that high-interaction honeypots received more attacks from
more sophisticated attackers.



Table 1: A statistical summary of the types of attack behaviour, according to each honeypot group
# Packet #Unique IP  Data Information Script

Honeypots # captures addresses steal Gathering Modification injection Destructive
High-interaction 48 (;é.l1824;;) 1578 (9865??(2%) (3152;% (95?5713%) (6;.46162%) (10202%)
Elastichoney 35 (;%310;2) 1571 (11.;2%) (1?.74181%) (o.gg%) (12??2%) 0
Delilah 38 (éﬁgﬁé) 1649 (11.2335) (21192;;5) (o.;g%) (9.29027%) 0
Elasticpot 38 (;193% 1428 (0?9?116%) (211932%) 0 (102.91,3%) 0
146927 3276 89113 49838 3018 2087 22
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Table 2: The number of unique IP addresses based on the types of attack behaviour, according to each honeypot group

# Packet # Unique Data Information

Honeypots — # Modification , Seript Destructive

captures IP addresses steal Gathering injection
High-interaction 48 (;816814;;) 1578 338 1353 31 102 4
Elastichoney 35 (éOS?E)O;;) 1571 379 1375 11 84 0
Delilah 38 (;2181%71) 1649 411 1430 5 73 0
Elasticpot 38 (113;1;%) 1428 303 1224 0 67 0
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Table 3: A statistical summary of some attack behaviour of IP addresses captured
by the high-interaction honeypot, when they also hit low-interaction honeypot(s)
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Data steal 338 7034 36 875037 6835 33
Modification 31 3 0 3 404 10 1
Script injection 102 2121 0 2222 0 2424 0
Destructive 4 30 3 202 30 3

Working under the assumption that high-interaction honeypots are much
harder to spot by attackers, we focused on studying if there was any evidence
pointing towards attackers being able to detect and avoid low-interaction ones.

To get a better sense of whether attacker have shown any avoidance behaviour
towards low-interaction honeypots, we investigated if IP addresses captured by
high-interaction honeypots were also observed in low-interaction honeypots.

Table 3 shows how attackers that were captured by high-interaction honey-
pots behaved when they encountered low-interaction honeypots. Many attack-
ing IP addresses captured by high-interaction honeypots were not seen at all
by low-interaction honeypots. For example, only a handful of IP addresses en-
gaging in modification attacks on high-interaction honeypots were also seen by
low-interaction honeypots. This might be because these attackers use up-to-
date blacklists that can be derived from using self-written scripts or publicly
available honeypot detection tools to ignore low-interaction honeypots [25, 4, 3,
28]. They only scan the homepage and two other pages (namely /_search and
/_all/ mapping), which

provide information about the database. By using the returned answers, these
attackers might have detected and ignored the low-teraction honeypots.

The destructive attack category shows a similar picture, whereby known IP
addresses are not used for gathering information about the database rather than
deleting instances. Additionally, at most 24% of attacks in the script injection
category was captured by single low-interaction honeypots. The rest of the at-
tackers might have used a blacklist or some other method to avoid low-interaction
honeypots.

Interestingly, all the IP addresses captured in low-interaction honeypots were
involved in script injection. This demonstrates that one quarter of attackers
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Fig.3: A Venn diagram showing the distribution of the unique IP addresses
captured for each honeypot group

involved in script injection were not involved in any kind of low-interaction
honeypot avoidance. Similarly, in data steal category, at most 25% of the attacks
reported in high-interaction honeypots were captured by single low-interaction
honeypots. More than half of these attackers were observed using queries for
stealing data on low-interaction honeypots, as they did on high-interaction ones.

Our results show that attackers that conducted destructive and modification
attacks clearly engaged in avoidance of low-interaction honeypots. Data stealing
attackers display a somewhat similar behaviour. On the other hand, attackers
involved in script injection did not exhibit this honeypot-evading behaviour.

Still, high-interaction honeypots captured five times more script injection
attacks. This might be because script injection attacks only use blacklists to
ignore low-interaction honeypots but no response-based avoidance is used. On
the other hand, other attacker types seem to be using both response-based

Furthermore, Figure 3 shows the overlap of captured IP addresses for each
honeypot group. We can see that a total of 415 TP addresses were captured by
all honeypot groups. On the other hand, 785 IP addresses were only captured by
high-interaction honeypots, while Elastichoney only captured 323 IP addresses,
and Delilah only captured 361 IP addresses. Lastly, 293 IP addresses were only
captured by Elasticpot which was less than all other honeypot groups. The total
number of TP addresses exclusively attacking each honeypot group is shown as
underlined in Figure 3.
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Elastichoney

Fig. 4: The percentages of attacks captured by low-interaction honeypots for each
of the three implementations used

4.2 Efficacy of Different Low-Interaction Honeypots

In our study, the low-interaction honeypots (Elastichoney, Delilah, and Elas-
ticpot) all performed badly in comparison to our high-interaction honeypot,
both collectively and individually. Furthermore, the performance of these low-
interaction honeypots did not differ notably, which suggests that the character-
istics of any low-interaction honeypot would not lead to a meaningful difference
in a real-world scenario.

Figure 4 presents the breakdown of the percentages of network traffic received
by low-interaction honeypots based on their implementation. This figure shows
that 36.6% of the total malicious network traffic were received by Delilah, com-
pared to 34% and 29.4% for those received by Elasticpot and Elastichoney im-
plementations respectively. These discrepancies in performances are most likely
due to attackers’ ability to identify low-interaction honeypots.

To understand whether our honeypots can be identified by external resources,
we queried our IP addresses in the Shodan search engine [29]. Typically, Shodan
can identify low-interaction honeypots by just scanning their metadata. Our
search results found that Shodan identified none of the Delilah honeypots. How-
ever, all the Elastichoney and Elasticpot honeypots were correctly identified by
Shodan. This success of detecting honeypots by Shodan might be the reason
behind the slightly better overall performance of Delilah honeypots compared to
the other low-interaction honeypots.

4.3 Analysing the Attackers

This subsection focuses on the source locations of the attacks that our honeypots
had attracted. We used Maxmind GeolP services to identify the origins of the
attacks [2].
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Table 4: The top-10 offending countries from which the IP addresses of the traffic
to our honeypots came from

Total High-Interaction Low-Interaction

Rank Country # Country # Country #
1 United States 2054 United States 978 United States 1569
2 China 316 China 152 China 240
3 United Kingdom 112 United Kingdom 53 United Kingdom 79
4 Germany 84 Netherlands 51 Germany 59
5 Netherlands 76 Germany 35 Netherlands 57
6 Canada 57 Canada 25 Canada 36
7 Singapore 51 Singapore 25 France 34
8 India 44 Lithuania 23 Singapore 31
9 Russian Federation 39 Russian Federation 20 Russian Federation 31
10 France 35 India 18 India 30

Table 4 shows the top-10 countries in terms of the number of attacking IP
addresses per honeypot type. Our results cover IP addresses captured by both
high-interaction and low-interaction honeypots. IP addresses were located in
60 different countries. The top-10 countries were United States, China, United
Kingdom, Germany, Netherlands, Canada, Singapore, India, Russia and France.
These 10 countries account for more than 91,4% of the total number of unique
IP addresses. Moreover, United States alone accounts for more than 66.4% of the
total number of attacking IP addresses. Typically, countries with larger hosting
industries are present in this top-10 list.

The results from the Maxmind data do not show a clear difference in the top-
10 countries in terms of the number of attacking IP addresses for different honey-
pot groups. These top-10 countries are very similar for both high-interaction and
low-interaction honeypot groups. In fact, the top-3 countries were the same for
both high- and low-interaction honeypots. Nine countries appeared in the top-10
of both groups, albeit at slightly different positions. The only major difference
is that Lithuania appeared in the high-interaction list (at number 8) but not in
the low-interaction list, while France appeared in the low-interaction honeypot
(at number 7), but not in the high-interaction list.

5 Related Work

As far as we know, there is no prior research comparing the performances of high-
and low-interaction honeypots through real-world data. This section will look at
prior research under two subsections: Honeypot Detection and Comparison of
Honeypots.

The studies that focus on detecting low-interaction honeypots are related to
this research as the performance differences between high- and low-interaction
honeypots are likely due to — at least in part — low-interaction honeypots get-
ting detected more easily. However, these studies do not typically include high-
interaction honeypots into their analysis. The scarce prior research in comparing
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honeypots is also related to our present research. However, previous work tends
to compare low-interaction honeypots with each other, rather than drawing a
comparison between high- and low-interaction honeypots [12, 18, 21].

5.1 Honeypot Detection

The ability to avoid detection is crucial for the performance of a honeypot.
There are many attempted methods for detecting low-interaction honeypots.
One such approach proposed by Aguirre-Anaya et al. is done by fingerprinting
the low-interaction honeypots’ static features [6]. In this method, using some
features of a honeypot, such as “communication protocols, network services or
specific environments”, a fingerprint is obtained. Then, using this fingerprint, it
is possible to distinguish a honeypot from a real system.

In addition to this, Morishita et al. discussed the detection of 14 open-source
low-interaction honeypots [18]. This research is significant for our study, because
we have used open-source low-interaction honeypots as well. In particular, Mor-
ishita et al. created 20 simple signatures to detect 19,208 honeypots across 637
autonomous systems. Furthermore, they found that low-interaction honeypots
that use default configurations are more susceptible to getting identified.

Mukkamala et al. used some additional methods for honeypot identifica-
tion [19]. In their research, detecting honeypots at the network level is ex-
plored, and they argue that, by looking at the network features of a system,
low-interaction honeypots may be identified. Among other methods, fingerprint-
ing is also discussed as a viable tool for identification in this paper.

In another paper that focuses on network-level detection, Defibaugh-Chavez
et al. also argued that it is possible to identify low-interaction honeypots just by
looking at their network features [11].

5.2 Comparison of Honeypots

Several studies have looked into comparing low-interaction honeypots. A paper
by Abubakar Zakari et al. presents a comparative analysis among five widely
used low-interaction honeypots, namely Honeyahole, Honeywall, Honeyd, Hon-
eytrap, and Nepenthes [31]. Their study focused on literature analysis rather
than real-world data. Through their work, they showed that almost all hon-
eypots in question lack robustness or intelligence, and these limitations play
negatively into their effectiveness.

In another work that evaluated honeypot technologies, we can see a compar-
ison between open-source honeypots and commercial honeypot tools [21]. How-
ever, this study did not focus on real-world data based on network traffic, but
instead compared their various features, such as services offered and platform
support.

Finally, Alata et al. focused on the behaviour of attackers who have succeeded
in entering the system [7]. Since this study used both high- and low-interaction
honeypots, it is the one most closely related to our paper here. Alata et al.
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made an observation that their low-interaction honeypots have performed worse
compared to high-interaction honeypots in terms of capturing attacks. However,
since their experiment focused more on the attack behaviour and weak password
attacks, their study did not offer anything more than an observation regarding
the comparison of high- and low-interaction honeypots. Furthermore, the authors
noted that this discrepancy was due to low-interaction honeypots not having the
ssh service open, which means a lower number of attacks were being received.

6 Conclusion

Honeypots are heavily used by cybersecurity teams to collect indicators of com-
promise and other intelligence regarding cybercriminals. Some teams prefer to
use high-interaction honeypots, which are designed so that they fully emulate a
vulnerable system. Others use low-interaction honeypots that emulate only a few
basic elements of a vulnerable system. There are good reasons to chose the latter,
particularly because they consume less resources, are more readily available, and
easier to deploy. Moreover, there are many open-source low-interaction honey-
pot projects to choose from, while there are very few high-interaction honeypots
available freely.

In this paper, we present our study regarding the impact of the degree of
interaction and fidelity in terms of capturing intelligence from attackers. For that
purpose, we compared attack data collected by a high-interaction Elasticsearch
honeypot with those collected by a group of three different low-interaction open-
source honeypot projects.

We found a clear evidence that the high-interaction approach leads to gaining
more volume and more pertinent intelligence from the attackers. Moreover, the
difference is so significant that no combination of any of the three low-interaction
honeypots can match the quantity or quality of the evidence gathered by the
high-interaction one.

We recommend practitioners to use high-interaction honeypots where possi-
ble and limit the use of low-interaction ones to systems that, due to a chronic
lack of resources, cannot afford to run the costlier high-interaction type.

There are several areas that merit further investigation. First, it would be
interesting to explore if there is a link between the initial feature being hit by
an attacker, and how long the attacker is likely to spend interacting with that
honeypot. Second, investigating the possible use of blacklists (of already iden-
tified high-interaction and low-interaction honeypots) among attackers might
reveal other strategies for improving the effectiveness of these honeypots. Fi-
nally, it would be valuable to explore ways to reduce the cost and the system
requirements of high-interaction honeypots, while improving their usability and
detection-avoidance rates.
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